1
|
Rolland TJ, Hudson ER, Graser LA, Zahra S, Cucinotta D, Sonkawade SD, Sharma UC, Weil BR. Mitochondrial DNA-Mediated Immune Activation After Resuscitation from Cardiac Arrest. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.14.25322318. [PMID: 40034769 PMCID: PMC11875248 DOI: 10.1101/2025.02.14.25322318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Background Post-cardiac arrest syndrome (PCAS) is characterized by a robust inflammatory response that contributes to significant morbidity and mortality among patients resuscitated from sudden cardiac arrest (SCA). Mitochondrial DNA (mtDNA), with its bacterial-like genomic motifs, has been implicated as a damage-associated molecular pattern in other inflammatory contexts, but its role as a pro-inflammatory stimulus in PCAS has not been studied. Accordingly, the present study was designed to determine if PCAS is characterized by a rise in circulating mtDNA and, if so, whether mtDNA is selectively released, how it activates immune cells, and if targeting mtDNA-sensing pathways attenuates leukocyte activation. Methods Plasma mtDNA and nuclear DNA (nucDNA) levels were measured in peripheral blood samples collected ∼4-hours post-ROSC from swine with PCAS (n=8) and patients hospitalized after resuscitation from out-of-hospital cardiac arrest (OHCA; n= 57). Additionally, in vitro studies were performed where porcine peripheral blood mononuclear cells (PBMCs) were treated with mtDNA or extracellular vesicles (EVs) isolated from post-ROSC plasma. Pharmacological inhibitors were utilized to inhibit toll-like receptor 9 (TLR9)- and cyclic GMP-AMP synthase (cGAS)-mediated mtDNA sensing. Results A significant ∼250-fold elevation in circulating mtDNA was observed shortly after ROSC in swine despite negligible changes in circulating nucDNA, suggesting selective release of mtDNA in PCAS. This finding was corroborated in human OHCA survivors, in which circulating mtDNA was similarly elevated during the early post-ROSC period. Circulating mtDNA was largely encapsulated within EVs in swine and humans, suggesting a conserved mechanism of release across species. In vitro studies demonstrated that PBMC internalization of mtDNA-containing-EVs was required for immune activation and promoted development of a pro-inflammatory leukocyte phenotype characterized by altered surface marker expression and increased release of TNFα, IL-1β, and IL-6. Disrupting EVs or degrading enclosed DNA attenuated these responses, which were partially restored upon reintroduction of mtDNA. Pharmacological blockade of TLR9 or cGAS pathways significantly reduced mtDNA-induced inflammation, providing insight regarding signaling pathways that may be targeted to modulate mtDNA-mediated immune activation in PCAS. Conclusions These novel findings demonstrate that brief whole-body ischemia and reperfusion in the context of resuscitation from SCA triggers selective mtDNA release, primarily within EVs, that acts as a potent driver of immune activation in PCAS. By linking EV-encapsulated mtDNA to TLR9 and cGAS activation, this study provides a foundation for the development of novel therapeutic interventions aimed at limiting mtDNA release or disrupting its downstream sensing pathways to enhance survival and improve outcomes after SCA. Clinical Perspective What is new?: Our study reveals that circulating mitochondrial DNA (mtDNA), primarily encapsulated in extracellular vesicles (EV), is selectively released into the bloodstream after resuscitation from sudden cardiac arrest.EV-encapsulated mtDNA triggers immune cell activation, evidenced by phenotypic shifts toward inflammatory dendritic cells and macrophages, as well as increased pro-inflammatory cytokine secretion.Pharmacological inhibition of TLR9 and cGAS pathways significantly attenuates the mtDNA-induced inflammatory response, pointing to novel therapeutic avenues for modulating post-resuscitation immune activation in patients with post-cardiac arrest syndrome (PCAS).What are the clinical implications?: Identification of mtDNA as a key driver of sterile inflammation in PCAS highlights a potential target for interventions aimed at reducing multi-organ damage and improving neurological outcomes.Therapeutic strategies to block mtDNA release or downstream signaling (e.g., TLR9/cGAS inhibition) may limit harmful pro-inflammatory cascades and bolster long-term survival following resuscitation from cardiac arrest.Early clinical screening for elevated EV-encapsulated mtDNA could help refine prognostic evaluations, complement current biomarkers, and guide personalized therapy to lessen the inflammatory burden of PCAS.
Collapse
|
2
|
Da Costa RT, Nichenko A, Perez MM, Tokarska-Schlattner M, Kavehmoghaddam S, Hambardikar V, Scoma ER, Seifert EL, Schlattner U, Drake JC, Solesio ME. Mammalian mitochondrial inorganic polyphosphate (polyP) and cell signaling: Crosstalk between polyP and the activity of AMPK. Mol Metab 2025; 91:102077. [PMID: 39617267 PMCID: PMC11696858 DOI: 10.1016/j.molmet.2024.102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
Inorganic polyphosphate (polyP) is an evolutionary and ancient polymer composed by orthophosphate units linked by phosphoanhydride bonds. In mammalian cells, polyP shows a high localization in mammalian mitochondria, and its regulatory role in various aspects of bioenergetics has already been demonstrated, via molecular mechanism(s) yet to be fully elucidated. In recent years, a role for polyP in signal transduction, from brain physiology to the bloodstream, has also emerged. OBJECTIVE In this manuscript, we explored the intriguing possibility that the effects of polyP on signal transduction could be mechanistically linked to those exerted on bioenergetics. METHODS To conduct our studies, we used a combination of cellular and animal models. RESULTS Our findings demonstrate for the first time the intimate crosstalk between the levels of polyP and the activation status of the AMPK signaling pathway, via a mechanism involving free phosphate homeostasis. AMPK is a key player in mammalian cell signaling, and a crucial regulator of cellular and mitochondrial homeostasis. Our results show that the depletion of mitochondrial polyP in mammalian cells downregulates the activity of AMPK. Moreover, increased levels of polyP activate AMPK. Accordingly, the genetic downregulation of AMPKF0611 impairs polyP levels in both SH-SY5Y cells and in the brains of female mice. CONCLUSIONS This manuscript sheds new light on the regulation of AMPK and positions polyP as a potent regulator of mammalian cell physiology beyond mere bioenergetics, paving the road for using its metabolism as an innovative pharmacological target in pathologies characterized by dysregulated bioenergetics.
Collapse
Affiliation(s)
- Renata T Da Costa
- Department of Biology, and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Anna Nichenko
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Matheus M Perez
- Department of Biology, and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | | | - Sheida Kavehmoghaddam
- Department of Biology, and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Vedangi Hambardikar
- Department of Biology, and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Ernest R Scoma
- Department of Biology, and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Erin L Seifert
- MitoCare and Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Uwe Schlattner
- University Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France
| | - Joshua C Drake
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Maria E Solesio
- Department of Biology, and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA.
| |
Collapse
|
3
|
Tong T, Zhu C, Farrell JJ, Khurshid Z, Martin ER, Pericak-Vance MA, Wang LS, Bush WS, Schellenberg GD, Haines JL, Qiu WQ, Lunetta KL, Farrer LA, Zhang X. Blood-derived mitochondrial DNA copy number is associated with Alzheimer disease, Alzheimer-related biomarkers and serum metabolites. Alzheimers Res Ther 2024; 16:234. [PMID: 39444005 PMCID: PMC11515778 DOI: 10.1186/s13195-024-01601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Blood-derived mitochondrial DNA copy number (mtDNA-CN) is a proxy measurement of mitochondrial function in the peripheral and central systems. Abnormal mtDNA-CN not only indicates impaired mtDNA replication and transcription machinery but also dysregulated biological processes such as energy and lipid metabolism. However, the relationship between mtDNA-CN and Alzheimer disease (AD) is unclear. METHODS We performed two-sample Mendelian randomization (MR) using publicly available summary statistics from GWAS for mtDNA-CN and AD to investigate the causal relationship between mtDNA-CN and AD. We estimated mtDNA-CN using whole-genome sequence data from blood and brain samples of 13,799 individuals from the Alzheimer's Disease Sequencing Project. Linear and Cox proportional hazards models adjusting for age, sex, and study phase were used to assess the association of mtDNA-CN with AD. The association of AD biomarkers and serum metabolites with mtDNA-CN in blood was evaluated in Alzheimer's Disease Neuroimaging Initiative using linear regression. We conducted a causal mediation analysis to test the natural indirect effects of mtDNA-CN change on AD risk through the significantly associated biomarkers and metabolites. RESULTS MR analysis suggested a causal relationship between decreased blood-derived mtDNA-CN and increased risk of AD (OR = 0.68; P = 0.013). Survival analysis showed that decreased mtDNA-CN was significantly associated with higher risk of conversion from mild cognitive impairment to AD (HR = 0.80; P = 0.002). We also identified significant associations of mtDNA-CN with brain FDG-PET (β = 0.103; P = 0.022), amyloid-PET (β = 0.117; P = 0.034), CSF amyloid-β (Aβ) 42/40 (β=-0.124; P = 0.017), CSF t-Tau (β = 0.128; P = 0.015), p-Tau (β = 0.140; P = 0.008), and plasma NFL (β=-0.124; P = 0.004) in females. Several lipid species, amino acids, biogenic amines in serum were also significantly associated with mtDNA-CN. Causal mediation analyses showed that about a third of the effect of mtDNA-CN on AD risk was mediated by plasma NFL (P = 0.009), and this effect was more significant in females (P < 0.005). CONCLUSIONS Our study indicates that mtDNA-CN measured in blood is predictive of AD and is associated with AD biomarkers including plasma NFL particularly in females. Further, we illustrate that decreased mtDNA-CN possibly increases AD risk through dysregulation of mitochondrial lipid metabolism and inflammation.
Collapse
Affiliation(s)
- Tong Tong
- Bioinformatics Program, Boston University, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Congcong Zhu
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - John J Farrell
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Zainab Khurshid
- Bioinformatics Program, Boston University, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Eden R Martin
- Hussman Institute of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Margaret A Pericak-Vance
- Hussman Institute of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jonathan L Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Wei Qiao Qiu
- Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Lindsay A Farrer
- Bioinformatics Program, Boston University, Boston, MA, USA.
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
- Departments of Neurology and Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
- Boston University Chobanian & Avedisian School of Medicine, Biomedical Genetics E223, 72 East Concord Street, 02118, Boston, MA, USA.
| | - Xiaoling Zhang
- Bioinformatics Program, Boston University, Boston, MA, USA.
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
4
|
Bordoni L, Petracci I, Feliziani G, de Simone G, Rucci C, Gabbianelli R. Gut Microbiota-Derived Trimethylamine Promotes Inflammation with a Potential Impact on Epigenetic and Mitochondrial Homeostasis in Caco-2 Cells. Antioxidants (Basel) 2024; 13:1061. [PMID: 39334721 PMCID: PMC11428692 DOI: 10.3390/antiox13091061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Trimethylamine (TMA), a byproduct of gut microbiota metabolism from dietary precursors, is not only the precursor of trimethylamine-N-oxide (TMAO) but may also affect gut health. An in vitro model of intestinal epithelium of Caco-2 cells was used to evaluate the impact of TMA on inflammation, paracellular permeability, epigenetics and mitochondrial functions. The expression levels of pro-inflammatory cytokines (IL-6, IL-1β) increased significantly after 24 h exposure to TMA 1 mM. TMA exposure was associated with an upregulation of SIRT1 (TMA 1 mM, 400 μM, 10 μM) and DNMT1 (TMA 1 mM, 400 µM) genes, while DNMT3A expression decreased (TMA 1 mM). In a cell-free model, TMA (from 0.1 µM to 1 mM) induced a dose-dependent reduction in Sirtuin enzyme activity. In Caco-2 cells, TMA reduced total ATP levels and significantly downregulated ND6 expression (TMA 1 mM). TMA excess (1 mM) reduced intracellular mitochondrial DNA copy numbers and increased the methylation of the light-strand promoter in the D-loop area of mtDNA. Also, TMA (1 mM, 400 µM, 10 µM) increased the permeability of Caco-2 epithelium, as evidenced by the reduced transepithelial electrical resistance values. Based on our preliminary results, TMA excess might promote inflammation in intestinal cells and disturb epigenetic and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy and Health Products, University of Camerino, 62032 Camerino, Italy
| | - Irene Petracci
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy and Health Products, University of Camerino, 62032 Camerino, Italy
| | - Giulia Feliziani
- School of Advanced Studies, University of Camerino, 62032 Camerino, Italy
| | - Gaia de Simone
- School of Advanced Studies, University of Camerino, 62032 Camerino, Italy
| | - Chiara Rucci
- School of Advanced Studies, University of Camerino, 62032 Camerino, Italy
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy and Health Products, University of Camerino, 62032 Camerino, Italy
| |
Collapse
|
5
|
Kadam PS, Yang Z, Lu Y, Zhu H, Atiyas Y, Shah N, Fisher S, Nordgren E, Kim J, Issadore D, Eberwine J. Single-mitochondrion sequencing uncovers distinct mutational patterns and heteroplasmy landscape in mouse astrocytes and neurons. BMC Biol 2024; 22:162. [PMID: 39075589 PMCID: PMC11287894 DOI: 10.1186/s12915-024-01953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Mitochondrial (mt) heteroplasmy can cause adverse biological consequences when deleterious mtDNA mutations accumulate disrupting "normal" mt-driven processes and cellular functions. To investigate the heteroplasmy of such mtDNA changes, we developed a moderate throughput mt isolation procedure to quantify the mt single-nucleotide variant (SNV) landscape in individual mouse neurons and astrocytes. In this study, we amplified mt-genomes from 1645 single mitochondria isolated from mouse single astrocytes and neurons to (1) determine the distribution and proportion of mt-SNVs as well as mutation pattern in specific target regions across the mt-genome, (2) assess differences in mtDNA SNVs between neurons and astrocytes, and (3) study co-segregation of variants in the mouse mtDNA. RESULTS (1) The data show that specific sites of the mt-genome are permissive to SNV presentation while others appear to be under stringent purifying selection. Nested hierarchical analysis at the levels of mitochondrion, cell, and mouse reveals distinct patterns of inter- and intra-cellular variation for mt-SNVs at different sites. (2) Further, differences in the SNV incidence were observed between mouse neurons and astrocytes for two mt-SNV 9027:G > A and 9419:C > T showing variation in the mutational propensity between these cell types. Purifying selection was observed in neurons as shown by the Ka/Ks statistic, suggesting that neurons are under stronger evolutionary constraint as compared to astrocytes. (3) Intriguingly, these data show strong linkage between the SNV sites at nucleotide positions 9027 and 9461. CONCLUSIONS This study suggests that segregation as well as clonal expansion of mt-SNVs is specific to individual genomic loci, which is important foundational data in understanding of heteroplasmy and disease thresholds for mutation of pathogenic variants.
Collapse
Affiliation(s)
- Parnika S Kadam
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zijian Yang
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Youtao Lu
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hua Zhu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yasemin Atiyas
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nishal Shah
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephen Fisher
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erik Nordgren
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Issadore
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - James Eberwine
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Kadam PS, Yang Z, Lu Y, Zhu H, Atiyas Y, Shah N, Fisher S, Nordgren E, Kim J, Issadore D, Eberwine J. Single-Mitochondrion Sequencing Uncovers Distinct Mutational Patterns and Heteroplasmy Landscape in Mouse Astrocytes and Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598906. [PMID: 38915628 PMCID: PMC11195285 DOI: 10.1101/2024.06.13.598906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Background Mitochondrial (mt) heteroplasmy can cause adverse biological consequences when deleterious mtDNA mutations accumulate disrupting 'normal' mt-driven processes and cellular functions. To investigate the heteroplasmy of such mtDNA changes we developed a moderate throughput mt isolation procedure to quantify the mt single-nucleotide variant (SNV) landscape in individual mouse neurons and astrocytes In this study we amplified mt-genomes from 1,645 single mitochondria (mts) isolated from mouse single astrocytes and neurons to 1. determine the distribution and proportion of mt-SNVs as well as mutation pattern in specific target regions across the mt-genome, 2. assess differences in mtDNA SNVs between neurons and astrocytes, and 3. Study cosegregation of variants in the mouse mtDNA. Results 1. The data show that specific sites of the mt-genome are permissive to SNV presentation while others appear to be under stringent purifying selection. Nested hierarchical analysis at the levels of mitochondrion, cell, and mouse reveals distinct patterns of inter- and intra-cellular variation for mt-SNVs at different sites. 2. Further, differences in the SNV incidence were observed between mouse neurons and astrocytes for two mt-SNV 9027:G>A and 9419:C>T showing variation in the mutational propensity between these cell types. Purifying selection was observed in neurons as shown by the Ka/Ks statistic, suggesting that neurons are under stronger evolutionary constraint as compared to astrocytes. 3. Intriguingly, these data show strong linkage between the SNV sites at nucleotide positions 9027 and 9461. Conclusion This study suggests that segregation as well as clonal expansion of mt-SNVs is specific to individual genomic loci, which is important foundational data in understanding of heteroplasmy and disease thresholds for mutation of pathogenic variants.
Collapse
Affiliation(s)
- Parnika S Kadam
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zijian Yang
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Youtao Lu
- Department of Biology, School of Arts and Sciences; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hua Zhu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yasemin Atiyas
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nishal Shah
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen Fisher
- Department of Biology, School of Arts and Sciences; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erik Nordgren
- Department of Biology, School of Arts and Sciences; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Issadore
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Eberwine
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Long X, Liu M, Nan Y, Chen Q, Xiao Z, Xiang Y, Ying X, Sun J, Huang Q, Ai K. Revitalizing Ancient Mitochondria with Nano-Strategies: Mitochondria-Remedying Nanodrugs Concentrate on Disease Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308239. [PMID: 38224339 DOI: 10.1002/adma.202308239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Mitochondria, widely known as the energy factories of eukaryotic cells, have a myriad of vital functions across diverse cellular processes. Dysfunctions within mitochondria serve as catalysts for various diseases, prompting widespread cellular demise. Mounting research on remedying damaged mitochondria indicates that mitochondria constitute a valuable target for therapeutic intervention against diseases. But the less clinical practice and lower recovery rate imply the limitation of traditional drugs, which need a further breakthrough. Nanotechnology has approached favorable regiospecific biodistribution and high efficacy by capitalizing on excellent nanomaterials and targeting drug delivery. Mitochondria-remedying nanodrugs have achieved ideal therapeutic effects. This review elucidates the significance of mitochondria in various cells and organs, while also compiling mortality data for related diseases. Correspondingly, nanodrug-mediate therapeutic strategies and applicable mitochondria-remedying nanodrugs in disease are detailed, with a full understanding of the roles of mitochondria dysfunction and the advantages of nanodrugs. In addition, the future challenges and directions are widely discussed. In conclusion, this review provides comprehensive insights into the design and development of mitochondria-remedying nanodrugs, aiming to help scientists who desire to extend their research fields and engage in this interdisciplinary subject.
Collapse
Affiliation(s)
- Xingyu Long
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
| | - Min Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, 750002, P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Yuting Xiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Xiaohong Ying
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Jian Sun
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, P. R. China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China
| |
Collapse
|
8
|
Li F, Xiang R, Liu Y, Hu G, Jiang Q, Jia T. Approaches and challenges in identifying, quantifying, and manipulating dynamic mitochondrial genome variations. Cell Signal 2024; 117:111123. [PMID: 38417637 DOI: 10.1016/j.cellsig.2024.111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/14/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Mitochondria, the cellular powerhouses, possess their own unique genetic system, including replication, transcription, and translation. Studying these processes is crucial for comprehending mitochondrial disorders, energy production, and their related diseases. Over the past decades, various approaches have been applied in detecting and quantifying mitochondrial genome variations with also the purpose of manipulation of mitochondria or mitochondrial genome for therapeutics. Understanding the scope and limitations of above strategies is not only fundamental to the understanding of basic biology but also critical for exploring disease-related novel target(s), as well to develop innovative therapies. Here, this review provides an overview of different tools and techniques for accurate mitochondrial genome variations identification, quantification, and discuss novel strategies for the manipulation of mitochondria to develop innovative therapeutic interventions, through combining the insights gained from the study of mitochondrial genetics with ongoing single cell omics combined with advanced single molecular tools.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Run Xiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guoliang Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Quanbo Jiang
- Light, Nanomaterials, Nanotechnologies (L2n) Laboratory, CNRS EMR 7004, University of Technology of Troyes, 12 rue Marie Curie, 10004 Troyes, France
| | - Tao Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; CNRS-UMR9187, INSERM U1196, PSL-Research University, 91405 Orsay, France; CNRS-UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France.
| |
Collapse
|
9
|
Koller A, Filosi M, Weissensteiner H, Fazzini F, Gorski M, Pattaro C, Schönherr S, Forer L, Herold JM, Stark KJ, Döttelmayer P, Hicks AA, Pramstaller PP, Würzner R, Eckardt KU, Heid IM, Fuchsberger C, Lamina C, Kronenberg F. Nuclear and mitochondrial genetic variants associated with mitochondrial DNA copy number. Sci Rep 2024; 14:2083. [PMID: 38267512 PMCID: PMC10808213 DOI: 10.1038/s41598-024-52373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024] Open
Abstract
Mitochondrial DNA copy number (mtDNA-CN) is a biomarker for mitochondrial dysfunction associated with several diseases. Previous genome-wide association studies (GWAS) have been performed to unravel underlying mechanisms of mtDNA-CN regulation. However, the identified gene regions explain only a small fraction of mtDNA-CN variability. Most of this data has been estimated from microarrays based on various pipelines. In the present study we aimed to (1) identify genetic loci for qPCR-measured mtDNA-CN from three studies (16,130 participants) using GWAS, (2) identify potential systematic differences between our qPCR derived mtDNA-CN measurements compared to the published microarray intensity-based estimates, and (3) disentangle the nuclear from mitochondrial regulation of the mtDNA-CN phenotype. We identified two genome-wide significant autosomal loci associated with qPCR-measured mtDNA-CN: at HBS1L (rs4895440, p = 3.39 × 10-13) and GSDMA (rs56030650, p = 4.85 × 10-08) genes. Moreover, 113/115 of the previously published SNPs identified by microarray-based analyses were significantly equivalent with our findings. In our study, the mitochondrial genome itself contributed only marginally to mtDNA-CN regulation as we only detected a single rare mitochondrial variant associated with mtDNA-CN. Furthermore, we incorporated mitochondrial haplogroups into our analyses to explore their potential impact on mtDNA-CN. However, our findings indicate that they do not exert any significant influence on our results.
Collapse
Affiliation(s)
- Adriana Koller
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria
| | - Michele Filosi
- Eurac Research, Institute for Biomedicine, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Hansi Weissensteiner
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria
| | - Federica Fazzini
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria
| | - Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Cristian Pattaro
- Eurac Research, Institute for Biomedicine, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria
| | - Lukas Forer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria
| | - Janina M Herold
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Klaus J Stark
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Patricia Döttelmayer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria
| | - Andrew A Hicks
- Eurac Research, Institute for Biomedicine, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Peter P Pramstaller
- Eurac Research, Institute for Biomedicine, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- German Chronic Kidney Disease Study, Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Christian Fuchsberger
- Eurac Research, Institute for Biomedicine, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria.
| |
Collapse
|
10
|
Li W, Zhu L, Chen Y, Zhuo Y, Wan S, Guo R. Association between mitochondrial DNA levels and depression: a systematic review and meta-analysis. BMC Psychiatry 2023; 23:866. [PMID: 37993802 PMCID: PMC10664364 DOI: 10.1186/s12888-023-05358-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Mitochondrial dysfunction leading to disturbances in energy metabolism has emerged as one of the risk factors in the pathogenesis of depression. Numerous studies have identified alterations in the content of mitochondrial DNA (mtDNA) in peripheral blood and cerebrospinal fluid of individuals with depression. Researchers have sought to establish a clear association between mtDNA and depression. Consequently, we conducted a comprehensive meta-analysis to assess the existing evidence regarding the impact of mtDNA on depression. METHODS This study conducted a thorough search of the following databases up to March 13, 2023: PubMed, Embase, the Cochrane Library, the Web of Science, Wanfang Database, SINOMED, the China Science and Technology Journal Database, and China National Knowledge Infrastructure. The meta-analysis was carried out using RevMan (version 5.4) and Stata (version 16.0) software. In addition, publication bias was assessed with funnel plots, Begg's test and Egger's test. RESULTS Our analysis included data from 10 articles, including 12 studies for further examination. A total of 1400 participants were included in this study, comprising 709 (including 300 males and 409 females) patients with depression and 691 (including 303 males and 388 females) healthy controls. The average age of depressed patients was (42.98 ± 2.55) years, and the average age of healthy people was (41.71 ± 2.6) years. The scales used to assess outcomes are Hamilton-rating scale for Depression(4 articles), Montgomery-Asberg Depression Rating Scale(3 articles), and Mini-Internatioal Neuropsychiatric Interview (1 articles). The meta-analysis revealed significantly higher levels of mtDNA in circulating blood samples and skin fibroblasts of individuals with depression in comparison to healthy controls [standardized mean difference(SMD) = 0.42, 95% confidence intervals(CI): 0.16, 0.67]. CONCLUSIONS Our study concludes that there is a significant (p < 0.05) increase in mtDNA levels in serum, plasma, and cerebrospinal fluid in individuals with depression. These findings suggest that mtDNA could serve as a potential biomarker for diagnosing depression. REGISTRATION NUMBER PROSPERO CRD42023414285.
Collapse
Affiliation(s)
- Wenhui Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Lingqun Zhu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing Key Laboratory of Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yi Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yudi Zhuo
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Shurun Wan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Rongjuan Guo
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| |
Collapse
|
11
|
Koller A, Lamina C, Brandl C, Zimmermann ME, Stark KJ, Weissensteiner H, Würzner R, Heid IM, Kronenberg F. Systemic Evidence for Mitochondrial Dysfunction in Age-Related Macular Degeneration as Revealed by mtDNA Copy Number Measurements in Peripheral Blood. Int J Mol Sci 2023; 24:16406. [PMID: 38003595 PMCID: PMC10671207 DOI: 10.3390/ijms242216406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondrial dysfunction is a common occurrence in the aging process and is observed in diseases such as age-related macular degeneration (AMD). Increased levels of reactive oxygen species lead to damaged mitochondrial DNA (mtDNA), resulting in dysfunctional mitochondria, and, consequently, mtDNA causes further harm in the retinal tissue. However, it is unclear whether the effects are locally restricted to the high-energy-demanding retinal pigment epithelium or are also systematically present. Therefore, we measured mtDNA copy number (mtDNA-CN) in peripheral blood using a qPCR approach with plasmid normalization in elderly participants with and without AMD from the AugUR study (n = 2262). We found significantly lower mtDNA-CN in the blood of participants with early (n = 453) and late (n = 170) AMD compared to AMD-free participants (n = 1630). In regression analyses, we found lower mtDNA-CN to be associated with late AMD when compared with AMD-free participants. Each reduction of mtDNA-CN by one standard deviation increased the risk for late AMD by 24%. This association was most pronounced in geographic atrophy (OR = 1.76, 95% CI 1.19-2.60, p = 0.004), which has limited treatment options. These findings provide new insights into the relationship between mtDNA-CN in blood and AMD, suggesting that it may serve as a more accessible biomarker than mtDNA-CN in the retina.
Collapse
Affiliation(s)
- Adriana Koller
- Institute of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.K.); (C.L.); (H.W.)
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.K.); (C.L.); (H.W.)
| | - Caroline Brandl
- Department of Genetic Epidemiology, University of Regensburg, 93053 Regensburg, Germany; (C.B.); (M.E.Z.); (K.J.S.); (I.M.H.)
- Department of Ophthalmology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Martina E. Zimmermann
- Department of Genetic Epidemiology, University of Regensburg, 93053 Regensburg, Germany; (C.B.); (M.E.Z.); (K.J.S.); (I.M.H.)
| | - Klaus J. Stark
- Department of Genetic Epidemiology, University of Regensburg, 93053 Regensburg, Germany; (C.B.); (M.E.Z.); (K.J.S.); (I.M.H.)
| | - Hansi Weissensteiner
- Institute of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.K.); (C.L.); (H.W.)
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Iris M. Heid
- Department of Genetic Epidemiology, University of Regensburg, 93053 Regensburg, Germany; (C.B.); (M.E.Z.); (K.J.S.); (I.M.H.)
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.K.); (C.L.); (H.W.)
| |
Collapse
|
12
|
Friedenberger A, Doyle C, Couillard L, Kyle CJ. The bear necessities: A sensitive qPCR assay for bear DNA detection from bile and derived products to complement wildlife forensic enforcement. Forensic Sci Int Genet 2023; 67:102935. [PMID: 37797418 DOI: 10.1016/j.fsigen.2023.102935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Demand for bear bile, a prized component of traditional Asian medicines, threaten Asiatic and sun bear population sustainability. While laws exist to prevent poaching and trafficking of bear parts and derivatives, smuggling persists with demand extending to surrogate species, including American black bears (Ursus americanus). Mitochondrial DNA (mtDNA) sequencing can identify products putatively containing biological bear material but can be undermined by PCR inhibitors in bile and a lack of sensitivity at trace levels. Quantitative PCR (qPCR) assays can be used to distinguish between closely related target species, while concomitantly evaluating inhibition and false negative results in low quality/quantity DNA applications. Herein, we develop a multiplexed qPCR assay to detect and differentiate among bear species, including highly diluted bile samples mixed within liquors as common dilutants. The assay detects as little as 10 locus copies/reaction of bear DNA with 95% confidence, distinguishing among sun, Asiatic and American black bears. Demonstrating the sensitivity and applicability of this assay in context of current bile mixture recipes, dilutions of 1:5,000 bile with ethanol, red wine, and spirits, all yielded clear quantifiable detections, where our data suggests as little as 1 drop of bile per 750 mL bottle of alcohol would still exceed the limits of detection (e.g., 1:15000 dilution or <0.05 mL bile per 750 mL bottle). Overall, this study provides a rapid, sensitive, and specific test to identify and distinguish among bear species commonly used for bile production to aid wildlife enforcement applications.
Collapse
Affiliation(s)
- Ashley Friedenberger
- Trent University, Natural Resources DNA Profiling & Forensic Centre, 2140 East Bank Drive, Peterborough, ON K9L 1Z8, Canada; Forensic Science Department, Trent University, 2140 East Bank Drive, Peterborough, ON K9L 1Z8, Canada.
| | - Colleen Doyle
- Trent University, Natural Resources DNA Profiling & Forensic Centre, 2140 East Bank Drive, Peterborough, ON K9L 1Z8, Canada
| | - Lindsey Couillard
- Intelligence and Investigation Services Branch, Ontario Ministry of Natural Resources and Forestry, ON, Canada
| | - Christopher J Kyle
- Trent University, Natural Resources DNA Profiling & Forensic Centre, 2140 East Bank Drive, Peterborough, ON K9L 1Z8, Canada; Forensic Science Department, Trent University, 2140 East Bank Drive, Peterborough, ON K9L 1Z8, Canada
| |
Collapse
|
13
|
Zhang H, Yu X, Ye J, Li H, Hu J, Tan Y, Fang Y, Akbay E, Yu F, Weng C, Sankaran VG, Bachoo RM, Maher E, Minna J, Zhang A, Li B. Systematic investigation of mitochondrial transfer between cancer cells and T cells at single-cell resolution. Cancer Cell 2023; 41:1788-1802.e10. [PMID: 37816332 PMCID: PMC10568073 DOI: 10.1016/j.ccell.2023.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/27/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023]
Abstract
Mitochondria (MT) participate in most metabolic activities of mammalian cells. A near-unidirectional mitochondrial transfer from T cells to cancer cells was recently observed to "metabolically empower" cancer cells while "depleting immune cells," providing new insights into tumor-T cell interaction and immune evasion. Here, we leverage single-cell RNA-seq technology and introduce MERCI, a statistical deconvolution method for tracing and quantifying mitochondrial trafficking between cancer and T cells. Through rigorous benchmarking and validation, MERCI accurately predicts the recipient cells and their relative mitochondrial compositions. Application of MERCI to human cancer samples identifies a reproducible MT transfer phenotype, with its signature genes involved in cytoskeleton remodeling, energy production, and TNF-α signaling pathways. Moreover, MT transfer is associated with increased cell cycle activity and poor clinical outcome across different cancer types. In summary, MERCI enables systematic investigation of an understudied aspect of tumor-T cell interactions that may lead to the development of therapeutic opportunities.
Collapse
Affiliation(s)
- Hongyi Zhang
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xuexin Yu
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianfeng Ye
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huiyu Li
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jing Hu
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuhao Tan
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yan Fang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Esra Akbay
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Fulong Yu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Chen Weng
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Vijay G Sankaran
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Robert M Bachoo
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth Maher
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - John Minna
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anli Zhang
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Bo Li
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Xavier C, Sutter C, Amory C, Niederstätter H, Parson W. NuMY-A qPCR Assay Simultaneously Targeting Human Autosomal, Y-Chromosomal, and Mitochondrial DNA. Genes (Basel) 2023; 14:1645. [PMID: 37628695 PMCID: PMC10454206 DOI: 10.3390/genes14081645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The accurate quantification of DNA in forensic samples is of utmost importance. These samples are often present in limited amounts; therefore, it is indicated to use the appropriate analysis route with the optimum DNA amount (when possible). Also, DNA quantification can inform about the degradation stage and therefore support the decision on which downstream genotyping method to use. Consequently, DNA quantification aids in getting the best possible results from a forensic sample, considering both its DNA quantity and quality limitations. Here, we introduce NuMY, a new quantitative real-time PCR (qPCR) method for the parallel quantification of human nuclear (n) and mitochondrial (mt) DNA, assessing the male portion in mixtures of both sexes and testing for possible PCR inhibition. NuMY is based on previous work and follows the MIQE guidelines whenever applicable. Although quantification of nuclear (n)DNA by simultaneously analyzing autosomal and male-specific targets is available in commercial qPCR kits, tools that include the quantification of mtDNA are sparse. The quantification of mtDNA has proven relevant for samples with low nDNA content when conventional DNA fingerprinting techniques cannot be followed. Furthermore, the development and use of new massively parallel sequencing assays that combine multiple marker types, i.e., autosomal, Y-chromosomal, and mtDNA, can be optimized when precisely knowing the amount of each DNA component present in the input sample. For high-quality DNA extracts, NuMY provided nDNA results comparable to those of another quantification technique and has also proven to be a reliable tool for challenging, forensically relevant samples such as mixtures, inhibited, and naturally degraded samples.
Collapse
Affiliation(s)
- Catarina Xavier
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.A.); (H.N.)
- i3S—Institute for Research and Innovation in Health, University of Porto, 4099-002 Porto, Portugal
| | - Charlotte Sutter
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.A.); (H.N.)
| | - Christina Amory
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.A.); (H.N.)
| | - Harald Niederstätter
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.A.); (H.N.)
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.A.); (H.N.)
- Forensic Science Program, The Pennsylvania State University, University Park, PA 16801, USA
| |
Collapse
|
15
|
Al-Kafaji G, Jahrami HA, Alwehaidah MS, Alshammari Y, Husni M. Mitochondrial DNA copy number in autism spectrum disorder and attention deficit hyperactivity disorder: a systematic review and meta-analysis. Front Psychiatry 2023; 14:1196035. [PMID: 37484684 PMCID: PMC10361772 DOI: 10.3389/fpsyt.2023.1196035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Background Several reports suggest that altered mitochondrial DNA copy number (mtDNA-cn), a common biomarker for aberrant mitochondrial function, is implicated in autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), but the results are still elusive. Methods A meta-analysis was performed to summarize the current indication and to provide a more precise assessment of the mtDNA-cn in ASD and ADHD. A search in the MEDLINE-PubMed, Scopus, and EMBASE databases was done to identify related studies up to the end of February 2023. The meta-analysis was conducted according to recommendations of the Cochrane Handbook of Systematic Reviews. Results Fourteen studies involving 666 cases with ASD and ADHD and 585 controls were collected and judged relevant for the systematic review and meta-analysis. The pooled results by a random effects meta-analysis was reported as a geometric mean of the estimated average response ratio and 95% confidence interval. Overall analysis of studies reported differences in mtDNA-cn in blood samples (k = 10) and non-blood samples (brain tissues and oral samples; k = 4) suggested significantly higher mtDNA-cn in patients compared to controls (p = 0.0275). Sub-analysis by stratifying studies based on tissue type, showed no significant increase in mtDNA-cn in blood samples among patients and controls (p = 0.284). Conversely, higher mtDNA-cn was observed in non-blood samples in patients than in controls (p = 0.0122). Further stratified analysis based on blood-cell compositions as potential confounds showed no significant difference in mtDNA-cn in peripheral blood samples of patients comparted to controls (p = 0.074). In addition, stratified analysis of aged-matched ASD and ADHD patients and controls revealed no significant difference in mtDNA-cn in blood samples between patients and controls (p = 0.214), whereas a significant increase in mtDNA-cn was observed in non-blood samples between patients and controls (p < 0.001). Finally, when the mtDNA-cn was analyzed in blood samples of aged-matched patients with ASD (peripheral blood, leukocytes, and PBMCs) or ADHD (peripheral blood), no significant difference in mtDNA-cn was observed between ASD patients and controls (p = 0.385), while a significant increase in mtDNA-cn was found between ADHD patients and controls (p = 0.033). Conclusion In this first meta-analysis of the evaluation of mtDNA-cn in ASD/ADHD, our results show elevated mtDNA-cn in ASD and ADHD, further emphasizing the implication of mitochondrial dysfunction in neurodevelopmental disorders. However, our results indicate that the mtDNA-cn in blood is not reflected in other tissues in ASD/ADHD, and the true relationship between blood-derived mtDNA-cn and ASD/ADHD remains to be defined in future studies. The importance of blood-cell compositions as confounders of blood-based mtDNA-cn measurement and the advantages of salivary mtDNA-cn should be considered in future studies. Moreover, the potential of mtDNA-cn as a biomarker for mitochondrial malfunction in neurodevelopmental disorders deserves further investigations.
Collapse
Affiliation(s)
- Ghada Al-Kafaji
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Haitham Ali Jahrami
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
- Government Hospital, Manama, Bahrain
| | - Materah Salem Alwehaidah
- Department of Medical Laboratory, Faculty of Allied Health, Kuwait University, Kuwait City, Kuwait
| | | | - Mariwan Husni
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
- Department of Psychiatry, Northern Ontarion School of Medicine University, Thunder Bay, ON, Canada
| |
Collapse
|
16
|
Dar GM, Ahmad E, Ali A, Mahajan B, Ashraf GM, Saluja SS. Genetic aberration analysis of mitochondrial respiratory complex I implications in the development of neurological disorders and their clinical significance. Ageing Res Rev 2023; 87:101906. [PMID: 36905963 DOI: 10.1016/j.arr.2023.101906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Growing neurological diseases pose difficult challenges for modern medicine to diagnose and manage them effectively. Many neurological disorders mainly occur due to genetic alteration in genes encoding mitochondrial proteins. Moreover, mitochondrial genes exhibit a higher rate of mutation due to the generation of Reactive oxygen species (ROS) during oxidative phosphorylation operating in their vicinity. Among the different complexes of Electron transport chain (ETC), NADH: Ubiquinone oxidoreductase (Mitochondrial complex I) is the most important. This multimeric enzyme, composed of 44 subunits, is encoded by both nuclear and mitochondrial genes. It often exhibits mutations resulting in development of various neurological diseases. The most prominent diseases include leigh syndrome (LS), leber hereditary optic neuropathy (LHON), mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS), myoclonic epilepsy associated with ragged-red fibers (MERRF), idiopathic Parkinson's disease (PD) and, Alzheimer's disease (AD). Preliminary data suggest that mitochondrial complex I subunit genes mutated are frequently of nuclear origin; however, most of the mtDNA gene encoding subunits are also primarily involved. In this review, we have discussed the genetic origins of neurological disorders involving mitochondrial complex I and signified recent approaches to unravel the diagnostic and therapeutic potentials and their management.
Collapse
Affiliation(s)
- Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Asgar Ali
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Bhawna Mahajan
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India.
| |
Collapse
|
17
|
Chen S, Liao Z, Xu P. Mitochondrial control of innate immune responses. Front Immunol 2023; 14:1166214. [PMID: 37325622 PMCID: PMC10267745 DOI: 10.3389/fimmu.2023.1166214] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Mitochondria are versatile organelles and essential components of numerous biological processes such as energy metabolism, signal transduction, and cell fate determination. In recent years, their critical roles in innate immunity have come to the forefront, highlighting impacts on pathogenic defense, tissue homeostasis, and degenerative diseases. This review offers an in-depth and comprehensive examination of the multifaceted mechanisms underlying the interactions between mitochondria and innate immune responses. We will delve into the roles of healthy mitochondria as platforms for signalosome assembly, the release of mitochondrial components as signaling messengers, and the regulation of signaling via mitophagy, particularly to cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling and inflammasomes. Furthermore, the review will explore the impacts of mitochondrial proteins and metabolites on modulating innate immune responses, the polarization of innate immune cells, and their implications on infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Shasha Chen
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Pinglong Xu
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University (HIC-ZJU), Hangzhou, China
- Ministry of Education (MOE) Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Pfab A, Belikov S, Keuper M, Jastroch M, Mannervik M. Inhibition of mitochondrial transcription by the neurotoxin MPP . Exp Cell Res 2023; 425:113536. [PMID: 36858342 DOI: 10.1016/j.yexcr.2023.113536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
The neurotoxin MPP+ triggers cell death of dopamine neurons and induces Parkinson's disease symptoms in mice and men, but the immediate transcriptional response to this neurotoxin has not been studied. We therefore treated human SH-SY5Y cells with a low dose (0.1 mM) of MPP+ and measured the effect on nascent transcription by precision run-on sequencing (PRO-seq). We found that transcription of the mitochondrial genome was significantly reduced already after 30 min, whereas nuclear gene transcription was unaffected. Inhibition of respiratory complex I by MPP+ led to reduced ATP production, that may explain the diminished activity of mitochondrial RNA polymerase. Our results show that MPP+ has a direct effect on mitochondrial function and transcription, and that other gene expression or epigenetic changes induced by this neurotoxin are secondary effects that reflect a cellular adaptation program.
Collapse
Affiliation(s)
- Alexander Pfab
- Dept. Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Sergey Belikov
- Dept. Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Michaela Keuper
- Dept. Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Martin Jastroch
- Dept. Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Mattias Mannervik
- Dept. Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
19
|
Mitochondrial Damage Induced by T-2 Mycotoxin on Human Skin-Fibroblast Hs68 Cell Line. Molecules 2023; 28:molecules28052408. [PMID: 36903658 PMCID: PMC10005480 DOI: 10.3390/molecules28052408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
T-2 toxin is produced by different Fusarium species and belongs to the group of type A trichothecene mycotoxins. T-2 toxin contaminates various grains, such as wheat, barley, maize, or rice, thus posing a risk to human and animal health. The toxin has toxicological effects on human and animal digestive, immune, nervous and reproductive systems. In addition, the most significant toxic effect can be observed on the skin. This in vitro study focused on T-2 toxicity on human skin fibroblast Hs68 cell line mitochondria. In the first step of this study, T-2 toxin's effect on the cell mitochondrial membrane potential (MMP) was determined. The cells were exposed to T-2 toxin, which resulted in dose- and time-dependent changes and a decrease in MMP. The obtained results revealed that the changes of intracellular reactive oxygen species (ROS) in the Hs68 cells were not affected by T-2 toxin. A further mitochondrial genome analysis showed that T-2 toxin in a dose- and time-dependent manner decreased the number of mitochondrial DNA (mtDNA) copies in cells. In addition, T-2 toxin genotoxicity causing mtDNA damage was evaluated. It was found that incubation of Hs68 cells in the presence of T-2 toxin, in a dose- and time-dependent manner, increased the level of mtDNA damage in both tested mtDNA regions: NADH dehydrogenase subunit 1 (ND1) and NADH dehydrogenase subunit 5 (ND5). In conclusion, the results of the in vitro study revealed that T-2 toxin shows adverse effects on Hs68 cell mitochondria. T-2 toxin induces mitochondrial dysfunction and mtDNA damage, which may cause the disruption of adenosine triphosphate (ATP) synthesis and, in consequence, cell death.
Collapse
|
20
|
Jain R, Begum N, Tryphena KP, Singh SB, Srivastava S, Rai SN, Vamanu E, Khatri DK. Inter and intracellular mitochondrial transfer: Future of mitochondrial transplant therapy in Parkinson's disease. Biomed Pharmacother 2023; 159:114268. [PMID: 36682243 DOI: 10.1016/j.biopha.2023.114268] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Parkinson's disease (PD) is marked by the gradual degeneration of dopaminergic neurons and the intracellular build-up of Lewy bodies rich in α-synuclein protein. This impairs various aspects of the mitochondria including the generation of ROS, biogenesis, dynamics, mitophagy etc. Mitochondrial dynamics are regulated through the inter and intracellular movement which impairs mitochondrial trafficking within and between cells. This inter and intracellular mitochondrial movement plays a significant role in maintaining neuronal dynamics in terms of energy and growth. Kinesin, dynein, myosin, Mitochondrial rho GTPase (Miro), and TRAK facilitate the retrograde and anterograde movement of mitochondria. Enzymes such as Kinases along with Calcium (Ca2+), Adenosine triphosphate (ATP) and the genes PINK1 and Parkin are also involved. Extracellular vesicles, gap junctions, and tunneling nanotubes control intercellular movement. The knowledge and understanding of these proteins, enzymes, molecules, and movements have led to the development of mitochondrial transplant as a therapeutic approach for various disorders involving mitochondrial dysfunction such as stroke, ischemia and PD. A better understanding of these pathways plays a crucial role in establishing extracellular mitochondrial transplant therapy for reverting the pathology of PD. Currently, techniques such as mitochondrial coculture, mitopunch and mitoception are being utilized in the pre-clinical stages and should be further explored for translational value. This review highlights how intercellular and intracellular mitochondrial dynamics are affected during mitochondrial dysfunction in PD. The field of mitochondrial transplant therapy in PD is underlined in particular due to recent developments and the potential that it holds in the near future.
Collapse
Affiliation(s)
- Rachit Jain
- Molecular & Cellular Neuroscience lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| | - Nusrat Begum
- Molecular & Cellular Neuroscience lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| | - Kamatham Pushpa Tryphena
- Molecular & Cellular Neuroscience lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| | - Shashi Bala Singh
- Molecular & Cellular Neuroscience lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| | - Sachchida Nand Rai
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India.
| | - Emanuel Vamanu
- University of Agricultural Sciences and Veterinary Medicine of Bucharest, Romania.
| | - Dharmendra Kumar Khatri
- Molecular & Cellular Neuroscience lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| |
Collapse
|
21
|
Memon AA, Vats S, Sundquist J, Li Y, Sundquist K. Mitochondrial DNA Copy Number: Linking Diabetes and Cancer. Antioxid Redox Signal 2022; 37:1168-1190. [PMID: 36169625 DOI: 10.1089/ars.2022.0100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent Advances: Various studies have suggested that mitochondrial DNA copy number (mtDNA-CN), a surrogate biomarker of mitochondrial dysfunction, is an easily quantifiable biomarker for chronic diseases, including diabetes and cancer. However, current knowledge is limited, and the results are controversial. This has been attributed mainly to methodology and study design. Critical Issues: The incidence of diabetes and cancer has increased significantly in recent years. Moreover, type 2 diabetes (T2D) has been shown to be a risk factor for cancer. mtDNA-CN has been associated with both T2D and cancer. However, it is not known whether mtDNA-CN plays any role in the association between T2D and cancer. Significance: In this review, we have discussed mtDNA-CN in diabetes and cancer, and reviewed the literature and methodology used in published studies so far. Based on the literature review, we have speculated how mtDNA-CN may act as a link between diabetes and cancer. Furthermore, we have provided some recommendations for reliable translation of mtDNA-CN as a biomarker. Future Directions: Further research is required to elucidate the role of mtDNA-CN in the association between T2D and cancer. If established, early lifestyle interventions, such as physical activity and diet control that improve mitochondrial function, may help preventing cancer in patients with T2D. Antioxid. Redox Signal. 37, 1168-1190.
Collapse
Affiliation(s)
- Ashfaque A Memon
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Sakshi Vats
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Yanni Li
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| |
Collapse
|
22
|
Alqaisi MHM, Ekka MM, Patel BC. Forensic evaluation of mitochondrial DNA heteroplasmy in Gujarat population, India. Ann Hum Biol 2022; 49:332-341. [PMID: 36343161 DOI: 10.1080/03014460.2022.2144447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Owing to its high copy number and its small size, mtDNA analysis is the most reliable choice when biological materials from crime scenes are degraded or have mixed STR profiles. AIM To examine the occurrence of heteroplasmy along with its frequency and pattern in both HV1 and HV2 regions of the mtDNA among unrelated individuals from India. SUBJECTS AND METHODS Mitochondrial DNA control region [hypervariable region one (HV1) and hypervariable region two (HV2)] were analysed in blood and buccal tissues of 104 unrelated individuals from the Indian state of Gujarat. RESULTS A high frequency of point heteroplasmy (PH) and length heteroplasmy (LH) was revealed. PH was detected in 7.69% of the population, with a higher frequency observed in blood than in buccal samples. However, there were no statistically significant differences in PH between the two tissues (Chi-square = 0.552, p ≥ 0.05). A total of six PH positions were detected: three at HV1, and another three at HV2. The studied population showed 46.15% LH in the HV1 and HV2 regions of both tissues. The LH positions observed in the Gujarat population were the same as those previously reported at HV1 np16184-16193 and HV2 np303-315. CONCLUSIONS Our findings suggest that differences in the pattern of heteroplasmy found in different tissues can complicate the forensic analysis, on the other hand, the probability of a match between the questioned and reference samples increases when the heteroplasmy is identical in both tissues. Variability of PH among persons and even within tissues recommends analysing multiple tissue samples before drawing a conclusion in forensic mtDNA analyses.
Collapse
Affiliation(s)
- Mohammed H M Alqaisi
- Laboratory of Forensic Biology and Biotechnology, National Forensic Sciences University (NFSU), Gandhinagar, Gujarat, India
| | - Molina Madhulika Ekka
- Laboratory of Forensic Biology and Biotechnology, National Forensic Sciences University (NFSU), Gandhinagar, Gujarat, India
| | - Bhargav C Patel
- Laboratory of Forensic Biology and Biotechnology, National Forensic Sciences University (NFSU), Gandhinagar, Gujarat, India
| |
Collapse
|
23
|
Becker YLC, Duvvuri B, Fortin PR, Lood C, Boilard E. The role of mitochondria in rheumatic diseases. Nat Rev Rheumatol 2022; 18:621-640. [PMID: 36175664 DOI: 10.1038/s41584-022-00834-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
The mitochondrion is an intracellular organelle thought to originate from endosymbiosis between an ancestral eukaryotic cell and an α-proteobacterium. Mitochondria are the powerhouses of the cell, and can control several important processes within the cell, such as cell death. Conversely, dysregulation of mitochondria possibly contributes to the pathophysiology of several autoimmune diseases. Defects in mitochondria can be caused by mutations in the mitochondrial genome or by chronic exposure to pro-inflammatory cytokines, including type I interferons. Following the release of intact mitochondria or mitochondrial components into the cytosol or the extracellular space, the bacteria-like molecular motifs of mitochondria can elicit pro-inflammatory responses by the innate immune system. Moreover, antibodies can target mitochondria in autoimmune diseases, suggesting an interplay between the adaptive immune system and mitochondria. In this Review, we discuss the roles of mitochondria in rheumatic diseases such as systemic lupus erythematosus, antiphospholipid syndrome and rheumatoid arthritis. An understanding of the different contributions of mitochondria to distinct rheumatic diseases or manifestations could permit the development of novel therapeutic strategies and the use of mitochondria-derived biomarkers to inform pathogenesis.
Collapse
Affiliation(s)
- Yann L C Becker
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Québec, QC, Canada
- Département de microbiologie et immunologie, Université Laval, Québec, QC, Canada
| | - Bhargavi Duvvuri
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Paul R Fortin
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Québec, QC, Canada
- Division of Rheumatology, Department of Medicine, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Christian Lood
- Division of Rheumatology, University of Washington, Seattle, WA, USA.
| | - Eric Boilard
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada.
- Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Québec, QC, Canada.
- Département de microbiologie et immunologie, Université Laval, Québec, QC, Canada.
| |
Collapse
|
24
|
Cuadrado‐Vilanova M, Burgueño V, Balaguer‐Lluna L, Aschero R, Castillo‐Ecija H, Liu J, Perez‐Jaume S, Pascual‐Pasto G, Olaciregui NG, Gomez‐Gonzalez S, Correa G, Suñol M, Schaiquevich P, Radvanyi F, Lavarino C, Mora J, Catala‐Mora J, Chantada GL, Carcaboso AM. Follow-up of intraocular retinoblastoma through the quantitative analysis of conserved nuclear DNA sequences in aqueous humor from patients. J Pathol Clin Res 2022; 9:32-43. [PMID: 36148636 PMCID: PMC9732679 DOI: 10.1002/cjp2.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/30/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
Fundoscopy is the standard method for diagnosis and follow-up of intraocular retinoblastoma, but it is sometimes insufficient to discern whether tumors are inactivated following treatments. In this work, we hypothesized that the amount of conserved nuclear DNA sequences in the cell-free DNA (cfDNA) fraction of the aqueous humor (AH) might complement fundoscopy for retinoblastoma follow-up. To address our hypothesis, we developed highly sensitive droplet digital polymerase chain reaction (ddPCR) methods to quantify highly conserved DNA sequences of nucleus-encoded genes (GAPDH and B4GALNT1) and of a mitochondrial gene, MT-ATP6. We obtained AH samples during intravitreal treatments. We analyzed 42 AH samples from 25 patients with intraocular retinoblastoma and 11 AH from controls (non-cancer patients). According to clinical criteria, we grouped patients as having progression-free or progressive retinoblastoma. cfDNA concentration in the AH was similar in both retinoblastoma groups. Copy counts for nucleus-derived sequences of GAPDH and B4GALNT1 were significantly higher in the AH from patients with progressive disease, compared to the AH from progression-free patients and control non-cancer patients. The presence of mitochondrial DNA in the AH explained that both retinoblastoma groups had similar cfDNA concentration in AH. The optimal cut-off point for discriminating between progressive and progression-free retinoblastomas was 108 GAPDH copies per reaction. Among patients having serial AH samples analyzed during their intravitreal chemotherapy, GAPDH copies were high and decreased below the cut-off point in those patients responding to chemotherapy. In contrast, one non-responder patient remained with values above the cut-off during follow-up, until enucleation. We conclude that the measurement of conserved nuclear gene sequences in AH allows follow-up of intraocular retinoblastoma during intravitreal treatment. The method is applicable to all patients and could be relevant for those in which fundoscopy evaluation is inconclusive.
Collapse
Affiliation(s)
- Maria Cuadrado‐Vilanova
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain
| | - Victor Burgueño
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain
| | - Leire Balaguer‐Lluna
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain
| | - Rosario Aschero
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain
| | - Helena Castillo‐Ecija
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain
| | - Jing Liu
- Institut CurieCNRS, UMR144, SIREDO Oncology CenterParisFrance,Institut CuriePSL Research UniversityParisFrance
| | - Sara Perez‐Jaume
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain
| | - Guillem Pascual‐Pasto
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain
| | - Nagore G Olaciregui
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain
| | - Soledad Gomez‐Gonzalez
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain
| | | | | | - Paula Schaiquevich
- Hospital de Pediatria JP GarrahanBuenos AiresArgentina,CONICETBuenos AiresArgentina
| | - François Radvanyi
- Institut CurieCNRS, UMR144, SIREDO Oncology CenterParisFrance,Institut CuriePSL Research UniversityParisFrance
| | - Cinzia Lavarino
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain
| | - Jaume Mora
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain
| | | | - Guillermo L Chantada
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain,CONICETBuenos AiresArgentina
| | - Angel M Carcaboso
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain
| |
Collapse
|
25
|
Development and validation of a SYBR green-based mitochondrial DNA quantification method by following the MIQE and other guidelines. Leg Med (Tokyo) 2022; 58:102096. [PMID: 35689884 DOI: 10.1016/j.legalmed.2022.102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/11/2022] [Accepted: 05/27/2022] [Indexed: 01/28/2023]
Abstract
In forensic mitochondrial DNA (mtDNA) analysis, quantitative PCR (qPCR) is usually performed to obtain high-quality sequence data for subsequent Sanger or massively parallel sequencing. Unlike methods for nuclear DNA quantification using qPCR, a calibrator is necessary to obtain mtDNA concentrations (i.e., copies/µL). Herein, we developed and validated a mtDNA quantification method based on a SYBR Green assay by following MIQE [Bustin et al., Clin. Chem. 55 (2009) 611-22] and other guidelines. Primers were designed to amplify nucleotide positions 16,190-16,420 in hypervariable region 1 for qPCR using PowerUp SYBR Green and QuantStudio 5. The optimized conditions were 0.3 µM each primer and an annealing temperature of 60 °C under a 2-step cycling protocol. K562 DNA at 100 pg/µL was converted into a mtDNA concentration of 16,400 copies/µL using linearized plasmid DNA. This mtDNA calibrator was obtained by cloning the synthesized DNA fragments of mtDNA (positions 16,140-16,470) containing a 100-bp inversion. The linear dynamic range of the K562 standard curve was 10,000-0.1 pg/µL (r2 ≥ 0.999). The accuracy was examined using NIST SRM 2372a, and its components A, B, and C were quantified with differences of -29.4%, -35.0%, and -22.0%, respectively, against the mtDNA concentrations calculated from published NIST data. We also examined the specificity of the primers, stability of the reaction mix, precision, tolerance against PCR inhibitors, and cross-reactivity against DNA from various animal taxa. Our newly developed mtDNA quantification method is expected to be useful for forensic mtDNA analysis.
Collapse
|
26
|
Pravda J. Evidence-based pathogenesis and treatment of ulcerative colitis: A causal role for colonic epithelial hydrogen peroxide. World J Gastroenterol 2022; 28:4263-4298. [PMID: 36159014 PMCID: PMC9453768 DOI: 10.3748/wjg.v28.i31.4263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/19/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
In this comprehensive evidence-based analysis of ulcerative colitis (UC), a causal role is identified for colonic epithelial hydrogen peroxide (H2O2) in both the pathogenesis and relapse of this debilitating inflammatory bowel disease. Studies have shown that H2O2 production is significantly increased in the non-inflamed colonic epithelium of individuals with UC. H2O2 is a powerful neutrophilic chemotactic agent that can diffuse through colonic epithelial cell membranes creating an interstitial chemotactic molecular “trail” that attracts adjacent intravascular neutrophils into the colonic epithelium leading to mucosal inflammation and UC. A novel therapy aimed at removing the inappropriate H2O2 mediated chemotactic signal has been highly effective in achieving complete histologic resolution of colitis in patients experiencing refractory disease with at least one (biopsy-proven) histologic remission lasting 14 years to date. The evidence implies that therapeutic intervention to prevent the re-establishment of a pathologic H2O2 mediated chemotactic signaling gradient will indefinitely preclude neutrophilic migration into the colonic epithelium constituting a functional cure for this disease. Cumulative data indicate that individuals with UC have normal immune systems and current treatment guidelines calling for the suppression of the immune response based on the belief that UC is caused by an underlying immune dysfunction are not supported by the evidence and may cause serious adverse effects. It is the aim of this paper to present experimental and clinical evidence that identifies H2O2 produced by the colonic epithelium as the causal agent in the pathogenesis of UC. A detailed explanation of a novel therapeutic intervention to normalize colonic H2O2, its rationale, components, and formulation is also provided.
Collapse
Affiliation(s)
- Jay Pravda
- Disease Pathogenesis, Inflammatory Disease Research Centre, Palm Beach Gardens, FL 33410, United States
| |
Collapse
|
27
|
Abd Radzak SM, Mohd Khair SZN, Ahmad F, Patar A, Idris Z, Mohamed Yusoff AA. Insights regarding mitochondrial DNA copy number alterations in human cancer (Review). Int J Mol Med 2022; 50:104. [PMID: 35713211 PMCID: PMC9304817 DOI: 10.3892/ijmm.2022.5160] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondria are the critical organelles involved in various cellular functions. Mitochondrial biogenesis is activated by multiple cellular mechanisms which require a synchronous regulation between mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). The mitochondrial DNA copy number (mtDNA-CN) is a proxy indicator for mitochondrial activity, and its alteration reflects mitochondrial biogenesis and function. Despite the precise mechanisms that modulate the amount and composition of mtDNA, which have not been fully elucidated, mtDNA-CN is known to influence numerous cellular pathways that are associated with cancer and as well as multiple other diseases. In addition, the utility of current technology in measuring mtDNA-CN contributes to its extensive assessment of diverse traits and tumorigenesis. The present review provides an overview of mtDNA-CN variations across human cancers and an extensive summary of the existing knowledge on the regulation and machinery of mtDNA-CN. The current information on the advanced methods used for mtDNA-CN assessment is also presented.
Collapse
Affiliation(s)
- Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Farizan Ahmad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Azim Patar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
28
|
Kronenberg F, Eckardt KU. Mitochondrial DNA and Kidney Function. Clin J Am Soc Nephrol 2022; 17:942-944. [PMID: 35777832 PMCID: PMC9269628 DOI: 10.2215/cjn.05820522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
29
|
Bordoni L, Malinowska AM, Petracci I, Szwengiel A, Gabbianelli R, Chmurzynska A. Diet, Trimethylamine Metabolism, and Mitochondrial DNA: An Observational Study. Mol Nutr Food Res 2022; 66:e2200003. [PMID: 35490412 DOI: 10.1002/mnfr.202200003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/14/2022] [Indexed: 12/11/2022]
Abstract
SCOPE Mitochondrial DNA copy number (mtDNAcn) and its methylation level in the D-loop area have been correlated with metabolic health and are suggested to vary in response to environmental stimuli, including diet. Circulating levels of trimethylamine-n-oxide (TMAO), which is an oxidative derivative of the trimethylamine (TMA) produced by the gut microbiome from dietary precursors, have been associated with chronic diseases and are suggested to have an impact on mitochondrial dynamics. This study is aimed to investigate the relationship between diet, TMA, TMAO, and mtDNAcn, as well as DNA methylation. METHODS AND RESULTS Two hundred subjects with extreme (healthy and unhealthy) dietary patterns are recruited. Dietary records are collected to assess their nutrient intake and diets' quality (Healthy Eating Index). Blood levels of TMA and TMAO, circulating levels of TMA precursors and their dietary intakes are measured. MtDNAcn, nuclear DNA methylation long interspersed nuclear element 1 (LINE-1), and strand-specific D-loop methylation levels are assessed. There is no association between dietary patterns and mtDNAcn. The TMAO/TMA ratio is negatively correlated with d-loop methylation levels but positively with mtDNAcn. CONCLUSIONS These findings suggest a potential association between TMA metabolism and mitochondrial dynamics (and mtDNA), indicating a new avenue for further research.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, 62032, MC, Italy
| | - Anna M Malinowska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, 60-624, Poland
| | - Irene Petracci
- School of Advanced Studies, University of Camerino, Camerino, 62032, MC, Italy
| | - Artur Szwengiel
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Poznań, 60-624, Poland
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, 62032, MC, Italy
| | - Agata Chmurzynska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, 60-624, Poland
| |
Collapse
|
30
|
Bohra SK, Achar RR, Chidambaram SB, Pellegrino C, Laurin J, Masoodi M, Srinivasan A. CURRENT PERSPECTIVES ON MITOCHONDRIAL DYSFUNCTION IN MIGRAINE. Eur J Neurosci 2022; 56:3738-3754. [PMID: 35478208 DOI: 10.1111/ejn.15676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022]
Abstract
Mitochondria is an autonomous organelle that plays a crucial role in the metabolic aspects of a cell. Cortical Spreading Depression (CSD) and fluctuations in the cerebral blood flow have for long been mechanisms underlying migraine. It is a neurovascular disorder with a unilateral manifestation of disturbing, throbbing and pulsating head pain. Migraine affects 2.6 and 21.7% of the general population and is the major cause of partial disability in the age group 15-49. Higher mutation rates, imbalance in concentration of physiologically relevant molecules, oxidative stress biomarkers have been the main themes of discussion in determining the role of mitochondrial disability in migraine. The correlation of migraine with other disorders like hemiplegic migraine, MELAS, TTH, CVS, ischemic stroke and hypertension has helped in the assessment of the physiological and morphogenetic basis of migraine. Here, we have reviewed the different nuances of mitochondrial dysfunction and migraine. The different mtDNA polymorphisms that can affect the generation and transmission of nerve impulse has been highlighted and supported with research findings. In addition to this, the genetic basis of migraine pathogenesis as a consequence of mutations in nuclear DNA that can in turn affect the synthesis of defective mitochondrial proteins is discussed along with a brief overview of epigenetic profile. This review gives an overview of the pathophysiology of migraine and explores mitochondrial dysfunction as a potential underlying mechanism. Also, therapeutic supplements for managing migraine have been discussed at different junctures in this paper.
Collapse
Affiliation(s)
- Shraman Kumar Bohra
- Department of Life Sciences, Pooja Bhagavat Memorial Mahajana Education Center, Mysore
| | - Raghu Ram Achar
- Division of Biochemistry, Faculty of Life Sciences, JSS Academy of Higher Education & Research. Mysore
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore
| | - Christophe Pellegrino
- Institut National de la Santé et de la Recherche Médicale, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | - Jerome Laurin
- Aix-Marseille University. Sport Science Faculty. Marseille. Institut de Neurobiologie de la Méditerranée, INMED (INSERM- AMU)., France
| | - Mojgan Masoodi
- Institute of Clinical Chemistry, University hospital Bern, Bern
| | - Asha Srinivasan
- Division of Nanoscience & Technology, School of Life Sciences & Centre for Excellence in Molecular Biology and Regenerative Medicine, JSS Academy of Higher Education & Research
| |
Collapse
|
31
|
Yu TN, Cheng EH, Tsai HN, Lin PY, Chen CH, Huang CC, Lee TH, Lee MS. Assessment of Telomere Length and Mitochondrial DNA Copy Number in Granulosa Cells as Predictors of Aneuploidy Rate in Young Patients. J Clin Med 2022; 11:jcm11071824. [PMID: 35407431 PMCID: PMC9000104 DOI: 10.3390/jcm11071824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 01/10/2023] Open
Abstract
Background: To identify the correlation among female age, cellular aging markers, and aneuploidy rate in in vitro fertilization (IVF) and the preimplantation genetic test for aneuploidy (PGT-A) cycles. Methods: This is a prospective cohort study recruiting 110 infertile women between August 2017 and July 2018. They were divided into young-age (<38 years, n = 60) and advanced-age (≥38 years, n = 50) groups. Peripheral leukocytes were assessed, and the granulosa cells were pooled during oocyte pickup. Mitochondrial DNA (mtDNA) copy number and telomere length (TL) were measured using real-time polymerase chain reaction. PGT-A was performed on the NGS platform. Results: mtDNA copy number and TL were positively correlated in both leukocytes (rho = 0.477, p < 0.001) and granulosa cells (rho = 0.361, p < 0.001), but the two parameters in leukocytes were not correlated with those in granulosa cells. In the young-age group, TL in the granulosa cells was the only factor correlated with the aneuploidy rate (rho = −0.283, p = 0.044), whereas in the advanced-age group, age was the main factor (rho = 0.358, p = 0.018). Conclusions: TL in the granulosa cells was negatively correlated with the aneuploidy rate in the young-age group, supporting the application of PGT-A in younger women.
Collapse
Affiliation(s)
- Tzu-Ning Yu
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Division of Infertility, Lee Women’s Hospital, Taichung 40652, Taiwan; (E.-H.C.); (H.-N.T.); (P.-Y.L.); (C.-H.C.); (C.-C.H.)
| | - En-Hui Cheng
- Division of Infertility, Lee Women’s Hospital, Taichung 40652, Taiwan; (E.-H.C.); (H.-N.T.); (P.-Y.L.); (C.-H.C.); (C.-C.H.)
| | - Han-Ni Tsai
- Division of Infertility, Lee Women’s Hospital, Taichung 40652, Taiwan; (E.-H.C.); (H.-N.T.); (P.-Y.L.); (C.-H.C.); (C.-C.H.)
| | - Pin-Yao Lin
- Division of Infertility, Lee Women’s Hospital, Taichung 40652, Taiwan; (E.-H.C.); (H.-N.T.); (P.-Y.L.); (C.-H.C.); (C.-C.H.)
| | - Chien-Hong Chen
- Division of Infertility, Lee Women’s Hospital, Taichung 40652, Taiwan; (E.-H.C.); (H.-N.T.); (P.-Y.L.); (C.-H.C.); (C.-C.H.)
| | - Chun-Chia Huang
- Division of Infertility, Lee Women’s Hospital, Taichung 40652, Taiwan; (E.-H.C.); (H.-N.T.); (P.-Y.L.); (C.-H.C.); (C.-C.H.)
| | - Tsung-Hsien Lee
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Division of Infertility, Lee Women’s Hospital, Taichung 40652, Taiwan; (E.-H.C.); (H.-N.T.); (P.-Y.L.); (C.-H.C.); (C.-C.H.)
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (T.-H.L.); (M.-S.L.)
| | - Maw-Sheng Lee
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Division of Infertility, Lee Women’s Hospital, Taichung 40652, Taiwan; (E.-H.C.); (H.-N.T.); (P.-Y.L.); (C.-H.C.); (C.-C.H.)
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (T.-H.L.); (M.-S.L.)
| |
Collapse
|
32
|
Chong MR, Narula S, Morton R, Judge C, Akhabir L, Cawte N, Pathan N, Lali R, Mohammadi-Shemirani P, Shoamanesh A, O'Donnell M, Yusuf S, Langhorne P, Paré G. Mitochondrial DNA Copy Number as a Marker and Mediator of Stroke Prognosis: Observational and Mendelian Randomization Analyses. Neurology 2022; 98:e470-e482. [PMID: 34880091 PMCID: PMC8826461 DOI: 10.1212/wnl.0000000000013165] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Low buffy coat mitochondrial DNA copy number (mtDNA-CN) is associated with incident risk of stroke and poststroke mortality; however, its prognostic utility has not been extensively explored. Our goal was to investigate whether low buffy coat mtDNA-CN is a marker and causal determinant of poststroke outcomes using epidemiologic and genetic studies. METHODS First, we performed association testing between baseline buffy coat mtDNA-CN measurements and 1-month poststroke outcomes in 3,498 cases of acute, first stroke from 25 countries from the international, multicenter case-control study Importance of Conventional and Emerging Risk Factors of Stroke in Different Regions and Ethnic Groups of the World (INTERSTROKE). Then, we performed 2-sample mendelian randomization analyses to evaluate potential causative effects of low mtDNA-CN on 3-month modified Rankin Scale (mRS) score. Genetic variants associated with mtDNA-CN levels were derived from the UK Biobank study (N = 383,476), and corresponding effects on 3-month mRS score were ascertained from the Genetics of Ischemic Stroke Functional Outcome (GISCOME; N = 6,021) study. RESULTS A 1-SD lower mtDNA-CN at baseline was associated with stroke severity (baseline mRS score: odds ratio [OR] 1.27, 95% confidence interval [CI] 1.19-1.36; p = 4.7 × 10-12). Independently of baseline stroke severity, lower mtDNA-CN was associated with increased odds of greater 1-month disability (ordinal mRS score: OR 1.16, 95% CI 1.08-1.24; p = 4.4 × 10-5), poor functional outcome status (mRS score 3-6 vs 0-2: OR 1.21, 95% CI 1.08-1.34; p = 6.9 × 10-4), and mortality (OR 1.35, 95% CI 1.14-1.59; p = 3.9 × 10-4). Subgroup analyses demonstrated consistent effects across stroke type, sex, age, country income level, and education level. In addition, mtDNA-CN significantly improved reclassification of poor functional outcome status (net reclassification index [NRI] score 0.16, 95% CI 0.08-0.23; p = 3.6 × 10-5) and mortality (NRI score 0.31, 95% CI 0.19-0.43; p = 1.7 × 10-7) beyond known prognosticators. With the use of independent datasets, mendelian randomization revealed that a 1-SD decrease in genetically determined mtDNA-CN was associated with increased odds of greater 3-month disability quantified by ordinal mRS score (OR 2.35, 95% CI 1.13-4.90; p = 0.02) and poor functional outcome status (OR 2.68, 95% CI 1.05-6.86; p = 0.04). DISCUSSION Buffy coat mtDNA-CN is a novel and robust marker of poststroke prognosis that may also be a causal determinant of poststroke outcomes. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that low buffy coat mtDNA-CN (>1 SD) was associated with worse baseline severity and 1-month outcomes in patients with ischemic or hemorrhagic stroke.
Collapse
Affiliation(s)
- Michael Robert Chong
- From the Population Health Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., A.S., M.O., S.Y., G.P.), David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences; Thrombosis and Atherosclerosis Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., S.Y., G.P.); Department of Biochemistry and Biomedical Sciences (M.R.C., G.P.), Departments of Pathology and Molecular Medicine (M.R.C., R.M., P.M.-S., G.P.) and Medicine (L.A., A.S., S.Y., G.P.), Michael G. DeGroote School of Medicine, and Department of Health Research Methods, Evidence, and Impact (S.N., R.L., S.Y., G.P.), McMaster University, Hamilton, Ontario, Canada; National University of Ireland Galway (C.J., M.O.); and Institute of Cardiovascular and Medical Sciences (P.L.), University of Glasgow, UK
| | - Sukrit Narula
- From the Population Health Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., A.S., M.O., S.Y., G.P.), David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences; Thrombosis and Atherosclerosis Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., S.Y., G.P.); Department of Biochemistry and Biomedical Sciences (M.R.C., G.P.), Departments of Pathology and Molecular Medicine (M.R.C., R.M., P.M.-S., G.P.) and Medicine (L.A., A.S., S.Y., G.P.), Michael G. DeGroote School of Medicine, and Department of Health Research Methods, Evidence, and Impact (S.N., R.L., S.Y., G.P.), McMaster University, Hamilton, Ontario, Canada; National University of Ireland Galway (C.J., M.O.); and Institute of Cardiovascular and Medical Sciences (P.L.), University of Glasgow, UK
| | - Robert Morton
- From the Population Health Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., A.S., M.O., S.Y., G.P.), David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences; Thrombosis and Atherosclerosis Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., S.Y., G.P.); Department of Biochemistry and Biomedical Sciences (M.R.C., G.P.), Departments of Pathology and Molecular Medicine (M.R.C., R.M., P.M.-S., G.P.) and Medicine (L.A., A.S., S.Y., G.P.), Michael G. DeGroote School of Medicine, and Department of Health Research Methods, Evidence, and Impact (S.N., R.L., S.Y., G.P.), McMaster University, Hamilton, Ontario, Canada; National University of Ireland Galway (C.J., M.O.); and Institute of Cardiovascular and Medical Sciences (P.L.), University of Glasgow, UK
| | - Conor Judge
- From the Population Health Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., A.S., M.O., S.Y., G.P.), David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences; Thrombosis and Atherosclerosis Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., S.Y., G.P.); Department of Biochemistry and Biomedical Sciences (M.R.C., G.P.), Departments of Pathology and Molecular Medicine (M.R.C., R.M., P.M.-S., G.P.) and Medicine (L.A., A.S., S.Y., G.P.), Michael G. DeGroote School of Medicine, and Department of Health Research Methods, Evidence, and Impact (S.N., R.L., S.Y., G.P.), McMaster University, Hamilton, Ontario, Canada; National University of Ireland Galway (C.J., M.O.); and Institute of Cardiovascular and Medical Sciences (P.L.), University of Glasgow, UK
| | - Loubna Akhabir
- From the Population Health Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., A.S., M.O., S.Y., G.P.), David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences; Thrombosis and Atherosclerosis Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., S.Y., G.P.); Department of Biochemistry and Biomedical Sciences (M.R.C., G.P.), Departments of Pathology and Molecular Medicine (M.R.C., R.M., P.M.-S., G.P.) and Medicine (L.A., A.S., S.Y., G.P.), Michael G. DeGroote School of Medicine, and Department of Health Research Methods, Evidence, and Impact (S.N., R.L., S.Y., G.P.), McMaster University, Hamilton, Ontario, Canada; National University of Ireland Galway (C.J., M.O.); and Institute of Cardiovascular and Medical Sciences (P.L.), University of Glasgow, UK
| | - Nathan Cawte
- From the Population Health Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., A.S., M.O., S.Y., G.P.), David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences; Thrombosis and Atherosclerosis Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., S.Y., G.P.); Department of Biochemistry and Biomedical Sciences (M.R.C., G.P.), Departments of Pathology and Molecular Medicine (M.R.C., R.M., P.M.-S., G.P.) and Medicine (L.A., A.S., S.Y., G.P.), Michael G. DeGroote School of Medicine, and Department of Health Research Methods, Evidence, and Impact (S.N., R.L., S.Y., G.P.), McMaster University, Hamilton, Ontario, Canada; National University of Ireland Galway (C.J., M.O.); and Institute of Cardiovascular and Medical Sciences (P.L.), University of Glasgow, UK
| | - Nazia Pathan
- From the Population Health Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., A.S., M.O., S.Y., G.P.), David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences; Thrombosis and Atherosclerosis Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., S.Y., G.P.); Department of Biochemistry and Biomedical Sciences (M.R.C., G.P.), Departments of Pathology and Molecular Medicine (M.R.C., R.M., P.M.-S., G.P.) and Medicine (L.A., A.S., S.Y., G.P.), Michael G. DeGroote School of Medicine, and Department of Health Research Methods, Evidence, and Impact (S.N., R.L., S.Y., G.P.), McMaster University, Hamilton, Ontario, Canada; National University of Ireland Galway (C.J., M.O.); and Institute of Cardiovascular and Medical Sciences (P.L.), University of Glasgow, UK
| | - Ricky Lali
- From the Population Health Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., A.S., M.O., S.Y., G.P.), David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences; Thrombosis and Atherosclerosis Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., S.Y., G.P.); Department of Biochemistry and Biomedical Sciences (M.R.C., G.P.), Departments of Pathology and Molecular Medicine (M.R.C., R.M., P.M.-S., G.P.) and Medicine (L.A., A.S., S.Y., G.P.), Michael G. DeGroote School of Medicine, and Department of Health Research Methods, Evidence, and Impact (S.N., R.L., S.Y., G.P.), McMaster University, Hamilton, Ontario, Canada; National University of Ireland Galway (C.J., M.O.); and Institute of Cardiovascular and Medical Sciences (P.L.), University of Glasgow, UK
| | - Pedrum Mohammadi-Shemirani
- From the Population Health Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., A.S., M.O., S.Y., G.P.), David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences; Thrombosis and Atherosclerosis Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., S.Y., G.P.); Department of Biochemistry and Biomedical Sciences (M.R.C., G.P.), Departments of Pathology and Molecular Medicine (M.R.C., R.M., P.M.-S., G.P.) and Medicine (L.A., A.S., S.Y., G.P.), Michael G. DeGroote School of Medicine, and Department of Health Research Methods, Evidence, and Impact (S.N., R.L., S.Y., G.P.), McMaster University, Hamilton, Ontario, Canada; National University of Ireland Galway (C.J., M.O.); and Institute of Cardiovascular and Medical Sciences (P.L.), University of Glasgow, UK
| | - Ashkan Shoamanesh
- From the Population Health Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., A.S., M.O., S.Y., G.P.), David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences; Thrombosis and Atherosclerosis Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., S.Y., G.P.); Department of Biochemistry and Biomedical Sciences (M.R.C., G.P.), Departments of Pathology and Molecular Medicine (M.R.C., R.M., P.M.-S., G.P.) and Medicine (L.A., A.S., S.Y., G.P.), Michael G. DeGroote School of Medicine, and Department of Health Research Methods, Evidence, and Impact (S.N., R.L., S.Y., G.P.), McMaster University, Hamilton, Ontario, Canada; National University of Ireland Galway (C.J., M.O.); and Institute of Cardiovascular and Medical Sciences (P.L.), University of Glasgow, UK
| | - Martin O'Donnell
- From the Population Health Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., A.S., M.O., S.Y., G.P.), David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences; Thrombosis and Atherosclerosis Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., S.Y., G.P.); Department of Biochemistry and Biomedical Sciences (M.R.C., G.P.), Departments of Pathology and Molecular Medicine (M.R.C., R.M., P.M.-S., G.P.) and Medicine (L.A., A.S., S.Y., G.P.), Michael G. DeGroote School of Medicine, and Department of Health Research Methods, Evidence, and Impact (S.N., R.L., S.Y., G.P.), McMaster University, Hamilton, Ontario, Canada; National University of Ireland Galway (C.J., M.O.); and Institute of Cardiovascular and Medical Sciences (P.L.), University of Glasgow, UK
| | - Salim Yusuf
- From the Population Health Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., A.S., M.O., S.Y., G.P.), David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences; Thrombosis and Atherosclerosis Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., S.Y., G.P.); Department of Biochemistry and Biomedical Sciences (M.R.C., G.P.), Departments of Pathology and Molecular Medicine (M.R.C., R.M., P.M.-S., G.P.) and Medicine (L.A., A.S., S.Y., G.P.), Michael G. DeGroote School of Medicine, and Department of Health Research Methods, Evidence, and Impact (S.N., R.L., S.Y., G.P.), McMaster University, Hamilton, Ontario, Canada; National University of Ireland Galway (C.J., M.O.); and Institute of Cardiovascular and Medical Sciences (P.L.), University of Glasgow, UK
| | - Peter Langhorne
- From the Population Health Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., A.S., M.O., S.Y., G.P.), David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences; Thrombosis and Atherosclerosis Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., S.Y., G.P.); Department of Biochemistry and Biomedical Sciences (M.R.C., G.P.), Departments of Pathology and Molecular Medicine (M.R.C., R.M., P.M.-S., G.P.) and Medicine (L.A., A.S., S.Y., G.P.), Michael G. DeGroote School of Medicine, and Department of Health Research Methods, Evidence, and Impact (S.N., R.L., S.Y., G.P.), McMaster University, Hamilton, Ontario, Canada; National University of Ireland Galway (C.J., M.O.); and Institute of Cardiovascular and Medical Sciences (P.L.), University of Glasgow, UK
| | - Guillaume Paré
- From the Population Health Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., A.S., M.O., S.Y., G.P.), David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences; Thrombosis and Atherosclerosis Research Institute (M.R.C., S.N., R.M., C.J., L.A., N.C., N.P., R.L., P.M.-S., S.Y., G.P.); Department of Biochemistry and Biomedical Sciences (M.R.C., G.P.), Departments of Pathology and Molecular Medicine (M.R.C., R.M., P.M.-S., G.P.) and Medicine (L.A., A.S., S.Y., G.P.), Michael G. DeGroote School of Medicine, and Department of Health Research Methods, Evidence, and Impact (S.N., R.L., S.Y., G.P.), McMaster University, Hamilton, Ontario, Canada; National University of Ireland Galway (C.J., M.O.); and Institute of Cardiovascular and Medical Sciences (P.L.), University of Glasgow, UK.
| |
Collapse
|
33
|
Mitochondrial DNA and Epigenetics: Investigating Interactions with the One-Carbon Metabolism in Obesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9171684. [PMID: 35132354 PMCID: PMC8817841 DOI: 10.1155/2022/9171684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
Abstract
Mitochondrial DNA copy number (mtDNAcn) has been proposed for use as a surrogate biomarker of mitochondrial health, and evidence suggests that mtDNA might be methylated. Intermediates of the one-carbon cycle (1CC), which is duplicated in the cytoplasm and mitochondria, have a major role in modulating the impact of diet on the epigenome. Moreover, epigenetic pathways and the redox system are linked by the metabolism of glutathione (GSH). In a cohort of 101 normal-weight and 97 overweight/obese subjects, we evaluated mtDNAcn and methylation levels in both mitochondrial and nuclear areas to test the association of these marks with body weight, metabolic profile, and availability of 1CC intermediates associated with diet. Body composition was associated with 1CC intermediate availability. Reduced levels of GSH were measured in the overweight/obese group (p = 1.3∗10−5). A high BMI was associated with lower LINE-1 (p = 0.004) and nominally lower methylenetetrahydrofolate reductase (MTHFR) gene methylation (p = 0.047). mtDNAcn was lower in overweight/obese subjects (p = 0.004) and independently correlated with MTHFR methylation levels (p = 0.005) but not to LINE-1 methylation levels (p = 0.086). DNA methylation has been detected in the light strand but not in the heavy strand of the mtDNA. Although mtDNA methylation in the light strand did not differ between overweight/obese and normal-weight subjects, it was nominally correlated with homocysteine levels (p = 0.035) and MTHFR methylation (p = 0.033). This evidence suggests that increased body weight might perturb mitochondrial-nuclear homeostasis affecting the availability of nutrients acting as intermediates of the one-carbon cycle.
Collapse
|
34
|
Chong M, Mohammadi-Shemirani P, Perrot N, Nelson W, Morton R, Narula S, Lali R, Khan I, Khan M, Judge C, Machipisa T, Cawte N, O'Donnell M, Pigeyre M, Akhabir L, Paré G. GWAS and ExWAS of blood mitochondrial DNA copy number identifies 71 loci and highlights a potential causal role in dementia. eLife 2022; 11:e70382. [PMID: 35023831 PMCID: PMC8865845 DOI: 10.7554/elife.70382] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 01/11/2022] [Indexed: 12/16/2022] Open
Abstract
Background Mitochondrial DNA copy number (mtDNA-CN) is an accessible blood-based measurement believed to capture underlying mitochondrial (MT) function. The specific biological processes underpinning its regulation, and whether those processes are causative for disease, is an area of active investigation. Methods We developed a novel method for array-based mtDNA-CN estimation suitable for biobank-scale studies, called 'automatic mitochondrial copy (AutoMitoC).' We applied AutoMitoC to 395,781 UKBiobank study participants and performed genome- and exome-wide association studies, identifying novel common and rare genetic determinants. Finally, we performed two-sample Mendelian randomization to assess whether genetically low mtDNA-CN influenced select MT phenotypes. Results Overall, genetic analyses identified 71 loci for mtDNA-CN, which implicated several genes involved in rare mtDNA depletion disorders, deoxynucleoside triphosphate (dNTP) metabolism, and the MT central dogma. Rare variant analysis identified SAMHD1 mutation carriers as having higher mtDNA-CN (beta = 0.23 SDs; 95% CI, 0.18-0.29; p=2.6 × 10-19), a potential therapeutic target for patients with mtDNA depletion disorders, but at increased risk of breast cancer (OR = 1.91; 95% CI, 1.52-2.40; p=2.7 × 10-8). Finally, Mendelian randomization analyses suggest a causal effect of low mtDNA-CN on dementia risk (OR = 1.94 per 1 SD decrease in mtDNA-CN; 95% CI, 1.55-2.32; p=7.5 × 10-4). Conclusions Altogether, our genetic findings indicate that mtDNA-CN is a complex biomarker reflecting specific MT processes related to mtDNA regulation, and that these processes are causally related to human diseases. Funding No funds supported this specific investigation. Awards and positions supporting authors include: Canadian Institutes of Health Research (CIHR) Frederick Banting and Charles Best Canada Graduate Scholarships Doctoral Award (MC, PM); CIHR Post-Doctoral Fellowship Award (RM); Wellcome Trust Grant number: 099313/B/12/A; Crasnow Travel Scholarship; Bongani Mayosi UCT-PHRI Scholarship 2019/2020 (TM); Wellcome Trust Health Research Board Irish Clinical Academic Training (ICAT) Programme Grant Number: 203930/B/16/Z (CJ); European Research Council COSIP Grant Number: 640580 (MO); E.J. Moran Campbell Internal Career Research Award (MP); CISCO Professorship in Integrated Health Systems and Canada Research Chair in Genetic and Molecular Epidemiology (GP).
Collapse
Affiliation(s)
- Michael Chong
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
- Department of Pathology and Molecular Medicine, McMaster UniversityHamiltonCanada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
| | - Pedrum Mohammadi-Shemirani
- Department of Pathology and Molecular Medicine, McMaster UniversityHamiltonCanada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- Thrombosis and Atherosclerosis Research InstituteHamiltonCanada
| | - Nicolas Perrot
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
| | - Walter Nelson
- Centre for Data Science and Digital Health, Hamilton Health SciencesHamiltonCanada
| | - Robert Morton
- Department of Pathology and Molecular Medicine, McMaster UniversityHamiltonCanada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
| | - Sukrit Narula
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- Department of Health Research Methods, Evidence, and Impact, McMaster UniversityHamiltonCanada
| | - Ricky Lali
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- Department of Health Research Methods, Evidence, and Impact, McMaster UniversityHamiltonCanada
| | - Irfan Khan
- Department of Pathology and Molecular Medicine, McMaster UniversityHamiltonCanada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
| | - Mohammad Khan
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- Department of Medicine, McMaster University, Michael G. DeGroote School of MedicineHamiltonCanada
| | - Conor Judge
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- National University of Ireland, GalwayGalwayIreland
| | - Tafadzwa Machipisa
- Department of Pathology and Molecular Medicine, McMaster UniversityHamiltonCanada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- Department of Medicine, University of Cape Town & Groote Schuur HospitalCape TownSouth Africa
- Hatter Institute for Cardiovascular Diseases Research in Africa (HICRA) & Cape Heart Institute (CHI), Department of Medicine, University of Cape TownCape TownSouth Africa
| | - Nathan Cawte
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
| | - Martin O'Donnell
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- National University of Ireland, GalwayGalwayIreland
| | - Marie Pigeyre
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- Department of Medicine, McMaster University, Michael G. DeGroote School of MedicineHamiltonCanada
| | - Loubna Akhabir
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- Department of Medicine, McMaster University, Michael G. DeGroote School of MedicineHamiltonCanada
| | - Guillaume Paré
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
- Department of Pathology and Molecular Medicine, McMaster UniversityHamiltonCanada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- Department of Health Research Methods, Evidence, and Impact, McMaster UniversityHamiltonCanada
- Department of Medicine, McMaster University, Michael G. DeGroote School of MedicineHamiltonCanada
| |
Collapse
|
35
|
Agius R, Pace NP, Fava S. Reduced leukocyte mitochondrial copy number in metabolic syndrome and metabolically healthy obesity. Front Endocrinol (Lausanne) 2022; 13:886957. [PMID: 35957819 PMCID: PMC9357898 DOI: 10.3389/fendo.2022.886957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the associations between peripheral blood leukocyte mitochondrial copy number, metabolic syndrome, and adiposity-related body composition phenotypes in a high prevalence population. METHODS A single center cross-sectional study was conducted, consisting of 521 middle-aged subjects of Maltese-Caucasian ethnicity. Participants were stratified according to the presence of metabolic syndrome and different metabolic health definitions based on NCEP-ATP III criteria. Relative leukocyte mitochondrial DNA copy number was determined by quantitative polymerase chain reaction and corrected for leukocyte and platelet count. The associations between mitochondrial copy number and metabolic syndrome components was evaluated and adjusted for age and gender. RESULTS Significant negative correlations between mtDNA copy number and BMI, waist circumference, triglyceride levels, fasting plasma glucose, HbA1c, HOMA-IR and hsCRP were observed, along with a positive correlation with HDL-C levels. Mitochondrial copy number was lower in individuals with metabolic syndrome. When compared to metabolically healthy normal weight subjects, a reduction in mtDNA copy number was observed in both the metabolically healthy and unhealthy obese categories. CONCLUSION Our data supports the association between reduced leukocyte mtDNA copy number, obesity, and metabolic syndrome. This investigation expands on the spectrum of associations between mtDNA copy number and metabolic phenotypes in different populations and underpins the role of mitochondrial dysfunction in the development and progression of metabolic syndrome and its components.
Collapse
Affiliation(s)
- Rachel Agius
- Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Department of Medicine, Mater Dei Hospital, Msida, Malta
| | - Nikolai Paul Pace
- Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- *Correspondence: Nikolai Paul Pace,
| | - Stephen Fava
- Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Department of Medicine, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
36
|
Popova D, Bhide P, D'Antonio F, Basnet P, Acharya G. Sperm mitochondrial DNA copy numbers in normal and abnormal semen analysis: a systematic review and meta-analysis. BJOG 2021; 129:1434-1446. [PMID: 34954901 DOI: 10.1111/1471-0528.17078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Normal mature sperm have a considerably reduced number of mitochondria which provide the energy required for progressive sperm motility. Literature suggests that disorders of sperm motility may be linked to abnormal sperm mitochondrial number and function. OBJECTIVES To summarize the evidence from literature regarding the association of mitochondrial DNA copy numbers and semen quality with a particular emphasis on the spermatozoa motility. SEARCH STRATEGY Standard methodology recommended by Cochrane. SELECTION CRITERIA All published primary research reporting on the association between mitochondrial DNA copy numbers and semen quality. DATA COLLECTION AND ANALYSIS Using standard methodology recommended by Cochrane we pooled results using a random effects model and the findings were reported as a standardised mean difference. MAIN RESULTS We included 10 studies. The primary outcome was sperm mitochondrial DNA copy numbers. A meta-analysis including five studies showed significantly higher mitochondrial DNA copy numbers in abnormal semen analysis as compared to normal semen analysis(SMD 1.08, 95% CI 0.74-1.43). Seven studies included in the meta-analysis showed a significant negative correlation between mitochondrial DNA copy numbers and semen parameters. The quality of evidence was assessed as good to very good in 60% of studies. CONCLUSIONS Our review demonstrates significantly higher mitochondrial DNA in human sperm cells of men with abnormal semen analysis in comparison to men with normal semen analysis.
Collapse
Affiliation(s)
- Daria Popova
- Women´s Health and Perinatology Research Group, Department of Clinical Medicine, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Priya Bhide
- Women´s Health and Perinatology Research Group, Department of Clinical Medicine, UiT, The Arctic University of Norway, Tromsø, Norway.,Homerton Fertility Centre, Homerton University Hospital, London, UK
| | - Francesco D'Antonio
- Department of Obstetrics and Gynecology, Centre for Fetal Care and High-risk Pregnancy, University of Chieti, Italy
| | - Purusotam Basnet
- Women´s Health and Perinatology Research Group, Department of Clinical Medicine, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Ganesh Acharya
- Women´s Health and Perinatology Research Group, Department of Clinical Medicine, UiT, The Arctic University of Norway, Tromsø, Norway.,Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Center for Fetal Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
37
|
Gentiluomo M, Giaccherini M, Gào X, Guo F, Stocker H, Schöttker B, Brenner H, Canzian F, Campa D. Genome-wide association study of mitochondrial copy number. Hum Mol Genet 2021; 31:1346-1355. [PMID: 34964454 DOI: 10.1093/hmg/ddab341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial DNA copy number (mtDNAcn) variation has been associated with increased risk of several human diseases in epidemiological studies. The quantification of mtDNAcn performed with real-time PCR is currently considered the de facto standard among several techniques. However, the heterogeneity of the laboratory methods (DNA extraction, storage, processing) used could give rise to results that are difficult to compare and reproduce across different studies. Several lines of evidence suggest that mtDNAcn is influenced by nuclear and mitochondrial genetic variability, however this relation is largely unexplored. The aim of this work was to elucidate the genetic basis of mtDNAcn variation. We performed a genome-wide association study (GWAS) of mtDNAcn in 6836 subjects from the ESTHER prospective cohort, and included, as replication set, the summary statistics of a GWAS that used 295 150 participants from the UK Biobank. We observed two novel associations with mtDNAcn variation on chromosome 19 (rs117176661), and 12 (rs7136238) that reached statistical significance at the genome-wide level. A polygenic score that we called mitoscore including all known single nucleotide polymorphisms explained 1.11% of the variation of mtDNAcn (p = 5.93 × 10-7). In conclusion, we performed a GWAS on mtDNAcn, adding to the evidence of the genetic background of this trait.
Collapse
Affiliation(s)
- Manuel Gentiluomo
- Unit of Genetics, Department of Biology, University of Pisa, 56126, Italy
| | - Matteo Giaccherini
- Unit of Genetics, Department of Biology, University of Pisa, 56126, Italy.,Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Xīn Gào
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Feng Guo
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Hannah Stocker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Network Aging Research, Heidelberg University, Heidelberg, 69120, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Network Aging Research, Heidelberg University, Heidelberg, 69120, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Network Aging Research, Heidelberg University, Heidelberg, 69120, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, 69120, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg, 69120, Germany
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Daniele Campa
- Unit of Genetics, Department of Biology, University of Pisa, 56126, Italy
| |
Collapse
|
38
|
Fischer C, Volani C, Komlódi T, Seifert M, Demetz E, Valente de Souza L, Auer K, Petzer V, von Raffay L, Moser P, Gnaiger E, Weiss G. Dietary Iron Overload and Hfe-/- Related Hemochromatosis Alter Hepatic Mitochondrial Function. Antioxidants (Basel) 2021; 10:antiox10111818. [PMID: 34829689 PMCID: PMC8615072 DOI: 10.3390/antiox10111818] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/13/2021] [Indexed: 12/13/2022] Open
Abstract
Iron is an essential co-factor for many cellular metabolic processes, and mitochondria are main sites of utilization. Iron accumulation promotes production of reactive oxygen species (ROS) via the catalytic activity of iron species. Herein, we investigated the consequences of dietary and genetic iron overload on mitochondrial function. C57BL/6N wildtype and Hfe-/- mice, the latter a genetic hemochromatosis model, received either normal diet (ND) or high iron diet (HI) for two weeks. Liver mitochondrial respiration was measured using high-resolution respirometry along with analysis of expression of specific proteins and ROS production. HI promoted tissue iron accumulation and slightly affected mitochondrial function in wildtype mice. Hepatic mitochondrial function was impaired in Hfe-/- mice on ND and HI. Compared to wildtype mice, Hfe-/- mice on ND showed increased mitochondrial respiratory capacity. Hfe-/- mice on HI showed very high liver iron levels, decreased mitochondrial respiratory capacity and increased ROS production associated with reduced mitochondrial aconitase activity. Although Hfe-/- resulted in increased mitochondrial iron loading, the concentration of metabolically reactive cytoplasmic iron and mitochondrial density remained unchanged. Our data show multiple effects of dietary and genetic iron loading on mitochondrial function and linked metabolic pathways, providing an explanation for fatigue in iron-overloaded hemochromatosis patients, and suggests iron reduction therapy for improvement of mitochondrial function.
Collapse
Affiliation(s)
- Christine Fischer
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (C.F.); (C.V.); (M.S.); (E.D.); (L.V.d.S.); (K.A.); (V.P.); (L.v.R.)
| | - Chiara Volani
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (C.F.); (C.V.); (M.S.); (E.D.); (L.V.d.S.); (K.A.); (V.P.); (L.v.R.)
| | - Timea Komlódi
- Oroboros Instruments, Schöpfstrasse 18, 6020 Innsbruck, Austria; (T.K.); (E.G.)
| | - Markus Seifert
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (C.F.); (C.V.); (M.S.); (E.D.); (L.V.d.S.); (K.A.); (V.P.); (L.v.R.)
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (C.F.); (C.V.); (M.S.); (E.D.); (L.V.d.S.); (K.A.); (V.P.); (L.v.R.)
| | - Lara Valente de Souza
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (C.F.); (C.V.); (M.S.); (E.D.); (L.V.d.S.); (K.A.); (V.P.); (L.v.R.)
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Kristina Auer
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (C.F.); (C.V.); (M.S.); (E.D.); (L.V.d.S.); (K.A.); (V.P.); (L.v.R.)
| | - Verena Petzer
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (C.F.); (C.V.); (M.S.); (E.D.); (L.V.d.S.); (K.A.); (V.P.); (L.v.R.)
| | - Laura von Raffay
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (C.F.); (C.V.); (M.S.); (E.D.); (L.V.d.S.); (K.A.); (V.P.); (L.v.R.)
| | - Patrizia Moser
- Department of Pathology, Innsbruck University Hospital, Anichstrasse 35, 6020 Innsbruck, Austria;
| | - Erich Gnaiger
- Oroboros Instruments, Schöpfstrasse 18, 6020 Innsbruck, Austria; (T.K.); (E.G.)
| | - Guenter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; (C.F.); (C.V.); (M.S.); (E.D.); (L.V.d.S.); (K.A.); (V.P.); (L.v.R.)
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
- Correspondence: ; Tel.: +43-(0)512/504-23251
| |
Collapse
|
39
|
Abstract
Mitochondria are considered to be the powerhouse of the cell. Normal functioning of the mitochondria is not only essential for cellular energy production but also for several immunomodulatory processes. Macrophages operate in metabolic niches and rely on rapid adaptation to specific metabolic conditions such as hypoxia, nutrient limitations, or reactive oxygen species to neutralize pathogens. In this regard, the fast reprogramming of mitochondrial metabolism is indispensable to provide the cells with the necessary energy and intermediates to efficiently mount the inflammatory response. Moreover, mitochondria act as a physical scaffold for several proteins involved in immune signaling cascades and their dysfunction is immediately associated with a dampened immune response. In this review, we put special focus on mitochondrial function in macrophages and highlight how mitochondrial metabolism is involved in macrophage activation.
Collapse
Affiliation(s)
- Mohamed Zakaria Nassef
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Brunswick, Germany
| | - Jasmin E Hanke
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Brunswick, Germany
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Brunswick, Germany
| |
Collapse
|
40
|
Emerging methods for and novel insights gained by absolute quantification of mitochondrial DNA copy number and its clinical applications. Pharmacol Ther 2021; 232:107995. [PMID: 34592204 DOI: 10.1016/j.pharmthera.2021.107995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
The past thirty years have seen a surge in interest in pathophysiological roles of mitochondria, and the accurate quantification of mitochondrial DNA copy number (mCN) in cells and tissue samples is a fundamental aspect of assessing changes in mitochondrial health and biogenesis. Quantification of mCN between studies is surprisingly variable due to a combination of physiological variability and diverse protocols being used to measure this endpoint. The advent of novel methods to quantify nucleic acids like digital polymerase chain reaction (dPCR) and high throughput sequencing offer the ability to measure absolute values of mCN. We conducted an in-depth survey of articles published between 1969 -- 2020 to create an overview of mCN values, to assess consensus values of tissue-specific mCN, and to evaluate consistency between methods of assessing mCN. We identify best practices for methods used to assess mCN, and we address the impact of using specific loci on the mitochondrial genome to determine mCN. Current data suggest that clinical measurement of mCN can provide diagnostic and prognostic value in a range of diseases and health conditions, with emphasis on cancer and cardiovascular disease, and the advent of means to measure absolute mCN should improve future clinical applications of mCN measurements.
Collapse
|
41
|
Picard M. Blood mitochondrial DNA copy number: What are we counting? Mitochondrion 2021; 60:1-11. [PMID: 34157430 PMCID: PMC8464495 DOI: 10.1016/j.mito.2021.06.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
There is growing scientific interest to develop scalable biological measures that capture mitochondrial (dys)function. Mitochondria have their own genome, the mitochondrial DNA (mtDNA). It has been proposed that the number of mtDNA copies per cell (mtDNA copy number; mtDNAcn) reflects mitochondrial health. The common availability of stored DNA material or existing DNA sequencing data, especially from blood and other easy-to-collect samples, has made its quantification a popular approach in clinical and epidemiological studies. However, the interpretation of mtDNAcn is not univocal, and either a reduction or elevation in mtDNAcn can indicate dysfunction. The major determinants of blood-derived mtDNAcn are the heterogeneous cell type composition of leukocytes and platelet abundance, which can change with time of day, aging, and with disease. Hematopoiesis is a likely driver of blood mtDNAcn. Here we discuss the rationale and available methods to quantify mtDNAcn, the influence of blood cell type variations, and consider important gaps in knowledge that need to be resolved to maximize the scientific value around the investigation of blood mtDNAcn.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
42
|
Sun G, Cao H, Bai Y, Wang J, Zhou Y, Li K, Xiao JH. A novel multiplex qPCR method for assessing the comparative lengths of telomeres. J Clin Lab Anal 2021; 35:e23929. [PMID: 34347924 PMCID: PMC8418462 DOI: 10.1002/jcla.23929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 07/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background The comparative length of telomeres is considered to be related to diseases such as cancer, aging, and cardiovascular diseases. qPCR is currently one of the main methods for detecting telomere length. However, due to the unique sequence of telomeres (highly repetitive six‐base sequence), it is difficult to design primers and probes to expand and detect telomere and to put internal reference gene and telomere into the same tube for detection to reduce the possible inter‐pore errors and improve amplification efficiency. Besides, the stability and accuracy of the test results are greatly affected by the difference between reference genes and telomere copy number. Methods In this study, the single‐copy genes were replaced with high‐copy genes (300 copies) as the internal control to reduce the copy number difference of the internal genes and telomere. In addition, a multiplex qPCR system was constructed to detect the telomeres and an internal reference gene product. We also detected the lengths of telomeres in the genomic DNA in immortalized cells (293T and Hela) from different generations of cells. Results We detected the comparative telomere lengths of 1500 random Chinese volunteers of different ages with the multiplex qPCR method; the result shows that the comparative length of telomeres is negatively related to age. In addition, we compared our qPCR detection method with a terminal restriction fragmentation (TRF) method. Both of them were highly consistent, indicating that the qPCR method was reliable. Conclusions In conclusion, we developed a stable, convenient, and accurate comparative telomere length detection method.
Collapse
Affiliation(s)
- Guozhu Sun
- School of Chemistry and Bioengineering, Donghua University, Shanghai, China
| | - Hui Cao
- Department of Clinical Laboratory, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Yang Bai
- Shanghai Biowing Applied Biotechnology CO.LTD, Shanghai, China
| | - Jueheng Wang
- School of Chemistry and Bioengineering, Donghua University, Shanghai, China
| | - Yuxun Zhou
- School of Chemistry and Bioengineering, Donghua University, Shanghai, China
| | - Kai Li
- School of Chemistry and Bioengineering, Donghua University, Shanghai, China
| | - Jun-Hua Xiao
- School of Chemistry and Bioengineering, Donghua University, Shanghai, China
| |
Collapse
|
43
|
Oxidative Stress, Mitochondrial Dysfunction, and Neuroprotection of Polyphenols with Respect to Resveratrol in Parkinson's Disease. Biomedicines 2021; 9:biomedicines9080918. [PMID: 34440122 PMCID: PMC8389563 DOI: 10.3390/biomedicines9080918] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease and is characterized by dopaminergic neuronal loss. The exact pathogenesis of PD is complex and not yet completely understood, but research has established the critical role mitochondrial dysfunction plays in the development of PD. As the main producer of cytosolic reactive oxygen species (ROS), mitochondria are particularly susceptible to oxidative stress once an imbalance between ROS generation and the organelle’s antioxidative system occurs. An overabundance of ROS in the mitochondria can lead to mitochondrial dysfunction and further vicious cycles. Once enough damage accumulates, the cell may undergo mitochondria-dependent apoptosis or necrosis, resulting in the neuronal loss of PD. Polyphenols are a group of natural compounds that have been shown to offer protection against various diseases, including PD. Among these, the plant-derived polyphenol, resveratrol, exhibits neuroprotective effects through its antioxidative capabilities and provides mitochondria protection. Resveratrol also modulates crucial genes involved in antioxidative enzymes regulation, mitochondrial dynamics, and cellular survival. Additionally, resveratrol offers neuroprotective effects by upregulating mitophagy through multiple pathways, including SIRT-1 and AMPK/ERK pathways. This compound may provide potential neuroprotective effects, and more clinical research is needed to establish the efficacy of resveratrol in clinical settings.
Collapse
|
44
|
Saravanabavan S, Rangan GK. Possible role of the mitochondrial genome in the pathogenesis of autosomal dominant polycystic kidney disease. Nephrology (Carlton) 2021; 26:920-930. [PMID: 34331378 DOI: 10.1111/nep.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic renal disease in adults and is due to heterozygous germ line variants in either PKD1, PKD2 or rarely other genes. It is characterized by marked intra-familial disease variability suggesting that other genetic and/or environmental factors are involved in determining the lifetime course ADPKD. Recently, research indicates that polycystin-mediated mitochondrial dysfunction and metabolic re-programming contributes to the progression of ADPKD. Although biochemical abnormalities have gained the most interest, variants in the mitochondrial genome could be one of the mechanisms underlying the phenotypic variability in ADPKD. This narrative review aims to evaluate the role of the mitochondrial genome in the pathogenesis of APDKD.
Collapse
Affiliation(s)
- Sayanthooran Saravanabavan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia.,Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| | - Gopala K Rangan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia.,Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
45
|
Bordoni L, Petracci I, Pelikant-Malecka I, Radulska A, Piangerelli M, Samulak JJ, Lewicki L, Kalinowski L, Gabbianelli R, Olek RA. Mitochondrial DNA copy number and trimethylamine levels in the blood: New insights on cardiovascular disease biomarkers. FASEB J 2021; 35:e21694. [PMID: 34165220 DOI: 10.1096/fj.202100056r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022]
Abstract
Among cardiovascular disease (CVD) biomarkers, the mitochondrial DNA copy number (mtDNAcn) is a promising candidate. A growing attention has been also dedicated to trimethylamine-N-oxide (TMAO), an oxidative derivative of the gut metabolite trimethylamine (TMA). With the aim to identify biomarkers predictive of CVD, we investigated TMA, TMAO, and mtDNAcn in a population of 389 coronary artery disease (CAD) patients and 151 healthy controls, in association with established risk factors for CVD (sex, age, hypertension, smoking, diabetes, glomerular filtration rate [GFR]) and troponin, an established marker of CAD. MtDNAcn was significantly lower in CAD patients; it correlates with GFR and TMA, but not with TMAO. A biomarker including mtDNAcn, sex, and hypertension (but neither TMA nor TMAO) emerged as a good predictor of CAD. Our findings support the mtDNAcn as a promising plastic biomarker, useful to monitor the exposure to risk factors and the efficacy of preventive interventions for a personalized CAD risk reduction.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Irene Petracci
- School of Advanced Studies, University of Camerino, Camerino, Italy
| | - Iwona Pelikant-Malecka
- Division of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland.,Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland
| | - Adriana Radulska
- Division of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland.,Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland
| | - Marco Piangerelli
- Computer Science Division and Mathematics Division, School of Science and Technology, University of Camerino, Camerino, Italy
| | - Joanna J Samulak
- Doctoral School, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Lukasz Lewicki
- Department of Cardiology and Angiology, Kashubian Center for Heart and Vascular Diseases, Pomeranian Hospitals, Wejherowo, Poland
| | - Leszek Kalinowski
- Division of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland.,Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland.,Department of Mechanics of Materials and Structures, Gdansk University of Technology, Gdansk, Poland
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Robert A Olek
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, Poznan, Poland
| |
Collapse
|
46
|
Fazzini F, Lamina C, Raftopoulou A, Koller A, Fuchsberger C, Pattaro C, Del Greco FM, Döttelmayer P, Fendt L, Fritz J, Meiselbach H, Schönherr S, Forer L, Weissensteiner H, Pramstaller PP, Eckardt K, Hicks AA, Kronenberg F. Association of mitochondrial DNA copy number with metabolic syndrome and type 2 diabetes in 14 176 individuals. J Intern Med 2021; 290:190-202. [PMID: 33453124 PMCID: PMC8359248 DOI: 10.1111/joim.13242] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mitochondria play an important role in cellular metabolism, and their dysfunction is postulated to be involved in metabolic disturbances. Mitochondrial DNA is present in multiple copies per cell. The quantification of mitochondrial DNA copy number (mtDNA-CN) might be used to assess mitochondrial dysfunction. OBJECTIVES We aimed to investigate the cross-sectional association of mtDNA-CN with type 2 diabetes and the potential mediating role of metabolic syndrome. METHODS We examined 4812 patients from the German Chronic Kidney Disease (GCKD) study and 9364 individuals from the Cooperative Health Research in South Tyrol (CHRIS) study. MtDNA-CN was measured in whole blood using a plasmid-normalized qPCR-based assay. RESULTS In both studies, mtDNA-CN showed a significant correlation with most metabolic syndrome parameters: mtDNA-CN decreased with increasing number of metabolic syndrome components. Furthermore, individuals with low mtDNA-CN had significantly higher odds of metabolic syndrome (OR = 1.025; 95% CI = 1.011-1.039, P = 3.19 × 10-4 , for each decrease of 10 mtDNA copies) and type 2 diabetes (OR = 1.027; 95% CI = 1.012-1.041; P = 2.84 × 10-4 ) in a model adjusted for age, sex, smoking and kidney function in the meta-analysis of both studies. Mediation analysis revealed that the association of mtDNA-CN with type 2 diabetes was mainly mediated by waist circumference in the GCKD study (66%) and by several metabolic syndrome parameters, especially body mass index and triglycerides, in the CHRIS study (41%). CONCLUSIONS Our data show an inverse association of mtDNA-CN with higher risk of metabolic syndrome and type 2 diabetes. A major part of the total effect of mtDNA-CN on type 2 diabetes is mediated by obesity parameters.
Collapse
Affiliation(s)
- F. Fazzini
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - C. Lamina
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - A. Raftopoulou
- Eurac ResearchInstitute for BiomedicineAffiliated Institute of the University of LübeckBolzanoItaly
| | - A. Koller
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - C. Fuchsberger
- Eurac ResearchInstitute for BiomedicineAffiliated Institute of the University of LübeckBolzanoItaly
| | - C. Pattaro
- Eurac ResearchInstitute for BiomedicineAffiliated Institute of the University of LübeckBolzanoItaly
| | - F. M. Del Greco
- Eurac ResearchInstitute for BiomedicineAffiliated Institute of the University of LübeckBolzanoItaly
| | - P. Döttelmayer
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - L. Fendt
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - J. Fritz
- Department of Medical StatisticsInformatics and Health EconomicsMedical University of InnsbruckInnsbruckAustria
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderCOUSA
| | - H. Meiselbach
- Department of Nephrology and HypertensionFriedrich‐Alexander Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - S. Schönherr
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - L. Forer
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - H. Weissensteiner
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - P. P. Pramstaller
- Eurac ResearchInstitute for BiomedicineAffiliated Institute of the University of LübeckBolzanoItaly
| | - K.‐U. Eckardt
- Department of Nephrology and HypertensionFriedrich‐Alexander Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
- Department of Nephrology and Medical Intensive CareCharité – Universitätsmedizin BerlinBerlinGermany
| | - A. A. Hicks
- Eurac ResearchInstitute for BiomedicineAffiliated Institute of the University of LübeckBolzanoItaly
| | - F. Kronenberg
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | | |
Collapse
|
47
|
Trumpff C, Michelson J, Lagranha CJ, Taleon V, Karan KR, Sturm G, Lindqvist D, Fernström J, Moser D, Kaufman BA, Picard M. Stress and circulating cell-free mitochondrial DNA: A systematic review of human studies, physiological considerations, and technical recommendations. Mitochondrion 2021; 59:225-245. [PMID: 33839318 PMCID: PMC8418815 DOI: 10.1016/j.mito.2021.04.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/23/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
Cell-free mitochondrial DNA (cf-mtDNA) is a marker of inflammatory disease and a predictor of mortality, but little is known about cf-mtDNA in relation to psychobiology. A systematic review of the literature reveals that blood cf-mtDNA varies in response to common real-world stressors including psychopathology, acute psychological stress, and exercise. Moreover, cf-mtDNA is inducible within minutes and exhibits high intra-individual day-to-day variation, highlighting the dynamic regulation of cf-mtDNA levels. We discuss current knowledge on the mechanisms of cf-mtDNA release, its forms of transport ("cell-free" does not mean "membrane-free"), potential physiological functions, putative cellular and neuroendocrine triggers, and factors that may contribute to cf-mtDNA removal from the circulation. A review of in vitro, pre-clinical, and clinical studies shows conflicting results around the dogma that physiological forms of cf-mtDNA are pro-inflammatory, opening the possibility of other physiological functions, including the cell-to-cell transfer of whole mitochondria. Finally, to enhance the reproducibility and biological interpretation of human cf-mtDNA research, we propose guidelines for blood collection, cf-mtDNA isolation, quantification, and reporting standards, which can promote concerted advances by the community. Defining the mechanistic basis for cf-mtDNA signaling is an opportunity to elucidate the role of mitochondria in brain-body interactions and psychopathology.
Collapse
Affiliation(s)
- Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, USA
| | - Jeremy Michelson
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, USA
| | - Claudia J Lagranha
- University of Pittsburgh, School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, United States
| | - Veronica Taleon
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, USA
| | - Kalpita R Karan
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, USA
| | - Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, USA
| | - Daniel Lindqvist
- Faculty of Medicine, Department of Clinical Sciences, Psychiatry, Lund University, Lund, Sweden; Office of Psychiatry and Habilitation, Region Skåne, Sweden
| | - Johan Fernström
- Faculty of Medicine, Department of Clinical Sciences, Psychiatry, Lund University, Lund, Sweden
| | - Dirk Moser
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Brett A Kaufman
- University of Pittsburgh, School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, United States
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, USA; New York State Psychiatric Institute, NY, USA.
| |
Collapse
|
48
|
Jang YH, Ahn SR, Shim JY, Lim KI. Engineering Genetic Systems for Treating Mitochondrial Diseases. Pharmaceutics 2021; 13:810. [PMID: 34071708 PMCID: PMC8227772 DOI: 10.3390/pharmaceutics13060810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are intracellular energy generators involved in various cellular processes. Therefore, mitochondrial dysfunction often leads to multiple serious diseases, including neurodegenerative and cardiovascular diseases. A better understanding of the underlying mitochondrial dysfunctions of the molecular mechanism will provide important hints on how to mitigate the symptoms of mitochondrial diseases and eventually cure them. In this review, we first summarize the key parts of the genetic processes that control the physiology and functions of mitochondria and discuss how alterations of the processes cause mitochondrial diseases. We then list up the relevant core genetic components involved in these processes and explore the mutations of the components that link to the diseases. Lastly, we discuss recent attempts to apply multiple genetic methods to alleviate and further reverse the adverse effects of the core component mutations on the physiology and functions of mitochondria.
Collapse
Affiliation(s)
- Yoon-ha Jang
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-h.J.); (J.-y.S.)
| | - Sae Ryun Ahn
- Industry Collaboration Center, Industry-Academic Cooperation Foundation, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea;
| | - Ji-yeon Shim
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-h.J.); (J.-y.S.)
| | - Kwang-il Lim
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-h.J.); (J.-y.S.)
- Industry Collaboration Center, Industry-Academic Cooperation Foundation, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea;
| |
Collapse
|
49
|
Chen R, Aldred MA, Xu W, Zein J, Bazeley P, Comhair SAA, Meyers DA, Bleecker ER, Liu C, Erzurum SC, Hu B. Comparison of whole genome sequencing and targeted sequencing for mitochondrial DNA. Mitochondrion 2021; 58:303-310. [PMID: 33513442 PMCID: PMC8354572 DOI: 10.1016/j.mito.2021.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
Mitochondrial dysfunction has emerged to be associated with a broad spectrum of diseases, and there is an increasing demand for accurate detection of mitochondrial DNA (mtDNA) variants. Whole genome sequencing (WGS) has been the dominant sequencing approach to identify genetic variants in recent decades, but most studies focus on variants on the nuclear genome. Whole genome sequencing is also costly and time consuming. Sequencing specifically targeted for mtDNA is commonly used in the diagnostic settings and has lower costs. However, there is a lack of pairwise comparisons between these two sequencing approaches for calling mtDNA variants on a population basis. In this study, we compared WGS and mtDNA-targeted sequencing (targeted-seq) in analyzing mitochondrial DNA from 1499 participants recruited into the Severe Asthma Research Program (SARP). Our study reveals that targeted-sequencing and WGS have comparable capacity to determine genotypes and to call haplogroups and homoplasmies on mtDNA. However, there exists a large variability in calling heteroplasmies, especially for low-frequency heteroplasmies, which indicates that investigators should be cautious about heteroplasmies acquired from different sequencing methods. Further research is highly desired to improve variant detection methods for mitochondrial DNA.
Collapse
Affiliation(s)
- Ruoying Chen
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Micheala A Aldred
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Weiling Xu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Joe Zein
- Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Peter Bazeley
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Suzy A A Comhair
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - Chunyu Liu
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Serpil C Erzurum
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Bo Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
50
|
Kyriazis ID, Hoffman M, Gaignebet L, Lucchese AM, Markopoulou E, Palioura D, Wang C, Bannister TD, Christofidou-Solomidou M, Oka SI, Sadoshima J, Koch WJ, Goldberg IJ, Yang VW, Bialkowska AB, Kararigas G, Drosatos K. KLF5 Is Induced by FOXO1 and Causes Oxidative Stress and Diabetic Cardiomyopathy. Circ Res 2021; 128:335-357. [PMID: 33539225 PMCID: PMC7870005 DOI: 10.1161/circresaha.120.316738] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
RATIONALE Diabetic cardiomyopathy (DbCM) is a major complication in type-1 diabetes, accompanied by altered cardiac energetics, impaired mitochondrial function, and oxidative stress. Previous studies indicate that type-1 diabetes is associated with increased cardiac expression of KLF5 (Krüppel-like factor-5) and PPARα (peroxisome proliferator-activated receptor) that regulate cardiac lipid metabolism. OBJECTIVE In this study, we investigated the involvement of KLF5 in DbCM and its transcriptional regulation. METHODS AND RESULTS KLF5 mRNA levels were assessed in isolated cardiomyocytes from cardiovascular patients with diabetes and were higher compared with nondiabetic individuals. Analyses in human cells and diabetic mice with cardiomyocyte-specific FOXO1 (Forkhead box protein O1) deletion showed that FOXO1 bound directly on the KLF5 promoter and increased KLF5 expression. Diabetic mice with cardiomyocyte-specific FOXO1 deletion had lower cardiac KLF5 expression and were protected from DbCM. Genetic, pharmacological gain and loss of KLF5 function approaches and AAV (adeno-associated virus)-mediated Klf5 delivery in mice showed that KLF5 induces DbCM. Accordingly, the protective effect of cardiomyocyte FOXO1 ablation in DbCM was abolished when KLF5 expression was rescued. Similarly, constitutive cardiomyocyte-specific KLF5 overexpression caused cardiac dysfunction. KLF5 caused oxidative stress via direct binding on NADPH oxidase (NOX)4 promoter and induction of NOX4 (NADPH oxidase 4) expression. This was accompanied by accumulation of cardiac ceramides. Pharmacological or genetic KLF5 inhibition alleviated superoxide formation, prevented ceramide accumulation, and improved cardiac function in diabetic mice. CONCLUSIONS Diabetes-mediated activation of cardiomyocyte FOXO1 increases KLF5 expression, which stimulates NOX4 expression, ceramide accumulation, and causes DbCM.
Collapse
Affiliation(s)
- Ioannis D. Kyriazis
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| | - Matthew Hoffman
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| | - Lea Gaignebet
- Charité – Universitätsmedizin Berlin, Berlin 10115, Germany
| | - Anna Maria Lucchese
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| | - Eftychia Markopoulou
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| | - Dimitra Palioura
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| | - Chao Wang
- The Scripps Research Institute, Jupiter, FL, 33458m USA
| | | | - Melpo Christofidou-Solomidou
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Shin-ichi Oka
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07101, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07101, USA
| | - Walter J. Koch
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY, 10016, USA
| | - Vincent W. Yang
- School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | - Georgios Kararigas
- Charité – Universitätsmedizin Berlin, Berlin 10115, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 10785, Germany
- Department of Physiology, Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland
| | - Konstantinos Drosatos
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| |
Collapse
|