1
|
Zou D, Lu C, Jia Y, Wang H, Wang J. A novel fluorescence and colorimetric dual sensing system for rapid and sensitive detection of histidine based on TSPP-CA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 337:126145. [PMID: 40184983 DOI: 10.1016/j.saa.2025.126145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/27/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Histidine (His) plays an important role in human health and life activities. It will harm human health when His intake is insufficient or excessive. Its residue also will pollute the natural environment. Therefore, establishing a reliable and sensitive method for detecting histidine is particularly important. However, most of the existing detection methods of His rely on the single change of single signal, which are susceptible to interference from testing environmental factors and prone to generating false positive results. In contrast, the fluorescence and colorimetric dual-signal sensing system can not only effectively improve the reliability of detection, but also significantly reduce the risk of false positives. Therefore, the dual-signal sensing system has gradually become the research hotspot. Based on this, 5,10,15,20-tetra-(4-sulfophenyl) porphyrin (TSPP) was selected as the fluorescence and colorimetry dual-signal probe for the rapid detection of His in this study. Since TSPP could interact with many substances due to the specificity of molecular structure, it is the best choice to build an "ON-OFF-ON" sensing system in order to improve the specificity of the sensing system. Therefore, citric acid (CA) as an intermediate based on TSPP probe was successfully developed fluorescence and colorimetric dual-sensing system for the quantitative detection of histidine in real samples. The signal of the dual sensing system was "turned on" when the red TSPP solution obtained the fluorescence emission wavelength of 642 nm at the 514 nm optimal excitation wavelength and the UV-Vis absorption at 413 nm, respectively. The fluorescence intensity and absorbance of TSPP gradually decreased with the introduction of CA. At this time, the signal of the dual-sensing system became "turned off", and the color of the solution changed from light pink to light green. The quenched fluorescence intensity and absorbance, however, was restored upon the introduction of histidine into the system. Simultaneously, the color of the solution changed from light green to light pink, and the dual-sensing system became "turned on". Therefore, a novel fluorescence and colorimetric dual-signal sensing system based on TSPP was proposed for histidine detection. The results indicated that the linear ranges of the fluorescence sensing system were 8.34 × 10-6 M - 1.51 × 10-4 M and 1.85 × 10-4 M - 1.4 × 10-3 M with detection limits of 0.282 μM and 10.91 μM (LOD, S/N = 3), respectively. The linear range of the colorimetric sensing system was 2.04 × 10-4 M-4.35 × 10-4 M with a detection limit of 11.97 μM (LOD, S/N = 3). Meanwhile, the dual-sensing system provided a promising platform for practical samples sensing applications.
Collapse
Affiliation(s)
- Dajie Zou
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; College of Pharmacy, Qinghai Minzu University, Xining 810007, China
| | - Chenyan Lu
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; College of Pharmacy, Qinghai Minzu University, Xining 810007, China
| | - Yanyan Jia
- QingHai Higher Vocational and Technical Institute, China
| | - Huan Wang
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; College of Pharmacy, Qinghai Minzu University, Xining 810007, China.
| | - Jiuli Wang
- College of Ecology, Environment and Resources, Qinghai Minzu University, Xining 810007, China.
| |
Collapse
|
2
|
Arshadi S, Behmagham F, Aziz QH, Al-Shami KR, Tariq H, Ubaid M. The computational density functional theory (DFT) investigating the CO gas adsorption on magnesium porphyrin nanorings (Mg4@PNR4). J Mol Graph Model 2025; 137:108996. [PMID: 40049059 DOI: 10.1016/j.jmgm.2025.108996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 01/09/2025] [Accepted: 02/24/2025] [Indexed: 03/25/2025]
Abstract
The decorated butadiyne-linked four porphyrin nanorings with four magnesium cations (Mg4@PNR4) represented a novel class of nanoscale molecules. This Mg4@PNR4 system could be considered as a high surface area with favorable chemical and physical properties which has inherent ability to form hydrogen and covalent bonds. The Mg4@PNR4 system could contribute to air purification and greenhouse gas decrease by efficiently capturing toxic gases such as carbon dioxide and nitrogen oxides. This study aims to scrutinise and improve the CO gas sensing capacity of the Mg4@PNR4 system with four porphyrin rings using density functional theory (DFT). In all configurations, the adsorption values were negative which indicates adsorption process is physical and reversible. Also, the CO gas adsorption, in all configurations, increased the band gap of nanoring by 114-121 % and reduced the conductivity of the nanoring. Additionally, the recovery times were in the range of nano, pico and femto seconds which showed the rapid desorption of CO gas after physical adsorption. According to the NBO investigations, the amount of positive charge in the magnesium ions decreases and the positive charge in the gas increases during the adsorption of CO molecule on the nanoring. Eventually, the FMO analysis and the electron transfer amount (ΔN) showed that the electrons were transferring from CO to the porphyrin nanoring.
Collapse
Affiliation(s)
- Sattar Arshadi
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran.
| | - Farnaz Behmagham
- Department of Chemistry, Miandoab Branch, Islamic Azad University, Miandoab, Iran.
| | - Qusay Husam Aziz
- Department of Anesthesia Techniques, Al-Noor University College, Nineveh, Iraq
| | - Karrar R Al-Shami
- College of Science, Department of Forensic Sciences, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Hayder Tariq
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
3
|
Yadav SK, Kumar N, Sankar M. Oxidovanadium(IV) Porphyrin-Imidazole Complex-Catalyzed One-Pot, Three-Component Green Synthesis of Biologically Active Pyrano[2,3- d]pyrimidine and 4 H-Chromene Heterocycles. Inorg Chem 2025. [PMID: 40354361 DOI: 10.1021/acs.inorgchem.4c04871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
A β-functionalized porphyrin ligand {H2TPP(Phen)}, has been synthesized and subsequently employed as a dibasic tetradentate ligand in synthesizing its vanadyl complex 2-(1H-imidazo[4,5-f][1,10]phenanthroline-2-yl)-5,10,15,20-tetraphenylporphyrinatooxido-vanadium(IV)[VIVOTPP(Phen)] (1). Comprehensive characterization of the ligand {H2TPP(Phen)} and its vanadyl(IV) complex (1) was achieved through various analytical and spectroscopic techniques, including NMR, ultraviolet-visible (UV-vis), EPR, and MALDI-TOF mass spectrometry and elemental analysis. Electrochemical studies indicated that the free base porphyrin {H2TPP(Phen)} tends to four successive reduction peaks and two oxidation peaks observed in cyclic voltammetry. In contrast, the metalated complex [VIVOTPP(Phen)] displayed two successive reversible reductions and two oxidation peaks. The synthesized vanadyl(IV)-porphyrin complex (1) was further employed as an efficient and reusable catalyst in an environmentally friendly, one-pot, three-component synthesis of biologically and clinically relevant pyrano[2,3-d]pyrimidine (Ca-Ch, Da-Dg) and 4H-chromene (Ga-Gj, Ha-Hj) heterocycles. Based on the current literature regarding one-pot, multicomponent reactions, two distinct and plausible mechanistic pathways are postulated for these transformations. A detailed mechanistic investigation, including the isolation of intermediates and stepwise reaction analysis, revealed that the type of 1,3-dicarbonyl compound used is pivotal in determining the operative mechanistic pathway in these reactions. The current catalytic protocol developed for the synthesis of pyrano[2,3-d]pyrimidine and 4H-chromene heterocycles presents several advantages over existing methodologies, including the use of an eco-friendly solvent (ethanol), high product yields (up to 97%), shorter reaction time scale (30 min), high turnover frequency (TOF) values (up to 14.7 min-1), and excellent catalyst reusability over five catalytic cycles.
Collapse
Affiliation(s)
- Sumit Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Naveen Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Department of Chemistry, Maharaj Singh College, Saharanpur 247001, India
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
4
|
Chen M, Ji S, Liu X, Zheng X, Zhou M, Wang W. Porphyrins and Their Derivatives in Cancer Therapy: Current Advances, Mechanistic Insights, and Prospective Directions. Mol Pharm 2025. [PMID: 40294305 DOI: 10.1021/acs.molpharmaceut.4c01359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Porphyrin and its derivatives are widely used in cancer therapy due to their strong photon absorption capabilities and moderate light stability. Due to their hydrophobic nature, porphyrins with tetrapyrrolic macrocycles ease self-aggregation in physiological conditions. Instead, exploiting the C4 symmetry structure for self-assembly is beneficial to improve the bioavailability of porphyrin and its derivatives. Herein, this Review outlines porphyrin-based nanoformulations for therapeutic applications in cancer treatment. The typical pharmaceutical application of the integrated porphyrinic structure is systematically summarized, focusing on the typical synthetic methodologies and structure-functionality relationship. Additionally, therapeutic modalities (e.g., photothermal, photodynamic, and sonodynamic) and their synergy mechanism in regulated cell death are overviewed. Special attention is given to emerging technologies in nanocatalytic therapy, therapeutic vaccines, and proteolysis-targeting chimeras, which align with the trend toward personalization and minimal invasiveness in healthcare. Finally, we discuss the challenges and limitations of porphyrinic nanoformulations and explore their future directions in the healthcare sector, aiming to bridge the gap between research and practical clinical application.
Collapse
Affiliation(s)
- Min Chen
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Shuying Ji
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Xingxing Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
5
|
Liang Z, Lei H, Zheng H, Wang HY, Zhang W, Cao R. Selective two-electron and four-electron oxygen reduction reactions using Co-based electrocatalysts. Chem Soc Rev 2025. [PMID: 40259844 DOI: 10.1039/d4cs01199f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The oxygen reduction reaction (ORR) can take place via both four-electron (4e-) and two-electron (2e-) pathways. The 4e- ORR, which produces water (H2O) as the only product, is the key reaction at the cathode of fuel cells and metal-air batteries. On the other hand, the 2e- ORR can be used to electrocatalytically synthesize hydrogen peroxide (H2O2). For the practical applications of the ORR, it is very important to precisely control the selectivity. Understanding structural effects on the ORR provides the basis to control the selectivity. Co-based electrocatalysts have been extensively studied for the ORR due to their high activity, low cost, and relative ease of synthesis. More importantly, by appropriately designing their structures, Co-based electrocatalysts can become highly selective for either the 2e- or the 4e- ORR. Therefore, Co-based electrocatalysts are ideal models for studying fundamental structure-selectivity relationships of the ORR. This review starts by introducing the reaction mechanism and selectivity evaluation of the ORR. Next, Co-based electrocatalysts, especially Co porphyrins, used for the ORR with both 2e- and 4e- selectivity are summarized and discussed, which leads to the conclusion of several key structural factors for ORR selectivity regulation. On the basis of this understanding, future works on the use of Co-based electrocatalysts for the ORR are suggested. This review is valuable for the rational design of molecular catalysts and material catalysts with high selectivity for 4e- and 2e- ORRs. The structural regulation of Co-based electrocatalysts also provides insights into the design and development of ORR electrocatalysts based on other metal elements.
Collapse
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Hong-Yan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
6
|
Önal HT. Anti-inflammatory photodynamic activity of tetraphenyl-substituted porphyrin in J774.2 macrophage cells. Photodiagnosis Photodyn Ther 2025; 53:104597. [PMID: 40254229 DOI: 10.1016/j.pdpdt.2025.104597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 04/22/2025]
Abstract
Porphyrin derivatives have been explored as potential agents for Photodynamic Therapy (PDT). This study aimed to investigate the anti-inflammatory photodynamic activity of a symmetrical tetraphenyl-substituted porphyrin derivative in mammalian macrophage cells. In this study, the previously synthesized compound 5,10,15,20- tetra(4‑tert‑butylphenyl)porphyrin (POR) was evaluated. To investigate the potential effects of POR on the immune response, interleukin-6 (IL-6) and tumor necrosis factoralpha (TNF-α) levels were measured in cells stimulated with lipopolysaccharide (LPS). Cytokine analyses were performed under conditions where the compound was applied in the dark and under 5 and 10 min light exposure. The data show that the porphyrin derivative exhibits a significant anti-inflammatory photodynamic effect in vitro when applied at subtoxic concentrations. No cytotoxicity was observed at all applied doses, both in the presence and absence of light. This is consistent with previous literature findings demonstrating the non-cytotoxic nature of porphyrin derivatives. While high-concentration POR applications create a strong anti-inflammatory response in dark conditions, a significant decrease in TNF-α and IL-6 release was recorded with light application. Furthermore, the observed effects were dose-dependent, highlighting the critical importance of optimizing the dose for potential therapeutic uses. The results indicate that the studied porphyrin derivative has photodynamic anti-inflammatory properties and suggest that this compound can be evaluated as a candidate therapeutic agent in the management of diseases where suppression of the immune response is targeted.
Collapse
Affiliation(s)
- Harika Topal Önal
- Medical Laboratory Techniques, Vocational School of Health Services, Toros University, 33140 Mersin, Turkiye.
| |
Collapse
|
7
|
Mendes AC, Moura NM, Faustino MAF, Neves MGP, Chronakis IS. Porphyrin-based electrospun nanomaterials for life science applications. BBA ADVANCES 2025; 7:100160. [PMID: 40337086 PMCID: PMC12056381 DOI: 10.1016/j.bbadva.2025.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/02/2025] [Accepted: 04/16/2025] [Indexed: 05/09/2025] Open
Abstract
Porphyrins are renowned for their utility in photocatalysis, electronics, sensors, solar cell dyes, and environmental remediation. However, their potential in life sciences applications remains underexplored, particularly in the context of encapsulation via electrospinning. This review examines recent advancements (2000-2025) in electrospinning techniques for encapsulating porphyrins, highlighting their unique properties, bioactivities, and versatile applications in life sciences. By combining the strengths of porphyrins and electrospinning technology, researchers can unlock transformative solutions for various life-science challenges, which include photodynamic therapy (PDT), composite materials for anti-microbial applications, sensors, and drug delivery. These efforts could push porphyrin-encapsulated materials from research concepts to applied societal solutions, addressing critical needs in healthcare and beyond to other fields.
Collapse
Affiliation(s)
- Ana C. Mendes
- Research Group for Food Production Engineering, Laboratory of Nano-Bioscience, DTU-Food, Technical University of Denmark, Henrik Dams Allé B202, 2800 Kgs. Lyngby, Denmark
| | - Nuno M.M. Moura
- LAQV-RQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M. Amparo F․ Faustino
- LAQV-RQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M. Graça P.M.S. Neves
- LAQV-RQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ioannis S. Chronakis
- Research Group for Food Production Engineering, Laboratory of Nano-Bioscience, DTU-Food, Technical University of Denmark, Henrik Dams Allé B202, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Szuroczki P, Mikle G, Aroso RT, Arnaut ZA, Pinto SMA, Carrilho RMB, Bényei A, Kollár L, Pereira MM. Unlocking New Porphyrin Aminoacid Bioconjugates with a Pd-Catalyzed Carboxamide Synthesis. Chempluschem 2025:e2500193. [PMID: 40145609 DOI: 10.1002/cplu.202500193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 03/28/2025]
Abstract
This study introduces a novel approach for the one-step preparation of carboxamide porphyrin-amino acid bioconjugates via palladium/xantphos-catalyzed aminocarbonylation of 5,15-dibromo-10,20-diphenylporphyrin and 5,10,15,20-tetrakis(4-bromophenyl)porphyrin, under relatively mild conditions (70-100 °C, 1 atm CO), using natural amino acid methyl ester derivatives as N-nucleophiles. This optimized methodology leads to different families of amphiphilic porphyrin bioconjugates containing between one and four amino acids through carboxamide bonds, with isolated yields up to 71%. The resulting porphyrin-amino acid conjugates incorporate glycine, alanine, phenylalanine, and valine, offering tunable molecular weights and functional properties tailored to diverse applications. Comprehensive characterization using proton nuclear magnetic resonance (1H-NMR), UV-Visible absorption, fluorescence spectroscopy, and singlet oxygen quantum yields highlights the potential of these conjugates as photosensitizers for photodynamic therapy and microbial inactivation. To the best of one's knowledge, this is the first application of a one-step aminocarbonylation reaction for porphyrin functionalization, providing a more straightforward approach compared with traditional multistep methods.
Collapse
Affiliation(s)
- Péter Szuroczki
- Department of General and Inorganic Chemistry, University of Pécs, Ifjúság útja 6., H-7624, Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary
- HUN-REN-PTE Research Group for Selective Chemical Syntheses, University of Pécs, Ifjúság útja 6., H-7624, Pécs, Hungary
| | - Gábor Mikle
- Department of General and Inorganic Chemistry, University of Pécs, Ifjúság útja 6., H-7624, Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary
- HUN-REN-PTE Research Group for Selective Chemical Syntheses, University of Pécs, Ifjúság útja 6., H-7624, Pécs, Hungary
| | - Rafael T Aroso
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal
| | - Zoe A Arnaut
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal
| | - Sara M A Pinto
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal
| | - Rui M B Carrilho
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal
| | - Attila Bényei
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1., H-4032, Debrecen, Hungary
| | - László Kollár
- Department of General and Inorganic Chemistry, University of Pécs, Ifjúság útja 6., H-7624, Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary
- HUN-REN-PTE Research Group for Selective Chemical Syntheses, University of Pécs, Ifjúság útja 6., H-7624, Pécs, Hungary
| | - Mariette M Pereira
- Department of General and Inorganic Chemistry, University of Pécs, Ifjúság útja 6., H-7624, Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal
| |
Collapse
|
9
|
Lee JH, Kim Y, Kim G, Jang WD. Synthesis of Porphyrin Derivatives Bearing Six Carboxylic Acids for the Formation of Three-Dimensional Hydrogen-Bonded Network Structures. Chemistry 2025; 31:e202404280. [PMID: 39910890 DOI: 10.1002/chem.202404280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/07/2025]
Abstract
we synthesized a series of porphyrin derivatives with six carboxylic acid groups to explore their potential in forming hydrogen-bonded networks (YSHs). By systematically varying the position and structure of these carboxylic acid groups, we observed distinct types of hydrogen-bonded frameworks, including two- and three-dimensional networks. Using single-crystal X-ray crystallography, we confirmed that these derivatives form YSHs with unique structural properties influenced by carboxylic acid positioning and π-π interactions. The 1Zn derivative forms a robust 3D hydrogen-bonded network stabilized by π-π stacking interactions, while the 2Ni derivative, with no such stacking, exhibits reduced stability and collapses upon solvent removal. Structural variations like the terphenylene and biphenyl linkers in 3Zn and 4Zn lead to flexible frameworks, while the 5Zn dimer forms two distinct structures depending on the solvent environment. Our findings reveal that careful control over carboxylic acid orientation and linker structure enables the design of diverse hydrogen-bonded networks with tunable stability and dimensionality. These insights advance our understanding of supramolecular assembly principles in porphyrin-based materials and offer new pathways for developing high-performance frameworks for applications in catalysis, sensing, and materials science.
Collapse
Affiliation(s)
- Jeong Heon Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Younghun Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Gyurang Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| |
Collapse
|
10
|
Bhardwaj V, Sankar M. Synthesis, spectral and electrochemical studies of electron-deficient nitrile porphyrins and their utilization in selective cyanide sensing. Dalton Trans 2025; 54:5406-5418. [PMID: 40059862 DOI: 10.1039/d4dt03528c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Two series of β-cyano-substituted porphyrins, MTPP(CN)X (where M = 2H, Co(II), Ni(II), Cu(II), and Zn(II) and X = 1 or 2), were synthesized and thoroughly characterized using UV-visible, fluorescence, and NMR spectroscopic techniques, mass spectrometry, and cyclic voltammetry. One of the investigated compounds, CuTPP(CN)2 (2-Cu), was structurally characterized using single crystal X-ray diffraction, and its saddle-shape macrocyclic conformation was revealed. Compared to MTPPs, these compounds showed red-shifts of 7-24 nm and 13-46 nm in the Soret and Qx(0,0) bands, respectively, owing to the resonance and inductive effects of the β-substituents on the porphyrin π-system. The first reduction potentials of H2TPP(CN) (1-H2) and H2TPP(CN)2 (2-H2) showed anodic shifts of 0.25 V and 0.53 V, respectively, compared to H2TPP. This shift was due to the electron-withdrawing nature of the β-substituent, which made these compounds more readily reduced than H2TPP. Additionally, (1-H2) and (2-H2) exhibited significantly higher dipole moments (5.41 D and 9.34 D, respectively) than H2TPP (0.052 D). This increase was attributed to the high-polarized pull effect of the cyano group. Notably, nickel(II) dicyanoporphyrin (2-Ni) facilitated a selective and reversible visual detection of cyanide ions with a detection limit of 4.97 ppm.
Collapse
Affiliation(s)
- Varusha Bhardwaj
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
11
|
Liang L, Wang W, Li M, Xu Y, Lu Z, Wei J, Tang BZ, Sun F, Tong R. Cancer Photodynamic Therapy Enabled by Water-Soluble Chlorophyll Protein. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16668-16680. [PMID: 40050258 PMCID: PMC11931482 DOI: 10.1021/acsami.5c01280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/21/2025]
Abstract
Photodynamic therapy (PDT) has been utilized to treat various malignant cancers for more than a century. However, many photosensitizers (e.g., derivatives of porphyrins, chlorins, etc.) central to PDT are still suffering from limitations such as water insolubility, dark toxicity, photo/thermal-instability, difficult synthesis/preparation, and poor tumor selectivity. Numerous effective strategies include designing new synthetic photosensitizers by exploiting heavy atom effect, aggregation-induced emission effect (AIE), and electronic/energy effects (donor-acceptor, and Förster resonance energy transfer: FRET), and the linkage of activatable and targeting molecules has been developed to address one or more of these limitations. However, these structural modifications of photosensitizing organic molecules are synthetically challenging and unpredictable in terms of efficacy versus toxicity. Herein, we report a new and simple strategy for effective PDT by combining natural spinach-derived chlorophylls (photosensitizer) with natural water-soluble chlorophyll proteins (WSCPs) derived originally from plants and produced heterologously by bacteria (E. coli). The recombinant WSCPs (chlorophyll-WSCP) are tetrameric and stable under air/thermal conditions and importantly can produce highly reactive singlet oxygen under red/far-red light irradiation to induce cancer cell death. Our in vivo mouse model studies (melanoma xenografts) further validate the efficacy of the recombinant WSCPs as a new class of water-soluble, nontoxic, and highly efficient photosensitizers for PDT. This work represents the first example of the application of WSCPs in PDT and may advance the clinical applications of PDT for cancer treatment.
Collapse
Affiliation(s)
- Lixin Liang
- Guangxi
Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Wenjun Wang
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Manjia Li
- Department
of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Yingjie Xu
- Department
of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Zhangdi Lu
- Exponent
Ltd., 12 Science Park
West Avenue, Unit, Sha Tin 802-803, New Territories, Hong Kong
| | - Jingjing Wei
- College
of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Ben Zhong Tang
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen 518172, Guangdong, China
| | - Fei Sun
- Department
of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Rongbiao Tong
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| |
Collapse
|
12
|
Charisiadis A, Nikolaou V, Nikoloudakis E, Ladomenou K, Charalambidis G, Coutsolelos AG. Metalloporphyrins in bio-inspired photocatalytic conversions. Chem Commun (Camb) 2025; 61:4630-4646. [PMID: 40009006 DOI: 10.1039/d4cc06655c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Numerous natural systems contain porphyrin derivatives that facilitate important catalytic processes; thus, developing biomimetic photocatalytic systems based on synthetic metalloporphyrins constitutes a rapidly advancing and fascinating research field. Additionally, porphyrins are widely investigated in a plethora of applications due to their highly versatile structure, presenting advantageous photoredox, photophysical and photochemical properties. Consequently, such metallated tetrapyrrolic macrocycles play a prominent role as photosensitizers and catalysts in developing artificial photosynthetic systems that can store and distribute energy through fuel forming reactions. This review highlights the advances in the field of metalloporphyrin-based biomimetic photocatalysis, particularly targeting water splitting, including both hydrogen and oxygen evolution reactions, carbon dioxide reduction and alcohol oxidation. For each photocatalytic system different approaches are discussed, concerning either structural modifications of the porphyrin derivatives or the phase in which the process takes place, i.e. homogenous or heterogenous. The most important findings for each porphyrin-based photocatalytic reaction are presented and accompanied by the analysis of mechanistic aspects when possible. Finally, the perspectives and limitations are discussed, providing future guidelines for the development of highly efficient metalloporphyrin-based biomimetic systems towards energy and environmental applications.
Collapse
Affiliation(s)
- Asterios Charisiadis
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior De Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid, Spain
| | - Vasilis Nikolaou
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM), CNRS UMR 6230, Nantes, France
| | - Emmanouil Nikoloudakis
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Heraklion, Crete, Greece.
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Kalliopi Ladomenou
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, GR-65404 Kavala, Greece.
| | - Georgios Charalambidis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens, Greece.
| | - Athanassios G Coutsolelos
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Heraklion, Crete, Greece.
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| |
Collapse
|
13
|
Wang Z, Ao J, Lai X, Liu G, Meng Y, Zhang Y, Shi J, Wu Y, Wang C. Decreasing the aggregation of photosensitizers to facilitate energy transfer for improved photodynamic therapy. NANOSCALE 2025; 17:5707-5714. [PMID: 39871776 DOI: 10.1039/d4nr04593a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The mode of energy transfer between photosensitizers and oxygen determines the yield of singlet oxygen (1O2), crucial for photodynamic therapy (PDT). However, the aggregation of photosensitizers promotes electron transfer while inhibiting pure energy transfer, resulting in the generation of the hypotoxic superoxide anion (O2-) and consumption of substantial oxygen. Herein, we achieve the reduction of the aggregation of photosensitizers to inhibit electron transfer through classical chemical crosslinking, thereby boosting the production of 1O2. Specifically, we constructed a cross-linked hydrogel-like nanophotosensitizer (HA-TPP NHs) via amidation reactions between hyaluronic acid (HA) and tetrakis(4-aminophenyl)porphyrin (TATPP). In HA-TPP NHs, porphyrin is anchored at the crosslinking sites, preventing their close proximity. Simultaneously, HA-TPP NHs swell in a physiological environment due to water absorption, further increasing the distance between porphyrin molecules to avoid their aggregation. Compared to porphyrin-hyaluronic acid assembling nanoparticles (HA-TPP NPs), we find that the 1O2 generation efficiency of HA-TPP NHs is elevated by over 80%. Furthermore, leveraging the targeting capabilities of hyaluronic acid, HA-TPP NHs demonstrate a remarkable anticancer effect in in vitro and in vivo experiments. This study offers a novel insight and method for improving the therapeutic efficacy of PDT.
Collapse
Affiliation(s)
- Zhenhua Wang
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China.
| | - Jianyang Ao
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China.
| | - Xiaoran Lai
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China.
| | - Gang Liu
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China.
| | - Yun Meng
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China.
| | - Yurong Zhang
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China.
| | - Jieyun Shi
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China.
| | - Yelin Wu
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China.
| | - Chaochao Wang
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China.
| |
Collapse
|
14
|
Wu J, Meng T, Zhang X, Tang S, Liu L, Xue J, Liu X, Wang J, Wen J, Hu D, Zhang G. Glucose-Responsive Zn(II)-Porphyrin COF Adhesive Hydrogels With Dual-Active Sites and GOX-Like Activity for Accelerated Wound Healing. Adv Healthc Mater 2025; 14:e2404076. [PMID: 39743951 DOI: 10.1002/adhm.202404076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/20/2024] [Indexed: 01/04/2025]
Abstract
Effective glycemic control is paramount for optimal wound healing in diabetic patients. Traditional antibacterial and anti-inflammatory treatments, while important, often fall short in addressing the hyperglycemic conditions of diabetic wounds. Therefore, the development of novel therapeutic strategies for accelerating diabetic wound healing has garnered escalating attention. Covalent organic frameworks (COFs) are an emerging class of crystalline porous polymers constructed through strong covalent bonds. Their exceptional structural tunability renders them as an ideal platform for advanced therapeutic applications. Herein, two redox-responsive Zn(II)-coordinated porphyrin COF hydrogels are constructed, which demonstrate rapid blood glucose reduction in localized tissues, along with improved angiogenesis, reactive oxygen species (ROS) scavenging, and photothermal antimicrobial capacities within the hyperglycemic blood environment of diabetic patients, thereby effectively controlling infections and concurrently promoting wound healing. Specifically, COFs with built-in dual active sites, i.e., disulfide or diselenide moieties, can be cleaved by ROS, releasing Zn(II) ions that possess antibacterial and tissue-repairing properties. Furthermore, the Zn(II)-porphyrin COF exhibits glucose oxidase (GOX)-like activity, catalyzing the conversion of glucose into non-glucose metabolites. This synergistic combination of glucose-responsive Zn(II) release and GOX-like activities effectively restores tissue redox balance and improves the wound microenvironment, offering a promising strategy for the diagnosis and treatment of diabetic wounds.
Collapse
Affiliation(s)
- Jin Wu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Tao Meng
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiaoqian Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Songtao Tang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Lei Liu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Jing Xue
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiaohui Liu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Junjun Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Danyou Hu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
15
|
Xie Y, Su G, Ishida M, Zhu B, Baryshnikov G, Sha F, Li C, Wu X, Ågren H, Furuta H, Li Q. Dimerization of Hexaphyrin with an Appendant Pyrrole Possessing a Reactive Site to Alleviate the Steric Hindrance. J Am Chem Soc 2025; 147:5368-5376. [PMID: 39888939 DOI: 10.1021/jacs.4c17052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Oxidative dimerization of π-conjugated molecules is a straightforward approach for effectively extending π-conjugation and absorption features. However, it is challenging to construct dimeric species of bulky π-conjugated frameworks because of the steric hindrances and/or poor regioselectivity. To address these issues, a pyrrole unit has been regioselectively appended to the α position of N-confused hexaphyrin (1.1.1.1.1.0) 1 by a facile acid-catalyzed condensation reaction, leading to the formation of pyrrole-appendant 2. Subsequent oxidation of 2 yielded an inner-fused monomer 2F and two fused dimeric species, namely, (2F)2a and (2F)2b. In contrast, oxidation of the corresponding Ni(II) complex 2Ni generated dimer (2Ni)2. Subsequent demetalation resulted in the formation of bipyrrole-linked freebase dimer (2)2, which could chelate Ni(II) and Cu(II) ions to furnish complexes (2Ni)2 and (2Cu)2, respectively. In comparison to the fused dimeric species (2F)2a and (2F)2b, the nonfused dimer (2)2 and its complexes (2Ni)2 and (2Cu)2 exhibit diminished local aromaticity, narrowed HOMO-LUMO gaps, and a red-shifted absorption profile that extends up to 2200 nm. These findings underscore a potent strategy for creating expanded porphyrin dimers, wherein the aromaticity and near-infrared absorption can be fine-tuned by incorporating an appendant pyrrole unit.
Collapse
Affiliation(s)
- Yongshu Xie
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guangxian Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Masatoshi Ishida
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Bin Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Glib Baryshnikov
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping SE-60174, Sweden
| | - Feng Sha
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengjie Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyan Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden
| | - Hiroyuki Furuta
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Qizhao Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
16
|
Safari AA, Anderson RJ, Alavi A, Li Manni G. FCIQMC-CASPT2 with Imaginary-Time-Averaged Wave Functions. J Chem Theory Comput 2025; 21:1029-1038. [PMID: 39818781 PMCID: PMC11823415 DOI: 10.1021/acs.jctc.4c01462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
A new method to perform complete active space second-order perturbation theory on top of large active spaces optimized with full configuration quantum Monte Carlo is presented. Computing the three- and Fock-contracted four-particle density matrix from imaginary-time-averaged wave functions is found to resolve fermionic positivity violations and to ensure numerical stability. The protocol is applied to [NiFe]-hydrogenase, [Cu2O2]-oxidase and Fe-porphyrin model systems up to 26 electrons in 27 orbitals and benchmarked against DMRG-CASPT2.
Collapse
Affiliation(s)
- Arta A. Safari
- Max-Planck-Institute
for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Robert J. Anderson
- Max-Planck-Institute
for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Ali Alavi
- Max-Planck-Institute
for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Rd, Cambridge CB2 1EW, United Kingdom
| | - Giovanni Li Manni
- Max-Planck-Institute
for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| |
Collapse
|
17
|
Wang K, Ma HN, Song JX, Yuan X. Color and fluorescence orthogonal dual-functional visual turn-on sensing for acidic and alkaline glyphosate and additive. Food Chem 2025; 464:141816. [PMID: 39488051 DOI: 10.1016/j.foodchem.2024.141816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
In this work, benefitting from the sensitive pH-responsiveness of both meso-tetra-(4-sulfonatophenyl) porphyrin (TPPS4) and calixpyridinium, and their controllable strong noncovalent interactions, the first orthogonal dual-functional visual sensor for simultaneously and separately detecting acidic and alkaline substances without interference by using UV-Vis absorption and fluorescence emission spectra with both "turn on" signal changes was constructed by the supramolecular assembly of calixpyridinium with TPPS4. Color and fluorescence orthogonal dual-functional visual "turn-on" sensing for acidic and alkaline glyphosate and additive by calixpyridinium-TPPS4 sensor was further practically applied. The preparation of this sensor is quite simple in an environmentally friendly water medium. Only 2 μM calixpyridinium and 3 μM TPPS4 are needed to construct this assembly sensor. This sensor has a good biocompatibility, a high selectivity and sensitivity. Moreover, calixpyridinium-TPPS4 sensor can also be applied as a thermal switch and a light controlled anti-counterfeit material.
Collapse
Affiliation(s)
- Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China.
| | - Hui-Na Ma
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Jia-Xuan Song
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Xing Yuan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| |
Collapse
|
18
|
Bandyopadhyay S, Forzano JA, Dirak M, Chan J. Activatable Porphyrin-Based Sensors, Photosensitizers and Combination Therapeutics. JACS AU 2025; 5:42-54. [PMID: 39886600 PMCID: PMC11775669 DOI: 10.1021/jacsau.4c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025]
Abstract
Porphyrins, known as the "pigments of life", have evolved from their natural roles into versatile tools for biomedical applications. The development of activatable porphyrins has significantly expanded their utility, enabling precise responses to a carefully selected target analyte. These advances have broadened their use in imaging, diagnosis, and therapy. These capabilities are driven by activity-based sensing (ABS), which enhances the selectivity and sensitivity to various disease biomarkers. However, their design and implementation are intrinsically complex. This perspective provides an easy-to-follow roadmap that details how such molecules can be developed. Furthermore, we highlight recent progress in ABS-modified porphyrins, focusing on how specific modifications achieve these remarkable properties across various biomedical platforms. The ongoing evolution of activatable porphyrins holds great promise for the development of sophisticated, responsive systems, offering more effective diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Suritra Bandyopadhyay
- Department
of Chemistry, Cancer Center at Illinois and Beckman Institute for
Advanced Science and Technology, University
of Illinois at Urbana−Champaign, Urbana, 61801 Illinois United States
| | - Joseph A Forzano
- Department
of Chemistry, Cancer Center at Illinois and Beckman Institute for
Advanced Science and Technology, University
of Illinois at Urbana−Champaign, Urbana, 61801 Illinois United States
| | - Musa Dirak
- Department
of Chemistry, Cancer Center at Illinois and Beckman Institute for
Advanced Science and Technology, University
of Illinois at Urbana−Champaign, Urbana, 61801 Illinois United States
- Department
of Chemistry, Koç University, 34450 Istanbul, Türkiye
| | - Jefferson Chan
- Department
of Chemistry, Cancer Center at Illinois and Beckman Institute for
Advanced Science and Technology, University
of Illinois at Urbana−Champaign, Urbana, 61801 Illinois United States
| |
Collapse
|
19
|
Xia N, Huang Y, He C, Li Y, Yang S, Liu L. Multifunctional porphyrin-substituted phenylalanine-phenylalanine nanoparticles for diagnostic and therapeutic applications in Alzheimer's disease. Bioorg Chem 2025; 154:108065. [PMID: 39693925 DOI: 10.1016/j.bioorg.2024.108065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
β-Amyloid (Aβ) peptides are believed as the diagnostic biomarkers and therapeutic targets of Alzheimer's disease (AD). Their complexes with copper ions can catalyze the generation of reactive oxygen species (ROS) to further promote neuronal death. Herein, we suggested that porphyrin-substituted phenylalanine-phenylalanine nanoparticles (TPP-FF NPs) could inhibit the aggregation of Aβ monomers, disassemble the fibrillar Aβ aggregates under light illumination, and depressing the Cu2+-induced generation of ROS. Meanwhile, the TPP-FF NPs could be used as the nanocarriers and quenchers of fluorescently-labeled probes for the detection of Aβ oligomer (AβO). Inhibition of Aβ assembly and dissolution of Aβ aggregates were monitored by Thioflavin T (ThT)-based fluorescent assay and characterized by atomic force microscopy. The Aβ/Cu2+-induced generation of ROS was limited by TPP-FF NPs. The fluorescein-labeled probe aptamers attached on the surface of TPP-FF NPs emitted low fluorescence. The interaction between AβO and aptamers induced the release of the probes from the surface of TPP-FF NPs, driving the fluorophore far away from the quenchers and turning on the fluorescence. The signal-on strategy can be used for the detection of AβO with a low detection limit. This work should be evaluable for the development of multifunctional candidates for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Ning Xia
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, China
| | - Yaliang Huang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, China; School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Cancan He
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, China
| | - Yadi Li
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, China
| | - Suling Yang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, China
| | - Lin Liu
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, China.
| |
Collapse
|
20
|
Yang L, Shi L, Liu Y, Liu Z, Tian Z, Li H, Zhang J, He J, Liu Y. ROS-mediated Therapeutics Combined with Metal-based Porphyrin Nanoparticles and their Applications in Tumor Treatment. Curr Med Chem 2025; 32:627-646. [PMID: 37859412 DOI: 10.2174/0109298673264765231006062032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/04/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
High concentrations of reactive oxygen species (ROS) can disrupt cell structure and induce apoptosis and necrosis of tumor cells. Photodynamic therapy (PDT) and chemodynamic therapy (CDT) are two cancer treatments mediated by reactive oxygen species. Oxygen molecules (O2) are one of the indispensable factors in PDT and hypoxic tumor sites limit its application. However, another ROS-mediated method, CDT, can generate •OH and O2in situ by Fenton reaction or Fenton-like reaction. Synergistic PDT/CDT therapy is a strategy to overcome the limitations of tumor microenvironment therapy. In this review, PDT and CDT therapies are briefly introduced, with an emphasis on metal-basrd porphyrin nanoparticles constructed in different ways for PDT/CDT dual-mode therapy. By introducing the history and latest design schemes of the treatment model, it provides ideas for researchers engaged in ROS-mediated cancer therapies.
Collapse
Affiliation(s)
- Lingyan Yang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, 421001, China
| | - Lei Shi
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, 421001, China
| | - Yihui Liu
- The Second Hospital, University of South China, Hengyang City, Hunan Province, 421001, China
| | - Zhenhua Liu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, 421001, China
| | - Zejie Tian
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, 421001, China
| | - Hui Li
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, 421001, China
| | - Jiayao Zhang
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province, 421001, China
| | - Jun He
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province, 421001, China
| | - Yunmei Liu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, 421001, China
| |
Collapse
|
21
|
Hu Y, Peng J, Liu R, Gao J, Hua G, Fan X, Wang S. Porphyrin-Based Supramolecular Self-Assemblies: Construction, Charge Separation and Transfer, Stability, and Application in Photocatalysis. Molecules 2024; 29:6063. [PMID: 39770151 PMCID: PMC11676642 DOI: 10.3390/molecules29246063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
As a key means to solve energy and environmental problems, photocatalytic technology has made remarkable progress in recent years. Organic semiconductor materials offer structural diversity and tunable energy levels and thus attracted great attention. Among them, porphyrin and its derivatives show great potential in photocatalytic reactions and light therapy due to their unique large-π conjugation structure, high apparent quantum efficiency, tailorable functionality, and excellent biocompatibility. Compared to unassembled porphyrin molecules, supramolecular porphyrin assemblies facilitate the solar light absorption and improve the charge transfer and thus exhibit enhanced photocatalytic performance. Herein, the research progress of porphyrin-based supramolecular assemblies, including the construction, the regulation of charge separation and transfer, stability, and application in photocatalysis, was systematically reviewed. The construction strategy of porphyrin supramolecules, the mechanism of charge separation, and the intrinsic relationship of assembling structure-charge transfer-photocatalytic performance received special attention. Surfactants, peptide molecules, polymers, and metal ions were introduced to improve the stability of the porphyrin assemblies. Donor-acceptor structure and co-catalysts were incorporated to inhibit the recombination of the photoinduced charges. These increase the understanding of the porphyrin supramolecules and provide ideas for the design of high-performance porphyrin-based photocatalysts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shengjie Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| |
Collapse
|
22
|
Monisha S, Myithili T, Ajithkumar S, Sudharsan K, Keerthana T, Sarikalakshmi B, Pandi M, Kalimuthu P. Aggregation assisted enhancement of singlet oxygen generation by 4-ethynylphenyl substituted porphyrin photosensitizer for photodynamic therapy. Photochem Photobiol 2024. [PMID: 39706810 DOI: 10.1111/php.14049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024]
Abstract
Modulating the photophysical properties of photosensitizers is an effective approach to enhance singlet oxygen generation for photodynamic therapy. Porphyrins are the most widely used photosensitizers due to their biocompatible nature. Aggregation-induced emission (AIE) characteristics of photosensitizers are one of the advantageous features that will enhance fluorescence, intersystem crossing, and efficient triplet state generation. Herein, we demonstrate two glycosylated porphyrin photosensitizers, ZnGEPOH (with two ethynyl groups) and ZnGPOH (without two ethynyl groups), which exhibit AIE. Detailed studies revealed that ZnGEPOH exhibited a two-fold increase in singlet oxygen production than ZnGPOH due to AIE. The photo-cytotoxicity of ZnGPOH and ZnGEPOH were evaluated using cancer cell lines A549 and AGS. ZnGEPOH shows superior photo-cytotoxicity with cell viability of 21% and 19% for A549 and AGS, respectively, at 250 μg/mL concentration in 48 h. Moreover, ZnGEPOH exhibits minimal photo-cytotoxicity towards the control cell line HEK 293.
Collapse
Affiliation(s)
- Sekar Monisha
- Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Dindigul, Tamilnadu, India
| | - Thangavel Myithili
- School of Biotechnology, Madurai Kamaraj University, Madurai, Tamilnadu, India
| | - Samuthirakani Ajithkumar
- Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Dindigul, Tamilnadu, India
| | - Kumaresan Sudharsan
- Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Dindigul, Tamilnadu, India
| | - Thangaraj Keerthana
- Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Dindigul, Tamilnadu, India
| | - Baskaran Sarikalakshmi
- Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Dindigul, Tamilnadu, India
| | - Mohan Pandi
- School of Biotechnology, Madurai Kamaraj University, Madurai, Tamilnadu, India
| | - Palanisamy Kalimuthu
- Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Dindigul, Tamilnadu, India
| |
Collapse
|
23
|
Baljozović M, Pijeat J, Campidelli S, Ernst KH. Planar and Curved π-Extended Porphyrins by On-Surface Cyclodehydrogenation. J Am Chem Soc 2024; 146:34600-34608. [PMID: 39629975 DOI: 10.1021/jacs.4c12460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Recent advancements in on-surface synthesis have enabled the reliable and predictable preparation of atomically precise low-dimensional materials with remarkable properties, which are often unattainable through traditional wet chemistry. Among these materials, porphyrins stand out as a particularly intriguing class of molecules, extensively studied both in solution and on surfaces. Their appeal lies in the ability to fine-tune their unique chemical and physical properties through central metal exchange or peripheral functionalization. However, the synthesis of π-extended porphyrins featuring unsubstituted anthracenyl groups has remained elusive. Herein, we report an in vacuo temperature-controlled cyclodehydrogenation of bis- and tetraanthracenyl Zn(II) porphyrins on a gold(111) surface. By gradually increasing the temperature, sequential dehydrogenation leads to the formation of fused anthracenyl porphyrin products. Notably, at high molecular coverage, the formation of bowl-shaped porphyrins occurs, along with transmetalation of Zn with Au. These findings open the door to a variety of π-extended anthracenyl-containing porphyrin products via cyclodehydrogenation and transmetalation, offering significant potential in the fields of molecular (photo/electro)catalysis, (opto)electronics, and spintronics.
Collapse
Affiliation(s)
- Miloš Baljozović
- Molecular Surface Science Group, Empa, 8600 Dübendorf, Switzerland
| | - Joffrey Pijeat
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191 Gif-sur-Yvette, France
| | - Stéphane Campidelli
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191 Gif-sur-Yvette, France
| | - Karl-Heinz Ernst
- Molecular Surface Science Group, Empa, 8600 Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
- Nanosurf Laboratory, Institute of Physics, The Czech Academy of Sciences, 16200 Prague, Czech Republic
| |
Collapse
|
24
|
Xiao B, Liao Y, Zhang J, Chen K, Feng G, Feng J, Zhang C. Tetramethyl Cucurbit[6]uril-Porphyrin Supramolecular Polymer Enhances Photosensitization. Int J Mol Sci 2024; 25:13037. [PMID: 39684748 DOI: 10.3390/ijms252313037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Porphyrins serve as photosensitizers (PS) in the realm of cancer photodynamic therapy (PDT). Upon excitation by laser light, porphyrins are capable of converting molecular oxygen into highly cytotoxic singlet oxygen (1O2). However, the rigid π-conjugated structure of porphyrins frequently results in the formation of aggregates in aqueous solutions, which leads to the self-quenching of the excited state. Cucurbit[n]urils exhibit the capacity to stably bind with porphyrins via host-guest interactions, effectively inhibiting their aggregation and potentially enhancing the therapeutic efficacy of PDT. In this study, water-soluble tetramethyl cucurbit[6]uril (TMeQ[6]) was selected as the host, while four propionic acid group-appended porphyrin cationic (TPPOR) was utilized as guests to construct a supramolecular photosensitizer (TPPOR-2TMeQ[6]) in a molar ratio of 2:1. Further experimental findings demonstrate that the presence of TMeQ[6] inhibits the aggregation of TPPOR through non-covalent interactions. This inhibition reduces the energy difference between the excited singlet and triplet states, thereby enhancing the conversion efficiency of 1O2. Moreover, TPPOR-2TMeQ[6] exhibits favorable biocompatibility and minimal dark toxicity against breast cancer cells (4T1). Upon intracellular excitation, the levels of reactive oxygen species (ROS) significantly increase, inducing oxidative stress in 4T1 cells and leading to apoptosis. Consequently, the findings of this study suggest that the enhanced photosensitization achieved through this supramolecular approach is likely to promote the anticancer therapeutic effects of PDT, thereby broadening the application prospects of porphyrins within PDT systems.
Collapse
Affiliation(s)
- Bo Xiao
- School of Basic Medical Sciences/School of Medical Humanities, Guizhou Medical University, Guiyang 550025, China
| | - Yueyue Liao
- School of Basic Medical Sciences/School of Medical Humanities, Guizhou Medical University, Guiyang 550025, China
| | - Jinyu Zhang
- School of Basic Medical Sciences/School of Medical Humanities, Guizhou Medical University, Guiyang 550025, China
| | - Ke Chen
- School of Basic Medical Sciences/School of Medical Humanities, Guizhou Medical University, Guiyang 550025, China
| | - Guangwei Feng
- School of Basic Medical Sciences/School of Medical Humanities, Guizhou Medical University, Guiyang 550025, China
| | - Jian Feng
- School of Basic Medical Sciences/School of Medical Humanities, Guizhou Medical University, Guiyang 550025, China
| | - Chunlin Zhang
- School of Basic Medical Sciences/School of Medical Humanities, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
25
|
Liu Y, Xue Y, Tang J, Zhang P, Liu C, Wu D, Liu J. Porphyrin-Camptothecin (CPT) Grafted Polyoxazoline Amphiphiles for Tumor Photodynamic-Chemotherapy Combination Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64617-64627. [PMID: 39547789 DOI: 10.1021/acsami.4c17267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Porphyrin-based photosensitizers are extensively utilized in the realm of photodynamic therapy, capitalizing on their advantageous optical, chemical, and electronic properties. Nonetheless, their application is often constrained by their pronounced hydrophobicity. Structures with a high load capacity and excellent biocompatibility are preferred options to circumvent this obstacle. Herein, we constructed a novel porphyrin-camptothecin (CPT) polymer, which is composed of amphiphilic oxazoline segments, and the drug monomers containing disulfide bonds are modified on the hydrophobic chain of polyoxazoline. The polyoxazoline-porphyrin-CPT (OPC) polymer can self-assemble into nanoparticles in the aqueous phase, possesses excellent stability, and generates abundant singlet oxygen (1O2) under laser irradiation. Additionally, the OPC nanoparticles exhibit satisfactory biocompatibility and high light toxicity against 4T1 cells. In the microenvironment of the tumor, drugs were released from the OPC nanoparticles owing to the high concentration of GSH, causing direct damage to the tumor cell, achieving the combination of photo-chemotherapy. The findings of this research indicate that polyoxazoline porphyrin demonstrates adaptability as a nanoplatform for cancer treatment.
Collapse
Affiliation(s)
- Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Yifan Xue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Junjie Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Peng Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Changjiang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| |
Collapse
|
26
|
Chen Y, Ding T, Qian Z, Ma Z, Zhou L, Li Z, Lv R, Xu Y, Xu Y, Hao L, Zhu C, Yao X, Yu W, Fan W. Biodegradable persistent ROS-generating nanosonosensitizers for enhanced synergistic cancer therapy by inducing cascaded oxidative stress. NANOSCALE HORIZONS 2024; 9:2306-2319. [PMID: 39295580 DOI: 10.1039/d4nh00189c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Sonodynamic therapy (SDT) is gaining popularity in cancer treatment due to its superior controllability and high tissue permeability. Nonetheless, the efficacy of SDT is severely diminished by the transient generation of limited reactive oxygen species (ROS). Herein, we introduce an acid-activated nanosonosensitizer, CaO2@PCN, by the controllable coating of porphyrinic metal-organic frameworks (PCN-224) on CaO2 to induce cascaded oxidative stress in tumors. The PCN-224 doping can generate ROS during SDT to induce intracellular oxidative stress and abnormal calcium channels. Meanwhile, the ultrasound also promotes extracellular calcium influx. In addition, CaO2@PCN sequentially degrades in the tumor cell lysosomes, releasing Ca2+ and H2O2 to induce further abnormal calcium channels and elevate the levels of Ca2+. Insufficient catalase (CAT) in tumor cells promotes intracellular calcium overload, which can induce persistent ROS generation and mitochondrial dysfunction through ion interference therapy (IIT). More importantly, PCN-224 also protects CaO2 against significant degradation under neutral conditions. Hence, the well-designed CaO2@PCN produces synergistic SDT/IIT effects and persistent ROS against cancer. More notably, the acidity-responsive biodegradability endows CaO2@PCN with excellent biosafety and promising clinical potential.
Collapse
Affiliation(s)
- Yue Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China.
| | - Tong Ding
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211100, China.
| | - Zhengzheng Qian
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China.
| | - Zerui Ma
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China.
| | - Liming Zhou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhiling Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211100, China.
| | - Runkai Lv
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China.
| | - Yinghui Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China.
| | - Yingjie Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China.
| | - Linhui Hao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China.
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Xikuang Yao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China.
| | - Wenying Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211100, China.
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
27
|
Ryazanova O, Voloshin I, Dubey I, Dubey L, Karachevtsev V. Binding of a Tricationic meso-Substituted Porphyrin to poly(A)⋅poly(U): an Experimental Study. J Fluoresc 2024:10.1007/s10895-024-04000-4. [PMID: 39465484 DOI: 10.1007/s10895-024-04000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
The porphyrins are macrocyclic compounds widely used as photosensitizers in anticancer photodynamic therapy. The binding of a tricationic meso-tris(N-methylpyridinium)-porphyrin, TMPyP3+, to poly(A)⋅poly(U) polynucleotide has been studied in neutral buffered solution, pH6.9, of low and near-physiological ionic strength in a wide range of molar phosphate-to-dye ratios (P/D). Effective TMPyP3+ binding to the biopolymer was established using absorption spectroscopy, polarized fluorescence, fluorimetric titration and resonance light scattering. We propose a model in which TMPyP3+ binds to the polynucleotide in two competitive binding modes: at low P/D ratios (< 4) external binding of the porphyrin to polynucleotide backbone without self-stacking dominates, and at higher P/D (> 30) the partially stacked porphyrin J-dimers are embedded into the polymer groove. Enhancement of the porphyrin emission was observed upon binding in all P/D range, contrasting the binding of this porphyrin to poly(G)⋅poly(C) with significant quenching of the porphyrin fluorescence at low P/D ratios. This observation indicates that TMPyP3+ can discriminate between poly(A)⋅poly(U) and poly(G)⋅poly(C) polynucleotides at low P/D ratios. Formation of highly scattering extended porphyrin aggregates was observed near the stoichiometric in charge binding ratio, P/D = 3. It was revealed that the efficiency of the porphyrin external binding and aggregation is reduced in the solution of near-physiological ionic strength.
Collapse
Affiliation(s)
- Olga Ryazanova
- Department of Molecular Biophysics, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Nauky Ave, Kharkiv, 61103, Ukraine.
| | - Igor Voloshin
- Department of Molecular Biophysics, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Nauky Ave, Kharkiv, 61103, Ukraine
| | - Igor Dubey
- Department of Synthetic Bioregulators, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., Kiev, 03143, Ukraine
| | - Larysa Dubey
- Department of Synthetic Bioregulators, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., Kiev, 03143, Ukraine
| | - Victor Karachevtsev
- Department of Molecular Biophysics, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Nauky Ave, Kharkiv, 61103, Ukraine
| |
Collapse
|
28
|
Lau CY, Yeung CS, Tse HY, Luk HL, Yu CY, Yuen CB, Phillips DL, Leu SY. Macrocyclic porphyrin photocatalysts without metal chelation: A novel pathway for complete degradation of tough halophenols with longwave visible LED light source. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135342. [PMID: 39126850 DOI: 10.1016/j.jhazmat.2024.135342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Halophenols are toxic and persistent pollutants in water environments which poses harm to various organisms. Due to their high stability and long residence time, ultraviolet radiation, heavy metals and oxidizing agents have been largely adopted on treating these compounds. However, these treatment methods could pose toxicity or hazardous risks to the marine environment and plant operators. In this study, a water-soluble porphyrin photocatalyst was synthesized and introduced for halophenol treatment using UV-free LED white light. The porphyrin catalyst is a macrocyclic ring consisting of pyrroles linked with methine bridges, the highly conjugated ring provided the superior functionality of visible light absorption. Surprisingly, over 99 % degradation of halophenols and over 90 % dehalogenation have been achieved without metal chelation, even higher than those of transition metal porphyrins with inclusion of Fe3+, Zn2+, Cu2+, Co2+, Ni2+, and Mn2+. Ring-opening reactions were confirmed with the formation of carboxylic acids; dicarboxylic acids like acrylic acid, and malonic acid; while fumaric acid was the main product. Total organic carbon results indicated no CO2 produced during the reaction. Triplet absorbance and scavenger studies also indicated that singlet oxygen and conduction band electrons are the main radical species for halophenol degradation. The 100-fold singlet emission quenching over triplet absorption quenching indicated that the excited electrons tend to be transferred via singlet state. This concept brings along new approaches detoxifying halophenol-related wastewater without UV, metals and other additives, which is more environmentally-friendly and sheds light to the conversion of toxic materials into useful chemical precursors.
Collapse
Affiliation(s)
- Chun-Yin Lau
- Department of Civil & Environmental Engineering, Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Hong Kong
| | - Chi Shun Yeung
- Department of Civil & Environmental Engineering, Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Hong Kong
| | - Ho-Yin Tse
- Department of Civil & Environmental Engineering, Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Hong Kong; Center for Green Chemistry & Green Engineering at Yale, 370 Prospect St, New Haven, CT, USA; Yale School of the Environment, 195 Prospect St, New Haven, CT, USA
| | - Hoi Ling Luk
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong
| | - Chung Yin Yu
- Department of Civil & Environmental Engineering, Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Hong Kong
| | - Chun Bong Yuen
- Department of Civil & Environmental Engineering, Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Hong Kong
| | - David Lee Phillips
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong
| | - Shao-Yuan Leu
- Department of Civil & Environmental Engineering, Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Hong Kong; Research Institute for Sustainable Urban Development (RISUD), The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| |
Collapse
|
29
|
Liu L, Pan Y, Ye L, Liang C, Mou X, Dong X, Cai Y. Optical functional nanomaterials for cancer photoimmunotherapy. Coord Chem Rev 2024; 517:216006. [DOI: 10.1016/j.ccr.2024.216006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
30
|
Vinodh M, Alipour FH, Al-Azemi TF. meso-5,15-Bis[3-(iso-propyl-idenegalacto-pyran-oxy)phen-yl]-10,20-bis-(4-methyl-phen-yl)porphyrin. IUCRDATA 2024; 9:x241028. [PMID: 39712658 PMCID: PMC11660175 DOI: 10.1107/s2414314624010289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 12/24/2024] Open
Abstract
The crystal structure of a glycosyl-ated porphyrin (P_Gal2) system, C70H70N4O12, where two iso-propyl-idene protected galactose moieties are attached to the meso position of a substituted tetra-aryl porphyrin is reported. This structure reveals that the parent porphyrin is planar, with the galactose moieties positioned above and below the porphyrin macrocycle. This orientation likely prevents porphyrin-porphyrin H-type aggregation, potentially enhancing its efficiency as a photosensitizer in photodynamic therapy. Notable non-bonding C-H⋯O and C-H⋯π inter-actions among adjacent P_Gal2 systems are observed in this crystal network. Additionally, the tolyl groups of each porphyrin can engage in π-π inter-actions with the delocalized π-systems of neighboring porphyrins.
Collapse
Affiliation(s)
- Mickey Vinodh
- Department of Chemistry, Kuwait University, PO Box 5969, Safat 13060, Kuwait
| | - Fatemeh H. Alipour
- Department of Chemistry, Kuwait University, PO Box 5969, Safat 13060, Kuwait
| | - Talal F. Al-Azemi
- Department of Chemistry, Kuwait University, PO Box 5969, Safat 13060, Kuwait
| |
Collapse
|
31
|
Desmedt E, Casademont-Reig I, Monreal-Corona R, De Vleeschouwer F, Alonso M. Aromaticity in the Spectroscopic Spotlight of Hexaphyrins. Chemistry 2024; 30:e202401933. [PMID: 38889264 DOI: 10.1002/chem.202401933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Spectroscopic properties are commonly used in the experimental evaluation of ground- and excited-state aromaticity in expanded porphyrins. Herein, we investigate if the defining photophysical properties still hold for a diverse set of hexaphyrins with varying redox states, topologies, peripheral substitutions, and core-modifications. By combining TD-DFT calculations with several aromaticity descriptors and chemical compound space maps, the intricate interplay between structural planarity, aromaticity, and absorption spectra is elucidated. Our results emphasize that the general assumption that antiaromatic porphyrinoids exhibit significantly attenuated absorption bands as compared to aromatic counterparts does not hold even for the unsubstituted hexaphyrin macrocycles. To connect the spectroscopic properties to the hexaphyrins' aromaticity behaviour, we analyzed chemical compound space maps defined by the various aromaticity indices. The intensity of the Q-band is not well described by the macrocyclic aromaticity. Instead, the degeneracy of the frontier molecular orbitals, the HOMO-LUMO gap, and the |ΔHOMO-ΔLUMO|2 values appear to be better indicators to identify hexaphyrins with enhanced light-absorbing abilities in the near-infrared region. Regions with highly planar hexaphyrin structures, both aromatic and antiaromatic, are characterized by an intense B-band. Hence, we advise using a combination of global and local aromaticity descriptors rooted in different criteria to assess the aromaticity of expanded porphyrins instead of solely relying on the absorption spectra.
Collapse
Affiliation(s)
- Eline Desmedt
- Department of General Chemistry, Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| | - Irene Casademont-Reig
- Department of General Chemistry, Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| | - Roger Monreal-Corona
- Department of General Chemistry, Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Freija De Vleeschouwer
- Department of General Chemistry, Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| | - Mercedes Alonso
- Department of General Chemistry, Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| |
Collapse
|
32
|
Lv X, Chen F, Zhou M, Zhang T, Qiu F, Xue S. Synthesis of porphyrin(2.1.2.1) Pd(II) complexes embedded with various π units and their singlet oxygen generation capacity. Dalton Trans 2024; 53:14433-14437. [PMID: 39140890 DOI: 10.1039/d4dt01749h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Novel porphyrin(2.1.2.1) Pd(II) complexes with various aromatic π rings (benzo, naphthalene and thiophene) embedded between dipyrrin units have been synthesized. Their molecular structures and optical and electronic properties were confirmed and fully investigated. These Pd(II) complexes showed moderate to good capacity of singlet oxygen generation under light irradiation.
Collapse
Affiliation(s)
- Xiaojuan Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Mingbo Zhou
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
33
|
Rajaram J, Mende LK, Kuthati Y. A Review of the Efficacy of Nanomaterial-Based Natural Photosensitizers to Overcome Multidrug Resistance in Cancer. Pharmaceutics 2024; 16:1120. [PMID: 39339158 PMCID: PMC11434998 DOI: 10.3390/pharmaceutics16091120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Natural photosensitizers (PS) are compounds derived from nature, with photodynamic properties. Natural PSs have a similar action to that of commercial PSs, where cancer cell death occurs by necrosis, apoptosis, and autophagy through ROS generation. Natural PSs have garnered great interest over the last few decades because of their high biocompatibility and good photoactivity. Specific wavelengths could cause phytochemicals to produce harmful ROS for photodynamic therapy (PDT). However, natural PSs have some shortcomings, such as reduced solubility and lower uptake, making them less appropriate for PDT. Nanotechnology offers an opportunity to develop suitable carriers for various natural PSs for PDT applications. Various nanoparticles have been developed to improve the outcome with enhanced solubility, optical adsorption, and tumor targeting. Multidrug resistance (MDR) is a phenomenon in which tumor cells develop resistance to a wide range of structurally and functionally unrelated drugs. Over the last decade, several researchers have extensively studied the effect of natural PS-based photodynamic treatment (PDT) on MDR cells. Though the outcomes of clinical trials for natural PSs were inconclusive, significant advancement is still required before PSs can be used as a PDT agent for treating MDR tumors. This review addresses the increasing literature on MDR tumor progression and the efficacy of PDT, emphasizing the importance of developing new nano-based natural PSs in the fight against MDR that have the required features for an MDR tumor photosensitizing regimen.
Collapse
Affiliation(s)
- Jagadeesh Rajaram
- Department of Biochemistry and Molecular Medicine, National Dong Hwa University, Hualien 974, Taiwan;
| | - Lokesh Kumar Mende
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| |
Collapse
|
34
|
Mai S, Zhang W, Mu X, Cao J. Structural Decoration of Porphyrin/Phthalocyanine Photovoltaic Materials. CHEMSUSCHEM 2024; 17:e202400217. [PMID: 38494448 DOI: 10.1002/cssc.202400217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Porphyrin/phthalocyanine compounds with fascinating molecular structures have attracted widespread attention in the field of solar cells in recent years. In this review, we focus on the pivotal role of porphyrin and phthalocyanine compounds in enhancing the efficiency of solar cells. The review seamlessly integrates the intricate molecular structures of porphyrins and phthalocyanines with their proficiency in absorbing visible light and facilitating electron transfer, key processes in converting sunlight into electricity. By delving into the nuances of intramolecular regulation, aggregated states, and surface/interface structure manipulation, it elucidates how various levels of molecular modifications enhance solar cell efficiency through improved charge transfer, stability, and overall performance. This comprehensive exploration provides a detailed understanding of the complex relationship between molecular design and solar cell performance, discussing current advancements and potential future applications of these molecules in solar energy technology.
Collapse
Affiliation(s)
- Sibei Mai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Weilun Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xijiao Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
35
|
Kaigorodova EY, Mamardashvili G, Kurochkin IY, Mamardashvili N. Influence of supramolecular self-assembly of oppositely charged Co- and Sn-porphyrins on the their spectral-luminescent properties in aqueous and aqueous micellar media of ionic surfactants. OPTICAL MATERIALS 2024; 154:115805. [DOI: 10.1016/j.optmat.2024.115805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2024]
|
36
|
Wang R, Hua S, Xing Y, Wang R, Wang H, Jiang T, Yu F. Organic dye-based photosensitizers for fluorescence imaging-guided cancer phototheranostics. Coord Chem Rev 2024; 513:215866. [DOI: 10.1016/j.ccr.2024.215866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
|
37
|
Zomer A, Ingham CJ, von Meijenfeldt FAB, Escobar Doncel Á, van de Kerkhof GT, Hamidjaja R, Schouten S, Schertel L, Müller KH, Catón L, Hahnke RL, Bolhuis H, Vignolini S, Dutilh BE. Structural color in the bacterial domain: The ecogenomics of a 2-dimensional optical phenotype. Proc Natl Acad Sci U S A 2024; 121:e2309757121. [PMID: 38990940 PMCID: PMC11260094 DOI: 10.1073/pnas.2309757121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/23/2024] [Indexed: 07/13/2024] Open
Abstract
Structural color is an optical phenomenon resulting from light interacting with nanostructured materials. Although structural color (SC) is widespread in the tree of life, the underlying genetics and genomics are not well understood. Here, we collected and sequenced a set of 87 structurally colored bacterial isolates and 30 related strains lacking SC. Optical analysis of colonies indicated that diverse bacteria from at least two different phyla (Bacteroidetes and Proteobacteria) can create two-dimensional packing of cells capable of producing SC. A pan-genome-wide association approach was used to identify genes associated with SC. The biosynthesis of uroporphyrin and pterins, as well as carbohydrate utilization and metabolism, was found to be involved. Using this information, we constructed a classifier to predict SC directly from bacterial genome sequences and validated it by cultivating and scoring 100 strains that were not part of the training set. We predicted that SCr is widely distributed within gram-negative bacteria. Analysis of over 13,000 assembled metagenomes suggested that SC is nearly absent from most habitats associated with multicellular organisms except macroalgae and is abundant in marine waters and surface/air interfaces. This work provides a large-scale ecogenomics view of SC in bacteria and identifies microbial pathways and evolutionary relationships that underlie this optical phenomenon.
Collapse
Affiliation(s)
- Aldert Zomer
- Division of Infectious Diseases and Immunology, Utrecht University, Utrecht3584 CL, the Netherlands
| | - Colin J. Ingham
- Hoekmine Besloten Vennootschap, Utrecht3515 GJ, the Netherlands
| | - F. A. Bastiaan von Meijenfeldt
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht3584 CH, the Netherlands
- Department of Marine Microbiology & Biogeochemistry, Royal Netherlands Institute for Sea Research, ‘t Horntje1797 SZ, The Netherlands
| | | | - Gea T. van de Kerkhof
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | | | - Sanne Schouten
- Hoekmine Besloten Vennootschap, Utrecht3515 GJ, the Netherlands
| | - Lukas Schertel
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Department of Physics, University of Fribourg, FribourgCH-1700, Switzerland
| | - Karin H. Müller
- Department of Physiology, Development and Neuroscience, Cambridge Advanced Imaging Centre, University of Cambridge, CambridgeCB2 3DY, United Kingdom
| | - Laura Catón
- Hoekmine Besloten Vennootschap, Utrecht3515 GJ, the Netherlands
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Richard L. Hahnke
- Leibniz Institute, German Collection of Microorganisms and Cell Cultures, Braunschweig38124, Germany
| | - Henk Bolhuis
- Department of Marine Microbiology & Biogeochemistry, Royal Netherlands Institute for Sea Research, ‘t Horntje1797 SZ, The Netherlands
| | - Silvia Vignolini
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Sustainable and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Potsdam14476, Germany
| | - Bas E. Dutilh
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht3584 CH, the Netherlands
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena07743, Germany
| |
Collapse
|
38
|
Yang X, Wang X, Zhang X, Zhang J, Lam JWY, Sun H, Yang J, Liang Y, Tang BZ. Donor-Acceptor Modulating of Ionic AIE Photosensitizers for Enhanced ROS Generation and NIR-II Emission. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402182. [PMID: 38663035 DOI: 10.1002/adma.202402182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/15/2024] [Indexed: 05/04/2024]
Abstract
Photosensitizers (PSs) with aggregation-induced emission (AIE) characteristics are competitive candidates for bioimaging and therapeutic applications. However, their short emission wavelength and nonspecific organelle targeting hinder their therapeutic effectiveness. Herein, a donor-acceptor modulation approach is reported to construct a series of ionic AIE photosensitizers with enhanced photodynamic therapy (PDT) outcomes and fluorescent emission in the second near-infrared (NIR-II) window. By employing dithieno[3,2-b:2',3'-d]pyrrole (DTP) and indolium (In) as the strong donor and acceptor, respectively, the compound DTP-In exhibits a substantial redshift in absorption and fluorescent emission reach to NIR-II region. The reduced energy gap between singlet and triplet states in DTP-In also increases the reactive oxygen species (ROS) generation rate. Further, DTP-In can self-assemble in aqueous solutions, forming positively charged nanoaggregates, which are superior to conventional encapsulated nanoparticles in cellular uptake and mitochondrial targeting. Consequently, DTP-In aggregates show efficient photodynamic ablation of 4T1 cancer cells and outstanding tumor theranostic in vivo under 660 nm laser irradiation. This work highlights the potential of molecular engineering of donor-acceptor AIE PSs with multiple functionalities, thereby facilitating the development of more effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Xueqin Yang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Mechanical and Aerospace Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Bioscience and Biomedical Engineering Thrust, System Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, 511400, China
| | - Xinyuan Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Mechanical and Aerospace Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Department of Materials Science and Engineering, Southern University of Science and Technology, Guangdong, 518055, China
| | - Xun Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Guangdong, 518055, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Mechanical and Aerospace Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Mechanical and Aerospace Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jinglei Yang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Mechanical and Aerospace Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yongye Liang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Guangdong, 518055, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Mechanical and Aerospace Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
39
|
Sang-Aroon W, Alberto ME, Toscano M, Russo N. Chalcogen atom effect on the intersystem crossing kinetic constant of oxygen- and sulfur disubstituted heteroporphyrins. J Comput Chem 2024; 45:1322-1328. [PMID: 38363067 DOI: 10.1002/jcc.27331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
The modulation of the photophysical properties of di-substituted porphyrin rings upon the oxygen and sulfur-for-nitrogen replacement has been investigated at density functional theory (DFT) and its time-dependent formulation (TDDFT). The considered properties range from structural behaviors and excitation energies to spin-orbit coupling (SOC) and nonradiative intersystem kinetic constants. Results show that the SOC strongly increase upon chalcogen substitution and, accordingly, the computed nonradiative kinetic constant also indicate an efficient singlet-triplet intersystem crossing in the sulfur containing macrocycle. The presented results indicate an alternative way to properly modulate the porphyrin's crucial properties for their use in photodynamic therapy, without resorting to the use of heavy atoms.
Collapse
Affiliation(s)
- Wichien Sang-Aroon
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen, Thailand
| | - Marta Erminia Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Italy
| | - Marirosa Toscano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Italy
| |
Collapse
|
40
|
Quadrado RFN, Silvestri S, de Souza JF, Iglesias BA, Fajardo AR. Advances in porphyrins and chlorins associated with polysaccharides and polysaccharides-based materials for biomedical and pharmaceutical applications. Carbohydr Polym 2024; 334:122017. [PMID: 38553216 DOI: 10.1016/j.carbpol.2024.122017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Abstract
Over the last decade, the convergence of advanced materials and innovative applications has fostered notable scientific progress within the biomedical and pharmaceutical fields. Porphyrins and their derivatives, distinguished by an extended conjugated π-electron system, have a relevant role in propelling these advancements, especially in drug delivery systems, photodynamic therapy, wound healing, and (bio)sensing. However, despite their promise, the practical clinical application of these macrocycles is hindered by their inherent challenges of low solubility and instability under physiological conditions. To address this limitation, researchers have exploited the synergistic association of porphyrins and chlorins with polysaccharides by engineering conjugated systems and composite/hybrid materials. This review compiles the principal advances in this growing research field, elucidating fundamental principles and critically examining the applications of such materials within biomedical and pharmaceutical contexts. Additionally, the review addresses the eventual challenges and outlines future perspectives for this poignant research field. It is expected that this review will serve as a comprehensive guide for students and researchers dedicated to exploring state-of-the-art materials for contemporary medicine and pharmaceutical applications.
Collapse
Affiliation(s)
- Rafael F N Quadrado
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil
| | - Siara Silvestri
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil; Laboratório de Engenharia de Meio Ambiente (LEMA), Universidade Federal de Santa Maria (UFSM), Campus Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Jaqueline F de Souza
- Laboratório de Bioinorgânica e Materiais Porfirínicos, Universidade Federal de Santa Maria (UFSM), Campus Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Bernardo A Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos, Universidade Federal de Santa Maria (UFSM), Campus Camobi, 97105-900, Santa Maria, RS, Brazil.
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|
41
|
Wang Y, Chang L, Gao H, Yu C, Gao Y, Peng Q. Nanomaterials-based advanced systems for photothermal / photodynamic therapy of oral cancer. Eur J Med Chem 2024; 272:116508. [PMID: 38761583 DOI: 10.1016/j.ejmech.2024.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
The traditional clinical approaches for oral cancer consist of surgery, chemotherapy, radiotherapy, immunotherapy, and so on. However, these treatments often induce side effects and exhibit limited efficacy. Photothermal therapy (PTT) emerges as a promising adjuvant treatment, utilizing photothermal agents (PTAs) to convert light energy into heat for tumor ablation. Another innovative approach, photodynamic therapy (PDT), leverages photosensitizers (PSs) and specific wavelength laser irradiation to generate reactive oxygen species (ROS), offering an effective and non-toxic alternative. The relevant combination therapies have been reported in the field of oral cancer. Simultaneously, the advancement of nanomaterials has propelled the clinical application of PTT and PDT. Therefore, a comprehensive understanding of PTT and PDT is required for better application in oral cancer treatment. Here, we review the use of PTT and PDT in oral cancer, including noble metal materials (e.g., Au nanoparticles), carbon materials (e.g., graphene oxide), organic dye molecules (e.g., indocyanine green), organic molecule-based agents (e.g., porphyrin-analog phthalocyanine) and other inorganic materials (e.g., MXenes), exemplify the advantages and disadvantages of common PTAs and PSs, and summarize the combination therapies of PTT with PDT, PTT/PDT with chemotherapy, PTT with radiotherapy, PTT/PDT with immunotherapy, and PTT/PDT with gene therapy in the treatment of oral cancer. The challenges related to the PTT/PDT combination therapy and potential solutions are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lili Chang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hongyu Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chenhao Yu
- Department of Periodontology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Yujie Gao
- Department of Stomatology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610500, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
42
|
Ramakrishna Y, Naresh M, Mrinalini M, Pravallika N, Kumari P, Bhavani B, Giribabu L, Prasanthkumar S. Narcissistic self-sorting in Zn(II) porphyrin derived semiconducting nanostructures. NANOSCALE 2024. [PMID: 38683187 DOI: 10.1039/d4nr00991f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The narcissistic self-sorted phenomenon is explicitly attributed to the structural similarities in organic molecules. Although such relevant materials are rarely explored, self-sorted structures from macrocyclic π-conjugated-based p- and n-type organic semiconductors facilitate the increase of exciton dissociation and charge separation in bulk heterojunction solar cells. Herein, we report two extended π-conjugated derivatives consisting of zinc-porphyrin-linked benzothiadiazole acting as an acceptor (PB) and anthracene as a donor (PA). Despite having the same porphyrin π-conjugated core in PA and PB, variations in donor and acceptor moieties make the molecular packing form one-dimensional (1D) self-assembled nanofibers via H- and J-type aggregates. Interestingly, a dissimilar aggregate of PA and PB exists as a mixture (PA + PB), promoting narcissistic self-sorted structures. Electrochemical impedance investigation reveals that the electronic characteristics of self-sorting assemblies are influenced by the difference in electrostatic potentials for PA and PB, resulting in a transitional electrical conductivity of 0.14 S cm-1. Therefore, the design of such materials for the fabrication of effective photovoltaics is promoted by these extraordinary self-sorted behaviors in comparable organic π-conjugated molecules.
Collapse
Affiliation(s)
- Yelukula Ramakrishna
- Department of Polymer & Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad-201 002, India
| | - Madarapu Naresh
- Department of Polymer & Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad-201 002, India
| | - Madoori Mrinalini
- Department of Polymer & Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad-201 002, India
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology (IMMT), Bhubaneswar - 751 013, Odisha, India
| | - Nagadatta Pravallika
- Department of Polymer & Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India.
| | - Priti Kumari
- Department of Polymer & Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India.
| | - Botta Bhavani
- Department of Polymer & Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad-201 002, India
| | - Lingamallu Giribabu
- Department of Polymer & Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad-201 002, India
| | - Seelam Prasanthkumar
- Department of Polymer & Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad-201 002, India
| |
Collapse
|
43
|
Yang Y, Yang R, Deng F, Yang L, Yang G, Liu Y, Tian Q, Wang Z, Li A, Shang L, Cheng G, Zhang L. Immunoactivation by Cutaneous Blue Light Irradiation Inhibits Remote Tumor Growth and Metastasis. ACS Pharmacol Transl Sci 2024; 7:1055-1068. [PMID: 38633599 PMCID: PMC11019738 DOI: 10.1021/acsptsci.3c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
An improved innate immunity will respond quickly to pathogens and initiate efficient adaptive immune responses. However, up to now, there have been limited clinical ways for effective and rapid consolidation of innate immunity. Here, we report that cutaneous irradiation with blue light of 450 nm rapidly stimulates the innate immunity through cell endogenous reactive oxygen species (ROS) regulation in a noninvasive way. The iron porphyrin-containing proteins, mitochondrial cytochrome c (Cyt-c), and cytochrome p450 (CYP450) can be mobilized by blue light, which boosts electron transport and ROS production in epidermal and dermal tissues. As a messenger of innate immune activation, the increased level of ROS activates the NF-κB signaling pathway and promotes the secretion of immunomodulatory cytokines in skin. Initiated from skin, a regulatory network composed of cytokines and immune cells is established through the circulation system for innate immune activation. The innate immunity activated by whole-body blue light irradiation inhibits tumor growth and metastasis by increasing the infiltration of antitumor neutrophils and tumor-associated macrophages. Our results elucidate the remote immune modulation mechanism of blue light and provide a clinically applicable way for innate immunity activation.
Collapse
Affiliation(s)
- Yingchun Yang
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Rong Yang
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Fangqing Deng
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Luqiu Yang
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Guanghao Yang
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanyan Liu
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qing Tian
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zixi Wang
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Aipeng Li
- School
of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Li Shang
- School
of Materials Science and Engineering, Northwestern
Polytechnical University, Xi’an 710072, China
| | - Genyang Cheng
- Department
of Nephrology, the First Affiliated Hospital
of Zhengzhou University, Zhengzhou 450052, China
| | - Lianbing Zhang
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
44
|
Naumova M, Paveliuc G, Biednov M, Kubicek K, Kalinko A, Meng J, Liang M, Rahaman A, Abdellah M, Checchia S, Alves Lima F, Zalden P, Gawelda W, Bressler C, Geng H, Lin W, Liu Y, Zhao Q, Pan Q, Akter M, Kong Q, Retegan M, Gosztola DJ, Pápai M, Khakhulin D, Lawson Daku M, Zheng K, Canton SE. Nonadiabatic Charge Transfer within Photoexcited Nickel Porphyrins. J Phys Chem Lett 2024; 15:3627-3638. [PMID: 38530393 PMCID: PMC11000243 DOI: 10.1021/acs.jpclett.4c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Metalloporphyrins with open d-shell ions can drive biochemical energy cycles. However, their utilization in photoconversion is hampered by rapid deactivation. Mapping the relaxation pathways is essential for elaborating strategies that can favorably alter the charge dynamics through chemical design and photoexcitation conditions. Here, we combine transient optical absorption spectroscopy and transient X-ray emission spectroscopy with femtosecond resolution to probe directly the coupled electronic and spin dynamics within a photoexcited nickel porphyrin in solution. Measurements and calculations reveal that a state with charge-transfer character mediates the formation of the thermalized excited state, thereby advancing the description of the photocycle for this important representative molecule. More generally, establishing that intramolecular charge-transfer steps play a role in the photoinduced dynamics of metalloporphyrins with open d-shell sets a conceptual ground for their development as building blocks capable of boosting nonadiabatic photoconversion in functional architectures through "hot" charge transfer down to the attosecond time scale.
Collapse
Affiliation(s)
- Maria
A. Naumova
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Gheorghe Paveliuc
- Département
de Chimie Physique, Université de
Genève, Quai E. Ansermet 30, CH-1211 Genève, Switzerland
| | | | - Katharina Kubicek
- European
XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The
Hamburg Centre for Ultrafast Imaging, University
of Hamburg, Luruper Chaussee
149, 22761 Hamburg, Germany
- Fachbereich
Physik, Universität Hamburg, Notkestraße 9-11, 22607 Hamburg, Germany
| | - Aleksandr Kalinko
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Jie Meng
- Department
of Chemistry, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
- Chemical
Physics and NanoLund, Lund University, SE-221 00 Lund, Sweden
| | - Mingli Liang
- Department
of Chemistry, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Ahibur Rahaman
- Department
of Chemistry, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
- Chemical
Physics and NanoLund, Lund University, SE-221 00 Lund, Sweden
| | - Mohamed Abdellah
- Chemical
Physics and NanoLund, Lund University, SE-221 00 Lund, Sweden
- Department
of Chemistry, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
- Department
of Chemistry, Qena Faculty of Science, South
Valley University, Qena 83523, Egypt
| | - Stefano Checchia
- ESRF
- The European Synchrotron, 71, avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | | | - Peter Zalden
- European
XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Wojciech Gawelda
- European
XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Departamento
de Química, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- IMDEA-Nanociencia, Calle
Faraday 9, Madrid 28049, Spain
- Faculty
of Physics, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Christian Bressler
- European
XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The
Hamburg Centre for Ultrafast Imaging, University
of Hamburg, Luruper Chaussee
149, 22761 Hamburg, Germany
- Fachbereich
Physik, Universität Hamburg, Notkestraße 9-11, 22607 Hamburg, Germany
| | - Huifang Geng
- Department
of Physics, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Weihua Lin
- Chemical
Physics and NanoLund, Lund University, SE-221 00 Lund, Sweden
| | - Yan Liu
- Chemical
Physics and NanoLund, Lund University, SE-221 00 Lund, Sweden
| | - Qian Zhao
- Department
of Chemistry, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Qinying Pan
- Chemical
Physics and NanoLund, Lund University, SE-221 00 Lund, Sweden
| | - Marufa Akter
- Chemical
Physics and NanoLund, Lund University, SE-221 00 Lund, Sweden
| | - Qingyu Kong
- Synchrotron Soleil, L’Orme des
Merisiers, 91190 Saint-Aubin, France
| | - Marius Retegan
- ESRF
- The European Synchrotron, 71, avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - David J. Gosztola
- Center
for Nanoscale Materials, Argonne National
Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Mátyás Pápai
- HUN-REN Wigner Research Center for Physics, P.O. Box 49, Budapest H-1525, Hungary
| | | | - Max Lawson Daku
- Département
de Chimie Physique, Université de
Genève, Quai E. Ansermet 30, CH-1211 Genève, Switzerland
| | - Kaibo Zheng
- Department
of Chemistry, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
- Chemical
Physics and NanoLund, Lund University, SE-221 00 Lund, Sweden
| | - Sophie E. Canton
- European
XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Department
of Chemistry, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| |
Collapse
|
45
|
Lv X, Dong Y, Wu J, Jiang T, Chen F, Zhang T, Qiu F, Xue S. Porphyrin(2.1.2.1) organopalladium complexes as efficient singlet oxygen sensitizers. Dalton Trans 2024; 53:5979-5984. [PMID: 38465377 DOI: 10.1039/d4dt00143e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Four new non-planar and non-aromatic porphyrin organopalladium complexes were synthesized. Conformational structures and optical and electronic properties of the obtained organopalladium complexes containing meso-substituted phenyl, p-tert-butylphenyl, or pentafluorophenyl groups were fully investigated. These complexes showed potent capacity for singlet oxygen (1O2) generation under blue-light irradiation, and the 1O2 quantum yields were in the range of 41%-56%, which were comparable to that of Ru(bpy)3Cl2 (57%), and such potency made these organopalladium complexes potential 1O2 photo sensitizers for photodynamic therapy.
Collapse
Affiliation(s)
- Xiaojuan Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yuting Dong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jinrong Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Tao Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
46
|
Zhang W, Zhao C, Zhu W, He X, Zhao Y. Conformational Locking as a Strategy to Reverse Ion Recognition Selectivity. J Org Chem 2024; 89:4037-4041. [PMID: 38389323 DOI: 10.1021/acs.joc.3c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
This study delves into the ion recognition capabilities of a novel host molecule, emphasizing the role of conformational locking in dictating ion selectivity. By employing the Buchwald-Hartwig cross-coupling reaction, we have notably shifted the ion receptor's selectivity from K+ to Na+. The findings are supported by computational simulations that reveal differences in binding energies and molecular strain impacting ion recognition. This innovative structural modification broadens the scope for alterations at the calix[4]arene's lower rim, paving the way for new methods and strategies in modulating ion recognition selectivity.
Collapse
Affiliation(s)
- Wei Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chong Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Wenjie Zhu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yanchuan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
47
|
Rossi GG, Tisoco I, Moreira KS, de Lima Burgo TA, de Campos MMA, Iglesias BA. Photophysical, photobiological, and mycobacteria photo-inactivation properties of new meso-tetra-cationic platinum(II) metalloderivatives at meta position. Braz J Microbiol 2024; 55:11-24. [PMID: 38051456 PMCID: PMC10920514 DOI: 10.1007/s42770-023-01201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
In this manuscript, we report the photo-inactivation evaluation of new tetra-cationic porphyrins with peripheral Pt(II) complexes ate meta N-pyridyl positions in the antimicrobial photodynamic therapy (aPDT) of rapidly growing mycobacterial strains (RGM). Four different metalloderivatives were synthetized and applied. aPDT experiments in the strains of Mycobacteroides abscessus subsp. Abscessus (ATCC 19977), Mycolicibacterium fortuitum (ATCC 6841), Mycobacteroides abscessus subsp. Massiliense (ATCC 48898), and Mycolicibacterium smegmatis (ATCC 700084) conducted with adequate concentration of photosensitizers (PS) under white-light conditions at 90 min (irradiance of 50 mW cm-2 and a total light dosage of 270 J cm-2) showed that the Zn(II) derivative is the most effective PS significantly reduced the concentration of viable mycobacteria. The effectiveness of the molecule as PS for PDI studies is also clear with mycobacteria, which is strongly related with the porphyrin peripheral charge and coordination platinum(II) compounds and consequently about the presence of metal center ion. This class of PS may be promising antimycobacterial aPDT agents with potential applications in medical clinical cases and bioremediation.
Collapse
Affiliation(s)
- Grazielle Guidolin Rossi
- Department of Pharmaceutical Sciences, Laboratory of Mycobacteriology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Isadora Tisoco
- Department of Chemistry, Laboratory of Bioinorganic and Porphyrinic Materials, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Kelly Schneider Moreira
- Department of Chemistry, Laboratory of Bioinorganic and Porphyrinic Materials, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Department of Chemistry and Environmental Sciences, Ibilce, São Paulo State University (Unesp), São Jose Do Rio Preto, São Paulo State, Brazil
| | - Thiago Augusto de Lima Burgo
- Department of Chemistry and Environmental Sciences, Ibilce, São Paulo State University (Unesp), São Jose Do Rio Preto, São Paulo State, Brazil.
| | - Marli Matiko Anraku de Campos
- Department of Pharmaceutical Sciences, Laboratory of Mycobacteriology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Bernardo Almeida Iglesias
- Department of Chemistry, Laboratory of Bioinorganic and Porphyrinic Materials, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
48
|
Li X, Liu Y, Wu L, Zhao J. Molecular Nanoarchitectonics of Natural Photosensitizers and Their Derivatives Nanostructures for Improved Photodynamic Therapy. ChemMedChem 2024; 19:e202300599. [PMID: 38069595 DOI: 10.1002/cmdc.202300599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Indexed: 01/25/2024]
Abstract
Natural photosensitizers (PSs) and their derivatives have drawn ever-increasing attention in photodynamic therapy (PDT) for their wild range of sources, desirable biocompatibility, and good photosensitivity. Nevertheless, many factors such as poor solubility, high body clearance rate, limited tumor targeting ability, and short excitation wavelengths severely hinder their applications in efficient PDT. In recent years, fabricating nanostructures by utilizing molecular assembly technique is proposed to solve these problems. This technique is easy to put into effect, and the assembled nanostructures could improve the physical properties of the PSs so as to meet the requirement of PDT. In this concept, we focus on the construction of natural PSs and their derivatives nanostructures through molecular assembly technique to enhance PDT efficacy (Figure 1). Furthermore, current challenges and future perspectives of natural PSs and their derivatives for efficient PDT are discussed.
Collapse
Affiliation(s)
- Xiaochen Li
- Shaanxi University of Chinese Medicine, 712046, Xianyang, China
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China
- Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Yilin Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China
- Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Jie Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| |
Collapse
|
49
|
Orzeł Ł, Drzewiecka-Matuszek A, Rutkowska-Zbik D, Krasowska A, Fiedor L, van Eldik R, Stochel G. Copper(II)-Assisted Degradation of Pheophytin a by Reactive Oxygen Species. Int J Mol Sci 2024; 25:1831. [PMID: 38339109 PMCID: PMC10855625 DOI: 10.3390/ijms25031831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
The central ion Mg2+ is responsible for the differences between chlorophyll a and its free base in their reactivity toward metal ions and thus their resistance to oxidation. We present here the results of spectroscopic (electronic absorption and emission, circular dichroism, and electron paramagnetic resonance), spectroelectrochemical, and computational (based on density functional theory) investigations into the mechanism of pheophytin, a degradation that occurs in the presence of Cu ions and O2. The processes leading to the formation of the linear form of tetrapyrrole are very complex and involve the weakening of the methine bridge due to an electron withdrawal by Cu(II) and the activation of O2, which provides protection to the free ends of the opening macrocycle. These mechanistic insights are related to the naturally occurring damage to the photosynthetic apparatus of plants growing on metal-contaminated soils.
Collapse
Affiliation(s)
- Łukasz Orzeł
- Faculty of Chemistry, Jagiellonian University, 30-387 Cracow, Poland; (A.K.); (R.v.E.); (G.S.)
| | - Agnieszka Drzewiecka-Matuszek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Cracow, Poland; (A.D.-M.); (D.R.-Z.)
| | - Dorota Rutkowska-Zbik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Cracow, Poland; (A.D.-M.); (D.R.-Z.)
| | - Aneta Krasowska
- Faculty of Chemistry, Jagiellonian University, 30-387 Cracow, Poland; (A.K.); (R.v.E.); (G.S.)
| | - Leszek Fiedor
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Cracow, Poland;
| | - Rudi van Eldik
- Faculty of Chemistry, Jagiellonian University, 30-387 Cracow, Poland; (A.K.); (R.v.E.); (G.S.)
- Department of Inorganic and Coordination Chemistry, Nicolaus Copernicus University, 87-100 Torun, Poland
- Department of Chemistry add Pharmacy, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, 30-387 Cracow, Poland; (A.K.); (R.v.E.); (G.S.)
| |
Collapse
|
50
|
Yang L, Liu Y, Ren X, Jia R, Si L, Bao J, Shi Y, Sun J, Zhong Y, Duan PC, Yang X, Zhu R, Jia Y, Bai F. Microemulsion-Assisted Self-Assembly of Indium Porphyrin Photosensitizers with Enhanced Photodynamic Therapy. ACS NANO 2024; 18:3161-3172. [PMID: 38227816 DOI: 10.1021/acsnano.3c09399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Designing and constructing supramolecular photosensitizer nanosystems with highly efficient photodynamic therapy (PDT) is vital in the nanomedical field. Despite recent advances in forming well-defined superstructures, the relationship between molecular arrangement in nanostructures and photodynamic properties has rarely been involved, which is crucial for developing stable photosensitizers for highly efficient PDT. In this work, through a microemulsion-assisted self-assembly approach, indium porphyrin (InTPP) was used to fabricate a series of morphology-controlled self-assemblies, including nanorods, nanospheres, nanoplates, and nanoparticles. They possessed structure-dependent 1O2 generation efficiency. Compared with the other three nanostructures, InTPP nanorods featuring strong π-π stacking, J-aggregation, and high crystallinity proved to be much more efficient at singlet oxygen (1O2) production. Also, theoretical modeling and photophysical experiments verified that the intermolecular π-π stacking in the nanorods could cause a decreased singlet-triplet energy gap (ΔEST) compared with the monomer. This played a key role in enhancing intersystem crossing and facilitating 1O2 generation. Both in vitro and in vivo experiments demonstrated that the InTPP nanorods could trigger cell apoptosis and tumor ablation upon laser irradiation (635 nm, 0.1 W/cm2) and exhibited negligible dark toxicity and high phototoxicity. Thus, the supramolecular self-assembly strategy provides an avenue for designing high-performance photosensitizer nanosystems for photodynamic therapy and beyond.
Collapse
Affiliation(s)
- Linfeng Yang
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Yanqiu Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xiaorui Ren
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Rixin Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Lulu Si
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Jianshuai Bao
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Yingying Shi
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Jiajie Sun
- School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Yong Zhong
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Peng-Cheng Duan
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xiaoyan Yang
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Rui Zhu
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| |
Collapse
|