1
|
Adamou P, Entwistle J, Graham DW, Neumann A. Mineral-Based Advanced Oxidation Processes for Enhancing the Removal of Antibiotic Resistance Genes from Domestic Wastewater. ACS ES&T WATER 2025; 5:2310-2321. [PMID: 40371372 PMCID: PMC12070418 DOI: 10.1021/acsestwater.4c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 05/16/2025]
Abstract
Wastewater treatment plants (WWTPs) release antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) into the environment. Advanced oxidation processes (AOPs) can remove ARB and ARGs, but they often require impractically high chemical or energy use. Here, we explore a low-energy AOP that uses Fe-bearing clay mineral (NAu-1) either combined with H2O2 (H2O2/NAu-1) or as prereduced structural Fe (rNAu-1) to degrade selected ARGs (i.e., tetM, tetQ, and bla OXA-10), int1 (a mobile genetic element), and the 16S rRNA gene in postsecondary WWTP effluents. Addition of H2O2/NAu-1 significantly increased tetM and int1 removals relative to UV irradiation and H2O2/UV (p ≤ 0.02). Removals increased with greater H2O2 doses and contact times, reaching maximum values of 1.2 and 2.3 log units at H2O2 doses of 0.26 and 10 mM and contact times of 4 and 8 h, respectively. Bacterial regrowth after 24 h of contact was probably due to H2O2 depletion. However, the addition of rNAu-1 achieved the highest removals, up to 2.9 log units after 0.5 h, and suppressed bacterial regrowth over 24 h. Similar removals were observed with rNAu-1 under oxic and anoxic conditions. Results show that mineral-based AOPs offer the potential for elevated ARG removal and lower chemical and energy demands in tertiary wastewater treatment.
Collapse
Affiliation(s)
- Panagiota Adamou
- School
of Engineering, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K.
| | - James Entwistle
- School
of Engineering, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K.
| | - David W. Graham
- School
of Engineering, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K.
| | - Anke Neumann
- School
of Engineering, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K.
- PSI
Center for Nuclear Engineering and Sciences, 5232 Villigen PSI, Switzerland
| |
Collapse
|
2
|
Chen C, Luo Z, Tu H, Lin X, Pang Y, Huang J, Zhang J, Wang X, Cai Q, Wei Z, Zeng J, Qiu J. Response surface methodology and Box-Behnken design optimization of Sulfaquinoxaline removal efficiency and degradation mechanisms by Bacillus sp. strain DLY-11. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136986. [PMID: 39742867 DOI: 10.1016/j.jhazmat.2024.136986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Antibiotic pollution, particularly the persistence of Sulfaquinoxaline (SQ) residues in livestock and poultry farming environments, has emerged as a pressing environmental concern. Despite this, there remains a limited understanding of the optimized conditions and mechanisms for the efficient degradation of SQ by microorganisms. To address this knowledge gap, we isolated Bacillus sp. strain DLY-11 from aerobically composted manure, which exhibits exceptional SQ degradation capability. Using response surface methodology and Box-Behnken design, we optimized the conditions: 5 % inoculum, 60 °C, pH 8.02, and 0.5 g/L MgSO4. Strain DLY-11 achieved 95.5 % SQ degradation in 2 d. We identified 12 degradation products, including one newly reported, and proposed four degradation pathways involving S-N and C-N bond cleavage, hydroxylation, SO2 release, deamination, oxidation, acetylation, and formylation. One of the proposed pathways is entirely new and has not been previously reported in the literature. This work closes important information gaps in the bacterial degradation pathways of SQ by optimizing the degradation conditions and introducing a useful microbial resource for the effective breakdown of SQ. It also provides a solid theoretical foundation for tackling the problem of antibiotic contamination in livestock and poultry production.
Collapse
Affiliation(s)
| | - Zifeng Luo
- South China Institute of Environmental Sciences, MEE, Guangzhou, Guangdong 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou, Guangdong 510655, China.
| | - Hongxing Tu
- South China Institute of Environmental Sciences, MEE, Guangzhou, Guangdong 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou, Guangdong 510655, China
| | - Xiaojun Lin
- South China Institute of Environmental Sciences, MEE, Guangzhou, Guangdong 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou, Guangdong 510655, China
| | - Yuwan Pang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianfeng Huang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jun Zhang
- Zhejiang Lishui Ecological and Environmental Monitoring Center, Lishui, Zhejiang 323000, China
| | - Xiujuan Wang
- South China Institute of Environmental Sciences, MEE, Guangzhou, Guangdong 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou, Guangdong 510655, China
| | - Qianyi Cai
- South China Institute of Environmental Sciences, MEE, Guangzhou, Guangdong 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou, Guangdong 510655, China
| | - Zebin Wei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jingwen Zeng
- South China Institute of Environmental Sciences, MEE, Guangzhou, Guangdong 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou, Guangdong 510655, China
| | - Jinrong Qiu
- South China Institute of Environmental Sciences, MEE, Guangzhou, Guangdong 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou, Guangdong 510655, China.
| |
Collapse
|
3
|
Spielvogel I, Gębarowska E, Badora K, Waroszewski J, Budek K, Proćków J, Gałka B, Gębarowski T. Antibacterial and therapeutic potential of historic deposits of silesian healing clay - terra sigillataSilesiaca. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118853. [PMID: 39326814 DOI: 10.1016/j.jep.2024.118853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/22/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The increasing evolution of pathogen resistance is a global problem that requires novel solutions. Recently, an increased interest in ethnomedicinal sources can be observed in the derivation of new medicines. The return to traditional medicinal formulations handed down for generations is being followed, but it is necessary to revise them again, taking into account the generally accepted research protocol. AIM OF THE STUDY We aimed to evaluate the antimicrobial potential of historical deposits of Silesian healing clay (SHC), used in ethnomedicine against Gram-positive bacteria and to assess their biological activity using a primary dermal fibroblast line (NHDF) and a model monocyte line (THP1). MATERIALS AND METHODS Information on medicinal clay deposits that occur in Silesia and are traditionally used in ethnomedicine or ancient medicine and known as terra sigillata Silesiaca or SHC, was selected on available source materials and old prints and maps from the archives of the Polish Geological Institute (Wrocław, Poland). Subsequently, their places of occurrence were identified and traced in the field by taking three deposits from the Silesia territory: Upper Silesia (D1), Opole Silesia (D2), and Lower Silesian (D3) Voivodeships for analysis. Their basic parameters and antimicrobial efficacy against pathogenic bacteria, Gram-positive streptococci and staphylococci, including methicillin-resistant strains, were examined. The study evaluated the effects of clays on growth and vitality using a primary dermal fibroblast line (NHDF) and a monocytic line (THP1). Studies were performed on a cell culture model to determine the effects on tissue regeneration (fibroblasts) and anti-inflammatory effects (monocytes). The study attempted to identify the mechanism of antimicrobial action, especially the textural characteristics and geochemical composition, as well as the environmental reaction (pH). RESULTS SHCs were classified into the following textural classes: clay loam (D1), clay (D2), and sand (D3). The tested deposits have antimicrobial properties that reduce the bacterial population (104 CFU) compared to the control (108 CFU). The antimicrobial effect depends on the type of clay and the species or strain of bacteria used. In-house studies clearly showed that Staphylococcus aureus Pcm 2054 and Staphylococcus epidermidis MRSE ATCC 2538 cells were completely adsorbed by clay minerals from clay D3.13. Furthermore, 10% leachates also showed an antimicrobial effect, as a reduction in bacterial populations was observed ranging from 91 to 100%. The results showed stimulation of fibroblast culture proliferation and inhibition of the growth of inflammatory cells (monocytes). CONCLUSION SHCs tested have antimicrobial potential, in particular D2.7, D2.11, and D3.13. The D3.13 deposit had a bactericidal effect against the staphylococci tested. Aqueous solutions of clays also showed bacteriostatic effect. The results obtained in cell culture model tests indicate properties that modulate the healing process - stimulation of fibroblast growth (NHDF line) and inhibition of monocyte growth (THP1 line).
Collapse
Affiliation(s)
- Izabela Spielvogel
- Department of Physiotherapy, Institute of Physiotherapy, Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland.
| | - Elżbieta Gębarowska
- Division of Biogeochemistry and Environmental Microbiology, Department of Plant Protection, Wrocław University of Environmental and Life Sciences, Grunwaldzka 53, 50-357 Wrocław, Poland.
| | - Krzysztof Badora
- Institute of Environmental Engineering and Biotechnology, Opole University, Kominka 4a, 45-052 Opole, Poland.
| | - Jarosław Waroszewski
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, ul. Grunwaldzka 53, 50-357 Wrocław, Poland.
| | - Karolina Budek
- Division of Biogeochemistry and Environmental Microbiology, Department of Plant Protection, Wrocław University of Environmental and Life Sciences, Grunwaldzka 53, 50-357 Wrocław, Poland.
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland.
| | - Bernard Gałka
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, ul. Grunwaldzka 53, 50-357 Wrocław, Poland.
| | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, Wrocław University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wrocław, Poland.
| |
Collapse
|
4
|
Lekhan A, Turner RJ. Exploring antimicrobial interactions between metal ions and quaternary ammonium compounds toward synergistic metallo-antimicrobial formulations. Microbiol Spectr 2024; 12:e0104724. [PMID: 39162494 PMCID: PMC11448152 DOI: 10.1128/spectrum.01047-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/27/2024] [Indexed: 08/21/2024] Open
Abstract
Multi-target antimicrobial agents are considered a viable alternative to target-specific antibiotics, resistance to which emerged as a global threat. Used centuries before the discovery of conventional antibiotics, metal(loid)-based antimicrobials (MBAs), which target multiple biomolecules within the bacterial cell, are regaining research interest. However, there is a significant limiting factor-the balance between cost and efficiency. In this article, we utilize a checkerboard assay approach to explore antimicrobial combinations of MBAs with commonly used quaternary ammonium compound (QAC) antiseptics in order to discover novel combinations with more pronounced antimicrobial properties than would be expected from a simple sum of antimicrobial effects of initial components. This phenomenon, called synergy, was herein demonstrated for several mixtures of Al3+with cetyltrimethylammonium bromide (CTAB) and TeO32- with benzalkonium chloride (BAC) and didecyldimethylammonium bromide (DDAB) against planktonic and biofilm growth of Pseudomonas aeruginosa ATCC27853. Biofilm growth of Escherichia coli ATCC25922 was synergistically inhibited by the Cu2 +and benzalkonium chloride (BAC) mixture. Multiple additive mixtures were identified for both organisms. The current study observed unexpected species and growth state specificities for the synergistic combinations. The benefit of synergistic mixtures will be captured in economy/efficiency optimization for antimicrobial applications in which MBAs and QACs are presently used. IMPORTANCE We are entering the antimicrobial resistance era (AMR), where resistance to antibiotics is becoming more and more prevalent. In order to address this issue, various approaches are being explored. In this article, we explore for synergy between two very different antimicrobials, the antiseptic class of quaternary ammonium compounds and antimicrobial metals. These two antimicrobials have very different actions. Considering a OneHealth approach to the problem, finding synergistic mixtures allows for greater efficacy at lower concentrations, which would also address antimicrobial pollution issues.
Collapse
Affiliation(s)
- Andrii Lekhan
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Raymond J. Turner
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| |
Collapse
|
5
|
Azmi NN, Mahyudin NA, Wan Omar WH, Abdullah AH, Ismail R, Ishak CF, Sharples GJ. Antibacterial mechanism of Malaysian Carey clay against food-borne Staphylococcus aureus. Nat Prod Res 2024:1-5. [PMID: 38767201 DOI: 10.1080/14786419.2024.2355583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Depending on their chemical structure and geochemistry, clay minerals can display potent antibacterial properties against a range of bacterial pathogens. Malaysian Carey clay was evaluated for its antibacterial activity against food-borne Staphylococcus aureus ATCC 13565 strains. The minimum inhibitory concentration (MIC) and minimum bactericidal activity (MBC) of both Carey clay leachates and suspension were 125 mg/mL and 250 mg/mL, respectively. Time-kill assay revealed that 2x MIC and 4x MIC Carey clay in both leachate and suspension forms resulted in complete killing of S. aureus. Antibacterial mechanism was investigated through imaging of bacterial morphology using TEM and determination of reactive oxygen species (ROS) using NBT assay. Imaging of bacterial morphology using TEM showed abnormalities, including disrupted cell walls following exposure to Carey clay, and the antibacterial activity was associated with generation of ROS. Our study suggests that Carey clay displays promising functionality as a natural antibacterial agent in the food industry.
Collapse
Affiliation(s)
- Nur Naqiyah Azmi
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nor Ainy Mahyudin
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wan Hasyera Wan Omar
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Roslan Ismail
- Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Che Fauziah Ishak
- Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Gary J Sharples
- Department of Biosciences, Durham University, Durham, United Kingdom
| |
Collapse
|
6
|
Rafiee S, Hossein-nezhad A, Maghbooli Z, Zargaran A, Emamgholipour S, Ghasemi A, Ahmadi M, Esmaeeli H, Karimi M. Effect of Padzahr Tablet on Biochemical Indices of Bone Remodeling in Postmenopausal Females with Osteopenia: A Randomized Double-Blind Placebo-Controlled Trial. Galen Med J 2024; 13:e2950. [PMID: 39554395 PMCID: PMC11568423 DOI: 10.31661/gmj.v12i.2950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Osteoporosis is a complex disease that poses major global public health challenges. Many individuals with osteoporosis turn to complementary and alternative medicine (CAM) for prevention and management. Due to its mineral contents, Padzahr, a type of clay used in traditional Persian medicine, is believed to have bone-forming properties. This study examined the impact of Padzahr on bone remodeling in postmenopausal women with low bone density. MATERIALS AND METHODS In this randomized double-blind and placebo-controlled clinical trial, 48 postmenopausal women with osteopenia were included. The participants were divided into two groups, with 24 participants in each group. One group received Padzahr, and the other group received a placebo. The participants took their assigned treatment for 12 weeks. Blood samples were taken from participants at the study's beginning and end to compare the two groups' serum levels of bone remodeling biomarkers. RESULTS At the outset of the study, the two groups were similar and there were no significant differences in any of the measured variables. Additionally, the levels of bone turnover markers were not significantly different between the two groups at the start of the study (P0.05). After 12 weeks of treatment, the results of the ANCOVA analysis showed no significant changes in the serum levels of bone turnover indices when comparing the Padzahr group to the placebo group (P0.05). CONCLUSION A clinical trial of 3 months of Padzahr treatment in postmenopausal women with osteopenia did not show significant changes in serum markers of bone turnover.
Collapse
Affiliation(s)
- Shabnam Rafiee
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of
Medical Sciences, Tehran, Iran
| | - Arash Hossein-nezhad
- Section of Endocrinology, Diabetes, Nutrition, and Weight Management, Department of
Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Zhila Maghbooli
- MS Research Center, Neurosciences Institute of Tehran University of Medical
Sciences, Tehran, Iran
| | - Arman Zargaran
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of
Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of
Medical Sciences, Tehran, Iran
| | - Afsaneh Ghasemi
- Shahid Akbarabadi Clinical Research Development Unit ( ShACRDU), School of Medicine,
Iran University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Ahmadi
- Shahid Akbarabadi Clinical Research Development Unit ( ShACRDU), School of Medicine,
Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Esmaeeli
- Quality Assurance Department, NIAK Pharmaceutical Company, Golestan, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of
Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Morrison KD, Reiss MB, Tanner TD, Gollott TR, Loots GG, Collette NM. The application of synthetic antibacterial minerals to combat topical infections: exploring a mouse model of MRSA infection. Sci Rep 2024; 14:1762. [PMID: 38243067 PMCID: PMC10798972 DOI: 10.1038/s41598-024-52082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
The development of new antibiotics has stalled, and novel strategies are needed as we enter the age of antibiotic resistance. Certain naturally occurring clays have been shown to be effective in killing antibiotic resistant bacteria. However, these natural clays are too variable to be used in clinical settings. Our study shows that synthetic antibacterial minerals exhibit potent antibacterial activity against topical MRSA infections and increase the rate of wound closure relative to controls. The antibacterial minerals maintain a redox cycle between Fe2+/Fe3+ and the surfaces of pyrite minerals, which act as a semiconductor and produce reactive oxygen species (ROS), while smectite minerals act as a cation exchange reservoir. Acidic conditions are maintained throughout the application of the hydrated minerals and can mitigate the alkaline pH conditions observed in chronic non-healing wounds. These results provide evidence for the strategy of 'iron overload' to combat antibiotic resistant infections through the maintained release of Fe2+ and generation of ROS via distinct geochemical reactions that can break the chronic wound damage cycle.
Collapse
Affiliation(s)
- Keith D Morrison
- Nuclear and Chemical Sciences Division, Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | - Meghan B Reiss
- Biosciences and Biotechnology Division, Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Tanya D Tanner
- Biosciences and Biotechnology Division, Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Travis R Gollott
- Biosciences and Biotechnology Division, Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Gabriela G Loots
- Biosciences and Biotechnology Division, Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, USA
| | - Nicole M Collette
- Biosciences and Biotechnology Division, Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, USA
| |
Collapse
|
8
|
Voltura EV, Brightsmith DJ, Cornejo J, Tizard I, Bailey CA, Heatley JJ. Parrot Dietary Habits and Consumption of Alternate Foodstuffs. J Avian Med Surg 2024; 37:297-313. [PMID: 38363162 DOI: 10.1647/20-00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Inappropriate diets cause many of the health problems commonly reported in parrots by psittaculturists and veterinarians. The dietary management of captive parrots would benefit from information derived from studies of dietary habits of wild parrots; however, it is unclear how complete this body of knowledge is at this time. Documentation of parrots' dietary habits appears to have grown dramatically over the past century. Reports of parrots consuming a number of foodstuffs beyond the reproductive parts of plants (alternate foodstuffs) have increased. The extent of alternate foodstuffs in parrot diets is currently unknown. We used Google search engines (ie, Scholar, Videos, Images) to determine how well psittaciform dietary habits have been studied to date and to quantify reports of alternate foodstuffs consumption among genera of Psittaciformes. We found that the dietary habits of over 43% of parrot species are poorly resolved. The dietary habits of 71.5% of parrot species classified by the International Union for Conservation of Nature as at risk of extinction are not well resolved. Parrots' consumption of alternate foodstuffs occurred at the following rates at the genus level: 91.2% foliage, 76.9% terrestrial invertebrates and fine earthen materials, 74.7% wood, 44% pure minerals, 34.1% vertebrates (9.9% dung), 29.7% sap, 19.8% roots, 17.6% charcoal, 18.7% epiphytes, 16.5% coarse earthen materials, 8.8% algae, and 6.6% aquatic invertebrates. Of these reports, 79.1% involved observations of wild parrots. Many parrot species may be more omnivorous than previously realized. Alternate foodstuffs are generally absent from current veterinary-based dietary recommendations for captive parrots. Future studies are needed to determine whether providing alternate foodstuffs to captive parrots can be used as a means to improve their diets and thus their health, welfare, and reproductive success.
Collapse
Affiliation(s)
- Elise V Voltura
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77853, USA,
- Schubot Center for Avian Health, Texas A&M University, College Station, TX 77853, USA
| | - Donald J Brightsmith
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77853, USA
- Schubot Center for Avian Health, Texas A&M University, College Station, TX 77853, USA
| | - Juan Cornejo
- Mandai Park Development, Ltd, Singapore Zoological Gardens, Singapore 729826
| | - Ian Tizard
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77853, USA
- Schubot Center for Avian Health, Texas A&M University, College Station, TX 77853, USA
| | - Christopher A Bailey
- College of Veterinary Medicine & Biomedical Sciences; the Department of Poultry Science, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX 77853, USA
| | - J Jill Heatley
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77853, USA
- Schubot Center for Avian Health, Texas A&M University, College Station, TX 77853, USA
| |
Collapse
|
9
|
Zhang W, Li X, Zhao Y, Sun Z, Yao M, Zhou X, Li F, Ma F, Gu Q. Structural and mineralogical variation upon reoxidation of reduced Fe-bearing clay minerals during thermal activation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166243. [PMID: 37595928 DOI: 10.1016/j.scitotenv.2023.166243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/03/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
The hydroxyl radicals (OH) produced from Fe(II) oxidation upon reoxidation of reduced Fe-bearing clay minerals (RFC) have received increased attention and thermal activation was used to enhance Fe(II) oxidation to improve OH production. However, changes in mineral morphology and structure during thermally-activated RFC reoxidation are not yet clear. Herein, the Fe(II) oxidation extent was measured by chemical analysis during the reoxidation of model RFC (reduced nontronite (rNAu-2) at elevated temperatures. Mineralogical variation of rNAu-2 particles was observed by scanning electron microscopy (SEM), Mössbauer spectra, and X-ray photoelectron spectroscopy (XPS). The structural Fe(II) oxidation in rNAu-2 was accelerated with increasing temperature, accompanied by the transformation of structural entities and the dissolution of Fe and Si, while the overall structure of rNAu-2 minerals was relatively intact. The surface microstructure of particles showed the dissolved holes, net-shape flocs, and even large pore channels after Fe(II) oxidation by thermal activation. Moreover, the rearrangement of structural Fe(II) entities, the regeneration of edge Fe(II), and the electron transport from the interior to the edge were enhanced during rNAu-2 reoxidation by thermal activation. The increasing electron transfer at elevated temperatures could possibly be owing to the increasing number of reactive sites by increasing the internal disorder of rNAu-2. This work provides novel insights into the structural and mineralogical changes in promoting electron transfer upon RFC reoxidation.
Collapse
Affiliation(s)
- Wenwen Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaodong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yao Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zongquan Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Meichen Yao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fasheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qingbao Gu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
10
|
Alishiri M, Gonbadi M, Narimani M, Abdollahi SA, Shahsavaripour N. Optimization of process parameters for trimethoprim and sulfamethoxazole removal by magnetite-chitosan nanoparticles using Box-Behnken design. Sci Rep 2023; 13:14489. [PMID: 37660165 PMCID: PMC10475053 DOI: 10.1038/s41598-023-41823-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023] Open
Abstract
The contamination of the aquatic environment with antibiotics is among the major and developing problems worldwide. The present study investigates the potential of adsorbent magnetite-chitosan nanoparticles (Fe3O4/CS NPs) for removing trimethoprim (TMP) and sulfamethoxazole (SMX). For this purpose, Fe3O4/CS NPs were synthesized by the co-precipitation method, and the adsorbent characteristics were investigated using XRD, SEM, TEM, pHzpc, FTIR, and VSM. The effect of independent variables (pH, sonication time, adsorbent amount, and analyte concentration) on removal performance was modeled and evaluated by Box-Behnken design (BBD). The SEM image of the Fe3O4/CS adsorbent showed that the adsorbent had a rough and irregular surface. The size of Fe3O4/CS crystals was about 70 nm. XRD analysis confirmed the purity and absence of impurities in the adsorbent. TEM image analysis showed that the adsorbent had a porous structure, and the particle size was in the range of nanometers. In VSM, the saturation magnetization of Fe3O4/CS adsorbent was 25 emu g-1 and the magnet could easily separate the adsorbent from the solution. The results revealed that the optimum condition was achieved at a concentration of 22 mg L-1, a sonication time of 15 min, an adsorbent amount of 0.13 g/100 mL, and a pH of 6. Among different solvents (i.e., ethanol, acetone, nitric acid, and acetonitrile), significant desorption of TMP and SMX was achieved using ethanol. Also, results confirmed that Fe3O4/CS NPs can be used for up to six adsorption/desorption cycles. In addition, applying the Fe3O4/CS NPs on real water samples revealed that Fe3O4/CS NPs could remove TMP and SMX in the 91.23-95.95% range with RSD (n = 3) < 4. Overall, the Fe3O4/CS NPs exhibit great potential for removing TMP and SMX antibiotics from real water samples.
Collapse
Affiliation(s)
- Mahsa Alishiri
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, USA
| | - Maryam Gonbadi
- Nanochemical Engineering Department, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran
| | - Mehdi Narimani
- Nanochemical Engineering Department, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran
| | | | | |
Collapse
|
11
|
Wan Omar WH, Mahyudin NA, Azmi NN, Mahmud Ab Rashid NK, Ismail R, Mohd Yusoff MHY, Khairil Mokhtar NF, Sharples GJ. Effect of natural antibacterial clays against single biofilm formation by Staphylococcus aureus and Salmonella Typhimurium bacteria on a stainless-steel surface. Int J Food Microbiol 2023; 394:110184. [PMID: 36996693 DOI: 10.1016/j.ijfoodmicro.2023.110184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Staphylococcus aureus and Salmonella Typhimurium have a propensity to develop biofilms on food contact surfaces, such as stainless-steel, that persist despite rigorous cleaning and sanitizing procedures. Since both bacterial species pose a significant public health risk within the food chain, improved anti-biofilm measures are needed. This study examined the potential of clays as antibacterial and anti-biofilm agents against these two pathogens on appropriate contact surfaces. Natural soil was processed to yield leachates and suspensions of both untreated and treated clays. Soil particle size, pH, cation-exchange capacity, and metal ions were characterized to assess their importance in bacterial killing. Initial antibacterial screening was performed on nine distinct types of natural Malaysian soil using a disk diffusion assay. Untreated leachate from Kuala Gula and Kuala Kangsar clays were found to inhibit S. aureus (7.75 ± 0.25 mm) and Salmonella Typhimurium (11.85 ± 1.63 mm), respectively. The treated Kuala Gula suspension (50.0 and 25.0 %) reduced S. aureus biofilms by 4.4 and 4.2 log at 24 and 6 h, respectively, while treated Kuala Kangsar suspension (12.5 %) by a 4.16 log reduction at 6 h. Although less effective, the treated Kuala Gula leachate (50.0 %) was effective in removing Salmonella Typhimurium biofilm with a decrease of >3 log in 24 h. In contrast to Kuala Kangsar clays, the treated Kuala Gula clays contained a much higher soluble metal content, especially Al (301.05 ± 0.45 ppm), Fe (691.83 ± 4.80 ppm) and Mg (88.44 ± 0.47 ppm). Elimination of S. aureus biofilms correlated with the presence of Fe, Cu, Pb, Ni, Mn and Zn irrespective of the pH of the leachate. Our findings demonstrate that a treated suspension is the most effective for eradication of S. aureus biofilms with a potential as a sanitizer-tolerant, natural antibacterial against biofilms for applications in the food industry.
Collapse
Affiliation(s)
- Wan Hasyera Wan Omar
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nor Ainy Mahyudin
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Food Service and Management, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Nur Naqiyah Azmi
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nor-Khaizura Mahmud Ab Rashid
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Roslan Ismail
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | | | | - Gary J Sharples
- Department of Biosciences, Durham University, Durham DHI 3LE, United Kingdom
| |
Collapse
|
12
|
Xia Q, Chen J, Dong H. Effects of Organic Ligands on the Antibacterial Activity of Reduced Iron-Containing Clay Minerals: Higher Extracellular Hydroxyl Radical Production Yet Lower Bactericidal Activity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6888-6897. [PMID: 37083402 DOI: 10.1021/acs.est.3c00033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Reduced iron-containing clay (RIC) minerals have been documented to exhibit antibacterial activity through a synergistic action of extracellular membrane attack and intracellular oxidation of cellular components. However, the relative importance between extracellular and intracellular processes has remained elusive. Here, metal-chelating organic ligands (lactate, oxalate, citrate, and ethylene diaminetetraacetic acid (EDTA)) were amended to the bactericidal assays such that the importance of the two processes could be evaluated. Reduced nontronite (rNAu-2) was used as a model clay mineral to produce extracellular hydroxyl radical (•OH) upon oxygenation. The presence of Fe-chelating ligands increased •OH yield by 3-5 times. Consequently, bacterial cell membrane attack was enhanced, yet the antibacterial activity of RIC diminished. Additional experiments revealed that the ligands inhibited soluble metal ions from adsorption onto the bacterial cell membrane and/or penetration into the cytoplasm. Consequently, intracellular Fe concentration for the ligand-treated group was nearly 2 orders of magnitude lower than that for no-ligand control, which greatly decreased intracellular accumulation of reactive oxygen species (ROS) and increased cell survival. These results highlight that destruction of intracellular contents (proteins and DNA) is more important than oxidative degradation of membrane lipids and cell envelope proteins in causing bacterial cell death by RIC.
Collapse
Affiliation(s)
- Qingyin Xia
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Jiubin Chen
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
13
|
Behroozian S, Zlosnik JEA, Xu W, Li LY, Davies JE. Antibacterial Activity of a Natural Clay Mineral against Burkholderia cepacia Complex and Other Bacterial Pathogens Isolated from People with Cystic Fibrosis. Microorganisms 2023; 11:microorganisms11010150. [PMID: 36677442 PMCID: PMC9862493 DOI: 10.3390/microorganisms11010150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
There is an impending crisis in healthcare brought about by a new era of untreatable infections caused by bacteria resistant to all available antibiotics. Thus, there is an urgent need to identify novel antimicrobial agents to counter the continuing threat posed by formerly treatable infections. We previously reported that a natural mineral clay known as Kisameet clay (KC) is a potent inhibitor of the organisms responsible for acute infections. Chronic bacterial infections present another major challenge to treatment by antimicrobials, due to their prolonged nature, which results in repeated exposure to antibiotics and a constant selection for antimicrobial resistance. A prime example is bacteria belonging to the Burkholderia cepacia complex (Bcc), which particularly causes some of the most serious chronic lung infections in patients with cystic fibrosis (CF) associated with unpredictable clinical outcomes, poor prognosis, and high mortality rates. Eradication of these organisms from CF patients with limited effective antimicrobial options is a major challenge. Novel therapeutic approaches are urgently required. Here, we report the in vitro antibacterial activity of KC aqueous suspensions (1-10% w/v) and its aqueous extract (L100) against a collection of extensively and multi-drug resistant clinical isolates of Bcc, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia isolated from patients with CF. These findings present a potential novel therapy for further investigation in the clinic.
Collapse
Affiliation(s)
- Shekooh Behroozian
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, BC V6T 1Z3, Canada
- Correspondence: (S.B.); (J.E.D.)
| | - James E. A. Zlosnik
- Centre for Understanding and Preventing Infection in Children, Division of Infectious Diseases, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Wanjing Xu
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Ln, Vancouver, BC V6T 1Z3, Canada
| | - Loretta Y. Li
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Ln, Vancouver, BC V6T 1Z3, Canada
| | - Julian E. Davies
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Correspondence: (S.B.); (J.E.D.)
| |
Collapse
|
14
|
Wang Y, Lu H, Wang X, Han L, Liu X, Cheng D, Yang F, Guo F, Wang W. Green tubular micro/nano architecture constructed by in-situ planting of small AgNPs on Kapok fiber for oil spill recovery, smart oil-water separation and multifunctional applications. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Manilal A, Tadesse D, Sabu KR. Buruli Ulcer and Medical Geo-Microbiology. Infect Drug Resist 2022; 15:6811-6814. [PMID: 36458199 PMCID: PMC9707318 DOI: 10.2147/idr.s388005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/18/2022] [Indexed: 09/29/2023] Open
Abstract
Buruli ulcer is a chronic debilitating infectious disease caused by the pathogen Mycobacterium ulcerans, which can be cured if diagnosed and treated in an early stage. However, advanced cases need antibiotic treatment followed by surgical interventions. In this context, an extremely effective and less expensive treatment modality can be developed by means of an extended topical application of certain selected natural clay minerals, most of the time containing illite-smectite having some iron content. There is a scope for developing the speciality, medical geo-microbiology, which is truly a multidisciplinary one, for finding a cure for the severe and advanced cases of BU.
Collapse
Affiliation(s)
- Aseer Manilal
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Dagimawie Tadesse
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | | |
Collapse
|
16
|
de Carvalho-Guimarães FB, Correa KL, de Souza TP, Rodríguez Amado JR, Ribeiro-Costa RM, Silva-Júnior JOC. A Review of Pickering Emulsions: Perspectives and Applications. Pharmaceuticals (Basel) 2022; 15:1413. [PMID: 36422543 PMCID: PMC9698490 DOI: 10.3390/ph15111413] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 09/10/2023] Open
Abstract
Pickering emulsions are systems composed of two immiscible fluids stabilized by organic or inorganic solid particles. These solid particles of certain dimensions (micro- or nano-particles), and desired wettability, have been shown to be an alternative to conventional emulsifiers. The use of biodegradable and biocompatible stabilizers of natural origin, such as clay minerals, presents a promising future for the development of Pickering emulsions and, with this, they deliver some advantages, especially in the area of biomedicine. In this review, the effects and characteristics of microparticles in the preparation and properties of Pickering emulsions are presented. The objective of this review is to provide a theoretical basis for a broader type of emulsion, in addition to reviewing the main aspects related to the mechanisms and applications to promote its stability. Through this review, we highlight the use of this type of emulsion and its excellent properties as permeability promoters of solid particles, providing ideal results for local drug delivery and use in Pickering emulsions.
Collapse
Affiliation(s)
| | - Kamila Leal Correa
- Laboratory of Pharmaceutical and Cosmetic R&D, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil
| | - Tatiane Pereira de Souza
- Laboratory of Innovation and Development in Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus 69077-000, Brazil
| | - Jesus Rafael Rodríguez Amado
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Food and Nutrition, Federal University of Mato-Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Roseane Maria Ribeiro-Costa
- Laboratory of Pharmaceutical Nanotechnology, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil
| | | |
Collapse
|
17
|
Jiang Z, An N, Chu Y, Cao B, Wu F, Zhang Y, Zhang Y, Li Y, Zhang Y. Growth, biofilm formation and atrazine degrading gene (trzN) expression of Arthrobacter sp. DNS10 cultured with montmorillonite, kaolinite and goethite. CHEMOSPHERE 2022; 307:135904. [PMID: 35940415 DOI: 10.1016/j.chemosphere.2022.135904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
The viable and degradation potential of the strains which adhered to soil minerals are essential for eliminating organic pollutants from soil. Herein, the interaction (growth, biofilm formation and survive) of Arthrobacter sp. DNS10, an atrazine degrading strain, with three kinds of typical soil minerals, such as montmorillonite, kaolinite and goethite, as well as the atrazine degradation gene (trzN) expression of the strain in the minerals system were studied. The results showed that montmorillonite had significant promotion effect on the growth of strain DNS10, followed by kaolinite, but goethite significantly inhibited the growth of strain DNS10. In contrast, goethite notably promoted the biofilm formation and there was less biofilm detected in montmorillonite containing system. The percentage of the survival bacteria in the biofilm that formed on montmorillonite, kaolinite and goethite was 53.8%, 40.8% and 28.2%. In addition, there were more reactive oxygen species (ROS) were detected in the cells that exposed to goethite than those of the cells exposed to kaolinite and montmorillonite. These results suggest that the electrostatic repulsion between kaolinite/montmorillonite and strain DNS10 prevents them from contacting each other and facilitates bacterial growth by allowing the strain to obtain more nutrients. Oppositely, the needle-like morphology of goethite might damage the strain DNS10 cell when they were combined by electrostatic attraction, and the goethite induced ROS also aggravate the cytotoxicity of goethite on strain DNS10. In addition, the relative transcription of trzN in the cells contacted with montmorillonite, kaolinite and goethite was 0.94-, 0.27- and 0.20- fold of the no mineral exposure treatment. Briefly, this research suggests that the minerals with different structure and/or physicochemical characteristics might cause various trend for the biofilm formation and degradation potential of the bacteria.
Collapse
Affiliation(s)
- Zhao Jiang
- School of Resources &; Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ning An
- School of Resources &; Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuxin Chu
- School of Resources &; Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bo Cao
- School of Resources &; Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Fengxue Wu
- School of Resources &; Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yue Zhang
- School of Resources &; Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuxin Zhang
- School of Resources &; Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yu Li
- School of Resources &; Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources &; Environment, Northeast Agricultural University, Harbin, 150030, PR China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130132, PR China.
| |
Collapse
|
18
|
Dermody R, Ali F, Popovich J, Chen S, Seo DK, Haydel SE. Modified aluminosilicates display antibacterial activity against nontuberculous mycobacteria and adsorb mycolactone and Mycobacterium ulcerans in vitro. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.1016426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Mycobacterium ulcerans (MU) infection of skin and soft tissue leads to chronic skin ulceration known as Buruli ulcer. MU releases a lipid-like toxin, mycolactone, that diffuses into the tissue, effecting disease through localized tissue necrosis and immunosuppression. Cutaneous Buruli ulcer wounds slowly advance from a painless pre-ulcerative stage to an ulcerative lesion, leading to disparities in the timing of medical intervention and treatment outcomes. Novel Buruli ulcer wound management solutions could complement and supplement systemically administered antimicrobials and reduce time to healing. Capitalizing on nanopore structure, adsorption, and exchange capacities, aluminosilicate nanozeolites (nZeos) and geopolymers (GPs) were developed and investigated in the context of therapeutics for mycobacterial disease ulcerative wound care. nZeos were ion exchanged with copper or silver to assess the antimicrobial activity against MU and Mycobacterium marinum, a rapid growing, genetic ancestor of MU that also causes skin and soft tissue infections. Silver- and copper-exchanged nZeos were bactericidal against MU, while only silver-exchanged nZeos killed M. marinum. To mediate adsorption at a biological scale, GPs with different pore sizes and altered surface modifications were generated and assessed for the ability to adsorb MU and mycolactone. Macroporous GPs with and without stearic acid modification equivalently adsorbed MU cells, while mesoporous GPs with stearic acid adsorbed mycolactone toxin significantly better than mesoporous GPs or GPs modified with phenyltriethoxysilane (PTES). In cytotoxicity assays, Cu-nZeos lacked toxicity against Detroit 551, U-937, and WM-115 cells. GPs demonstrated limited cytotoxicity in Detroit 551 and WM-115, but produced time-dependent toxicity in U-937 cells. With their large surface area and adsorptive capacities, aluminosilicates nZeos and GPs may be modified and developed to support conventional BU wound care. Topical application of nZeos and GPs could kill MU within the cutaneous wound environment and physically remove MU and mycolactone with wound dressing changes, thereby improving wound healing and overall patient outcomes.
Collapse
|
19
|
Purbhoo-Makan M, Houreld NN, Enwemeka CS. The Effects of Blue Light on Human Fibroblasts and Diabetic Wound Healing. Life (Basel) 2022; 12:life12091431. [PMID: 36143466 PMCID: PMC9505688 DOI: 10.3390/life12091431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes is a serious threat to global health and is among the top 10 causes of death. The Diabetic foot ulcer (DFU) is among the most common and severe complications of the disease. Bacterial infections are common; therefore, timely aggressive management, using multidisciplinary management approaches is needed to prevent complications, morbidity, and mortality, particularly in view of the growing cases of antibiotic-resistant bacteria. Photobiomodulation (PBM) involves the application of low-level light at specific wavelengths to induce cellular photochemical and photophysical responses. Red and near-infrared (NIR) wavelengths have been shown to be beneficial, and recent studies indicate that other wavelengths within the visible spectrum could be helpful as well, including blue light (400–500 nm). Reports of the antimicrobial activity and susceptibility of blue light on several strains of the same bacterium show that many bacteria are less likely to develop resistance to blue light treatment, meaning it is a viable alternative to antibiotic therapy. However, not all studies have shown positive results for wound healing and fibroblast proliferation. This paper presents a critical review of the literature concerning the use of PBM, with a focus on blue light, for tissue healing and diabetic ulcer care, identifies the pros and cons of PBM intervention, and recommends the potential role of PBM for diabetic ulcer care.
Collapse
Affiliation(s)
- Meesha Purbhoo-Makan
- Department of Podiatry, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- Laser Research Center, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Nicolette Nadene Houreld
- Laser Research Center, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- Correspondence:
| | - Chukuka S. Enwemeka
- Laser Research Center, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- College of Health and Human Services, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
20
|
Marsum M, Sunarto S, Widodo W, Khayan K, Wardoyo S. Waste treatment innovation for infusion bottles using soil solution. PLoS One 2022; 17:e0273394. [PMID: 35994450 PMCID: PMC9394799 DOI: 10.1371/journal.pone.0273394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
The amount of medical waste, especially infusion bottles, is a problem for environmental pollution. Improper management of infusion bottle waste can have an impact on disease transmission. The medical waste treatment used high technology and high costs will be a financial burden, so simple and effective treatment innovations is needed. This study uses an experimental method of removing bacteria from infusion bottles using a mixture of water and Andoso soil as a solution for washing infusion bottle waste. The soil solution concentration used in washing was 45% with a contact time of 2 minutes. The experiment was carried out with two repetitions. The treatment effect on decreasing the number of bacteria using a multiple linear regression mathematical model. The results showed that the disinfection process of bacterial-contaminated infusion bottles using water required rinsing up to six times, whereas using 45% andosol soil solution only rinsed once. The effectiveness of the disinfection of infusion bottles contaminated with bacteria using soil solution reduces the number of bacteria by 98%.
Collapse
Affiliation(s)
- Marsum Marsum
- Poltekkes Kemenkes Semarang, Semarang, Indonesia
- * E-mail:
| | | | | | | | | |
Collapse
|
21
|
A Mini Review of Antibacterial Properties of Al2O3 Nanoparticles. NANOMATERIALS 2022; 12:nano12152635. [PMID: 35957067 PMCID: PMC9370748 DOI: 10.3390/nano12152635] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022]
Abstract
Bacterial antibiotic resistance is one of the most serious modern biomedical problems that prioritizes the search for new agents to combat bacterial pathogens. It is known that nanoparticles of many metals and metal oxides can have an antibacterial effect. However, the antibacterial efficacy of aluminum oxide nanoparticles has been studied little compared to the well-known antimicrobial properties of nanoparticles of oxides of metals such as zinc, silver, iron, and copper. In this review, we have focused on the experimental studies accumulated to date demonstrating the antibacterial effect of aluminum oxide nanoparticles. The review discusses the main ways of synthesis and modification of these nanoparticles, provides the proposed mechanisms of their antibacterial action against gram-positive and gram-negative bacteria, and also compares the antibacterial efficacy depending on morphological characteristics. We have also partially considered the activity of aluminum oxide nanoparticles against water microalgae and fungi. In general, a more detailed study of the antibacterial properties of aluminum oxide nanoparticles is of great interest due to their low toxicity to eukaryotic cells.
Collapse
|
22
|
Naz M, Rizwan M, Jabeen S, Ghaffar A, Islam A, Gull N, Rasool A, Khan RU, Alshawwa SZ, Iqbal M. Cephradine drug release using electrospun chitosan nanofibers incorporated with halloysite nanoclay. Z PHYS CHEM 2022; 236:227-238. [DOI: 10.1515/zpch-2021-3072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Abstract
The chitosan/polyvinyl alcohol/halloysite nanoclay (CS/PVA/HNC) loaded with cephradine drug electrospun nanofibers (NFs) were fabricated and characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) techniques. FTIR analysis confirmed the hydrogen bonding between the polymer chain and the developed siloxane linkages. SEM analysis revealed the formation of uniform NFs having beads free and smooth surface with an average diameter in 50–200 nm range. The thermal stability of the NFs was increased by increasing the HNC concentration. The antimicrobial activity was examined against Escherichia
coli and staphylococcus strains and the NFs revealed auspicious antimicrobial potential. The drug release was studied at pH 7.4 (in PBS) at 37 °C. The drug release analysis showed that 90% of the drug was released from NFs in 2 h and 40 min. Hence, the prepared NFs could be used as a potential drug carrier and release in a control manner for biomedical application.
Collapse
Affiliation(s)
- Mahwish Naz
- Department of Chemistry , University of Engineering and Technology , Lahore , Pakistan
| | - Muhammad Rizwan
- Department of Chemistry, Division of Science and Technology, University of Education , Lahore , Pakistan
| | - Sehrish Jabeen
- Institute of Polymer and Textile Engineering , University of the Punjab , Lahore , Pakistan
| | - Abdul Ghaffar
- Department of Chemistry , University of Engineering and Technology , Lahore , Pakistan
| | - Atif Islam
- Institute of Polymer and Textile Engineering , University of the Punjab , Lahore , Pakistan
| | - Nafisa Gull
- Institute of Polymer and Textile Engineering , University of the Punjab , Lahore , Pakistan
| | - Atta Rasool
- School of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Rafi Ullah Khan
- Institute of Polymer and Textile Engineering , University of the Punjab , Lahore , Pakistan
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences , College of Pharmacy, Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education , Lahore , Pakistan
| |
Collapse
|
23
|
Morrison KD, Martin KA, Wimpenny JB, Loots GG. Synthetic antibacterial minerals: harnessing a natural geochemical reaction to combat antibiotic resistance. Sci Rep 2022; 12:1218. [PMID: 35075234 PMCID: PMC8786894 DOI: 10.1038/s41598-022-05303-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/15/2021] [Indexed: 01/14/2023] Open
Abstract
The overuse of antibiotics in clinical and livestock settings is accelerating the selection of multidrug resistant bacterial pathogens. Antibiotic resistant bacteria result in increased mortality and financial strain on the health care and livestock industry. The development of new antibiotics has stalled, and novel strategies are needed as we enter the age of antibiotic resistance. Certain naturally occurring clays have been shown to have antimicrobial properties and kill antibiotic resistant bacteria. Harnessing the activity of compounds within these clays that harbor antibiotic properties offers new therapeutic opportunities for fighting the potentially devastating effects of the post antibiotic era. However, natural samples are highly heterogenous and exhibit variable antibacterial effectiveness, therefore synthesizing minerals of high purity with reproducible antibacterial activity is needed. Here we describe for the first time synthetic smectite clay minerals and Fe-sulfide microspheres that reproduce the geochemical antibacterial properties observed in natural occurring clays. We show that these mineral formulations are effective at killing the ESKAPE pathogens (Enterococcus sp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter sp., Pseudomonas aeruginosa and Enterobacter sp.) by maintaining Fe2+ solubility and reactive oxygen species (ROS) production while buffering solution pH, unlike the application of metals alone. Our results represent the first step in utilizing a geochemical process to treat antibiotic resistant topical or gastrointestinal infections in the age of antibiotic resistance.
Collapse
Affiliation(s)
- Keith D Morrison
- Nuclear and Chemical Sciences Division, Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
| | - Kelly A Martin
- Biosciences and Biotechnology Division, Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Josh B Wimpenny
- Nuclear and Chemical Sciences Division, Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Gabriela G Loots
- Biosciences and Biotechnology Division, Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| |
Collapse
|
24
|
Sun Y, Li D, Yu Y, Chen J, Fan W. Separation and Characterization of Cellulose Fibers from Cannabis Bast Using Foamed Nickel by Cathodic Electro-Fenton Oxidation Strategy. Polymers (Basel) 2022; 14:polym14030380. [PMID: 35160369 PMCID: PMC8838538 DOI: 10.3390/polym14030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Degumming is the most important link in the textile industry. The main purpose of degumming is to effectively remove non-cellulose substances in plant bast fibers. In this research, we propose an electro-Fenton (EF) system with a nickel-foam (Ni-F) cathode in weak acid pH (EF/Ni-F) to degum cannabis fiber in EF while reducing the content of pollutants in degumming wastewater. FT-IR, XPS, XRD, SEM, and TG were employed to thoroughly understand the reaction characteristics to characterize chemical components, element qualities, the crystallinity, and the morphologies of degummed fibers. Additionally, physical and mechanical properties such as breaking strength, elongation at breaking, residual glue rate, whiteness, and diameter of degummed fibers were measured. Through testing, it was found that the fiber degummed by the EF method had higher breaking strength, lower residual tackiness, and higher whiteness than other methods. The antibacterial test was used to detect the effect of fiber on Staphylococcus aureus before and after degumming. EF could remove more colloidal components from cannabis than other methods, and the mechanical properties were also enhanced. The characteristics of the degummed fiber further confirmed the effectiveness of the new degumming method. Moreover, the antibacterial experiment found that the antibacterial property of the degummed fiber was enhanced. The colloidal components in the degumming wastewater were flocculated and precipitated. The upper liquid of the solution had low chromaticity, low COD value, and weak acid pH value, which can meet the discharge requirements. The above test proves that EF is an effective degumming method that is environmentally friendly, takes less time, and enhances antibacterial performance.
Collapse
Affiliation(s)
- Ying Sun
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161000, China; (D.L.); (Y.Y.); (J.C.); (W.F.)
- Engineering Research Center of Flax Processing Technology, Ministry of Education, Qiqihar University, Qiqihar 161006, China
- Correspondence:
| | - Duanxin Li
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161000, China; (D.L.); (Y.Y.); (J.C.); (W.F.)
| | - Yang Yu
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161000, China; (D.L.); (Y.Y.); (J.C.); (W.F.)
| | - Jialin Chen
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161000, China; (D.L.); (Y.Y.); (J.C.); (W.F.)
| | - Wanyue Fan
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161000, China; (D.L.); (Y.Y.); (J.C.); (W.F.)
| |
Collapse
|
25
|
Abstract
High-resolution imaging with secondary ion mass spectrometry (nanoSIMS) has become a standard method in systems biology and environmental biogeochemistry and is broadly used to decipher ecophysiological traits of environmental microorganisms, metabolic processes in plant and animal tissues, and cross-kingdom symbioses. When combined with stable isotope-labeling-an approach we refer to as nanoSIP-nanoSIMS imaging offers a distinctive means to quantify net assimilation rates and stoichiometry of individual cell-sized particles in both low- and high-complexity environments. While the majority of nanoSIP studies in environmental and microbial biology have focused on nitrogen and carbon metabolism (using 15N and 13C tracers), multiple advances have pushed the capabilities of this approach in the past decade. The development of a high-brightness oxygen ion source has enabled high-resolution metal analyses that are easier to perform, allowing quantification of metal distribution in cells and environmental particles. New preparation methods, tools for automated data extraction from large data sets, and analytical approaches that push the limits of sensitivity and spatial resolution have allowed for more robust characterization of populations ranging from marine archaea to fungi and viruses. NanoSIMS studies continue to be enhanced by correlation with orthogonal imaging and 'omics approaches; when linked to molecular visualization methods, such as in situ hybridization and antibody labeling, these techniques enable in situ function to be linked to microbial identity and gene expression. Here we present an updated description of the primary materials, methods, and calculations used for nanoSIP, with an emphasis on recent advances in nanoSIMS applications, key methodological steps, and potential pitfalls.
Collapse
Affiliation(s)
- Jennifer Pett-Ridge
- Lawrence Livermore National Lab, Physical and Life Science Directorate, Livermore, CA, USA.
| | - Peter K Weber
- Lawrence Livermore National Lab, Physical and Life Science Directorate, Livermore, CA, USA.
| |
Collapse
|
26
|
Azmi NN, Mahyudin NA, Wan Omar WH, Mahmud Ab Rashid NK, Ishak CF, Abdullah AH, Sharples GJ. Antibacterial Activity of Clay Soils against Food-Borne Salmonella typhimurium and Staphylococcus aureus. Molecules 2021; 27:molecules27010170. [PMID: 35011396 PMCID: PMC8746575 DOI: 10.3390/molecules27010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/28/2022] Open
Abstract
Natural clays have recently been proven to possess antibacterial properties. Effective natural antimicrobial agents are needed to combat bacterial contamination on food contact surfaces, which are increasingly more prevalent in the food chain. This study sought to determine the antibacterial activity of clays against the food-borne pathogens Salmonella typhimurium ATCC 14028 and Staphylococcus aureus ATCC 13565. Soils were processed to yield leachates and suspensions from untreated and treated clays. Soil particle size, pH, cation-exchange capacity, metal composition and mineralogy were characterized. Antibacterial screening was performed on six Malaysian soils via the disc diffusion method. In addition, a time-kill assay was conducted on selected antibacterial clays after 6 h of exposure. The screening revealed that Munchong and Carey clays significantly inhibit Salmonella typhimurium (11.00 ± 0.71 mm) and S. aureus (7.63 ± 0.48 mm), respectively. Treated Carey clay leachate and suspension completely kill Salmonella typhimurium, while S. aureus viability is reduced (2 to 3 log10). The untreated Carey and all Munchong clays proved ineffective as antibacterials. XRD analysis confirmed the presence of pyrite and magnetite. Treated Carey clays had a higher soluble metal content compared to Munchong; namely Al (92.63 ± 2.18 mg/L), Fe (65.69 ± 3.09 mg/L) and Mg (88.48 ± 2.29 mg/L). Our results suggest that metal ion toxicity is responsible for the antibacterial activity of these clays.
Collapse
Affiliation(s)
- Nur Naqiyah Azmi
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.N.A.); (W.H.W.O.)
| | - Nor Ainy Mahyudin
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.N.A.); (W.H.W.O.)
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Correspondence:
| | - Wan Hasyera Wan Omar
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.N.A.); (W.H.W.O.)
| | | | - Che Fauziah Ishak
- Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | | | - Gary J. Sharples
- Department of Biosciences, Durham University, Durham DH1 3LE, UK;
| |
Collapse
|
27
|
Guo D, Xia Q, Zeng Q, Wang X, Dong H. Antibacterial Mechanisms of Reduced Iron-Containing Smectite-Illite Clay Minerals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15256-15265. [PMID: 34723508 DOI: 10.1021/acs.est.1c04367] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Reduced nontronite has been demonstrated to be antibacterial through the production of hydroxyl radical (•OH) from the oxidation of structural Fe(II). Herein, we investigated the antibacterial activity of more common smectite-illite (S-I) clays toward Escherichia coli cells, including montmorillonite SWy-3, illite IMt-2, 50-50 S-I rectorite RAr-1, 30-70 S-I ISCz-1, and nontronite NAu-2. Under an oxic condition, reduced clays (with a prefix r before mineral names) produced reactive oxygen species (ROS), and the antibacterial activity followed the order of rRAr-1 > rSWy-3 ≥ rNAu-2 ≫ rIMt-2 ≥ rISCz-1. The strongest antibacterial activity of rRAr-1 was contributed by a combination of •OH and Fe(IV) generated from structural Fe(II)/adsorbed Fe2+ and soluble Fe2+, respectively. Higher levels of lipid and protein oxidation, intracellular ROS accumulation, and membrane disruption were consistent with this antibacterial mechanism of rRAr-1. The antibacterial activity of other S-I clays depended on layer expandability, which determined the reactivity of structural Fe(II) and the production of •OH, with the expandable smectite being the most antibacterial and nonexpandable illite the least. Our results provide new insights into the antibacterial mechanisms of clay minerals.
Collapse
Affiliation(s)
- Dongyi Guo
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P.R. China
| | - Qingyin Xia
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P.R. China
| | - Qiang Zeng
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P.R. China
| | - Xi Wang
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P.R. China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P.R. China
| |
Collapse
|
28
|
Natural Clay as a Low-Cost Adsorbent for Crystal Violet Dye Removal and Antimicrobial Activity. NANOMATERIALS 2021; 11:nano11112789. [PMID: 34835556 PMCID: PMC8620351 DOI: 10.3390/nano11112789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022]
Abstract
This investigation aimed at evaluating the efficiency of micro and nanoclays as a low-cost material for the removal of crystal violet (CV) dye from an aqueous solution. The impacts of various factors (contact time, pH, adsorbent dosage, temperature, initial dye concentration) on the adsorption process have been taken into consideration. Six micro and nanoclay samples were obtained by treating clay materials collected from different locations in the Albaha region, Saudi Arabia. Out of the six tested micro and nanoclays materials, two (NCQ1 and NCQ3) were selected based on the highest adsorption efficiency for complete experimentation. The morphology and structure of the selected micro and nanoclay adsorbents were characterized by various techniques: SEM-EDX, FTIR, XRF, XRD, and ICP-MS. The XRF showed that the main oxides of both nanoclays were SiO2, Al2O3, Fe2O3, K2O, CaO, and MgO, and the rest were impurities. All the parameters affecting the adsorption of CV dye were optimized in a batch system, and the optimized working conditions were an equilibrium time of 120 min, a dose of 30 mg, a temperature of 25 °C, and an initial CV concentration of 400 mg/L. The equilibrium data were tested using nonlinear isotherm and kinetic models, which showed that the Freundlich isotherm and pseudo-second-order kinetics gave the best fit with the experimental data, indicating a physico-chemical interaction occurred between the CV dye and both selected micro and nanoclay surfaces. The maximum adsorption capacities of NCQ1 and NCQ3 adsorbents were 206.73 and 203.66 mg/g, respectively, at 25 °C. The thermodynamic factors revealed that the CV dye adsorption of both micro and nanoclays was spontaneous and showed an exothermic process. Therefore, the examined natural micro and nanoclays adsorbents are promising effective adsorbents for the elimination of CV dye from an aqueous environment.
Collapse
|
29
|
Janssen K, Mähler B, Rust J, Bierbaum G, McCoy VE. The complex role of microbial metabolic activity in fossilization. Biol Rev Camb Philos Soc 2021; 97:449-465. [PMID: 34649299 DOI: 10.1111/brv.12806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
Bacteria play an important role in the fossilization of soft tissues; their metabolic activities drive the destruction of the tissues and also strongly influence mineralization. Some environmental conditions, such as anoxia, cold temperatures, and high salinity, are considered widely to promote fossilization by modulating bacterial activity. However, bacteria are extremely diverse, and have developed metabolic adaptations to a wide range of stressful conditions. Therefore, the influence of the environment on bacterial activity, and of their metabolic activity on fossilization, is complex. A number of examples illustrate that simple, general assumptions about the role of bacteria in soft tissue fossilization cannot explain all preservational pathways: (i) experimental results show that soft tissues of cnidaria decay less in oxic than anoxic conditions, and in the fossil record are found more commonly in fossil sites deposited under oxic conditions rather than anoxic environments; (ii) siderite concretions, which often entomb soft tissue fossils, precipitate due to a complex mixture of sulfate- and iron reduction by some bacterial species, running counter to original theories that iron reduction is the primary driver of siderite concretion growth; (iii) arthropod brains, now widely accepted to be preserved in many Cambrian fossil sites, are one of the first structures to decay in taphonomic experiments, indicating that their fossilization processes are complex and influenced by bacterial activity. In order to expand our understanding of the complex process of bacterially driven soft tissue fossilization, more research needs to be done, on fossils themselves and in taphonomic experiments, to determine how the complex variation in microbial metabolic activity influences decay and mineralization.
Collapse
Affiliation(s)
- Kathrin Janssen
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms Universität, 53127, Bonn, Germany
| | - Bastian Mähler
- Paleontology Section, Institute of Geosciences, Rheinische Friedrich-Wilhelms Universität Bonn, 53115, Bonn, Germany
| | - Jes Rust
- Paleontology Section, Institute of Geosciences, Rheinische Friedrich-Wilhelms Universität Bonn, 53115, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms Universität, 53127, Bonn, Germany
| | - Victoria E McCoy
- Department of Geosciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53211, U.S.A
| |
Collapse
|
30
|
Gomes C, Rautureau M, Poustis J, Gomes J. Benefits and Risks of Clays and Clay Minerals to Human Health From Ancestral to Current Times: A Synoptic Overview. CLAYS AND CLAY MINERALS 2021; 69:612-632. [DOI: 10.1007/s42860-021-00160-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 01/06/2025]
Abstract
AbstractClay, or more precisely, certain clay typologies, have been used traditionally by humans for therapeutic, nutritional, and skin-care purposes though they may be responsible for some relatively rare but significant health and skin-care risks. For example, clay particles could adsorb and make available for elimination or excretion any potential toxic elements or toxins being ingested or produced, but they could also adsorb and make available for incorporation, through ingestion or through dermal absorption, toxic elements, e.g. heavy metals. Geophagy has been observed in all parts of the world since Antiquity, reflecting cultural practices, religious beliefs, and physiological needs, be they nutritional (dietary supplementation) or as a remedy for disease. Some clays and clay minerals are employed widely in both the pharmaceutical and cosmetics industries as active compounds/agents and as excipients. In the biomedical field, some clay minerals such as halloysite and montmorillonite are known for their effective role as carriers for the control and sustainable delivery of active drug molecules, and in the biomaterials field some clay minerals are used for scaffold, hydrogel, foam, and film production. Constraints, both chemical and microbiological, on the use of clay-based products for therapeutic and cosmetic topical applications are generally imposed by sanitary regulations, and some solutions are proposed herein to control and reduce such restrictions. Particular emphasis is placed here on peloids and pelotherapy, as well as on manipulated and modified peloids, and specifically on tailored peloids or ‘designed and engineered’ peloids, and their derivatives, bactericidal peloids and ointments. As far as the so-called ‘killer clays’ are concerned, their pre-requisites, mechanisms of action, and disinfection role are also enhanced. Podoconiosis is an environment-related or geochemical disease that occurs in tropical highland areas, and is caused by long-term exposure of bare feet to volcanic, red-clay soil and affects some people, particularly those working in agriculture in some regions of Africa, Asia, and South America.
Collapse
|
31
|
Thiele-Bruhn S. The role of soils in provision of genetic, medicinal and biochemical resources. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200183. [PMID: 34365823 PMCID: PMC8349636 DOI: 10.1098/rstb.2020.0183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 12/16/2022] Open
Abstract
Intact, 'healthy' soils provide indispensable ecosystem services that largely depend on the biotic activity. Soil health is connected with human health, yet, knowledge of the underlying soil functioning remains incomplete. This review highlights selected services, i.e. (i) soil as a genetic resource and hotspot of biodiversity, forming the basis for providing (ii) biochemical resources and (iii) medicinal services and goods. Soils harbour an unrivalled biodiversity of organisms, especially microorganisms. Some of the abilities of autochthonous microorganisms and their relevant enzymes serve (i) to improve natural soil functions and in particular plant growth, e.g. through beneficial plant growth-promoting, symbiotic and mycorrhizal microorganisms, (ii) to act as biopesticides, (iii) to facilitate biodegradation of pollutants for soil bioremediation and (iv) to yield enzymes or chemicals for industrial use. Soils also exert direct effects on human health. Contact with soil enriches the human microbiome, affords protection against allergies and promotes emotional well-being. Medicinally relevant are soil substrates such as loams, clays and various minerals with curative effects as well as pharmaceutically active organic chemicals like antibiotics that are formed by soil microorganisms. By contrast, irritating minerals, soil dust inhalation and misguided soil ingestion may adversely affect humans. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People.
Collapse
Affiliation(s)
- Sören Thiele-Bruhn
- Soil Science, University of Trier, Behringstrasse 21, D-54286 Trier, Germany
| |
Collapse
|
32
|
Knapp CW, Christidis GE, Venieri D, Gounaki I, Gibney-Vamvakari J, Stillings M, Photos-Jones E. The ecology and bioactivity of some Greco-Roman medicinal minerals: the case of Melos earth pigments. ARCHAEOLOGICAL AND ANTHROPOLOGICAL SCIENCES 2021; 13:166. [PMID: 34721705 PMCID: PMC8550771 DOI: 10.1007/s12520-021-01396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Mineral compounds, as pigments and therapeutics, appeared regularly in the technical and medical texts of the Greco-Roman (G-R) world. We have referred to them as 'G-R medicinal minerals' and we suggest that despite their seeming familiarity, there are actually many unknowns regarding their precise nature and/or purported pharmacological attributes. Earth pigments are part of that group. This paper presents a brief overview of our work over the past twenty years relating to: a. the attempt to locate a select number of them in the places of their origin; b. their chemical/mineralogical characterization; c. the study of their ecology via the identification of the microorganisms surrounding them; d. their testing as antibacterials against known pathogens. In the process, and to fulfil the above, we have developed a novel methodological approach which includes a range of analytical techniques used across many disciplines (mineralogy, geochemistry, DNA extraction and microbiology). This paper focuses on a select number of earth pigments deriving from the island of Melos in the SW Aegean, celebrated in antiquity for its Melian Earth, a white pigment, and asks whether they might display antibacterial activity. We demonstrate that some (but not all) yellow, green and black earth pigments do. We also show that the manner in which they were dispensed (as powders or leachates) was equally important. The results, although preliminary, are informative. Given their use since deep time, earth pigments have never lost their relevance. We suggest that the study of their ecology/mineralogy and potential bioactivity allows for a better understanding of how our perception of them, as both pigments and therapeutics, may have evolved.
Collapse
Affiliation(s)
- C. W. Knapp
- Civil and Environmental Engineering, Strathclyde University, Glasgow, UK
| | - G. E. Christidis
- Mineral Resources Engineering, Technical University of Crete, Chania, Greece
| | - D. Venieri
- Environmental Engineering, Technical University of Crete, Chania, Greece
| | - I. Gounaki
- Environmental Engineering, Technical University of Crete, Chania, Greece
| | | | - M. Stillings
- Civil and Environmental Engineering, Strathclyde University, Glasgow, UK
| | - E. Photos-Jones
- Archaeology, School of Humanities, University of Glasgow, Glasgow, UK
- Analytical Services for Art and Archaeology, Ltd, Glasgow, UK
| |
Collapse
|
33
|
Bertani R, Bartolozzi A, Pontefisso A, Quaresimin M, Zappalorto M. Improving the Antimicrobial and Mechanical Properties of Epoxy Resins via Nanomodification: An Overview. Molecules 2021; 26:5426. [PMID: 34500859 PMCID: PMC8434237 DOI: 10.3390/molecules26175426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/21/2021] [Indexed: 12/25/2022] Open
Abstract
The main purpose of this work is to provide a comprehensive overview on the preparation of multifunctional epoxies, with improved antimicrobial activity and enhanced mechanical properties through nanomodification. In the first section, we focus on the approaches to achieve antimicrobial activity, as well as on the methods used to evaluate their efficacy against bacteria and fungi. Relevant application examples are also discussed, with particular reference to antifouling and anticorrosion coatings for marine environments, dental applications, antimicrobial fibers and fabrics, and others. Subsequently, we discuss the mechanical behaviors of nanomodified epoxies with improved antimicrobial properties, analyzing the typical damage mechanisms leading to the significant toughening effect of nanomodification. Some examples of mechanical properties of nanomodified polymers are provided. Eventually, the possibility of achieving, at the same time, antimicrobial and mechanical improvement capabilities by nanomodification with nanoclay is discussed, with reference to both nanomodified epoxies and glass/epoxy composite laminates. According to the literature, a nanomodified epoxy can successfully exhibit antibacterial properties, while increasing its fracture toughness, even though its tensile strength may decrease. As for laminates-obtaining antibacterial properties is not followed by improved interlaminar properties.
Collapse
Affiliation(s)
- Roberta Bertani
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 9, 35131 Padova, Italy;
| | - Alessandra Bartolozzi
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 9, 35131 Padova, Italy;
| | - Alessandro Pontefisso
- Department of Management and Engineering, University of Padova, stradella S. Nicola 3, 36100 Vicenza, Italy; (A.P.); (M.Q.)
| | - Marino Quaresimin
- Department of Management and Engineering, University of Padova, stradella S. Nicola 3, 36100 Vicenza, Italy; (A.P.); (M.Q.)
| | - Michele Zappalorto
- Department of Management and Engineering, University of Padova, stradella S. Nicola 3, 36100 Vicenza, Italy; (A.P.); (M.Q.)
| |
Collapse
|
34
|
Schaefer CE, Ho P, Berns E, Werth C. Abiotic dechlorination in the presence of ferrous minerals. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 241:103839. [PMID: 34052750 DOI: 10.1016/j.jconhyd.2021.103839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Laboratory batch experiments were performed to assess the reduction of trichloroethene (TCE) and oxygen via natural ferrous minerals. TCE reduction under anoxic conditions was measured via the generation of reduced gases, while oxygen reduction via the generation of hydroxyl radicals was measured as a surrogate for potential TCE oxidation. Results showed that TCE reduction under anoxic conditions was observed for ankerite, siderite, and illite, but not for biotite; acetylene was the primary identified dechlorination product. With the exception of biotite, first-order dechlorination rate constants increased with increasing ferrous content of the mineral, with rate constants ranging from 3.1 × 10-8 to 4.8 10-7 L g-1 d-1. Measured reduction potentials (mV vs SHE) ranged from -104 for illite to +84 for biotite. When normalizing measured first-order dechlorination rate constants to the estimated ferrous iron mineral specific surface area (where surface area was based on nitrogen adsorption analysis of the minerals), TCE dechlorination rate constants increased with increasing reduction potentials. Under oxic conditions, hydroxyl radicals were generated with each of the four minerals. However, mineral activity showed no readily apparent correlation to ferrous content or mineral surface area. In terms of TCE and oxygen reduced per mole of ferrous iron initially present in each mineral, illite was the most reactive of the four minerals. Together, these results suggest that several ferrous minerals may contribute to abiotic dechlorination in the natural environment, and (at least for TCE reduction under anoxic conditions) measurement of ferrous mineral content and reduction potential may serve as useful tools for estimating TCE first-order abiotic dechlorination rate constants.
Collapse
Affiliation(s)
- Charles E Schaefer
- CDM Smith, 110 Fieldcrest Avenue, #8, 6(th) Floor, Edison, NJ 08837, United States of America.
| | - Paul Ho
- CDM Smith, 14432 SE Eastgate Way # 100, Bellevue, WA 98007, United States of America
| | - Erin Berns
- University of Texas at Austin, Civil, Architectural, and Environmental Engineering, 301 E. Dean Keeton St., Stop C1786, Austin, TX 78712, United States of America
| | - Charles Werth
- University of Texas at Austin, Civil, Architectural, and Environmental Engineering, 301 E. Dean Keeton St., Stop C1786, Austin, TX 78712, United States of America
| |
Collapse
|
35
|
Prinz Setter O, Movsowitz A, Goldberg S, Segal E. Antibody-Functionalized Halloysite Nanotubes for Targeting Bacterial Cells. ACS APPLIED BIO MATERIALS 2021; 4:4094-4104. [PMID: 34085034 PMCID: PMC8161669 DOI: 10.1021/acsabm.0c01332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/25/2021] [Indexed: 11/29/2022]
Abstract
![]()
Halloysite nanotubes
(HNTs) are naturally occurring tubular clay
particles which have emerged in recent years as a promising nanomaterial
for numerous applications. Specifically, HNTs’ large pore volume
and high specific surface area in combination with their biocompatibility
make them ideal nanocarriers for bioactive compounds. This research
aims to design and synthesize functionalized HNTs, which could selectively
bind to target bacterial cells in suspension. Such a system can allow
us to treat target cells within a challenging heterogeneous population,
such as contaminated ecosystems or gut flora. HNTs functionalization
is achieved by immobilizing specific antibodies onto the nanotube
surface. The synthetic route is realized by the following subsequent
steps: acidic etching of the HNTs, silanization of reactive surface
hydroxyls, conjugation of protein A, and oriented immobilization of
the antibody. HNT functionalization is studied by a set of analytical
techniques including attenuated total reflectance Fourier-transform
infrared spectroscopy, zeta potential measurements, thermal gravimetric
analysis, scanning and transmission electron microscopy, as well as
fluorescence microscopy. The selective binding of the functionalized
HNTs to their target bacteria is observed upon incubation with live
homogenous and heterogeneous cultures using fluorescence microscopy
and high-throughput flow cytometry. Plate count and live/dead staining
experiments demonstrate the biocompatibility of the antibody-HNT hybrid
with its target bacteria. The suggested HNT-based smart carrier constitutes
a generic platform for targeted delivery that could be selectively
tailored against any microorganism by facile antibody adjustment.
Collapse
Affiliation(s)
- Ofer Prinz Setter
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Ariel Movsowitz
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Sarah Goldberg
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| |
Collapse
|
36
|
Awad ME, López-Galindo A, Medarević D, Milenković M, Ibrić S, El-Rahmany MM, Iborra CV. Enhanced antimicrobial activity and physicochemical stability of rapid pyro-fabricated silver-kaolinite nanocomposite. Int J Pharm 2021; 598:120372. [PMID: 33621641 DOI: 10.1016/j.ijpharm.2021.120372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 01/05/2023]
Abstract
The present research aims to enhance the antimicrobial activity of kaolinite surfaces by a one-step cost-effective and energy-efficient dry thermal reaction, producing an antibacterial and antifungal silver-kaolinite (Ag-Kao) nanocomposite agent. Pharmaceutical grade kaolin powder samples, with variable kaolinite structural order-disorder degree, were homogeneously mixed with silver nitrate in a proportion 1:4 AgNO3:kaolin (w/w) and sintered at 400 °C for 30 min. The composition, microstructure, microtexture and surface characteristics of the pyro-fabricated nanocomposites were characterized by XRD/XRF diffractometry, differential scanning calorimetry DSC, FT-IR spectroscopy, TEM/EDX, zeta potential (mV) measured within the 2-12 pH range, and BET method. Physicochemical stability was evaluated by silver dissociation testing under close-neutral and acidic conditions with Ag content assay using ICP-OES. The resulting Ag-Kao nanocomposites exhibited bulk silver contents ranging from 9.29% to 13.32% with high physicochemical stability in both neutral and acidic mediums (Ag dissociation rate <0.5% in 5 days). Ag nanocrystals exhibited particle sizes ranging from 5 to 30 nm, which were embedded and reinforced within the kaolinite matrix. The sizes of the Ag nanocrystals and their distribution patterns on the edges and faces of kaolinite platelets were controlled by the structural order-disorder degree. Highly ordered kaolinites (Hinckley Index, HI > 1) produced platelet edge-clustered silver nanocrystals due to the abundance of the dangling hydroxyls on platelet edges, while the highly disordered kaolinite (HI < 1) provided homogeneous platelet basal-doped silver nanocrystals due to the presence of some residual charges by exposed basal hydroxyl groups with interplatelet silver diffusivity. At pH 2, the magnitude of the positive surface charge was influenced by the silver nanocrystal size. Nanocomposites with the smallest silver nanocrystals (10-5 nm) exhibited the highest positive zeta potential (+15.2 mV to +17.0 mV), while those with larger silver nanocrystals (up to 30 nm) indicated lower positive zeta potential values (+9.5 mV to +3.6 mV). Under the same testing conditions using the Mueller-Hinton broth microdilution method, the raw kaolin samples did not show any significant antimicrobial activity, while all the pyro-fabricated Ag-Kao nanocomposite samples showed potent antibacterial and antifungal activity at low doses (MIC range 0.1-0.0125 mg/mL). Therefore, modulation of the effective electrostatic surface charge of the kaolinite platelets, via thermal doping of silver within their basal planes and edges, was found to be strongly dependent on the pH as well as the size and microtexture of the silver nanocrystals (mainly controlled by the order-disorder degree HI). The resulting modified nanostructure, with physicochemical stability and the efficient surface properties of the designed pyro-fabricated nanocomposite, led to an enhanced synergistic biophysical antimicrobial activity.
Collapse
Affiliation(s)
- Mahmoud E Awad
- Department of Geology, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt; Andalusian Institute of Earth Sciences (IACT-CSIC), University of Granada, Spain; Department of Pharmacy and Pharmaceutical Technology, University of Granada, Spain.
| | | | - Djordje Medarević
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Belgrade, Serbia
| | - Marina Milenković
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Serbia
| | - Svetlana Ibrić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Belgrade, Serbia
| | - Mahmoud M El-Rahmany
- Department of Geology, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - César Viseras Iborra
- Andalusian Institute of Earth Sciences (IACT-CSIC), University of Granada, Spain; Department of Pharmacy and Pharmaceutical Technology, University of Granada, Spain
| |
Collapse
|
37
|
Spielvogel I, Spałek K, Badora K, Proćków J. Traditional knowledge and practice of the Triassic variegated clay from Silesia (Krasiejów), Poland, in human medicine. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2021; 17:10. [PMID: 33596953 PMCID: PMC7890874 DOI: 10.1186/s13002-021-00437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Krasiejów clay (in German: Krascheow) became famous following the discovery of numerous fossilised bones of Upper Triassic amphibians and reptiles, which have been extracted from clay deposits since the 1980s. These organic remnants remained in Krasiejów clay due to the large amount of slime deposits and the optimal concentration of basal mineral salts. The main aims of the paper are to determine the historical evolution of the use of clay in Silesia for therapeutic purposes and to provide a summary of the historical uses of Krasiejów clay as a medical treatment, based on the knowledge of the local population. METHODS The mode of utilisation of Triassic variegated claystone treatment from Krasiejów was surveyed based on oral communication with local people. This information was collected over the last 35 years (1982-2017) by interviewing those who used clay as a traditional remedy, especially the eldest residents. Each resident was interviewed several times regarding the healing properties of Krasiejów clay, including the causes and symptoms of the ailments treated, mode of clay preparation, application methods, and dosage through semistructured interviews. RESULTS Clay from Krasiejów was used in medicine after proper preparation. The clay underwent a complicated preparation process before the use in wraps, compresses, poultices, and baths as a skin peeling agent and even as a potion to be drunk. All recorded applications, diseases, and ailments to which it were applied are described here in detail, divided into treatments with warm, and cold clay. CONCLUSIONS Krasiejów variegated claystone had different benefits depending on the form in which it was used; different diseases were treated with warm and cold clay. According to informants, many of these diseases have been successfully treated, in particular eczema of various origins, purulent ulcers on the skin, and following internal use, digestive ailments. According to informants, in cases where the disease could not be cured, for instance, psoriasis, a significant improvement in the condition of the skin was visible in a short period of time. Clay from Krasiejów should be subjected to more detailed physicochemical analyses to determine its exact chemical composition and healing properties.
Collapse
Affiliation(s)
- Izabela Spielvogel
- Department of Physiotherapy, Institute of Physiotherapy, Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland
| | - Krzysztof Spałek
- Institute of Biology, University of Opole, Oleska 22, 45-052 Opole, Poland
| | - Krzysztof Badora
- Department of Economy, Institute of Socio-Economic Geography and Spatial Management University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Jarosław Proćków
- Institute of Environmental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland
| |
Collapse
|
38
|
Incledion A, Boseley M, Moses RL, Moseley R, Hill KE, Thomas DW, Adams RA, Jones TP, BéruBé KA. A New Look at the Purported Health Benefits of Commercial and Natural Clays. Biomolecules 2021; 11:biom11010058. [PMID: 33466399 PMCID: PMC7824833 DOI: 10.3390/biom11010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022] Open
Abstract
Clays attributed to have medicinal properties have been used since prehistoric times and are still used today as complementary medicines, which has given rise to unregulated “bioceutical” clays to treat skin conditions. Recently, clays with antibacterial characteristics have been proposed as alternatives to antibiotics, potentially overcoming modern day antibiotic resistance. Clays with suggested antibacterial properties were examined to establish their effects on common wound-infecting bacteria. Geochemical, microscopical, and toxicological characterization of clay particulates, their suspensions and filtered leachates was performed on THP-1 and HaCaT cell lines. Cytoskeletal toxicity, cell proliferation/viability (MTT assays), and migration (scratch wounds) were further evaluated. Clays were assayed for antibacterial efficacy using minimum inhibitory concentration assays. All clays possessed a mineral content with antibacterial potential; however, clay leachates contained insufficient ions to have any antibacterial effects. All clay leachates displayed toxicity towards THP-1 monocytes, while clay suspensions showed less toxicity, suggesting immunogenicity. Reduced clay cytotoxicity on HaCaTs was shown, as many leachates stimulated wound-healing responses. The “Green” clay exhibited antibacterial effects and only in suspension, which was lost upon neutralization. pH and its interaction with clay particle surface charge is more significant than previously understood to emphasize dangers of unregulated marketing and unsubstantiated bioceutical claims.
Collapse
Affiliation(s)
- Alexander Incledion
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
- Cardiff Institute for Tissue Engineering and Repair, Cardiff University, Cardiff CF10 3BG, UK; (M.B.); (R.L.M.); (R.M.)
| | - Megan Boseley
- Cardiff Institute for Tissue Engineering and Repair, Cardiff University, Cardiff CF10 3BG, UK; (M.B.); (R.L.M.); (R.M.)
- School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK; (K.E.H.); (D.W.T.)
| | - Rachael L. Moses
- Cardiff Institute for Tissue Engineering and Repair, Cardiff University, Cardiff CF10 3BG, UK; (M.B.); (R.L.M.); (R.M.)
- School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK; (K.E.H.); (D.W.T.)
| | - Ryan Moseley
- Cardiff Institute for Tissue Engineering and Repair, Cardiff University, Cardiff CF10 3BG, UK; (M.B.); (R.L.M.); (R.M.)
- School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK; (K.E.H.); (D.W.T.)
| | - Katja E. Hill
- School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK; (K.E.H.); (D.W.T.)
| | - David W. Thomas
- School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK; (K.E.H.); (D.W.T.)
| | - Rachel A. Adams
- School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK;
| | - Tim P. Jones
- School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3AT, UK;
| | - Kelly A. BéruBé
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
- Cardiff Institute for Tissue Engineering and Repair, Cardiff University, Cardiff CF10 3BG, UK; (M.B.); (R.L.M.); (R.M.)
- Correspondence: ; Tel.: +44-0-292-087-6012
| |
Collapse
|
39
|
Pineda E, García-Ruiz MJ, Guaya D, Manrique J, Osorio F. Elimination of total coliforms and Escherichia coli from water by means of filtration with natural clays and silica sand in developing countries. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:195-207. [PMID: 32816161 DOI: 10.1007/s10653-020-00623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
This research presents the results of a pilot system used for water treatment to be supplied to single-family or small housing nucleus at rural sector. The pilot system is constituted by an up-flow aerated filter with ceramic carrier, followed by a second down-flow filter of silica sand. The pilot plant was installed in a rural sector of the province of Loja, Ecuador, with the main purpose of monitoring the reduction in bacteria in the water for human consumption. Two natural clays from the area were tested. They were transformed into sphere-type ceramics, and then, they were placed in the pilot filters. These both natural clays are inorganic materials with high content of aluminosilicate clay minerals with favourable characteristics to achieve greater efficiency for the reduction in bacteria. The acclimatization time of 60 days allowed to achieve optimum treatment efficiency performance until 90 days of operation. The physicochemical parameters, namely temperature, pH, dissolved oxygen and total dissolved solids, were monitored throughout the experiments. Regarding microbiological parameters, up to 99% of total coliforms removal was reached for the clay called CF-CC and 79% for the other, called CF-CV. In addition, 100% of total coliforms and Escherichia Coli removal was reached for both clay systems. Social and economic viability of the proposed treatment is also analysed in the manuscript.
Collapse
Affiliation(s)
- Edgar Pineda
- Department of Geology, Mines and Civil Engineering, UTPL, Universidad Técnica Particular de Loja, Barrio San Cayetano Alto, Marcelino Champagnat Street, s/n, Loja, Ecuador
| | - María J García-Ruiz
- Department of Civil Engineering, Institute of Water, University of Granada, Ramón y Cajal Street, 4, 18071, Granada, Spain.
| | - Diana Guaya
- Department of Chemical, UTPL, Universidad Técnica Particular de Loja, Barrio San Cayetano Alto, Marcelino Champagnat Street, s/n, Loja, Ecuador
| | - John Manrique
- Department of Geology, Mines and Civil Engineering, UTPL, Universidad Técnica Particular de Loja, Barrio San Cayetano Alto, Marcelino Champagnat Street, s/n, Loja, Ecuador
| | - Francisco Osorio
- Department of Civil Engineering, Institute of Water, University of Granada, Ramón y Cajal Street, 4, 18071, Granada, Spain
| |
Collapse
|
40
|
Abstract
The numerous biological applications of nanoparticles in general and nano-clays in particular are rooted in understanding and harnessing their dynamic nano-bio interface. Among clays, the intrinsically-mesoporous halloysite nanotubes (HNTs) have emerged in recent years as promising nanomaterials. The diverse interactions of these nanotubes with living cells, encompassing electrostatic, van der Waals, and ion exchange, along with cellular response, are crucial in determining the behaviour of HNTs in biological systems. Thus, rational engineering of the nanotube properties allows for vast applications ranging from bacteria encapsulation for bioremediation, through algae flocculation for aquaculture, to intracellular drug delivery. This review summarizes the many aspects of the nano-bio interface of HNTs with different cell types (bacteria, algae and fungi, and mammalian cells), highlighting biocompatibility/bio-adverse properties, interaction mechanisms, and the latest cutting-edge technologies.
Collapse
Affiliation(s)
- Ofer Prinz Setter
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| | | |
Collapse
|
41
|
Gomes CF, Gomes JH, da Silva EF. Bacteriostatic and bactericidal clays: an overview. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:3507-3527. [PMID: 32607701 DOI: 10.1007/s10653-020-00628-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
This article aims to draw an overview on the actual knowledge on bacteriostatic and bactericidal natural clays. Particular emphasis is given to the role of clay itself, the action of reduced metals located either in the structure of clay minerals or external to them as constituents of associate minerals, and the definition of the mechanisms of action based on the achievements found in all available studies being carried out so far. The term bactericidal is herein used when a clay or a clay mineral kill the bacteria, whereas the term bacteriostatic is used when those minerals stop bacteria growth and replication. The second part of this article deals with experimental studies on bactericidal natural clay, experience and perspective for the preparation of bactericidal natural clays, interesting on the authors perspective and experience for the preparation of pathogens safe both therapeutic and cosmetic natural mud/natural peloid, and better yet of both therapeutic 87oooand cosmetic peloid itself and designed and engineered peloid. The authors also show how to convert non-antimicrobial clay into antimicrobial one, opening the way in the field of pelotherapy to the preparation of sanitary safe peloids addressed, for instance, to the treatment of rheumatic disabilities, as well as to the preparation of antimicrobial peloids and, in particular, of dermatological ointments, all able to fight infectious skin disorders.
Collapse
Affiliation(s)
- Celso Figueiredo Gomes
- GeoBioTec, Research Unit of FCT (Foundation for Science and Technology), University of Aveiro, 3800-193, Aveiro, Portugal
| | - Jorge Hamilton Gomes
- GeoBioTec, Research Unit of FCT (Foundation for Science and Technology), University of Aveiro, 3800-193, Aveiro, Portugal
| | - Eduardo Ferreira da Silva
- GeoBioTec, Research Unit of FCT (Foundation for Science and Technology), University of Aveiro, 3800-193, Aveiro, Portugal.
- Geosciences Department, University of Aveiro, 3800-193, Aveiro, Portugal.
| |
Collapse
|
42
|
Behroozian S, Svensson SL, Li LY, Davies JE. Broad-Spectrum Antimicrobial and Antibiofilm Activity of a Natural Clay Mineral from British Columbia, Canada. mBio 2020; 11:e02350-20. [PMID: 33024043 PMCID: PMC7542368 DOI: 10.1128/mbio.02350-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Worldwide increases in antibiotic resistance and the dearth of new antibiotics have created a global crisis in the treatment of infectious diseases. These concerns highlight the pressing need for novel antimicrobial agents. Natural clay minerals have a long history of therapeutic and biomedical applications and have lately received specific attention for their potent antimicrobial properties. In particular, Kisameet clay (KC) has strong antibacterial activity against a variety of multidrug-resistant (MDR) bacterial pathogens in vitro Here, we have extended the known spectrum of activity of KC by demonstrating its efficacy against two major fungal pathogens, Candida albicans and Cryptococcus neoformans In addition, KC also exhibits potent activity against the opportunistic bacterial pathogen Mycobacterium marinum, a model organism for M. ulcerans infection. Moreover, aqueous KC leachates (KC-L) exhibited broad-spectrum antibacterial activity, eradicated Gram-negative and Gram-positive biofilms, and prevented their formation. The mechanism(s) underlying KC antibacterial activity appears to be complex. Adjusting KC-L to neutral pH rendered it inactive, indicating a contribution of pH, although low pH alone was insufficient for its antibacterial activity. Treatment of KC minerals with cation-chelating agents such as EDTA, 2,2'-bipyridyl, and deferoxamine reduced the antibacterial activity, while supplementation of KC-L with these chelating agents eliminated the inhibitory activity. Together, the data suggest a positive role for divalent and trivalent cations, including iron and aluminum, in bacterial inhibition by KC. Collectively, these studies demonstrate the range of KC bioactivity and provide a better understanding of the mechanism underlying its antibacterial effects.IMPORTANCE The escalating emergence of multidrug-resistant (MDR) bacteria, together with the paucity of novel antimicrobial agents in antibiotic development, is recognized as a worldwide public health crisis. Kisameet clay (KC), found in British Columbia (BC), Canada, is a clay mineral with a long history of therapeutic applications among people of the First Nations. We previously reported the antibacterial activity of KC against a group of MDR clinical pathogens. Here, we demonstrate its activity against two major human-pathogenic fungal species, as well as against bacterial biofilms, which underlie many recalcitrant bacterial infections. In these studies, we also identified several geochemical characteristics of KC, such as metal ions and low pH, which are involved in its antibacterial activity. These findings provide a better understanding of the components of KC antibacterial activity and a basis for developing defined preparations of this clay mineral for therapeutic applications.
Collapse
Affiliation(s)
- Shekooh Behroozian
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah L Svensson
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Loretta Y Li
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julian E Davies
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
43
|
Zhao Q, Callister SJ, Thompson AM, Kukkadapu RK, Tfaily MM, Bramer LM, Qafoku NP, Bell SL, Hobbie SE, Seabloom EW, Borer ET, Hofmockel KS. Strong mineralogic control of soil organic matter composition in response to nutrient addition across diverse grassland sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:137839. [PMID: 32507289 DOI: 10.1016/j.scitotenv.2020.137839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 06/11/2023]
Abstract
Soil organic matter (SOM) dynamics are central to soil biogeochemistry and fertility. The retention of SOM is governed initially by interactions with minerals, which mediate the sorption of chemically diverse organic matter (OM) molecules via distinct surface areas and chemical functional group availabilities. Unifying principles of mineral-OM interactions remain elusive because of the multi-layered nature of biochemical-mineral interactions that contribute to soil aggregate formation and the heterogeneous nature of soils among ecosystems. This study sought to understand how soil mineralogy as well as nitrogen (N) enrichment regulate OM composition in grassland soils. Using a multi-site grassland experiment, we demonstrate that the composition of mineral-associated OM depended on the clay content and specific mineral composition in soils across the sites. With increasing abundance of ferrihydrite (Fh) across six different grassland locations, OM in the hydrophobic zone became more enriched in lipid- and protein-like compounds, whereas the kinetic zone OM became more enriched in lignin-like molecules. These relationships suggest that the persistence of various classes of OM in soils may depend on soil iron mineralogy and provide experimental evidence to support conceptual models of zonal mineral-OM associations. Experimental N addition disrupted the accumulation of protein-like molecules in the hydrophobic zone and the positive correlation of lignin-like molecules in the kinetic zone with Fh content, compared to unfertilized soils. These data suggest that mineralogy and clay content together influence the chemical composition not only of mineral-associated OM, but also of soluble compounds within the soil matrix. If these relationships are prevalent over larger spatial and temporal scales, they provide a foundation for understanding SOM cycling and persistence under a variety of environmental contexts.
Collapse
Affiliation(s)
- Qian Zhao
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Stephen J Callister
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Allison M Thompson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Ravi K Kukkadapu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Malak M Tfaily
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Lisa M Bramer
- National Security Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Nikolla P Qafoku
- Energy & Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Sheryl L Bell
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Sarah E Hobbie
- Department of Ecology, Evolution & Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN 55108, USA
| | - Eric W Seabloom
- Department of Ecology, Evolution & Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN 55108, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution & Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN 55108, USA
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA; Department of Ecology, Evolution & Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, IA 50011, USA.
| |
Collapse
|
44
|
García-Villén F, Sánchez-Espejo R, Borrego-Sánchez A, Cerezo P, Cucca L, Sandri G, Viseras C. Correlation between Elemental Composition/Mobility and Skin Cell Proliferation of Fibrous Nanoclay/Spring Water Hydrogels. Pharmaceutics 2020; 12:E891. [PMID: 32962099 PMCID: PMC7559572 DOI: 10.3390/pharmaceutics12090891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/12/2020] [Accepted: 09/17/2020] [Indexed: 11/20/2022] Open
Abstract
Inorganic hydrogels formulated with spring waters and clay minerals are used to treat musculoskeletal disorders and skin affections. Their underlying mechanism of action for skin disorders is not clear, although it is usually ascribed to the chemical composition of the formulation. The aim of this study was to assess the composition and in vitro release of elements with potential wound healing effects from hydrogels prepared with two nanoclays and natural spring water. In vitro Franz cell studies were used and the element concentration was measured by inductively coupled plasma techniques. Biocompatibility studies were used to evaluate the potential toxicity of the formulation against fibroblasts. The studied hydrogels released elements with known therapeutic interest in wound healing. The released ratios of some elements, such as Mg:Ca or Zn:Ca, played a significant role in the final therapeutic activity of the formulation. In particular, the proliferative activity of fibroblasts was ascribed to the release of Mn and the Zn:Ca ratio. Moreover, the importance of formulative studies is highlighted, since it is the optimal combination of the correct ingredients that makes a formulation effective.
Collapse
Affiliation(s)
- Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (F.G.-V.); (P.C.)
| | - Rita Sánchez-Espejo
- Andalusian Institute of Earth Sciences, CSIC-UGR (Consejo Superior de Investigaciones Científicas-Universidad de Granada), Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain; (R.S.-E.); (A.B.-S.)
| | - Ana Borrego-Sánchez
- Andalusian Institute of Earth Sciences, CSIC-UGR (Consejo Superior de Investigaciones Científicas-Universidad de Granada), Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain; (R.S.-E.); (A.B.-S.)
| | - Pilar Cerezo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (F.G.-V.); (P.C.)
| | - Lucia Cucca
- Department of Chemistry, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy;
| | - Giuseppina Sandri
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy;
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (F.G.-V.); (P.C.)
- Andalusian Institute of Earth Sciences, CSIC-UGR (Consejo Superior de Investigaciones Científicas-Universidad de Granada), Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain; (R.S.-E.); (A.B.-S.)
| |
Collapse
|
45
|
Hui A, Yan R, Mu B, Kang Y, Zhou Y, Wang A. Preparation and Antibacterial Activity of ZnO/Palygorskite Nanocomposites Using Different Types of Surfactants. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01613-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Lake Zeiļu Clay Application Induced Changes in Human Skin Hydration, Elasticity, Transepidermal Water Loss and PH in Healthy Individuals. COSMETICS 2020. [DOI: 10.3390/cosmetics7030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Clay has a great biomedical application potential, however there are just a few instrumental studies and the impact of lake clay on the skin has not yet been studied. The DermaLab skin analysis system (Cortex Technology) was used for hydration, elasticity, transepidermal water loss (TEWL) and pH measurements after lake clay facial applications. Research included short-term tests (measurements 20 and 60 min after clay application) and long-term tests (application every 4th day for 3 weeks with measurements 20–24 h post-application). Control measurements and application tests to exclude contact allergy were made beforehand. No volunteer (n = 30) had positive allergic reaction. The matched-pairs design was applied: the right and left parts of forehead were used for the test and control groups. The Wilcoxon signed-rank test (significance level p = 0.001) was applied for statistical analysis. There were statistically significant pH changes demonstrated during the short-term measurements. The long-term measurements provided data that clay significantly improves skin hydration and elasticity.
Collapse
|
47
|
Hui A, Yan R, Wang W, Wang Q, Zhou Y, Wang A. Incorporation of quaternary ammonium chitooligosaccharides on ZnO/palygorskite nanocomposites for enhancing antibacterial activities. Carbohydr Polym 2020; 247:116685. [PMID: 32829813 DOI: 10.1016/j.carbpol.2020.116685] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/05/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Quaternary ammonium chitooligosaccharides (QACOS) was incorporated onto the ZnO/palygorskite (ZnO/PAL) nanocomposite by a simple electrostatic self-assembly process to produce a new organic-inorganic nanocomposite (QACOS/ZnO/PAL) with excellent antibacterial activity. After loading QACOS, the Zeta potential of ZnO/PAL was changed from -26.7 to +30.3 mV, which facilitates to improve the targeting behavior of ZnO/PAL towards bacteria and its contact with bacteria, resulting in a significant improvement of antibacterial capability. The MIC values of QACOS/ZnO/PAL for inhibiting bacteria (0.5 mg/mL for E. coli and 1 mg/L for S. aureus) were superior to ZnO/PAL and QACOS, demonstrated an expected synergistic antibacterial effect between QACOS and ZnO/PAL. The improved contact and interface interaction between QACOS/ZnO/PAL and bacteria makes it easier to destroy the structural integrity of bacteria. As a whole, the incorporation of polysaccharide as regulators of surface charge opens up a new way to further enhance the antibacterial activity of inorganic antibacterial materials.
Collapse
Affiliation(s)
- Aiping Hui
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China; Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi, 211700, PR China
| | - Rui Yan
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China; Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi, 211700, PR China
| | - Wenbo Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China; Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi, 211700, PR China
| | - Qin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China; Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi, 211700, PR China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China; Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi, 211700, PR China.
| |
Collapse
|
48
|
Jamie K, Sharples G. The Social and Material Life of Antimicrobial Clay: Exploring Antimicrobial Resistance, Medicines' Materiality, and Medicines Optimization. FRONTIERS IN SOCIOLOGY 2020; 5:26. [PMID: 33869434 PMCID: PMC8022547 DOI: 10.3389/fsoc.2020.00026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/25/2020] [Indexed: 06/12/2023]
Abstract
While sociologists have made significant theoretical contributions to the antimicrobial resistance (AMR) debate, little attention has been given to the antimicrobial products themselves. Here we advocate a significant new direction which centers on the social and material life of antimicrobials, specifically on what they are made from and how this affects their use. This focus is timely because, in the context of declining efficacy of biomedical antibiotics, diverse materials are increasingly taking center stage in research and drug discovery as potential agents for new antimicrobial treatments. Of particular significance are natural antimicrobials, such as plants, honey and clay, whose antimicrobial potential is well-documented and which are increasingly moving into mainstream antimicrobial research. Alongside this biomedical focus, we suggest that the social and material lives of these antimicrobial materials require attention to (i) highlight the ways they have been, and continue to be, used in diverse cultures globally, (ii) explore ways we might theorize these materials within wider AMR debates, and (iii) examine the impact of antimicrobials' materiality on their use by patients. This article takes the example of clay, whose antimicrobial properties are well-established and which has been used to treat wounds and gastrointestinal problems for millennia. We first locate clay as an exemplar of a wider shift toward natural products drug discovery in pharmaceutical science and antimicrobial research. We then offer a number of theoretical "ways in" for sociologists to begin making sense of clay as it comes under the western biomedical gaze. We map these conceptual lenses on to clay's physical and symbolic mobility from its use in the global south into western biomedical research and commercialization. We particularly concentrate on post-colonial theory as a means to understand clay's movement from global south to north; laboratory studies to examine its symbolic transformation to a black-boxed antimicrobial artifact; and valuation practices as a lens to capture its movement from the margins to the mainstream. We finish by reflecting on the importance of materiality in addressing optimal use of medicines and by advocating an interdisciplinary approach to AMR which positions sociology as a key contributor to AMR solutions.
Collapse
Affiliation(s)
- Kimberly Jamie
- Department of Sociology, Durham University, Durham, United Kingdom
| | - Gary Sharples
- Department of Biosciences, Durham University, Durham, United Kingdom
| |
Collapse
|
49
|
Xia Q, Wang X, Zeng Q, Guo D, Zhu Z, Chen H, Dong H. Mechanisms of Enhanced Antibacterial Activity by Reduced Chitosan-Intercalated Nontronite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5207-5217. [PMID: 32101428 DOI: 10.1021/acs.est.9b07185] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Previous studies have documented the antibacterial activity of certain iron-containing clays. However, the repulsion between negatively charged bacteria and the clay surface makes this process inefficient. The objective of this study is to improve the bactericidal efficiency of clays by reversing their surface charge from negative to positive. To achieve this objective, positively charged chitosan, a nontoxic and biodegradable polymer, was intercalated into nontronite NAu-2. Chitosan-intercalated NAu-2 (C-NAu-2) was chemically reduced to obtain reduced C-NAu-2 (rC-NAu-2). Relative to reduced nontronite (rNAu-2), the antibacterial activity of rC-NAu-2 is higher and more persistent over a pH range of 6-8. The close spatial association between positively charged rC-NAu-2 and negatively charged bacteria increases the chances of cell membrane attack by extracellular ROS, the influx of soluble Fe2+ into the bacterial cell, and the yield of intracellular ROS. All these factors contribute to the enhanced antibacterial activity of rC-NAu-2. In contrast to rNAu-2 treated E. coli cells, where membrane damage and intracellular ROS/Fe accumulation are restricted to the polar regions, the close bacteria-clay association in rC-NAu-2 results in nonselective membrane damage and more uniform intracellular ROS/Fe distribution across whole bacterial cells. These results advance the antibacterial model by highlighting the importance of bacteria-clay interactions to the antibacterial activity of Fe-bearing clays.
Collapse
Affiliation(s)
- Qingyin Xia
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P. R. China
| | - Xi Wang
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P. R. China
| | - Qiang Zeng
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P. R. China
| | - Dongyi Guo
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P. R. China
| | - Zihua Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Hongyu Chen
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P. R. China
| | - Hailiang Dong
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P. R. China
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
50
|
García-Villén F, Souza IM, de Melo Barbosa R, Borrego-Sánchez A, Sánchez-Espejo R, Ojeda-Riascos S, Iborra CV. Natural Inorganic Ingredients in Wound Healing. Curr Pharm Des 2020; 26:621-641. [DOI: 10.2174/1381612826666200113162114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Abstract
Background:
One of the major clinical challenges is to achieve a rapid and efficient treatment of complex chronic wounds. Nowadays, most wound dressings currently available are unable to find a solution the challenges of resistance to bacterial infection, protein adsorption and increased levels of exudates. Natural inorganic ingredients (clay minerals, metal cations, zeolites, etc) could be the key to solve the problem satisfactorily. Some of these materials have shown biocompatibility and ability to enhance cell adhesion, proliferation and cellular differentiation and uptake. Besides, some natural inorganic ingredients effectively retain drugs, allowing the design of drug delivery matrices.
Objective:
possibilities of natural inorganic ingredients in wound healing treatments have been reviewed, the following sections have been included:
1. Introduction
2. Functions of Inorganic Ingredients in wound healing
2.1. Antimicrobial effects
2.2. Hemostatic effects
3. Clay minerals for wound healing
3.1. Clay minerals
3.2. Clay mineral semisolid formulations
3.3. Clay/polymer composites and nanocomposites
3.4. Clay minerals in wound dressings
4. Other inorganic materials for wound healing
4.1. Zeolites
4.2. Silica and other silicates
4.3. Other minerals
4.4. Transition metals
5. Conclusion
Conclusion:
inorganic ingredients possess useful features in the development of chronic wounds advanced treatments. They improve physical (mechanical resistance and water vapor transmission), chemical (release of drugs, hemostasis and/or adsorption of exudates and moisture) and biological (antimicrobial effects and improvement of healing) properties of wound dressings. In summary, inorganic ingredients have proved to be a promising and easily accessible products in the treatment of wounds and, more importantly, chronic wounds.
Collapse
Affiliation(s)
- Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Granada, Spain
| | - Iane M.S. Souza
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Granada, Spain
| | - Raquel de Melo Barbosa
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana Borrego-Sánchez
- Andalusian Institute of Earth Sciences, Consejo Superior de Investigaciones Científicas-University of Granada, Armilla, Granada, Spain
| | - Rita Sánchez-Espejo
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Granada, Spain
| | - Santiago Ojeda-Riascos
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Granada, Spain
| | - César V. Iborra
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Granada, Spain
| |
Collapse
|