1
|
Tan JK, Khaw PT, Henein C. Rho Kinase (ROCK) Inhibitors in the Treatment of Glaucoma and Glaucoma Surgery: A Systematic Review of Early to Late Phase Clinical Trials. Pharmaceuticals (Basel) 2025; 18:523. [PMID: 40283958 PMCID: PMC12030167 DOI: 10.3390/ph18040523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/23/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Primary open-angle glaucoma (POAG) is an anterior optic neuropathy that can lead to irreversible vision loss if untreated. Prostaglandin analogues are the first-line treatment, but new drug classes, such as rho kinase (ROCK) inhibitors, are being explored. This review evaluates the efficacy and safety of ROCK inhibitors in treating POAG based on completed trials, comparing results with available natural history data and identifying areas for further research. Methods: A systematic database search was conducted in Ovid MEDLINE and Ovid Embase on 5 April 2022 using the following keywords: 'glaucoma', 'rho kinase inhibitor', 'rho-kinase inhibitor', 'rock inhibitor', 'ripasudil', 'netarsudil', and 'fasudil'. Abstracts were screened for relevant studies and results summarized in tables. Results: The analysis of trials conducted for ROCK inhibitors reveals that they are a safe and efficacious drug to treat POAG, demonstrating non-inferiority to existing medical treatments. Comparison of data to natural history studies was inconclusive due to the lack of natural history studies and their limitations. The results showed ROCK inhibitors to be effective when combined with existing medical treatments. However, questions remain regarding the optimal dosage, patient selection, and cost-effectiveness. Outcome measures for future trials should be expanded to include additional methods of monitoring disease progression as well as patient quality-of-life. Conclusions: ROCK inhibitors have emerged with a favorable safety profile, efficaciously attenuating intraocular pressure. To elucidate their long-term therapeutic value and safety comprehensively, further independent, large-scale, prospective randomized controlled trials are warranted. Such studies are pivotal to augment our understanding of this emergent medication class.
Collapse
Affiliation(s)
- Jit Kai Tan
- Guy’s Campus, King’s College London, London SE1 1UL, UK
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Peng Tee Khaw
- National Institute for Health and Care Research Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital and University College London Institute of Ophthalmology, London EC1V 2PD, UK
| | - Christin Henein
- National Institute for Health and Care Research Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital and University College London Institute of Ophthalmology, London EC1V 2PD, UK
| |
Collapse
|
2
|
Lyu Q, Zhao D, Liu J, Zhang Y, Wang Q, Wang X, Chen J, Chi Y, Li P, Cai G, Zhang L, Ma J, Chen X. Simulated microgravity predisposes kidney to injury through promoting intrarenal artery remodeling. FASEB J 2025; 39:e70353. [PMID: 39874067 DOI: 10.1096/fj.202402267r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/22/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
Spaceflight-induced multi-organ dysfunction affects the health of astronauts and the safety of in-orbit flight. However, the effect of microgravity on the kidney and the underlying mechanisms are unknown. In the current study, we used a hindlimb unweighting (HU) animal model to simulate microgravity and employed histological analysis, ischemia-reperfusion experiments, renal ultrasonography, bioinformatics analysis, isometric force measurement, and other molecular experimental settings to evaluate the effects of microgravity on the kidneys and the underlying mechanisms involved in this transition. Relative to controls, 31-day hindlimb unweighting had no obvious effect on serum creatinine and urea nitrogen levels as well as on renal injury scores; however, animals in the HU group showed an impaired renal recovery to ischemia-reperfusion injury. Ultrasonography showed that renal resistive index was increased, which indicated an altered renal hemodynamics induced by simulated microgravity. The enhanced vasoconstriction mediated by the Rho-kinase pathway and impaired vasodilation mediated by NO-eNOS of the intrarenal artery contributed to the altered renal hemodynamics. Simulated microgravity predisposes the kidney to ischemia-reperfusion injury. The altered renal hemodynamics induced by renal arterial remodeling may account for the increased renal injury susceptibility, providing a target for early intervention in kidney dysfunction under microgravity.
Collapse
Affiliation(s)
- Qiang Lyu
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Nephrology Institute of the Chinese People's Liberation Army, Chinese PLA General Hospital, Beijing, China
| | - Delong Zhao
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Nephrology Institute of the Chinese People's Liberation Army, Chinese PLA General Hospital, Beijing, China
| | - Jiaqi Liu
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Nephrology Institute of the Chinese People's Liberation Army, Chinese PLA General Hospital, Beijing, China
| | - Yingjie Zhang
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Nephrology Institute of the Chinese People's Liberation Army, Chinese PLA General Hospital, Beijing, China
| | - Qian Wang
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Nephrology Institute of the Chinese People's Liberation Army, Chinese PLA General Hospital, Beijing, China
| | - Xu Wang
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Nephrology Institute of the Chinese People's Liberation Army, Chinese PLA General Hospital, Beijing, China
| | - Jingjing Chen
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Nephrology Institute of the Chinese People's Liberation Army, Chinese PLA General Hospital, Beijing, China
| | - Yunxia Chi
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Nephrology Institute of the Chinese People's Liberation Army, Chinese PLA General Hospital, Beijing, China
| | - Ping Li
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Nephrology Institute of the Chinese People's Liberation Army, Chinese PLA General Hospital, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Nephrology Institute of the Chinese People's Liberation Army, Chinese PLA General Hospital, Beijing, China
| | - Li Zhang
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Nephrology Institute of the Chinese People's Liberation Army, Chinese PLA General Hospital, Beijing, China
| | - Jin Ma
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Xiangmei Chen
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Nephrology Institute of the Chinese People's Liberation Army, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Liu S, Li J, Wang W, Zhang Y, Li S, Li T, Jiang J, Zhao F. Prenatal exposure to dibutyl phthalate contributes to erectile dysfunction in offspring male rats by activating the RhoA/ROCK signalling pathway. Toxicology 2024; 508:153925. [PMID: 39151608 DOI: 10.1016/j.tox.2024.153925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Prenatal exposure to dibutyl phthalate (DBP) has been reported to cause erectile dysfunction (ED) in adult offspring rats. However, its underlying mechanisms are not fully understood. Previously, we found that DBP activates the RhoA/ROCK pathway in the male reproductive system. This study investigated how prenatal exposure to DBP activates the RhoA/ROCK signalling pathway, leading to ED in male rat offspring. Pregnant rats were stratified into DBP-exposed and NC groups, with the exposed group receiving 750 milligrams per kilogram per day (mg/kg/day) of DBP through gavage from days 14-18 of gestation. DBP exposure activated the RhoA/ROCK pathway in the penile corpus cavernosum (CC) of descendants, causing smooth muscle cell contraction, fibrosis, and apoptosis, all of which contribute to ED. In vitro experiments confirmed that DBP induces apoptosis and RhoA/ROCK pathway activation in CC smooth muscle cells. Treatment of DBP-exposed offspring with the ROCK inhibitor Y-27632 for 8 weeks significantly improved smooth muscle cell condition, erectile function, and reduced fibrosis. Thus, prenatal DBP exposure induces ED in offspring through RhoA/ROCK pathway activation, and the ROCK inhibitor Y-27632 shows potential as an effective treatment for DBP-induced ED.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jianying Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wenhao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yijun Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shufeng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Tiewen Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Juntao Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Fujun Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
4
|
Yang J, Xiao S, Li L, Zhu A, Xiao W, Wang Q. Actin Dysregulation Mediates Nephrotoxicity of Cassiae Semen Aqueous Extracts. TOXICS 2024; 12:556. [PMID: 39195658 PMCID: PMC11360101 DOI: 10.3390/toxics12080556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Cassiae semen, commonly consumed as roasted tea, has been widely used for both medicinal purposes and dietary supplements. In this study, we investigated the nephrotoxic effects and underlying mechanisms of Cassiae semen aqueous extracts (CSAEs) using computational and animal models. Both male and female Sprague Dawley rats were treated with 4.73-47.30 g/kg (body weight) of CSAEs by oral gavage twice a day for 7-28 days. We found that serum and urinary biomarkers of kidney injury and kidney coefficients were increased in a dose-dependent manner, and were accompanied by morphological alterations in the kidneys of CSAEs-treated rats. Computational and molecular docking approaches predicted that the three most abundant components of CSAEs-obtusifolin, aurantio-obtusin, and obtusin-exhibited strong affinity for the binding of F-actin, ROCK1, and Rac1, and the RhoA-ROCK pathway was identified as the most likely regulatory mechanism mediating the nephrotoxicity of CSAEs. Consistently, immunofluorescence staining revealed F-actin and cytoskeleton were frequently disturbed in renal cells and brush borders at high doses of CSAEs. Results from gene expression analyses confirmed that CSAEs suppressed the key proteins in the RhoA-ROCK signaling pathway and consequently the expression of F-actin and its stabilization genes. In summary, our findings suggest that Cassiae semen can depolymerize and destabilize actin cytoskeleton by inhibition of the RhoA-ROCK pathway and/or direct binding to F-actin, leading to nephrotoxicity. The consumption of Cassiae semen as a supplement and medicine warrants attention.
Collapse
Affiliation(s)
- Jinlan Yang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - Sheng Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - An Zhu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - Wusheng Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
- Key Laboratory of State Administration of Traditional Chinese Medicine (TCM) for Compatibility Toxicology, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| |
Collapse
|
5
|
Xu L, Ren H, Xie D, Zhang F, Hu X, Fang S, Wang H, He D. Rac2 mediate foam cell formation and associated immune responses in THP-1 to promote the process of atherosclerotic plaques. Mol Immunol 2023; 163:196-206. [PMID: 37837955 DOI: 10.1016/j.molimm.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/25/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023]
Abstract
Macrophages play an important role in the pathogenesis of atherosclerosis (AS) by mediating oxidative stress, inflammation and lipid metabolism, which can lead to the formation of vascular plaque. The Rac family isoforms of small molecules GTPase are active by binding to GTPase, but are inactivated by binding to GDP, and play a role in the switch of cell information conduction. This experiment adopts shRNA interference THP-1 cells respectively each subtype expression and inhibiting Rac1, Rac2, Rac3 activity, each subtype of Rac family on lipid metabolism, inflammatory reaction and oxidative stress. THP-1 cells were stimulated with Ox-LDL to establish AS cell models including lipid loading, adhesion, migration and chemotaxis. Oil Red O staining, cell immunofluorescence, scratching test, transwell, Western blot and other experiments were performed. To observe the different effects of three subtypes of Rac family on multiple links in the foaming process of THP-1 cells. ApoE-/- mice on a high-fat diet were used as animal models to examine the effects of Rac subtypes in vivo. The results showed that the activation of immune cells induced by ox-LDL was inhibited when Rac1, Rac2 and Rac3 in THP-1 were decreased, respectively. Thus, Rac1 and Rac3 act in combination with ox-LDL and are associated with cellular oxidative stress and inflammation. This study provides new means and ideas for finding potential intervention targets that have important regulatory effects on atherosclerosis, and provides a new direction for the development of clinical drugs.
Collapse
Affiliation(s)
- Ling Xu
- Department of clinical laboratory, Xinhua Hospital Affiliated to Dalian University, Dalian, Liaoning 116021, China
| | - He Ren
- Department of Ultrasound, the Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Daqing Xie
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, China
| | - Feng Zhang
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, China
| | - Xiaoxiao Hu
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, China
| | - Shu Fang
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, China
| | - Hongli Wang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, China.
| | - Dan He
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
6
|
Zhang Y, Li G, Zhao Y. Advances in the development of Rho GTPase inhibitors. Bioorg Med Chem 2023; 90:117337. [PMID: 37253305 DOI: 10.1016/j.bmc.2023.117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023]
Abstract
Rho guanosine triphosphatases (Rho GTPases), as members of the Ras superfamily, are GDP/GTP binding proteins that behave as molecular switches for the transduction of signals from external stimuli. Rho GTPases play essential roles in a number of cellular processes including cell cycle, cell polarity as well as cell migration. The dysregulations of Rho GTPases are related with various diseases, especially with cancers. Accumulating evidence supports that Rho GTPases play important roles in cancer development and progression. Rho GTPases become potential therapeutic targets for cancer therapy. And a number of inhibitors targeting Rho GTPases have been developed. In this review, we discuss their structural features, summarize their roles in cancer, and focus on the recent progress of their inhibitors, which are beneficial for the drug discovery targeting Rho GTPases.
Collapse
Affiliation(s)
- Yijing Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guanyi Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yaxue Zhao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
7
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
8
|
Ravarotto V, Bertoldi G, Rigato M, Pagnin E, Gobbi L, Davis PA, Calò LA. Tracing angiotensin II's yin-yang effects on cardiovascular-renal pathophysiology. Minerva Med 2023; 114:56-67. [PMID: 34180640 DOI: 10.23736/s0026-4806.21.07440-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adverse changes in cardiovascular and renal systems are major contributors to overall morbidity and mortality. Human cardiovascular and renal systems exhibit a complex network of positive and negative feedback that is reflected in the control of vascular tone via angiotensin II (Ang II) based signaling. This review will examine in some depth, the multiple components and processes that control the status and reflect the health of these various cardiovascular and renal systems, such as pathways associated to monomeric G proteins, RhoA/Rho kinase system and ERK, oxidative stress and NO balance. It will specifically emphasize the "yin-yang" nature of Ang II signaling by comparing and contrasting the effects and activity of various systems, pathways and components found in hypertension to those found in Gitelman's and Bartter's syndromes (GS/BS), two rare autosomal recessive tubulopathies characterized by electrolytic imbalance, metabolic alkalosis, sodium wasting and prominent activation of the renin-angiotensin-aldosterone system. Notwithstanding the activation of the renin-angiotensin-aldosterone system, GS/BS are normo-hypotensive and protected from cardiovascular-renal remodeling and therefore can be considered the mirror image, the opposite of hypertension.
Collapse
Affiliation(s)
- Verdiana Ravarotto
- Unit of Nephrology, Dialysis and Transplantation, Department of Medicine, University of Padua, Padua, Italy
| | - Giovanni Bertoldi
- Unit of Nephrology, Dialysis and Transplantation, Department of Medicine, University of Padua, Padua, Italy
| | - Matteo Rigato
- Unit of Nephrology, Dialysis and Transplantation, Department of Medicine, University of Padua, Padua, Italy
| | - Elisa Pagnin
- Unit of Nephrology, Dialysis and Transplantation, Department of Medicine, University of Padua, Padua, Italy
| | - Laura Gobbi
- Unit of Nephrology, Dialysis and Transplantation, Department of Medicine, University of Padua, Padua, Italy
| | - Paul A Davis
- Department of Nutrition, University of California at Davis, Davis, CA, USA
| | - Lorenzo A Calò
- Unit of Nephrology, Dialysis and Transplantation, Department of Medicine, University of Padua, Padua, Italy -
| |
Collapse
|
9
|
Li X, Zhang M, Zhou G, Xie Z, Wang Y, Han J, Li L, Wu Q, Zhang S. Role of Rho GTPases in inflammatory bowel disease. Cell Death Dis 2023; 9:24. [PMID: 36690621 PMCID: PMC9871048 DOI: 10.1038/s41420-023-01329-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/24/2023]
Abstract
Rat sarcoma virus homolog (Rho) guanosine triphosphatases (GTPases) function as "molecular switch" in cellular signaling regulation processes and are associated with the pathogenesis of inflammatory bowel disease (IBD). This chronic intestinal tract inflammation primarily encompasses two diseases: Crohn's disease and ulcerative colitis. The pathogenesis of IBD is complex and considered to include four main factors and their interactions: genetics, intestinal microbiota, immune system, and environment. Recently, several novel pathogenic components have been identified. In addition, potential therapies for IBD targeting Rho GTPases have emerged and proven to be clinically effective. This review mainly focuses on Rho GTPases and their possible mechanisms in IBD pathogenesis. The therapeutic possibility of Rho GTPases is also discussed.
Collapse
Affiliation(s)
- Xiaoling Li
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Mudan Zhang
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Gaoshi Zhou
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Zhuo Xie
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Ying Wang
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Jing Han
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Li Li
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Qirui Wu
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Shenghong Zhang
- grid.12981.330000 0001 2360 039XDivision of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
10
|
Key role of Rho GTPases in motor disorders associated with neurodevelopmental pathologies. Mol Psychiatry 2023; 28:118-126. [PMID: 35918397 DOI: 10.1038/s41380-022-01702-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 06/24/2022] [Accepted: 07/02/2022] [Indexed: 01/07/2023]
Abstract
Growing evidence suggests that Rho GTPases and molecules involved in their signaling pathways play a major role in the development of the central nervous system (CNS). Whole exome sequencing (WES) and de novo examination of mutations, including SNP (Single Nucleotide Polymorphism) in genes coding for the molecules of their signaling cascade, has allowed the recent discovery of dominant autosomic mutations and duplication or deletion of candidates in the field of neurodevelopmental diseases (NDD). Epidemiological studies show that the co-occurrence of several of these neurological pathologies may indeed be the rule. The regulators of Rho GTPases have often been considered for cognitive diseases such as intellectual disability (ID) and autism. But, in a remarkable way, mild to severe motor symptoms are now reported in autism and other cognitive NDD. Although a more abundant litterature reports the involvement of Rho GTPases and signaling partners in cognitive development, molecular investigations on their roles in central nervous system (CNS) development or degenerative CNS pathologies also reveal their role in embryonic and perinatal motor wiring through axon guidance and later in synaptic plasticity. Thus, Rho family small GTPases have been revealed to play a key role in brain functions including learning and memory but their precise role in motor development and associated symptoms in NDD has been poorly scoped so far, despite increasing clinical data highlighting the links between cognition and motor development. Indeed, early impairements in fine or gross motor performance is often an associated feature of NDDs, which then impact social communication, cognition, emotion, and behavior. We review here recent insights derived from clinical developmental neurobiology in the field of Rho GTPases and NDD (autism spectrum related disorder (ASD), ID, schizophrenia, hypotonia, spastic paraplegia, bipolar disorder and dyslexia), with a specific focus on genetic alterations affecting Rho GTPases that are involved in motor circuit development.
Collapse
|
11
|
Roskoski R. Janus kinase (JAK) inhibitors in the treatment of neoplastic and inflammatory disorders. Pharmacol Res 2022; 183:106362. [PMID: 35878738 DOI: 10.1016/j.phrs.2022.106362] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023]
Abstract
The Janus kinase (JAK) family of nonreceptor protein-tyrosine kinases consists of JAK1, JAK2, JAK3, and TYK2 (Tyrosine Kinase 2). Each of these proteins contains a JAK homology pseudokinase (JH2) domain that interacts with and regulates the activity of the adjacent protein kinase domain (JH1). The Janus kinase family is regulated by numerous cytokines including interferons, interleukins, and hormones such as erythropoietin and thrombopoietin. Ligand binding to cytokine receptors leads to the activation of associated Janus kinases, which then catalyze the phosphorylation of the receptors. The SH2 domain of signal transducers and activators of transcription (STAT) binds to the cytokine receptor phosphotyrosines thereby promoting STAT phosphorylation and activation by the Janus kinases. STAT dimers are then translocated into the nucleus where they participate in the regulation and expression of dozens of proteins. JAK1/3 signaling participates in the pathogenesis of inflammatory disorders while JAK1/2 signaling contributes to the development of myeloproliferative neoplasms as well as several malignancies including leukemias and lymphomas. An activating JAK2 V617F mutation occurs in 95% of people with polycythemia vera and about 50% of cases of myelofibrosis and essential thrombocythemia. Abrocitinib, ruxolitinib, and upadacitinib are JAK inhibitors that are FDA-approved for the treatment of atopic dermatitis. Baricitinib is used for the treatment of rheumatoid arthritis and covid 19. Tofacitinib and upadacitinib are JAK antagonists that are used for the treatment of rheumatoid arthritis and ulcerative colitis. Additionally, ruxolitinib is approved for the treatment of polycythemia vera while fedratinib, pacritinib, and ruxolitinib are approved for the treatment of myelofibrosis.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 106, Box 19, Horse Shoe, NC 28742, United States.
| |
Collapse
|
12
|
Kinzenbaw DA, Langmack L, Faraci FM. Angiotensin II-induced endothelial dysfunction: Impact of sex, genetic background, and rho kinase. Physiol Rep 2022; 10:e15336. [PMID: 35681278 PMCID: PMC9184751 DOI: 10.14814/phy2.15336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023] Open
Abstract
The renin-angiotensin system (RAS) contributes to vascular disease with multiple cardiovascular risk factors including hypertension. As a major effector within the RAS, angiotensin II (Ang II) activates diverse signaling mechanisms that affect vascular biology. Despite the impact of such vascular pathophysiology, our understanding of the effects of Ang II in relation to the function of endothelial cells is incomplete. Because genetic background and biological sex can be determinants of vascular disease, we performed studies examining the direct effects of Ang II using carotid arteries from male and female mice on two genetic backgrounds, C57BL/6J and FVB/NJ. Although FVB/NJ mice are much less susceptible to atherosclerosis than C57BL/6J, the effects of Ang II on endothelial cells in FVB/NJ are poorly defined. Overnight incubation of isolated arteries with Ang II (10 nmol/L), impaired endothelial function in both strains and sexes by approximately one-half (p < 0.05). To examine the potential mechanistic contribution of Rho kinase (ROCK), we treated arteries with SLX-2119, an inhibitor with high selectivity for ROCK2. In both male and female mice of both strains, SLX-2119 largely restored endothelial function to normal, compared to vessels treated with vehicle. Thus, Ang II-induced endothelial dysfunction was observed in both FVB/NJ and C57BL/6J mice. This effect was sex-independent. In all groups, effects of Ang II were reversed by inhibition of ROCK2 with SLX-2119. These studies provide the first evidence that ROCK2 may be a key contributor to Ang II-induced endothelial dysfunction in both sexes and in mouse strains that differ in relation to other major aspects of vascular disease.
Collapse
Affiliation(s)
- Dale A. Kinzenbaw
- Departments of Internal MedicineFrancois M. Abboud Cardiovascular CenterThe University of Iowa Carver College of MedicineIowa CityIowaUSA
| | - Lucy Langmack
- Departments of Internal MedicineFrancois M. Abboud Cardiovascular CenterThe University of Iowa Carver College of MedicineIowa CityIowaUSA
| | - Frank M. Faraci
- Departments of Internal MedicineFrancois M. Abboud Cardiovascular CenterThe University of Iowa Carver College of MedicineIowa CityIowaUSA
- Departments of Neuroscience and PharmacologyThe University of Iowa Carver College of MedicineIowa CityIowaUSA
| |
Collapse
|
13
|
Li N, Zhang Y, Morita T, Kishi H, Kobayashi S. Inhibitory mechanism of tangeretin, a citrus flavone on the sphingosylphosphorylcholine (SPC)-induced vascular smooth muscle contraction. J Pharmacol Sci 2022; 149:189-197. [DOI: 10.1016/j.jphs.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/14/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022] Open
|
14
|
Ravarotto V, Bertoldi G, Stefanelli LF, Gobbi L, Calò LA. Molecular aspects of the altered Angiotensin II signalling in Gitelman’s syndrome. Expert Opin Orphan Drugs 2022. [DOI: 10.1080/21678707.2022.2066996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Verdiana Ravarotto
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine (DIMED) University of Padova, Italy
| | - Giovanni Bertoldi
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine (DIMED) University of Padova, Italy
| | - Lucia Federica Stefanelli
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine (DIMED) University of Padova, Italy
| | - Laura Gobbi
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine (DIMED) University of Padova, Italy
| | - Lorenzo A. Calò
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine (DIMED) University of Padova, Italy
| |
Collapse
|
15
|
Shi J, Wei L. Rho Kinases in Embryonic Development and Stem Cell Research. Arch Immunol Ther Exp (Warsz) 2022; 70:4. [PMID: 35043239 PMCID: PMC8766376 DOI: 10.1007/s00005-022-00642-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
The Rho-associated coiled-coil containing kinases (ROCKs or Rho kinases) belong to the AGC (PKA/PKG/PKC) family of serine/threonine kinases and are major downstream effectors of small GTPase RhoA, a key regulator of actin-cytoskeleton reorganization. The ROCK family contains two members, ROCK1 and ROCK2, which share 65% overall identity and 92% identity in kinase domain. ROCK1 and ROCK2 were assumed to be functionally redundant, based largely on their major common activators, their high degree kinase domain homology, and study results from overexpression with kinase constructs or chemical inhibitors. ROCK signaling research has expanded to all areas of biology and medicine since its discovery in 1996. The rapid advance is befitting ROCK’s versatile functions in modulating various cell behavior, such as contraction, adhesion, migration, proliferation, polarity, cytokinesis, and differentiation. The rapid advance is noticeably driven by an extensive linking with clinical medicine, including cardiovascular abnormalities, aberrant immune responsive, and cancer development and metastasis. The rapid advance during the past decade is further powered by novel biotechnologies including CRISPR-Cas and single cell omics. Current consensus, derived mainly from gene targeting and RNA interference approaches, is that the two ROCK isoforms have overlapping and distinct cellular, physiological and pathophysiology roles. In this review, we present an overview of the milestone discoveries in ROCK research. We then focus on the current understanding of ROCK signaling in embryonic development, current research status using knockout and knockin mouse models, and stem cell research.
Collapse
Affiliation(s)
- Jianjian Shi
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| | - Lei Wei
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
16
|
Li M, Jiao Q, Xin W, Niu S, Liu M, Song Y, Wang Z, Yang X, Liang D. The Emerging Role of Rho Guanine Nucleotide Exchange Factors in Cardiovascular Disorders: Insights Into Atherosclerosis: A Mini Review. Front Cardiovasc Med 2022; 8:782098. [PMID: 35047576 PMCID: PMC8761945 DOI: 10.3389/fcvm.2021.782098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease, and atherosclerotic cardiovascular disease accounts for one-third of global deaths. However, the mechanism of atherosclerosis is not fully understood. It is well-known that the Rho GTPase family, especially Rho A, plays a vital role in the development and progression of arteriosclerosis. Rho guanine nucleotide exchange factors (Rho GEFs), which act upstream of Rho GTPases, are also involved in the atheromatous pathological process. Despite some research on the role of Rho GEFS in the regulation of atherosclerosis, the number of studies is small relative to studies on the essential function of Rho GEFs. Some studies have preliminarily revealed Rho GEF regulation of atherosclerosis by experiments in vivo and in vitro. Herein, we review the advances in research on the relationship and interaction between Rho GEFs and atheroma to provide a potential reference for further study of atherosclerosis.
Collapse
Affiliation(s)
- Mengqi Li
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Qingzheng Jiao
- Second Department of Internal Medicine, Gucheng County Hospital, Hengshui Gucheng, Hebei, China
| | - Wenqiang Xin
- Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shulin Niu
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mingming Liu
- Department of Neurology and Immunology, Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanxin Song
- Department of Nursing, Tianjin Medical University, Tianjin, China
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Zengguang Wang
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Xinyu Yang
| | - Degang Liang
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Degang Liang
| |
Collapse
|
17
|
Liu Y, Su YY, Yang Q, Zhou T. Stem cells in the treatment of renal fibrosis: a review of preclinical and clinical studies of renal fibrosis pathogenesis. Stem Cell Res Ther 2021; 12:333. [PMID: 34112221 PMCID: PMC8194041 DOI: 10.1186/s13287-021-02391-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/14/2021] [Indexed: 02/05/2023] Open
Abstract
Renal fibrosis commonly leads to glomerulosclerosis and renal interstitial fibrosis and the main pathological basis involves tubular atrophy and the abnormal increase and excessive deposition of extracellular matrix (ECM). Renal fibrosis can progress to chronic kidney disease. Stem cells have multilineage differentiation potential under appropriate conditions and are easy to obtain. At present, there have been some studies showing that stem cells can alleviate the accumulation of ECM and renal fibrosis. However, the sources of stem cells and the types of renal fibrosis or renal fibrosis models used in these studies have differed. In this review, we summarize the pathogenesis (including signaling pathways) of renal fibrosis, and the effect of stem cell therapy on renal fibrosis as described in preclinical and clinical studies. We found that stem cells from various sources have certain effects on improving renal function and alleviating renal fibrosis. However, additional clinical studies should be conducted to confirm this conclusion in the future.
Collapse
Affiliation(s)
- Yiping Liu
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Yan-Yan Su
- Department of Nephrology, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, China
| | - Qian Yang
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China.
| |
Collapse
|
18
|
Wen YT, Huang CW, Liu CP, Chen CH, Tu CM, Hwang CS, Chen YH, Chen WR, Lin KL, Ho YC, Chen TC, Tsai RK. Inhibition of Retinal Ganglion Cell Loss By a Novel ROCK Inhibitor (E212) in Ischemic Optic Nerve Injury Via Antioxidative and Anti-Inflammatory Actions. Invest Ophthalmol Vis Sci 2021; 62:21. [PMID: 34015079 PMCID: PMC8142697 DOI: 10.1167/iovs.62.6.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/24/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose This study investigated the neuroprotective effects of administration of ROCK inhibitor E212 on ischemic optic neuropathy. Methods Rats received an intravitreal injection of either E212 or PBS immediately after optic nerve infarct. The oxidative stress in the retina was detected by performing superoxide dismutase activity and CellROX assays. The integrity of retinal pigment epithelium was determined by staining of zona occludens 1. The visual function, retinal ganglion cell (RGC) density, and RGC apoptosis were determined by using flash visual-evoked potential analysis, retrograde FluoroGold labeling, and TdT-dUTP nick end-labeling assay. Macrophage infiltration was detected by staining for ED1. The protein levels of TNF-α, p-CRMP, p-AKT1, p-STAT3, and CD206 were evaluated using Western blotting. Results Administration of E212 resulted in a 1.23-fold increase in the superoxide dismutase activity of the retina and 2.28-fold decrease in RGC-produced reactive oxygen species as compared to the levels observed upon treatment with PBS (P < 0.05). Moreover, E212 prevented the disruption of the blood-retinal barrier (BRB) in contrast to PBS. The P1-N2 amplitude and RGC density in the E212-treated group were 1.75- and 2.05-fold higher, respectively, than those in the PBS-treated group (P < 0.05). The numbers of apoptotic RGCs and macrophages were reduced by 2.93- and 2.54-fold, respectively, in the E212-treated group compared with those in the PBS-treated group (P < 0.05). The levels of p-AKT1, p-STAT3, and CD206 were increased, whereas those of p-PTEN, p-CRMP2, and TNF-α were decreased after treatment with E212 (P < 0.05). Conclusions Treatment with E212 suppresses oxidative stress, BRB disruption, and neuroinflammation to protect the visual function in ischemic optic neuropathy.
Collapse
Affiliation(s)
- Yao-Tseng Wen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ching-Wen Huang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Peng Liu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chih-Hung Chen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chia-Mu Tu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chrong-Shiong Hwang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Yi-Hsun Chen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Wan-Ru Chen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Keh-Liang Lin
- Department of Medical laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chieh Ho
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Rong-Kung Tsai
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Doctoral Degree Program in Translational Medicine, Tzu Chi University and Academia Sinica, Hualien, Taiwan
| |
Collapse
|
19
|
Wakim V, Abi Khalil E, Salloum AK, Khazen G, Ghassibe-Sabbagh M, Zalloua PA. New susceptibility alleles associated with severe coronary artery stenosis in the Lebanese population. BMC Med Genomics 2021; 14:90. [PMID: 33766035 PMCID: PMC7993530 DOI: 10.1186/s12920-021-00942-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coronary Artery Disease (CAD) is the narrowing or blockage of the coronary arteries. It is closely associated with numerous genetics and environmental factors that have been extensively evaluated in various populations. In recent studies, severe phenotypes have been strongly linked to genetic risk factors. METHODS This study investigated the association of clinical, demographic, and genetic factors with severe coronary artery stenosis phenotypes in our population composed of 1734 individuals with severe coronary stenosis (≥ 50% in coronary vessels) and comparing them to 757 controls with no evidence of stenosis on angiography. We performed generalized linear model (GLM) genome-wide association studies to evaluate three stratification models and their associations to characteristics of the clinical disease. In model 1, patients were not stratified. In model 2, patients were stratified based on presence or absence of CAD family history (FxCAD). In model 3, patients were stratified by young age of CAD onset. RESULTS Eight SNPs (single nucleotide polymorphism) were significantly associated with severe CAD phenotypes in the various models [Formula: see text], four of these SNPs were associated with severe CAD and the four others were specifically significant for young CAD patients. While these SNPs were not previously reported for association with CAD, six of them are present in genes that have already been linked to coronary disease. CONCLUSION In conclusion, this study presents new genetic factors associated with severe stenosis and highlights different risk factors associated with a young age at diagnosis of CAD.
Collapse
Affiliation(s)
- Victor Wakim
- School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Elie Abi Khalil
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | | | - Georges Khazen
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Michella Ghassibe-Sabbagh
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| | - Pierre A Zalloua
- School of Medicine, Lebanese American University, Beirut, Lebanon.
- Harvard School of Public Health, Boston, MA, 02215, USA.
| |
Collapse
|
20
|
Iyer M, Subramaniam MD, Venkatesan D, Cho SG, Ryding M, Meyer M, Vellingiri B. Role of RhoA-ROCK signaling in Parkinson's disease. Eur J Pharmacol 2020; 894:173815. [PMID: 33345850 DOI: 10.1016/j.ejphar.2020.173815] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a complex and widespread neurodegenerative disease characterized by depletion of midbrain dopaminergic (DA) neurons. Key issues are the development of therapies that can stop or reverse the disease progression, identification of dependable biomarkers, and better understanding of the pathophysiological mechanisms of PD. RhoA-ROCK signals appear to have an important role in PD symptoms, making it a possible approach for PD treatment strategies. Activation of RhoA-ROCK (Rho-associated coiled-coil containing protein kinase) appears to stimulate various PD risk factors including aggregation of alpha-synuclein (αSyn), dysregulation of autophagy, and activation of apoptosis. This manuscript reviews current updates about the biology and function of the RhoA-ROCK pathway and discusses the possible role of this signaling pathway in causing the pathogenesis of PD. We conclude that inhibition of the RhoA-ROCK signaling pathway may have high translational potential and could be a promising therapeutic target in PD.
Collapse
Affiliation(s)
- Mahalaxmi Iyer
- Department of Genetics and Molecular Biology, Sankara Nethralaya, Chennai, 600 006, Tamil Nadu, India
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Sankara Nethralaya, Chennai, 600 006, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Matias Ryding
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Neurology, Odense University Hospital, Odense, Denmark; Brain Research - Inter Disciplinary Guided Excellence (BRIDGE), Odense, Denmark
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
21
|
Gur S, Alzweri L, Yilmaz-Oral D, Kaya-Sezginer E, Abdel-Mageed AB, Sikka SC, Hellstrom WJG. Ivabradine, the hyperpolarization-activated cyclic nucleotide-gated channel blocker, elicits relaxation of the human corpus cavernosum: a potential option for erectile dysfunction treatment. Aging Male 2020; 23:1088-1097. [PMID: 31741421 DOI: 10.1080/13685538.2019.1678125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To evaluate the effect of the If channel inhibitor, ivabradine on human corpus cavernosum (HCC) smooth muscle tone. METHODS HCC samples were obtained from erectile dysfunction(ED) patients (n = 12) undergoing penile prosthesis surgery. Concentration-response curves for ivabradine were exposed to various inhibitory and stimulatory agents. The relaxant and contractile responses to electrical field stimulation (EFS, 10 Hz and 80 Hz) were examined in the presence or absence of ivabradine (10 μM). HCN3 and HCN4 channel expression and localization were determined by Western blot and immunohistochemical analyses of HCC tissues. RESULTS Increasing ivabradine concentrations dependently reduced the maximal contractile responses of isolated HCC strips induced by KCl (59.5 ± 2.5%) and phenylephrine (84.0 ± 9.8%), which was not affected by nitric oxide synthase and soluble guanylyl cyclase inhibitors after phenylephrine-induced contraction. Nifedipine and tetraethylammonium inhibited the maximum relaxation to ivabradine by 75% and 39.3%, respectively. Fasudil and sildenafil increased the relaxation response to ivabradine without altering the maximum response. Pre-incubation with ivabradine significantly increased relaxant responses to EFS (p < 0.01) and reduced the contractile tension evoked by EFS (72.3%) (p < 0.001). Ivabradine incubation did not affect the expression and localization of HCN3 and HCN4 channels in the HCC smooth muscle cells. CONCLUSIONS Ivabradine exhibits a relaxant effect on HCC tissues, which is likely to be attributed to the blocking of L-type Ca2+ channels and the opening of K+ channels, independent of changes in the activation of the nitric oxide/cyclic guanosine monophosphate system. Inhibition of HCN channels localized in cavernosal smooth muscle cells may offer pharmacological benefits for patients with cardiovascular risk factors.
Collapse
Affiliation(s)
- Serap Gur
- Departments of Urology, Tulane University Health Sciences Center, New Orleans, LA, USA
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Laith Alzweri
- Departments of Urology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Didem Yilmaz-Oral
- Department of Pharmacology, Faculty of Pharmacy, Cukurova University, Adana, Turkey
| | - Ecem Kaya-Sezginer
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Asim B Abdel-Mageed
- Departments of Urology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Suresh C Sikka
- Departments of Urology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Wayne J G Hellstrom
- Departments of Urology, Tulane University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
22
|
Jiang C, Dong N, Feng J, Hao M. MiRNA-190 exerts neuroprotective effects against ischemic stroke through Rho/Rho-kinase pathway. Pflugers Arch 2020; 473:121-130. [PMID: 33196911 DOI: 10.1007/s00424-020-02490-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ischemic stroke is an urgent public health concern and one of the major causes of deaths and disabilities over the world. MicroRNA (miRNA) has become a key mediator of cerebral ischemia-reperfusion (I/R) injuries. However, whether miR-190 is involved in cerebral I/R-induced neuronal damage remains unknown. This study was to investigate the role of miR-190 in the brain I/R injury. We divided the rats into sham, I/R, control, and miR-190-mim (miR-190 mimics) groups. Quantitative real-time polymerase chain reaction (qRT-PCR), Nissl staining, flow cytometry, and western blot were conducted to examine the expression of miR-190 and cell apoptosis in different groups. The results showed that the expression of miR-190 was greatly decreased in rats suffering with I/R. Overexpression of miR-190 significantly reduced the increased neurological scores, brain water contents, infarct volumes, and neuronal apoptosis in rats suffering with I/R. In addition, we found that the expression of RhoA and Rho kinase was greatly elevated in rats suffering with I/R. Bioinformatics analysis indicated that Rho was a target of miR-190. Moreover, overexpression of miR-190 significantly downregulated the increased mRNA and protein expression of Rho/Rho kinase and cell apoptosis, while inhibition of miR-190 further upregulated the increased mRNA and protein expression of Rho/Rho kinase and cell apoptosis in rats suffering with I/R. Furthermore, knockdown of Rho significantly downregulated the increased mRNA and protein expression of Rho/Rho kinase and cell apoptosis, while these effects were inhibited by miR-190 inhibitors in rats suffering with I/R. These results indicate that miR-190 confers protection against brain I/R damage by modulating Rho/Rho-kinase signaling.
Collapse
Affiliation(s)
- Chuan Jiang
- Department of Neurology, Shandong Provincial Western Hospital, Shandong Provincial ENT Hospital, No.4 Duanxing West Road, Huanyin District, Jinan City, 250022, Shandong Province, People's Republic of China
| | - Ning Dong
- Department of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan City, 250001, Shandong Province, People's Republic of China
| | - Jianli Feng
- Department of Neurology, Shandong Provincial Western Hospital, Shandong Provincial ENT Hospital, No.4 Duanxing West Road, Huanyin District, Jinan City, 250022, Shandong Province, People's Republic of China.
| | - Maolin Hao
- Department of Neurology, Shandong Provincial Western Hospital, Shandong Provincial ENT Hospital, No.4 Duanxing West Road, Huanyin District, Jinan City, 250022, Shandong Province, People's Republic of China
| |
Collapse
|
23
|
Miramontes-González JP, Usategui-Martín R, Martín-Vallejo J, Ziegler M, de Isla LL, O Connor D, González-Sarmiento R. VAV3 rs7528153 and VAV3-AS1 rs1185222 polymorphisms are associated with an increased risk of developing hypertension. Eur J Intern Med 2020; 80:60-65. [PMID: 32540412 DOI: 10.1016/j.ejim.2020.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 01/04/2023]
Abstract
The aetiology of essential hypertension is complex and involves both environmental and genetic factors. Approximately 30% of the inter-individual variability in blood pressure is genetically determined. It has been shown that numerous vasoconstrictors stimulate RhoA in local populations of vascular SMCs that, in turn, promote localised constriction of arterial blood vessels and elevations in blood pressure. The VAV3 gene encodes for VAV3 protein, a Rho GEF factor. VAV3-AS1 gene, a lncRNA, may regulate VAV3 expression. We performed an observational prospective case-control study, including patients attending in the Vascular Risk Unit from the University Hospital Salamanca for 6 months. A replication study was performed with data from The Kaiser Permanent database of the University of California. The results suggest that T allele of the VAV3 rs7528153 and G allele of the VAV3-AS1 rs11185222 polymorphisms are associated with an increased risk of developing hypertension. We hypothesise that these polymorphisms could modify blood pressure, likely through a modification in the Rho/Rac pathway. Our results suggest that those polymorphisms could be useful genetic markers of susceptibility to suffering hypertension.
Collapse
Affiliation(s)
- José Pablo Miramontes-González
- Department of Internal Medicine, Hospital Universitario de Salamanca, Valladolid, Spain; Molecular Medicine Unit, Department of Medicine, Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca-USAL-CSIC and Institute of Molecular and Cellular Biology of Cancer (IBMCC), Universidad de Salamanca-CSIC, Salamanca, Spain; Department of Medicine. University of California at San Diego, La Jolla, California-UCSD, United States.
| | - Ricardo Usategui-Martín
- Molecular Medicine Unit, Department of Medicine, Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca-USAL-CSIC and Institute of Molecular and Cellular Biology of Cancer (IBMCC), Universidad de Salamanca-CSIC, Salamanca, Spain
| | - Javier Martín-Vallejo
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca-USAL-CSIC and Institute of Molecular and Cellular Biology of Cancer (IBMCC), Universidad de Salamanca-CSIC, Salamanca, Spain; Department of Statistics, Universidad de Salamanca, Salamanca, Spain
| | - Michael Ziegler
- Department of Medicine. University of California at San Diego, La Jolla, California-UCSD, United States
| | - Leopoldo López de Isla
- Cardiac Image Unit. Hospital Clínico San Carlos. Madrid. Facultad de Medicina. Universidad Complutense de Madrid, Madrid, Spain
| | - Daniel O Connor
- Department of Medicine. University of California at San Diego, La Jolla, California-UCSD, United States
| | - Rogelio González-Sarmiento
- Molecular Medicine Unit, Department of Medicine, Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca-USAL-CSIC and Institute of Molecular and Cellular Biology of Cancer (IBMCC), Universidad de Salamanca-CSIC, Salamanca, Spain.
| |
Collapse
|
24
|
Bai X, Mangum K, Kakoki M, Smithies O, Mack CP, Taylor JM. GRAF3 serves as a blood volume-sensitive rheostat to control smooth muscle contractility and blood pressure. Small GTPases 2020; 11:194-203. [PMID: 29099324 PMCID: PMC7549679 DOI: 10.1080/21541248.2017.1375602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vascular resistance is a major determinant of BP and is controlled, in large part, by RhoA-dependent smooth muscle cell (SMC) contraction within small peripheral arterioles and previous studies from our lab indicate that GRAF3 is a critical regulator of RhoA in vascular SMC. The elevated contractile responses we observed in GRAF3 deficient vessels coupled with the hypertensive phenotype provided a mechanistic link for the hypertensive locus recently identified within the GRAF3 gene. On the basis of our previous findings that the RhoA signaling axis also controls SMC contractile gene expression and that GRAF3 expression was itself controlled by this pathway, we postulated that GRAF3 serves as an important counter-regulator of SMC phenotype. Indeed, our new findings presented herein indicate that GRAF3 expression acts as a pressure-sensitive rheostat to control vessel tone by both reducing calcium sensitivity and restraining expression of the SMC-specific contractile proteins that support this function. Collectively, these studies highlight the potential therapeutic value of GRAF3 in the control of human hypertension.
Collapse
Affiliation(s)
- Xue Bai
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
| | - Kevin Mangum
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
| | - Masao Kakoki
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
| | - Oliver Smithies
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Christopher P. Mack
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Joan M. Taylor
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
25
|
Yuan Y, Zhou X, Wang Y, Wang Y, Teng X, Wang S. Cardiovascular Modulating Effects of Magnolol and Honokiol, Two Polyphenolic Compounds from Traditional Chinese Medicine-Magnolia Officinalis. Curr Drug Targets 2020; 21:559-572. [PMID: 31749425 DOI: 10.2174/1389450120666191024175727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 01/09/2023]
Abstract
Honokiol and its isomer magnolol are poly-phenolic compounds isolated from the Magnolia officinalis that exert cardiovascular modulating effects via a variety of mechanisms. They are used as blood-quickening and stasis-dispelling agents in Traditional Chinese Medicine and confirmed to have therapeutic potential in atherosclerosis, thrombosis, hypertension, and cardiac hypertrophy. This comprehensive review summarizes the current data regarding the cardioprotective mechanisms of those compounds and identifies areas for further research.
Collapse
Affiliation(s)
- Yuan Yuan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaocui Zhou
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Yuanyuan Wang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Yan Wang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Xiangyan Teng
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Shuaiyu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
26
|
Molecular Regulation of the RhoGAP GRAF3 and Its Capacity to Limit Blood Pressure In Vivo. Cells 2020; 9:cells9041042. [PMID: 32331391 PMCID: PMC7226614 DOI: 10.3390/cells9041042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
Anti-hypertensive therapies are usually prescribed empirically and are often ineffective. Given the prevalence and deleterious outcomes of hypertension (HTN), improved strategies are needed. We reported that the Rho-GAP GRAF3 is selectively expressed in smooth muscle cells (SMC) and controls blood pressure (BP) by limiting the RhoA-dependent contractility of resistance arterioles. Importantly, genetic variants at the GRAF3 locus controls BP in patients. The goal of this study was to validate GRAF3 as a druggable candidate for future anti-HTN therapies. Importantly, using a novel mouse model, we found that modest induction of GRAF3 in SMC significantly decreased basal and vasoconstrictor-induced BP. Moreover, we found that GRAF3 protein toggles between inactive and active states by processes controlled by the mechano-sensing kinase, focal adhesion kinase (FAK). Using resonance energy transfer methods, we showed that agonist-induced FAK-dependent phosphorylation at Y376GRAF3 reverses an auto-inhibitory interaction between the GAP and BAR-PH domains. Y376 is located in a linker between the PH and GAP domains and is invariant in GRAF3 homologues and a phosphomimetic E376GRAF3 variant exhibited elevated GAP activity. Collectively, these data provide strong support for the future identification of allosteric activators of GRAF3 for targeted anti-hypertensive therapies.
Collapse
|
27
|
A Review on the Function and Regulation of ARHGDIB/RhoGDI2 Expression Including the Hypothetical Role of ARHGDIB/RhoGDI2 Autoantibodies in Kidney Transplantation. Transplant Direct 2020; 6:e548. [PMID: 32548242 PMCID: PMC7213606 DOI: 10.1097/txd.0000000000000993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022] Open
Abstract
Challenging and still unsolved problems in kidney transplantation are risk stratification and the treatment of humoral rejection. Antibody-mediated rejection is an important cause of early and chronic rejection. The impact of donor-specific HLA antibodies on antibody-mediated rejection–causing graft damage is well known, but the clinical relevance of non-HLA antibodies remains unclear. Recently, in 2 independent studies, a new correlation was found between the presence of non-HLA anti-Rho guanosine diphosphate dissociation inhibitor 2 (ARHGDIB) antibodies and increased graft failure. RhoGDI2, another name for ARHGDIB, is a negative regulator of the Rho guanosine triphosphate (RhoGTP)ases RhoA, Rac1m, and Cdc42, whose main function is regulating the actin network in a variety of cells. RhoGDI2 is mainly expressed intracellularly, and some expression is observed on the cell surface. Currently, there is no mechanism known to explain this correlation. Additionally, the reason why the antibodies are produced is unknown. In this review, we will address these questions, provide an overview of other diseases in which these antibodies are prevalent, and describe the physiological role of RhoGDI2 itself. If the mechanism and impact of RhoGDI2 antibodies in kidney graft failure are known, improved risk stratification can be provided to decrease the rate of donor kidney graft failure.
Collapse
|
28
|
Kaunas R. Good advice for endothelial cells: Get in line, relax tension, and go with the flow. APL Bioeng 2020; 4:010905. [PMID: 32128470 PMCID: PMC7044000 DOI: 10.1063/1.5129812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/19/2020] [Indexed: 11/26/2022] Open
Abstract
Endothelial cells (ECs) are continuously subjected to fluid wall shear stress (WSS) and cyclic strain caused by pulsatile blood flow and pressure. It is well established that these hemodynamic forces each play important roles in vascular disease, but their combined effects are not well understood. ECs remodel in response to both WSS and cyclic strain to align along the vessel axis, but in areas prone to atherogenesis, such an alignment is absent. In this perspective, experimental and clinical findings will be reviewed, which have revealed the characteristics of WSS and cyclic strain, which are associated with atherosclerosis, spanning studies on whole blood vessels to individual cells to mechanosensing molecules. Examples are described regarding the use of computational modeling to elucidate the mechanisms by which EC alignment contributes to mechanical homeostasis. Finally, the need to move toward an integrated understanding of how hemodynamic forces influence EC mechanotransduction is presented, which holds the potential to move our currently fragmented understanding to a true appreciation of the role of mechanical stimuli in atherosclerosis.
Collapse
Affiliation(s)
- Roland Kaunas
- Department of Biomedical Engineering and Department of Cellular and Molecular Medicine, Texas A&M University, College Station, Texas 77843-3120, USA
| |
Collapse
|
29
|
Hassanin AM, Abdel-Hamid AZ. Cavernous smooth muscles: innovative potential therapies are promising for an unrevealed clinical diagnosis. Int Urol Nephrol 2019; 52:205-217. [DOI: 10.1007/s11255-019-02309-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022]
|
30
|
Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol Res 2019; 144:19-50. [DOI: 10.1016/j.phrs.2019.03.006] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022]
|
31
|
Yan Z, Deng P, Liu Y. Recent Advances in Protein Kinase Activity Analysis Based on Nanomaterials. Int J Mol Sci 2019; 20:ijms20061440. [PMID: 30901923 PMCID: PMC6471164 DOI: 10.3390/ijms20061440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
Protein phosphorylation regulated by protein kinases, as well as their dephosphorylation, is one of the most common post-translational modifications, and plays important roles in physiological activities, such as intracellular signal communications, gene transcription, cell proliferation and apoptosis. Over-expression of protein kinases is closely associated with various diseases. Consequently, accurate detection of protein kinases activities and their relevant inhibitors screening is critically important, not only to the biochemical research, but also to the clinical diagnosis and therapy. Nanomaterials, taking advantage of large surface areas, as well as excellent electrical, catalytic, magnetic and optical properties, have been utilized as target concentrators, recognition components, signal transducer or amplification elements in protein kinase related assays. This review summarizes the recent representative works to highlight the applications of nanomaterials in different biosensor technologies for protein kinases activities detection and their inhibitors screening. First, different nanomaterials developed for phosphoprotein/phosphopeptide enrichment and phosphate recognition are introduced. Next, representative works are selected that mainly focus on the utilization of nanomaterials as signal transducer or amplification elements in various protein kinases sensing platforms, such as electrochemical, colorimetric, fluorescent, and mass spectroscopy-based approaches. Finally, the major challenges and perspectives of nanomaterials being applied in protein kinases related assays are discussed.
Collapse
Affiliation(s)
- Zhiyong Yan
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China.
- Beijing Center for Physical and Chemical Analysis, Beijing 100089, China.
| | - Pingye Deng
- Beijing Center for Physical and Chemical Analysis, Beijing 100089, China.
| | - Yang Liu
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
32
|
Roskoski R. Targeting ERK1/2 protein-serine/threonine kinases in human cancers. Pharmacol Res 2019; 142:151-168. [PMID: 30794926 DOI: 10.1016/j.phrs.2019.01.039] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/17/2022]
Abstract
ERK1 and ERK2 are key protein kinases that contribute to the Ras-Raf-MEK-ERK MAP kinase signalling module. This pathway participates in the control of numerous processes including apoptosis, cell proliferation, the immune response, nervous system function, and RNA synthesis and processing. MEK1/2 activate human ERK1/2 by first catalyzing the phosphorylation of Y204/187 and then T202/185, both residues of which occur within the activation segment. The phosphorylation of both residues is required for enzyme activation. The only Raf substrates are MEK1/2 and the only MEK1/2 substrates are ERK1/2. In contrast, ERK1/2 catalyze the phosphorylation of many cytoplasmic and nuclear substrates including transcription factors and regulatory molecules. The linear MAP kinase pathway branches extensively at the ERK1/2 node. ERK1/2 are proline-directed kinases that preferentially catalyze the phosphorylation of substrates containing a PxS/TP sequence. The dephosphorylation and inactivation of ERK1/2 is catalyzed by dual specificity phosphatases, protein-tyrosine specific phosphatases, and protein-serine/threonine phosphatases. The combined functions of kinases and phosphatases make the overall process reversible. To provide an idea of the complexities involved in these reactions, somatic cell cycle progression involves the strict timing of more than 32,000 phosphorylation and dephosphorylation events as determined by mass spectrometry. The MAP kinase cascade is perhaps the most important oncogenic driver of human cancers and the blockade of this signalling module by targeted inhibitors is an important anti-tumor strategy. Although numerous cancers are driven by MAP kinase pathway activation, thus far the only orally effective approved drugs that target this signaling module are used for the treatment of BRAF-mutant melanomas. The best treatments include the combination of B-Raf and MEK inhibitors (dabrafenib and trametinib, encorafenib and binimetinib, vemurafenib and cobimetanib). However, resistance to these antagonists occurs within one year and additional treatment options are necessary. Owing to the large variety of malignancies that are driven by dysregulation of the MAP kinase pathway, additional tumor types should be amenable to MAP kinase pathway inhibitor therapy. In addition to new B-Raf and MEK inhibitors, the addition of ERK inhibitors should prove helpful. Ulixertinib, MK-8353, and GDC-0994 are orally effective, potent, and specific inhibitors of ERK1/2 that are in early clinical trials for the treatment of various advanced/metastatic solid tumors. These agents are effective against cell lines that are resistant to B-Raf and MEK1/2 inhibitor therapy. Although MK-8353 does not directly inhibit MEK1/2, it decreases the phosphorylation of ERK1/2 as well as the phosphorylation of RSK, an ERK1/2 substrate. The decrease in RSK phosphorylation appears to be a result of ERK inhibition and the decrease in ERK1/2 phosphorylation is related to the inability of MEK to catalyze the phosphorylation of the ERK-MK-8353 complex; these decreases characterize the ERK dual mechanism inhibition paradigm. Additional work will be required to determine whether ERK inhibitors will be successful in the clinic and are able to forestall the development of drug resistance of the MAP kinase pathway.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116, Box 19, Horse Shoe, NC, 28742-8814, United States.
| |
Collapse
|
33
|
Dee RA, Mangum KD, Bai X, Mack CP, Taylor JM. Druggable targets in the Rho pathway and their promise for therapeutic control of blood pressure. Pharmacol Ther 2019; 193:121-134. [PMID: 30189292 PMCID: PMC7235948 DOI: 10.1016/j.pharmthera.2018.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The prevalence of high blood pressure (also known as hypertension) has steadily increased over the last few decades. Known as a silent killer, hypertension increases the risk for cardiovascular disease and can lead to stroke, heart attack, kidney failure and associated sequela. While numerous hypertensive therapies are currently available, it is estimated that only half of medicated patients exhibit blood pressure control. This signifies the need for a better understanding of the underlying cause of disease and for more effective therapies. While blood pressure homeostasis is very complex and involves the integrated control of multiple body systems, smooth muscle contractility and arterial resistance are important contributors. Strong evidence from pre-clinical animal models and genome-wide association studies indicate that smooth muscle contraction and BP homeostasis are governed by the small GTPase RhoA and its downstream target, Rho kinase. In this review, we summarize the signaling pathways and regulators that impart tight spatial-temporal control of RhoA activity in smooth muscle cells and discuss current therapeutic strategies to target these RhoA pathway components. We also discuss known allelic variations in the RhoA pathway and consider how these polymorphisms may affect genetic risk for hypertension and its clinical manifestations.
Collapse
Affiliation(s)
- Rachel A Dee
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin D Mangum
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xue Bai
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christopher P Mack
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joan M Taylor
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
34
|
Rho kinase, a potential target in the treatment of metabolic syndrome. Biomed Pharmacother 2018; 106:1024-1030. [DOI: 10.1016/j.biopha.2018.07.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022] Open
|
35
|
ROCK inhibition in models of neurodegeneration and its potential for clinical translation. Pharmacol Ther 2018; 189:1-21. [DOI: 10.1016/j.pharmthera.2018.03.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Björling K, Joseph PD, Egebjerg K, Salomonsson M, Hansen JL, Ludvigsen TP, Jensen LJ. Role of age, Rho-kinase 2 expression, and G protein-mediated signaling in the myogenic response in mouse small mesenteric arteries. Physiol Rep 2018; 6:e13863. [PMID: 30198176 PMCID: PMC6129776 DOI: 10.14814/phy2.13863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 12/16/2022] Open
Abstract
The myogenic response (MR) and myogenic tone (MT) in resistance vessels is crucial for maintaining peripheral vascular resistance and blood flow autoregulation. Development of MT involves G protein-coupled receptors, and may be affected by aging. AIMS (1) to estimate the mesenteric blood flow in myogenically active small mesenteric arteries; (2) to investigate the signaling from Gαq/11 and/or Gα12 activation to MT development; (3) to investigate the role of Rho-kinase 2 and aging on MT in mesenteric resistance arteries. METHODS we used pressure myography, quantitative real-time PCR, and immunolocalization to study small (<200 μm) mesenteric arteries (SMA) from young, mature adult, and middle aged mice. RESULTS Poiseuille flow calculations indicated autoregulation of blood flow at 60-120 mm Hg arterial pressure. Gαq/11 and Gα12 were abundantly expressed at the mRNA and protein levels in SMA. The Gαq/11 inhibitor YM-254890 suppressed MT development, and the Phosholipase C inhibitors U73122 and ET-18-OCH3 robustly inhibited it. We found an age-dependent increase in ROCK2 mRNA expression, and in basal MT. The specific ROCK2 inhibitor KD025 robustly inhibited MT in SMAs in all mice with an age-dependent variation in KD025 sensitivity. The inhibitory effect of KD025 was not prevented by the L-type Ca2+ channel activator BayK 8644. KD025 reversibly inhibited MT and endothelin-1 vasoconstriction in small pial arteries from Göttingen minipigs. CONCLUSIONS MT development in SMAs occurs through a Gαq/11 /PLC/Ca2+ -dependent pathway, and is maintained via ROCK2-mediated Ca2+ sensitization. Increased MT at mature adulthood can be explained by increased ROCK2 expression/activity.
Collapse
Affiliation(s)
- Karl Björling
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| | - Philomeena D. Joseph
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| | - Kristian Egebjerg
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| | - Max Salomonsson
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagen NDenmark
- Department of Internal MedicineTrelleborg HospitalTrelleborgSweden
| | | | | | - Lars J. Jensen
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| |
Collapse
|
37
|
Liu C, Cao Y, Ko TC, Chen M, Zhou X, Wang R. The Changes of MicroRNA Expression in the Corpus Cavernosum of a Rat Model With Cavernous Nerve Injury. J Sex Med 2018; 15:958-965. [DOI: 10.1016/j.jsxm.2018.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/02/2018] [Accepted: 05/09/2018] [Indexed: 02/07/2023]
|
38
|
Bandarage UK, Cao J, Come JH, Court JJ, Gao H, Jacobs MD, Marhefka C, Nanthakumar S, Green J. ROCK inhibitors 3: Design, synthesis and structure-activity relationships of 7-azaindole-based Rho kinase (ROCK) inhibitors. Bioorg Med Chem Lett 2018; 28:2622-2626. [PMID: 30082069 DOI: 10.1016/j.bmcl.2018.06.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 01/21/2023]
Abstract
Rho kinase (ROCK) inhibitors are potential therapeutic agents for the treatment of a variety of disorders including hypertension, glaucoma and erectile dysfunction. Here we disclose a series of potent and selective ROCK inhibitors based on a substituted 7-azaindole scaffold. Substitution of the 3-position of 7-azaindole led to compounds such as 37, which possess excellent ROCK inhibitory potency and high selectivity against the closely related kinase PKA.
Collapse
Affiliation(s)
- Upul K Bandarage
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA.
| | - Jingrong Cao
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - Jon H Come
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - John J Court
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - Huai Gao
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - Marc D Jacobs
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - Craig Marhefka
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | | | - Jeremy Green
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA.
| |
Collapse
|
39
|
Yan LL, Zhang WY, Wei XH, Yan L, Pan CS, Yu Y, Fan JY, Liu YY, Zhou H, Han JY, Yao XS. Gualou Xiebai Decoction, a Traditional Chinese Medicine, Prevents Cardiac Reperfusion Injury of Hyperlipidemia Rat via Energy Modulation. Front Physiol 2018; 9:296. [PMID: 29674972 PMCID: PMC5895855 DOI: 10.3389/fphys.2018.00296] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/12/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Gualou Xiebai Decoction (GLXB) is a classic prescription of Chinese medicine used for the treatment of cardiac problems. The present study was designed to explore the effect and mechanism of GLXB on ischemia/reperfusion (I/R) induced disorders in myocardial structure and function, focusing on the regulation of energy metabolism and the RhoA/ROCK pathway. Methods: After hyperlipidemic rat model was established by oral administration of high fat diet, the rats were treated with GLXB for 6 weeks and subjected to 30 min occlusion of the left anterior descending coronary artery (LADCA) followed by 90 min reperfusion to elicit I/R challenge. Myocardial infarct size was assessed by Evans blue-TTC staining. Myocardial blood flow (MBF) and cardiac function were evaluated. Enzyme-linked immunosorbent assay was performed to examine the content of ATP, ADP, AMP, CK, CK-MB, LDH, cTnT, cTnI, and IL-6. Double staining of F-actin and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was conducted to assess myocardial apoptosis. Expressions of ATP synthase subunit δ (ATP 5D), and RhoA and ROCK were determined by Western blotting. Results: Administration with GLXB at high dose for 6 weeks protected heart against I/R-induced MBF decrease, myocardial infarction and apoptosis, ameliorated I/R-caused impairment of cardiac function and myocardial structure, restored the decrease in the ratio of ADP/ATP and AMP/ATP, and the expression of ATP 5D with inhibiting the expression of RhoA and ROCK. Conclusions: Treatment with GLXB effectively protects myocardial structure and function from I/R challenge, possibly via regulating energy metabolism involving inactivation of RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Lu-Lu Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Wei-Yang Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiao-Hong Wei
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Yang Yu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jing-Yu Fan
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jing-Yan Han
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xin-Sheng Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
40
|
De Silva TM, Modrick ML, Dabertrand F, Faraci FM. Changes in Cerebral Arteries and Parenchymal Arterioles With Aging: Role of Rho Kinase 2 and Impact of Genetic Background. Hypertension 2018. [PMID: 29531174 DOI: 10.1161/hypertensionaha.118.10865] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vascular aging fundamentally contributes to large and small vessel disease. Despite the importance of such changes for brain function, mechanisms that mediate such changes are poorly defined. We explored mechanisms that underlie changes with age, testing the hypothesis that ROCK (Rho kinase) plays an important role. In C57BL/6 mice, baseline diameters of isolated pressurized parenchymal arterioles were similar in adult (4-5 month) and old mice (22±1 month; ≈15±1 µm). Endothelium-dependent dilation was impaired in old mice compared with adults in a pathway-specific manner. Vasodilation to NS-309 (which activates small- and intermediate-conductance Ca2+ activated K+ channels in endothelial cells) was intact while endothelial nitric oxide synthase-mediated vasodilation was reduced by ≥60%, depending on the concentration (P<0.05). A similar reduction was present in basilar arteries. Inhibiting both ROCK isoforms with Y-27632 restored the majority of endothelial function in old mice. Because genetic background is a determinant of vascular disease, we performed similar studies using FVB/N mice. Endothelial dysfunction was seen with aging in both FVB/N and C57BL/6 mice although the magnitude was increased ≈2-fold in the latter strain (P<0.05). In both strains of mice, age-induced endothelial dysfunction was reversed by inhibition of ROCK2 with SLX-2119. Thus, aging impairs endothelial function in both cerebral arteries and parenchymal arterioles, predominantly via effects on endothelial nitric oxide synthase-dependent regulation of vascular tone. The magnitude of these changes was influenced by genetic background and mediated by ROCK2.
Collapse
Affiliation(s)
- T Michael De Silva
- From the Departments of Internal Medicine (T.M.D.S., M.L.M., F.M.F.) and Pharmacology (F.M.F.), Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa; Iowa City Veterans Affairs Healthcare System (F.M.F.); Department of Pharmacology, College of Medicine, University of Vermont, Burlington, (F.D.); and Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia (T.M.D.S.)
| | - Mary L Modrick
- From the Departments of Internal Medicine (T.M.D.S., M.L.M., F.M.F.) and Pharmacology (F.M.F.), Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa; Iowa City Veterans Affairs Healthcare System (F.M.F.); Department of Pharmacology, College of Medicine, University of Vermont, Burlington, (F.D.); and Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia (T.M.D.S.)
| | - Fabrice Dabertrand
- From the Departments of Internal Medicine (T.M.D.S., M.L.M., F.M.F.) and Pharmacology (F.M.F.), Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa; Iowa City Veterans Affairs Healthcare System (F.M.F.); Department of Pharmacology, College of Medicine, University of Vermont, Burlington, (F.D.); and Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia (T.M.D.S.)
| | - Frank M Faraci
- From the Departments of Internal Medicine (T.M.D.S., M.L.M., F.M.F.) and Pharmacology (F.M.F.), Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa; Iowa City Veterans Affairs Healthcare System (F.M.F.); Department of Pharmacology, College of Medicine, University of Vermont, Burlington, (F.D.); and Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia (T.M.D.S.).
| |
Collapse
|
41
|
Yang S, Zhao Y, Tian Y, Chen Y, Zhao X, Li Y, Zhao H, Chen X, Zhu L, Fang Z, Yao Y, Hu Z, Shen C. Common variants of ROCKs and the risk of hypertension, and stroke: Two case-control studies and a follow-up study in Chinese Han population. Biochim Biophys Acta Mol Basis Dis 2017; 1864:778-783. [PMID: 29246448 DOI: 10.1016/j.bbadis.2017.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/06/2017] [Accepted: 12/05/2017] [Indexed: 12/16/2022]
Abstract
The Rho kinases (ROCKs) are recognized as a critical regulator of vascular functions in cardiovascular disorders. It is crucial to illustrate the association of ROCKs genetic variation and hypertension and/or stroke events. Herein we aimed at investigating the association of ROCK1 and ROCK2 with hypertension and stroke in Chinese Han population. Seven tagSNPs at ROCK1 and ROCK2 were genotyped in a community-based case-control study consisting of 2012 hypertension cases and 2210 normotensive controls and 4128 subjects were further followed up. In stroke case-control study, 1471 ischemic stroke (IS) inpatients and 607 hemorrhagic stroke (HS) inpatients were collected, and 2443 age-matched controls were selected from the follow-up population. Risks were estimated as odds ratio (OR) and hazard ratio (HR) by logistic and Cox regression. The community-based case-control study didn't identify any significant tagSNPs associated with hypertension even after adjustment for covariates. The follow-up analysis showed that rs1481280 of ROCK1 significantly associated with incident hypertension (HR=1.130, P=0.048) after adjusting for covariates. rs7589629 and rs978906 of ROCK2 were significantly associated with incident IS (HR=1.373, P=0.004; HR=1.284, P=0.026) respectively. In stroke case-control study, rs288980, rs1481280 and rs7237677 were significantly associated with IS and the adjusted ORs (P values) of additive model were 0.879 (0.010), 0.895 (0.036) and 0.857 (0.002) respectively. Furthermore, rs288980, rs7237677 and rs978906 were significantly associated with HS and the adjusted ORs (P values) of additive model were 0.857 (0.025), 0.848 (0.018) and 0.856 (0.027) respectively. Our findings suggest that ROCK1 and ROCK2 contribute to the genetic susceptibility of hypertension and stroke.
Collapse
Affiliation(s)
- Song Yang
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Yanping Zhao
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Yuanrui Tian
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanchun Chen
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Xianghai Zhao
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Ying Li
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hailong Zhao
- Experimental Center, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Xiaotian Chen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lijun Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241001, China
| | - Zhengmei Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241001, China
| | - YingShui Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241001, China
| | - Zhibing Hu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
42
|
De Silva TM, Hu C, Kinzenbaw DA, Modrick ML, Sigmund CD, Faraci FM. Genetic Interference With Endothelial PPAR-γ (Peroxisome Proliferator-Activated Receptor-γ) Augments Effects of Angiotensin II While Impairing Responses to Angiotensin 1-7. Hypertension 2017; 70:559-565. [PMID: 28674038 DOI: 10.1161/hypertensionaha.117.09358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/27/2017] [Accepted: 05/31/2017] [Indexed: 12/25/2022]
Abstract
Pharmacological activation of PPAR-γ (peroxisome proliferator-activated receptor-γ) protects the vasculature. Much less is known on the cell-specific impact of PPAR-γ when driven by endogenous ligands. Recently, we found that endothelial PPAR-γ protects against angiotensin II-induced endothelial dysfunction. Here, we explored that concept further examining whether effects were sex dependent along with underlying mechanisms. We studied mice expressing a human dominant-negative mutation in PPAR-γ driven by the endothelial-specific vascular cadherin promoter (E-V290M), using nontransgenic littermates as controls. Acetylcholine (an endothelium-dependent agonist) produced similar relaxation of carotid arteries from nontransgenic and E-V290M mice. Incubation of isolated arteries with angiotensin II (1 nmol/L) overnight had no effect in nontransgenic, but reduced responses to acetylcholine by about 50% in male and female E-V290M mice (P<0.05). Endothelial function in E-V290M mice was restored to normal by inhibitors of superoxide (tempol), NADPH oxidase (VAS-2870), Rho kinase (Y-27632), ROCK2 (SLX-2119), NF-κB (nuclear factor-kappa B essential modulator-binding domain peptide), or interleukin-6 (neutralizing antibody). In addition, we hypothesized that PPAR-γ may influence the angiotensin 1-7 arm of the renin-angiotensin system. In the basilar artery, dilation to angiotensin 1-7 was selectively reduced in E-V290M mice by >50% (P<0.05), an effect reversed by Y-27632. Thus, effects of angiotensin II are augmented by interference with endothelial PPAR-γ through sex-independent mechanisms, involving oxidant-inflammatory signaling and ROCK2 (Rho kinase). The study also provides the first evidence that endothelial PPAR-γ interacts with angiotensin 1-7 responses. These critical roles for endothelial PPAR-γ have implications for pathophysiology and therapeutic approaches for vascular disease.
Collapse
Affiliation(s)
- T Michael De Silva
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., F.M.F.) and Pharmacology (C.H., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, The University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Chunyan Hu
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., F.M.F.) and Pharmacology (C.H., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, The University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Dale A Kinzenbaw
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., F.M.F.) and Pharmacology (C.H., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, The University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Mary L Modrick
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., F.M.F.) and Pharmacology (C.H., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, The University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Curt D Sigmund
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., F.M.F.) and Pharmacology (C.H., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, The University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Frank M Faraci
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., F.M.F.) and Pharmacology (C.H., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, The University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.).
| |
Collapse
|
43
|
Wang J, Yao X, Huang J. New tricks for human farnesyltransferase inhibitor: cancer and beyond. MEDCHEMCOMM 2017; 8:841-854. [PMID: 30108801 PMCID: PMC6072492 DOI: 10.1039/c7md00030h] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/15/2017] [Indexed: 12/18/2022]
Abstract
Human protein farnesyltransferase (FTase) catalyzes the addition of a C15-farnesyl lipid group to the cysteine residue located in the COOH-terminal tetrapeptide motif of a variety of important substrate proteins, including well-known Ras protein superfamily. The farnesylation of Ras protein is required both for its normal physiological function, and for the transforming capacity of its oncogenic mutants. Over the last several decades, FTase inhibitors (FTIs) were developed to disrupt the farnesylation of oncogenic Ras as anti-cancer agents, and some of them have entered cancer clinical investigation. On the other hand, some substrates of FTase were demonstrated to be related with other human diseases, including Hutchinson-Gilford progeria syndrome, chronic hepatitis D, and cardiovascular diseases. In this review, we summarize the roles of FTase in malignant transformation, proliferation, apoptosis, angiogenesis, and metastasis of tumor cells, and the recently anticancer clinical research advances of FTIs. The therapeutic prospect of FTIs on several other human diseases is also discussed.
Collapse
Affiliation(s)
- Jingyuan Wang
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , China . ; Tel: (+86)21 64253681
| | - Xue Yao
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , China . ; Tel: (+86)21 64253681
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , China . ; Tel: (+86)21 64253681
| |
Collapse
|
44
|
Chen IC, Tan MS, Wu BN, Chai CY, Yeh JL, Chou SH, Chen IJ, Dai ZK. Statins ameliorate pulmonary hypertension secondary to left ventricular dysfunction through the Rho-kinase pathway and NADPH oxidase. Pediatr Pulmonol 2017; 52:443-457. [PMID: 28029743 DOI: 10.1002/ppul.23610] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 07/31/2016] [Accepted: 09/18/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a devastating disorder, for which no therapy is curative. It has been reported that pulmonary vascular remodeling, associated with increasing mean pulmonary arterial pressure and upregulated expression of endothelial nitric oxide synthase (eNOS), endothelin-1 (ET-1), RhoA/RhoH-kinase results in the development of PH. Oxidative stress and the RhoA/Rho-kinase pathway are also thought to be involved in the pathophysiology of PH. Statins are 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (HMG-CoA reductase inhibitors) with pleiotropic effects and are potential agents for the treatment of PH. In this study, we investigated the beneficial effects of simvastatin on the development of PH secondary to left ventricular dysfunction. METHODS A PH secondary to left ventricular dysfunction model was established in 6-week-old aortic-banded rats. The pulmonary expression of Rho kinase, ET-1, eNOS, p-eNOS, nitrite/nitrate (NOx), cGMP, p47Phox , and p67Phox were investigated in the early-treatment group, to which was administered simvastatin (30 mg/kg/day) from days 1 to 42 or the late-treatment group, to which was administered simvastatin (30 mg/kg/day) from days 29 to 42. RESULTS Simvastatin attenuated the mean pulmonary artery pressure, pulmonary arteriolar remodeling, plasma brain natriuretic peptide, ET-1, reactive oxygen species, and the NADPH oxidase 2 regulatory subunits, p47Phox and p67Phox , and upregulated pulmonary p-eNOS, NOx, and cGMP in both the early- and late-treated groups. CONCLUSIONS Inhibiting HMG-CoA reductase may have therapeutic potential for preventing and attenuating the development of PH in left ventricular dysfunction through the Rho-kinase pathway and NADPH oxidase. A translational study in humans is needed to substantiate these findings. Pediatr Pulmonol. 2017;52:443-457. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- I-Chen Chen
- Department of Pediatrics, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Sun-Ming District, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mian-Shin Tan
- Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shah-Hwa Chou
- Department of Thoracic Surgery, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ing-Jun Chen
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zen-Kong Dai
- Department of Pediatrics, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Sun-Ming District, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
45
|
Makay O, Isik D, Erol V, Yenisey C, Kose T, Icoz G, Ertan Y, Ozutemiz O, Akyildiz M. Efficacy of simvastatin in reducing postoperative adhesions after thyroidectomy: an experimental study. Acta Chir Belg 2017; 117:77-83. [PMID: 27735220 DOI: 10.1080/00015458.2016.1242292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND We aimed to investigate whether simvastatin had any impact on the prevention of adhesion formation after thyroidectomy in a rat model. METHODS This study was performed in 66 Wistar albino rats randomized into three experimental groups. A right hemithyroidectomy was carried out in all the rats. Simvastatin was administered locally at a dose of 0.5 mg/kg and 0.8 mg/kg. Control rats received a saline solution only. Changes during the 1st week, 1st month and 3rd month were evaluated. Efficacy of the treatment was assessed by using a scoring system. RESULTS The severity of adhesions in low-dose simvastatin group was significantly less than the control and high-dose groups during the 1st and 3rd month (p < .05). In addition, adhesions were less in the high dose group during the 3rd month, when compared to the control group (p < .05). Moreover, fibrosis and fibroblast scores, which represent adhesions, were significantly lower in low-dose and high-dose groups at 3rd month, compared to controls (p < .05). CONCLUSIONS We investigated the influence of simvastatin application on post-thyroidectomy adhesion formation in rats. Whether adhesions, causing technical difficulties during neck redo surgery, can be reduced by the use of simvastatin in human, needs to be studied.
Collapse
Affiliation(s)
- Ozer Makay
- Department of General Surgery, School of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Dilek Isik
- Department of General Surgery, School of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Varlik Erol
- Department of General Surgery, Zubeyde Hanim Practice and Research Center, Baskent University, Izmir, Turkey
| | - Cigdem Yenisey
- Department of Biochemistry, School of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Timur Kose
- Department of Biostatistics, School of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Gokhan Icoz
- Department of General Surgery, School of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Yesim Ertan
- Department of Pathology, School of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Omer Ozutemiz
- Department of Gastroenterology, School of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Mahir Akyildiz
- Department of General Surgery, School of Medicine, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
46
|
Uvin P, Albersen M, Bollen I, Falter M, Weyne E, Linsen L, Tinel H, Sandner P, Bivalacqua TJ, De Ridder DJMK, Van der Aa F, Brône B, Van Renterghem K. Additive effects of the Rho kinase inhibitor Y-27632 and vardenafil on relaxation of the corpus cavernosum tissue of patients with erectile dysfunction and clinical phosphodiesterase type 5 inhibitor failure. BJU Int 2016; 119:325-332. [DOI: 10.1111/bju.13691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pieter Uvin
- Department of Urology; University Hospitals Leuven; Leuven Belgium
- Department of Urology; Jessa Hospital; Hasselt University; Hasselt Belgium
- Department of Development and Regeneration; Cluster Organ Systems; Faculty of Medicine; Group Biomedical Sciences; KU Leuven; Leuven Belgium
| | - Maarten Albersen
- Department of Urology; University Hospitals Leuven; Leuven Belgium
- Department of Development and Regeneration; Cluster Organ Systems; Faculty of Medicine; Group Biomedical Sciences; KU Leuven; Leuven Belgium
| | - Ine Bollen
- Physiology Group; University of Hasselt; Hasselt Belgium
| | - Maarten Falter
- Physiology Group; University of Hasselt; Hasselt Belgium
| | - Emmanuel Weyne
- Department of Urology; University Hospitals Leuven; Leuven Belgium
- Department of Development and Regeneration; Cluster Organ Systems; Faculty of Medicine; Group Biomedical Sciences; KU Leuven; Leuven Belgium
| | - Loes Linsen
- Jessa Hospital; University Biobank Limburg; Hasselt Belgium
| | - Hanna Tinel
- Bayer HealthCare; Global Drug Discovery; Wuppertal Germany
- Institute of Pharmacology; Hannover Medical School; Hannover Germany
| | - Peter Sandner
- Bayer HealthCare; Global Drug Discovery; Wuppertal Germany
- Institute of Pharmacology; Hannover Medical School; Hannover Germany
| | - Trinity J. Bivalacqua
- Department of Urology; James Buchanan Brady Urological Institute; Johns Hopkins Medical Institutions; Baltimore MD USA
| | - Dirk J. M. K. De Ridder
- Department of Urology; University Hospitals Leuven; Leuven Belgium
- Department of Development and Regeneration; Cluster Organ Systems; Faculty of Medicine; Group Biomedical Sciences; KU Leuven; Leuven Belgium
| | - Frank Van der Aa
- Department of Urology; University Hospitals Leuven; Leuven Belgium
- Department of Development and Regeneration; Cluster Organ Systems; Faculty of Medicine; Group Biomedical Sciences; KU Leuven; Leuven Belgium
| | - Bert Brône
- Physiology Group; University of Hasselt; Hasselt Belgium
| | - Koenraad Van Renterghem
- Department of Urology; University Hospitals Leuven; Leuven Belgium
- Department of Urology; Jessa Hospital; Hasselt University; Hasselt Belgium
| |
Collapse
|
47
|
Simplicio JA, Hipólito UV, Vale GTD, Callera GE, Pereira CA, Touyz RM, Tostes RDC, Tirapelli CR. Acute Ethanol Intake Induces NAD(P)H Oxidase Activation and Rhoa Translocation in Resistance Arteries. Arq Bras Cardiol 2016; 107:427-436. [PMID: 27812679 PMCID: PMC5137387 DOI: 10.5935/abc.20160147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/24/2016] [Indexed: 12/13/2022] Open
Abstract
Background The mechanism underlying the vascular dysfunction induced by ethanol is not
totally understood. Identification of biochemical/molecular mechanisms that
could explain such effects is warranted. Objective To investigate whether acute ethanol intake activates the vascular RhoA/Rho
kinase pathway in resistance arteries and the role of NAD(P)H
oxidase-derived reactive oxygen species (ROS) on such response. We also
evaluated the requirement of p47phox translocation for ethanol-induced
NAD(P)H oxidase activation. Methods Male Wistar rats were orally treated with ethanol (1g/kg, p.o. gavage) or
water (control). Some rats were treated with vitamin C (250 mg/kg, p.o.
gavage, 5 days) before administration of water or ethanol. The mesenteric
arterial bed (MAB) was collected 30 min after ethanol administration. Results Vitamin C prevented ethanol-induced increase in superoxide anion
(O2-) generation and lipoperoxidation in the MAB.
Catalase and superoxide dismutase activities and the reduced glutathione,
nitrate and hydrogen peroxide (H2O2) levels were not
affected by ethanol. Vitamin C and 4-methylpyrazole prevented the increase
on O2- generation induced by ethanol in cultured MAB
vascular smooth muscle cells. Ethanol had no effect on phosphorylation
levels of protein kinase B (Akt) and eNOS (Ser1177 or
Thr495 residues) or MAB vascular reactivity. Vitamin C
prevented ethanol-induced increase in the membrane: cytosol fraction ratio
of p47phox and RhoA expression in the rat MAB. Conclusion Acute ethanol intake induces activation of the RhoA/Rho kinase pathway by a
mechanism that involves ROS generation. In resistance arteries, ethanol
activates NAD(P)H oxidase by inducing p47phox translocation by a
redox-sensitive mechanism.
Collapse
Affiliation(s)
- Janaina A Simplicio
- Programa de Pós-Graduação em Farmacologia - Faculdade de Medicina de Ribeirão Preto - Universidade de São Paulo (USP), SP, Brazil
| | - Ulisses Vilela Hipólito
- Programa de Pós-Graduação em Farmacologia - Faculdade de Medicina de Ribeirão Preto - Universidade de São Paulo (USP), SP, Brazil
| | - Gabriel Tavares do Vale
- Programa de Pós-Graduação em Farmacologia - Faculdade de Medicina de Ribeirão Preto - Universidade de São Paulo (USP), SP, Brazil
| | | | - Camila André Pereira
- Programa de Pós-Graduação em Farmacologia - Faculdade de Medicina de Ribeirão Preto - Universidade de São Paulo (USP), SP, Brazil
| | | | - Rita de Cássia Tostes
- Programa de Pós-Graduação em Farmacologia - Faculdade de Medicina de Ribeirão Preto - Universidade de São Paulo (USP), SP, Brazil
| | - Carlos R Tirapelli
- Departamento de Enfermagem Psiquiátrica e Ciências Humanas - Laboratório de Farmacologia - Escola de Enfermagem de Ribeirão Preto - Universidade de São Paulo (USP); SP, Brazil
| |
Collapse
|
48
|
Cossette SM, Bhute VJ, Bao X, Harmann LM, Horswill MA, Sinha I, Gastonguay A, Pooya S, Bordas M, Kumar SN, Mirza SP, Palecek SP, Strande JL, Ramchandran R. Sucrose Nonfermenting-Related Kinase Enzyme-Mediated Rho-Associated Kinase Signaling is Responsible for Cardiac Function. ACTA ACUST UNITED AC 2016; 9:474-486. [PMID: 27780848 DOI: 10.1161/circgenetics.116.001515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 09/28/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac metabolism is critical for the functioning of the heart, and disturbance in this homeostasis is likely to influence cardiac disorders or cardiomyopathy. Our laboratory has previously shown that SNRK (sucrose nonfermenting related kinase) enzyme, which belongs to the AMPK (adenosine monophosphate-activated kinase) family, was essential for cardiac metabolism in mammals. Snrk global homozygous knockout (KO) mice die at postnatal day 0, and conditional deletion of Snrk in cardiomyocytes (Snrk cmcKO) leads to cardiac failure and death by 8 to 10 months. METHODS AND RESULTS We performed additional cardiac functional studies using echocardiography and identified further cardiac functional deficits in Snrk cmcKO mice. Nuclear magnetic resonance-based metabolomics analysis identified key metabolic pathway deficits in SNRK knockdown cardiomyocytes in vitro. Specifically, metabolites involved in lipid metabolism and oxidative phosphorylation are altered, and perturbations in these pathways can result in cardiac function deficits and heart failure. A phosphopeptide-based proteomic screen identified ROCK (Rho-associated kinase) as a putative substrate for SNRK, and mass spec-based fragment analysis confirmed key amino acid residues on ROCK that are phosphorylated by SNRK. Western blot analysis on heart lysates from Snrk cmcKO adult mice and SNRK knockdown cardiomyocytes showed increased ROCK activity. In addition, in vivo inhibition of ROCK partially rescued the in vivo Snrk cmcKO cardiac function deficits. CONCLUSIONS Collectively, our data suggest that SNRK in cardiomyocytes is responsible for maintaining cardiac metabolic homeostasis, which is mediated in part by ROCK, and alteration of this homeostasis influences cardiac function in the adult heart.
Collapse
Affiliation(s)
- Stephanie M Cossette
- From the Department of Pediatrics (S.M.C., A.G., S. Pooya, M.B., R.R.), OBGYN, Developmental Vascular Biology Program, Children's Research Institute (R.R.), Division of Cardiovascular Medicine, Cardiovascular Center, Clinical and Translational Science Institute (L.M.H.), Division of Cardiovascular Medicine, Department of Cell Biology, Neurobiology and Anatomy, Cardiovascular Center, Clinical and Translational Science Institute (J.L.S.), and Division of Pediatric Pathology, Department of Pathology (S.N.K.), Medical College of Wisconsin, Milwaukee; Department of Chemical and Biological Engineering (V.J.B., X.B., S. Palecek), Morgridge Institute for Research (M.A.H.), University of Wisconsin-Madison; Marginalen Bank, Stockholm, Sweden (I.S.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee (S.P.M.)
| | - Vijesh J Bhute
- From the Department of Pediatrics (S.M.C., A.G., S. Pooya, M.B., R.R.), OBGYN, Developmental Vascular Biology Program, Children's Research Institute (R.R.), Division of Cardiovascular Medicine, Cardiovascular Center, Clinical and Translational Science Institute (L.M.H.), Division of Cardiovascular Medicine, Department of Cell Biology, Neurobiology and Anatomy, Cardiovascular Center, Clinical and Translational Science Institute (J.L.S.), and Division of Pediatric Pathology, Department of Pathology (S.N.K.), Medical College of Wisconsin, Milwaukee; Department of Chemical and Biological Engineering (V.J.B., X.B., S. Palecek), Morgridge Institute for Research (M.A.H.), University of Wisconsin-Madison; Marginalen Bank, Stockholm, Sweden (I.S.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee (S.P.M.)
| | - Xiaoping Bao
- From the Department of Pediatrics (S.M.C., A.G., S. Pooya, M.B., R.R.), OBGYN, Developmental Vascular Biology Program, Children's Research Institute (R.R.), Division of Cardiovascular Medicine, Cardiovascular Center, Clinical and Translational Science Institute (L.M.H.), Division of Cardiovascular Medicine, Department of Cell Biology, Neurobiology and Anatomy, Cardiovascular Center, Clinical and Translational Science Institute (J.L.S.), and Division of Pediatric Pathology, Department of Pathology (S.N.K.), Medical College of Wisconsin, Milwaukee; Department of Chemical and Biological Engineering (V.J.B., X.B., S. Palecek), Morgridge Institute for Research (M.A.H.), University of Wisconsin-Madison; Marginalen Bank, Stockholm, Sweden (I.S.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee (S.P.M.)
| | - Leanne M Harmann
- From the Department of Pediatrics (S.M.C., A.G., S. Pooya, M.B., R.R.), OBGYN, Developmental Vascular Biology Program, Children's Research Institute (R.R.), Division of Cardiovascular Medicine, Cardiovascular Center, Clinical and Translational Science Institute (L.M.H.), Division of Cardiovascular Medicine, Department of Cell Biology, Neurobiology and Anatomy, Cardiovascular Center, Clinical and Translational Science Institute (J.L.S.), and Division of Pediatric Pathology, Department of Pathology (S.N.K.), Medical College of Wisconsin, Milwaukee; Department of Chemical and Biological Engineering (V.J.B., X.B., S. Palecek), Morgridge Institute for Research (M.A.H.), University of Wisconsin-Madison; Marginalen Bank, Stockholm, Sweden (I.S.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee (S.P.M.)
| | - Mark A Horswill
- From the Department of Pediatrics (S.M.C., A.G., S. Pooya, M.B., R.R.), OBGYN, Developmental Vascular Biology Program, Children's Research Institute (R.R.), Division of Cardiovascular Medicine, Cardiovascular Center, Clinical and Translational Science Institute (L.M.H.), Division of Cardiovascular Medicine, Department of Cell Biology, Neurobiology and Anatomy, Cardiovascular Center, Clinical and Translational Science Institute (J.L.S.), and Division of Pediatric Pathology, Department of Pathology (S.N.K.), Medical College of Wisconsin, Milwaukee; Department of Chemical and Biological Engineering (V.J.B., X.B., S. Palecek), Morgridge Institute for Research (M.A.H.), University of Wisconsin-Madison; Marginalen Bank, Stockholm, Sweden (I.S.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee (S.P.M.)
| | - Indranil Sinha
- From the Department of Pediatrics (S.M.C., A.G., S. Pooya, M.B., R.R.), OBGYN, Developmental Vascular Biology Program, Children's Research Institute (R.R.), Division of Cardiovascular Medicine, Cardiovascular Center, Clinical and Translational Science Institute (L.M.H.), Division of Cardiovascular Medicine, Department of Cell Biology, Neurobiology and Anatomy, Cardiovascular Center, Clinical and Translational Science Institute (J.L.S.), and Division of Pediatric Pathology, Department of Pathology (S.N.K.), Medical College of Wisconsin, Milwaukee; Department of Chemical and Biological Engineering (V.J.B., X.B., S. Palecek), Morgridge Institute for Research (M.A.H.), University of Wisconsin-Madison; Marginalen Bank, Stockholm, Sweden (I.S.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee (S.P.M.)
| | - Adam Gastonguay
- From the Department of Pediatrics (S.M.C., A.G., S. Pooya, M.B., R.R.), OBGYN, Developmental Vascular Biology Program, Children's Research Institute (R.R.), Division of Cardiovascular Medicine, Cardiovascular Center, Clinical and Translational Science Institute (L.M.H.), Division of Cardiovascular Medicine, Department of Cell Biology, Neurobiology and Anatomy, Cardiovascular Center, Clinical and Translational Science Institute (J.L.S.), and Division of Pediatric Pathology, Department of Pathology (S.N.K.), Medical College of Wisconsin, Milwaukee; Department of Chemical and Biological Engineering (V.J.B., X.B., S. Palecek), Morgridge Institute for Research (M.A.H.), University of Wisconsin-Madison; Marginalen Bank, Stockholm, Sweden (I.S.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee (S.P.M.)
| | - Shabnam Pooya
- From the Department of Pediatrics (S.M.C., A.G., S. Pooya, M.B., R.R.), OBGYN, Developmental Vascular Biology Program, Children's Research Institute (R.R.), Division of Cardiovascular Medicine, Cardiovascular Center, Clinical and Translational Science Institute (L.M.H.), Division of Cardiovascular Medicine, Department of Cell Biology, Neurobiology and Anatomy, Cardiovascular Center, Clinical and Translational Science Institute (J.L.S.), and Division of Pediatric Pathology, Department of Pathology (S.N.K.), Medical College of Wisconsin, Milwaukee; Department of Chemical and Biological Engineering (V.J.B., X.B., S. Palecek), Morgridge Institute for Research (M.A.H.), University of Wisconsin-Madison; Marginalen Bank, Stockholm, Sweden (I.S.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee (S.P.M.)
| | - Michelle Bordas
- From the Department of Pediatrics (S.M.C., A.G., S. Pooya, M.B., R.R.), OBGYN, Developmental Vascular Biology Program, Children's Research Institute (R.R.), Division of Cardiovascular Medicine, Cardiovascular Center, Clinical and Translational Science Institute (L.M.H.), Division of Cardiovascular Medicine, Department of Cell Biology, Neurobiology and Anatomy, Cardiovascular Center, Clinical and Translational Science Institute (J.L.S.), and Division of Pediatric Pathology, Department of Pathology (S.N.K.), Medical College of Wisconsin, Milwaukee; Department of Chemical and Biological Engineering (V.J.B., X.B., S. Palecek), Morgridge Institute for Research (M.A.H.), University of Wisconsin-Madison; Marginalen Bank, Stockholm, Sweden (I.S.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee (S.P.M.)
| | - Suresh N Kumar
- From the Department of Pediatrics (S.M.C., A.G., S. Pooya, M.B., R.R.), OBGYN, Developmental Vascular Biology Program, Children's Research Institute (R.R.), Division of Cardiovascular Medicine, Cardiovascular Center, Clinical and Translational Science Institute (L.M.H.), Division of Cardiovascular Medicine, Department of Cell Biology, Neurobiology and Anatomy, Cardiovascular Center, Clinical and Translational Science Institute (J.L.S.), and Division of Pediatric Pathology, Department of Pathology (S.N.K.), Medical College of Wisconsin, Milwaukee; Department of Chemical and Biological Engineering (V.J.B., X.B., S. Palecek), Morgridge Institute for Research (M.A.H.), University of Wisconsin-Madison; Marginalen Bank, Stockholm, Sweden (I.S.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee (S.P.M.)
| | - Shama P Mirza
- From the Department of Pediatrics (S.M.C., A.G., S. Pooya, M.B., R.R.), OBGYN, Developmental Vascular Biology Program, Children's Research Institute (R.R.), Division of Cardiovascular Medicine, Cardiovascular Center, Clinical and Translational Science Institute (L.M.H.), Division of Cardiovascular Medicine, Department of Cell Biology, Neurobiology and Anatomy, Cardiovascular Center, Clinical and Translational Science Institute (J.L.S.), and Division of Pediatric Pathology, Department of Pathology (S.N.K.), Medical College of Wisconsin, Milwaukee; Department of Chemical and Biological Engineering (V.J.B., X.B., S. Palecek), Morgridge Institute for Research (M.A.H.), University of Wisconsin-Madison; Marginalen Bank, Stockholm, Sweden (I.S.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee (S.P.M.)
| | - Sean P Palecek
- From the Department of Pediatrics (S.M.C., A.G., S. Pooya, M.B., R.R.), OBGYN, Developmental Vascular Biology Program, Children's Research Institute (R.R.), Division of Cardiovascular Medicine, Cardiovascular Center, Clinical and Translational Science Institute (L.M.H.), Division of Cardiovascular Medicine, Department of Cell Biology, Neurobiology and Anatomy, Cardiovascular Center, Clinical and Translational Science Institute (J.L.S.), and Division of Pediatric Pathology, Department of Pathology (S.N.K.), Medical College of Wisconsin, Milwaukee; Department of Chemical and Biological Engineering (V.J.B., X.B., S. Palecek), Morgridge Institute for Research (M.A.H.), University of Wisconsin-Madison; Marginalen Bank, Stockholm, Sweden (I.S.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee (S.P.M.)
| | - Jennifer L Strande
- From the Department of Pediatrics (S.M.C., A.G., S. Pooya, M.B., R.R.), OBGYN, Developmental Vascular Biology Program, Children's Research Institute (R.R.), Division of Cardiovascular Medicine, Cardiovascular Center, Clinical and Translational Science Institute (L.M.H.), Division of Cardiovascular Medicine, Department of Cell Biology, Neurobiology and Anatomy, Cardiovascular Center, Clinical and Translational Science Institute (J.L.S.), and Division of Pediatric Pathology, Department of Pathology (S.N.K.), Medical College of Wisconsin, Milwaukee; Department of Chemical and Biological Engineering (V.J.B., X.B., S. Palecek), Morgridge Institute for Research (M.A.H.), University of Wisconsin-Madison; Marginalen Bank, Stockholm, Sweden (I.S.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee (S.P.M.)
| | - Ramani Ramchandran
- From the Department of Pediatrics (S.M.C., A.G., S. Pooya, M.B., R.R.), OBGYN, Developmental Vascular Biology Program, Children's Research Institute (R.R.), Division of Cardiovascular Medicine, Cardiovascular Center, Clinical and Translational Science Institute (L.M.H.), Division of Cardiovascular Medicine, Department of Cell Biology, Neurobiology and Anatomy, Cardiovascular Center, Clinical and Translational Science Institute (J.L.S.), and Division of Pediatric Pathology, Department of Pathology (S.N.K.), Medical College of Wisconsin, Milwaukee; Department of Chemical and Biological Engineering (V.J.B., X.B., S. Palecek), Morgridge Institute for Research (M.A.H.), University of Wisconsin-Madison; Marginalen Bank, Stockholm, Sweden (I.S.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee (S.P.M.).
| |
Collapse
|
49
|
Fischer PM. Approved and Experimental Small-Molecule Oncology Kinase Inhibitor Drugs: A Mid-2016 Overview. Med Res Rev 2016; 37:314-367. [DOI: 10.1002/med.21409] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Peter M. Fischer
- School of Pharmacy and Centre for Biomolecular Sciences; University of Nottingham; Nottingham NG7 2RD UK
| |
Collapse
|
50
|
KVANDOVÁ M, MAJZÚNOVÁ M, DOVINOVÁ I. The Role of PPARγ in Cardiovascular Diseases. Physiol Res 2016; 65:S343-S363. [DOI: 10.33549/physiolres.933439] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The peroxisome proliferator-activated receptors (PPAR) belong to the nuclear superfamily of ligand-activated transcription factors. PPARγ acts as a nutrient sensor that regulates several homeostatic functions. Its disruption can lead to vascular pathologies, disorders of fatty acid/lipid metabolism and insulin resistance. PPARγ can modulate several signaling pathways connected with blood pressure regulation. Firstly, it affects the insulin signaling pathway and endothelial dysfunction by modulation of expression and/or phosphorylation of signaling molecules through the PI3K/Akt/eNOS or MAPK/ET-1 pathways. Secondly, it can modulate gene expression of the renin- angiotensin system – cascade proteins, which potentially slow down the progression of atherosclerosis and hypertension. Thirdly, it can modulate oxidative stress response either directly through PPAR or indirectly through Nrf2 activation. In this context, activation and functioning of PPARγ is very important in the regulation of several disorders such as diabetes mellitus, hypertension and/or metabolic syndrome.
Collapse
Affiliation(s)
| | | | - I. DOVINOVÁ
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|