1
|
Zhang X, Wang L, Khan AI, Rehman AU, Khinsar KH, Xin Y. Lentinan's effect on gut microbiota and inflammatory cytokines in 5-FU-induced mucositis mice. AMB Express 2025; 15:11. [PMID: 39843881 PMCID: PMC11754778 DOI: 10.1186/s13568-024-01796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/22/2024] [Indexed: 01/24/2025] Open
Abstract
Chemotherapeutic therapies for cancer are frequently associated with cytotoxic side effects that can be harmful to human health, including the development of intestinal mucositis (IM). It mostly affects the gastrointestinal tract, causing ulceration, inflammation, and the formation of lesions in the colon. Surprisingly, despite the frequency of IM, therapeutic choices remain restricted. In our search for new intestinal mucositis therapies, we wanted to see how Lentinan (LT), derived from Lentinus edodes, would fare in mouse models of intestinal mucositis. To create the intestinal mucositis model in mice, we gave them intra-peritoneal doses of 5-fluorouracil (5-FU) (50 mg/kg) and then tested the effects of Lentinan on intestinal mucositis. This examination required constant monitoring of several factors, such as body weight fluctuations, food consumption, and diarrhea. In addition, we measured the levels of certain inflammatory cytokines (Tumour Necrosis Factor-alpha (TNF-α), Interleukin-1 (IL-1), Interleukin-6 (IL-6), and Interleukin-10 (IL-10), looked at the expression of tight junction proteins (Zonula Occludens-1(ZO-1), Claudin-1), measured mucin-2 levels, and looked into changes in the gut flora. In the mouse model of intestinal mucositis, our findings showed that LT effectively reduced weight loss, increased food intake, and relieved diarrhea. Concurrently, we saw a decrease in the expression of inflammatory cytokines such as TNF-α, IL-1, and IL-6, as well as a considerable increase in the concentration of IL-10. Furthermore, LT reduced intestinal mucositis by increasing the length and structural integrity of the colon. Furthermore, increased expression of tight junction proteins (ZO-1, Claudin-1), mucin-2, and an increase in the number of goblet cells all confirmed our previous findings. Notably, the makeup of beneficial bacteria in the stomach increased as well. Finally, our findings suggest that LT can effectively prevent 5-fluorouracil-induced intestinal mucositis in mice by improving immune function, restoring intestinal barrier integrity, and rebalancing gut microbial flora.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Liang Wang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| | - Asif Iqbal Khan
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
- Dow Institute of Medical Technology, Dow University of Health Sciences, Karachi, Pakistan
| | - Ata Ur Rehman
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Kavish Hasnain Khinsar
- Department of Meat Sciences and Animal Biologics, University of Wisconsin-Madison, Madison, 53705, USA
| | - Yi Xin
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| |
Collapse
|
2
|
Khorashadizadeh S, Abbasifar S, Yousefi M, Fayedeh F, Moodi Ghalibaf A. The Role of Microbiome and Probiotics in Chemo-Radiotherapy-Induced Diarrhea: A Narrative Review of the Current Evidence. Cancer Rep (Hoboken) 2024; 7:e70029. [PMID: 39410854 PMCID: PMC11480522 DOI: 10.1002/cnr2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND In this article, we review the most recent research on probiotics effects on diarrhea in both human and animal models of the condition along with the therapeutic potential of these compounds based on their findings. RECENT FINDINGS Nearly 50%-80% of cancer patients experience chemotherapy-induced diarrhea (CID), serious gastrointestinal toxicity of chemotherapeutic and radiation regimens that leads to prolonged hospitalizations, cardiovascular problems, electrolyte imbalances, disruptions in cancer treatment, poor cancer prognosis, and death. CID is typically categorized as osmotic diarrhea. The depletion of colonic crypts and villi by radiotherapy and chemotherapy agents interferes with the absorptive function of the intestine, thereby decreasing the absorption of chloride and releasing water into the intestinal lumen. Probiotic supplements have been found to be able to reverse the intestinal damage caused by chemo-radiation therapy by promoting the growth of crypt and villi and reducing inflammatory pathways. In addition, they support the modulation of immunological and angiogenesis responses in the gut as well as the metabolism of certain digestive enzymes by altering the gut microbiota. CONCLUSION Beyond the benefits of probiotics, additional clinical research is required to clarify the most effective strain combinations and dosages for preventing chemotherapy and radiotherapy diarrhea.
Collapse
Affiliation(s)
| | - Sara Abbasifar
- Student Research CommitteeBirjand University of Medical SciencesBirjandIran
| | - Mohammad Yousefi
- Student Research CommitteeBirjand University of Medical SciencesBirjandIran
| | - Farzad Fayedeh
- Student Research CommitteeBirjand University of Medical SciencesBirjandIran
| | | |
Collapse
|
3
|
Dipalma G, Inchingolo AM, Latini G, Ferrante L, Nardelli P, Malcangi G, Trilli I, Inchingolo F, Palermo A, Inchingolo AD. The Effectiveness of Curcumin in Treating Oral Mucositis Related to Radiation and Chemotherapy: A Systematic Review. Antioxidants (Basel) 2024; 13:1160. [PMID: 39456414 PMCID: PMC11504953 DOI: 10.3390/antiox13101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Chemotherapy (CT) and radiation therapy (RT), while effective against cancer, often cause severe side effects, such as oral mucositis and other oral diseases. Oral mucositis, characterized by inflammation and ulceration of the oral mucosa, is one of the most painful side effects that can reduce quality of life and limit cancer treatment. Curcumin, a polyphenol from Curcuma longa, has garnered attention for its anti-inflammatory, antioxidant, and anti-carcinogenic properties, which protect the oral mucosa by reducing oxidative stress and modulating inflammation. This study reviews the therapeutic potential of curcumin in preventing and managing oral mucositis caused by CT and RT. Clinical trials show curcumin's effectiveness in reducing the incidence and severity of oral mucositis. Although curcumin supplementation appears to be a promising and cost-effective approach for mitigating oral complications in cancer patients, further clinical trials are needed to confirm its efficacy and optimize dosing strategies.
Collapse
Affiliation(s)
- Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Giulia Latini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Paola Nardelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Irma Trilli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| |
Collapse
|
4
|
Goto T, Saligan LN. Mechanistic insights into behavioral clusters associated with cancer-related systemic inflammatory response. Curr Opin Support Palliat Care 2024; 18:161-167. [PMID: 38814249 DOI: 10.1097/spc.0000000000000706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW This focused, narrative review mostly describes our team's investigations into the potential inflammatory mechanisms that contribute to the development of cancer-related gastrointestinal (GI) mucositis and its associated symptoms. This review summarizes details of our clinical and preclinical findings to test the role of inflammation in the development and occurrence of these cancer-related conditions. RECENT FINDINGS GI mucositis (GIM) is a common, distressing condition reported by cancer patients. GIM is often clustered with other behaviors including fatigue, pain, anorexia, depression, and diarrhea. It is hypothesized that there is a common biologic mechanism underpinning this symptom cluster. Our multi-platform investigations revealed that GIM and its associated cluster of behaviors may be triggered by local inflammation spreading systemically causing pro-inflammatory-mediated toxicities, leading to alterations in immune, metabolic, and nervous system functions and activities. For example, behavioral toxicities related to local irradiation for non-metastatic cancer may be triggered by mGluR5 activation influencing prolonged T cell as well as NF-κB transcription factor activities. Thus, interventions targeting inflammation and associated pathways may be a reasonable strategy to alleviate GIM and its symptom cluster. SUMMARY GIM may be a sign of a broader systemic inflammatory response triggered by cancer or its treatment. Addressing GIM and its associated symptoms primarily involves supportive care strategies focused on relieving symptoms, promoting healing, and preventing complications.
Collapse
Affiliation(s)
- Taichi Goto
- Symptoms Biology Unit, National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
5
|
Cazzaniga M, Cardinali M, Di Pierro F, Zonzini GB, Palazzi CM, Gregoretti A, Zerbinati N, Guasti L, Matera MR, Cavecchia I, Bertuccioli A. The Role of Short-Chain Fatty Acids, Particularly Butyrate, in Oncological Immunotherapy with Checkpoint Inhibitors: The Effectiveness of Complementary Treatment with Clostridium butyricum 588. Microorganisms 2024; 12:1235. [PMID: 38930617 PMCID: PMC11206605 DOI: 10.3390/microorganisms12061235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
The discovery of immune checkpoints (CTLA-4, PD-1, and PD-L1) and their impact on the prognosis of oncological diseases have paved the way for the development of revolutionary oncological treatments. These treatments do not combat tumors with drugs "against" cancer cells but rather support and enhance the ability of the immune system to respond directly to tumor growth by attacking the cancer cells with lymphocytes. It has now been widely demonstrated that the presence of an adequate immune response, essentially represented by the number of TILs (tumor-infiltrating lymphocytes) present in the tumor mass decisively influences the response to treatments and the prognosis of the disease. Therefore, immunotherapy is based on and cannot be carried out without the ability to increase the presence of lymphocytic cells at the tumor site, thereby limiting and nullifying certain tumor evasion mechanisms, particularly those expressed by the activity (under positive physiological conditions) of checkpoints that restrain the response against transformed cells. Immunotherapy has been in the experimental phase for decades, and its excellent results have made it a cornerstone of treatments for many oncological pathologies, especially when combined with chemotherapy and radiotherapy. Despite these successes, a significant number of patients (approximately 50%) do not respond to treatment or develop resistance early on. The microbiota, its composition, and our ability to modulate it can have a positive impact on oncological treatments, reducing side effects and increasing sensitivity and effectiveness. Numerous studies published in high-ranking journals confirm that a certain microbial balance, particularly the presence of bacteria capable of producing short-chain fatty acids (SCFAs), especially butyrate, is essential not only for reducing the side effects of chemoradiotherapy treatments but also for a better response to immune treatments and, therefore, a better prognosis. This opens up the possibility that favorable modulation of the microbiota could become an essential complementary treatment to standard oncological therapies. This brief review aims to highlight the key aspects of using precision probiotics, such as Clostridium butyricum, that produce butyrate to improve the response to immune checkpoint treatments and, thus, the prognosis of oncological diseases.
Collapse
Affiliation(s)
- Massimiliano Cazzaniga
- Scientific & Research Department, Velleja Research, 20125 Milan, Italy; (M.C.); (F.D.P.)
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Marco Cardinali
- Department of Internal Medicine, Infermi Hospital, AUSL Romagna, 47921 Rimini, Italy;
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy;
| | - Francesco Di Pierro
- Scientific & Research Department, Velleja Research, 20125 Milan, Italy; (M.C.); (F.D.P.)
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Giordano Bruno Zonzini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy;
| | - Chiara Maria Palazzi
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Aurora Gregoretti
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Luigina Guasti
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Maria Rosaria Matera
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Ilaria Cavecchia
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Alexander Bertuccioli
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy;
| |
Collapse
|
6
|
Rupel K, Cornacchia A, Poiani M, Mohamed S, De Bellis E, Ballerini M, Bogdan Preda TM, Poropat A, Di Lenarda R, Zaja F, Biasotto M, Ottaviani G. Preventive versus curative photobiomodulation for oral mucositis in patients with multiple myeloma undergoing hematopoietic stem cell transplantation: which approach is more effective? Support Care Cancer 2024; 32:208. [PMID: 38438625 DOI: 10.1007/s00520-024-08414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
PURPOSE There is increasing evidence that photobiomodulation (PBM) therapy is both an effective and safe approach in hematopoietic stem cell transplantation (HSCT) for both prevention and management of oral mucositis (OM), but its use in clinical practice is still limited and the timing of application is under discussion. The aim of this retrospective study was to evaluate possible differences between patients treated either with preventive or curative PBM therapy. METHODS The retrospective case series included 24 patients suffering from multiple myeloma who underwent the same conditioning and transplantation protocol. Patients were treated either with preventive PBM starting from the first day of conditioning up to two days post-HSCT or with curative PBM (starting at OM onset for four consecutive days). OM score, pain, and functional parameters were recorded. RESULTS All patients developed OM. Preventive PBM was significantly more effective in reducing OM severity (p < 0.0001) and pain (p < 0.0001) post-HSCT than curative PBM. Furthermore, we found a lower number of patients reporting discomfort in all subjective parameters (pain during swallowing, chewing, and speaking) in the preventive PBM group. No adverse events related to PBM therapy were recorded in both groups. CONCLUSION The timing for PBM therapy in patients undergoing HSCT is crucial: when started on the first day of conditioning, it significantly reduces both pain and OM severity, providing an important benefit also in subjective oral functions such as speaking, swallowing, and chewing, thus increasing the overall adherence to the oncological therapies.
Collapse
Affiliation(s)
- Katia Rupel
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.
| | - Arianna Cornacchia
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Monica Poiani
- UCO Hematology, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Sara Mohamed
- UCO Hematology, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Eleonora De Bellis
- UCO Hematology, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Mario Ballerini
- UCO Hematology, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | | | - Augusto Poropat
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Roberto Di Lenarda
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Francesco Zaja
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- UCO Hematology, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Matteo Biasotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulia Ottaviani
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
7
|
Corley C, McElroy T, Sridharan B, Trujillo M, Simmons P, Kandel S, Sykes DJ, Robeson MS, Allen AR. Physiological and cognitive changes after treatments of cyclophosphamide, methotrexate, and fluorouracil: implications of the gut microbiome and depressive-like behavior. Front Neurosci 2023; 17:1212791. [PMID: 37869506 PMCID: PMC10587567 DOI: 10.3389/fnins.2023.1212791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Chemotherapy-induced cognitive impairment colloquially referred to as chemobrain is a poorly understood phenomenon affecting a highly variable proportion of patients with breast cancer. Here we investigate the association between anxiety and despair-like behaviors in mice treated with cyclophosphamide, methotrexate, and fluorouracil (CMF) along with host histological, proteomic, gene expression, and gut microbial responses. Methods Forced swim and sociability tests were used to evaluate depression and despair-like behaviors. The tandem mass tag (TMT) proteomics approach was used to assess changes in the neural protein network of the amygdala and hippocampus. The composition of gut microbiota was assessed through 16S rRNA gene sequencing. Finally, quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to evaluate changes in intestinal gap junction markers. Results and discussion We observed that CMF induced social and despair-like behavior in mice 96 hours following treatment. Proteomic analysis identified changes in various proteins related to progressive neurological disease, working memory deficit, primary anxiety disorder, and gene expression revealing increases in NMDA and AMPA receptors in both the hippocampus and the amygdala because of CMF treatment. These changes finally, we observed immediate changes in the microbial population after chemotherapy treatment, with a notable abundance of Muribaculaceae and Romboutsia which may contribute to changes seen in the gut.
Collapse
Affiliation(s)
- Christa Corley
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Taylor McElroy
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Bhavana Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Madison Trujillo
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Pilar Simmons
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sangam Kandel
- Department of Bioinformatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Michael S. Robeson
- Department of Bioinformatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Antiño R. Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
8
|
Cazzaniga M, Zonzini GB, Di Pierro F, Palazzi CM, Cardinali M, Bertuccioli A. Influence of the microbiota on the effectiveness and toxicity of oncological therapies, with a focus on chemotherapy. Pathol Oncol Res 2023; 29:1611300. [PMID: 37593337 PMCID: PMC10427764 DOI: 10.3389/pore.2023.1611300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
Recent studies have highlighted a possible correlation between microbiota composition and the pathogenesis of various oncological diseases. Also, many bacterial groups are now directly or indirectly associated with the capability of stimulating or inhibiting carcinogenic pathways. However, little is known about the importance and impact of microbiota patterns related to the efficacy and toxicity of cancer treatments. We have recently begun to understand how oncological therapies and the microbiota are closely interconnected and could influence each other. Chemotherapy effectiveness, for example, appears to be strongly influenced by the presence of some microorganisms capable of modulating the pharmacokinetics and pharmacodynamics of the compounds used, thus varying the real response and therefore the efficacy of the oncological treatment. Similarly, chemotherapeutic agents can modulate the microbiota with variations that could facilitate or avoid the onset of important side effects. This finding has or could have considerable relevance as it is possible that our ability to modulate and modify the microbial structure before, during, and after treatment could influence all the clinical parameters related to pharmacological treatments and, eventually, the prognosis of the disease.
Collapse
Affiliation(s)
| | | | - Francesco Di Pierro
- Scientific & Research Department, Velleja Research, Milano, Italy
- Department of Medicine and Surgery, University of Insurbia, Varese, Italy
| | | | - Marco Cardinali
- Department of Internal Medicine, Infermi Hospital, Azienda Unità Sanitaria Locale Romagna, Rimini, Italy
| | | |
Collapse
|
9
|
Wong SP, Tan SM, Lee CS, Law KB, Lim YAL, Rajasuriar R. Prospective longitudinal analysis of clinical and immunological risk factors associated with oral and gastrointestinal mucositis following autologous stem cell transplant in adults. Support Care Cancer 2023; 31:494. [PMID: 37498423 DOI: 10.1007/s00520-023-07947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE The study aimed to characterize the incidence of both oral and gastrointestinal (GI) mucositis, its' associated temporal changes in local and systemic pro-inflammatory cytokines, and to explore predictive clinical and immunological factors associated with their occurrences in hematopoietic stem cell transplant (HSCT). METHODS Autologous HSCT patients aged 18 years old and above were recruited from Hospital Ampang, Malaysia, between April 2019 to December 2020. Mucositis assessments were conducted daily, whilst blood and saliva were collected prior to conditioning regimen, on Day 0, Day+7 and 6-month. Baseline and inflammatory predictors in a repeated time measurement of moderate-severe mucositis were assessed by multiple logistic regression and generalized estimating equations, respectively. RESULTS Of the 142 patients analyzed, oral mucositis and diarrhea (representing GI mucositis) were reported as 68.3% and 95.8%, respectively. Predictive factors for moderate-severe oral mucositis were BEAM or busulphan-based regimens (odds ratio (OR)=9.2, 95% confidence interval (CI)=1.16-72.9, p-value (p) = 0.005) and vomiting (OR=4.6, 95% CI 1.68-12.3, p = 0.004). Predictive factors for moderate-severe GI mucositis were BEAM or busulphan-based regimens (OR=3.9, 95% CI 1.05-14.5, p = 0.023), female sex (OR = 3.3, 95% CI 1.43-7.44, p = 0.004) and body mass index (OR=1.08, 95% CI 1.02-1.15, p = 0.010). Cytokines analyses were performed in 96 patients. Saliva and plasma interleukin-6 (OR=1.003, 95% CI 1.001-1.004, p < 0.001 and OR=1.01, 95% CI 1.001-1.015, p = 0.029), and plasma tumor necrosis factor-alpha (OR=0.91, 95% CI 0.85-0.99, p = 0.019) were predictive of moderate-severe oral mucositis in a time-dependent model. CONCLUSION This study provides real-world evidence and insights into patient- and treatment-related factors affecting oral and GI mucositis in HSCT.
Collapse
Affiliation(s)
- Shu Ping Wong
- Department of Pharmacy, Ampang Hospital, Ministry of Health, Ampang, Selangor Darul Ehsan, Malaysia
| | - Sen Mui Tan
- Department of Haematology, Ampang Hospital, Ministry of Health, Ampang, Selangor Darul Ehsan, Malaysia
| | - Cheng-Siang Lee
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kian Boon Law
- Institute for Clinical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Yvonne Ai Lian Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Reena Rajasuriar
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
da Silva KS, Abboud KY, Schiebel CS, de Oliveira NMT, Bueno LR, de Mello Braga LLV, da Silveira BC, Santos IWFD, Gomes EDS, Gois MB, Cordeiro LMC, Maria Ferreira D. Polysaccharides from Passion Fruit Peels: From an Agroindustrial By-Product to a Viable Option for 5-FU-Induced Intestinal Damage. Pharmaceuticals (Basel) 2023; 16:912. [PMID: 37513823 PMCID: PMC10383750 DOI: 10.3390/ph16070912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Gastrointestinal mucositis is a serious and dose-limiting toxic side effect of oncologic treatment. Interruption of cancer treatment due to gastrointestinal mucositis leads to a significant decrease in cure rates and consequently to the deterioration of a patient's quality of life. Natural polysaccharides show a variety of beneficial effects, including a gastroprotective effect. Treatment with soluble dietary fiber (SDF) from yellow passion fruit (Passiflora edulis) biomass residues protected the gastric and intestinal mucosa in models of gastrointestinal injury. In this study, we investigated the protective therapeutic effect of SDF on 5-FU-induced mucositis in male and female mice. Oral treatment of the animals with SDF did not prevent weight loss but reduced the disease activity index and preserved normal intestinal function by alleviating diarrhea and altered gastrointestinal transit. SDF preserved the length of the colon and histological damage caused by 5-FU. SDF significantly restored the oxidative stress and inflammation in the intestine and the enlargement and swelling of the spleen induced by 5-FU. In conclusion, SDF may be a promising adjuvant strategy for the prevention and treatment of intestinal mucositis induced by 5-FU.
Collapse
Affiliation(s)
- Karien Sauruk da Silva
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Kahlile Youssef Abboud
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba 81531-980, Brazil
| | - Carolina Silva Schiebel
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Natalia Mulinari Turin de Oliveira
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Laryssa Regis Bueno
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Lara Luisa Valerio de Mello Braga
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Bruna Carla da Silveira
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Isabella Wzorek França Dos Santos
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Everton Dos Santos Gomes
- Programa de Pós-Graduação em Imunologia, Universidade Federal da Bahia, Salvador 40231-300, Brazil
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Federal de Rondonópolis, Rondonópolis 78736-900, Brazil
| | - Marcelo Biondaro Gois
- Programa de Pós-Graduação em Imunologia, Universidade Federal da Bahia, Salvador 40231-300, Brazil
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Federal de Rondonópolis, Rondonópolis 78736-900, Brazil
| | | | - Daniele Maria Ferreira
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| |
Collapse
|
11
|
Dahlgren D, Lennernäs H. Review on the effect of chemotherapy on the intestinal barrier: Epithelial permeability, mucus and bacterial translocation. Biomed Pharmacother 2023; 162:114644. [PMID: 37018992 DOI: 10.1016/j.biopha.2023.114644] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Chemotherapy kills fast-growing cells including gut stem cells. This affects all components of the physical and functional intestinal barrier, i.e., the mucus layer, epithelium, and immune system. This results in an altered intestinal permeability of toxic compounds (e.g., endotoxins) as well as luminal bacterial translocation into the mucosa and central circulation. However, there is uncertainty regarding the relative contributions of the different barrier components for the development of chemotherapy-induced gut toxicity. This review present an overview of the intestinal mucosal barrier determined with various types of molecular probes and methods, and how they are affected by chemotherapy based on reported rodent and human data. We conclude that there is overwhelming evidence that chemotherapy increases bacterial translocation, and that it affects the mucosal barrier by rendering the mucosa more permeable to large permeability probes. Chemotherapy also seems to impede the intestinal mucus barrier, even though this has been less clearly evaluated from a functional standpoint but certainly plays a role in bacteria translocation. Combined, it is however difficult to outline a clear temporal or succession between the different gastrointestinal events and barrier functions, especially as chemotherapy-induced neutropenia is also involved in intestinal immunological homeostasis and bacterial translocation. A thorough characterization of this would need to include a time dependent development of neutropenia, intestinal permeability, and bacterial translocation, ideally after a range of chemotherapeutics and dosing regimens.
Collapse
|
12
|
Luisa Valerio de Mello Braga L, Simão G, Silva Schiebel C, Caroline Dos Santos Maia A, Mulinari Turin de Oliveira N, Barbosa da Luz B, Rita Corso C, Soares Fernandes E, Maria Ferreira D. Rodent models for anticancer toxicity studies: contributions to drug development and future perspectives. Drug Discov Today 2023:103626. [PMID: 37224998 DOI: 10.1016/j.drudis.2023.103626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
Antineoplastic treatment induces a type of gastrointestinal toxicity known as mucositis. Findings in animal models are usually easily reproducible, and standardized treatment regimens are often used, thus supporting translational science. Essential characteristics of mucositis, including intestinal permeability, inflammation, immune and oxidative responses, and tissue repair mechanisms, can be easily investigated in these models. Given the effects of mucositis on the quality of life of patients with cancer, and the importance of experimental models in the development of more effective new therapeutic alternatives, this review discusses progress and current challenges in using experimental models of mucositis in translational pharmacology research. Teaser Experimental models for studying gastrointestinal mucositis have provided a wealth of information improving the understanding of antineoplastic toxicity.
Collapse
Affiliation(s)
- Lara Luisa Valerio de Mello Braga
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Gisele Simão
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Carolina Silva Schiebel
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Andressa Caroline Dos Santos Maia
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Natalia Mulinari Turin de Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Bruna Barbosa da Luz
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Claudia Rita Corso
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Elizabeth Soares Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Daniele Maria Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil.
| |
Collapse
|
13
|
Jakubauskas M, Jakubauskiene L, Leber B, Horvath A, Strupas K, Stiegler P, Schemmer P. Probiotic Supplementation Attenuates Chemotherapy-Induced Intestinal Mucositis in an Experimental Colorectal Cancer Liver Metastasis Rat Model. Nutrients 2023; 15:1117. [PMID: 36904117 PMCID: PMC10005486 DOI: 10.3390/nu15051117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The use of chemotherapeutic agents is of paramount importance when treating colorectal cancer (CRC). Unfortunately, one of the most frequent chemotherapy (CTx) side effects is intestinal mucositis (IM), which may present with several clinical symptoms such as nausea, bloating, vomiting, pain, and diarrhea and even can result in life-threatening complications. There is a focused scientific effort towards developing new therapies to prevent and treat IM. The aim of this study was to assess the outcomes of probiotic supplementation on CTx-induced IM in a CRC liver metastasis rat model. Six-week-old male Wistar rats received either a multispecies probiotic or placebo mixture. On the 28th experiment day, rats received FOLFOX CTx, and afterwards, the severity of diarrhea was evaluated twice daily. Stool samples were collected for further microbiome analysis. Additionally, immunohistochemical stainings of ileum and colon samples with were performed with MPO, Ki67, and Caspase-3 antibodies. Probiotic supplementation alleviates the severity and length of CTx-induced diarrhea. Additionally, probiotics significantly reduced FOLFOX-induced weight and blood albumin loss. Furthermore, probiotic supplementation mitigated CTx-induced histological changes in the gut and promoted intestinal cell regeneration. This study shows that multispecies probiotic supplementation attenuates FOLFOX-induced IM symptoms by inhibiting apoptosis and promoting intestinal cell proliferation.
Collapse
Affiliation(s)
- Matas Jakubauskas
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio str. 21, 03101 Vilnius, Lithuania
| | - Lina Jakubauskiene
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio str. 21, 03101 Vilnius, Lithuania
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
| | - Angela Horvath
- Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio str. 21, 03101 Vilnius, Lithuania
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
| |
Collapse
|
14
|
Psychometric evaluation of Oral Mucositis Daily Questionnaire: A cross-cultural adaptation of the Malay version in multiethnic adult autologous stem cell transplant. Asia Pac J Oncol Nurs 2023; 10:100180. [PMID: 36880090 PMCID: PMC9985023 DOI: 10.1016/j.apjon.2022.100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Objective Mucositis is one of the most feared side effects of cancer treatment. Psychometric analysis of a patient self-assessment score, the oral mucositis daily questionnaire in Malay (OMDQ-Mal) and its construct validity by means of confirmatory factor analysis (CFA) is lacking. This research aimed to test the validity and reliability of OMDQ-Mal. Methods A total of 114 autologous stem-cell transplantation patients aged ≥ 18 years old at a national hematology center in Malaysia from April 2019 to December 2020 completed OMDQ-Mal concurrently with physician scores. Internal consistency and reproducibility were determined by Cronbach alpha and intraclass correlation coefficient, respectively. Correlations with physician scores were determined by Spearman correlation. Discriminative validity and construct validity were determined by Mann-Whitney U and CFA, respectively. Results OMDQ-Mal demonstrated high internal consistency (α = 0.874). Test-retest reliability between paired days were moderate to excellent (95% CI = 0.676-0.953). Items in OMDQ-Mal had moderate to strong correlations with physician scores (ρ = 0.503-0.721). Discriminative validity indicated that the scores of scales were significantly different between participants with severe and mild conditions. Construct validity results of loading factors 0.708-0.952; composite reliability 0.879-0.974; average variant extracted 0.710-0.841; and heterotrait-monotrait ratio 0.528 established the convergent and divergent validity. Conclusions In conclusion, the OMDQ-Mal, which captured important quality of life responses, demonstrated adequate validity and reliability. This was supported by a two-component model CFA. The strong correlation of OMDQ-Mal with both physician scores indicated its potential as a comprehensive patient-reported outcome measure of mucositis of the entire alimentary tract.
Collapse
|
15
|
Khan S, Varricchio A, Ricciardelli C, Yool AJ. Invasiveness of endometrial cancer cell lines is potentiated by estradiol and blocked by a traditional medicine Guizhi Fuling at clinically relevant doses. Front Oncol 2023; 12:1015708. [PMID: 36727068 PMCID: PMC9885141 DOI: 10.3389/fonc.2022.1015708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
The Traditional Chinese medicine, Guizhi Fuling (here called Fuling), has been confirmed in meta-analysis studies to reduce recurrence of endometriosis and improve pregnancy outcomes; however, the possible use of Fuling as a fertility-preserving treatment in endometrial cancer has not previously been tested. Results here are the first to demonstrate dose-dependent inhibition of cell motility by Fuling in two endometrial cancer cell lines, classified as Grade I which is responsive to progesterone treatment, and Grade III (MFE-280) which is resistant. The major outcome of this study was the novel demonstration that Fuling (30-80 µg/ml) significantly inhibits invasiveness in both high and low grades of EC cells, achieving 70-80% block of trans-barrier migration without cytotoxicity. This effective dose range is estimated to be comparable to that used in human clinical trials and traditional practice. Results here further show that clinically relevant doses of Fuling override the motility-promoting effects of estradiol in endometrial cancer cell lines. Medroxyprogesterone acetate has to date been the standard therapy to treat metastatic or inoperable endometrial cancers; however, success rates are low with high rates of recurrence, due in part to acquired resistance to medroxyprogesterone acetate therapy. The discovery here that Fuling appears to control the spread of treatment-resistant advanced cancers is an exciting prospect.
Collapse
Affiliation(s)
- Sidra Khan
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Alanah Varricchio
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Carmela Ricciardelli
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia,*Correspondence: Andrea J. Yool,
| |
Collapse
|
16
|
Chen W, Zhao Y, Dai Y, Nie K. Gastrointestinal inflammation plays a critical role in chemotherapy-induced nausea and vomiting. Eur J Pharmacol 2022; 936:175379. [PMID: 36356927 DOI: 10.1016/j.ejphar.2022.175379] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
17
|
Was H, Borkowska A, Bagues A, Tu L, Liu JYH, Lu Z, Rudd JA, Nurgali K, Abalo R. Mechanisms of Chemotherapy-Induced Neurotoxicity. Front Pharmacol 2022; 13:750507. [PMID: 35418856 PMCID: PMC8996259 DOI: 10.3389/fphar.2022.750507] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Since the first clinical trials conducted after World War II, chemotherapeutic drugs have been extensively used in the clinic as the main cancer treatment either alone or as an adjuvant therapy before and after surgery. Although the use of chemotherapeutic drugs improved the survival of cancer patients, these drugs are notorious for causing many severe side effects that significantly reduce the efficacy of anti-cancer treatment and patients’ quality of life. Many widely used chemotherapy drugs including platinum-based agents, taxanes, vinca alkaloids, proteasome inhibitors, and thalidomide analogs may cause direct and indirect neurotoxicity. In this review we discuss the main effects of chemotherapy on the peripheral and central nervous systems, including neuropathic pain, chemobrain, enteric neuropathy, as well as nausea and emesis. Understanding mechanisms involved in chemotherapy-induced neurotoxicity is crucial for the development of drugs that can protect the nervous system, reduce symptoms experienced by millions of patients, and improve the outcome of the treatment and patients’ quality of life.
Collapse
Affiliation(s)
- Halina Was
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Agata Borkowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Ana Bagues
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), URJC, Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Longlong Tu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Julia Y H Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zengbing Lu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - John A Rudd
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,The Laboratory Animal Services Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Department of Medicine Western Health, University of Melbourne, Melbourne, VIC, Australia.,Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, Alcorcón, Spain.,Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor, Madrid, Spain
| |
Collapse
|
18
|
Dahlgren D, Sjöblom M, Hellström PM, Lennernäs H. Chemotherapeutics-Induced Intestinal Mucositis: Pathophysiology and Potential Treatment Strategies. Front Pharmacol 2021; 12:681417. [PMID: 34017262 PMCID: PMC8129190 DOI: 10.3389/fphar.2021.681417] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal tract is particularly vulnerable to off-target effects of antineoplastic drugs because intestinal epithelial cells proliferate rapidly and have a complex immunological interaction with gut microbiota. As a result, up to 40-100% of all cancer patients dosed with chemotherapeutics experience gut toxicity, called chemotherapeutics-induced intestinal mucositis (CIM). The condition is associated with histological changes and inflammation in the mucosa arising from stem-cell apoptosis and disturbed cellular renewal and maturation processes. In turn, this results in various pathologies, including ulceration, pain, nausea, diarrhea, and bacterial translocation sepsis. In addition to reducing patient quality-of-life, CIM often leads to dose-reduction and subsequent decrease of anticancer effect. Despite decades of experimental and clinical investigations CIM remains an unsolved clinical issue, and there is a strong consensus that effective strategies are needed for preventing and treating CIM. Recent progress in the understanding of the molecular and functional pathology of CIM had provided many new potential targets and opportunities for treatment. This review presents an overview of the functions and physiology of the healthy intestinal barrier followed by a summary of the pathophysiological mechanisms involved in the development of CIM. Finally, we highlight some pharmacological and microbial interventions that have shown potential. Conclusively, one must accept that to date no single treatment has substantially transformed the clinical management of CIM. We therefore believe that the best chance for success is to use combination treatments. An optimal combination treatment will likely include prophylactics (e.g., antibiotics/probiotics) and drugs that impact the acute phase (e.g., anti-oxidants, apoptosis inhibitors, and anti-inflammatory agents) as well as the recovery phase (e.g., stimulation of proliferation and adaptation).
Collapse
Affiliation(s)
- David Dahlgren
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Markus Sjöblom
- Department of Neuroscience, Division of Physiology, Uppsala University, Uppsala, Sweden
| | - Per M Hellström
- Department of Medical Sciences, Gastroenterology/Hepatology, Uppsala University, Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Elad S, Cheng KKF, Lalla RV, Yarom N, Hong C, Logan RM, Bowen J, Gibson R, Saunders DP, Zadik Y, Ariyawardana A, Correa ME, Ranna V, Bossi P. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer 2020; 126:4423-4431. [PMID: 32786044 PMCID: PMC7540329 DOI: 10.1002/cncr.33100] [Citation(s) in RCA: 353] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/25/2020] [Accepted: 06/03/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Mucositis is a significant toxicity of cancer therapy with numerous systemic sequelae. The goal of this systematic review was to update the Multinational Association of Supportive Care in Cancer and International Society of Oral Oncology (MASCC/ISOO) Clinical Practice Guidelines for the management of mucositis. METHODS The literature was reviewed systematically to identify interventions for mucositis. Studies were rated according to the presence of major and minor flaws according to previously published criteria. The body of evidence for each intervention and in each treatment setting was assigned a level of evidence based on previously published criteria. Guidelines were developed based on the level of evidence, with 3 possible guideline determinations: recommendation, suggestion, or no guideline possible. RESULTS The guideline covers evidence from 1197 publications related to oral or gastrointestinal mucositis. Thirteen new guidelines were developed for or against the use of various interventions in specific treatment settings, and 11 previous guidelines were confirmed after aa review of new evidence. Thirteen previously established guidelines were carried over because there was no new evidence for these interventions. CONCLUSIONS The updated MASCC/ISOO Clinical Practice Guidelines for mucositis provide professional health caregivers with a clinical setting-specific, evidence-based tool to help with the management of mucositis in patients who have cancer.
Collapse
Affiliation(s)
- Sharon Elad
- Eastman Institute for Oral HealthUniversity of Rochester Medical CenterRochesterNew York
| | - Karis Kin Fong Cheng
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Rajesh V. Lalla
- University of Connecticut School of Dental Medicine, UConn HealthFarmingtonConnecticut
| | - Noam Yarom
- Sheba Medical CenterTel Hashomer, and Tel Aviv UniversityTel AvivIsrael
| | - Catherine Hong
- Faculty of DentistryNational University of SingaporeSingaporeSingapore
| | - Richard M. Logan
- Adelaide Dental SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Joanne Bowen
- Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Rachel Gibson
- School of Allied Health Science and PracticeUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Deborah P. Saunders
- North East Cancer CenterHealth Sciences NorthNorthern Ontario School of MedicineSudburyOntarioCanada
| | - Yehuda Zadik
- Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Anura Ariyawardana
- College of Medicine and DentistryJames Cook UniversityCairnsQueenslandAustralia
| | - Maria Elvira Correa
- School of Medical ScienceUniversity of Campinas‐CidadeZeferino Vaz UniversityBarao GeraldoBrazil
| | | | - Paolo Bossi
- Medical Oncology DepartmentUniversity of BresciaBresciaItaly
| |
Collapse
|
20
|
Singh K, Cao H, Miaskowski C, Conley YP, Hammer M, Wright F, Levine JD, Kober KM. Perturbations in Endocytotic and Apoptotic Pathways Are Associated With Chemotherapy-Induced Nausea. Biol Res Nurs 2020; 23:238-247. [PMID: 32815385 DOI: 10.1177/1099800420951271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND While vomiting is well controlled with current antiemetic regimens, unrelieved chemotherapy-induced nausea (CIN) is a significant clinical problem. Perturbations in endocytotic and apoptotic pathways in the gut can influence the functioning of the microbiome-gut-brain-axis and the occurrence of gastrointestinal (GI) symptoms. However, limited information is available on the mechanisms that underlie unrelieved CIN. OBJECTIVES The purpose of this study was to evaluate for perturbed biological pathways associated with endocytosis and apoptosis in oncology patients who did (n = 353) and did not (n = 275) report CIN prior to their second or third cycle of chemotherapy (CTX). METHODS Oncology patients (n = 735) completed study questionnaires in the week prior to their second or third cycle of CTX. CIN occurrence was evaluated using the Memorial Symptom Assessment Scale. Pathway impact analyses (PIA) were performed in 2 independent samples using RNA-sequencing (sample 1, n = 334) and microarray (sample 2, n = 294) methodologies. Fisher's combined probability method was used to identify signaling pathways related to endocytotic and apoptotic mechanisms that were significantly perturbed between the 2 nausea groups across both samples. RESULTS CIN was reported by 63.6% of the patients in sample 1 and 48.9% of the patients in sample 2. Across the 2 samples, PIA identified 4 perturbed pathways that are involved in endocytosis (i.e., endocytosis, regulation of actin cytoskeleton) and apoptosis (i.e., apoptosis, PI3K/Akt signaling). CONCLUSIONS Our findings suggest that CTX-induced inflammation of the GI mucosa, that results in the initiation of endocytotic and apoptotic processes in the gut, is associated with the occurrence of CIN.
Collapse
Affiliation(s)
- Komal Singh
- Edson College of Nursing and Health Innovation, 7864Arizona State University, Phoenix, AZ, USA
| | - Huangshen Cao
- Biodesign Center for Fundamental and Applied Microbiomics, 7864Arizona State University, Tempe, AZ, USA
| | | | - Yvette P Conley
- School of Nursing, 6614University of Pittsburgh, Pittsburgh, PA, USA
| | - Marilyn Hammer
- The Phyllis F. Cantor Center for Research in Nursing and Patient Care Services, Dana Farber Cancer Institute, Boston, MA, USA
| | - Fay Wright
- Rory Myers College of Nursing, New York University, NY, USA
| | - Jon D Levine
- School of Medicine, 8785University of California, San Francisco, CA, USA
| | - Kord M Kober
- School of Nursing, 8785University of California, San Francisco, CA, USA
| |
Collapse
|
21
|
Singh KP, Dhruva A, Flowers E, Paul SM, Hammer MJ, Wright F, Cartwright F, Conley YP, Melisko M, Levine JD, Miaskowski C, Kober KM. Alterations in Patterns of Gene Expression and Perturbed Pathways in the Gut-Brain Axis Are Associated With Chemotherapy-Induced Nausea. J Pain Symptom Manage 2020; 59:1248-1259.e5. [PMID: 31923555 PMCID: PMC7239734 DOI: 10.1016/j.jpainsymman.2019.12.352] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
CONTEXT Despite current advances in antiemetic treatments, approximately 50% of oncology patients experience chemotherapy-induced nausea (CIN). OBJECTIVES The purpose of this study was to evaluate for differentially expressed genes and perturbed pathways associated with the gut-brain axis (GBA) across two independent samples of oncology patients who did and did not experience CIN. METHODS Oncology patients (n = 735) completed study questionnaires in the week before their second or third cycle of chemotherapy. CIN occurrence was assessed using the Memorial Symptom Assessment Scale. Gene expression analyses were performed in two independent samples using ribonucleic acid sequencing (Sample 1, n = 357) and microarray (Sample 2, n = 352) methodologies. Fisher's combined probability method was used to determine genes that were differentially expressed and pathways that were perturbed between the two nausea groups across both samples. RESULTS CIN was reported by 63.6% of the patients in Sample 1 and 48.9% of the patients in Sample 2. Across the two samples, 703 genes were differentially expressed, and 37 pathways were found to be perturbed between the two CIN groups. We identified nine perturbed pathways that are involved in mechanisms associated with alterations in the GBA (i.e., mucosal inflammation, disruption of gut microbiome). CONCLUSION Persistent CIN remains a significant clinical problem. Our study is the first to identify novel GBA-related pathways associated with the occurrence of CIN. Our findings warrant confirmation and suggest directions for future clinical studies to decrease CIN occurrence.
Collapse
Affiliation(s)
- Komal P Singh
- School of Nursing, University of California, San Francisco, San Francisco, California, USA
| | - Anand Dhruva
- School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Elena Flowers
- School of Nursing, University of California, San Francisco, San Francisco, California, USA
| | - Steven M Paul
- School of Nursing, University of California, San Francisco, San Francisco, California, USA
| | - Marilyn J Hammer
- The Phyllis F. Cantor Center for Research in Nursing and Patient Care Services, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Fay Wright
- Rory Meyers College of Nursing, New York University, New York, New York, USA
| | - Frances Cartwright
- Department of Nursing, Mount Sinai Medical Center, New York, New York, USA
| | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michelle Melisko
- School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Jon D Levine
- School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Christine Miaskowski
- School of Nursing, University of California, San Francisco, San Francisco, California, USA
| | - Kord M Kober
- School of Nursing, University of California, San Francisco, San Francisco, California, USA.
| |
Collapse
|
22
|
Conjugated linoleic acid prevents damage caused by intestinal mucositis induced by 5-fluorouracil in an experimental model. Biomed Pharmacother 2018; 103:1567-1576. [PMID: 29864944 DOI: 10.1016/j.biopha.2018.04.133] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Studies have showed the protective effects of conjugated linoleic acid (CLA) on intestinal epithelium, modulating host immune and inflammatory responses on intestinal diseases. OBJECTIVE To evaluate the preventive effects of CLA on the intestinal mucositis induced by 5-FU in a murine model. METHODS Sixty-four BALB/c mice were randomly divided into four groups: Control (CTL), fed a standard chow diet; CLAs, fed a diet supplemented with CLA; Mucositis (5-FU), fed a standard chow diet and underwent mucositis induction and CLAs 5-FU, fed a diet supplemented with CLA and underwent mucositis induction. Mucositis was induced by intraperitoneal injection of 300 mg/kg 5-FU. After 72 h, the animals were euthanized and intestinal permeability, bacterial translocation, inflammatory mediators, and intestinal histology were evaluated. RESULTS Mice in the CLAs 5-FU group showed reduced weight loss compared to those in the 5-FU group (p < 0.005). Furthermore, the results also showed that the treatment with CLA reduced intestinal permeability, bacterial translocation, and biomarkers of inflammatory response besides minor damage to ZO-1 and occludin with maintenance of the integrity of the intestinal epithelium and a favorable balance between the inflammatory and regulatory cytokines. CONCLUSION This study suggests that CLA reduced the adverse effects from 5-FU administration on the intestinal mucosa.
Collapse
|
23
|
Tecza K, Pamula-Pilat J, Lanuszewska J, Butkiewicz D, Grzybowska E. Pharmacogenetics of toxicity of 5-fluorouracil, doxorubicin and cyclophosphamide chemotherapy in breast cancer patients. Oncotarget 2018; 9:9114-9136. [PMID: 29507678 PMCID: PMC5823653 DOI: 10.18632/oncotarget.24148] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/02/2018] [Indexed: 01/28/2023] Open
Abstract
The differences in patients' response to the same medication, toxicity included, are one of the major problems in breast cancer treatment. Chemotherapy toxicity makes a significant clinical problem due to decreased quality of life, prolongation of treatment and reinforcement of negative emotions associated with therapy. In this study we evaluated the genetic and clinical risk factors of FAC chemotherapy-related toxicities in the group of 324 breast cancer patients. Selected genes and their polymorphisms were involved in FAC drugs transport (ABCB1, ABCC2, ABCG2,SLC22A16), metabolism (ALDH3A1, CBR1, CYP1B1, CYP2C19, DPYD, GSTM1, GSTP1, GSTT1, MTHFR,TYMS), DNA damage recognition, repair and cell cycle control (ATM, ERCC1, ERCC2, TP53, XRCC1). The multifactorial risk models that combine genetic risk modifiers and clinical characteristics were constructed for 12 toxic symptoms. The majority of toxicities was dependent on the modifications in components of more than one pathway of FAC drugs, while the impact level of clinical factors was comparable to the genetic ones. For the carriers of multiple high risk factors the chance of developing given symptom was significantly elevated which proved the factor-dosage effect. We found the strongest associations between concurrent presence of clinical factors - overall and recurrent anemia, nephrotoxicity and early nausea and genetic polymorphisms in genes responsible for DNA repair, drugs metabolism and transport pathways. These results indicate the possibility of selection of the patients with expected high tolerance to FAC treatment and consequently with high chance of chemotherapy completion without the dose reduction, treatment delays and decline in the quality of life.
Collapse
Affiliation(s)
- Karolina Tecza
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Jolanta Pamula-Pilat
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Joanna Lanuszewska
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Dorota Butkiewicz
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Ewa Grzybowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| |
Collapse
|
24
|
Khalil A, Omran H. The role of gut in type 2 diabetes mellitus during whole body gamma irradiation in high-fat diet Wistar rats. Int J Radiat Biol 2017; 94:137-149. [PMID: 29252073 DOI: 10.1080/09553002.2018.1419300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE The effects of a low rate (100 mGy/min) fractionated whole body gamma irradiation (FWBGI) at different doses were assessed using a real-time PCR technique on the expression of some target genes implicated in the development of type 2 diabetes mellitus in high-fat diet (HFD) Wistar rats. METHOD HFD Wistar rats were exposed to different doses (12, 24 and 48 Gy) divided into 24 fractions (three times a week for two months), thus, the daily doses were 0.5, 1, 2 Gy, respectively. Total RNA was extracted and the expression of target genes was measured in the four intestinal segments (duodenum, jejunum, ileum and colon). RESULTS The pre-diabetic state already induced by HFD was found to be improved by irradiation exposure. This irradiation effect occurs mainly via altered anti-diabetic gene expressions (mRNA and protein levels) of the incretin glucagon-like peptide-1 (GLP-1) overall bowel segments except the colon which has its own specific response to irradiation exposure by the induction of the insulin receptor substrate 4 (IRS-4) and the uncoupling protein 3 (UCP3). CONCLUSIONS Results could be of great importance suggesting for the first time, a protective role for FWBGI on HFD animal models by increasing GLP-1 and UCP3 levels.
Collapse
Affiliation(s)
- Ayman Khalil
- a Department of Radiation Medicine, Human Nutrition Laboratory , Atomic Energy Commission of Syria (AECS) , Damascus , Syria
| | - Hasan Omran
- a Department of Radiation Medicine, Human Nutrition Laboratory , Atomic Energy Commission of Syria (AECS) , Damascus , Syria
| |
Collapse
|
25
|
Natarajan K, Abraham P, Kota R. Activation of the mitochondrial apoptotic pathway contributes to methotrexate-induced small intestinal injury in rats. Cell Biochem Funct 2017; 35:378-391. [DOI: 10.1002/cbf.3285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/12/2017] [Accepted: 07/07/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Kasthuri Natarajan
- Department of Biochemistry; Christian Medical College Campus; Vellore Tamil Nadu India
| | - Premila Abraham
- Department of Biochemistry; Christian Medical College Campus; Vellore Tamil Nadu India
| | - Rekha Kota
- Department of Pathology; Madha Medical College Thandalam; Chennai Tamil Nadu India
| |
Collapse
|
26
|
Intestinal toxicity evaluation of long-circulating and pH-sensitive liposomes loaded with cisplatin. Eur J Pharm Sci 2017; 106:142-151. [DOI: 10.1016/j.ejps.2017.05.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 12/20/2022]
|
27
|
Gerhard D, Sousa FJDSSD, Andraus RAC, Pardo PE, Nai GA, Neto HB, Messora MR, Maia LP. Probiotic therapy reduces inflammation and improves intestinal morphology in rats with induced oral mucositis. Braz Oral Res 2017; 31:e71. [PMID: 28678976 DOI: 10.1590/1807-3107bor-2017.vol31.0071] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/07/2017] [Indexed: 01/06/2023] Open
Abstract
The aim of the present study was to evaluate the effect of systemic administration of probiotics (PROB) on the progression of experimentally induced oral and intestinal mucositis in rats immunosuppressed by chemotherapy (5-fluorouracil: 5-FU). Twenty-four rats were divided into the following groups (n=6): GC (control), GPROB, G5FU and G5-FU/PROB. Groups GPROB and G5-FU/PROB received 1 g of probiotic incorporated into each 100 g of feed (Bacillus subtilis, Bifidobacterium bifidum, Enterococcus faecium and Lactobacilllus acidophilus), beginning 30 days before oral mucositis induction. Groups G5FU and G5-FU/PROB received 60 mg/kg of 5-FU on days 0 and 2. The left oral mucosa of each animal was irritated by mechanical trauma (days 1 and 2). On days 3 and 7, three animals from each group were sacrificed, and their oral mucosa and small intestine were biopsied and processed for histopathological analysis. Groups G5-FU and G5-FU/PROB showed ulcerated oral lesions at day 3, with progression in group G5-FU and regression in group G5-FU/PROB at day 7. Histologically, less severe signs of inflammation in the oral mucosa were observed in group G5-FU/PROB than in group G5-FU. Regarding the intestine, villus-related defects of lesser magnitude were observed in group G5-FU/PROB, compared with group G5-FU. Group GPROB showed greater villus height than group GC. It can be concluded that probiotic supplementation reduced oral and intestinal inflammation in immunosuppressed rats with experimentally induced mucositis, and may protect the intestine from changes induced by chemotherapy, thus contributing to overall health.
Collapse
Affiliation(s)
- Dayana Gerhard
- Universidade do Oeste Paulista - Unoeste, School of Dentistry, Presidente Prudente, SP, Brazil
| | | | | | - Paulo Eduardo Pardo
- Universidade do Oeste Paulista - Unoeste, Department of Veterinary Medicine, Presidente Prudente, SP, Brazil (retired)
| | - Gisele Alborguetti Nai
- Universidade do Oeste Paulista - Unoeste, Department of Pathology, Presidente Prudente, SP, Brazil
| | - Hermann Bremer Neto
- Universidade do Oeste Paulista - Unoeste, Department of Functional Sciences, Presidente Prudente, SP, Brazil
| | - Michel Reis Messora
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Luciana Prado Maia
- Universidade do Oeste Paulista - Unoeste, Graduate Program in Dentistry, Presidente Prudente, SP, Brazil
| |
Collapse
|
28
|
Kuchay RAH. A review of complementary therapies for chemotherapy induced gastrointestinal mucositis. Drug Discov Ther 2017; 10:292-299. [PMID: 27746417 DOI: 10.5582/ddt.2016.01059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Administration of chemotherapy often leads to gastrointestinal mucositis (GIM). GIM manifests as nausea, abdominal pain and diarrhoea in recipients of chemotherapy. GIM is a major complication occurring in approximately 80% of patients receiving 5-flurouracil treatment. These side-effects may become so severe that significant dose reductions are required, ultimately affecting treatment efficacy and patient survival. Complementary and alternative medicine (CAM) is a growing area of public interest. This review will provide an overview of current knowledge of complementary medicinal therapies for chemotherapy induced GIM. An understanding of this evolving literature is useful in discussing these therapies with patients who are considering using them.
Collapse
|
29
|
Mayo BJ, Stringer AM, Bowen JM, Bateman EH, Keefe DM. Irinotecan-induced mucositis: the interactions and potential role of GLP-2 analogues. Cancer Chemother Pharmacol 2016; 79:233-249. [PMID: 27770239 DOI: 10.1007/s00280-016-3165-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE A common side effect of irinotecan administration is gastrointestinal mucositis, often manifesting as severe diarrhoea. The damage to the structure and function of the gastrointestinal tract caused by this cytotoxic agent is debilitating and often leads to alterations in patients' regimens, hospitalisation or stoppage of treatment. The purpose of this review is to identify mechanisms of irinotecan-induced intestinal damage and a potential role for GLP-2 analogues for intervention. METHODS This is a review of current literature on irinotecan-induced mucositis and GLP-2 analogues mechanisms of action. RESULTS Recent studies have found alterations that appear to be crucial in the development of severe intestinal mucositis, including early apoptosis, alterations in proliferation and cell survival pathways, as well as induction of inflammatory cascades. Several studies have indicated a possible role for glucagon-like peptide-2 analogues in treating this toxicity, due to its proven intestinotrophic, anti-apoptotic and anti-inflammatory effects in other models of gastrointestinal disease. CONCLUSION This review provides evidence as to why and how this treatment may improve mucositis through the possible molecular crosstalk that may be occurring in models of severe intestinal mucositis.
Collapse
Affiliation(s)
- Bronwen J Mayo
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia. .,School of Pharmacy and Medical Sciences, Sansom Institute for Health Sciences, University of South Australia, Adelaide, South Australia, Australia.
| | - Andrea M Stringer
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,School of Pharmacy and Medical Sciences, Sansom Institute for Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Joanne M Bowen
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Emma H Bateman
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Dorothy M Keefe
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
30
|
Li SY. Bowel dysfunction in non-surgical cancer patients. Shijie Huaren Xiaohua Zazhi 2016; 24:3347-3353. [DOI: 10.11569/wcjd.v24.i22.3347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intestinal dysfunction is common in non-surgical tumor patients, and it manifests as disorder of digestion and absorption, defect of anatomical structure and intestinal barrier dysfunction. Tumor itself and its complications, surgery, and chemoradiotherapy can induce intestinal mucosal ischemia and hypoxia, intestinal smooth muscle degeneration, necrosis and apoptosis, abnormal intestinal motility, disorder of intestinal microflora, and dysfunction of intestinal immune barrier, all of which result in intestinal dysfunction. Tumor syndrome and its complications that can result in intestinal dysfunction include malignant intestinal obstruction, postsurgical gastroparesis syndrome, radiation enteritis, and chemotherapy induced damage to intestinal barrier function, enteric dysbacteriosis, cancerous cachexia, gastrointestinal adverse reactions caused by chemoradiotherapy, somatic symptoms of depression and so on. All of these directly lead to rapid nutritional deficiencies, and interfere with the implementation of antitumor treatment. Management of intestinal dysfunction can improve the efficacy of antitumor treatment and the life quality of patients.
Collapse
|
31
|
Preliminary data of the antipancreatic tumor efficacy and toxicity of long-circulating and pH-sensitive liposomes containing cisplatin. Nucl Med Commun 2016; 37:727-34. [DOI: 10.1097/mnm.0000000000000505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
XIAO JUNHUA, LU ZHANJUN, SHENG JIAQING, SONG YUNNA, JIANG WEILIANG, LIU FEI, ZHENG PING. 5-Fluorouracil attenuates dextran sodium sulfate-induced acute colitis in mice. Mol Med Rep 2016; 13:2821-8. [DOI: 10.3892/mmr.2016.4858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 01/06/2016] [Indexed: 11/06/2022] Open
|
33
|
Zheng J, Wang J, Pouliot M, Authier S, Zhou D, Loose DS, Hauer-Jensen M. Gene expression profiling in non-human primate jejunum, ileum and colon after total-body irradiation: a comparative study of segment-specific molecular and cellular responses. BMC Genomics 2015; 16:984. [PMID: 26589571 PMCID: PMC4654820 DOI: 10.1186/s12864-015-2168-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/29/2015] [Indexed: 12/26/2022] Open
Abstract
Background Although extensive studies have investigated radiation-induced injuries in particular gastrointestinal (GI) segments, a systematic comparison among the different segments on the basis of mode, magnitude and mechanism has not been reported. Here, a comparative study of segment-specific molecular and cellular responses was performed on jejunum, ileum and colon obtained at three time points (4, 7 and 12 days after irradiation) from non-human primate (Rhesus macaque) models exposed to 6.7 Gy or 7.4 Gy total body irradiation (TBI). Results Pathway analysis on the gene expression profiles identified radiation-induced time-, dose- and segment-dependent activation of tumor necrosis factor α (TNFα) cascade, tight junction, apoptosis, cell cycle control/DNA damage repair and coagulation system signaling. Activation of these signaling pathways suggests that colon sustained the severest mucosal barrier disruption and inflammation, and jejunum the greatest DNA damage, apoptosis and endothelial dysfunction. These more pronounced alterations correlate with the high incidence of macroscopic pathologies that are observed in the colon after TBI. Compared to colon and jejunum, ileum was resistant to radiation injury. In addition to the identification a marked increase of TNFα cascade, this study also identified radiation induced strikingly up-regulated tight junction gene CLDN2 (196-fold after 7.4-Gy TBI), matrix degradation genes such as MMP7 (increased 11- and 41-fold after 6.7-Gy and 7.4-Gy TBI), and anoikis mediated gene EDA2R that mediate mucosal shedding and barrier disruption. Conclusions This is the first systematic comparative study of the molecular and cellular responses to radiation injury in jejunum, ileum and colon. The strongest activation of TNFα cascades and the striking up-regulation of its down-stream matrix-dissociated genes suggest that TNFα modulation could be a target for mitigating radiation-induced mucosal barrier disruption. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2168-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junying Zheng
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA.
| | - Junru Wang
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA.
| | | | - Simon Authier
- CiToxLAB North America, Laval, Quebec, Canada, H7V 4B3.
| | - Daohong Zhou
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA.
| | - David S Loose
- Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, TX, 77030, USA.
| | - Martin Hauer-Jensen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA. .,Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, 72205, USA.
| |
Collapse
|
34
|
Sureban SM, May R, Qu D, Chandrakesan P, Weygant N, Ali N, Lightfoot SA, Ding K, Umar S, Schlosser MJ, Houchen CW. Dietary Pectin Increases Intestinal Crypt Stem Cell Survival following Radiation Injury. PLoS One 2015; 10:e0135561. [PMID: 26270561 PMCID: PMC4536042 DOI: 10.1371/journal.pone.0135561] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 07/23/2015] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) mucosal damage is a devastating adverse effect of radiation therapy. We have recently reported that expression of Dclk1, a Tuft cell and tumor stem cell (TSC) marker, 24h after high dose total-body gamma-IR (TBI) can be used as a surrogate marker for crypt survival. Dietary pectin has been demonstrated to possess chemopreventive properties, whereas its radioprotective property has not been studied. The aim of this study was to determine the effects of dietary pectin on ionizing radiation (IR)-induced intestinal stem cell (ISC) deletion, crypt and overall survival following lethal TBI. C57BL/6 mice received a 6% pectin diet and 0.5% pectin drinking water (pre-IR mice received pectin one week before TBI until death; post-IR mice received pectin after TBI until death). Animals were exposed to TBI (14 Gy) and euthanized at 24 and 84h post-IR to assess ISC deletion and crypt survival respectively. Animals were also subjected to overall survival studies following TBI. In pre-IR treatment group, we observed a three-fold increase in ISC/crypt survival, a two-fold increase in Dclk1+ stem cells, increased overall survival (median 10d vs. 7d), and increased expression of Dclk1, Msi1, Lgr5, Bmi1, and Notch1 (in small intestine) post-TBI in pectin treated mice compared to controls. We also observed increased survival of mice treated with pectin (post-IR) compared to controls. Dietary pectin is a radioprotective agent; prevents IR-induced deletion of potential reserve ISCs; facilitates crypt regeneration; and ultimately promotes overall survival. Given the anti-cancer activity of pectin, our data support a potential role for dietary pectin as an agent that can be administered to patients receiving radiation therapy to protect against radiation-induces mucositis.
Collapse
Affiliation(s)
- Sripathi M. Sureban
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma, United States of America
- The Peggy and Charles Stephenson Cancer Center, Oklahoma City, Oklahoma, United States of America
- * E-mail: (CWH); (SMS)
| | - Randal May
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma, United States of America
| | - Dongfeng Qu
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Parthasarathy Chandrakesan
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Nathaniel Weygant
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Naushad Ali
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- The Peggy and Charles Stephenson Cancer Center, Oklahoma City, Oklahoma, United States of America
| | - Stan A. Lightfoot
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Shahid Umar
- Department of Molecular & Integrative Physiology, The University of Kansas, Kansas City, Kansas, United States of America
| | | | - Courtney W. Houchen
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma, United States of America
- The Peggy and Charles Stephenson Cancer Center, Oklahoma City, Oklahoma, United States of America
- * E-mail: (CWH); (SMS)
| |
Collapse
|
35
|
Eun H, Hur H, Byun CS, Son SY, Han SU, Cho YK. Effects of Continuing Adjuvant S-1 for 1 Year on the Prognosis of Gastric Cancer Patients: Results from a Prospective Single Center Study. J Gastric Cancer 2015; 15:113-120. [PMID: 26161284 PMCID: PMC4496437 DOI: 10.5230/jgc.2015.15.2.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Although several clinical trials have proven the efficacy of adjuvant S-1 treatment in gastric cancers, it is still unclear which patients receive the most benefit. In this study, we prospectively recruited patients with locally advanced gastric cancer who had undergone curative resection followed by adjuvant S-1 administration to investigate which factors affect the outcomes. MATERIALS AND METHODS Between July 2010 and October 2011, we enrolled 49 patients who underwent curative resection for stage II or III gastric cancer and who subsequently received adjuvant S-1 treatment for 1 year. RESULTS Twenty-nine patients (59.2%) continued S-1 treatment for 1 year, and 12 patients (24.5%) experienced recurrent disease during the follow-up period. Patients with continuation of S-1 for 1 year had significantly increased rates of disease-free survival (P<0.001) and overall survival (P=0.001) relative to the patients who discontinued S-1 during year 1. Multivariate analysis indicated poor outcomes for patients with stage III disease and those who discontinued S-1 treatment. Excluding patients who discontinued S-1 due to cancer progression (n=7), adjuvant treatment with S-1 still demonstrated a significant difference in the disease-free survival rate between the patients who continued treatment and those who discontinued it (P=0.020). CONCLUSIONS S-1 is tolerated as adjuvant treatment in gastric cancer patients. However, discontinuing S-1 treatment may be an unfavorable factor in the prevention of recurrence. S-1 adjuvant treatment should be continued for 1 year if possible through the proper management of toxicities.
Collapse
Affiliation(s)
- Hasu Eun
- Division of Gastrointestinal Surgery, Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| | - Hoon Hur
- Division of Gastrointestinal Surgery, Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| | - Cheul Soo Byun
- Division of Gastrointestinal Surgery, Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| | - Sang-Yong Son
- Division of Gastrointestinal Surgery, Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| | - Sang-Uk Han
- Division of Gastrointestinal Surgery, Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| | - Yong Kwan Cho
- Division of Gastrointestinal Surgery, Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
36
|
Leocádio PCL, Antunes MM, Teixeira LG, Leonel AJ, Alvarez-Leite JI, Machado DCC, Generoso SV, Cardoso VN, Correia MITD. L-arginine pretreatment reduces intestinal mucositis as induced by 5-FU in mice. Nutr Cancer 2015; 67:486-93. [PMID: 25803482 DOI: 10.1080/01635581.2015.1004730] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Beneficial effects of L-arginine on immune responses and bowel function have been reported. Mucositis is a side effect of chemotherapy treatment that affects approximately 40% of patients. This complication is characterized by inflammation that affects the gastrointestinal tract, increasing permeability and causing abdominal pain, nausea, vomiting, and diarrhea, which worsen the patient's nutritional status and increases morbimortality. The aim of this study was to evaluate the effect of pretreating with 2% L-arginine supplementation in water on mucositis as induced by 5-fluorouracil (5-FU; a single dose of 200 mg/kg body weight) in Swiss male mice. The effect of L-arginine on weight, intestinal permeability, morphology, and the histopathological score of the small intestine (from 0 to 12), oxidative stress, myeloperoxidase (MPO), and N-acetylglucosaminidase (NAG) activities were evaluated. Intestinal length improvement was observed, in addition to the partial recovery of the mucosal architecture. L-arginine attenuated the histopathological score and MPO activity. There was also an improvement in intestinal permeability, despite weight loss after 5-FU administration. In conclusion, L-arginine can positively impact intestinal mucositis by promoting partial mucosal recovery, reducing inflammation and improving intestinal permeability.
Collapse
Affiliation(s)
- Paola C L Leocádio
- a Postgraduate Program in Food Science , Faculty of Pharmacy, UFMG , Belo Horizonte , MG , Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Stojanovska V, Sakkal S, Nurgali K. Platinum-based chemotherapy: gastrointestinal immunomodulation and enteric nervous system toxicity. Am J Physiol Gastrointest Liver Physiol 2015; 308:G223-32. [PMID: 25501548 DOI: 10.1152/ajpgi.00212.2014] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The efficacy of chemotherapeutic treatment of colorectal cancer is challenged by severe gastrointestinal side effects, which include nausea, vomiting, constipation, and diarrhea. These symptoms can persist long after the treatment has been ceased. An emerging concept is the ability of platinum-based drugs to stimulate immunity, which is in contrast to conventional chemotherapeutic agents that are immunosuppressive. Here, we review the immunomodulatory aspects of platinum-based anticancer chemotherapeutics and their impact on gastrointestinal innervation. Given the bidirectional communication between the enteric nervous system and gastrointestinal immune system; exploring the consequences of platinum-induced immunogenicity will facilitate better understanding of gut dysfunction caused by chemotherapeutic agents. We propose that the development of future successful chemotherapeutics should rely on targeting the mechanisms underlying long-term gastrointestinal side effects.
Collapse
Affiliation(s)
- Vanesa Stojanovska
- College of Health and Biomedicine, Victoria University, Western Centre for Health, Research and Education, St Albans, Victoria, Australia
| | - Samy Sakkal
- College of Health and Biomedicine, Victoria University, Western Centre for Health, Research and Education, St Albans, Victoria, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Victoria University, Western Centre for Health, Research and Education, St Albans, Victoria, Australia
| |
Collapse
|
38
|
Regulatory role of Lactobacillus acidophilus on inflammation and gastric dysmotility in intestinal mucositis induced by 5-fluorouracil in mice. Cancer Chemother Pharmacol 2015; 75:559-67. [PMID: 25572363 DOI: 10.1007/s00280-014-2663-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 12/22/2014] [Indexed: 01/25/2023]
Abstract
PURPOSE Lactobacillus acidophilus is widely used for gastrointestinal disorders, but its role in inflammatory conditions like in chemotherapy-induced mucositis is unclear. Here, we report the effect of L. acidophilus on 5-fluorouracil-induced (5-FU) intestinal mucositis in mice. METHODS Mice weighing 25-30 g (n = 8) were separated into three groups, saline, 5-FU, and 5-FU + L. acidophilus (5-FU-La) (16 × 10(9) CFU/kg). In the 5-FU-La group, L. acidophilus was administered concomitantly with 5-FU on the first day and alone for two additional days. Three days after the last administration of L. acidophilus, the animals were euthanized and the jejunum and ileum were removed for histopathological assessment and for evaluation of levels of myeloperoxidase activity, sulfhydryl groups, nitrite, and cytokines (TNF-α, IL-1β, CXCL-1, and IL-10). In addition, we investigated gastric emptying using spectrophotometry after feeding a 1.5-ml test meal by gavage and euthanasia. Data were submitted to ANOVA and Bonferroni's test, with the level of significance at p < 0.05. RESULTS Intestinal mucositis induced by 5-FU significantly (p < 0.05) reduced the villus height-crypt depth ratio and GSH concentration and increased myeloperoxidase activity and the nitrite concentrations compared with the control group. Furthermore, 5-FU significantly (p < 0.05) increased cytokine (TNF-α, IL-1β, and CXCL-1) concentrations and decreased IL-10 concentrations compared with the control group. 5-FU also significantly (p < 0.05) delayed gastric emptying and gastrointestinal transit compared with the control group. All of these changes were significantly (p < 0.05) reversed by treatment with L. acidophilus. CONCLUSIONS Lactobacillus acidophilus improves the inflammatory and functional aspects of intestinal mucositis induced by 5-FU.
Collapse
|
39
|
Bertoglio JC, Calderón S, Lesina B, Pilleux L, Morazzoni P, Riva A, Bombardelli E, Ronchi M, Cabri W, Petrangolini G. Effect of SAMITAL® in the treatment of chemotherapy-induced mucositis in adult oncohematological patients. Future Oncol 2014; 9:1727-32. [PMID: 24156332 DOI: 10.2217/fon.13.164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM We sought to evaluate the efficacy and safety of SAMITAL(®) (Indena SpA, Milan, Italy), a highly standardized botanical formulation, in reducing mucositis in patients undergoing treatment for hematological malignancies. PATIENTS & METHODS In this observational, uncontrolled study, a total of 25 consecutively enrolled patients (19 males, aged 18-74 years) with chemotherapy-induced mucositis were compassionately treated orally with SAMITAL (three to four times per day) for 4-22 days per cycle. RESULTS Patients demonstrated clinically relevant reductions in WHO mucositis grade with a reduction in pain, mucosal erosions, bleeding, dysphagia/feeding impairment and improvements in quality of life. SAMITAL was well tolerated and no local or systemic pharmacological, allergic, toxic or synergistic/antagonistic side effects were reported. Of note, SAMITAL also showed efficacy when administered prophylactically. CONCLUSION These results add weight to previous experiences with SAMITAL. However, randomized, placebo-controlled clinical trials will need to confirm the suitability of SAMITAL for use in the treatment of mucositis.
Collapse
|
40
|
Wang ZK, Yang YS, Stefka AT, Sun G, Peng LH. Review article: fungal microbiota and digestive diseases. Aliment Pharmacol Ther 2014; 39:751-66. [PMID: 24612332 DOI: 10.1111/apt.12665] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/16/2013] [Accepted: 01/29/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND The role of the fungal microbiota in digestive diseases is poorly defined, but is becoming better understood due to advances in metagenomics. AIM To review the gastrointestinal fungal microbiota and its relationship with digestive diseases. METHODS Search of the literature using PubMed and MEDLINE databases. Subject headings including 'fungal-bacterial interactions', 'mycotoxins', 'immunity to fungi', 'fungal infection', 'fungal microbiota', 'mycobiome' and 'digestive diseases' were used. RESULTS The fungal microbiota is an integral part of the gastrointestinal microecosystem with up to 10(6) microorganisms per gram of faeces. Next-generation sequencing of the fungal 18S rRNA gene has allowed better characterisation of the gastrointestinal mycobiome. Numerous interactions between fungi and bacteria and the complex immune response to gastrointestinal commensal or pathogenic fungi all impact on the pathophysiology of inflammatory bowel disease and other gastrointestinal inflammatory entities such as peptic ulcers. Mycotoxins generated as fungal metabolites contribute to disturbances of gastrointestinal barrier and immune functions and are associated with chronic intestinal inflammatory conditions as well as hepatocellular and oesophagogastric cancer. Systemic and gastrointestinal disease can also lead to secondary fungal infections. Fungal genomic databases and methodologies need to be further developed and will allow a much better understanding of the diversity and function of the mycobiome in gastrointestinal inflammation, tumourigenesis, liver cirrhosis and transplantation, and its alteration as a consequence of antibiotic therapy and chemotherapy. CONCLUSIONS The fungal microbiota and its metabolites impact gastrointestinal function and contribute to the pathogenesis of digestive diseases. Further metagenomic analyses of the gastrointestinal mycobiome in health and disease is needed.
Collapse
Affiliation(s)
- Z K Wang
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Chinese PLA Medical Academy, Beijing, China
| | | | | | | | | |
Collapse
|
41
|
Souza NCS, Simões BP, Júnior AAJ, Chiarello PG. Changes in Intestinal Permeability and Nutritional Status After Cytotoxic Therapy in Patients with Cancer. Nutr Cancer 2014; 66:576-82. [DOI: 10.1080/01635581.2014.894095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Zhang Z, Xu J, Zhou T, Yi Y, Li H, Sun H, Huang W, Wang D, Li B, Ying G. Risk factors of radiation-induced acute esophagitis in non-small cell lung cancer patients treated with concomitant chemoradiotherapy. Radiat Oncol 2014; 9:54. [PMID: 24528546 PMCID: PMC3937013 DOI: 10.1186/1748-717x-9-54] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/13/2014] [Indexed: 12/13/2022] Open
Abstract
Background To analyze the clinical and dosimetric risk factors of acute esophagitis (AE) in non-small-cell lung cancer (NSCLC) patients treated with concomitant chemoradiotherapy. Methods Seventy-six NSCLC patients treated with concomitant chemoradiotherapy were retrospectively analyzed. Forty-one patients received concomitant chemoradiotherapy with vinorelbine/cisplatin (VC), 35 with docetaxel/cisplatin (DC). AE was graded according to criteria of the Radiation Therapy Oncology Group (RTOG). The following clinical and dosimetric parameters were analyzed: gender, age, clinical stage, Karnofsky performance status (KPS), pretreatment weight loss, concomitant chemotherapy agents (CCA) (VC vs. DC), percentage of esophagus volume treated to ≥20 (V20), ≥30 (V30), ≥40 (V40), ≥50 (V50) and ≥60 Gy (V60), and the maximum (Dmax) and mean doses (Dmean) delivered to esophagus. Univariate and multivariate logistic regression analysis were used to test the association between the different factors and AE. Results Seventy patients developed AE (Grade 1, 19 patients; Grade 2, 36 patients; and Grade 3, 15 patients). By multivariate logistic regression analysis, V40 was the only statistically significant factor associated with Grade ≥2 AE (p<0.001, OR = 1.159). A V40 of <23% had a 33.3% (10/30) risk of Grade ≥2 AE, which increased to 89.1% (41/46) with a V40 of ≥23% (p<0.001). CCA (p =0.01; OR = 9.686) and V50 (p<0.001; OR = 1.122) were most significantly correlated with grade 3 AE. A V50 of <26.5% had a 6.7% (3/45) risk of Grade 3 AE, which increased to 38.7% (12/31) with a V50 of ≥26.5% (p = 0.001). On the linear regression analysis, V50 and CCA were significant independent factors affecting AE duration. Patients who received concomitant chemotherapy with VC had a decreased risk of grade 3 AE and shorter duration compared with DC. Conclusions Concomitant chemotherapy agents have potential influence on AE. Concomitant chemotherapy with VC led to lower risk of AE compared with that using DC. V40 and V50 of esophagus can predict grade ≥2 and ≥3 AE, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - BaoSheng Li
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | | |
Collapse
|
43
|
Treatment withSaccharomyces boulardiireduces the inflammation and dysfunction of the gastrointestinal tract in 5-fluorouracil-induced intestinal mucositis in mice. Br J Nutr 2014; 111:1611-21. [DOI: 10.1017/s0007114513004248] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal mucositis is an important toxic side effect of 5-fluorouracil (5-FU) treatment.Saccharomyces boulardiiis known to protect from intestinal injury via an effect on the gastrointestinal microbiota. The objective of the present study was to evaluate the effect ofS. boulardiion intestinal mucositis induced by 5-FU in a murine model. Mice were divided into saline, saline (control)+5-FU or 5-FU+S. boulardii(16 × 109colony-forming units/kg) treatment groups, and the jejunum and ileum were removed after killing of mice for the evaluation of histopathology, myeloperoxidase (MPO) activity, and non-protein sulfhydryl group (mainly reduced glutathione; GSH), nitrite and cytokine concentrations. To determine gastric emptying, phenol red was administered orally, mice were killed 20 min after administration, and the absorbance of samples collected from the mice was measured by spectrophotometry. Intestinal permeability was measured by the urinary excretion rate of lactulose and mannitol following oral administration.S. boulardiisignificantly reversed the histopathological changes in intestinal mucositis induced by 5-FU and reduced the inflammatory parameters: neutrophil infiltration (control 1·73 (sem0·37) ultrastructural MPO (UMPO)/mg, 5-FU 7·37 (sem1·77) UMPO/mg and 5-FU+S. boulardii4·15 (sem0·73) UMPO/mg); nitrite concentration (control 37·00 (sem2·39) μm, 5-FU 59·04 (sem11·41) μmand 5-FU+S. boulardii37·90 (sem5·78) μm); GSH concentration (control 477·60 (sem25·25) μg/mg, 5-FU 270·90 (sem38·50) μg/mg and 5-FU+S. boulardii514·00 (sem38·64) μg/mg). Treatment with S.Boulardiisignificantly reduced the concentrations of TNF-α and IL-1β by 48·92 and 32·21 % in the jejunum and 38·92 and 61·79 % in the ileum. In addition,S. boulardiidecreased the concentrations of chemokine (C–X–C motif) ligand 1 by 5-fold in the jejunum and 3-fold in the ileum. Interestingly,S. boulardiireduced the delay in gastric emptying (control 25·21 (sem2·55) %, 5-FU 54·91 (sem3·43) % and 5-FU+S. boulardii31·38 (sem2·80) %) and induced the recovery of intestinal permeability (lactulose:mannitol ratio: control 0·52 (sem0·03), 5-FU 1·38 (sem0·24) and 5-FU+S. boulardii0·62 (sem0·03)). In conclusion,S. boulardiireduces the inflammation and dysfunction of the gastrointestinal tract in intestinal mucositis induced by 5-FU.
Collapse
|
44
|
Stringer AM, Logan RM. The role of oral flora in the development of chemotherapy-induced oral mucositis. J Oral Pathol Med 2014; 44:81-7. [DOI: 10.1111/jop.12152] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Andrea M. Stringer
- School of Pharmacy and Medical Sciences; University of South Australia; Adelaide SA Australia
- School of Medical Sciences; The University of Adelaide; Adelaide SA Australia
| | - Richard M. Logan
- School of Dentistry; Faculty of Health Sciences; The University of Adelaide; Adelaide SA Australia
| |
Collapse
|
45
|
Livshits Z, Rao RB, Smith SW. An Approach to Chemotherapy-Associated Toxicity. Emerg Med Clin North Am 2014; 32:167-203. [DOI: 10.1016/j.emc.2013.09.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Wang H, Brook CL, Whittaker AL, Lawrence A, Yazbeck R, Howarth GS. Effects of Streptococcus thermophilus TH-4 in a rat model of doxorubicin-induced mucositis. Scand J Gastroenterol 2013; 48:959-968. [PMID: 23865592 DOI: 10.3109/00365521.2013.812142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Mucositis is a debilitating intestinal side effect of chemotherapeutic regimens. Probiotics have been considered a possible preventative treatment for mucositis. Streptococcus thermophilus TH-4 (TH-4), a newly identified probiotic, has been shown to partially alleviate mucositis induced by administration of the antimetabolite chemotherapy drug, methotrexate in rats; likely mediated through a mechanism of folate production. However, its effects against other classes of chemotherapy drug have yet to be determined. AIMS The authors investigated the effects of TH-4 in a rat model of mucositis induced by the anthracycline chemotherapy drug, doxorubicin. METHODS Gastrointestinal damage was induced in female Dark Agouti rats (148.3 ± 1.5 g) by intraperitoneal injection of doxorubicin (20 mg/kg). Animals recieved a daily oral gavage of TH-4 at 10(9) cfu/ml or skim milk (vehicle) from days 0 to 8. At day 6, rats were injected with either saline or doxorubicin. At kill, small intestinal tissues were collected for determination of sucrase and myeloperoxidase (MPO) activities and histological assessment. RESULTS Body weight was significantly decreased by doxorubicin compared with normal controls (p < 0.05). Histological parameters, such as crypt depth and villus height, were also significantly decreased by doxorubicin. TH-4 partially prevented the loss of body weight induced by doxorubicin (2.3% compared with 4%), but provided no further therapeutic benefit. CONCLUSIONS The minimal amelioration of doxorubicin-induced mucositis by TH-4 further supports folate production as a likely mechanism of TH-4 action against methotrexate-induced mucositis. Further studies into TH-4 are required to confirm its applicability to other conventional chemotherapy regimens.
Collapse
Affiliation(s)
- Hanru Wang
- School of Animal and Veterinary Sciences, The University of Adelaide, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
47
|
Interaction between host cells and microbes in chemotherapy-induced mucositis. Nutrients 2013; 5:1488-99. [PMID: 23628721 PMCID: PMC3708331 DOI: 10.3390/nu5051488] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/05/2013] [Accepted: 04/07/2013] [Indexed: 02/07/2023] Open
Abstract
Cancer patients receiving chemotherapy often develop mucositis as a direct result of their treatment. Recently, the intestinal microbiota has attracted significant attention in the investigation of the pathobiology of mucositis, with a number of studies investigating the effects of chemotherapeutic agents on the microbiota. With significant effects on the intestinal microbiota occurring following the administration of chemotherapy, there is now interest surrounding the downstream pathological effects that may be associated with the altered intestinal ecology. This review seeks to identify links between signalling pathways previously demonstrated to have a role in the development of mucositis, and the altered intestinal microbiota.
Collapse
|
48
|
A preclinical study on the protective effect of melatonin against methotrexate-induced small intestinal damage: effect mediated by attenuation of nitrosative stress, protein tyrosine nitration, and PARP activation. Cancer Chemother Pharmacol 2013; 71:1209-18. [PMID: 23420439 DOI: 10.1007/s00280-013-2115-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
Abstract
PURPOSE One of the major toxic side effects of methotrexate (MTX) is enterocolitis. To date, there is no efficient standard treatment for this side effect. Nitrosative stress is reported to play a critical role in MTX-induced mucositis. The purpose of this study is to investigate whether pretreatment with melatonin, an inhibitor of nitro-oxidative stress, prevents MTX-induced mucositis in rats. METHODS Rats were pretreated with melatonin (20 and 40 mg/kg body weight) i.p. daily 1 h before MTX (7 mg/kg body weight) administration for three consecutive days. After the final dose of MTX, the rats were killed and the small intestines were used for analysis. RESULTS The small intestines of MTX-treated rats showed moderate to severe injury. The villi were distorted, blunted, and atrophied and focally absent in various segments of the small intestines. Crypt abscesses were also found, suggesting an inflammatory response. Pretreatment with melatonin had a dose-dependent protective effect on MTX-induced mucositis. Morphology was saved to a moderate extent with 20 mg melatonin pretreatment, and near-normal morphology was achieved with 40 mg melatonin pretreatment. Damage to the villi and crypt abscess was reduced. The villi/crypt ratio was almost restored. Melatonin pretreatment protected the small intestines from MTX-induced damage by attenuating nitrosative stress, protein tyrosine nitration and PARP expression. CONCLUSION Because of its versatility in protecting against nitro-oxidative stress and reducing inflammation, we suggest that melatonin could be beneficial in ameliorating MTX-induced enteritis in humans.
Collapse
|
49
|
Zheng J, Garg S, Wang J, Loose DS, Hauer-Jensen M. Laser capture microdissected mucosa versus whole tissue specimens for assessment of radiation-induced dynamic molecular and pathway changes in the small intestine. PLoS One 2013; 8:e53711. [PMID: 23341980 PMCID: PMC3544848 DOI: 10.1371/journal.pone.0053711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/03/2012] [Indexed: 11/22/2022] Open
Abstract
Background The intestinal mucosa is the compartment that sustains the most severe injury in response to radiation and is therefore of primary interest. The use of whole gut extracts for analysis of gene expression may confound important changes in the mucosa. On the other hand, laser capture microdissection (LCM) is hampered by the unstable nature of RNA and by a more complicated collection process. This study assessed, in parallel samples from a validated radiation model, the indications for use of LCM for intestinal gene expression analysis. Methodology/Principal Findings RNA was extracted from mouse whole intestine and from mucosa by LCM at baseline and 4 h, 24 h, and 3.5 d after total body irradiation and subjected to microarray analysis. Among mucosal genes that were altered > = 2-fold, less than 7% were present in the whole gut at 4 and 24 h, and 25% at 3.5 d. As expected, pathway analysis of mucosal LCM samples showed that radiation activated the coagulation system, lymphocyte apoptosis, and tight junction signaling, and caused extensive up-regulation of cell cycle and DNA damage repair pathways. Using similar stringent criteria, regulation of these pathways, with exception of the p53 pathway, was undetectable in the whole gut. Radiation induced a dramatic increase of caspase14 and ectodysplasin A2 receptor (Eda2r), a TNFα receptor, in both types of samples. Conclusions/Significance LCM-isolated mucosal specimens should be used to study cellular injury, cell cycle control, and DNA damage repair pathways. The remarkable increase of caspase14 and Eda2r suggests a novel role for these genes in regulating intestinal radiation injury. Comparative gene expression data from complex tissues should be interpreted with caution.
Collapse
Affiliation(s)
- Junying Zheng
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America.
| | | | | | | | | |
Collapse
|
50
|
Anti-inflammatory cytokines: important immunoregulatory factors contributing to chemotherapy-induced gastrointestinal mucositis. CHEMOTHERAPY RESEARCH AND PRACTICE 2012; 2012:490804. [PMID: 22973511 PMCID: PMC3437608 DOI: 10.1155/2012/490804] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/25/2012] [Accepted: 07/25/2012] [Indexed: 12/13/2022]
Abstract
“Mucositis” is the clinical term used to describe ulceration and damage of the mucous membranes of the entire gastrointestinal tract (GIT) following cytotoxic cancer chemotherapy and radiation therapy common symptoms include abdominal pain, bloating, diarrhoea, vomiting, and constipation resulting in both a significant clinical and financial burden. Chemotherapeutic drugs cause upregulation of stress response genes including NFκB, that in turn upregulate the production of proinflammatory cytokines such as interleukin-1β (IL-1β), Interleukin-6 (IL-6), and tumour necrosis factor-α (TNF-α). These proinflammatory cytokines are responsible for initiating inflammation in response to tissue injury. Anti-inflammatory cytokines and specific cytokine inhibitors are also released to limit the sustained or excessive inflammatory reactions. In the past decade, intensive research has determined the role of proinflammatory cytokines in development of mucositis. However, a large gap remains in the knowledge of the role of anti-inflammatory cytokines in the setting of chemotherapy-induced mucositis. This critical paper will highlight current literature available relating to what is known regarding the development of mucositis, including the molecular mechanisms involved in inducing inflammation particularly with respect to the role of proinflammatory cytokines, as well as provide a detailed discussion of why it is essential to consider extensive research in the role of anti-inflammatory cytokines in chemotherapy-induced mucositis so that effective targeted treatment strategies can be developed.
Collapse
|