1
|
Li Q, Ren W, Yuan J, Guo H, Shang Y, Wang W, Pan J, Gao M, Pang Y. Significant difference in Th1/Th2 paradigm induced by tuberculosis-specific antigens between IGRA-positive and IGRA-negative patients. Front Immunol 2022; 13:904308. [PMID: 36119060 PMCID: PMC9471257 DOI: 10.3389/fimmu.2022.904308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
False negative interferon-γ release assay (IGRA) results constitute the major dilemma for the diagnosis of tuberculosis (TB) infections. Herein, we conducted a cohort study to compare the host immunological response to TB-specific antigens between active TB patients with positive and negative IGRA results and control groups. A total of 274 laboratory-confirmed TB patients were included in our analysis, consisting of 221 were IGRA positive and 53 were IGRA negative. Patients with the elderly were identified as an independent risk factor for negative IGRA results. In addition, the elevated level of IL-4 and the decreased levels of IFN-γ, IL-2, IL-6, IL-1β, and IL-12 in IGRA negative TB relative to IGRA positive TB group, demonstrating a significant difference in Th1/Th2 paradigm between two groups. The IFN-γ&IL-2 based assay could correctly identify 247 out of 307 MTB-infected individuals [271 TB patients and 36 individuals with latent TB infection (LTBI)], demonstrating a sensitivity of 80.5%. Then the IFN-γ and IL-4 were applied to distinguish healthy control and IGRA-negative group. When using the stepwise algorithm, the sensitivity for detecting Mycobacterium tuberculosis (MTB) infections was significantly increased from 80.5% to 89.6%. Additionally, patients with negative IGRA results had a conversion to culture-negative status longer than those with positive IGRA results. In conclusion, a stepwise algorithm outperforms IGRA assays to accurately identify MTB infections by the combination IFN-γ, IL-2, and IL-4. Further study is needed to evaluate the accuracy of our diagnostic algorithm in the LTBI population.
Collapse
Affiliation(s)
- Qiang Li
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China
| | - Weicong Ren
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China
| | - Jinfeng Yuan
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China
| | - Haiping Guo
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China
| | - Yuanyuan Shang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China
| | - Wei Wang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China
| | - Junhua Pan
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Junhua Pan, ; Mengqiu Gao, ; Yu Pang,
| | - Mengqiu Gao
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Junhua Pan, ; Mengqiu Gao, ; Yu Pang,
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Junhua Pan, ; Mengqiu Gao, ; Yu Pang,
| |
Collapse
|
2
|
Garnica M, Aiello A, Ligotti ME, Accardi G, Arasanz H, Bocanegra A, Blanco E, Calabrò A, Chocarro L, Echaide M, Kochan G, Fernandez-Rubio L, Ramos P, Pojero F, Zareian N, Piñeiro-Hermida S, Farzaneh F, Candore G, Caruso C, Escors D. How Can We Improve the Vaccination Response in Older People? Part II: Targeting Immunosenescence of Adaptive Immunity Cells. Int J Mol Sci 2022; 23:9797. [PMID: 36077216 PMCID: PMC9456031 DOI: 10.3390/ijms23179797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
The number of people that are 65 years old or older has been increasing due to the improvement in medicine and public health. However, this trend is not accompanied by an increase in quality of life, and this population is vulnerable to most illnesses, especially to infectious diseases. Vaccination is the best strategy to prevent this fact, but older people present a less efficient response, as their immune system is weaker due mainly to a phenomenon known as immunosenescence. The adaptive immune system is constituted by two types of lymphocytes, T and B cells, and the function and fitness of these cell populations are affected during ageing. Here, we review the impact of ageing on T and B cells and discuss the approaches that have been described or proposed to modulate and reverse the decline of the ageing adaptive immune system.
Collapse
Affiliation(s)
- Maider Garnica
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Hugo Arasanz
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ana Bocanegra
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ester Blanco
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Luisa Chocarro
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Miriam Echaide
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Grazyna Kochan
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Leticia Fernandez-Rubio
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Pablo Ramos
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Nahid Zareian
- The Rayne Institute, School of Cancer and Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
| | - Sergio Piñeiro-Hermida
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Farzin Farzaneh
- The Rayne Institute, School of Cancer and Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - David Escors
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
3
|
Swain AC, Borghans JA, de Boer RJ. Effect of cellular aging on memory T-cell homeostasis. Front Immunol 2022; 13:947242. [PMID: 36059495 PMCID: PMC9429809 DOI: 10.3389/fimmu.2022.947242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
The fact that T-cell numbers remain relatively stable throughout life, and that T-cell proliferation rates increase during lymphopenia, has led to the consensus that T-cell numbers are regulated in a density-dependent manner. Competition for resources among memory T cells has been proposed to underlie this ‘homeostatic’ regulation. We first review how two classic models of resource competition affect the T-cell receptor (TCR) diversity of the memory T-cell pool. First, ‘global’ competition for cytokines leads to a skewed repertoire that tends to be dominated by the very first immune response. Second, additional ‘cognate’ competition for specific antigens results in a very diverse and stable memory T-cell pool, allowing every antigen to be remembered, which we therefore define as the ‘gold-standard’. Because there is limited evidence that memory T cells of the same specificity compete more strongly with each other than with memory T cells of different specificities, i.e., for ‘cognate’ competition, we investigate whether cellular aging could account for a similar level of TCR diversity. We define cellular aging as a declining cellular fitness due to reduced proliferation. We find that the gradual erosion of previous T-cell memories due to cellular aging allows for better establishment of novel memories and for a much higher level of TCR diversity compared to global competition. A small continual source (either from stem-cell-like memory T-cells or from naive T-cells due to repeated antigen exposure) improves the diversity of the memory T-cell pool, but remarkably, only in the cellular aging model. We further show that the presence of a source keeps the inflation of chronic memory responses in check by maintaining the immune memories to non-chronic antigens. We conclude that cellular aging along with a small source provides a novel and immunologically realistic mechanism to achieve and maintain the ‘gold-standard’ level of TCR diversity in the memory T-cell pool.
Collapse
Affiliation(s)
- Arpit C. Swain
- Theoretical Biology, Utrecht University, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: Arpit C. Swain,
| | - José A.M. Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rob J. de Boer
- Theoretical Biology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
4
|
Khairallah C, Chu TH, Qiu Z, Imperato JN, Yang D, Sheridan BS. The accumulation of Vγ4 T cells with aging is associated with an increased adaptive Vγ4 T cell response after foodborne Listeria monocytogenes infection of mice. Immun Ageing 2022; 19:19. [PMID: 35501808 PMCID: PMC9063344 DOI: 10.1186/s12979-022-00275-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/19/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND It is generally accepted that aging has detrimental effects on conventional T cell responses to systemic infections. However, most pathogens naturally invade the body through mucosal barriers. Although mucosal sites are highly enriched in unconventional immune sentinels like γδ T cells, little is currently known about the impact of aging on unconventional mucosal T cell responses. We previously established that foodborne infection with a mouse-adapted internalin A mutant Listeria monocytogenes (Lm) generates an adaptive intestinal memory CD44hi CD27neg Vγ4 T cells capable of co-producing IL-17A and IFNγ. Therefore, we used this model to evaluate the impact of aging on adaptive Vγ4 T cell responses elicited by foodborne infection. RESULTS Foodborne Lm infection of female Balb/c and C57BL/6 mice led to an increased adaptive CD44hi CD27neg Vγ4 T cell response associated with aging. Moreover, Lm-elicited CD44hi CD27neg Vγ4 T cells maintained diverse functional subsets despite some alterations favoring IL-17A production as mice aged. In contrast to the documented susceptibility of aged mice to intravenous Lm infection, mice contained bacteria after foodborne Lm infection suggesting that elevated bacterial burden was not a major factor driving the increased adaptive CD44hi CD27neg Vγ4 T cell response associated with mouse age. However, CD44hi CD27neg Vγ4 T cells accumulated in naïve mice as they aged suggesting that an increased precursor frequency contributes to the robust Lm-elicited mucosal response observed. Body mass did not appear to have a strong positive association with CD44hi CD27neg Vγ4 T cells within age groups. Although an increased adaptive CD44hi CD27neg Vγ4 T cell response may contribute to foodborne Lm resistance of C57BL/6 mice aged 19 or more months, neither anti-TCRδ or anti-IL-17A treatment impacted Lm colonization after primary infection. These results suggest that γδTCR signaling and IL-17A are dispensable for protection after primary foodborne Lm infection consistent with the role of conventional T cells during the early innate immune response to Lm. CONCLUSIONS Lm-elicited adaptive Vγ4 T cells appear resistant to immunosenescence and memory Vγ4 T cells could be utilized to provide protective immune functions during enteric infection of aged hosts. As such, oral immunization might offer an efficient therapeutic approach to generate unconventional memory T cells in the elderly.
Collapse
Affiliation(s)
- Camille Khairallah
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Timothy H. Chu
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Zhijuan Qiu
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Jessica N. Imperato
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Daniella Yang
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Brian S. Sheridan
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| |
Collapse
|
5
|
Torrelles JB, Restrepo BI, Bai Y, Ross C, Schlesinger LS, Turner J. The Impact of Aging on the Lung Alveolar Environment, Predetermining Susceptibility to Respiratory Infections. FRONTIERS IN AGING 2022; 3:818700. [PMID: 35821836 PMCID: PMC9261427 DOI: 10.3389/fragi.2022.818700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
Respiratory infections are one of the top causes of death in the elderly population, displaying susceptibility factors with increasing age that are potentially amenable to interventions. We posit that with increasing age there are predictable tissue-specific changes that prevent the immune system from working effectively in the lung. This mini-review highlights recent evidence for altered local tissue environment factors as we age focusing on increased tissue oxidative stress with associated immune cell changes, likely driven by the byproducts of age-associated inflammatory disease. Potential intervention points are presented.
Collapse
Affiliation(s)
- Jordi B. Torrelles
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Blanca I. Restrepo
- School of Public Health in Brownsville, University of Texas Health Houston, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Yidong Bai
- Department of Cell Systems and Anatomy, UT-Health San Antonio, San Antonio, TX, United States
| | - Corinna Ross
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Soutwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Larry S. Schlesinger
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Joanne Turner
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
6
|
Zhang H, Weyand CM, Goronzy JJ. Hallmarks of the aging T-cell system. FEBS J 2021; 288:7123-7142. [PMID: 33590946 PMCID: PMC8364928 DOI: 10.1111/febs.15770] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/24/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022]
Abstract
The adaptive immune system has the enormous challenge to protect the host through the generation and differentiation of pathogen-specific short-lived effector T cells while in parallel developing long-lived memory cells to control future encounters with the same pathogen. A complex regulatory network is needed to preserve a population of naïve cells over lifetime that exhibit sufficient diversity of antigen receptors to respond to new antigens, while also sustaining immune memory. In parallel, cells need to maintain their proliferative potential and the plasticity to differentiate into different functional lineages. Initial signs of waning immune competence emerge after 50 years of age, with increasing clinical relevance in the 7th-10th decade of life. Morbidity and mortality from infections increase, as drastically exemplified by the current COVID-19 pandemic. Many vaccines, such as for the influenza virus, are poorly effective to generate protective immunity in older individuals. Age-associated changes occur at the level of the T-cell population as well as the functionality of its cellular constituents. The system highly relies on the self-renewal of naïve and memory T cells, which is robust but eventually fails. Genetic and epigenetic modifications contribute to functional differences in responsiveness and differentiation potential. To some extent, these changes arise from defective maintenance; to some, they represent successful, but not universally beneficial adaptations to the aging host. Interventions that can compensate for the age-related defects and improve immune responses in older adults are increasingly within reach.
Collapse
Affiliation(s)
- Huimin Zhang
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Cornelia M. Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Jörg J. Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| |
Collapse
|
7
|
Stojić-Vukanić Z, Pilipović I, Arsenović-Ranin N, Dimitrijević M, Leposavić G. Sex-specific remodeling of T-cell compartment with aging: Implications for rat susceptibility to central nervous system autoimmune diseases. Immunol Lett 2021; 239:42-59. [PMID: 34418487 DOI: 10.1016/j.imlet.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/12/2021] [Accepted: 08/12/2021] [Indexed: 11/15/2022]
Abstract
The incidence of multiple sclerosis (MS) and susceptibility of animals to experimental autoimmune encephalomyelitis (EAE), the most commonly used experimental model of MS, decrease with aging. Generally, autoimmune diseases develop as the ultimate outcome of an imbalance between damaging immune responses against self and regulatory immune responses (keeping the former under control). Thus, in this review the age-related changes possibly underlying this balance were discussed. Specifically, considering the central role of T cells in MS/EAE, the impact of aging on overall functional capacity (reflecting both overall count and individual functional cell properties) of self-reactive conventional T cells (Tcons) and FoxP3+ regulatory T cells (Tregs), as the most potent immunoregulatory/suppressive cells, was analyzed, as well. The analysis encompasses three distinct compartments: thymus (the primary lymphoid organ responsible for the elimination of self-reactive T cells - negative selection and the generation of Tregs, compensating for imperfections of the negative selection), peripheral blood/lymphoid tissues ("afferent" compartment), and brain/spinal cord tissues ("target" compartment). Given that the incidence of MS and susceptibility of animals to EAE are greater in women/females than in age-matched men/males, sex as independent variable was also considered. In conclusion, with aging, sex-specific alterations in the balance of self-reactive Tcons/Tregs are likely to occur not only in the thymus/"afferent" compartment, but also in the "target" compartment, reflecting multifaceted changes in both T-cell types. Their in depth understanding is important not only for envisaging effects of aging, but also for designing interventions to slow-down aging without any adverse effect on incidence of autoimmune diseases.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, University of Belgrade - Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia.
| |
Collapse
|
8
|
Trzewikoswki de Lima G, Rodrigues TS, Portilho AI, Correa VA, Gaspar EB, De Gaspari E. Immune responses of meningococcal B outer membrane vesicles in middle-aged mice. Pathog Dis 2021; 78:5868766. [PMID: 32639524 DOI: 10.1093/femspd/ftaa028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/07/2020] [Indexed: 01/18/2023] Open
Abstract
The elderly are more likely to die when infected with Neisseria meningitidis. Aging is associated with immune system dysfunctions that impair responses to vaccines and infections. Therefore, immunization of middle-aged individuals could be beneficial. This study aims to evaluate the immunogenicity of N. meningitidis B outer membrane vesicles (OMVs) complexed to two different adjuvants. Middle-aged BALB/c and A/Sn mice were immunized and subsequent immune response was assessed by ELISA, immunoblotting and ELISpot. IgG levels were similar between the animals immunized with OMVs complexed to adjuvants. A total of 235 days after the last immunization only A/Sn mice presented higher IgG levels than those observed in the baseline, especially the group immunized with OMVs and aluminum hydroxide. The predominant IgG subclasses were IgG2a and IgG2b. Immunization with the three-dose regimen generated IgG antibodies that recognized a variety of antigens present in the homologous and heterologous meningococcal OMVs evaluated. There was an increase in the frequency of antigen-specific IFN-γ secreting splenocytes, after in vitro stimulation, in mice immunized with OMVs and adjuvants compared to the control group, almost 1 year after the last immunization. Both adjuvants showed similar performance. Immunization of middle-aged mice has generated a robust immune response and it appears to be advantageous.
Collapse
Affiliation(s)
- Gabriela Trzewikoswki de Lima
- Department of Immunology, Adolfo Lutz Institute, Av. Dr. Arnaldo 355, 11 floor, Sao Paulo, SP, Brazil.,Interunits Post-Graduate Program in Biotechnology, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Thais Sousa Rodrigues
- Department of Immunology, Adolfo Lutz Institute, Av. Dr. Arnaldo 355, 11 floor, Sao Paulo, SP, Brazil
| | - Amanda Izeli Portilho
- Department of Immunology, Adolfo Lutz Institute, Av. Dr. Arnaldo 355, 11 floor, Sao Paulo, SP, Brazil.,Interunits Post-Graduate Program in Biotechnology, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Victor Araujo Correa
- Department of Immunology, Adolfo Lutz Institute, Av. Dr. Arnaldo 355, 11 floor, Sao Paulo, SP, Brazil.,Interunits Post-Graduate Program in Biotechnology, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Elizabeth De Gaspari
- Department of Immunology, Adolfo Lutz Institute, Av. Dr. Arnaldo 355, 11 floor, Sao Paulo, SP, Brazil.,Interunits Post-Graduate Program in Biotechnology, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
9
|
Paghera S, Sottini A, Previcini V, Capra R, Imberti L. Age-Related Lymphocyte Output During Disease-Modifying Therapies for Multiple Sclerosis. Drugs Aging 2021; 37:739-746. [PMID: 32761321 DOI: 10.1007/s40266-020-00789-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Patients with multiple sclerosis exhibit the same qualitative and quantitative changes in immune system cells observed in aging. In the last 20 years, multiple sclerosis patients have shown an increase in life expectancy and average age, but clinical trial inclusion criteria typically exclude patients over the age of 55 years. Therefore, disease-modifying therapies are likely administered to patients older than those enrolled in clinical trials. OBJECTIVE In order to investigate whether disease-modifying therapies for multiple sclerosis induce modifications to the immune system that may have (super)additive effects resulting in an acceleration of immunosenescence, we quantified the number of T-cell receptor excision circles (TRECs) and K-deleting recombination excision circles (KRECs). These molecules are contained in new T and B lymphocytes released by the thymus and bone marrow and are considered molecular age-related markers. METHODS The markers of aging were measured by a multiplex quantitative real-time PCR assay in 122 patients who had started therapy with interferon-beta (IFN-β), fingolimod, alemtuzumab, or natalizumab. Samples were obtained before the therapy and at 6 and 12 months of treatment. Comparisons between the variables were performed by a non-parametric statistical analysis. RESULTS In therapy-naive patients, a significant and direct correlation was found between a lower number of newly produced T and B cells and older age. Although disease-modifying therapies induced different changes (both increases and decreases) in the production of new T and B lymphocytes, 12 months of therapy with IFN-β or natalizumab did not affect the correlations found at baseline between the release of lymphocytes containing TRECs or KRECs and age. On the contrary, in patients treated with alemtuzumab, both correlations were lost, while in fingolimod-treated patients, only the correlation between TRECs and age disappeared. CONCLUSIONS This observational study indicated that different age-related changes of the new T and B lymphocyte production could be one of the reasons for the emergence, in the real-world setting, of adverse events not otherwise observed in clinical trials; thus, caution is advised when choosing disease-modifying therapies for multiple sclerosis patients.
Collapse
Affiliation(s)
- Simone Paghera
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alessandra Sottini
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Vanessa Previcini
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Ruggero Capra
- Multiple Sclerosis Center, ASST Spedali Civili di Brescia, Montichiari, Brescia, Italy
| | - Luisa Imberti
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy.
| |
Collapse
|
10
|
Pan XX, Wu F, Chen XH, Chen DR, Chen HJ, Kong LR, Ruan CC, Gao PJ. T-cell senescence accelerates angiotensin II-induced target organ damage. Cardiovasc Res 2021; 117:271-283. [PMID: 32049355 DOI: 10.1093/cvr/cvaa032] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/04/2020] [Accepted: 02/05/2020] [Indexed: 01/08/2023] Open
Abstract
AIMS Aging is a risk factor for cardiovascular diseases and adaptive immunity has been implicated in angiotensin (Ang) II-induced target organ dysfunction. Herein, we sought to determine the role of T-cell senescence in Ang II-induced target organ impairment and to explore the underlying mechanisms. METHODS AND RESULTS Flow cytometric analysis revealed that T cell derived from aged mice exhibited immunosenescence. Adoptive transfer of aged T cells to immunodeficient RAG1 KO mice accelerates Ang II-induced cardiovascular and renal fibrosis compared with young T-cell transfer. Aged T cells also promote inflammatory factor expression and superoxide production in these target organs. In vivo and in vitro studies revealed that Ang II promotes interferon-gamma (IFN-γ) production in the aged T cells comparing to young T cells. Importantly, transfer of senescent T cell that IFN-γ KO mitigates the impairment. Aged T-cell-conditioned medium stimulates inflammatory factor expression and oxidative stress in Ang II-treated renal epithelial cells compared with young T cells, and these effects of aged T-cell-conditioned medium are blunted after IFN-γ-neutralizing antibody pre-treatment. CONCLUSION These results provide a significant insight into the contribution of senescent T cells to Ang II-induced cardiovascular dysfunction and provide an attractive possibility that targeting T cell specifically might be a potential strategy to treat elderly hypertensive patients with end-organ dysfunction.
Collapse
Affiliation(s)
- Xiao-Xi Pan
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fang Wu
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Hui Chen
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Dong-Rui Chen
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Hong-Jin Chen
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Ling-Ran Kong
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Cheng-Chao Ruan
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Ping-Jin Gao
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| |
Collapse
|
11
|
Zöphel D, Hof C, Lis A. Altered Ca 2+ Homeostasis in Immune Cells during Aging: Role of Ion Channels. Int J Mol Sci 2020; 22:ijms22010110. [PMID: 33374304 PMCID: PMC7794837 DOI: 10.3390/ijms22010110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
Aging is an unstoppable process and begins shortly after birth. Each cell of the organism is affected by the irreversible process, not only with equal density but also at varying ages and with different speed. Therefore, aging can also be understood as an adaptation to a continually changing cellular environment. One of these very prominent changes in age affects Ca2+ signaling. Especially immune cells highly rely on Ca2+-dependent processes and a strictly regulated Ca2+ homeostasis. The intricate patterns of impaired immune cell function may represent a deficit or compensatory mechanisms. Besides, altered immune function through Ca2+ signaling can profoundly affect the development of age-related disease. This review attempts to summarize changes in Ca2+ signaling due to channels and receptors in T cells and beyond in the context of aging.
Collapse
Affiliation(s)
| | | | - Annette Lis
- Correspondence: ; Tel.: +49-(0)-06841-1616318; Fax: +49-(0)-6841-1616302
| |
Collapse
|
12
|
Sherwani S, Khan MWA. Cytokine Response in SARS-CoV-2 Infection in the Elderly. J Inflamm Res 2020; 13:737-747. [PMID: 33116752 PMCID: PMC7585778 DOI: 10.2147/jir.s276091] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/29/2020] [Indexed: 01/08/2023] Open
Abstract
The last few months of 2019 witnessed the emergence, rise and rapid spread of a novel coronavirus known as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), causing an acute respiratory disease called coronavirus disease 2019 or Covid-19. Severe pathological manifestations of the disease in the infected population with comorbidities are linked to acute respiratory distress syndrome (ARDS), associated with an exaggerated synthesis and expression of cytokines, leading to a systemic inflammatory response also known as a cytokine storm (CS). Elderly patients (>60 years of age) showed more deaths in Covid-19 infection. Age-related immune imbalance increases patient susceptibility to CS. In acute Covid-19 infection, it is difficult to minimize or control the overproduction of cytokines; hence, limited medical treatments are effective. This review aims to provide an overview of the current knowledge of involvement of cytokines in SARS-CoV-2 infection, susceptibility factors for the accompanying cytokine storm in severe Covid-19 cases and possible treatment strategies.
Collapse
Affiliation(s)
- Subuhi Sherwani
- Department of Biology, College of Sciences, University of Ha’il, Ha’il2440, Saudi Arabia
| | - Mohd Wajid Ali Khan
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il2440, Saudi Arabia
| |
Collapse
|
13
|
Chen YJ, Liao YJ, Tram VTN, Lin CH, Liao KC, Liu CL. Alterations of Specific Lymphocytic Subsets with Aging and Age-Related Metabolic and Cardiovascular Diseases. Life (Basel) 2020; 10:life10100246. [PMID: 33080827 PMCID: PMC7603042 DOI: 10.3390/life10100246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023] Open
Abstract
To investigate the association of immunosenescence with aged-related morbidity in the elderly, a clinical study was conducted to analyze and compare the alterations in peripheral blood (PB) T-cell subsets among young healthy (YH) controls, elderly healthy (EH) controls, and age-matched elderly patients with metabolic diseases (E-MDs), with cardiovascular diseases (E-CVDs) or with both (E-MDs/E-CVDs). The frequencies of CD3T, CD8T and invariant natural killer T (iNKT) cells were decreased in the EH, E-MD and E-CVD cohorts, indicating a decline in defense function. Although CD4T and regulatory T (Treg) cell frequencies tended to increase with aging, they were lower in patients with E-MDs and E-CVDs. Subset analyses of T-cells consistently showed the accumulation of senescent T-cell in aging and in patients with E-MDs and E-CVDs, compared with YH volunteers. These accumulated senescent T-cells were undergoing apoptosis upon stimulation due to the replicative senescence stage of T-cells. In addition, serum levels of cytokines, including interferon (IF)-γ, transforming growth factor (TGF)-β and growth differentiation factor (GDF)-15, consistently reflected alterations in T-cell subsets. This study demonstrated that T-cell subset changes with paralleled alterations in cytokines were associated with aging and age-related pathogenesis. These altered T-cell subsets and/or cytokines can potentially serve as biomarkers for the prevention, diagnosis and treatment of age-related morbidities.
Collapse
Affiliation(s)
- Ying Jen Chen
- Division of General Internal Medicine and Geriatrics, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.J.C.); (C.H.L.); (K.C.L.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Yi Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.J.L.); (V.T.N.T.)
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Van Thi Ngoc Tram
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.J.L.); (V.T.N.T.)
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Chung Hao Lin
- Division of General Internal Medicine and Geriatrics, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.J.C.); (C.H.L.); (K.C.L.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Kuo Chen Liao
- Division of General Internal Medicine and Geriatrics, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.J.C.); (C.H.L.); (K.C.L.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Chao Lien Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.J.L.); (V.T.N.T.)
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
14
|
Alvares BA, Gracia CAL, Marques MEA, Marques SA. Paracoccidioidomycosis: an uncommon clinical presentation. An Bras Dermatol 2020; 95:740-742. [PMID: 32912801 PMCID: PMC7672401 DOI: 10.1016/j.abd.2020.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 06/06/2020] [Indexed: 11/03/2022] Open
Abstract
Paracoccidoiomycosis is a systemic mycosis with a higher incidence in males with history of exposure to the rural environment; its classic clinical manifestation is an oro-pulmonary lesion. The authors report a case of a female, urban, 76-year-old patient with atypical clinical-dermatological presentation and diagnostic conclusion after histopathological examination. The clinical response was quick and complete after treatment with itraconazole 400mg/day in the first month, decreased to 200mg/day until the sixth month of treatment.
Collapse
Affiliation(s)
- Bruno Augusto Alvares
- Department of Dermatology and Radiotherapy, Faculdade de Medicina, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | | | | | - Silvio Alencar Marques
- Department of Dermatology and Radiotherapy, Faculdade de Medicina, Universidade Estadual Paulista, Botucatu, SP, Brazil.
| |
Collapse
|
15
|
Kugler-Umana O, Devarajan P, Swain SL. Understanding the Heterogeneous Population of Age-Associated B Cells and Their Contributions to Autoimmunity and Immune Response to Pathogens. Crit Rev Immunol 2020; 40:297-309. [PMID: 33426819 PMCID: PMC8118092 DOI: 10.1615/critrevimmunol.2020034934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In humans and mice, susceptibility to infections and autoimmunity increases with age due to age-associated changes in innate and adaptive immune responses. Aged innate cells are also less active, leading to decreased naive T- and B-cell responses. Aging innate cells contribute to an overall heightened inflammatory environment. Naive T and B cells undergo cell-intrinsic age-related changes that result in reduced effector and memory responses. However, previously established B- and T-cell memory responses persist with age. One dramatic change is the appearance of a newly recognized population of age-associated B cells (ABCs) that has a unique cluster of differentiation (CD)21-CD23- phenotype. Here, we discuss the discovery and origins of the naive phenotype immunoglobulin (Ig)D+ versus activated CD11c+T-bet+ ABCs, with a focus on protective and pathogenic properties. In humans and mice, antigen-experienced CD11c+T-bet+ ABCs increase with autoimmunity and appear in response to bacterial and viral infections. However, our analyses indicate that CD21-CD23- ABCs include a resting, naive, progenitor ABC population that expresses IgD. Similar to generation of CD11c+T-bet+ ABCs, naive ABC response to pathogens depends on toll-like receptor stimulation, making this a key feature of ABC activation. Here, we put forward a potential developmental map of distinct subsets from putative naive ABCs. We suggest that defining signals that can harness the naive ABC response may contribute to protection against pathogens in the elderly. CD11c+T-bet+ ABCs may be useful targets for therapeutic strategies to counter autoimmunity.
Collapse
Affiliation(s)
- Olivia Kugler-Umana
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | - Susan L. Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
16
|
Arata Y, Watanabe A, Motosugi R, Murakami R, Goto T, Hori S, Hirayama S, Hamazaki J, Murata S. Defective induction of the proteasome associated with T-cell receptor signaling underlies T-cell senescence. Genes Cells 2019; 24:801-813. [PMID: 31621149 DOI: 10.1111/gtc.12728] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Abstract
The proteasome degradation machinery is essential for a variety of cellular processes including senescence and T-cell immunity. Decreased proteasome activity is associated with the aging process; however, the regulation of the proteasome in CD4+ T cells in relation to aging is unclear. Here, we show that defects in the induction of the proteasome in CD4+ T cells upon T-cell receptor (TCR) stimulation underlie T-cell senescence. Proteasome dysfunction promotes senescence-associated phenotypes, including defective proliferation, cytokine production and increased levels of PD-1+ CD44High CD4+ T cells. Proteasome induction by TCR signaling via MEK-, IKK- and calcineurin-dependent pathways is attenuated with age and decreased in PD-1+ CD44High CD4+ T cells, the proportion of which increases with age. Our results indicate that defective induction of the proteasome is a hallmark of CD4+ T-cell senescence.
Collapse
Affiliation(s)
- Yoshiyuki Arata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ayaka Watanabe
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryo Motosugi
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuichi Murakami
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Goto
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shoshiro Hirayama
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Jun Hamazaki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Palacio L, Goyer M, Maggiorani D, Espinosa A, Villeneuve N, Bourbonnais S, Moquin‐Beaudry G, Le O, Demaria M, Davalos AR, Decaluwe H, Beauséjour C. Restored immune cell functions upon clearance of senescence in the irradiated splenic environment. Aging Cell 2019; 18:e12971. [PMID: 31148373 PMCID: PMC6612633 DOI: 10.1111/acel.12971] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 04/16/2019] [Accepted: 05/06/2019] [Indexed: 01/01/2023] Open
Abstract
Some studies show eliminating senescent cells rejuvenate aged mice and attenuate deleterious effects of chemotherapy. Nevertheless, it remains unclear whether senescence affects immune cell function. We provide evidence that exposure of mice to ionizing radiation (IR) promotes the senescent‐associated secretory phenotype (SASP) and expression of p16INK4a in splenic cell populations. We observe splenic T cells exhibit a reduced proliferative response when cultured with allogenic cells in vitro and following viral infection in vivo. Using p16‐3MR mice that allow elimination of p16INK4a‐positive cells with exposure to ganciclovir, we show that impaired T‐cell proliferation is partially reversed, mechanistically dependent on p16INK4a expression and the SASP. Moreover, we found macrophages isolated from irradiated spleens to have a reduced phagocytosis activity in vitro, a defect also restored by the elimination of p16INK4a expression. Our results provide molecular insight on how senescence‐inducing IR promotes loss of immune cell fitness, which suggest senolytic drugs may improve immune cell function in aged and patients undergoing cancer treatment.
Collapse
Affiliation(s)
- Lina Palacio
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
- Département de pharmacologie et physiologie, Faculté de Médecine Université de Montréal Montreal Quebec Canada
| | - Marie‐Lyn Goyer
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
- Département de pharmacologie et physiologie, Faculté de Médecine Université de Montréal Montreal Quebec Canada
| | - Damien Maggiorani
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
- Département de pharmacologie et physiologie, Faculté de Médecine Université de Montréal Montreal Quebec Canada
| | - Andrea Espinosa
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
| | | | | | - Gaël Moquin‐Beaudry
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
- Département de pharmacologie et physiologie, Faculté de Médecine Université de Montréal Montreal Quebec Canada
| | - Oanh Le
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
| | - Marco Demaria
- European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG) University of Groningen Groningen The Netherlands
| | | | - Hélène Decaluwe
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
- Département de Pédiatrie, Faculté de Médecine Université de Montréal Montreal Quebec Canada
| | - Christian Beauséjour
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
- Département de pharmacologie et physiologie, Faculté de Médecine Université de Montréal Montreal Quebec Canada
| |
Collapse
|
18
|
Devarajan P, Swain SL. Original Antigenic Sin: Friend or Foe in Developing a Broadly Cross-Reactive Vaccine to Influenza? Cell Host Microbe 2019; 25:354-355. [DOI: 10.1016/j.chom.2019.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Wang Y, Wehling-Henricks M, Welc SS, Fisher AL, Zuo Q, Tidball JG. Aging of the immune system causes reductions in muscle stem cell populations, promotes their shift to a fibrogenic phenotype, and modulates sarcopenia. FASEB J 2018; 33:1415-1427. [PMID: 30130434 DOI: 10.1096/fj.201800973r] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aging is associated with diminished muscle mass, reductions in muscle stem cell functions, and increased muscle fibrosis. The immune system, especially macrophages, can have important roles in modulating muscle growth and regeneration, suggesting that the immune system may also have significant influences on muscle aging. Moreover, the immune system experiences changes in function during senescence, suggesting that regulatory interaction between muscle cells and the immune system may also change during aging. In this study, we performed bone marrow transplantations between age-mismatched donor and recipient mice to test the influence of the age of the immune system on muscle aging. Transplantation of young bone marrow cells into old recipients prevented sarcopenia and prevented age-related change in muscle fiber phenotype. Transplantation of old bone marrow cells into young animals reduced satellite cell numbers and promoted satellite cells to switch toward a fibrogenic phenotype. We also demonstrated that conditioned media from young, but not old, bone marrow cells promoted myoblast proliferation in vitro, and we found that factors released by young bone marrow cells were more supportive of myotube differentiation in vitro. Together, our results demonstrate that aging of bone marrow cells promotes the age-related reduction of satellite cell number and function and contributes to sarcopenia.-Wang, Y., Wehling-Henricks, M., Welc, S. S., Fisher, A. L., Zuo, Q., Tidball, J. G. Aging of the immune system causes reductions in muscle stem cell populations, promotes their shift to a fibrogenic phenotype, and modulates sarcopenia.
Collapse
Affiliation(s)
- Ying Wang
- Molecular, Cellular, and Integrative Physiology Program, University of California, Los Angeles, Los Angeles, California, USA
| | - Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA
| | - Steven S Welc
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA
| | - Allison L Fisher
- Molecular, Cellular, and Integrative Physiology Program, University of California, Los Angeles, Los Angeles, California, USA
| | - Qun Zuo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - James G Tidball
- Molecular, Cellular, and Integrative Physiology Program, University of California, Los Angeles, Los Angeles, California, USA.,Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
20
|
Kato A, Takaori-Kondo A, Minato N, Hamazaki Y. CXCR3 high CD8 + T cells with naïve phenotype and high capacity for IFN-γ production are generated during homeostatic T-cell proliferation. Eur J Immunol 2018; 48:1663-1678. [PMID: 30058200 DOI: 10.1002/eji.201747431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 07/17/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022]
Abstract
Naïve phenotype (NP) T cells spontaneously initiate homeostatic proliferation (HP) as T-cell output is reduced because of physiologic thymic involution with age. However, the effects of sustained HP on overall immune function are poorly understood. We demonstrated that the NP CD8+ T cell population in adult thymectomized mice showing accelerated HP has an increased capacity for TCR-mediated interferon-γ and tumor necrosis factor α production, which is attributed to an increase in CXCR3+ cells in the NP CD8+ T cell population. The CXCR3+ NP CD8+ T cells developed during persistent HP with a slow cell division rate, but rarely during robust antigen-driven proliferation with a fast cell division rate. In ontogeny, the proportions of CXCR3+ cells in the NP CD8+ T cell population showed a biphasic profile, which was high at the newborn and aged stages. Upon transfer, CXCR3+ NP CD8+ T cells, but not CXCR3- NP CD8+ T cells, potently enhanced Th17-mediated inflammatory tissue reactions in vivo. Furthermore, CXCR3high NP CD8+ T cells with similar features were also detected at variable levels in healthy human blood. These results suggest that CXCR3+ NP CD8+ T cells generated during physiological HP significantly impact overall immunity at the immunologically vulnerable neonatal and aged stages.
Collapse
Affiliation(s)
- Aiko Kato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Laboratory of Immunobiology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yoko Hamazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Laboratory of Immunobiology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
21
|
Intrinsic and extrinsic contributors to defective CD8+ T cell responses with aging. Exp Gerontol 2018; 105:140-145. [DOI: 10.1016/j.exger.2018.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/20/2022]
|
22
|
Fiorot A, Pozza A, Ruffolo C, Caratozzolo E, Bonariol L, D’Amico FE, Padoan L, Calia di Pinto F, Scarpa M, Castoro C, Bassi N, Massani M. Colorectal cancer in the young: a possible role for immune surveillance? Acta Chir Belg 2018; 118:7-14. [PMID: 28743216 DOI: 10.1080/00015458.2017.1353233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Younger patients with colorectal cancer (CRC) generally have better survival in spite of worse clinical and pathological features. METHODS Twenty-six patients under 50 years operated for primary CRC were enrolled and matched 1:2:2 according to stage, tumor site and gender with 52 patients from 50 to 70 years and 52 patients over 70 years old. RESULTS Patients under 50 years had a significantly longer overall, cancer specific and disease free survival (p = .001, p = .007 and p = .05, respectively). However, they had more frequently lymphovascular invasion (p = .006) and they more frequently developed metachronous CRC at follow-up (p = .03). Nevertheless, preoperative lymphocytes blood count/white blood count (LBC/WBC) ratio inversely correlated with age at operation (rho = -.21, p = .04) and it predicted CRC recurrence with an accuracy of 70%, p < .001 (threshold value LBC/WBC = 0.21%) and better overall, cancer specific and disease free survival (p < .0001 for all). At multivariate analysis, stage and LBC/WBC ratio resulted independent predictors of disease free survival (p = .0001 and p = .01, respectively). CONCLUSIONS Patients under 50 years had a significantly longer survival with a higher LBC/WBC ratio. These results could suggest a possible role of immunosurveillance in neoplastic control.
Collapse
Affiliation(s)
- Alain Fiorot
- Department of Surgery, IV Unit of Surgery, Regional Hospital “Cà Foncello”, Treviso, Italy
| | - Anna Pozza
- Department of Surgery, IV Unit of Surgery, Regional Hospital “Cà Foncello”, Treviso, Italy
| | - Cesare Ruffolo
- Department of Surgery, IV Unit of Surgery, Regional Hospital “Cà Foncello”, Treviso, Italy
| | - Ezio Caratozzolo
- Department of Surgery, IV Unit of Surgery, Regional Hospital “Cà Foncello”, Treviso, Italy
| | - Luca Bonariol
- Department of Surgery, IV Unit of Surgery, Regional Hospital “Cà Foncello”, Treviso, Italy
| | | | - Luigi Padoan
- Department of Surgery, IV Unit of Surgery, Regional Hospital “Cà Foncello”, Treviso, Italy
| | | | - Marco Scarpa
- Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Carlo Castoro
- Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Nicolò Bassi
- Department of Surgery, IV Unit of Surgery, Regional Hospital “Cà Foncello”, Treviso, Italy
| | - Marco Massani
- Department of Surgery, IV Unit of Surgery, Regional Hospital “Cà Foncello”, Treviso, Italy
| |
Collapse
|
23
|
Zhang JY, Zhao YL, Lv YP, Cheng P, Chen W, Duan M, Teng YS, Wang TT, Peng LS, Mao FY, Liu YG, Fu XL, Yu PW, Luo P, Zhang WJ, Zou QM, Zhuang Y. Modulation of CD8 + memory stem T cell activity and glycogen synthase kinase 3β inhibition enhances anti-tumoral immunity in gastric cancer. Oncoimmunology 2018; 7:e1412900. [PMID: 29632726 PMCID: PMC5889281 DOI: 10.1080/2162402x.2017.1412900] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 01/09/2023] Open
Abstract
The potential contributions of CD8+ memory stem T cells to anti-tumor immunity and immunotherapy responses in gastric cancer has not been demonstrated. We found that CD8+ memory stem T cell frequencies were increased in the peripheral blood of gastric cancer patients compared to healthy donors and declined in frequency with disease progression. Despite minimal in vitro cytotoxic activity, the adoptive transfer of CD8+ memory stem T cells into Rag1-/- tumor bearing mice enhanced tumor regression compared to CD8+ central or effector memory T cell counterparts. This effect was associated with an increase in splenic, draining lymph node and tumor infiltrating CD8+ T cell numbers and the development of an altered CD8+ T cell phenotype not seen during homeostasis. GSK-3β inhibition is known to promote memory stem T cell accumulation by arresting effector T cell differentiation in vivo. Surprisingly however, GSK-3β inhibition conversely increased the cytotoxic capacity of CD8+ memory stem T cells in vitro, and this was associated with the induction of effector T cell-associated effector proteins including FasL. Finally, FasL neutralization following GSK-3β inhibition directly attenuated the anti-tumoral capacity of CD8+ memory stem T cells both in vitro and in vivo. Altogether, our findings identify the therapeutic potential of modulating CD8+ memory stem T cells for improved anti-tumoral responses against gastric cancer.
Collapse
Affiliation(s)
- Jin-Yu Zhang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yong-Liang Zhao
- Department of General Surgery and Centre of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yi-Pin Lv
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ping Cheng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Weisan Chen
- School of Molecular Science, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Mubin Duan
- School of Molecular Science, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Yong-Sheng Teng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ting-Ting Wang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Liu-Sheng Peng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Fang-Yuan Mao
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yu-Gang Liu
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiao-Long Fu
- Department of General Surgery and Centre of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Pei-Wu Yu
- Department of General Surgery and Centre of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ping Luo
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Wei-Jun Zhang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Quan-Ming Zou
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yuan Zhuang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
24
|
Candéias SM, Mika J, Finnon P, Verbiest T, Finnon R, Brown N, Bouffler S, Polanska J, Badie C. Low-dose radiation accelerates aging of the T-cell receptor repertoire in CBA/Ca mice. Cell Mol Life Sci 2017; 74:4339-4351. [PMID: 28667356 PMCID: PMC11107572 DOI: 10.1007/s00018-017-2581-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/15/2017] [Accepted: 06/26/2017] [Indexed: 11/28/2022]
Abstract
While the biological effects of high-dose-ionizing radiation on human health are well characterized, the consequences of low-dose radiation exposure remain poorly defined, even though they are of major importance for radiological protection. Lymphocytes are very radiosensitive, and radiation-induced health effects may result from immune cell loss and/or immune system impairment. To decipher the mechanisms of effects of low doses, we analyzed the modulation of the T-cell receptor gene repertoire in mice exposed to a single low (0.1 Gy) or high (1 Gy) dose of radiation. High-throughput T-cell receptor gene profiling was used to visualize T-lymphocyte dynamics over time in control and irradiated mice. Radiation exposure induces "aging-like" effects on the T-cell receptor gene repertoire, detectable as early as 1 month post-exposure and for at least 6 months. Surprisingly, these effects are more pronounced in animals exposed to 0.1 Gy than to 1 Gy, where partial correction occurs over time. Importantly, we found that low-dose radiation effects are partially due to the hematopoietic stem cell impairment. Collectively, our findings show that acute low-dose radiation exposure specifically results in long-term alterations of the T-lymphocyte repertoire.
Collapse
Affiliation(s)
- Serge M Candéias
- CEA, Fundamental Research Division, Biosciences and Biotechnologies Institute, Laboratory of Chemistry and Biology of Metals, 38054, Grenoble, France.
- Laboratory of Chemistry and Biology of Metals, CNRS, UMR5249, 38054, Grenoble, France.
- Laboratory of Chemistry and Biology of Metals, UMR5249, University of Grenoble-Alpes, 38054, Grenoble, France.
| | - Justyna Mika
- Data Mining Group, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Paul Finnon
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Tom Verbiest
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Rosemary Finnon
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Natalie Brown
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Simon Bouffler
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Joanna Polanska
- Data Mining Group, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK.
| |
Collapse
|
25
|
Brahmakshatriya V, Kuang Y, Devarajan P, Xia J, Zhang W, Vong AM, Swain SL. IL-6 Production by TLR-Activated APC Broadly Enhances Aged Cognate CD4 Helper and B Cell Antibody Responses In Vivo. THE JOURNAL OF IMMUNOLOGY 2017; 198:2819-2833. [PMID: 28250157 DOI: 10.4049/jimmunol.1601119] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/29/2017] [Indexed: 12/15/2022]
Abstract
Naive CD4 T cell responses, especially their ability to help B cell responses, become compromised with aging. We find that using APC pretreated ex vivo with TLR agonists, polyinosinic-polycytidylic acid and CpG, to prime naive CD4 T cells in vivo, restores their ability to expand and become germinal center T follicular helpers and enhances B cell IgG Ab production. Enhanced helper responses are dependent on IL-6 production by the activated APC. Aged naive CD4 T cells respond suboptimally to IL-6 compared with young cells, such that higher doses are required to induce comparable signaling. Preactivating APC overcomes this deficiency. Responses of young CD4 T cells are also enhanced by preactivating APC with similar effects but with only partial IL-6 dependency. Strikingly, introducing just the activated APC into aged mice significantly enhances otherwise compromised Ab production to inactivated influenza vaccine. These findings reveal a central role for the production of IL-6 by APC during initial cognate interactions in the generation of effective CD4 T cell help, which becomes greater with age. Without APC activation, aging CD4 T cell responses shift toward IL-6-independent Th1 and CD4 cytotoxic Th cell responses. Thus, strategies that specifically activate and provide Ag to APC could potentially enhance Ab-mediated protection in vaccine responses.
Collapse
Affiliation(s)
| | - Yi Kuang
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | | | - Jingya Xia
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Wenliang Zhang
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Allen Minh Vong
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
26
|
Martín S, Pérez A, Aldecoa C. Sepsis and Immunosenescence in the Elderly Patient: A Review. Front Med (Lausanne) 2017; 4:20. [PMID: 28293557 PMCID: PMC5329014 DOI: 10.3389/fmed.2017.00020] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/15/2017] [Indexed: 12/27/2022] Open
Abstract
Sepsis is a prevalent, serious medical condition with substantial mortality and a significant consumption of health-care resources. Its incidence has increased around 9% annually in general population over the last years and specially in aged patients group. Several risk factors such as comorbidities, preadmission status, malnutrition, frailty, and an impared function in the immune system called immunosenescence are involved in the higher predisposition to sepsis in the elderly patients. Immunosenescence status consists in a functional impairment in both cell-mediated immunity and humoral immune responses and increases not only the risk for develop sepsis but also lead to more severe presentation of infection and may be is also related with a higher mortality. There is a also a concern about to admit patients in the intensive care units taking into account that the outcome of elderly patients is poorer compared to younger people. Nevertheless, the management of septic elderly patients does not differ substantially from younger people. In addition, the quality of life in septic elderly survivors is also lower than in younger people. But age, as alone factor, should not be used to determine treatment options because the poorer outcomes is thought to be due to the increased comorbidities and frailty in this group of patients.
Collapse
Affiliation(s)
- Silvia Martín
- Anaesthesia and Surgical Critical Care, Hospital Universitario rio Hortega , Valladolid , Spain
| | - Alba Pérez
- Anaesthesia and Surgical Critical Care, Hospital Universitario rio Hortega , Valladolid , Spain
| | - Cesar Aldecoa
- Anaesthesia and Surgical Critical Care, Hospital Universitario rio Hortega, Valladolid, Spain; University of Valladolid Medical School, Valladolid, Spain
| |
Collapse
|
27
|
Becklund BR, Purton JF, Ramsey C, Favre S, Vogt TK, Martin CE, Spasova DS, Sarkisyan G, LeRoy E, Tan JT, Wahlus H, Bondi-Boyd B, Luther SA, Surh CD. The aged lymphoid tissue environment fails to support naïve T cell homeostasis. Sci Rep 2016; 6:30842. [PMID: 27480406 PMCID: PMC4969611 DOI: 10.1038/srep30842] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/16/2016] [Indexed: 12/05/2022] Open
Abstract
Aging is associated with a gradual loss of naïve T cells and a reciprocal increase in the proportion of memory T cells. While reduced thymic output is important, age-dependent changes in factors supporting naïve T cells homeostasis may also be involved. Indeed, we noted a dramatic decrease in the ability of aged mice to support survival and homeostatic proliferation of naïve T cells. The defect was not due to a reduction in IL-7 expression, but from a combination of changes in the secondary lymphoid environment that impaired naïve T cell entry and access to key survival factors. We observed an age-related shift in the expression of homing chemokines and structural deterioration of the stromal network in T cell zones. Treatment with IL-7/mAb complexes can restore naïve T cell homeostatic proliferation in aged mice. Our data suggests that homeostatic mechanisms that support the naïve T cell pool deteriorate with age.
Collapse
Affiliation(s)
- Bryan R Becklund
- Department of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jared F Purton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Chris Ramsey
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Stéphanie Favre
- Department of Biochemistry, Center for Immunity and Infection, University of Lausanne, 1066 Epalinges, Switzerland
| | - Tobias K Vogt
- Department of Biochemistry, Center for Immunity and Infection, University of Lausanne, 1066 Epalinges, Switzerland
| | - Christopher E Martin
- Department of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Darina S Spasova
- Department of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gor Sarkisyan
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Eric LeRoy
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Joyce T Tan
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Heidi Wahlus
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Brea Bondi-Boyd
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sanjiv A Luther
- Department of Biochemistry, Center for Immunity and Infection, University of Lausanne, 1066 Epalinges, Switzerland
| | - Charles D Surh
- Department of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Republic of Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
28
|
Pugh JL, Foster SA, Sukhina AS, Petravic J, Uhrlaub JL, Padilla‐Torres J, Hayashi T, Nakachi K, Smithey MJ, Nikolich‐Žugich J. Acute systemic DNA damage in youth does not impair immune defense with aging. Aging Cell 2016; 15:686-93. [PMID: 27072188 PMCID: PMC4933672 DOI: 10.1111/acel.12478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2016] [Indexed: 02/06/2023] Open
Abstract
Aging‐related decline in immunity is believed to be the main driver behind decreased vaccine efficacy and reduced resistance to infections in older adults. Unrepaired DNA damage is known to precipitate cellular senescence, which was hypothesized to be the underlying cause of certain age‐related phenotypes. Consistent with this, some hallmarks of immune aging were more prevalent in individuals exposed to whole‐body irradiation (WBI), which leaves no anatomical repository of undamaged hematopoietic cells. To decisively test whether and to what extent WBI in youth will leave a mark on the immune system as it ages, we exposed young male C57BL/6 mice to sublethal WBI (0.5–4 Gy), mimicking human survivor exposure during nuclear catastrophe. We followed lymphocyte homeostasis thorough the lifespan, response to vaccination, and ability to resist lethal viral challenge in the old age. None of the irradiated groups showed significant differences compared with mock‐irradiated (0 Gy) animals for the parameters measured. Even the mice that received the highest dose of sublethal WBI in youth (4 Gy) exhibited equilibrated lymphocyte homeostasis, robust T‐ and B‐cell responses to live attenuated West Nile virus (WNV) vaccine and full survival following vaccination upon lethal WNV challenge. Therefore, a single dose of nonlethal WBI in youth, resulting in widespread DNA damage and repopulation stress in hematopoietic cells, leaves no significant trace of increased immune aging in a lethal vaccine challenge model.
Collapse
Affiliation(s)
- Jason L. Pugh
- Department of Immunobiology University of Arizona College of Medicine Tucson AZ USA
- Arizona Center on Aging University of Arizona College of Medicine Tucson AZ USA
- Graduate Interdisciplinary Program in Genetics University of Arizona Tucson AZ USA
| | - Sarah A. Foster
- Department of Immunobiology University of Arizona College of Medicine Tucson AZ USA
| | - Alona S. Sukhina
- Department of Immunobiology University of Arizona College of Medicine Tucson AZ USA
| | - Janka Petravic
- Centre for Vascular Research University of New South Wales Sydney NSW 2052 Australia
| | - Jennifer L. Uhrlaub
- Department of Immunobiology University of Arizona College of Medicine Tucson AZ USA
- Arizona Center on Aging University of Arizona College of Medicine Tucson AZ USA
| | - Jose Padilla‐Torres
- Department of Immunobiology University of Arizona College of Medicine Tucson AZ USA
| | | | - Kei Nakachi
- Radiation Effects Research Foundation Minato‐Ku Hiroshima Japan
| | - Megan J. Smithey
- Department of Immunobiology University of Arizona College of Medicine Tucson AZ USA
- Arizona Center on Aging University of Arizona College of Medicine Tucson AZ USA
| | - Janko Nikolich‐Žugich
- Department of Immunobiology University of Arizona College of Medicine Tucson AZ USA
- Arizona Center on Aging University of Arizona College of Medicine Tucson AZ USA
- Graduate Interdisciplinary Program in Genetics University of Arizona Tucson AZ USA
- The BIO5 Institute University of Arizona Tucson AZ USA
| |
Collapse
|
29
|
Lefebvre JS, Lorenzo EC, Masters AR, Hopkins JW, Eaton SM, Smiley ST, Haynes L. Vaccine efficacy and T helper cell differentiation change with aging. Oncotarget 2016; 7:33581-94. [PMID: 27177221 PMCID: PMC5085104 DOI: 10.18632/oncotarget.9254] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/27/2016] [Indexed: 12/22/2022] Open
Abstract
Influenza and pneumonia are leading causes of death in elderly populations. With age, there is an increased inflammatory response and slower viral clearance during influenza infection which increases the risk of extended illness and mortality. Here we employ a preclinical murine model of influenza infection to examine the protective capacity of vaccination with influenza nucleoprotein (NP). While NP vaccination reduces influenza-induced lung inflammation in young mice, aged mice do not show this reduction, but are protected from influenza-induced mortality. Aged mice do make a significant amount of NP-specific IgG and adoptive transfer experiments show that NP antibody can protect from death but cannot reduce lung inflammation. Furthermore, young but not aged vaccinated mice generate significant numbers of NP-specific T cells following subsequent infection and few of these T cells are found in aged lungs early during infection. Importantly, aged CD4 T cells have a propensity to differentiate towards a T follicular helper (Tfh) phenotype rather than a T helper 1 (Th1) phenotype that predominates in the young. Since Th1 cells are important in viral clearance, reduced Th1 differentiation in the aged is critical and could account for some or all of the age-related differences in vaccine responses and infection resolution.
Collapse
Affiliation(s)
- Julie S. Lefebvre
- The Trudeau Institute, Saranac Lake, NY, United States of America
- Département de Pneumologie, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Québec, QC, Canada
| | - Erica C. Lorenzo
- Department of Immunology and Center on Aging, University of Connecticut Health Center, Farmington, CT, United States of America
| | - April R. Masters
- Department of Immunology and Center on Aging, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Jacob W. Hopkins
- Department of Immunology and Center on Aging, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Sheri M. Eaton
- The Trudeau Institute, Saranac Lake, NY, United States of America
| | - Stephen T. Smiley
- The Trudeau Institute, Saranac Lake, NY, United States of America
- NIAID/NIH, Bethesda, MD, USA
| | - Laura Haynes
- Department of Immunology and Center on Aging, University of Connecticut Health Center, Farmington, CT, United States of America
| |
Collapse
|
30
|
Varian BJ, Goureshetti S, Poutahidis T, Lakritz JR, Levkovich T, Kwok C, Teliousis K, Ibrahim YM, Mirabal S, Erdman SE. Beneficial bacteria inhibit cachexia. Oncotarget 2016; 7:11803-16. [PMID: 26933816 PMCID: PMC4914249 DOI: 10.18632/oncotarget.7730] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/05/2016] [Indexed: 12/18/2022] Open
Abstract
Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny.
Collapse
Affiliation(s)
- Bernard J. Varian
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sravya Goureshetti
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Theofilos Poutahidis
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Laboratory of Pathology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jessica R. Lakritz
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tatiana Levkovich
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caitlin Kwok
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Konstantinos Teliousis
- Laboratory of Pathology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Yassin M. Ibrahim
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sheyla Mirabal
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Susan E. Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
31
|
Fang F, Yu M, Cavanagh MM, Hutter Saunders J, Qi Q, Ye Z, Le Saux S, Sultan W, Turgano E, Dekker CL, Tian L, Weyand CM, Goronzy JJ. Expression of CD39 on Activated T Cells Impairs their Survival in Older Individuals. Cell Rep 2016; 14:1218-1231. [PMID: 26832412 PMCID: PMC4851554 DOI: 10.1016/j.celrep.2016.01.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/23/2015] [Accepted: 12/24/2015] [Indexed: 01/25/2023] Open
Abstract
In an immune response, CD4+ T cells expand into effector T cells and then contract to survive as long-lived memory cells. To identify age-associated defects in memory cell formation, we profiled activated CD4+ T cells and found an increased induction of the ATPase CD39 with age. CD39+ CD4+ T cells resembled effector T cells with signs of metabolic stress and high susceptibility to undergo apoptosis. Pharmacological inhibition of ATPase activity dampened effector cell differentiation and improved survival, suggesting that CD39 activity influences T cell fate. Individuals carrying a low-expressing CD39 variant responded better to vaccination with an increase in vaccine-specific memory T cells. Increased inducibility of CD39 after activation may contribute to the impaired vaccine response with age.
Collapse
Affiliation(s)
- Fengqin Fang
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA
| | - Mingcan Yu
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA
| | - Mary M Cavanagh
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA
| | - Jessica Hutter Saunders
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA
| | - Qian Qi
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA
| | - Zhongde Ye
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA
| | - Sabine Le Saux
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA
| | - William Sultan
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA
| | - Emerson Turgano
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA
| | - Cornelia L Dekker
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lu Tian
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cornelia M Weyand
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA
| | - Jörg J Goronzy
- Departments of Medicine, Pediatrics, and Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
32
|
Richner JM, Gmyrek GB, Govero J, Tu Y, van der Windt GJW, Metcalf TU, Haddad EK, Textor J, Miller MJ, Diamond MS. Age-Dependent Cell Trafficking Defects in Draining Lymph Nodes Impair Adaptive Immunity and Control of West Nile Virus Infection. PLoS Pathog 2015. [PMID: 26204259 PMCID: PMC4512688 DOI: 10.1371/journal.ppat.1005027] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Impaired immune responses in the elderly lead to reduced vaccine efficacy and increased susceptibility to viral infections. Although several groups have documented age-dependent defects in adaptive immune priming, the deficits that occur prior to antigen encounter remain largely unexplored. Herein, we identify novel mechanisms for compromised adaptive immunity that occurs with aging in the context of infection with West Nile virus (WNV), an encephalitic flavivirus that preferentially causes disease in the elderly. An impaired IgM and IgG response and enhanced vulnerability to WNV infection during aging was linked to delayed germinal center formation in the draining lymph node (DLN). Adoptive transfer studies and two-photon intravital microscopy revealed a decreased trafficking capacity of donor naïve CD4+ T cells from old mice, which manifested as impaired T cell diapedesis at high endothelial venules and reduced cell motility within DLN prior to antigen encounter. Furthermore, leukocyte accumulation in the DLN within the first few days of WNV infection or antigen-adjuvant administration was diminished more generally in old mice and associated with a second aging-related defect in local cytokine and chemokine production. Thus, age-dependent cell-intrinsic and environmental defects in the DLN result in delayed immune cell recruitment and antigen recognition. These deficits compromise priming of early adaptive immune responses and likely contribute to the susceptibility of old animals to acute WNV infection.
Collapse
Affiliation(s)
- Justin M. Richner
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Grzegorz B. Gmyrek
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jennifer Govero
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yizheng Tu
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gerritje J. W. van der Windt
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Talibah U. Metcalf
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
| | - Elias K. Haddad
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
| | - Johannes Textor
- Department of Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Mark J. Miller
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
33
|
Misra RS, Johnston CJ, Groves AM, DeDiego ML, St Martin J, Reed C, Hernady E, Miller JN, Love T, Finkelstein JN, Williams JP. Examining the Effects of External or Internal Radiation Exposure of Juvenile Mice on Late Morbidity after Infection with Influenza A. Radiat Res 2015; 184:3-13. [PMID: 26114328 DOI: 10.1667/rr13917.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A number of investigators have suggested that exposure to low-dose radiation may pose a potentially serious health risk. However, the majority of these studies have focused on the short-term rather than long-term effects of exposure to fixed source radiation, and few have examined the effects of internal contamination. Additionally, very few studies have focused on exposure in juveniles, when organs are still developing and could be more sensitive to the toxic effects of radiation. To specifically address whether early-life radiation injury may affect long-term immune competence, we studied 14-day-old juvenile pups that were either 5 Gy total-body irradiated or injected internally with 50 μCi soluble (137)Cs, then infected with influenza A virus at 26 weeks after exposure. After influenza infection, all groups demonstrated immediate weight loss. We found that externally irradiated, infected animals failed to recover weight relative to age-matched infected controls, but internally (137)Cs contaminated and infected animals had a weight recovery with a similar rate and degree as controls. Externally and internally irradiated mice demonstrated reduced levels of club cell secretory protein (CCSP) message in their lungs after influenza infection. The externally irradiated group did not recover CCSP expression even at the two-week time point after infection. Although the antibody response and viral titers did not appear to be affected by either radiation modality, there was a slight increase in monocyte chemoattractant protein (MCP)-1 expression in the lungs of externally irradiated animals 14 days after influenza infection, with increased cellular infiltration present. Notably, an increase in the number of regulatory T cells was seen in the mediastinal lymph nodes of irradiated mice relative to uninfected mice. These data confirm the hypothesis that early-life irradiation may have long-term consequences on the immune system, leading to an altered antiviral response.
Collapse
Affiliation(s)
- Ravi S Misra
- a Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Carl J Johnston
- a Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642.,b Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Angela M Groves
- b Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Marta L DeDiego
- c Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Joe St Martin
- d Department of Environmental Health and Safety: Radiation Safety Unit, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Christina Reed
- b Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Eric Hernady
- b Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jen-Nie Miller
- b Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Tanzy Love
- e Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jacob N Finkelstein
- a Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642.,b Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jacqueline P Williams
- b Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
34
|
Li G, Ju J, Weyand CM, Goronzy JJ. Age-Associated Failure To Adjust Type I IFN Receptor Signaling Thresholds after T Cell Activation. THE JOURNAL OF IMMUNOLOGY 2015; 195:865-74. [PMID: 26091718 DOI: 10.4049/jimmunol.1402389] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 05/20/2015] [Indexed: 12/23/2022]
Abstract
With increasing age, naive CD4 T cells acquire intrinsic defects that compromise their ability to respond and differentiate. Type I IFNs, pervasive constituents of the environment in which adaptive immune responses occur, are known to regulate T cell differentiation and survival. Activated naive CD4 T cells from older individuals have reduced responses to type I IFN, a defect that develops during activation and that is not observed in quiescent naive CD4 T cells. Naive CD4 T cells from young adults upregulate the expression of STAT1 and STAT5 after activation, lowering their threshold to respond to type I IFN stimulation. The heightened STAT signaling is critical to maintain the expression of CD69 that regulates lymphocyte egress and the ability to produce IL-2 and to survive. Although activation of T cells from older adults also induces transcription of STAT1 and STAT5, failure to exclude SHP-1 from the signaling complex blunts their type I IFN response. In summary, our data show that type I IFN signaling thresholds in naive CD4 T cells after activation are dynamically regulated to respond to environmental cues for clonal expansion and memory cell differentiation. Naive CD4 T cells from older adults have a defect in this threshold calibration. Restoring their ability to respond to type I IFN emerges as a promising target to restore T cell responses and to improve the induction of T cell memory.
Collapse
Affiliation(s)
- Guangjin Li
- Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304; and Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Jihang Ju
- Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304; and Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Cornelia M Weyand
- Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304; and Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Jörg J Goronzy
- Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304; and Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
35
|
Marques SA, Hortense J, Requena CB, de Camargo RMP, Marques MEA. Disseminated cutaneous histoplasmosis in elderly patients. An uncommon presentation. Rev Iberoam Micol 2015; 32:131-2. [DOI: 10.1016/j.riam.2014.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/18/2014] [Accepted: 02/27/2014] [Indexed: 10/24/2022] Open
|
36
|
Ron-Harel N, Sharpe AH, Haigis MC. Mitochondrial metabolism in T cell activation and senescence: a mini-review. Gerontology 2014; 61:131-8. [PMID: 25402204 DOI: 10.1159/000362502] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/27/2014] [Indexed: 11/19/2022] Open
Abstract
The aging immune system is unable to optimally respond to pathogens and generate long-term immunological memory against encountered antigens. Amongst the immune components most affected by aging are T lymphocytes. T lymphocytes are cells of the cell-mediated immune system, which can recognize microbial antigens and either directly kill infected cells or support the maturation and activation of other immune cells. When activated, T cells undergo a metabolic switch to accommodate their changing needs at every stage of the immune response. Here we review the different aspects of metabolic regulation of T cell activation, focusing on the emerging role of mitochondrial metabolism, and discuss changes that may contribute to age-related decline in T cell potency. Better understanding of the role of mitochondrial metabolism in immune cell function could provide insights into mechanisms of immune senescence with the potential for developing novel therapeutic approaches to improve immune responses in aged individuals.
Collapse
Affiliation(s)
- Noga Ron-Harel
- Department of Cell Biology, Harvard Medical School, Boston, Mass., USA
| | | | | |
Collapse
|
37
|
Mohanty S, Joshi SR, Ueda I, Wilson J, Blevins TP, Siconolfi B, Meng H, Devine L, Raddassi K, Tsang S, Belshe RB, Hafler DA, Kaech SM, Kleinstein SH, Trentalange M, Allore HG, Shaw AC. Prolonged proinflammatory cytokine production in monocytes modulated by interleukin 10 after influenza vaccination in older adults. J Infect Dis 2014; 211:1174-84. [PMID: 25367297 DOI: 10.1093/infdis/jiu573] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We evaluated in vivo innate immune responses in monocyte populations from 67 young (aged 21-30 years) and older (aged ≥65 years) adults before and after influenza vaccination. CD14(+)CD16(+) inflammatory monocytes were induced after vaccination in both young and older adults. In classical CD14(+)CD16(-) and inflammatory monocytes, production of tumor necrosis factor α and interleukin 6, as measured by intracellular staining, was strongly induced after vaccination. Cytokine production was strongly associated with influenza vaccine antibody response; the highest levels were found as late as day 28 after vaccination in young subjects and were substantially diminished in older subjects. Notably, levels of the anti-inflammatory cytokine interleukin 10 (IL-10) were markedly elevated in monocytes from older subjects before and after vaccination. In purified monocytes, we found age-associated elevation in phosphorylated signal transducer and activator of transcription-3, and decreased serine 359 phosphorylation of the negative IL-10 regulator dual-specificity phosphatase 1. These findings for the first time implicate dysregulated IL-10 production in impaired vaccine responses in older adults.
Collapse
Affiliation(s)
| | - Samit R Joshi
- Section of Infectious Diseases, Department of Internal Medicine
| | - Ikuyo Ueda
- Section of Infectious Diseases, Department of Internal Medicine
| | - Jean Wilson
- Section of Infectious Diseases, Department of Internal Medicine
| | - Tamara P Blevins
- Department of Center for Vaccine Development, Saint Louis University, Missouri
| | | | | | | | | | - Sui Tsang
- Section of Infectious Diseases, Department of Internal Medicine
| | - Robert B Belshe
- Department of Center for Vaccine Development, Saint Louis University, Missouri
| | | | | | - Steven H Kleinstein
- Department of Pathology Department of Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut
| | | | | | - Albert C Shaw
- Section of Infectious Diseases, Department of Internal Medicine
| |
Collapse
|
38
|
Gao YN, Pei XY, Jin R, Yin C, Shen H, Sun XY, Ge Q, Zhang Y. Suspension of thymic emigration promotes the maintenance of antigen-specific memory T cells and the recall responses. Biochem Biophys Res Commun 2014; 454:275-81. [DOI: 10.1016/j.bbrc.2014.10.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 11/16/2022]
|
39
|
Nikolich-Žugich J. Aging of the T cell compartment in mice and humans: from no naive expectations to foggy memories. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:2622-9. [PMID: 25193936 PMCID: PMC4157314 DOI: 10.4049/jimmunol.1401174] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Until the mid-20th century, infectious diseases were the major cause of morbidity and mortality in humans. Massive vaccination campaigns, antibiotics, antivirals, and advanced public health measures drastically reduced sickness and death from infections in children and younger adults. However, older adults (>65 y of age) remain vulnerable to infections, and infectious diseases remain among the top 5-10 causes of death in this population. The aging of the immune system, often referred to as immune senescence, is the key phenomenon underlying this vulnerability. This review centers on age-related changes in T cells, which are dramatically and reproducibly altered with aging. I discuss changes in T cell production, maintenance, function, and response to latent persistent infection, particularly against CMV, which exerts a profound influence on the aging T cell pool, concluding with a brief list of measures to improve immune function in older adults.
Collapse
Affiliation(s)
- Janko Nikolich-Žugich
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724; and Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724
| |
Collapse
|
40
|
Hebel K, Weinert S, Kuropka B, Knolle J, Kosak B, Jorch G, Arens C, Krause E, Braun-Dullaeus RC, Brunner-Weinzierl MC. CD4+ T cells from human neonates and infants are poised spontaneously to run a nonclassical IL-4 program. THE JOURNAL OF IMMUNOLOGY 2014; 192:5160-70. [PMID: 24778440 DOI: 10.4049/jimmunol.1302539] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Senescence or biological aging impacts a vast variety of molecular and cellular processes. To date, it is unknown whether CD4(+) Th cells display an age-dependent bias for development into specific subpopulations. In this study, we show the appearance of a distinct CD4(+) T cell subset expressing IL-4 at an early stage of development in infant adenoids and cord blood that is lost during aging. We identified by flow cytometric, fluorescent microscopic, immunoblot, and mass spectrometric analysis a population of CD4(+) T cells that expressed an unglycosylated isoform of IL-4. This T cell subpopulation was found in neonatal but not in adult CD4(+) T cells. Furthermore, we show that the mRNA of the Th2 master transcription factor GATA3 is preferentially expressed in neonatal CD4(+) T cells. The Th2 phenotype of the IL-4(+)CD4(+) T cells could be reinforced in the presence of TGF-β. Although the IL-4(+)CD4(+) T cells most likely originate from CD31(+)CD4(+) T recent thymic emigrants, CD31 was downregulated prior to secretion of IL-4. Notably, the secretion of IL-4 requires a so far unidentified trigger in neonatal T cells. This emphasizes that cytokine expression and secretion are differentially regulated processes. Our data support the hypothesis of an endogenously poised cytokine profile in neonates and suggest a link between cytokine production and the developmental stage of an organism. The determination of the IL-4 isoform-expressing cells in humans might allow the identification of Th2 precursor cells, which could provide novel intervention strategies directed against Th2-driven immunopathologies such as allergies.
Collapse
Affiliation(s)
- Katrin Hebel
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Soenke Weinert
- Division of Cardiology, Department of Internal Medicine, University Hospital, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Benno Kuropka
- Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany; and
| | - Julienne Knolle
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Bernhard Kosak
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Gerhard Jorch
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Christoph Arens
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Eberhard Krause
- Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany; and
| | - Ruediger C Braun-Dullaeus
- Division of Cardiology, Department of Internal Medicine, University Hospital, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Monika C Brunner-Weinzierl
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, 39120 Magdeburg, Germany;
| |
Collapse
|
41
|
The Menin-Bach2 axis is critical for regulating CD4 T-cell senescence and cytokine homeostasis. Nat Commun 2014; 5:3555. [PMID: 24694524 PMCID: PMC3988815 DOI: 10.1038/ncomms4555] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 03/05/2014] [Indexed: 02/08/2023] Open
Abstract
Although CD4 T-cell senescence plays an important role in immunosenescence, the mechanism behind this process remains unclear. Here we show that T cell-specific Menin deficiency results in the premature senescence of CD4 T cells, which is accompanied by the senescence-associated secretory phenotype after antigenic stimulation and dysregulated cytokine production. Menin is required for the expansion and survival of antigen-stimulated CD4 T cells in vivo and acts by targeting Bach2, which is known to regulate immune homeostasis and cytokine production. Menin binds to the Bach2 locus and controls its expression through maintenance of histone acetylation. Menin binding at the Bach2 locus and the Bach2 expression are decreased in the senescent CD4 T cells. These findings reveal a critical role of the Menin-Bach2 pathway in regulating CD4 T-cell senescence and cytokine homeostasis, thus indicating the involvement of this pathway in the inhibition of immunosenescence. Immunosenescence particularly affects the T-cell compartment and is involved in the age-related decline of immune functions. Here, the authors show that the absence of the tumour suppressor Menin results in premature senescence of CD4 T cells.
Collapse
|
42
|
Yoshida K, Nakashima E, Kubo Y, Yamaoka M, Kajimura J, Kyoizumi S, Hayashi T, Ohishi W, Kusunoki Y. Inverse associations between obesity indicators and thymic T-cell production levels in aging atomic-bomb survivors. PLoS One 2014; 9:e91985. [PMID: 24651652 PMCID: PMC3961282 DOI: 10.1371/journal.pone.0091985] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/16/2014] [Indexed: 12/15/2022] Open
Abstract
Reduction of the naive T-cell population represents a deteriorating state in the immune system that occurs with advancing age. In animal model studies, obesity compromises the T-cell immune system as a result of enhanced adipogenesis in primary lymphoid organs and systemic inflammation. In this study, to test the hypothesis that obesity may contribute to the aging of human T-cell immunity, a thousand atomic-bomb survivors were examined for obesity status and ability to produce naive T cells, i.e., T-cell receptor excision circle (TREC) numbers in CD4 and CD8 T cells. The number of TRECs showed a strong positive correlation with naive T cell numbers, and lower TREC numbers were associated with higher age. We found that the TREC number was inversely associated with levels of obesity indicators (BMI, hemoglobin A1c) and serum CRP levels. Development of type-2 diabetes and fatty liver was also associated with lower TREC numbers. This population study suggests that obesity with enhanced inflammation is involved in aging of the human T-cell immune system. Given the fact that obesity increases the risk of numerous age-related diseases, attenuated immune competence is a possible mechanistic link between obesity and disease development among the elderly.
Collapse
Affiliation(s)
- Kengo Yoshida
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
- * E-mail:
| | - Eiji Nakashima
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Yoshiko Kubo
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Mika Yamaoka
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Junko Kajimura
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Seishi Kyoizumi
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Tomonori Hayashi
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Waka Ohishi
- Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Yoichiro Kusunoki
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| |
Collapse
|
43
|
Gonzalez OA, Novak MJ, Kirakodu S, Orraca L, Chen KC, Stromberg A, Gonzalez-Martinez J, Ebersole JL. Comparative analysis of gingival tissue antigen presentation pathways in ageing and periodontitis. J Clin Periodontol 2014; 41:327-39. [PMID: 24304139 DOI: 10.1111/jcpe.12212] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2013] [Indexed: 01/10/2023]
Abstract
AIM Gingival tissues of periodontitis lesions contribute to local elevations in mediators, including both specific T cell and antibody immune responses to oral bacterial antigens. Thus, antigen processing and presentation activities must exist in these tissues to link antigen-presenting cells with adaptive immunity. We hypothesized that alterations in the transcriptome of antigen processing and presentation genes occur in ageing gingival tissues and that periodontitis enhances these differences reflecting tissues less capable of immune resistance to oral pathogens. MATERIALS AND METHODS Rhesus monkeys (n = 34) from 3 to 23 years of age were examined. A buccal gingival sample from healthy or periodontitis sites was obtained, total RNA isolated, and microarray analysis was used to describe the transcriptome. RESULTS The results demonstrated increased transcription of genes related to the MHC class II and negative regulation of NK cells with ageing in healthy gingival tissues. In contrast, both adult and ageing periodontitis tissues showed decreased transcription of genes for MHC class II antigens, coincident with up-regulation of MHC class I-associated genes. CONCLUSION These transcriptional changes suggest a response of healthy ageing tissues through the class II pathway (i.e. endocytosed antigens) and altered responses in periodontitis that could reflect host-associated self-antigens or targeting cytosolic intracellular microbial pathogens.
Collapse
Affiliation(s)
- Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lopes-Carvalho T, Coutinho A. Old dogs and new tricks: defective peripheral regulatory T cell generation in aged mice. Eur J Immunol 2013; 43:2534-7. [PMID: 24122754 DOI: 10.1002/eji.201344029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 08/26/2013] [Accepted: 09/12/2013] [Indexed: 01/21/2023]
Abstract
Tolerance is a developmentally acquired property of the vertebrate immune system, in part ensured by regulatory CD4⁺ lymphocytes (Treg cells) expressing the Foxp3 transcription factor. Recent work has shown that thymic emigrants are the preferential source of peripherally generated Treg cells. A new report in this issue of the European Journal of Immunology [Eur. J. Immunol. 2013. 43: 2598-2604] describes a cell autonomous defect in Foxp3 induction in aged CD4⁺ cells in mice. Immune homeostasis becomes progressively less robust as ontogeny gives way to aging, and a key feature of senescence is thymic involution and the impaired T-cell turnover that follows. In this Commentary, we discuss the implications of these recent findings for our understanding of the induction of tolerance to peripheral antigens in aging.
Collapse
|
45
|
Immunosenescence, aging, and systemic lupus erythematous. Autoimmune Dis 2013; 2013:267078. [PMID: 24260712 PMCID: PMC3821895 DOI: 10.1155/2013/267078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/18/2013] [Indexed: 12/29/2022] Open
Abstract
Senescence is a normal biological process that occurs in all organisms and involves a decline in cell functions. This process is caused by molecular regulatory machinery alterations, and it is closely related to telomere erosion in chromosomes. In the context of the immune system, this phenomenon is known as immunosenescence and refers to the immune function deregulation. Therefore, functions of several cells involved in the innate and adaptive immune responses are severely compromised with age progression (e.g., changes in lymphocyte subsets, decreased proliferative responses, chronic inflammatory states, etc.). These alterations make elderly individuals prone to not only infectious diseases but also to malignancy and autoimmunity.
This review will explore the molecular aspects of processes related to cell aging, their importance in the context of the immune system, and their participation in elderly SLE patients.
Collapse
|
46
|
Pellicano M, Buffa S, Goldeck D, Bulati M, Martorana A, Caruso C, Colonna-Romano G, Pawelec G. Evidence for Less Marked Potential Signs of T-Cell Immunosenescence in Centenarian Offspring Than in the General Age-Matched Population. J Gerontol A Biol Sci Med Sci 2013; 69:495-504. [DOI: 10.1093/gerona/glt120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
47
|
Immune senescence: new insights into defects but continued mystery of root causes. Curr Opin Immunol 2013; 25:495-7. [PMID: 23962425 DOI: 10.1016/j.coi.2013.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Aging affects AO rat splenic conventional dendritic cell subset composition, cytokine synthesis and T-helper polarizing capacity. Biogerontology 2013; 14:443-59. [DOI: 10.1007/s10522-013-9444-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/07/2013] [Indexed: 11/24/2022]
|
49
|
Tran TM, Li S, Doumbo S, Doumtabe D, Huang CY, Dia S, Bathily A, Sangala J, Kone Y, Traore A, Niangaly M, Dara C, Kayentao K, Ongoiba A, Doumbo OK, Traore B, Crompton PD. An intensive longitudinal cohort study of Malian children and adults reveals no evidence of acquired immunity to Plasmodium falciparum infection. Clin Infect Dis 2013; 57:40-7. [PMID: 23487390 DOI: 10.1093/cid/cit174] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND In experimental models of human and mouse malaria, sterilizing liver stage immunity that blocks progression of Plasmodium infection to the symptomatic blood stage can be readily demonstrated. However, it remains unclear whether individuals in malaria-endemic areas acquire such immunity. METHODS In Mali, 251 healthy children and adults aged 4-25 years who were free of blood-stage Plasmodium infection by polymerase chain reaction (PCR) were enrolled in a longitudinal study just prior to an intense 6-month malaria season. Subsequent clinical malaria episodes were detected by weekly active surveillance and self-referral. Asymptomatic P. falciparum infections were detected by blood-smear microscopy and PCR analysis of dried blood spots that had been collected every 2 weeks for 7 months. RESULTS As expected, the risk of clinical malaria decreased with increasing age (log-rank test, P = .0038). However, analysis of PCR data showed no age-related differences in P. falciparum infection risk (log-rank test, P = .37). CONCLUSIONS Despite years of exposure to intense P. falciparum transmission, there is no evidence of acquired, sterile immunity to P. falciparum infection in this population, even as clinical immunity to blood-stage malaria is clearly acquired. Understanding why repeated P. falciparum infections do not induce sterile protection may lead to insights for developing vaccines that target the liver stage in malaria-endemic populations.
Collapse
Affiliation(s)
- Tuan M Tran
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Li G, Smithey MJ, Rudd BD, Nikolich‐Žugich J. Age-associated alterations in CD8α+ dendritic cells impair CD8 T-cell expansion in response to an intracellular bacterium. Aging Cell 2012; 11:968-77. [PMID: 22862959 PMCID: PMC3533767 DOI: 10.1111/j.1474-9726.2012.00867.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Age-associated decline in immunity to infection has been documented across multiple pathogens, yet the relative contributions of the aged priming environment and of lymphocyte-intrinsic defects remain unclear. To address the impact of the aging environment on T-cell priming, adult naïve OT-I TCR transgenic CD8 T cells, specific for the H-2Kb-restricted immunodominant OVA257-264 epitope, were transferred into adult or old recipient mice infected with the recombinant intracellular bacterium Listeria monocytogenes carrying the chicken ovalbumin protein (Lm-OVA). We consistently found that adult OT-I CD8 expansion was reduced in aged recipient mice, and this correlated with numeric, phenotypic, and functional defects selectively affecting CD8α+ dendritic cells (DC). Following Lm-OVA infection, aged mice failed to accumulate CD8α+ DC in the spleen, and these cells expressed much lower levels of critical costimulatory molecules in the first three days following infection. Further, aged CD8α+ DC showed impaired uptake of the bacteria at very early time points following infection. Treatment of aged mice with Flt3 ligand (Flt3L) improved the number of DC present in the spleen prior to Lm-OVA infection, and improved, but did not reconstitute, OT-I expansion to Lm-OVA infection. These results suggest that age-associated changes in antigen uptake, pathogen sensing, and/or antigen presentation contribute to impaired adaptive immune responses to microbial pathogens with aging.
Collapse
Affiliation(s)
| | | | - Brian D. Rudd
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | |
Collapse
|