1
|
Huang YT, Tomishige M, Gross SP, Lai PY, Jun Y. Multiple kinesins speed up cargo transport in crowded environments by sharing load. Commun Biol 2025; 8:232. [PMID: 39948212 PMCID: PMC11825687 DOI: 10.1038/s42003-025-07573-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Kinesin motors transport cargoes along microtubules inside of cells. Although it is well known that the cargoes are typically carried by multiple kinesins and that the more motors used, the further the cargoes travel, it has been challenging to determine the number of motors moving a cargo and any instant. Further, there is no unified statement on the relationship between cargo velocity and motor number, especially in the presence of a very crowded cytoplasmic environment. Here, we use a non-invasive method to quantify instantaneous motor number, and use it to investigate the effects of crowded environments on cargo motion when it is carried by multiple kinesins. Our experiments reveal that the velocity of the cargo depends on the number of motors on the cargo and the size of the crowders in crowded environments. Our finding suggests that kinesin tension plays a role in collective motion, which has been confirmed through stochastic kinesin simulations. Overall, our study demonstrates the broad applicability of the non-invasive method to determine engaged motor numbers and sheds light on the intriguing interplay between macromolecular crowding, kinesin tension, and kinesin-mediated cargo transport.
Collapse
Affiliation(s)
- Ya-Ting Huang
- Department of Physics and Center for Complex Systems, National Central University, Taoyuan, 320, Taiwan
| | - Michio Tomishige
- Department of Physical Sciences, Aoyama Gakuin University, 252-5258, Kanagawa, Japan
| | - Steven P Gross
- Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Pik-Yin Lai
- Department of Physics and Center for Complex Systems, National Central University, Taoyuan, 320, Taiwan.
- Physics Division, National Center for Theoretical Sciences, Taipei, 10617, Taiwan.
| | - Yonggun Jun
- Department of Physics and Center for Complex Systems, National Central University, Taoyuan, 320, Taiwan.
| |
Collapse
|
2
|
Berghouse M, Miele F, Perez LJ, Bordoloi AD, Morales VL, Parashar R. Evaluation of particle tracking codes for dispersing particles in porous media. Sci Rep 2024; 14:24094. [PMID: 39406841 PMCID: PMC11480406 DOI: 10.1038/s41598-024-75581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Particle tracking (PT) is a popular technique in microscopy, microfluidics and colloidal transport studies, where image analysis is used to reconstruct trajectories from bright spots in a video. The performance of many PT algorithms has been rigorously tested for directed and Brownian motion in open media. However, PT is frequently used to track particles in porous media where complex geometries and viscous flows generate particles with high velocity variability over time. Here, we present an evaluation of four PT algorithms for a simulated dispersion of particles in porous media across a range of particle speeds and densities. Of special note, we introduce a new velocity-based PT linking algorithm (V-TrackMat) that achieves high accuracy relative to the other PT algorithms. Our findings underscore that traditional statistics, which revolve around detection and linking proficiency, fall short in providing a holistic comparison of PT codes because they tend to underpenalize aggressive linking techniques. We further elucidate that all codes analyzed show a decrease in performance due to high speeds, particle densities, and trajectory noise. However, linking algorithms designed to harness velocity data show superior performance, especially in the case of high-speed advective motion. Lastly, we emphasize how PT error can influence transport analysis.
Collapse
Affiliation(s)
- Marc Berghouse
- Division of Hydrologic Sciences, Desert Research Institute, Reno, 89512, USA
- Graduate Program of Hydrologic Sciences, University of Nevada, Reno, Reno, 89557, USA
| | - Filippo Miele
- UC Davis, Civil and Environmental Engineering, Davis, 95616, USA
| | - Lazaro J Perez
- Civil and Construction Engineering, Oregon State University, Corvallis, 97331, USA
| | - Ankur Deep Bordoloi
- University of Lausanne, Geosciences and Environment, Lausanne, 1015, Switzerland
| | | | - Rishi Parashar
- Division of Hydrologic Sciences, Desert Research Institute, Reno, 89512, USA.
| |
Collapse
|
3
|
Chen M, Huang X, Shi Y, Wang W, Huang Z, Tong Y, Zou X, Xu Y, Dai Z. CRISPR/Pepper-tDeg: A Live Imaging System Enables Non-Repetitive Genomic Locus Analysis with One Single-Guide RNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402534. [PMID: 38924638 PMCID: PMC11348139 DOI: 10.1002/advs.202402534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/12/2024] [Indexed: 06/28/2024]
Abstract
CRISPR-based genomic-imaging systems have been utilized for spatiotemporal imaging of the repetitive genomic loci in living cells, but they are still challenged by limited signal-to-noise ratio (SNR) at a non-repetitive genomic locus. Here, an efficient genomic-imaging system is proposed, termed CRISPR/Pepper-tDeg, by engineering the CRISPR sgRNA scaffolds with the degron-binding Pepper aptamers for binding fluorogenic proteins fused with Tat peptide derived degron domain (tDeg). The target-dependent stability switches of both sgRNA and fluorogenic protein allow this system to image repetitive telomeres sensitively with a 5-fold higher SNR than conventional CRISPR/MS2-MCP system using "always-on" fluorescent protein tag. Subsequently, CRISPR/Pepper-tDeg is applied to simultaneously label and track two different genomic loci, telomeres and centromeres, in living cells by combining two systems. Given a further improved SNR by the split fluorescent protein design, CRISPR/Pepper-tDeg system is extended to non-repetitive sequence imaging using only one sgRNA with two aptamer insertions. Neither complex sgRNA design nor difficult plasmid construction is required, greatly reducing the technical barriers to define spatiotemporal organization and dynamics of both repetitive and non-repetitive genomic loci in living cells, and thus demonstrating the large application potential of this genomic-imaging system in biological research, clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Meng Chen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhen518107China
| | - Xing Huang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhen518107China
| | - Yakun Shi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhen518107China
| | - Wen Wang
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510275China
| | - Zhan Huang
- School of ChemistrySun Yat‐Sen UniversityGuangzhou510275China
| | - Yanli Tong
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhen518107China
| | - Xiaoyong Zou
- School of ChemistrySun Yat‐Sen UniversityGuangzhou510275China
| | - Yuzhi Xu
- Scientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhen518107China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhen518107China
| |
Collapse
|
4
|
Schirripa Spagnolo C, Luin S. Impact of temporal resolution in single particle tracking analysis. DISCOVER NANO 2024; 19:87. [PMID: 38724858 PMCID: PMC11082114 DOI: 10.1186/s11671-024-04029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Temporal resolution is a key parameter in the observation of dynamic processes, as in the case of single molecules motions visualized in real time in two-dimensions by wide field (fluorescence) microscopy, but a systematic investigation of its effects in all the single particle tracking analysis steps is still lacking. Here we present tools to quantify its impact on the estimation of diffusivity and of its distribution using one of the most popular tracking software for biological applications on simulated data and movies. We found important shifts and different widths for diffusivity distributions, depending on the interplay of temporal sampling conditions with various parameters, such as simulated diffusivity, density of spots, signal-to-noise ratio, lengths of trajectories, and kind of boundaries in the simulation. We examined conditions starting from the ones of experiments on the fluorescently labelled receptor p75NTR, a relatively fast-diffusing membrane receptor (diffusivity around 0.5-1 µm2/s), visualized by TIRF microscopy on the basal membrane of living cells. From the analysis of the simulations, we identified the best conditions in cases similar to these ones; considering also the experiments, we could confirm a range of values of temporal resolution suitable for obtaining reliable diffusivity results. The procedure we present can be exploited in different single particle/molecule tracking applications to find an optimal temporal resolution.
Collapse
Affiliation(s)
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy.
- NEST Laboratory, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127, Pisa, Italy.
| |
Collapse
|
5
|
Liu J, Yang Z, Yan Z, Duan S, Chen X, Cui D, Cao D, Kuang T, Ma X, Wang W. Chemical Micromotors Move Faster at Oil-Water Interfaces. J Am Chem Soc 2024; 146:4221-4233. [PMID: 38305127 DOI: 10.1021/jacs.3c13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Many real-world scenarios involve interfaces, particularly liquid-liquid interfaces, that can fundamentally alter the dynamics of colloids. This is poorly understood for chemically active colloids that release chemicals into their environment. We report here the surprising discovery that chemical micromotors─colloids that convert chemical fuels into self-propulsion─move significantly faster at an oil-water interface than on a glass substrate. Typical speed increases ranged from 3 to 6 times up to an order of magnitude and were observed for different types of chemical motors and interfaces made with different oils. Such speed increases are likely caused by faster chemical reactions at an oil-water interface than at a glass-water interface, but the exact mechanism remains unknown. Our results provide valuable insights into the complex interactions between chemical micromotors and their environments, which are important for applications in the human body or in the removal of organic pollutants from water. In addition, this study also suggests that chemical reactions occur faster at an oil-water interface and that micromotors can serve as a probe for such an effect.
Collapse
Affiliation(s)
- Jiayu Liu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhou Yang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zuyao Yan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shifang Duan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiaowen Chen
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Donghao Cui
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Dezhou Cao
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ting Kuang
- Education Center of Experiments and Innovations, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xing Ma
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
6
|
Morales SV, Mahmood A, Pollard J, Mayne J, Figeys D, Wiseman PW. The LDL receptor is regulated by membrane cholesterol as revealed by fluorescence fluctuation analysis. Biophys J 2023; 122:3783-3797. [PMID: 37559362 PMCID: PMC10541495 DOI: 10.1016/j.bpj.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/17/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023] Open
Abstract
Membrane cholesterol-rich domains have been shown to be important for regulating a range of membrane protein activities. Low-density lipoprotein receptor (LDLR)-mediated internalization of cholesterol-rich LDL particles is tightly regulated by feedback mechanisms involving intracellular sterol sensors. Since LDLR plays a role in maintaining cellular cholesterol homeostasis, we explore the role that membrane domains may have in regulating LDLR activity. We expressed a fluorescent LDLR-mEGFP construct in HEK293T cells and imaged the unligated receptor or bound to an LDL/DiI fluorescent ligand using total internal reflection fluorescence microscopy. We studied the receptor's spatiotemporal dynamics using fluorescence fluctuation analysis methods. Image cross correlation spectroscopy reveals a lower LDL-to-LDLR binding fraction when membrane cholesterol concentrations are augmented using cholesterol esterase, and a higher binding fraction when the cells are treated with methyl-β-cyclodextrin) to lower membrane cholesterol. This suggests that LDLR's ability to metabolize LDL particles is negatively correlated to membrane cholesterol concentrations. We then tested if a change in activity is accompanied by a change in membrane localization. Image mean-square displacement analysis reveals that unligated LDLR-mEGFP and ligated LDLR-mEGFP/LDL-DiI constructs are transiently confined on the cell membrane, and the size of their confinement domains increases with augmented cholesterol concentrations. Receptor diffusion within the domains and their domain-escape probabilities decrease upon treatment with methyl-β-cyclodextrin, consistent with a change in receptor populations to more confined domains, likely clathrin-coated pits. We propose a feedback model to account for regulation of LDLR within the cell membrane: when membrane cholesterol concentrations are high, LDLR is sequestered in cholesterol-rich domains. These LDLR populations are attenuated in their efficacy to bind and internalize LDL. However, when membrane cholesterol levels drop, LDL has a higher binding affinity to its receptor and the LDLR transits to nascent clathrin-coated domains, where it diffuses at a slower rate while awaiting internalization.
Collapse
Affiliation(s)
- Sebastian V Morales
- Department of Chemistry, Faculty of Science, McGill University, Montreal, Canada
| | - Ahmad Mahmood
- Department of Physics, Faculty of Science, McGill University, Montreal, Canada
| | - Jacob Pollard
- Department of Chemistry, Faculty of Science, McGill University, Montreal, Canada
| | - Janice Mayne
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Paul W Wiseman
- Department of Chemistry, Faculty of Science, McGill University, Montreal, Canada; Department of Physics, Faculty of Science, McGill University, Montreal, Canada.
| |
Collapse
|
7
|
Opioid-Modulated Receptor Localization and Erk1/2 Phosphorylation in Cells Coexpressing μ-Opioid and Nociceptin Receptors. Int J Mol Sci 2023; 24:ijms24021048. [PMID: 36674576 PMCID: PMC9865058 DOI: 10.3390/ijms24021048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
We attempted to examine the alterations elicited by opioids via coexpressed μ-opioid (MOP) and nociceptin/orphanin FQ (NOP) receptors for receptor localization and Erk1/2 (p44/42 MAPK) in human embryonic kidney (HEK) 293 cells. Through two-photon microscopy, the proximity of MOP and NOP receptors was verified by fluorescence resonance energy transfer (FRET), and morphine but not buprenorphine facilitated the process of MOP-NOP heterodimerization. Single-particle tracking (SPT) further revealed that morphine or buprenorphine hindered the movement of the MOP-NOP heterodimers. After exposure to morphine or buprenorphine, receptor localization on lipid rafts was detected by immunocytochemistry, and phosphorylation of Erk1/2 was determined by immunoblotting in HEK 293 cells expressing MOP, NOP, or MOP+NOP receptors. Colocalization of MOP and NOP on lipid rafts was enhanced by morphine but not buprenorphine. Morphine stimulated the phosphorylation of Erk1/2 with a similar potency in HEK 293 cells expressing MOP and MOP+NOP receptors, but buprenorphine appeared to activate Erk1/2 solely through NOP receptors. Our results suggest that opioids can fine-tune the cellular localization of opioid receptors and phosphorylation of Erk1/2 in MOP+NOP-expressing cells.
Collapse
|
8
|
Vaisey G, Banerjee P, North AJ, Haselwandter CA, MacKinnon R. Piezo1 as a force-through-membrane sensor in red blood cells. eLife 2022; 11:e82621. [PMID: 36515266 PMCID: PMC9750178 DOI: 10.7554/elife.82621] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Piezo1 is the stretch activated Ca2+ channel in red blood cells that mediates homeostatic volume control. Here, we study the organization of Piezo1 in red blood cells using a combination of super-resolution microscopy techniques and electron microscopy. Piezo1 adopts a non-uniform distribution on the red blood cell surface, with a bias toward the biconcave 'dimple'. Trajectories of diffusing Piezo1 molecules, which exhibit confined Brownian diffusion on short timescales and hopping on long timescales, also reflect a bias toward the dimple. This bias can be explained by 'curvature coupling' between the intrinsic curvature of the Piezo dome and the curvature of the red blood cell membrane. Piezo1 does not form clusters with itself, nor does it colocalize with F-actin, Spectrin, or the Gardos channel. Thus, Piezo1 exhibits the properties of a force-through-membrane sensor of curvature and lateral tension in the red blood cell.
Collapse
Affiliation(s)
- George Vaisey
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Priyam Banerjee
- Bio-Imaging Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Alison J North
- Bio-Imaging Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Christoph A Haselwandter
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
9
|
Shrivastava S, Sarkar P, Preira P, Salomé L, Chattopadhyay A. Cholesterol-Dependent Dynamics of the Serotonin 1A Receptor Utilizing Single Particle Tracking: Analysis of Diffusion Modes. J Phys Chem B 2022; 126:6682-6690. [PMID: 35973070 DOI: 10.1021/acs.jpcb.2c03941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G protein-coupled receptors (GPCRs) are signaling hubs in cell membranes that regulate a wide range of physiological processes and are popular drug targets. Serotonin1A receptors are important members of the GPCR family and are implicated in neuropsychiatric disorders. Cholesterol is a key constituent of higher eukaryotic membranes and is believed to contribute to the segregated distribution of membrane constituents into domains. To explore the role of cholesterol in lateral dynamics of GPCRs, we utilized single particle tracking (SPT) to monitor diffusion of serotonin1A receptors under acute and chronic cholesterol-depleted conditions. Our results show that the short-term diffusion coefficient of the receptor decreases upon cholesterol depletion, irrespective of the method of cholesterol depletion. Analysis of SPT trajectories revealed that relative populations of receptors undergoing various modes of diffusion change upon cholesterol depletion. Notably, in cholesterol-depleted cells, we observed an increase in the confined population of the receptor accompanied by a reduction in diffusion coefficient for chronic cholesterol depletion. These results are supported by our recent work and present observations that show polymerization of G-actin in response to chronic cholesterol depletion. Taken together, our results bring out the interdependence of cholesterol and actin cytoskeleton in regulating diffusion of GPCRs in membranes.
Collapse
Affiliation(s)
- Sandeep Shrivastava
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Pascal Preira
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Université de Toulouse (UPS), 31 077 Toulouse, France
| | - Laurence Salomé
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Université de Toulouse (UPS), 31 077 Toulouse, France
| | | |
Collapse
|
10
|
Hernández-Adame PL, Meza U, Rodríguez-Menchaca AA, Sánchez-Armass S, Ruiz-García J, Gomez E. Determination of the size of lipid rafts studied through single-molecule FRET simulations. Biophys J 2021; 120:2287-2295. [PMID: 33864789 DOI: 10.1016/j.bpj.2021.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/16/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022] Open
Abstract
Fluorescence resonance energy transfer (FRET) is a high-resolution technique that allows the characterization of spatial and temporal properties of biological structures and mechanisms. In this work, we developed an in silico single-molecule FRET methodology to study the dynamics of fluorophores inside lipid rafts. We monitored the fluorescence of a single acceptor molecule in the presence of several donor molecules. By looking at the average fluorescence, we selected events with single acceptor and donor molecules, and we used them to determine the raft size in the range of 5-16 nm. We conclude that our method is robust and insensitive to variations in the diffusion coefficient, donor density, or selected fluorescence threshold.
Collapse
Affiliation(s)
| | - Ulises Meza
- Department of Physiology and Biophysics, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Aldo A Rodríguez-Menchaca
- Department of Physiology and Biophysics, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Sergio Sánchez-Armass
- Department of Physiology and Biophysics, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Jaime Ruiz-García
- Biological Physics Laboratory, Physics Institute, San Luis Potosí, Mexico.
| | - Eduardo Gomez
- Biological Physics Laboratory, Physics Institute, San Luis Potosí, Mexico.
| |
Collapse
|
11
|
Pazoki S, Frick J, Dougherty DB. Dynamics of domain boundaries at metal-organic interfaces. J Chem Phys 2021; 154:124704. [PMID: 33810683 DOI: 10.1063/5.0029313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Domain boundaries are a determining factor in the performance of organic electronic devices since they can trap mobile charge carriers. We point out the possibility of time-dependent motion of these boundaries and suggest that their thermal fluctuations can be a source of dynamic disorder in organic films. In particular, we study the C8-BTBT monolayer films with several different domain boundaries. After characterizing the crystallography and diversity of structures in the first layer of C8-BTBT on Au(111), we focus on quantifying the domain boundary fluctuations in the saturated monolayer. We find that the mean squared displacement of the boundary position grows linearly with time at early times but tends to saturate after about 7 s. This behavior is ascribed to confined diffusion of the interface position based on fits and numerical integration of a Langevin equation for the interface motion.
Collapse
Affiliation(s)
- Sara Pazoki
- Organic and Carbon Electronics Lab (ORaCEL) and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jordan Frick
- Organic and Carbon Electronics Lab (ORaCEL) and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Daniel B Dougherty
- Organic and Carbon Electronics Lab (ORaCEL) and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
12
|
S Mogre S, Brown AI, Koslover EF. Getting around the cell: physical transport in the intracellular world. Phys Biol 2020; 17:061003. [PMID: 32663814 DOI: 10.1088/1478-3975/aba5e5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic cells face the challenging task of transporting a variety of particles through the complex intracellular milieu in order to deliver, distribute, and mix the many components that support cell function. In this review, we explore the biological objectives and physical mechanisms of intracellular transport. Our focus is on cytoplasmic and intra-organelle transport at the whole-cell scale. We outline several key biological functions that depend on physically transporting components across the cell, including the delivery of secreted proteins, support of cell growth and repair, propagation of intracellular signals, establishment of organelle contacts, and spatial organization of metabolic gradients. We then review the three primary physical modes of transport in eukaryotic cells: diffusive motion, motor-driven transport, and advection by cytoplasmic flow. For each mechanism, we identify the main factors that determine speed and directionality. We also highlight the efficiency of each transport mode in fulfilling various key objectives of transport, such as particle mixing, directed delivery, and rapid target search. Taken together, the interplay of diffusion, molecular motors, and flows supports the intracellular transport needs that underlie a broad variety of biological phenomena.
Collapse
Affiliation(s)
- Saurabh S Mogre
- Department of Physics, University of California, San Diego, San Diego, California 92093, United States of America
| | | | | |
Collapse
|
13
|
Berlin S, Artzy E, Handklo-Jamal R, Kahanovitch U, Parnas H, Dascal N, Yakubovich D. A Collision Coupling Model Governs the Activation of Neuronal GIRK1/2 Channels by Muscarinic-2 Receptors. Front Pharmacol 2020; 11:1216. [PMID: 32903404 PMCID: PMC7435011 DOI: 10.3389/fphar.2020.01216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/24/2020] [Indexed: 01/14/2023] Open
Abstract
The G protein-activated Inwardly Rectifying K+-channel (GIRK) modulates heart rate and neuronal excitability. Following G-Protein Coupled Receptor (GPCR)-mediated activation of heterotrimeric G proteins (Gαβγ), opening of the channel is obtained by direct binding of Gβγ subunits. Interestingly, GIRKs are solely activated by Gβγ subunits released from Gαi/o-coupled GPCRs, despite the fact that all receptor types, for instance Gαq-coupled, are also able to provide Gβγ subunits. It is proposed that this specificity and fast kinetics of activation stem from pre-coupling (or pre-assembly) of proteins within this signaling cascade. However, many studies, including our own, point towards a diffusion-limited mechanism, namely collision coupling. Here, we set out to address this long-standing question by combining electrophysiology, imaging, and mathematical modeling. Muscarinic-2 receptors (M2R) and neuronal GIRK1/2 channels were coexpressed in Xenopus laevis oocytes, where we monitored protein surface expression, current amplitude, and activation kinetics. Densities of expressed M2R were assessed using a fluorescently labeled GIRK channel as a molecular ruler. We then incorporated our results, along with available kinetic data reported for the G-protein cycle and for GIRK1/2 activation, to generate a comprehensive mathematical model for the M2R-G-protein-GIRK1/2 signaling cascade. We find that, without assuming any irreversible interactions, our collision coupling kinetic model faithfully reproduces the rate of channel activation, the changes in agonist-evoked currents and the acceleration of channel activation by increased receptor densities.
Collapse
Affiliation(s)
- Shai Berlin
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Etay Artzy
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Reem Handklo-Jamal
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Uri Kahanovitch
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Hanna Parnas
- Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Nathan Dascal
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Daniel Yakubovich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel.,Department of Neonatology, Schneider Children's Hospital, Petah Tikva, Israel
| |
Collapse
|
14
|
Live-Cell Imaging and Analysis of Nuclear Body Mobility. Methods Mol Biol 2020. [PMID: 32681479 DOI: 10.1007/978-1-0716-0763-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The cell nucleus contains different domains and nuclear bodies, whose position relative to each other inside the nucleus can vary depending on the physiological state of the cell. Changes in the three-dimensional organization are associated with the mobility of individual components of the nucleus. In this chapter, we present a protocol for live-cell imaging and analysis of nuclear body mobility. Unlike other similar protocols, our image analysis pipeline includes non-rigid compensation for global motion of the nucleus before particle tracking and trajectory analysis, leading to precise detection of intranuclear movements. The protocol described can be easily adapted to work with most cell lines and nuclear bodies.
Collapse
|
15
|
He W, Su Y, Peng HB, Tong P. Dynamic heterogeneity and non-Gaussian statistics for ganglioside GM1s and acetylcholine receptors on live cell membrane. Mol Biol Cell 2020; 31:1380-1391. [PMID: 32348189 PMCID: PMC7353135 DOI: 10.1091/mbc.e19-08-0473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have carried out a comparative study of the lateral motion of ganglioside GM1, which is a glycosphingolipid residing on the outer leaflet of the plasma membrane, and acetylcholine receptor (AChR), which is a well-characterized ion channel. Both the lipid molecules and the transmembrane proteins reside on the plasma membranes of live Xenopus muscle cells. From a thorough analysis of a large volume of individual molecular trajectories obtained from more than 300 live cells over a wide range of sampling rates and long durations, we find that the GM1s and AChRs share the same dynamic heterogeneity and non-Gaussian statistics. Our measurements with the ATP-depleted cells reveal that the diffusion dynamics of the GM1s and AChRs is uniformly affected by the intracellular ATP level of the living muscle cells, further demonstrating that membrane diffusion is strongly coupled to the dynamics of the underlying cortical actin network, as predicted by the dynamic picket-fence model.
Collapse
Affiliation(s)
- Wei He
- Nano Science and Technology Program, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yun Su
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - H Benjamin Peng
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Penger Tong
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
16
|
Onoa B, Fukuda S, Iwai M, Bustamante C, Niyogi KK. Atomic Force Microscopy Visualizes Mobility of Photosynthetic Proteins in Grana Thylakoid Membranes. Biophys J 2020; 118:1876-1886. [PMID: 32224302 PMCID: PMC7175462 DOI: 10.1016/j.bpj.2020.02.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/10/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
Thylakoid membranes in chloroplasts contain photosynthetic protein complexes that convert light energy into chemical energy. Photosynthetic protein complexes are considered to undergo structural reorganization to maintain the efficiency of photochemical reactions. A detailed description of the mobility of photosynthetic complexes in real time is necessary to understand how macromolecular organization of the membrane is altered by environmental fluctuations. Here, we used high-speed atomic force microscopy to visualize and characterize the in situ mobility of individual protein complexes in grana thylakoid membranes isolated from Spinacia oleracea. Our observations reveal that these membranes can harbor complexes with at least two distinctive classes of mobility. A large fraction of grana membranes contained proteins with quasistatic mobility exhibiting molecular displacements smaller than 10 nm2. In the remaining fraction, the protein mobility is variable with molecular displacements of up to 100 nm2. This visualization at high spatiotemporal resolution enabled us to estimate an average diffusion coefficient of ∼1 nm2 s-1. Interestingly, both confined and Brownian diffusion models could describe the protein mobility of the second group of membranes. We also provide the first direct evidence, to our knowledge, of rotational diffusion of photosynthetic complexes. The rotational diffusion of photosynthetic complexes could be an adaptive response to the high protein density in the membrane to guarantee the efficiency of electron transfer reactions. This characterization of the mobility of individual photosynthetic complexes in grana membranes establishes a foundation that could be adapted to study the dynamics of the complexes inside intact and photosynthetically functional thylakoid membranes to be able to understand its structural responses to diverse environmental fluctuations.
Collapse
Affiliation(s)
- Bibiana Onoa
- Howard Hughes Medical Institute, University of California, Berkeley, California.
| | - Shingo Fukuda
- Howard Hughes Medical Institute, University of California, Berkeley, California
| | - Masakazu Iwai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California; Department of Plant and Microbial Biology, University of California, Berkeley, California
| | - Carlos Bustamante
- Howard Hughes Medical Institute, University of California, Berkeley, California; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California; Jason L. Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, California; Department of Molecular and Cell Biology, University of California, Berkeley, California; Department of Physics, University of California, Berkeley, California; Kavli Energy NanoScience Institute, Lawrence Berkeley National Laboratory, University of California, Berkeley, California
| | - Krishna K Niyogi
- Howard Hughes Medical Institute, University of California, Berkeley, California; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California; Department of Plant and Microbial Biology, University of California, Berkeley, California.
| |
Collapse
|
17
|
Robers MB, Friedman-Ohana R, Huber KVM, Kilpatrick L, Vasta JD, Berger BT, Chaudhry C, Hill S, Müller S, Knapp S, Wood KV. Quantifying Target Occupancy of Small Molecules Within Living Cells. Annu Rev Biochem 2020; 89:557-581. [PMID: 32208767 DOI: 10.1146/annurev-biochem-011420-092302] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The binding affinity and kinetics of target engagement are fundamental to establishing structure-activity relationships (SARs) for prospective therapeutic agents. Enhancing these binding parameters for operative targets, while minimizing binding to off-target sites, can translate to improved drug efficacy and a widened therapeutic window. Compound activity is typically assessed through modulation of an observed phenotype in cultured cells. Quantifying the corresponding binding properties under common cellular conditions can provide more meaningful interpretation of the cellular SAR analysis. Consequently, methods for assessing drug binding in living cells have advanced and are now integral to medicinal chemistry workflows. In this review, we survey key technological advancements that support quantitative assessments of target occupancy in cultured cells, emphasizing generalizable methodologies able to deliver analytical precision that heretofore required reductionist biochemical approaches.
Collapse
Affiliation(s)
- M B Robers
- Promega Corporation, Madison, Wisconsin 53711, USA; , ,
| | | | - K V M Huber
- Target Discovery Institute and Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom; .,Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - L Kilpatrick
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom; , .,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, United Kingdom
| | - J D Vasta
- Promega Corporation, Madison, Wisconsin 53711, USA; , ,
| | - B-T Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany; ,
| | - C Chaudhry
- Lead Discovery and Optimization, Bristol-Myers Squibb, Princeton, New Jersey 08648, USA;
| | - S Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom; , .,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, United Kingdom
| | - S Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany; , .,Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, 60438 Frankfurt, Germany;
| | - S Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany; , .,Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, 60438 Frankfurt, Germany; .,German Cancer Network (DKTK), Frankfurt/Mainz, 60438 Frankfurt, Germany.,Frankfurt Cancer Institute (FCI), Goethe University, 60596 Frankfurt am Main, Germany
| | - K V Wood
- Promega Corporation, Madison, Wisconsin 53711, USA; , , .,Current affiliation: Light Bio, Inc., Mount Horeb, Wisconsin 53572, USA;
| |
Collapse
|
18
|
Shrivastava S, Sarkar P, Preira P, Salomé L, Chattopadhyay A. Role of Actin Cytoskeleton in Dynamics and Function of the Serotonin 1A Receptor. Biophys J 2019; 118:944-956. [PMID: 31606121 DOI: 10.1016/j.bpj.2019.08.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are important membrane proteins in higher eukaryotes that carry out a vast array of cellular signaling and act as major drug targets. The serotonin1A receptor is a prototypical member of the GPCR family and is implicated in neuropsychiatric disorders such as anxiety and depression, besides serving as an important drug target. With an overall goal of exploring the functional consequence of altered receptor dynamics, in this work, we probed the role of the actin cytoskeleton in the dynamics, ligand binding, and signaling of the serotonin1A receptor. We monitored receptor dynamics utilizing single particle tracking, which provides information on relative distribution of receptors in various diffusion modes in addition to diffusion coefficient. We show here that the short-term diffusion coefficient of the receptor increases upon actin destabilization by cytochalasin D. In addition, analysis of individual trajectories shows that there are changes in relative populations of receptors undergoing various types of diffusion upon actin destabilization. The release of dynamic constraint was evident by an increase in the radius of confinement of the receptor upon actin destabilization. The functional implication of such actin destabilization was manifested as an increase in specific agonist binding and downstream signaling, monitored by measuring reduction in cellular cAMP levels. These results bring out the interdependence of GPCR dynamics with cellular signaling.
Collapse
Affiliation(s)
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Pascal Preira
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laurence Salomé
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | | |
Collapse
|
19
|
Temporal dependence of shifts in mu opioid receptor mobility at the cell surface after agonist binding observed by single-particle tracking. Sci Rep 2019; 9:7297. [PMID: 31086197 PMCID: PMC6514008 DOI: 10.1038/s41598-019-43657-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/24/2019] [Indexed: 01/13/2023] Open
Abstract
Agonist binding to the mu opioid receptor (MOR) results in conformational changes that allow recruitment of G-proteins, activation of downstream effectors and eventual desensitization and internalization, all of which could affect receptor mobility. The present study employed single particle tracking (SPT) of quantum dot labeled FLAG-tagged MORs to examine shifts in MOR mobility after agonist binding. FLAG-MORs on the plasma membrane were in both mobile and immobile states under basal conditions. Activation of FLAG-MORs with DAMGO caused an acute increase in the fraction of mobile MORs, and free portions of mobile tracks were partially dependent on interactions with G-proteins. In contrast, 10-minute exposure to DAMGO or morphine increased the fraction of immobile FLAG-MORs. While the decrease in mobility with prolonged DAMGO exposure corresponded to an increase in colocalization with clathrin, the increase in colocalization was present in both mobile and immobile FLAG-MORs. Thus, no single mobility state of the receptor accounted for colocalization with clathrin. These findings demonstrate that SPT can be used to track agonist-dependent changes in MOR mobility over time, but that the mobility states observed likely arise from a diverse set of interactions and will be most informative when examined in concert with particular downstream effectors.
Collapse
|
20
|
Centromere mechanical maturation during mammalian cell mitosis. Nat Commun 2019; 10:1761. [PMID: 30988289 PMCID: PMC6465287 DOI: 10.1038/s41467-019-09578-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 03/13/2019] [Indexed: 12/30/2022] Open
Abstract
During mitosis, tension develops across the centromere as a result of spindle-based forces. Metaphase tension may be critical in preventing mitotic chromosome segregation errors, however, the nature of force transmission at the centromere and the role of centromere mechanics in controlling metaphase tension remains unknown. We combined quantitative, biophysical microscopy with computational analysis to elucidate the mechanics of the centromere in unperturbed, mitotic human cells. We discovered that the mechanical stiffness of the human centromere matures during mitotic progression, which leads to amplified centromere tension specifically at metaphase. Centromere mechanical maturation is disrupted across multiple aneuploid cell lines, leading to a weak metaphase tension signal. Further, increasing deficiencies in centromere mechanical maturation are correlated with rising frequencies of lagging, merotelic chromosomes in anaphase, leading to segregation defects at telophase. Thus, we reveal a centromere maturation process that may be critical to the fidelity of chromosome segregation during mitosis. During mitosis, tension at the centromere occurs from the spindle but the role of centromere mechanics in controlling metaphase tension is poorly understood. Here, the authors report that mechanical stiffnness of the centromere matures during mitotic progression and is amplified specifically at metaphase.
Collapse
|
21
|
Felce JH, MacRae A, Davis SJ. Constraints on GPCR Heterodimerization Revealed by the Type-4 Induced-Association BRET Assay. Biophys J 2019; 116:31-41. [PMID: 30558888 PMCID: PMC6341220 DOI: 10.1016/j.bpj.2018.09.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/14/2018] [Accepted: 09/21/2018] [Indexed: 01/24/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) comprise the largest and most pharmacologically important family of cell-surface receptors encoded by the human genome. In many instances, the distinct signaling behavior of certain GPCRs has been explained in terms of the formation of heteromers with, for example, distinct signaling properties and allosteric cross-regulation. Confirmation of this has, however, been limited by the paucity of reliable methods for probing heteromeric GPCR interactions in situ. The most widely used assays for GPCR stoichiometry, based on resonance energy transfer, are unsuited to reporting heteromeric interactions. Here, we describe a targeted bioluminescence resonance energy transfer (BRET) assay, called type-4 BRET, which detects both homo- and heteromeric interactions using induced multimerization of protomers within such complexes, at constant expression. Using type-4 BRET assays, we investigate heterodimerization among known GPCR homodimers: the CXC chemokine receptor 4 and sphingosine-1-phosphate receptors. We observe that CXC chemokine receptor 4 and sphingosine-1-phosphate receptors can form heterodimers with GPCRs from their immediate subfamilies but not with more distantly related receptors. We also show that heterodimerization appears to disrupt homodimeric interactions, suggesting the sharing of interfaces. Broadly, these observations indicate that heterodimerization results from the divergence of homodimeric receptors and will therefore likely be restricted to closely related homodimeric GPCRs.
Collapse
Affiliation(s)
- James H Felce
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom; Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, United Kingdom.
| | - Alasdair MacRae
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom; Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Simon J Davis
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom; Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
22
|
Duan J, Lu G, Hong Y, Hu Q, Mai X, Guo J, Si X, Wang F, Zhang Y. Live imaging and tracking of genome regions in CRISPR/dCas9 knock-in mice. Genome Biol 2018; 19:192. [PMID: 30409154 PMCID: PMC6225728 DOI: 10.1186/s13059-018-1530-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/09/2018] [Indexed: 12/23/2022] Open
Abstract
CRISPR/dCas9 is a versatile tool that can be used to recruit various effectors and fluorescent molecules to defined genome regions where it can modulate genetic and epigenetic markers, or track the chromatin dynamics in live cells. In vivo applications of CRISPR/dCas9 in animals have been challenged by delivery issues. We generate and characterize a mouse strain with dCas9-EGFP ubiquitously expressed in various tissues. Studying telomere dynamics in these animals reveals surprising results different from those observed in cultured cell lines. The CRISPR/dCas9 knock-in mice provide an important and versatile tool to mechanistically study genome functions in live animals.
Collapse
Affiliation(s)
- Jinzhi Duan
- Graduate Program, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,National Institute of Biological Sciences, Beijing, 102206, China
| | - Guangqing Lu
- Graduate Program, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,National Institute of Biological Sciences, Beijing, 102206, China
| | - Yu Hong
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing, 100871, China.,National Institute of Biological Sciences, Beijing, 102206, China
| | - Qingtao Hu
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xueying Mai
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Jing Guo
- Graduate Program, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,National Institute of Biological Sciences, Beijing, 102206, China
| | - Xiaofang Si
- Graduate Program, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,National Institute of Biological Sciences, Beijing, 102206, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yu Zhang
- Graduate Program, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China. .,Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing, 100871, China. .,National Institute of Biological Sciences, Beijing, 102206, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
23
|
Arifulin EA, Sorokin DV, Tvorogova AV, Kurnaeva MA, Musinova YR, Zhironkina OA, Golyshev SA, Abramchuk SS, Vassetzky YS, Sheval EV. Heterochromatin restricts the mobility of nuclear bodies. Chromosoma 2018; 127:529-537. [PMID: 30291421 DOI: 10.1007/s00412-018-0683-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/24/2022]
Abstract
Nuclear bodies are relatively immobile organelles. Here, we investigated the mechanisms underlying their movement using experimentally induced interphase prenucleolar bodies (iPNBs). Most iPNBs demonstrated constrained diffusion, exhibiting infrequent fusions with other iPNBs and nucleoli. Fusion events were actin-independent and appeared to be the consequence of stochastic collisions between iPNBs. Most iPNBs were surrounded by condensed chromatin, while fusing iPNBs were usually found in a single heterochromatin-delimited compartment ("cage"). The experimentally induced over-condensation of chromatin significantly decreased the frequency of iPNB fusion. Thus, the data obtained indicate that the mobility of nuclear bodies is restricted by heterochromatin.
Collapse
Affiliation(s)
- Eugene A Arifulin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Dmitry V Sorokin
- Laboratory of Mathematical Methods of Image Processing, Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Anna V Tvorogova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Margarita A Kurnaeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Yana R Musinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilov str. 26, 119334, Moscow, Russia
| | - Oxana A Zhironkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Sergey A Golyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Sergey S Abramchuk
- Faculty of Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Yegor S Vassetzky
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilov str. 26, 119334, Moscow, Russia.
- LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France.
- UMR8126, CNRS, Institut de Cancérologie Gustave Roussy, Université Paris-Sud, 94805, Villejuif, France.
| | - Eugene V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia.
- LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France.
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
24
|
A Rationale for Mesoscopic Domain Formation in Biomembranes. Biomolecules 2018; 8:biom8040104. [PMID: 30274275 PMCID: PMC6316292 DOI: 10.3390/biom8040104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/25/2022] Open
Abstract
Cell plasma membranes display a dramatically rich structural complexity characterized by functional sub-wavelength domains with specific lipid and protein composition. Under favorable experimental conditions, patterned morphologies can also be observed in vitro on model systems such as supported membranes or lipid vesicles. Lipid mixtures separating in liquid-ordered and liquid-disordered phases below a demixing temperature play a pivotal role in this context. Protein-protein and protein-lipid interactions also contribute to membrane shaping by promoting small domains or clusters. Such phase separations displaying characteristic length-scales falling in-between the nanoscopic, molecular scale on the one hand and the macroscopic scale on the other hand, are named mesophases in soft condensed matter physics. In this review, we propose a classification of the diverse mechanisms leading to mesophase separation in biomembranes. We distinguish between mechanisms relying upon equilibrium thermodynamics and those involving out-of-equilibrium mechanisms, notably active membrane recycling. In equilibrium, we especially focus on the many mechanisms that dwell on an up-down symmetry breaking between the upper and lower bilayer leaflets. Symmetry breaking is an ubiquitous mechanism in condensed matter physics at the heart of several important phenomena. In the present case, it can be either spontaneous (domain buckling) or explicit, i.e., due to an external cause (global or local vesicle bending properties). Whenever possible, theoretical predictions and simulation results are confronted to experiments on model systems or living cells, which enables us to identify the most realistic mechanisms from a biological perspective.
Collapse
|
25
|
Microrheology, advances in methods and insights. Adv Colloid Interface Sci 2018; 257:71-85. [PMID: 29859615 DOI: 10.1016/j.cis.2018.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/23/2018] [Accepted: 04/14/2018] [Indexed: 01/19/2023]
Abstract
Microrheology is an emerging technique that probes mechanical response of soft material at micro-scale. Generally, microrheology technique can be divided into active and passive versions. During last two decades, extensive efforts have been paid to improve both the experiment techniques and data analysis methods, especially about how to link consequential particle positions into trajectories. We review the recent advances in microrheology, including improvements in labeling, imaging, data acquiring, data processing and data interpretation. Some of the recent insights in soft matter and living systems gained by using this technique are given. Before these, we also give a very brief description of the basic principles of both active and passive microrheology techniques, and some details about optical particle tracking and DWS.
Collapse
|
26
|
Rogacki MK, Golfetto O, Tobin SJ, Li T, Biswas S, Jorand R, Zhang H, Radoi V, Ming Y, Svenningsson P, Ganjali D, Wakefield DL, Sideris A, Small AR, Terenius L, Jovanović‐Talisman T, Vukojević V. Dynamic lateral organization of opioid receptors (kappa, mu wt and mu N40D ) in the plasma membrane at the nanoscale level. Traffic 2018; 19:690-709. [PMID: 29808515 PMCID: PMC6120469 DOI: 10.1111/tra.12582] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/06/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023]
Abstract
Opioid receptors are important pharmacological targets for the management of numerous medical conditions (eg, severe pain), but they are also the gateway to the development of deleterious side effects (eg, opiate addiction). Opioid receptor signaling cascades are well characterized. However, quantitative information regarding their lateral dynamics and nanoscale organization in the plasma membrane remains limited. Since these dynamic properties are important determinants of receptor function, it is crucial to define them. Herein, the nanoscale lateral dynamics and spatial organization of kappa opioid receptor (KOP), wild type mu opioid receptor (MOPwt ), and its naturally occurring isoform (MOPN40D ) were quantitatively characterized using fluorescence correlation spectroscopy and photoactivated localization microscopy. Obtained results, supported by ensemble-averaged Monte Carlo simulations, indicate that these opioid receptors dynamically partition into different domains. In particular, significant exclusion from GM1 ganglioside-enriched domains and partial association with cholesterol-enriched domains was observed. Nanodomain size, receptor population density and the fraction of receptors residing outside of nanodomains were receptor-specific. KOP-containing domains were the largest and most densely populated, with the smallest fraction of molecules residing outside of nanodomains. The opposite was true for MOPN40D . Moreover, cholesterol depletion dynamically regulated the partitioning of KOP and MOPwt , whereas this effect was not observed for MOPN40D .
Collapse
Affiliation(s)
- Maciej K. Rogacki
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Ottavia Golfetto
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Steven J. Tobin
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Tianyi Li
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Sunetra Biswas
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Raphael Jorand
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Huiying Zhang
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Vlad Radoi
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Yu Ming
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Per Svenningsson
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Daniel Ganjali
- Department of Mechanical and Aerospace EngineeringThe Henry Samueli School of Engineering, University of CaliforniaIrvineCalifornia
| | - Devin L. Wakefield
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Athanasios Sideris
- Department of Mechanical and Aerospace EngineeringThe Henry Samueli School of Engineering, University of CaliforniaIrvineCalifornia
| | - Alexander R. Small
- Department of Physics and AstronomyCalifornia State Polytechnic UniversityPomonaCalifornia
| | - Lars Terenius
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
- Department of Molecular and Cellular NeurosciencesThe Scripps Research InstituteLa JollaCalifornia
| | | | - Vladana Vukojević
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| |
Collapse
|
27
|
Felce JH, Davis SJ, Klenerman D. Single-Molecule Analysis of G Protein-Coupled Receptor Stoichiometry: Approaches and Limitations. Trends Pharmacol Sci 2018; 39:96-108. [PMID: 29122289 DOI: 10.1016/j.tips.2017.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 01/17/2023]
Abstract
How G protein-coupled receptors (GPCRs) are organized at the cell surface remains highly contentious. Single-molecule (SM) imaging is starting to inform this debate as receptor behavior can now be visualized directly, without the need for interpreting ensemble data. The limited number of SM studies of GPCRs undertaken to date have strongly suggested that dimerization is at most transient, and that most receptors are monomeric at any given time. However, even SM data has its caveats and needs to be interpreted carefully. Here, we discuss the types of SM imaging strategies used to examine GPCR stoichiometry and consider some of these caveats. We also emphasize that attempts to resolve the debate ought to rely on orthogonal approaches to measuring receptor stoichiometry.
Collapse
Affiliation(s)
- James H Felce
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK.
| | - Simon J Davis
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
28
|
Sumi T, Okumoto A, Goto H, Sekino H. Numerical calculation on a two-step subdiffusion behavior of lateral protein movement in plasma membranes. Phys Rev E 2018; 96:042410. [PMID: 29347488 DOI: 10.1103/physreve.96.042410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Indexed: 11/06/2022]
Abstract
A two-step subdiffusion behavior of lateral movement of transmembrane proteins in plasma membranes has been observed by using single-molecule experiments. A nested double-compartment model where large compartments are divided into several smaller ones has been proposed in order to explain this observation. These compartments are considered to be delimited by membrane-skeleton "fences" and membrane-protein "pickets" bound to the fences. We perform numerical simulations of a master equation using a simple two-dimensional lattice model to investigate the heterogeneous diffusion dynamics behavior of transmembrane proteins within plasma membranes. We show that the experimentally observed two-step subdiffusion process can be described using fence and picket models combined with decreased local diffusivity of transmembrane proteins in the vicinity of the pickets. This allows us to explain the two-step subdiffusion behavior without explicitly introducing nested double compartments.
Collapse
Affiliation(s)
- Tomonari Sumi
- Research Institute for Interdisciplinary Science and Department of Chemistry, Faculty of Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Atsushi Okumoto
- Department of Computer Science and Engineering, Graduate School of Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580, Japan
| | - Hitoshi Goto
- Department of Computer Science and Engineering, Graduate School of Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580, Japan
| | - Hideo Sekino
- Department of Computer Science and Engineering, Graduate School of Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580, Japan.,Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
29
|
Sorokin DV, Peterlik I, Tektonidis M, Rohr K, Matula P. Non-Rigid Contour-Based Registration of Cell Nuclei in 2-D Live Cell Microscopy Images Using a Dynamic Elasticity Model. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:173-184. [PMID: 28783625 DOI: 10.1109/tmi.2017.2734169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The analysis of the pure motion of subnuclear structures without influence of the cell nucleus motion and deformation is essential in live cell imaging. In this paper, we propose a 2-D contour-based image registration approach for compensation of nucleus motion and deformation in fluorescence microscopy time-lapse sequences. The proposed approach extends our previous approach, which uses a static elasticity model to register cell images. Compared with that scheme, the new approach employs a dynamic elasticity model for the forward simulation of nucleus motion and deformation based on the motion of its contours. The contour matching process is embedded as a constraint into the system of equations describing the elastic behavior of the nucleus. This results in better performance in terms of the registration accuracy. Our approach was successfully applied to real live cell microscopy image sequences of different types of cells including image data that was specifically designed and acquired for evaluation of cell image registration methods. An experimental comparison with the existing contour-based registration methods and an intensity-based registration method has been performed. We also studied the dependence of the results on the choice of method parameters.
Collapse
|
30
|
Li X, Li H, Chang HY, Lykotrafitis G, Em Karniadakis G. Computational Biomechanics of Human Red Blood Cells in Hematological Disorders. J Biomech Eng 2017; 139:2580906. [PMID: 27814430 DOI: 10.1115/1.4035120] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 02/02/2023]
Abstract
We review recent advances in multiscale modeling of the biomechanical characteristics of red blood cells (RBCs) in hematological diseases, and their relevance to the structure and dynamics of defective RBCs. We highlight examples of successful simulations of blood disorders including malaria and other hereditary disorders, such as sickle-cell anemia, spherocytosis, and elliptocytosis.
Collapse
Affiliation(s)
- Xuejin Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912 e-mail:
| | - He Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912
| | - Hung-Yu Chang
- Division of Applied Mathematics, Brown University, Providence, RI 02912
| | - George Lykotrafitis
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269;Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - George Em Karniadakis
- Fellow ASME Division of Applied Mathematics, Brown University, Providence, RI 02912 e-mail:
| |
Collapse
|
31
|
Plewes MR, Burns PD, Hyslop RM, George Barisas B. Influence of omega-3 fatty acids on bovine luteal cell plasma membrane dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2413-2419. [PMID: 28912100 DOI: 10.1016/j.bbamem.2017.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/09/2017] [Accepted: 09/10/2017] [Indexed: 01/07/2023]
Abstract
Fish oil is a rich source of omega-3 fatty acids which disrupt lipid microdomain structure and affect mobility of the prostaglandin F2α (FP) receptor in bovine luteal cells. The objectives of this study were to determine the effects of individual omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on 1) membrane fatty acid composition, 2) lipid microdomain structure, and 3) lateral mobility of the FP receptor in bovine luteal cells. Ovaries were collected from a local abattoir (n=5/experiment). The corpus luteum was resected and enzymatically digested using collagenase to generate a mixed luteal cell population. In all experiments, luteal cells were treated with 0, 1, 10 or 100μM EPA or DHA for 72h to allow incorporation of fatty acids into membrane lipids. Results from experiment 1 show that culturing luteal cells in the presence of EPA or DHA increased these luteal fatty acids. In experiment 2, both EPA and DHA increased spatial distribution of lipid microdomains in a dose-dependent manner. Single particle tracking results from experiment 3 show that increasing both EPA and DHA concentrations increased micro- and macro-diffusion coefficients, increased domain size, and decreased residence time of FP receptors. Collectively, results from this study demonstrate similar effects of EPA and DHA on lipid microdomain structure and lateral mobility of FP receptors in cultured bovine luteal cells. Moreover, only 10μM of either fatty acid was needed to mimic the effects of fish oil.
Collapse
Affiliation(s)
- Michele R Plewes
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, United States
| | - Patrick D Burns
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, United States.
| | - Richard M Hyslop
- Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO 80639, United States
| | - B George Barisas
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
32
|
Conformational transitions and interactions underlying the function of membrane embedded receptor protein kinases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1417-1429. [DOI: 10.1016/j.bbamem.2017.01.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/08/2023]
|
33
|
Plewes MR, Burns PD, Graham PE, Bruemmer JE, Engle TE, Barisas BG. Effect of fish meal supplementation on spatial distribution of lipid microdomains and on the lateral mobility of membrane-bound prostaglandin F 2α receptors in bovine corpora lutea. Domest Anim Endocrinol 2017; 60:9-18. [PMID: 28273497 PMCID: PMC5515082 DOI: 10.1016/j.domaniend.2017.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 12/25/2022]
Abstract
This study examined the effects of fish meal supplementation on spatial distribution of lipid microdomains and lateral mobility of prostaglandin F2α (FP) receptors on cell plasma membranes of the bovine corpus luteum (CL). Beef cows were stratified by BW and randomly assigned to receive a corn gluten meal supplement (n = 4) or fish meal supplement (n = 4) for 60 d to allow incorporation of fish meal-derived omega-3 fatty acids into luteal tissue. Ovaries bearing the CL were surgically removed between days 10 to 12 after estrus corresponding to approximately day 60 of supplementation. A 200-mg sample of luteal tissue was analyzed for fatty acid content using gas-liquid chromatography (GLC). The remaining tissue was enzymatically digested with collagenase to dissociate individual cells from the tissue. Cells were cultured to determine the effects of dietary supplementation on lipid microdomains and lateral mobility of FP receptors. Luteal tissue collected from fish meal-supplemented cows had increased omega-3 fatty acids content (P < 0.05). Lipid microdomain total fluorescent intensity was decreased in dissociated luteal cells from fish meal-supplemented cows (P < 0.05). Micro and macro diffusion coefficients of FP receptors were greater for cells obtained from fish meal-supplemented cows (P < 0.05). In addition, compartment diameter of domains was larger, whereas resident time was shorter for receptors from cells obtained from fish meal-supplemented cows (P < 0.05). Data indicate that dietary supplementation with fish meal increases omega-3 fatty acid content in luteal tissue causing disruption of lipid microdomains. This disruption leads to increased lateral mobility of the FP receptor, increased compartment sizes, and decreased resident time, which may influence prostaglandin signaling in the bovine CL.
Collapse
Affiliation(s)
- M R Plewes
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | - P D Burns
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA.
| | - P E Graham
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | - J E Bruemmer
- Department of Animal Sciences and Equine Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - T E Engle
- Department of Animal Sciences and Equine Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - B G Barisas
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
34
|
Liu YL, Perillo EP, Liu C, Yu P, Chou CK, Hung MC, Dunn AK, Yeh HC. Segmentation of 3D Trajectories Acquired by TSUNAMI Microscope: An Application to EGFR Trafficking. Biophys J 2017; 111:2214-2227. [PMID: 27851944 DOI: 10.1016/j.bpj.2016.09.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 11/30/2022] Open
Abstract
Whereas important discoveries made by single-particle tracking have changed our view of the plasma membrane organization and motor protein dynamics in the past three decades, experimental studies of intracellular processes using single-particle tracking are rather scarce because of the lack of three-dimensional (3D) tracking capacity. In this study we use a newly developed 3D single-particle tracking method termed TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination) to investigate epidermal growth factor receptor (EGFR) trafficking dynamics in live cells at 16/43 nm (xy/z) spatial resolution, with track duration ranging from 2 to 10 min and vertical tracking depth up to tens of microns. To analyze the long 3D trajectories generated by the TSUNAMI microscope, we developed a trajectory analysis algorithm, which reaches 81% segment classification accuracy in control experiments (termed simulated movement experiments). When analyzing 95 EGF-stimulated EGFR trajectories acquired in live skin cancer cells, we find that these trajectories can be separated into three groups-immobilization (24.2%), membrane diffusion only (51.6%), and transport from membrane to cytoplasm (24.2%). When EGFRs are membrane-bound, they show an interchange of Brownian diffusion and confined diffusion. When EGFRs are internalized, transitions from confined diffusion to directed diffusion and from directed diffusion back to confined diffusion are clearly seen. This observation agrees well with the model of clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Yen-Liang Liu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Evan P Perillo
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Cong Liu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Peter Yu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Chao-Kai Chou
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Andrew K Dunn
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas.
| |
Collapse
|
35
|
Shen H, Tauzin LJ, Baiyasi R, Wang W, Moringo N, Shuang B, Landes CF. Single Particle Tracking: From Theory to Biophysical Applications. Chem Rev 2017; 117:7331-7376. [PMID: 28520419 DOI: 10.1021/acs.chemrev.6b00815] [Citation(s) in RCA: 286] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
After three decades of developments, single particle tracking (SPT) has become a powerful tool to interrogate dynamics in a range of materials including live cells and novel catalytic supports because of its ability to reveal dynamics in the structure-function relationships underlying the heterogeneous nature of such systems. In this review, we summarize the algorithms behind, and practical applications of, SPT. We first cover the theoretical background including particle identification, localization, and trajectory reconstruction. General instrumentation and recent developments to achieve two- and three-dimensional subdiffraction localization and SPT are discussed. We then highlight some applications of SPT to study various biological and synthetic materials systems. Finally, we provide our perspective regarding several directions for future advancements in the theory and application of SPT.
Collapse
Affiliation(s)
- Hao Shen
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| | - Lawrence J Tauzin
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| | - Rashad Baiyasi
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| | - Wenxiao Wang
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| | - Nicholas Moringo
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| | - Bo Shuang
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| | - Christy F Landes
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| |
Collapse
|
36
|
Lagerholm BC, Andrade DM, Clausen MP, Eggeling C. Convergence of lateral dynamic measurements in the plasma membrane of live cells from single particle tracking and STED-FCS. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2017; 50:063001. [PMID: 28458397 PMCID: PMC5390782 DOI: 10.1088/1361-6463/aa519e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 11/15/2016] [Accepted: 12/05/2016] [Indexed: 05/06/2023]
Abstract
Fluorescence correlation spectroscopy (FCS) in combination with the super-resolution imaging method STED (STED-FCS), and single-particle tracking (SPT) are able to directly probe the lateral dynamics of lipids and proteins in the plasma membrane of live cells at spatial scales much below the diffraction limit of conventional microscopy. However, a major disparity in interpretation of data from SPT and STED-FCS remains, namely the proposed existence of a very fast (unhindered) lateral diffusion coefficient, ⩾5 µm2 s-1, in the plasma membrane of live cells at very short length scales, ≈⩽ 100 nm, and time scales, ≈1-10 ms. This fast diffusion coefficient has been advocated in several high-speed SPT studies, for lipids and membrane proteins alike, but the equivalent has not been detected in STED-FCS measurements. Resolving this ambiguity is important because the assessment of membrane dynamics currently relies heavily on SPT for the determination of heterogeneous diffusion. A possible systematic error in this approach would thus have vast implications in this field. To address this, we have re-visited the analysis procedure for SPT data with an emphasis on the measurement errors and the effect that these errors have on the measurement outputs. We subsequently demonstrate that STED-FCS and SPT data, following careful consideration of the experimental errors of the SPT data, converge to a common interpretation which for the case of a diffusing phospholipid analogue in the plasma membrane of live mouse embryo fibroblasts results in an unhindered, intra-compartment, diffusion coefficient of ≈0.7-1.0 µm2 s-1, and a compartment size of about 100-150 nm.
Collapse
Affiliation(s)
- B Christoffer Lagerholm
- Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Débora M Andrade
- Centre for Neural Circuits and Behaviour, University of Oxford, Mansfield Road, Oxford OX1 3SR, UK
| | - Mathias P Clausen
- MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Christian Eggeling
- Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| |
Collapse
|
37
|
Plewes MR, Burns PD, Graham PE, Hyslop RM, Barisas BG. Effect of fish oil on lateral mobility of prostaglandin F 2α (FP) receptors and spatial distribution of lipid microdomains in bovine luteal cell plasma membrane in vitro. Domest Anim Endocrinol 2017; 58:39-52. [PMID: 27643975 PMCID: PMC5135567 DOI: 10.1016/j.domaniend.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 11/16/2022]
Abstract
Lipid microdomains are ordered regions on the plasma membrane of cells, rich in cholesterol and sphingolipids, ranging in size from 10 to 200 nm in diameter. These lipid-ordered domains may serve as platforms to facilitate colocalization of intracellular signaling proteins during agonist-induced signal transduction. It is hypothesized that fish oil will disrupt the lipid microdomains, increasing spatial distribution of these lipid-ordered domains and lateral mobility of the prostaglandin (PG) F2α (FP) receptors in bovine luteal cells. The objectives of this study were to examine the effects of fish oil on (1) the spatial distribution of lipid microdomains, (2) lateral mobility of FP receptors, and (3) lateral mobility of FP receptors in the presence of PGF2α on the plasma membrane of bovine luteal cells in vitro. Bovine ovaries were obtained from a local abattoir and corpora lutea were digested using collagenase. In experiment 1, lipid microdomains were labeled using cholera toxin subunit B Alexa Fluor 555. Domains were detected as distinct patches on the plasma membrane of mixed luteal cells. Fish oil treatment decreased fluorescent intensity in a dose-dependent manner (P < 0.01). In experiment 2, single particle tracking was used to examine the effects of fish oil treatment on lateral mobility of FP receptors. Fish oil treatment increased microdiffusion and macrodiffusion coefficients of FP receptors as compared to control cells (P < 0.05). In addition, compartment diameters of domains were larger, and residence times were reduced for receptors in fish oil-treated cells (P < 0.05). In experiment 3, single particle tracking was used to determine the effects of PGF2α on lateral mobility of FP receptors and influence of fish oil treatment. Lateral mobility of receptors was decreased within 5 min following the addition of ligand for control cells (P < 0.05). However, lateral mobility of receptors was unaffected by addition of ligand for fish oil-treated cells (P > 0.10). The data presented provide strong evidence that fish oil causes a disruption in lipid microdomains and affects lateral mobility of FP receptors in the absence and presence of PGF2α.
Collapse
Affiliation(s)
- M R Plewes
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, 80639
| | - P D Burns
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, 80639.
| | - P E Graham
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, 80639
| | - R M Hyslop
- Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, Colorado, 80639
| | - B G Barisas
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
38
|
Syed A, Zhu Q, Smith EA. Ligand binding affinity and changes in the lateral diffusion of receptor for advanced glycation endproducts (RAGE). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3141-3149. [DOI: 10.1016/j.bbamem.2016.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/22/2016] [Accepted: 10/03/2016] [Indexed: 12/16/2022]
|
39
|
You C, Marquez-Lago TT, Richter CP, Wilmes S, Moraga I, Garcia KC, Leier A, Piehler J. Receptor dimer stabilization by hierarchical plasma membrane microcompartments regulates cytokine signaling. SCIENCE ADVANCES 2016; 2:e1600452. [PMID: 27957535 PMCID: PMC5135388 DOI: 10.1126/sciadv.1600452] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
The interaction dynamics of signaling complexes is emerging as a key determinant that regulates the specificity of cellular responses. We present a combined experimental and computational study that quantifies the consequences of plasma membrane microcompartmentalization for the dynamics of type I interferon receptor complexes. By using long-term dual-color quantum dot (QD) tracking, we found that the lifetime of individual ligand-induced receptor heterodimers depends on the integrity of the membrane skeleton (MSK), which also proved important for efficient downstream signaling. By pair correlation tracking and localization microscopy as well as by fast QD tracking, we identified a secondary confinement within ~300-nm-sized zones. A quantitative spatial stochastic diffusion-reaction model, entirely parameterized on the basis of experimental data, predicts that transient receptor confinement by the MSK meshwork allows for rapid reassociation of dissociated receptor dimers. Moreover, the experimentally observed apparent stabilization of receptor dimers in the plasma membrane was reproduced by simulations of a refined, hierarchical compartment model. Our simulations further revealed that the two-dimensional association rate constant is a key parameter for controlling the extent of MSK-mediated stabilization of protein complexes, thus ensuring the specificity of this effect. Together, experimental evidence and simulations support the hypothesis that passive receptor confinement by MSK-based microcompartmentalization promotes maintenance of signaling complexes in the plasma membrane.
Collapse
Affiliation(s)
- Changjiang You
- Department of Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | | | | | - Stephan Wilmes
- Department of Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Ignacio Moraga
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K. Christopher Garcia
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - André Leier
- Isaac Newton Institute for Mathematical Sciences, University of Cambridge, Cambridge, U.K
- Okinawa Institute of Science and Technology, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Jacob Piehler
- Department of Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| |
Collapse
|
40
|
Klaus CJS, Raghunathan K, DiBenedetto E, Kenworthy AK. Analysis of diffusion in curved surfaces and its application to tubular membranes. Mol Biol Cell 2016; 27:3937-3946. [PMID: 27733625 PMCID: PMC5170615 DOI: 10.1091/mbc.e16-06-0445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/08/2016] [Accepted: 10/04/2016] [Indexed: 11/11/2022] Open
Abstract
Diffusion of particles in curved surfaces is inherently complex compared with diffusion in a flat membrane, owing to the nonplanarity of the surface. The consequence of such nonplanar geometry on diffusion is poorly understood but is highly relevant in the case of cell membranes, which often adopt complex geometries. To address this question, we developed a new finite element approach to model diffusion on curved membrane surfaces based on solutions to Fick's law of diffusion and used this to study the effects of geometry on the entry of surface-bound particles into tubules by diffusion. We show that variations in tubule radius and length can distinctly alter diffusion gradients in tubules over biologically relevant timescales. In addition, we show that tubular structures tend to retain concentration gradients for a longer time compared with a comparable flat surface. These findings indicate that sorting of particles along the surfaces of tubules can arise simply as a geometric consequence of the curvature without any specific contribution from the membrane environment. Our studies provide a framework for modeling diffusion in curved surfaces and suggest that biological regulation can emerge purely from membrane geometry.
Collapse
Affiliation(s)
| | - Krishnan Raghunathan
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | | | - Anne K Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 .,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
41
|
Berger M, Manghi M, Destainville N. Nanodomains in Biomembranes with Recycling. J Phys Chem B 2016; 120:10588-10602. [PMID: 27654087 DOI: 10.1021/acs.jpcb.6b07631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cell membranes are out of thermodynamic equilibrium notably because of membrane recycling, i.e., active exchange of material with the cytosol. We propose an analytically tractable model of biomembrane predicting the effects of recycling on the size of protein nanodomains also called protein clusters. The model includes a short-range attraction between proteins and a weaker long-range repulsion which ensures the existence of so-called cluster phases in equilibrium, where monomeric proteins coexist with finite-size domains. Our main finding is that, when taking recycling into account, the typical cluster size at steady state increases logarithmically with the recycling rate at fixed protein concentration. Using physically realistic model parameters, the predicted 2-fold increase due to recycling in living cells is most likely experimentally measurable with the help of super-resolution microscopy.
Collapse
Affiliation(s)
- Mareike Berger
- Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse, France
| | - Manoel Manghi
- Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse, France
| | - Nicolas Destainville
- Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
42
|
Latty SL, Felce JH, Weimann L, Lee SF, Davis SJ, Klenerman D. Referenced Single-Molecule Measurements Differentiate between GPCR Oligomerization States. Biophys J 2016; 109:1798-806. [PMID: 26536257 PMCID: PMC4643199 DOI: 10.1016/j.bpj.2015.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 08/25/2015] [Accepted: 09/08/2015] [Indexed: 11/24/2022] Open
Abstract
The extent to which Rhodopsin family G-protein-coupled receptors (GPCRs) form invariant oligomers is contentious. Recent single-molecule fluorescence imaging studies mostly argue against the existence of constitutive receptor dimers and instead suggest that GPCRs only dimerize transiently, if at all. However, whether or not even transient dimers exist is not always clear due to difficulties in unambiguously distinguishing genuine interactions from chance colocalizations, particularly with respect to short-lived events. Previous single-molecule studies have depended critically on calculations of chance colocalization rates and/or comparison with unfixed control proteins whose diffusional behavior may or may not differ from that of the test receptor. Here, we describe a single-molecule imaging assay that 1) utilizes comparisons with well-characterized control proteins, i.e., the monomer CD86 and the homodimer CD28, and 2) relies on cell fixation to limit artifacts arising from differences in the distribution and diffusion of test proteins versus these controls. The improved assay reliably reports the stoichiometry of the Glutamate-family GPCR dimer, γ-amino butyric acid receptor b2, whereas two Rhodopsin-family GPCRs, β2-adrenergic receptor and mCannR2, exhibit colocalization levels comparable to those of CD86 monomers, strengthening the case against invariant GPCR oligomerization.
Collapse
Affiliation(s)
- Sarah L Latty
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - James H Felce
- Radcliffe Department of Clinical Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Laura Weimann
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Simon J Davis
- Radcliffe Department of Clinical Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
43
|
Tian H, Fürstenberg A, Huber T. Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics. Chem Rev 2016; 117:186-245. [DOI: 10.1021/acs.chemrev.6b00084] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Alexandre Fürstenberg
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Thomas Huber
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| |
Collapse
|
44
|
Shao S, Zhang W, Hu H, Xue B, Qin J, Sun C, Sun Y, Wei W, Sun Y. Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Res 2016; 44:e86. [PMID: 26850639 PMCID: PMC4872083 DOI: 10.1093/nar/gkw066] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 01/17/2016] [Accepted: 01/25/2016] [Indexed: 12/13/2022] Open
Abstract
Visualization of chromosomal dynamics is important for understanding many fundamental intra-nuclear processes. Efficient and reliable live-cell multicolor labeling of chromosomal loci can realize this goal. However, the current methods are constrained mainly by insufficient labeling throughput, efficiency, flexibility as well as photostability. Here we have developed a new approach to realize dual-color chromosomal loci imaging based on a modified single-guide RNA (sgRNA) of the CRISPR/Cas9 system. The modification of sgRNA was optimized by structure-guided engineering of the original sgRNA, consisting of RNA aptamer insertions that bind fluorescent protein-tagged effectors. By labeling and tracking telomeres, centromeres and genomic loci, we demonstrate that the new approach is easy to implement and enables robust dual-color imaging of genomic elements. Importantly, our data also indicate that the fast exchange rate of RNA aptamer binding effectors makes our sgRNA-based labeling method much more tolerant to photobleaching than the Cas9-based labeling method. This is crucial for continuous, long-term tracking of chromosomal dynamics. Lastly, as our method is complementary to other live-cell genomic labeling systems, it is therefore possible to combine them into a plentiful palette for the study of native chromatin organization and genome ultrastructure dynamics in living cells.
Collapse
Affiliation(s)
- Shipeng Shao
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Weiwei Zhang
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Huan Hu
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Boxin Xue
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Jinshan Qin
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Chaoying Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Yuao Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Wensheng Wei
- Biodynamic Optical Imaging Center (BIOPIC), Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
45
|
Sergé A. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy. Front Cell Dev Biol 2016; 4:36. [PMID: 27200348 PMCID: PMC4854873 DOI: 10.3389/fcell.2016.00036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022] Open
Abstract
The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis.
Collapse
Affiliation(s)
- Arnauld Sergé
- Centre de Cancérologie de Marseille, Équipe "Interactions Leuco/Stromales", Institut Paoli-Calmettes, Institut National de la Santé et de la Recherche Médicale U1068, Centre National de la Recherche Scientifique UMR7258, Aix-Marseille Université UM105 Marseille, France
| |
Collapse
|
46
|
Li H, Zhang Y, Ha V, Lykotrafitis G. Modeling of band-3 protein diffusion in the normal and defective red blood cell membrane. SOFT MATTER 2016; 12:3643-3653. [PMID: 26977476 DOI: 10.1039/c4sm02201g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We employ a two-component red blood cell (RBC) membrane model to simulate lateral diffusion of band-3 proteins in the normal RBC and in the RBC with defective membrane proteins. The defects reduce the connectivity between the lipid bilayer and the membrane skeleton (vertical connectivity), or the connectivity of the membrane skeleton itself (horizontal connectivity), and are associated with the blood disorders of hereditary spherocytosis (HS) and hereditary elliptocytosis (HE) respectively. Initially, we demonstrate that the cytoskeleton limits band-3 lateral mobility by measuring the band-3 macroscopic diffusion coefficients in the normal RBC membrane and in a lipid bilayer without the cytoskeleton. Then, we study band-3 diffusion in the defective RBC membrane and quantify the relation between band-3 diffusion coefficients and percentage of protein defects in HE RBCs. In addition, we illustrate that at low spectrin network connectivity (horizontal connectivity) band-3 subdiffusion can be approximated as anomalous diffusion, while at high horizontal connectivity band-3 diffusion is characterized as confined diffusion. Our simulations show that the band-3 anomalous diffusion exponent depends on the percentage of protein defects in the membrane cytoskeleton. We also confirm that the introduction of attraction between the lipid bilayer and the spectrin network reduces band-3 diffusion, but we show that this reduction is lower than predicted by the percolation theory. Furthermore, we predict that the attractive force between the spectrin filament and the lipid bilayer is at least 20 times smaller than the binding forces at band-3 and glycophorin C, the two major membrane binding sites. Finally, we explore diffusion of band-3 particles in the RBC membrane with defects related to vertical connectivity. We demonstrate that in this case band-3 diffusion can be approximated as confined diffusion for all attraction levels between the spectrin network and the lipid bilayer. By comparing the diffusion coefficients measured in horizontal vs. vertical defects, we conclude that band-3 mobility is primarily controlled by the horizontal connectivity.
Collapse
Affiliation(s)
- He Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Yihao Zhang
- Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, CT 06269-3139, USA.
| | - Vi Ha
- Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, CT 06269-3139, USA.
| | - George Lykotrafitis
- Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, CT 06269-3139, USA. and Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
47
|
Halls ML, Yeatman HR, Nowell CJ, Thompson GL, Gondin AB, Civciristov S, Bunnett NW, Lambert NA, Poole DP, Canals M. Plasma membrane localization of the μ-opioid receptor controls spatiotemporal signaling. Sci Signal 2016; 9:ra16. [PMID: 26861044 DOI: 10.1126/scisignal.aac9177] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Differential regulation of the μ-opioid receptor (MOR), a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor, contributes to the clinically limiting effects of opioid analgesics, such as morphine. We used biophysical approaches to quantify spatiotemporal MOR signaling in response to different ligands. In human embryonic kidney (HEK) 293 cells overexpressing MOR, morphine caused a Gβγ-dependent increase in plasma membrane-localized protein kinase C (PKC) activity, which resulted in a restricted distribution of MOR within the plasma membrane and induced sustained cytosolic extracellular signal-regulated kinase (ERK) signaling. In contrast, the synthetic opioid peptide DAMGO ([d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin) enabled receptor redistribution within the plasma membrane, resulting in transient increases in cytosolic and nuclear ERK activity, and, subsequently, receptor internalization. When Gβγ subunits or PKCα activity was inhibited or when the carboxyl-terminal phosphorylation sites of MOR were mutated, morphine-activated MOR was released from its restricted plasma membrane localization and stimulated a transient increase in cytosolic and nuclear ERK activity in the absence of receptor internalization. Thus, these data suggest that the ligand-induced redistribution of MOR within the plasma membrane, and not its internalization, controls its spatiotemporal signaling.
Collapse
Affiliation(s)
- Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Holly R Yeatman
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Cameron J Nowell
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Georgina L Thompson
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Arisbel Batista Gondin
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Srgjan Civciristov
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Nigel W Bunnett
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. Department of Anesthesia and Perioperative Medicine, Monash University, Melbourne, Victoria 3004, Australia. Department of Pharmacology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Nevin A Lambert
- Department of Toxicology and Pharmacology, Georgia Regents University, Augusta, GA 30912, USA
| | - Daniel P Poole
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Meritxell Canals
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| |
Collapse
|
48
|
Xue C, Zheng X, Chen K, Tian Y, Hu G. Probing Non-Gaussianity in Confined Diffusion of Nanoparticles. J Phys Chem Lett 2016; 7:514-9. [PMID: 26784864 DOI: 10.1021/acs.jpclett.5b02624] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Confined diffusion is ubiquitous in nature. Ever since the "anomalous yet Brownian" motion was observed, the non-Gaussianity in confined diffusion has been unveiled as an important issue. In this Letter, we experimentally investigate the characteristics and source of non-Gaussian behavior in confined diffusion of nanoparticles suspended in polymer solutions. A time-varied and size-dependent non-Gaussianity is reported based on the non-Gaussian parameter and displacement probability distribution, especially when the nanoparticle's size is smaller than the typical polymer mesh size. This non-Gaussianity does not vanish even at the long-time Brownian stage. By inspecting the displacement autocorrelation, we observe that the nanoparticle-structure interaction, indicated by the anticorrelation, is limited in the short-time stage and makes little contribution to the non-Gaussianity in the long-time stage. The main source of the non-Gaussianity can therefore be attributed to hopping diffusion that results in an exponential probability distribution with the large displacements, which may also explain certain processes dominated by rare events in the biological environment.
Collapse
Affiliation(s)
- Chundong Xue
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences , Beijing 100190, China
| | - Xu Zheng
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences , Beijing 100190, China
| | - Kaikai Chen
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, China
| | - Yu Tian
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, China
| | - Guoqing Hu
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences , Beijing 100190, China
| |
Collapse
|
49
|
Möckl L, Lindhorst TK, Bräuchle C. Artificial Formation and Tuning of Glycoprotein Networks on Live Cell Membranes: A Single-Molecule Tracking Study. Chemphyschem 2016; 17:829-35. [PMID: 26698366 DOI: 10.1002/cphc.201500809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 01/26/2023]
Abstract
We present a method to artificially induce network formation of membrane glycoproteins and show the precise tuning of their interconnection on living cells. For this, membrane glycans are first metabolically labeled with azido sugars and then tagged with biotin by copper-free click chemistry. Finally, these biotin-tagged membrane proteins are interconnected with streptavidin (SA) to form an artificial protein network in analogy to a lectin-induced lattice. The degree of network formation can be controlled by the concentration of SA, its valency, and the concentration of biotin on membrane proteins. This was verified by investigation of the spatiotemporal dynamics of the SA-protein networks employing single-molecule tracking. It was also proven that this network formation strongly influences the biologically relevant process of endocytosis as it is known from natural lattices on the cell surface.
Collapse
Affiliation(s)
- Leonhard Möckl
- Department of Physical Chemistry, Ludwig Maximilian University of Munich, Butenandtstr. 11, 81377, Munich, Germany
| | - Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, 24098, Kiel, Germany
| | - Christoph Bräuchle
- Department of Physical Chemistry, Ludwig Maximilian University of Munich, Butenandtstr. 11, 81377, Munich, Germany.
| |
Collapse
|
50
|
Guérin T, Dean DS. Kubo formulas for dispersion in heterogeneous periodic nonequilibrium systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062103. [PMID: 26764628 DOI: 10.1103/physreve.92.062103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 06/05/2023]
Abstract
We consider the dispersion properties of tracer particles moving in nonequilibrium heterogeneous periodic media. The tracer motion is described by a Fokker-Planck equation with arbitrary spatially periodic (but constant in time) local diffusion tensors and drifts, eventually with the presence of obstacles. We derive a Kubo-like formula for the time-dependent effective diffusion tensor valid in any dimension. From this general formula, we derive expressions for the late time effective diffusion tensor and drift in these systems. In addition, we find an explicit formula for the late finite-time corrections to these transport coefficients. In one dimension, we give a closed analytical formula for the transport coefficients. The formulas derived here are very general and provide a straightforward method to compute the dispersion properties in arbitrary nonequilibrium periodic advection-diffusion systems.
Collapse
Affiliation(s)
- T Guérin
- Laboratoire Ondes et Matière d'Aquitaine (LOMA), CNRS, UMR 5798/Université de Bordeaux, F-33400 Talence, France
| | - D S Dean
- Laboratoire Ondes et Matière d'Aquitaine (LOMA), CNRS, UMR 5798/Université de Bordeaux, F-33400 Talence, France
| |
Collapse
|