1
|
Berkeley RF, Plonski AP, Phan TM, Grohe K, Becker L, Wegner S, Herzik MA, Mittal J, Debelouchina GT. Capturing the Conformational Heterogeneity of HSPB1 Chaperone Oligomers at Atomic Resolution. J Am Chem Soc 2025; 147:15181-15194. [PMID: 40146081 DOI: 10.1021/jacs.4c18668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Small heat shock proteins (sHSPs), including HSPB1, are essential regulators of cellular proteostasis that interact with unfolded and partially folded proteins to prevent aberrant misfolding and aggregation. These proteins fulfill a similar role in biological condensates, where they interact with intrinsically disordered proteins to modulate their liquid-liquid and liquid-to-solid phase transitions. Characterizing the sHSP structure, dynamics, and client interactions is challenging due to their partially disordered nature, their tendency to form polydisperse oligomers, and their diverse range of clients. In this work, we leverage various biophysical methods, including fast 1H-based magic angle spinning (MAS) NMR spectroscopy, molecular dynamics (MD) simulations, and modeling, to shed new light on the structure and dynamics of HSPB1 oligomers. Using split-intein-mediated segmental labeling, we provide unambiguous evidence that in the oligomer context, the N-terminal domain (NTD) of HSPB1 is rigid and adopts an ensemble of heterogeneous conformations, the α-Crystallin domain (ACD) forms dimers and experiences multiple distinct local environments, while the C-terminal domain (CTD) remains highly dynamic. Our computational models suggest that the NTDs participate in extensive NTD-NTD and NTD-ACD interactions and are sequestered within the oligomer interior. We further demonstrate that HSPB1 higher order oligomers disassemble into smaller oligomeric species in the presence of a client protein and that an accessible NTD is essential for HSPB1 partitioning into condensates and interactions with client proteins. Our integrated approach provides a high-resolution view of the complex oligomeric landscape of HSPB1 and sheds light on the elusive network of interactions that underlies the function of HSPB1 in biological condensates.
Collapse
Affiliation(s)
- Raymond F Berkeley
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Alexander P Plonski
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Tien M Phan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kristof Grohe
- Bruker BioSpin GmbH & Co. KG, Ettlingen 76275, Germany
| | - Lukas Becker
- Bruker BioSpin GmbH & Co. KG, Ettlingen 76275, Germany
| | | | - Mark A Herzik
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, Texas 77843, United States
| | - Galia T Debelouchina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Rice L, Marzano N, Cox D, Skewes B, van Oijen AM, Ecroyd H. Single-molecule observations of human small heat shock proteins in complex with aggregation-prone client proteins. Biochem J 2025; 482:413-432. [PMID: 40241479 DOI: 10.1042/bcj20240473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025]
Abstract
Small heat shock proteins (sHsps) are molecular chaperones that act to prevent the aberrant aggregation of misfolded proteins. Whilst it is suggested that sHsps prevent aggregation by binding to misfolded client proteins, the dynamic and heterogeneous nature of sHsps has hindered attempts to establish the mechanistic details of how sHsp-client protein complexes form. Single-molecule approaches have emerged as a powerful tool to investigate dynamic and heterogeneous interactions such as those that can occur between sHsps and their client proteins. Here, we use total internal reflection fluorescence microscopy to observe and characterise the complexes formed between model aggregation-prone client proteins (firefly luciferase, rhodanese and chloride intracellular channel 1 protein), and the human sHsps αB-crystallin (αB-c; HSPB5) and Hsp27 (HSPB1). We show that small (monomeric or dimeric) forms of both αB-c and Hsp27 bind to misfolded or oligomeric forms of the client proteins at early stages of aggregation, resulting in the formation of soluble sHsp-client complexes. Stoichiometric analysis of these complexes revealed that additional αB-c subunits accumulate onto pre-existing sHsp-client complexes to form larger species - this does not occur to the same extent for Hsp27. Instead, Hsp27-client interactions tend to be more transient than those of αB-c. Elucidating these mechanisms of sHsp function is crucial to our understanding of how these molecular chaperones act to inhibit protein aggregation and maintain cellular proteostasis.
Collapse
Affiliation(s)
- Lauren Rice
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Nicholas Marzano
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Dezerae Cox
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
| | - Bailey Skewes
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
3
|
Racigh V, Rodriguez Sawicki L, Bravo FNE, Fornasari MS. Coevolution in human small Heat Shock Protein 1 is promoted by interactions between the Alpha-Crystallin domain and the disordered regions. PLoS One 2025; 20:e0321163. [PMID: 40323908 PMCID: PMC12052118 DOI: 10.1371/journal.pone.0321163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/03/2025] [Indexed: 05/07/2025] Open
Abstract
Human small Heat Shock Protein 1 (HSPB1) belongs to the Small Heat Shock Protein (sHSP) superfamily, a group of ATP-independent molecular chaperones essential for cellular stress responses and protein quality control. These proteins share a conserved domain organization, with a structured Alpha-Crystallin domain (ACD) flanked by disordered N-terminal and C-terminal regions (NTR and CTR). While the prevailing evolutionary hypothesis for the sHSP family suggests that the disordered regions evolved independently and at a faster rate than the ACD, this study provides, for the first time, evidence of coevolution between these regions in human HSPB1, introducing new insights into the evolutionary mechanisms that sustain critical regulatory interactions. By integrating evolutionary and structural approaches, we estimated evolutionary rates per region and position, analyzed the composition of key interacting motifs, and employed structural modeling with AlphaFold 2 to assess the prevalence of these interactions. Our findings reveal that while the disordered regions globally evolve faster than the ACD, specific motifs involved in regulatory interactions exhibit lower-than-average evolutionary rates, reflecting evolutionary constraints imposed by their functional importance. This coevolutionary mechanism may also extend to other small Heat Shock Proteins featuring interacting motifs in the NTR, CTR, or both, offering a new perspective for studying their molecular evolution. Furthermore, the analysis presented in this work could be applied to assess coevolution in other proteins with intrinsically disordered regions.
Collapse
Affiliation(s)
- Vanesa Racigh
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Luciana Rodriguez Sawicki
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Instituto de Investigaciones Bioquímicas de La Plata, CONICET-UNLP, Facultad de Ciencias Médicas, La Plata, Argentina
| | | | | |
Collapse
|
4
|
Wang Z, Cao G, Collier MP, Qiu X, Broadway-Stringer S, Šaman D, Ng JZY, Sen N, Azad AJ, Hooper C, Zimmermann J, McDonough MA, Brem J, Rabe P, Song H, Alderson TR, Schofield CJ, Bolla JR, Djinovic-Carugo K, Fürst DO, Warscheid B, Degiacomi MT, Allison TM, Hochberg GKA, Robinson CV, Gehmlich K, Benesch JLP. Filamin C dimerisation is regulated by HSPB7. Nat Commun 2025; 16:4090. [PMID: 40312381 PMCID: PMC12046049 DOI: 10.1038/s41467-025-58889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/02/2025] [Indexed: 05/03/2025] Open
Abstract
The biomechanical properties and responses of tissues underpin a variety important of physiological functions and pathologies. In striated muscle, the actin-binding protein filamin C (FLNC) is a key protein whose variants causative for a wide range of cardiomyopathies and musculoskeletal pathologies. FLNC is a multi-functional protein that interacts with a variety of partners, however, how it is regulated at the molecular level is not well understood. Here we investigate its interaction with HSPB7, a cardiac-specific molecular chaperone whose absence is embryonically lethal. We find that FLNC and HSPB7 interact in cardiac tissue under biomechanical stress, forming a strong hetero-dimer whose structure we solve by X-ray crystallography. Our quantitative analyses show that the hetero-dimer out-competes the FLNC homo-dimer interface, potentially acting to abrogate the ability of the protein to cross-link the actin cytoskeleton, and to enhance its diffusive mobility. We show that phosphorylation of FLNC at threonine 2677, located at the dimer interface and associated with cardiac stress, acts to favour the homo-dimer. Conversely, phosphorylation at tyrosine 2683, also at the dimer interface, has the opposite effect and shifts the equilibrium towards the hetero-dimer. Evolutionary analysis and ancestral sequence reconstruction reveals this interaction and its mechanisms of regulation to date around the time primitive hearts evolved in chordates. Our work therefore shows, structurally, how HSPB7 acts as a specific molecular chaperone that regulates FLNC dimerisation.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Guodong Cao
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Miranda P Collier
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Xingyu Qiu
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | | | - Dominik Šaman
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Jediael Z Y Ng
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Navoneel Sen
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Amar J Azad
- Cardiovascular Sciences, School of Medical Sciences, University of Birmingham, Birmingham, UK
- Center of Biological Design, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Charlotte Hooper
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK
| | - Johannes Zimmermann
- Biochemistry II, Theodor Boveri-Institute, Biocenter, Chemistry and Pharmacy, University of Würzburg, Würzburg, Germany
| | | | - Jürgen Brem
- Department of Chemistry, Chemistry Research Laboratory, Oxford, UK
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Patrick Rabe
- Department of Chemistry, Chemistry Research Laboratory, Oxford, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Haigang Song
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - T Reid Alderson
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, Germany
| | - Christopher J Schofield
- Department of Chemistry, Chemistry Research Laboratory, Oxford, UK
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Jani R Bolla
- Department of Biology, University of Oxford, Oxford, UK
| | - Kristina Djinovic-Carugo
- European Molecular Biology Laboratory, Grenoble, France
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Bettina Warscheid
- Biochemistry II, Theodor Boveri-Institute, Biocenter, Chemistry and Pharmacy, University of Würzburg, Würzburg, Germany
| | - Matteo T Degiacomi
- Department of Physics, Durham University, Durham, UK
- School of Informatics and EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Timothy M Allison
- Biomolecular Interaction Centre and School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Georg K A Hochberg
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Carol V Robinson
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Katja Gehmlich
- Cardiovascular Sciences, School of Medical Sciences, University of Birmingham, Birmingham, UK.
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK.
| | - Justin L P Benesch
- Department of Chemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Miller AP, Reichow SL. Mechanism of small heat shock protein client sequestration and induced polydispersity. Nat Commun 2025; 16:3635. [PMID: 40240363 PMCID: PMC12003685 DOI: 10.1038/s41467-025-58964-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
Small heat shock proteins (sHSPs) act as first responders during cellular stress, sequestering destabilized proteins (clients) to prevent aggregation and facilitate refolding or degradation. This critical function, conserved across all life, is linked to proteostasis and protein misfolding diseases. However, the extreme molecular plasticity of sHSP/client complexes has limited mechanistic understanding. Here, we present high-resolution cryo-EM structures of Methanocaldococcus jannaschii sHSP (mjHSP16.5) in apo and multiple client-bound states. The ensemble reveals molecular mechanisms of client sequestration, highlighting cooperative chaperone-client interactions. Client engagement polarizes scaffold stability, promoting higher-order assembly and enhanced sequestration. Higher-order states suggest multiple sHSP/client assembly pathways, including subunit insertion at destabilized geometrical features. These findings provide critical insights into sHSP chaperone function and the interplay between polydispersity and client handling under stress.
Collapse
Affiliation(s)
- Adam P Miller
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, 97239, USA
- Vollum Institute, Oregon Health and Science Institute, Portland, OR, 97239, USA
| | - Steve L Reichow
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, 97239, USA.
- Vollum Institute, Oregon Health and Science Institute, Portland, OR, 97239, USA.
| |
Collapse
|
6
|
Albinhassan TH, Alharbi BM, AlSuhaibani ES, Mohammad S, Malik SS. Small Heat Shock Proteins: Protein Aggregation Amelioration and Neuro- and Age-Protective Roles. Int J Mol Sci 2025; 26:1525. [PMID: 40003991 PMCID: PMC11855743 DOI: 10.3390/ijms26041525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Protein misfolding, aggregation, and aberrant aggregate accumulation play a central role in neurodegenerative disease progression. The proteotoxic factors also govern the aging process to a large extent. Molecular chaperones modulate proteostasis and thereby impact aberrant-protein-induced proteotoxicity. These chaperones have a diverse functional spectrum, including nascent protein folding, misfolded protein sequestration, refolding, or degradation. Small heat shock proteins (sHsps) possess an ATP-independent chaperone-like activity that prevents protein aggregation by keeping target proteins in a folding-competent state to be refolded by ATP-dependent chaperones. Due to their near-universal upregulation and presence in sites of proteotoxic stress like diseased brains, sHsps were considered pathological. However, gene knockdown and overexpression studies have established their protective functions. This review provides an updated overview of the sHsp role in protein aggregation amelioration and highlights evidence for sHsp modulation of neurodegenerative disease-related protein aggregation and aging.
Collapse
Affiliation(s)
- Tahani H. Albinhassan
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (T.H.A.); (S.M.)
- Zoology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia
| | - Bothina Mohammed Alharbi
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (T.H.A.); (S.M.)
| | | | - Sameer Mohammad
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (T.H.A.); (S.M.)
| | - Shuja Shafi Malik
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (T.H.A.); (S.M.)
| |
Collapse
|
7
|
Tilikj N, de la Fuente M, Muñiz-González AB, Martínez-Guitarte JL, Caballero-Carretero P, Novo M. Small heat shock proteins as relevant biomarkers for anthropogenic stressors in earthworms. Comp Biochem Physiol A Mol Integr Physiol 2025; 300:111785. [PMID: 39581225 DOI: 10.1016/j.cbpa.2024.111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Anthropogenic stressors in terrestrial ecosystems require focused research on adaptive responses in soil organisms such as Eisenia fetida, a model earthworm species. We analyzed the gene expression of five small heat shock proteins (sHSPs) in response to various stressors: heat stress (31 and 35 °C), desiccation (10 % and 20 % humidity), and chemical exposure (bisphenol A and endosulfan) under standard and elevated temperatures. Under moderate heat (31 °C), early upregulation of sHSP transcripts suggests their involvement in initial stress responses, possibly mitigating protein aggregation. At the higher temperature (35 °C), three sHSPs served as a defense against severe protein aggregation, a significant finding as previous studies identified only one activated heat shock protein (HSP70) in E. fetida under similar conditions. Desiccation stress at 10 % humidity activated more sHSPs than at 20 % humidity, and the expression profile at 10 % humidity closely resembled that observed under heat stress, suggesting overlapping adaptation pathways. Heat combined with chemical stress, particularly endosulfan, elevated sHSP transcription and underscored the potential of these proteins as biomarkers in multi-stressor environments. Monomeric sHSPs from E. fetida, which share homology with human sHSPs, showed the highest activity across all stressors, suggesting their key role in earthworm adaptation.
Collapse
Affiliation(s)
- Natasha Tilikj
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, C/José Antonio Nováis 12, 28040 Madrid, Spain.
| | - Mercedes de la Fuente
- Departamento de Ciencias y Técnicas Fisicoquímicas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Avenida de Esparta, s/n, Madrid 28232, Spain
| | - Ana Belén Muñiz-González
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid (UPM), Avda. Puerta de Hierro 2, 28040 Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Environmental Toxicology and Biology Group, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Senda del Rey 9, 28040 Madrid, Spain
| | - Patricia Caballero-Carretero
- Environmental Toxicology and Biology Group, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Senda del Rey 9, 28040 Madrid, Spain
| | - Marta Novo
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, C/José Antonio Nováis 12, 28040 Madrid, Spain. https://twitter.com/martanovo
| |
Collapse
|
8
|
Domingo-Serrano L, Sanchis-López C, Alejandre C, Soldek J, Palacios JM, Albareda M. A microaerobically induced small heat shock protein contributes to Rhizobium leguminosarum/ Pisum sativum symbiosis and interacts with a wide range of bacteroid proteins. Appl Environ Microbiol 2025; 91:e0138524. [PMID: 39714151 PMCID: PMC11784457 DOI: 10.1128/aem.01385-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
During the establishment of the symbiosis with legume plants, rhizobia are exposed to hostile physical and chemical microenvironments to which adaptations are required. Stress response proteins including small heat shock proteins (sHSPs) were previously shown to be differentially regulated in bacteroids induced by Rhizobium leguminosarum bv. viciae UPM791 in different hosts. In this work, we undertook a functional analysis of the host-dependent sHSP RLV_1399. A rlv_1399-deleted mutant strain was impaired in the symbiotic performance with peas but not with lentil plants. Expression of rlv_1399 gene was induced under microaerobic conditions in a FnrN-dependent manner consistent with the presence of an anaerobox in its regulatory region. Overexpression of this sHSP improves the viability of bacterial cultures following exposure to hydrogen peroxide and to cationic nodule-specific cysteine-rich (NCR) antimicrobial peptides. Co-purification experiments have identified proteins related to nitrogenase synthesis, stress response, carbon and nitrogen metabolism, and to other relevant cellular functions as potential substrates for RLV_1399 in pea bacteroids. These results, along with the presence of unusually high number of copies of shsp genes in rhizobial genomes, indicate that sHSPs might play a relevant role in the adaptation of the bacteria against stress conditions inside their host.IMPORTANCEThe identification and analysis of the mechanisms involved in host-dependent bacterial stress response is important to develop optimal Rhizobium/legume combinations to maximize nitrogen fixation for inoculant development and might have also applications to extend nitrogen fixation to other crops. The data presented in this work indicate that sHSP RLV_1399 is part of the bacterial stress response to face specific stress conditions offered by each legume host. The identification of a wide diversity of sHSP potential targets reveals the potential of this protein to protect essential bacteroid functions. The finding that nitrogenase is the most abundant RLV_1399 substrate suggests that this protein is required to obtain an optimal nitrogen-fixing symbiosis.
Collapse
Affiliation(s)
- Lucía Domingo-Serrano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Claudia Sanchis-López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Carla Alejandre
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Joanna Soldek
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - José Manuel Palacios
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Marta Albareda
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Rai P, Pathania R, Bhagat N, Bongirwar R, Shukla P, Srivastava S. Current insights into molecular mechanisms of environmental stress tolerance in Cyanobacteria. World J Microbiol Biotechnol 2025; 41:53. [PMID: 39875631 DOI: 10.1007/s11274-025-04260-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/12/2025] [Indexed: 01/30/2025]
Abstract
The photoautotrophic nature of cyanobacteria, coupled with their fast growth and relative ease of genetic manipulation, makes these microorganisms very promising factories for the sustainable production of bio-products from atmospheric carbon dioxide. However, both in nature and in cultivation, cyanobacteria go through different abiotic stresses such as high light (HL) stress, heavy metal stress, nutrient limitation, heat stress, salt stress, oxidative stress, and alcohol stress. In recent years, significant improvement has been made in identifying the stress-responsive genes and the linked pathways in cyanobacteria and developing genome editing tools for their manipulation. Metabolic pathways play an important role in stress tolerance; their modification is also a very promising approach to adapting to stress conditions. Several synthetic as well as systems biology approaches have been developed to identify and manipulate genes regulating cellular responses under different stresses. In this review, we summarize the impact of different stresses on metabolic processes, the small RNAs, genes and heat shock proteins (HSPs) involved, changes in the metabolome and their adaptive mechanisms. The developing knowledge of the adaptive behaviour of cyanobacteria may also be utilised to develop better stress-responsive strains for various applications.
Collapse
Affiliation(s)
- Preeti Rai
- Systems Biology for Biofuels Group, International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ruchi Pathania
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, USA
| | - Namrata Bhagat
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Riya Bongirwar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Shireesh Srivastava
- Systems Biology for Biofuels Group, International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
10
|
Miwa T, Taguchi H. Revival of the Escherichia coli heat shock response after two decades with a small Hsp in a critical but distinct act. Biol Chem 2025; 406:29-33. [PMID: 39760265 DOI: 10.1515/hsz-2024-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
The heat stress response is an essential defense mechanism in all organisms. Heat shock proteins (Hsps) are produced in response to thermal stress, with their expression levels regulated by heat shock transcription factors. In Escherichia coli, the key transcription factor σ32 positively regulates Hsp expression. Studies from over two decades ago revealed that σ32 abundance is negatively controlled under normal conditions, mainly through degradation mechanisms involving DnaK, GroEL, and FtsH. Beyond this established mechanism, recent findings indicate that a small heat shock protein IbpA also plays a role in the translational regulation of σ32, adding a new layer to the established model. This review highlights the role of a new actor, IbpA, which strongly suppresses σ32 expression under non-stress conditions and markedly increases it during heat shock.
Collapse
Affiliation(s)
- Tsukumi Miwa
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo (Formerly Tokyo Institute of Technology), S2-19, Nagatsuta 4259, Midori-ku, Yokohama, 226-8501, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo (Formerly Tokyo Institute of Technology), S2-19, Nagatsuta 4259, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
11
|
Qu J, Schinkel M, Chiggiato L, Rosendo Machado S, Overheul GJ, Miesen P, van Rij RP. The Hsf1-sHsp cascade has pan-antiviral activity in mosquito cells. Commun Biol 2025; 8:123. [PMID: 39863754 PMCID: PMC11762766 DOI: 10.1038/s42003-024-07435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Aedes mosquitoes transmit pathogenic arthropod-borne (arbo) viruses, putting nearly half the world's population at risk. Blocking virus replication in mosquitoes is a promising approach to prevent arbovirus transmission, the development of which requires in-depth knowledge of virus-host interactions and mosquito immunity. By integrating multi-omics data, we find that heat shock factor 1 (Hsf1) regulates eight small heat shock protein (sHsp) genes within one topologically associated domain in the genome of the Aedes aegypti mosquito. This Hsf1-sHsp cascade acts as an early response against chikungunya virus infection and shows pan-antiviral activity against chikungunya, Sindbis, and dengue virus as well as the insect-specific Agua Salud alphavirus in Ae. aegypti cells and against chikungunya virus and O'nyong-nyong virus in Aedes albopictus and Anopheles gambiae cells, respectively. Our comprehensive in vitro data suggest that Hsf1 could serve as a promising target for the development of novel intervention strategies to limit arbovirus transmission by mosquitoes.
Collapse
Affiliation(s)
- Jieqiong Qu
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michelle Schinkel
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisa Chiggiato
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Samara Rosendo Machado
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Kaushik P, Herrmann JM, Hansen KG. MitoStores: stress-induced aggregation of mitochondrial proteins. Biol Chem 2025:hsz-2024-0148. [PMID: 39828945 DOI: 10.1515/hsz-2024-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Most mitochondrial proteins are synthesized in the cytosol and post-translationally imported into mitochondria. If the rate of protein synthesis exceeds the capacity of the mitochondrial import machinery, precursor proteins can transiently accumulate in the cytosol. The cytosolic accumulation of mitochondrial precursors jeopardizes cellular protein homeostasis (proteostasis) and can be the cause of diseases. In order to prevent these toxic effects, most non-imported precursors are rapidly degraded by the ubiquitin-proteasome system. However, cells employ a second layer of defense which is the facilitated sequestration of mitochondrial precursor proteins in transient protein aggregates. The formation of such structures is triggered by nucleation factors such as small heat shock proteins. Disaggregases and chaperones can liberate precursors from cytosolic aggregates to pass them on to the mitochondrial import machinery or, under persistent stress conditions, to the proteasome for degradation. Owing to their role as transient buffering systems, these aggregates were referred to as MitoStores. This review articles provides a general overview about the MitoStore concept and the early stages in mitochondrial protein biogenesis in yeast and, in cases where aspects differ, in mammalian cells.
Collapse
Affiliation(s)
- Pragya Kaushik
- Cell Biology, 26562 RPTU University of Kaiserslautern , Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
| | - Johannes M Herrmann
- Cell Biology, 26562 RPTU University of Kaiserslautern , Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
| | - Katja G Hansen
- Cell Biology, 26562 RPTU University of Kaiserslautern , Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
| |
Collapse
|
13
|
Zhang H, Zhu JK. Epigenetic gene regulation in plants and its potential applications in crop improvement. Nat Rev Mol Cell Biol 2025; 26:51-67. [PMID: 39192154 DOI: 10.1038/s41580-024-00769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
DNA methylation, also known as 5-methylcytosine, is an epigenetic modification that has crucial functions in plant growth, development and adaptation. The cellular DNA methylation level is tightly regulated by the combined action of DNA methyltransferases and demethylases. Protein complexes involved in the targeting and interpretation of DNA methylation have been identified, revealing intriguing roles of methyl-DNA binding proteins and molecular chaperones. Structural studies and in vitro reconstituted enzymatic systems have provided mechanistic insights into RNA-directed DNA methylation, the main pathway catalysing de novo methylation in plants. A better understanding of the regulatory mechanisms will enable locus-specific manipulation of the DNA methylation status. CRISPR-dCas9-based epigenome editing tools are being developed for this goal. Given that DNA methylation patterns can be stably transmitted through meiosis, and that large phenotypic variations can be contributed by epimutations, epigenome editing holds great promise in crop breeding by creating additional phenotypic variability on the same genetic material.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
14
|
Gogishvili D, Honey MIJ, Verberk IMW, Vermunt L, Hol EM, Teunissen CE, Abeln S. The GFAP proteoform puzzle: How to advance GFAP as a fluid biomarker in neurological diseases. J Neurochem 2025; 169:e16226. [PMID: 39289040 DOI: 10.1111/jnc.16226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024]
Abstract
Glial fibrillary acidic protein (GFAP) is a well-established biomarker of reactive astrogliosis in the central nervous system because of its elevated levels following brain injury and various neurological disorders. The advent of ultra-sensitive methods for measuring low-abundant proteins has significantly enhanced our understanding of GFAP levels in the serum or plasma of patients with diverse neurological diseases. Clinical studies have demonstrated that GFAP holds promise both as a diagnostic and prognostic biomarker, including but not limited to individuals with Alzheimer's disease. GFAP exhibits diverse forms and structures, herein referred to as its proteoform complexity, encompassing conformational dynamics, isoforms and post-translational modifications (PTMs). In this review, we explore how the proteoform complexity of GFAP influences its detection, which may affect the differential diagnostic performance of GFAP in different biological fluids and can provide valuable insights into underlying biological processes. Additionally, proteoforms are often disease-specific, and our review provides suggestions and highlights areas to focus on for the development of new assays for measuring GFAP, including isoforms, PTMs, discharge mechanisms, breakdown products, higher-order species and interacting partners. By addressing the knowledge gaps highlighted in this review, we aim to support the clinical translation and interpretation of GFAP in both CSF and blood and the development of reliable, reproducible and specific prognostic and diagnostic tests. To enhance disease pathology comprehension and optimise GFAP as a biomarker, a thorough understanding of detected proteoforms in biofluids is essential.
Collapse
Affiliation(s)
- Dea Gogishvili
- Bioinformatics, Computer Science Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- AI Technology for Life, Department of Computing and Information Sciences, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Madison I J Honey
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam University Medical Centers, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Inge M W Verberk
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam University Medical Centers, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam University Medical Centers, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam University Medical Centers, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Sanne Abeln
- Bioinformatics, Computer Science Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- AI Technology for Life, Department of Computing and Information Sciences, Department of Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
15
|
Zabcı S, Kocabıyık S. Anti-aggregation Properties of the Mini-Peptides Derived from Alpha Crystallin Domain of the Small Heat Shock Protein, Tpv HSP 14.3. Mol Biotechnol 2024:10.1007/s12033-024-01332-1. [PMID: 39645640 DOI: 10.1007/s12033-024-01332-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024]
Abstract
The highly conserved alpha crystallin domain of the small heat shock proteins is essential for dimerization and also implicated in substrate interaction. In this study, we designed four novel mini-peptides from alpha crystallin domain of archaeal Small Heat Shock Protein Tpv HSP 14.3. Among the peptide designs, the mini-peptides 38SDLVLEAEMAGFDKKNIKVS57 and 40LVLEAEMAGFD50 overlapped to the sequences of β3-β4 region. The other two peptides 77YIDQRVDKVYKVVKLPVE94 and 107GILTVRMK114 correspond to β6-β7 region and β9, respectively. Functional activity of the peptides was evaluated by monitoring heat-induced aggregation of the model substrates alcohol dehydrogenase at 43 °C and citrate synthase at 45 °C. Our results showed that the (38-57) and the (77-94) fragments exhibited chaperone activity with both of the substrate proteins. The (40-50) fragment while exhibiting a noticeable protective effect (> 90%) when tested with citrate synthase showed an anti-chaperone property toward alcohol dehydrogenase. Unlike the (40-50) fragment, the (107-114) fragment did not show any chaperone activity with citrate synthase but exhibited the highest chaperone efficiency among four mini-peptides with alcohol dehydrogenase. The selectivity of the (40-50) and the (107-114) fragments in targeting the client proteins is most likely dependent on their surface hydrophobicity and/or charge as revealed by the sequence and exposed surface analyses.
Collapse
Affiliation(s)
- Sema Zabcı
- Department of Biological Sciences, Faculty of Arts and Science, Middle East Technical University, 06800, Ankara, Türkiye.
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Baskent University, 06790, Ankara, Türkiye.
| | - Semra Kocabıyık
- Department of Biological Sciences, Faculty of Arts and Science, Middle East Technical University, 06800, Ankara, Türkiye
| |
Collapse
|
16
|
Miller AP, Reichow SL. Mechanism of small heat shock protein client sequestration and induced polydispersity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626640. [PMID: 39677757 PMCID: PMC11642849 DOI: 10.1101/2024.12.03.626640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Small heat shock proteins (sHSPs) act as first responders during cellular stress by recognizing and sequestering destabilized proteins (clients), preventing their aggregation and facilitating downstream refolding or degradation1-3. This chaperone function is critically important to proteostasis, conserved across all kingdoms of life, and associated with various protein misfolding diseases in humans4,5. Mechanistic insights into how sHSPs sequester destabilized clients have been limited due to the extreme molecular plasticity and client-induced polydispersity of sHSP/client complexes6-8. Here, we present high-resolution cryo-EM structures of the sHSP from Methanocaldococcus jannaschii (mjHSP16.5) in both the apo-state and in an ensemble of client-bound states. The ensemble not only reveals key molecular mechanisms by which sHSPs respond to and sequester client proteins, but also provides insights into the cooperative nature of chaperone-client interactions. Engagement with destabilized client induces a polarization of stability across the mjHSP16.5 scaffold, proposed to facilitate higher-order assembly and enhance client sequestration capacity. Some higher-order sHSP oligomers appear to form through simple insertion of dimeric subunits into new geometrical features, while other higher-order states suggest multiple sHSP/client assembly pathways. Together, these results provide long-sought insights into the chaperone function of sHSPs and highlight the relationship between polydispersity and client sequestration under stress conditions.
Collapse
Affiliation(s)
- Adam P. Miller
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland OR 97239, U.S.A
- Vollum Institute, Oregon Health and Science Institute, Portland OR 97239, U.S.A
| | - Steve L. Reichow
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland OR 97239, U.S.A
- Vollum Institute, Oregon Health and Science Institute, Portland OR 97239, U.S.A
| |
Collapse
|
17
|
Sluzala ZB, Shan Y, Elghazi L, Cárdenas EL, Hamati A, Garner AL, Fort PE. Novel mTORC2/HSPB4 Interaction: Role and Regulation of HSPB4 T148 Phosphorylation. Cells 2024; 13:2000. [PMID: 39682748 PMCID: PMC11640050 DOI: 10.3390/cells13232000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
HSPB4 and HSPB5 (α-crystallins) have shown increasing promise as neuroprotective agents, demonstrating several anti-apoptotic and protective roles in disorders such as multiple sclerosis and diabetic retinopathy. HSPs are highly regulated by post-translational modification, including deamidation, glycosylation, and phosphorylation. Among them, T148 phosphorylation has been shown to regulate the structural and functional characteristics of HSPB4 and underlie, in part, its neuroprotective capacity. We recently demonstrated that this phosphorylation is reduced in retinal tissues from patients with diabetic retinopathy, raising the question of its regulation during diseases. The kinase(s) responsible for regulating this phosphorylation, however, have yet to be identified. To this end, we employed a multi-tier strategy utilizing in vitro kinome profiling, bioinformatics, and chemoproteomics to predict and discover the kinases capable of phosphorylating T148. Several kinases were identified as being capable of specifically phosphorylating T148 in vitro, and further analysis highlighted mTORC2 as a particularly strong candidate. Altogether, our data demonstrate that the HSPB4-mTORC2 interaction is multi-faceted. Our data support the role of mTORC2 as a specific kinase phosphorylating HSPB4 at T148, but also provide evidence that the HSPB4 chaperone function further strengthens the interaction. This study addresses a critical gap in our understanding of the regulatory underpinnings of T148 phosphorylation-mediated neuroprotection.
Collapse
Affiliation(s)
- Zachary B. Sluzala
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (Y.S.); (L.E.); (A.H.)
| | - Yang Shan
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (Y.S.); (L.E.); (A.H.)
| | - Lynda Elghazi
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (Y.S.); (L.E.); (A.H.)
| | - Emilio L. Cárdenas
- Interdepartmental Program in Medicinal Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA; (E.L.C.); (A.L.G.)
| | - Angelina Hamati
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (Y.S.); (L.E.); (A.H.)
| | - Amanda L. Garner
- Interdepartmental Program in Medicinal Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA; (E.L.C.); (A.L.G.)
| | - Patrice E. Fort
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (Y.S.); (L.E.); (A.H.)
- Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Peters C, Haslbeck M, Buchner J. Catchers of folding gone awry: a tale of small heat shock proteins. Trends Biochem Sci 2024; 49:1063-1078. [PMID: 39271417 DOI: 10.1016/j.tibs.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024]
Abstract
Small heat shock proteins (sHsps) are an important part of the cellular system maintaining protein homeostasis under physiological and stress conditions. As molecular chaperones, they form complexes with different non-native proteins in an ATP-independent manner. Many sHsps populate ensembles of energetically similar but different-sized oligomers. Regulation of chaperone activity occurs by changing the equilibrium of these ensembles. This makes sHsps a versatile and adaptive system for trapping non-native proteins in complexes, allowing recycling with the help of ATP-dependent chaperones. In this review, we discuss progress in our understanding of the structural principles of sHsp oligomers and their functional principles, as well as their roles in aging and eye lens transparency.
Collapse
Affiliation(s)
- Carsten Peters
- School of Natural Sciences, and Department Bioscience, Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| | - Martin Haslbeck
- School of Natural Sciences, and Department Bioscience, Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany.
| | - Johannes Buchner
- School of Natural Sciences, and Department Bioscience, Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany.
| |
Collapse
|
19
|
McFarland R, Noroozi R, Miller AP, Reichow SL. Dynamic fibrillar assembly of αB-crystallin induced by perturbation of the conserved NT-IXI motif resolved by cryo-EM. Nat Commun 2024; 15:10336. [PMID: 39609421 PMCID: PMC11604994 DOI: 10.1038/s41467-024-54647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
αB-crystallin is an archetypical member of the small heat shock proteins (sHSPs) vital for cellular proteostasis and mitigating protein misfolding diseases. Gaining insights into the principles defining their molecular organization and chaperone function have been hindered by intrinsic dynamic properties and limited high-resolution structural analysis. To disentangle the mechanistic underpinnings of these dynamical properties, we ablate a conserved IXI-motif located within the N-terminal (NT) domain of human αB-crystallin implicated in subunit exchange dynamics and client sequestration. This results in a profound structural transformation, from highly polydispersed caged-like native assemblies into an elongated fibril state amenable to high-resolution cryo-EM analysis. The reversible nature of this variant facilitates interrogation of functional effects due to perturbation of the NT-IXI motif in both the native-like oligomer and fibril states. Together, our investigations unveil several features thought to be key mechanistic attributes to sHSPs and point to a critical significance of the NT-IXI motif in αB-crystallin assembly, polydispersity, and chaperone activity.
Collapse
Affiliation(s)
- Russell McFarland
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Chemistry, Portland State University, Portland, OR, USA
- Analytical and Formulation Sciences, KBI Biopharma, Boulder, CO, USA
| | - Rozhan Noroozi
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Adam P Miller
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Steve L Reichow
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA.
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
- Department of Chemistry, Portland State University, Portland, OR, USA.
| |
Collapse
|
20
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
21
|
Lin S. A decade of dinoflagellate genomics illuminating an enigmatic eukaryote cell. BMC Genomics 2024; 25:932. [PMID: 39367346 PMCID: PMC11453091 DOI: 10.1186/s12864-024-10847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Dinoflagellates are a remarkable group of protists, not only for their association with harmful algal blooms and coral reefs but also for their numerous characteristics deviating from the rules of eukaryotic biology. Genome research on dinoflagellates has lagged due to their immense genome sizes in most species (~ 1-250 Gbp). Nevertheless, the last decade marked a fruitful era of dinoflagellate genomics, with 27 genomes sequenced and many insights attained. This review aims to synthesize information from these genomes, along with other omic data, to reflect on where we are now in understanding dinoflagellates and where we are heading in the future. The most notable insights from the decade-long genomics work include: (1) dinoflagellate genomes have been expanded in multiple times independently, probably by a combination of rampant retroposition, accumulation of repetitive DNA, and genome duplication; (2) Symbiodiniacean genomes are highly divergent, but share about 3,445 core unigenes concentrated in 219 KEGG pathways; (3) Most dinoflagellate genes are encoded unidirectionally and are not intron-poor; (4) The dinoflagellate nucleus has undergone extreme evolutionary changes, including complete or nearly complete loss of nucleosome and histone H1, and acquisition of dinoflagellate viral nuclear protein (DVNP); (5) Major basic nuclear protein (MBNP), histone-like protein (HLP), and bacterial HU-like protein (HCc) belong to the same protein family, and MBNP can be the unifying name; (6) Dinoflagellate gene expression is regulated by poorly understood mechanisms, but microRNA and other epigenetic mechanisms are likely important; (7) Over 50% of dinoflagellate genes are "dark" and their functions remain to be deciphered using functional genetics; (8) Initial insights into the genomic basis of parasitism and mutualism have emerged. The review then highlights functionally unique and interesting genes. Future research needs to obtain a finished genome, tackle large genomes, characterize the unknown genes, and develop a quantitative molecular ecological model for addressing ecological questions.
Collapse
Affiliation(s)
- Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA.
| |
Collapse
|
22
|
Nawae W, Sangsrakru D, Yoocha T, Pinsupa S, Phetchawang P, Bua-Art S, Chusri O, Tangphatsornruang S, Pootakham W. Differences in transcriptomic responses upon Phytophthora palmivora infection among cultivars reveal potential underlying resistant mechanisms in durian. BMC PLANT BIOLOGY 2024; 24:878. [PMID: 39358741 PMCID: PMC11448271 DOI: 10.1186/s12870-024-05545-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Phytophthora palmivora is a devastating oomycete pathogen in durian, one of the most economically important crops in Southeast Asia. The use of fungicides in Phytophthora management may not be a long-term solution because of emerging chemical resistance issues. It is crucial to develop Phytophthora-resistant durian cultivars, and information regarding the underlying resistance mechanisms is valuable for smart breeding programs. RESULTS In this study, we conducted RNA sequencing (RNA-seq) to investigate early gene expression responses (at 8, 24, and 48 h) after the P. palmivora infection in three durian cultivars, which included one resistant cultivar (Puangmanee; PM) and two susceptible cultivars (Monthong; MT and Kradumthong; KD). We performed co-expression and differential gene expression analyses to capture gene expression patterns and identify the differentially expressed genes. The results showed that genes encoding heat shock proteins (HSPs) were upregulated in all infected durians. The expression levels of genes encoding HSPs, such as ERdj3B, were high only in infected PM. A higher level of P. palmivora resistance in PM appeared to be associated with higher expression levels of various genes encoding defense and chitin response proteins, such as lysM domain receptor-like kinases. MT had a lower resistance level than PM, although it possessed more upregulated genes during P. palmivora infection. Many photosynthetic and defense genes were upregulated in the infected MT, although their expression levels were lower than those in the infected PM. KD, the least resistant cultivar, showed downregulation of genes involved in cell wall organization or biogenesis during P. palmivora infection. CONCLUSIONS Our results showed that the three durian cultivars exhibited significantly different gene expression patterns in response to P. palmivora infection. The upregulation of genes encoding HSPs was common in all studied durians. The high expression of genes encoding chitin response proteins likely contributed to P. palmivora resistance in durians. Durian susceptibility was associated with low basal expression of defense genes and downregulation of several cell wall-related genes. These findings enhance our understanding of durian resistance to Phytophthora infection and could be useful for the development of elite durian cultivars.
Collapse
Affiliation(s)
- Wanapinun Nawae
- National Omics Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Duangjai Sangsrakru
- National Omics Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Thippawan Yoocha
- National Omics Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Suparat Pinsupa
- National Omics Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Phakamas Phetchawang
- National Omics Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Sureeporn Bua-Art
- Department of Agriculture, Plant Pathology Research Group Plant Protection Research and Development Office, Bangkok, Thailand
| | - Orwintinee Chusri
- Chanthaburi Horticultural Research Center, Khlung, Chanthaburi, Thailand
| | - Sithichoke Tangphatsornruang
- National Omics Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Wirulda Pootakham
- National Omics Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand.
| |
Collapse
|
23
|
Javed A, Johnson OT, Balana AT, Volk RF, Langen A, Ahn BS, Zaro BW, Gestwicki JE, Pratt MR. O-GlcNAc modification of HSP27 alters its protein interactions and promotes refolding of proteins through the BAG3/HSP70 co-chaperone. Protein Sci 2024; 33:e5173. [PMID: 39291732 PMCID: PMC11409196 DOI: 10.1002/pro.5173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
Almost all types of cellular stress induce post-translational O-GlcNAc modifications of proteins, and this increase promotes cell survival. We previously demonstrated that O-GlcNAc on certain small heat shock proteins (sHSPs), including HSP27, directly increases their chaperone activity as one potential protective mechanism. Here, we furthered our use of synthetic proteins to prepare biotinylated sHSPs and show that O-GlcNAc modification of HSP27 also changes how it interacts within the sHSP system and the broader HSP network. Specifically, we show that O-GlcNAc modified HSP27 binds more strongly to the co-chaperone protein BAG3, which then promotes refolding of a model substrate by HSP70. We use proteomics to identify other potential HSP27 interactions that are changed by O-GlcNAc, including one that we confirm with another sHSP, αB-crystallin. These findings add additional evidence for O-GlcNAc as a switch for regulating protein-protein interactions and for modifications of chaperones as one mechanism by which O-GlcNAc protects against protein aggregation.
Collapse
Affiliation(s)
- Afraah Javed
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Oleta T. Johnson
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Aaron T. Balana
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Regan F. Volk
- Department of Pharmaceutical Chemistry and Cardiovascular Research InstituteUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Andreas Langen
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Benjamin S. Ahn
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Balyn W. Zaro
- Department of Pharmaceutical Chemistry and Cardiovascular Research InstituteUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry, Institute for Neurodegenerative DiseaseUniversity of California at San FranciscoSan FranciscoCaliforniaUSA
| | - Matthew R. Pratt
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
24
|
Zhu HX, Wright BW, Logel DY, Needham P, Yehl K, Molloy MP, Jaschke PR. IbpAB small heat shock proteins are not host factors for bacteriophage ϕX174 replication. Virology 2024; 597:110169. [PMID: 38996611 DOI: 10.1016/j.virol.2024.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Bacteriophage ϕX174 is a small icosahedral virus of the Microviridae with a rapid replication cycle. Previously, we found that in ϕX174 infections of Escherichia coli, the most highly upregulated host proteins are two small heat shock proteins, IbpA and IbpB, belonging to the HSP20 family, which is a universally conserved group of stress-induced molecular chaperones that prevent irreversible aggregation of proteins. Heat shock proteins were found to protect against ϕX174 lysis, but IbpA/B have not been studied. In this work, we disrupted the ibpA and ibpB genes and measured the effects on ϕX174 replication. We found that in contrast to other E. coli heat shock proteins, they are not necessary for ϕX174 replication; moreover, their absence has no discernible effect on ϕX174 fecundity. These results suggest IbpA/B upregulation is a response to ϕX174 protein expression but does not play a role in phage replication, and they are not Microviridae host factors.
Collapse
Affiliation(s)
- Hannah X Zhu
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Bradley W Wright
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Dominic Y Logel
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Patrick Needham
- Miami University, Department of Chemistry and Biochemistry, Oxford, 45056, USA
| | - Kevin Yehl
- Miami University, Department of Chemistry and Biochemistry, Oxford, 45056, USA
| | - Mark P Molloy
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia; Kolling Institute, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Paul R Jaschke
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| |
Collapse
|
25
|
Boone BA, Mendoza CP, Behrendt NJ, Jacobsen SE. α-Crystalline Domains and Intrinsically Disordered Regions Can Work in Parallel to Induce Accumulation of MBD6 at Chromocenters in Arabidopsis thaliana. EPIGENOMES 2024; 8:33. [PMID: 39311135 PMCID: PMC11417779 DOI: 10.3390/epigenomes8030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Proteins are localized and concentrated at cellular and genomic locations for specific and efficient functions. Efforts to understand protein accumulation in eukaryotic organisms have primarily focused on multivalent interactions between intrinsically disordered regions (IDRs) as mediators of protein condensation. We previously showed that α-crystalline domain (ACD) proteins 15 (ACD15) and 21 (ACD21) were required for multimerization and the accumulation of gene-silencing methyl-CpG-binding domain protein 6 (MBD6) at chromocenters in Arabidopsis thaliana. Here, we demonstrate that ACDs and IDRs can act as parallel mechanisms, facilitating higher-order MBD6 assemblies. Using human IDRs known to be important for protein accumulation, we replicated and enhanced the accumulation of MBD6 at chromocenters. In addition, IDRs fused to MBD6 could substitute for ACD function and partially reconstitute the MBD6 gene-silencing function. However, the accumulation of MBD6 by IDRs still required ACD15 and ACD21 for full effect. These results establish that ACD-mediated protein accumulation is a mechanism that can function similarly to and together with IDR-mediated mechanisms.
Collapse
Affiliation(s)
- Brandon A. Boone
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (B.A.B.); (C.P.M.); (N.J.B.)
| | - Cristy P. Mendoza
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (B.A.B.); (C.P.M.); (N.J.B.)
| | - Noah J. Behrendt
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (B.A.B.); (C.P.M.); (N.J.B.)
| | - Steven E. Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (B.A.B.); (C.P.M.); (N.J.B.)
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute (HHMI), University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
Ulmer LD, Canzani D, Woods CN, Stone NL, Janowska MK, Klevit RE, Bush MF. High-Performance Workflow for Identifying Site-Specific Crosslinks Originating from a Genetically Incorporated, Photoreactive Amino Acid. J Proteome Res 2024; 23:3560-3570. [PMID: 38968604 PMCID: PMC11296897 DOI: 10.1021/acs.jproteome.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
In conventional crosslinking mass spectrometry, proteins are crosslinked using a highly selective, bifunctional chemical reagent, which limits crosslinks to residues that are accessible and reactive to the reagent. Genetically incorporating a photoreactive amino acid offers two key advantages: any site can be targeted, including those that are inaccessible to conventional crosslinking reagents, and photoreactive amino acids can potentially react with a broad range of interaction partners. However, broad reactivity imposes additional challenges for crosslink identification. In this study, we incorporate benzoylphenylalanine (BPA), a photoreactive amino acid, at selected sites in an intrinsically disordered region of the human protein HSPB5. We report and characterize a workflow for identifying and visualizing residue-level interactions originating from BPA. We routinely identify 30 to 300 crosslinked peptide spectral matches with this workflow, which is up to ten times more than existing tools for residue-level BPA crosslink identification. Most identified crosslinks are assigned to a precision of one or two residues, which is supported by a high degree of overlap between replicate analyses. Based on these results, we anticipate that this workflow will support the more general use of genetically incorporated, photoreactive amino acids for characterizing the structures of proteins that have resisted high-resolution characterization.
Collapse
Affiliation(s)
- Lindsey D. Ulmer
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Daniele Canzani
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Christopher N. Woods
- University of Washington, Department of Biochemistry, Box 357350, Seattle, WA 98195-7350
| | - Natalie L. Stone
- University of Washington, Department of Biochemistry, Box 357350, Seattle, WA 98195-7350
| | - Maria K. Janowska
- University of Washington, Department of Biochemistry, Box 357350, Seattle, WA 98195-7350
| | - Rachel E. Klevit
- University of Washington, Department of Biochemistry, Box 357350, Seattle, WA 98195-7350
| | - Matthew F. Bush
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| |
Collapse
|
27
|
Huang L, Chen TT, Dong ZQ, Zhang Y, Lin Y, Chen P, Pan MH, Lu C. BmHSP19.9 targeting P6.9 and VLF-1 to mediate the formation of defective progeny viruses in the silkworm antiviral variety 871C. Int J Biol Macromol 2024; 275:133300. [PMID: 38914396 DOI: 10.1016/j.ijbiomac.2024.133300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024]
Abstract
The 871C silkworm strain exhibits a high level of resistance to Bombyx mori nucleopolyhedrovirus (BmNPV), making it a valuable variety for the sericulture industry. Understanding the underlying mechanism of its resistance holds great biological significance and economic value in addressing viral disease risks in sericulture. Initially, we infected the resistant strain 871C and its control strain 871 with BmNPV and conducted secondary infection experiments using the progeny occlusion bodies (OBs). As a result, a significant decrease in pathogenicity was observed. Electron microscopy analysis revealed that 871C produces progeny virions with defective DNA packaging, reducing virulence following BmNPV infection. Blood proteomic identification of the silkworm variety 871C and control 871 after BmNPV infection demonstrated the crucial role of the viral proteins P6.9 and VLF-1 in the production of defective viruses by impeding the proper encapsulation of viral DNA. Additionally, we discovered that BmHSP19.9 interacts with P6.9 and VLF-1 and that its expression is significantly upregulated after BmNPV infection. BmHSP19.9 exhibits strong antiviral activity, in part by preventing the entry of the proteins P6.9 and VLF-1 into the nucleus, thereby hindering viral nucleocapsid and viral DNA assembly. Our findings indicate that the antiviral silkworm strain 871C inhibits BmNPV proliferation by upregulating Bmhsp19.9 and impeding the nuclear localization of the viral proteins P6.9 and VLF-1, leading to the production of defective viral particles. This study offers a comprehensive analysis of the antiviral mechanism in silkworms from a viral perspective, providing a crucial theoretical foundation for future antiviral research and the breeding of resistant silkworm strains.
Collapse
Affiliation(s)
- Liang Huang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Ting-Ting Chen
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400716, China
| | - Zhan-Qi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Ya Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Yu Lin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Min-Hui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China.
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China.
| |
Collapse
|
28
|
Lippi A, Krisko A. Protein aggregation: A detrimental symptom or an adaptation mechanism? J Neurochem 2024; 168:1426-1441. [PMID: 37694504 DOI: 10.1111/jnc.15955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
Protein quality control mechanisms oversee numerous aspects of protein lifetime. From the point of protein synthesis, protein homeostasis machineries take part in folding, solubilization, and/or degradation of impaired proteins. Some proteins follow an alternative path upon loss of their solubility, thus are secluded from the cytosol and form protein aggregates. Protein aggregates differ in their function and composition, rendering protein aggregation a complex phenomenon that continues to receive plenty of attention in the scientific and medical communities. Traditionally, protein aggregates have been associated with aging and a large spectrum of protein folding diseases, such as neurodegenerative diseases, type 2 diabetes, or cataract. However, a body of evidence suggests that they may act as an adaptive mechanism to overcome transient stressful conditions, serving as a sink for the removal of misfolded proteins from the cytosol or storage compartments for machineries required upon stress release. In this review, we present examples and evidence elaborating different possible roles of protein aggregation and discuss their potential roles in stress survival, aging, and disease, as well as possible anti-aggregation interventions.
Collapse
Affiliation(s)
- Alice Lippi
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Anita Krisko
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
29
|
Hipp MS, Hartl FU. Interplay of Proteostasis Capacity and Protein Aggregation: Implications for Cellular Function and Disease. J Mol Biol 2024; 436:168615. [PMID: 38759929 DOI: 10.1016/j.jmb.2024.168615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Eukaryotic cells are equipped with an intricate proteostasis network (PN), comprising nearly 3,000 components dedicated to preserving proteome integrity and sustaining protein homeostasis. This protective system is particularly important under conditions of external and intrinsic cell stress, where inherently dynamic proteins may unfold and lose functionality. A decline in proteostasis capacity is associated with the aging process, resulting in a reduced folding efficiency of newly synthesized proteins and a deficit in the cellular capacity to degrade misfolded proteins. A critical consequence of PN insufficiency is the accumulation of cytotoxic protein aggregates that underlie various age-related neurodegenerative conditions and other pathologies. By interfering with specific proteostasis components, toxic aggregates place an excessive burden on the PN's ability to maintain proteome integrity. This initiates a feed-forward loop, wherein the generation of misfolded and aggregated proteins ultimately leads to proteostasis collapse and cellular demise.
Collapse
Affiliation(s)
- Mark S Hipp
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan, 1, 9713 AV Groningen, the Netherlands; Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, the Netherlands; School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
30
|
Bohl V, Mogk A. When the going gets tough, the tough get going-Novel bacterial AAA+ disaggregases provide extreme heat resistance. Environ Microbiol 2024; 26:e16677. [PMID: 39039821 DOI: 10.1111/1462-2920.16677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
Heat stress can lead to protein misfolding and aggregation, potentially causing cell death due to the loss of essential proteins. Bacteria, being particularly exposed to environmental stress, are equipped with disaggregases that rescue these aggregated proteins. The bacterial Hsp70 chaperone DnaK and the ATPase associated with diverse cellular activities protein ClpB form the canonical disaggregase in bacteria. While this combination operates effectively during physiological heat stress, it is ineffective against massive aggregation caused by temperature-based sterilization protocols used in the food industry and clinics. This leaves bacteria unprotected against these thermal processes. However, bacteria that can withstand extreme, man-made stress conditions have emerged. These bacteria possess novel ATPase associated with diverse cellular activities disaggregases, ClpG and ClpL, which are key players in extreme heat resistance. These disaggregases, present in selected Gram-negative or Gram-positive bacteria, respectively, function superiorly by exhibiting increased thermal stability and enhanced threading power compared to DnaK/ClpB. This enables ClpG and ClpL to operate at extreme temperatures and process large and tight protein aggregates, thereby contributing to heat resistance. The genes for ClpG and ClpL are often encoded on mobile genomic islands or conjugative plasmids, allowing for their rapid spread among bacteria via horizontal gene transfer. This threatens the efficiency of sterilization protocols. In this review, we describe the various bacterial disaggregases identified to date, characterizing their commonalities and the specific features that enable these novel disaggregases to provide stress protection against extreme stress conditions.
Collapse
Affiliation(s)
- Valentin Bohl
- Faculty of Biosciences, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Axel Mogk
- Faculty of Biosciences, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| |
Collapse
|
31
|
Srisawat K, Stead CA, Hesketh K, Pogson M, Strauss JA, Cocks M, Siekmann I, Phillips SM, Lisboa PJ, Shepherd S, Burniston JG. People with obesity exhibit losses in muscle proteostasis that are partly improved by exercise training. Proteomics 2024; 24:e2300395. [PMID: 37963832 DOI: 10.1002/pmic.202300395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
This pilot experiment examines if a loss in muscle proteostasis occurs in people with obesity and whether endurance exercise positively influences either the abundance profile or turnover rate of proteins in this population. Men with (n = 3) or without (n = 4) obesity were recruited and underwent a 14-d measurement protocol of daily deuterium oxide (D2O) consumption and serial biopsies of vastus lateralis muscle. Men with obesity then completed 10-weeks of high-intensity interval training (HIIT), encompassing 3 sessions per week of cycle ergometer exercise with 1 min intervals at 100% maximum aerobic power interspersed by 1 min recovery periods. The number of intervals per session progressed from 4 to 8, and during weeks 8-10 the 14-d measurement protocol was repeated. Proteomic analysis detected 352 differences (p < 0.05, false discovery rate < 5%) in protein abundance and 19 (p < 0.05) differences in protein turnover, including components of the ubiquitin-proteasome system. HIIT altered the abundance of 53 proteins and increased the turnover rate of 22 proteins (p < 0.05) and tended to benefit proteostasis by increasing muscle protein turnover rates. Obesity and insulin resistance are associated with compromised muscle proteostasis, which may be partially restored by endurance exercise.
Collapse
Affiliation(s)
| | - Connor A Stead
- Research Institute for Sport, & Exercise Sciences, Liverpool, UK
| | - Katie Hesketh
- Research Institute for Sport, & Exercise Sciences, Liverpool, UK
| | - Mark Pogson
- Research Institute for Sport, & Exercise Sciences, Liverpool, UK
| | | | - Matt Cocks
- Research Institute for Sport, & Exercise Sciences, Liverpool, UK
| | - Ivo Siekmann
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool, UK
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Paulo J Lisboa
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool, UK
| | - Sam Shepherd
- Research Institute for Sport, & Exercise Sciences, Liverpool, UK
| | | |
Collapse
|
32
|
Kurepa J, Bruce KA, Gerhardt GA, Smalle JA. A Plant Model of α-Synucleinopathy: Expression of α-Synuclein A53T Variant in Hairy Root Cultures Leads to Proteostatic Stress and Dysregulation of Iron Metabolism. APPLIED BIOSCIENCES 2024; 3:233-249. [PMID: 38835931 PMCID: PMC11149894 DOI: 10.3390/applbiosci3020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Synucleinopathies, typified by Parkinson's disease (PD), entail the accumulation of α-synuclein (αSyn) aggregates in nerve cells. Various αSyn mutants, including the αSyn A53T variant linked to early-onset PD, increase the propensity for αSyn aggregate formation. In addition to disrupting protein homeostasis and inducing proteostatic stress, the aggregation of αSyn in PD is associated with an imbalance in iron metabolism, which increases the generation of reactive oxygen species and causes oxidative stress. This study explored the impact of αSyn A53T expression in transgenic hairy roots of four medicinal plants (Lobelia cardinalis, Artemisia annua, Salvia miltiorrhiza, and Polygonum multiflorum). In all tested plants, αSyn A53T expression triggered proteotoxic stress and perturbed iron homeostasis, mirroring the molecular profile observed in human and animal nerve cells. In addition to the common eukaryotic defense mechanisms against proteostatic and oxidative stresses, a plant stress response generally includes the biosynthesis of a diverse set of protective secondary metabolites. Therefore, the hairy root cultures expressing αSyn A53T offer a platform for identifying secondary metabolites that can ameliorate the effects of αSyn, thereby aiding in the development of possible PD treatments and/or treatments of synucleinopathies.
Collapse
Affiliation(s)
- Jasmina Kurepa
- Department of Plant and Soil Sciences, Martin-Gatton College of Agriculture Food and Environment, Kentucky Tobacco Research & Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Kristen A. Bruce
- Naprogenix, Inc., UK-AsTeCC, 145 Graham Avenue, Lexington, KY 40506, USA
| | - Greg A. Gerhardt
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Jan A. Smalle
- Department of Plant and Soil Sciences, Martin-Gatton College of Agriculture Food and Environment, Kentucky Tobacco Research & Development Center, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
33
|
Patil H, Yi H, Cho KI, Ferreira PA. Proteostatic Remodeling of Small Heat Shock Chaperones─Crystallins by Ran-Binding Protein 2─and the Peptidyl-Prolyl cis-trans Isomerase and Chaperone Activities of Its Cyclophilin Domain. ACS Chem Neurosci 2024; 15:1967-1989. [PMID: 38657106 DOI: 10.1021/acschemneuro.3c00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Disturbances in protein phase transitions promote protein aggregation─a neurodegeneration hallmark. The modular Ran-binding protein 2 (Ranbp2) is a cytosolic molecular hub for rate-limiting steps of phase transitions of Ran-GTP-bound protein ensembles exiting nuclear pores. Chaperones also regulate phase transitions and proteostasis by suppressing protein aggregation. Ranbp2 haploinsufficiency promotes the age-dependent neuroprotection of the chorioretina against phototoxicity by proteostatic regulations of neuroprotective substrates of Ranbp2 and by suppressing the buildup of polyubiquitylated substrates. Losses of peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone activities of the cyclophilin domain (CY) of Ranbp2 recapitulate molecular effects of Ranbp2 haploinsufficiency. These CY impairments also stimulate deubiquitylation activities and phase transitions of 19S cap subunits of the 26S proteasome that associates with Ranbp2. However, links between CY moonlighting activity, substrate ubiquitylation, and proteostasis remain incomplete. Here, we reveal the Ranbp2 regulation of small heat shock chaperones─crystallins in the chorioretina by proteomics of mice with total or selective modular deficits of Ranbp2. Specifically, loss of CY PPIase of Ranbp2 upregulates αA-Crystallin, which is repressed in adult nonlenticular tissues. Conversely, impairment of CY's chaperone activity opposite to the PPIase pocket downregulates a subset of αA-Crystallin's substrates, γ-crystallins. These CY-dependent effects cause age-dependent and chorioretinal-selective declines of ubiquitylated substrates without affecting the chorioretinal morphology. A model emerges whereby inhibition of Ranbp2's CY PPIase remodels crystallins' expressions, subdues molecular aging, and preordains the chorioretina to neuroprotection by augmenting the chaperone capacity and the degradation of polyubiquitylated substrates against proteostatic impairments. Further, the druggable Ranbp2 CY holds pan-therapeutic potential against proteotoxicity and neurodegeneration.
Collapse
Affiliation(s)
- Hemangi Patil
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Haiqing Yi
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Kyoung-In Cho
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Paulo A Ferreira
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Pathology Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
34
|
Gogishvili D, Illes-Toth E, Harris MJ, Hopley C, Teunissen CE, Abeln S. Structural flexibility and heterogeneity of recombinant human glial fibrillary acidic protein (GFAP). Proteins 2024; 92:649-664. [PMID: 38149328 DOI: 10.1002/prot.26656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Glial fibrillary acidic protein (GFAP) is a promising biomarker for brain and spinal cord disorders. Recent studies have highlighted the differences in the reliability of GFAP measurements in different biological matrices. The reason for these discrepancies is poorly understood as our knowledge of the protein's 3-dimensional conformation, proteoforms, and aggregation remains limited. Here, we investigate the structural properties of GFAP under different conditions. For this, we characterized recombinant GFAP proteins from various suppliers and applied hydrogen-deuterium exchange mass spectrometry (HDX-MS) to provide a snapshot of the conformational dynamics of GFAP in artificial cerebrospinal fluid (aCSF) compared to the phosphate buffer. Our findings indicate that recombinant GFAP exists in various conformational species. Furthermore, we show that GFAP dimers remained intact under denaturing conditions. HDX-MS experiments show an overall decrease in H-bonding and an increase in solvent accessibility of GFAP in aCSF compared to the phosphate buffer, with clear indications of mixed EX2 and EX1 kinetics. To understand possible structural interface regions and the evolutionary conservation profiles, we combined HDX-MS results with the predicted GFAP-dimer structure by AlphaFold-Multimer. We found that deprotected regions with high structural flexibility in aCSF overlap with predicted conserved dimeric 1B and 2B domain interfaces. Structural property predictions combined with the HDX data show an overall deprotection and signatures of aggregation in aCSF. We anticipate that the outcomes of this research will contribute to a deeper understanding of the structural flexibility of GFAP and ultimately shed light on its behavior in different biological matrices.
Collapse
Affiliation(s)
- Dea Gogishvili
- Bioinformatics, Computer Science Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- AI Technology for Life, Department of Computing and Information Sciences, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Eva Illes-Toth
- National Measurement Laboratory at Laboratory of the Government Chemist (LGC), Teddington, UK
| | - Matthew J Harris
- National Measurement Laboratory at Laboratory of the Government Chemist (LGC), Teddington, UK
| | - Christopher Hopley
- National Measurement Laboratory at Laboratory of the Government Chemist (LGC), Teddington, UK
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sanne Abeln
- Bioinformatics, Computer Science Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- AI Technology for Life, Department of Computing and Information Sciences, Department of Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
35
|
Lamelas L, López-Hidalgo C, Valledor L, Meijón M, Cañal MJ. Like mother like son: Transgenerational memory and cross-tolerance from drought to heat stress are identified in chloroplast proteome and seed provisioning in Pinus radiata. PLANT, CELL & ENVIRONMENT 2024; 47:1640-1655. [PMID: 38282466 DOI: 10.1111/pce.14836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/30/2024]
Abstract
How different stressors impact plant health and memory when they are imposed in different generations in wild ecosystems is still scarce. Here, we address how different environments shape heritable memory for the next generation in seeds and seedlings of Pinus radiata, a long-lived species with economic interest. The performance of the seedlings belonging to two wild clonal subpopulations (optimal fertirrigation vs. slightly stressful conditions) was tested under heat stress through physiological profiling and comparative time-series chloroplast proteomics. In addition, we explored the seeds conducting a physiological characterization and targeted transcriptomic profiling in both subpopulations. Our results showed differential responses between them, evidencing a cross-stress transgenerational memory. Seedlings belonging to the stressed subpopulation retained key proteins related to Photosystem II, chloroplast-to-nucleus signalling and osmoprotection which helped to overcome the applied heat stress. The seeds also showed a differential gene expression profile for targeted genes and microRNAs, as well as an increased content of starch and secondary metabolites, molecules which showed potential interest as biomarkers for early selection of primed plants. Thus, these finds not only delve into transgenerational cross-stress memory in trees, but also provide a new biotechnological tool for forest design.
Collapse
Affiliation(s)
- Laura Lamelas
- Plant Physiology, Department of Organisms and Systems Biology, Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - Cristina López-Hidalgo
- Plant Physiology, Department of Organisms and Systems Biology, Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology, Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology, Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| |
Collapse
|
36
|
Carlsson A, Axell E, Emanuelsson C, Olsson U, Linse S. The Ability of DNAJB6b to Suppress Amyloid Formation Depends on the Chaperone Aggregation State. ACS Chem Neurosci 2024; 15:1732-1737. [PMID: 38640082 PMCID: PMC11066835 DOI: 10.1021/acschemneuro.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024] Open
Abstract
For many chaperones, a propensity to self-assemble correlates with function. The highly efficient amyloid suppressing chaperone DNAJB6b has been reported to oligomerize. A key question is whether the DNAJB6b self-assemblies or their subunits are active units in the suppression of amyloid formation. Here, we address this question using a nonmodified chaperone. We use the well-established aggregation kinetics of the amyloid β 42 peptide (Aβ42) as a readout of the amyloid suppression efficiency. The experimental setup relies on the slow dissociation of DNAJB6b assemblies upon dilution. We find that the dissociation of the chaperone assemblies correlates with its ability to suppress fibril formation. Thus, the data show that the subunits of DNAJB6b assemblies rather than the large oligomers are the active forms in amyloid suppression. Our results provide insights into how DNAJB6b operates as a chaperone and illustrate the importance of established assembly equilibria and dissociation rates for the design of kinetic experiments.
Collapse
Affiliation(s)
- Andreas Carlsson
- Lund
University, Biochemistry and Structural Biology, Lund, Naturvetarvägen 16, 223 62, Sweden
| | - Emil Axell
- Lund
University, Biochemistry and Structural Biology, Lund, Naturvetarvägen 16, 223 62, Sweden
| | - Cecilia Emanuelsson
- Lund
University, Biochemistry and Structural Biology, Lund, Naturvetarvägen 16, 223 62, Sweden
| | - Ulf Olsson
- Lund
University, Physical Chemistry, Lund, Naturvetarvägen 16, 223 62, Sweden
| | - Sara Linse
- Lund
University, Biochemistry and Structural Biology, Lund, Naturvetarvägen 16, 223 62, Sweden
| |
Collapse
|
37
|
Zoltsman G, Dang TL, Kuchersky M, Faust O, Silva MS, Ilani T, Wentink AS, Bukau B, Rosenzweig R. A unique chaperoning mechanism in class A JDPs recognizes and stabilizes mutant p53. Mol Cell 2024; 84:1512-1526.e9. [PMID: 38508184 DOI: 10.1016/j.molcel.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 12/14/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
J-domain proteins (JDPs) constitute a large family of molecular chaperones that bind a broad spectrum of substrates, targeting them to Hsp70, thus determining the specificity of and activating the entire chaperone functional cycle. The malfunction of JDPs is therefore inextricably linked to myriad human disorders. Here, we uncover a unique mechanism by which chaperones recognize misfolded clients, present in human class A JDPs. Through a newly identified β-hairpin site, these chaperones detect changes in protein dynamics at the initial stages of misfolding, prior to exposure of hydrophobic regions or large structural rearrangements. The JDPs then sequester misfolding-prone proteins into large oligomeric assemblies, protecting them from aggregation. Through this mechanism, class A JDPs bind destabilized p53 mutants, preventing clearance of these oncoproteins by Hsp70-mediated degradation, thus promoting cancer progression. Removal of the β-hairpin abrogates this protective activity while minimally affecting other chaperoning functions. This suggests the class A JDP β-hairpin as a highly specific target for cancer therapeutics.
Collapse
Affiliation(s)
- Guy Zoltsman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Thi Lieu Dang
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, Heidelberg 69120, Germany
| | - Miriam Kuchersky
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Ofrah Faust
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Micael S Silva
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Tal Ilani
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Anne S Wentink
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, Heidelberg 69120, Germany; Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, Heidelberg 69120, Germany.
| | - Rina Rosenzweig
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel.
| |
Collapse
|
38
|
Adupa V, Ustyantseva E, Kampinga HH, Onck PR. Tertiary structure and conformational dynamics of the anti-amyloidogenic chaperone DNAJB6b at atomistic resolution. Nat Commun 2024; 15:3285. [PMID: 38627370 PMCID: PMC11021509 DOI: 10.1038/s41467-024-46587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/01/2024] [Indexed: 04/19/2024] Open
Abstract
DNAJB6b is a molecular chaperone of the heat shock protein network, shown to play a crucial role in preventing aggregation of several disease-related intrinsically disordered proteins. Using homology modeling and microsecond-long all-atom molecular dynamics (MD) simulations, we show that monomeric DNAJB6b is a transiently interconverting protein cycling between three states: a closed state, an open state (both abundant), and a less abundant extended state. Interestingly, the reported regulatory autoinhibitory anchor between helix V in the G/F1 region and helices II/III of the J-domain, which obstructs the access of Hsp70 to the J-domain remains present in all three states. This possibly suggests a mechanistically intriguing regulation in which DNAJB6b only becomes exposed when loaded with substrates that require Hsp70 processing. Our MD results of DNAJB6b carrying mutations in the G/F1 region that are linked to limb-girdle muscular dystrophy type D1 (LGMDD1) show that this G/F1 region becomes highly dynamic, pointing towards a spontaneous release of the autoinhibitory helix V from helices II/III. This would increase the probability of non-functional Hsp70 interactions to DNAJB6b without substrates. Our cellular data indeed confirm that non-substrate loaded LGMDD1 mutants have aberrant interactions with Hsp70.
Collapse
Affiliation(s)
- Vasista Adupa
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Elizaveta Ustyantseva
- Department of Biomedical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harm H Kampinga
- Department of Biomedical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
39
|
Miller AP, O'Neill SE, Lampi KJ, Reichow SL. The α-crystallin Chaperones Undergo a Quasi-ordered Co-aggregation Process in Response to Saturating Client Interaction. J Mol Biol 2024; 436:168499. [PMID: 38401625 PMCID: PMC11001518 DOI: 10.1016/j.jmb.2024.168499] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Small heat shock proteins (sHSPs) are ATP-independent chaperones vital to cellular proteostasis, preventing protein aggregation events linked to various human diseases including cataract. The α-crystallins, αA-crystallin (αAc) and αB-crystallin (αBc), represent archetypal sHSPs that exhibit complex polydispersed oligomeric assemblies and rapid subunit exchange dynamics. Yet, our understanding of how this plasticity contributes to chaperone function remains poorly understood. Using biochemical and biophysical analyses combined with single-particle electron microscopy (EM), we examined structural changes in αAc, αBc and native heteromeric lens α-crystallins (αLc) in their apo-states and at varying degree of chaperone saturation leading to co-aggregation, using lysozyme and insulin as model clients. Quantitative single-particle analysis unveiled a continuous spectrum of oligomeric states formed during the co-aggregation process, marked by significant client-triggered expansion and quasi-ordered elongation of the sHSP oligomeric scaffold, whereby the native cage-like sHSP assembly displays a directional growth to accommodate saturating conditions of client sequestration. These structural modifications culminated in an apparent amorphous collapse of chaperone-client complexes, resulting in the creation of co-aggregates capable of scattering visible light. Intriguingly, these co-aggregates maintain internal morphological features of highly elongated sHSP oligomers with striking resemblance to polymeric α-crystallin species isolated from aged lens tissue. This mechanism appears consistent across αAc, αBc and αLc, albeit with varying degrees of susceptibility to client-induced co-aggregation. Importantly, our findings suggest that client-induced co-aggregation follows a distinctive mechanistic and quasi-ordered trajectory, distinct from a purely amorphous process. These insights reshape our understanding of the physiological and pathophysiological co-aggregation processes of α-crystallins, carrying potential implications for a pathway toward cataract formation.
Collapse
Affiliation(s)
- Adam P Miller
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Chemistry, Portland State University, Portland, OR 97201, USA
| | - Susan E O'Neill
- Department of Chemistry, Portland State University, Portland, OR 97201, USA
| | - Kirsten J Lampi
- Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Steve L Reichow
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Chemistry, Portland State University, Portland, OR 97201, USA.
| |
Collapse
|
40
|
McFarland R, Reichow S. Dynamic fibrillar assembly of αB-crystallin induced by perturbation of the conserved NT-IXI motif resolved by cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586355. [PMID: 38585788 PMCID: PMC10996541 DOI: 10.1101/2024.03.22.586355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
αB-crystallin is an archetypical member of the small heat-shock proteins (sHSPs) vital for cellular proteostasis and mitigating protein misfolding diseases. Gaining insights into the principles defining their molecular organization and chaperone function have been hindered by intrinsic dynamic properties and limited high-resolution structural analysis. To disentangle the mechanistic underpinnings of these dynamical properties, we mutated a conserved IXI-motif located within the N-terminal (NT) domain of human αB-crystallin. This resulted in a profound structural transformation, from highly polydispersed caged-like native assemblies into a comparatively well-ordered helical fibril state amenable to high-resolution cryo-EM analysis. The reversible nature of the induced fibrils facilitated interrogation of functional effects due to perturbation of the NT-IXI motif in both the native-like oligomer and fibril states. Together, our investigations unveiled several features thought to be key mechanistic attributes to sHSPs and point to a critical significance of the NT-IXI motif in αB-crystallin assembly, dynamics and chaperone activity.
Collapse
Affiliation(s)
- Russell McFarland
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, USA
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
- Department of Chemistry, Portland State University, Portland, Oregon 97201, USA
- Current: Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Steve Reichow
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, USA
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
- Department of Chemistry, Portland State University, Portland, Oregon 97201, USA
| |
Collapse
|
41
|
Yang F, Beltran-Lobo P, Sung K, Goldrick C, Croft CL, Nishimura A, Hedges E, Mahiddine F, Troakes C, Golde TE, Perez-Nievas BG, Hanger DP, Noble W, Jimenez-Sanchez M. Reactive astrocytes secrete the chaperone HSPB1 to mediate neuroprotection. SCIENCE ADVANCES 2024; 10:eadk9884. [PMID: 38507480 PMCID: PMC10954207 DOI: 10.1126/sciadv.adk9884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
Molecular chaperones are protective in neurodegenerative diseases by preventing protein misfolding and aggregation, such as extracellular amyloid plaques and intracellular tau neurofibrillary tangles in Alzheimer's disease (AD). In addition, AD is characterized by an increase in astrocyte reactivity. The chaperone HSPB1 has been proposed as a marker for reactive astrocytes; however, its astrocytic functions in neurodegeneration remain to be elucidated. Here, we identify that HSPB1 is secreted from astrocytes to exert non-cell-autonomous protective functions. We show that in human AD brain, HSPB1 levels increase in astrocytes that cluster around amyloid plaques, as well as in the adjacent extracellular space. Moreover, in conditions that mimic an inflammatory reactive response, astrocytes increase HSPB1 secretion. Concomitantly, astrocytes and neurons can uptake astrocyte-secreted HSPB1, which is accompanied by an attenuation of the inflammatory response in reactive astrocytes and reduced pathological tau inclusions. Our findings highlight a protective mechanism in disease conditions that encompasses the secretion of a chaperone typically regarded as intracellular.
Collapse
Affiliation(s)
- Fangjia Yang
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Paula Beltran-Lobo
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Katherine Sung
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Caoimhe Goldrick
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Cara L. Croft
- UK Dementia Research Institute, UCL Institute of Neurology, University College London, London, UK
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Agnes Nishimura
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Erin Hedges
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Farah Mahiddine
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
- London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Todd E. Golde
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Pharmacology and Chemical Biology, Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Beatriz G. Perez-Nievas
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Diane P. Hanger
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
- Department of Biomedical and Clinical Sciences, University of Exeter, Exeter, UK
| | - Maria Jimenez-Sanchez
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| |
Collapse
|
42
|
Al-Ansari M, Fitzsimons T, Wei W, Goldberg MW, Kunieda T, Quinlan RA. The major inducible small heat shock protein HSP20-3 in the tardigrade Ramazzottius varieornatus forms filament-like structures and is an active chaperone. Cell Stress Chaperones 2024; 29:51-65. [PMID: 38330543 PMCID: PMC10939073 DOI: 10.1016/j.cstres.2023.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 02/10/2024] Open
Abstract
The tardigrade Ramazzottius varieornatus has remarkable resilience to a range of environmental stresses. In this study, we have characterised two members of the small heat shock protein (sHSP) family in R. varieornatus, HSP20-3 and HSP20-6. These are the most highly upregulated sHSPs in response to a 24 h heat shock at 35 0C of adult tardigrades with HSP20-3 being one of the most highly upregulated gene in the whole transcriptome. Both R. varieornatus sHSPs and the human sHSP, CRYAB (HSPB5), were produced recombinantly for comparative structure-function studies. HSP20-3 exhibited a superior chaperone activity than human CRYAB in a heat-induced protein aggregation assay. Both tardigrade sHSPs also formed larger oligomers than CRYAB as assessed by size exclusion chromatography and transmission electron microscopy of negatively stained samples. Whilst both HSP20-3 and HSP20-6 formed particles that were variable in size and larger than the particles formed by CRYAB, only HSP20-3 formed filament-like structures. The particles and filament-like structures formed by HSP20-3 appear inter-related as the filament-like structures often had particles located at their ends. Sequence analyses identified two unique features; an insertion in the middle region of the N-terminal domain (NTD) and preceding the critical-sequence identified in CRYAB, as well as a repeated QNTN-motif located in the C-terminal domain of HSP20-3. The NTD insertion is expected to affect protein-protein interactions and subunit oligomerisation. Removal of the repeated QNTN-motif abolished HSP20-3 chaperone activity and also affected the assembly of the filament-like structures. We discuss the potential contribution of HSP20-3 to protein condensate formation.
Collapse
Affiliation(s)
- Mohammad Al-Ansari
- Department of Biosciences, Upper Mountjoy Science Site, University of Durham, Durham DH1 3LE, UK; Department of Biochemistry, Health Sciences Centre, Kuwait University, Kuwait
| | - Taylor Fitzsimons
- Department of Biosciences, Upper Mountjoy Science Site, University of Durham, Durham DH1 3LE, UK
| | - Wenbin Wei
- Department of Biosciences, Upper Mountjoy Science Site, University of Durham, Durham DH1 3LE, UK.
| | - Martin W Goldberg
- Department of Biosciences, Upper Mountjoy Science Site, University of Durham, Durham DH1 3LE, UK
| | - Takekazu Kunieda
- Department of Biological Sciences, The University of Tokyo, Japan
| | - Roy A Quinlan
- Department of Biosciences, Upper Mountjoy Science Site, University of Durham, Durham DH1 3LE, UK; Department of Biological Structure, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
43
|
Marszalek J, De Los Rios P, Cyr D, Mayer MP, Adupa V, Andréasson C, Blatch GL, Braun JEA, Brodsky JL, Bukau B, Chapple JP, Conz C, Dementin S, Genevaux P, Genest O, Goloubinoff P, Gestwicki J, Hammond CM, Hines JK, Ishikawa K, Joachimiak LA, Kirstein J, Liberek K, Mokranjac D, Nillegoda N, Ramos CHI, Rebeaud M, Ron D, Rospert S, Sahi C, Shalgi R, Tomiczek B, Ushioda R, Ustyantseva E, Ye Y, Zylicz M, Kampinga HH. J-domain proteins: From molecular mechanisms to diseases. Cell Stress Chaperones 2024; 29:21-33. [PMID: 38320449 PMCID: PMC10939069 DOI: 10.1016/j.cstres.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 02/08/2024] Open
Abstract
J-domain proteins (JDPs) are the largest family of chaperones in most organisms, but much of how they function within the network of other chaperones and protein quality control machineries is still an enigma. Here, we report on the latest findings related to JDP functions presented at a dedicated JDP workshop in Gdansk, Poland. The report does not include all (details) of what was shared and discussed at the meeting, because some of these original data have not yet been accepted for publication elsewhere or represented still preliminary observations at the time.
Collapse
Affiliation(s)
- Jaroslaw Marszalek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, Gdansk 80-307, Poland
| | - Paolo De Los Rios
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne CH 1015, Switzerland; Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne CH 1015, Switzerland
| | - Douglas Cyr
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Vasista Adupa
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm S-10691, Sweden
| | - Gregory L Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates; The Vice Chancellery, The University of Notre Dame Australia, Fremantle, Western Australia, Australia; Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Janice E A Braun
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - J Paul Chapple
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Charlotte Conz
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sébastien Dementin
- Aix Marseille Univ, CNRS, BIP UMR 7281, IMM, 31 Chemin Joseph Aiguier, Marseille 13402, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Olivier Genest
- Aix Marseille Univ, CNRS, BIP UMR 7281, IMM, 31 Chemin Joseph Aiguier, Marseille 13402, France
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, Lausanne University, Lausanne 1015, Switzerland
| | - Jason Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94308, USA
| | - Colin M Hammond
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Justin K Hines
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | - Koji Ishikawa
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Lukasz A Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, TX, USA; Peter O'Donnell Jr Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Janine Kirstein
- Leibniz Institute on Aging - Fritz Lipmann Institute and Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, Jena 07745, Germany
| | - Krzysztof Liberek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, Gdansk 80-307, Poland
| | - Dejana Mokranjac
- LMU Munich, Biocenter-Cell Biology, Großhadernerstr. 2, Planegg-Martinsried 82152, Germany
| | - Nadinath Nillegoda
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia; Centre for Dementia and Brain Repair at the Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Carlos H I Ramos
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Mathieu Rebeaud
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne CH 1015, Switzerland
| | - David Ron
- University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, Madhya Pradesh, India; IISER Bhopal, Room Number 117, AB3, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Reut Shalgi
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Bartlomiej Tomiczek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, Gdansk 80-307, Poland
| | - Ryo Ushioda
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Elizaveta Ustyantseva
- Department of Biomedical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yihong Ye
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maciej Zylicz
- Foundation for Polish Science, Warsaw 02-611, Poland
| | - Harm H Kampinga
- Department of Biomedical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
44
|
Sun C, Pan Q, Du M, Zheng J, Bai M, Sun W. Decoding the roles of heat shock proteins in liver cancer. Cytokine Growth Factor Rev 2024; 75:81-92. [PMID: 38182465 DOI: 10.1016/j.cytogfr.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common gastrointestinal malignancies, characterized by insidious onset and high propensity for metastasis and recurrence. Apart from surgical resection, there are no effective curative methods for HCC in recent years, due to resistance to radiotherapy and chemotherapy. Heat shock proteins (HSP) play a crucial role in maintaining cellular homeostasis and normal organism development as molecular chaperones for intracellular proteins. Both basic research and clinical data have shown that HSPs are crucial participants in the HCC microenvironment, as well as the occurrence, development, metastasis, and resistance to radiotherapy and chemotherapy in various malignancies, particularly liver cancer. This review aims to discuss the molecular mechanisms and potential clinical value of HSPs in HCC, which may provide new insights for HSP-based therapeutic interventions for HCC.
Collapse
Affiliation(s)
- Chen Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Qi Pan
- Department of Hepatobiliary Surgery and Organ Transplantation, First Hospital of China Medical University, Shenyang 110004, China
| | - Mingyang Du
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jiahe Zheng
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ming Bai
- Second Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China.
| | - Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
45
|
Patil H, Cho KI, Ferreira PA. Proteostatic remodeling of small heat shock chaperones - crystallins by Ran-binding protein 2 and the peptidyl-prolyl cis-trans isomerase and chaperone activities of its cyclophilin domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577462. [PMID: 38352504 PMCID: PMC10862737 DOI: 10.1101/2024.01.26.577462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Disturbances in phase transitions and intracellular partitions of nucleocytoplasmic shuttling substrates promote protein aggregation - a hallmark of neurodegenerative diseases. The modular Ran-binding protein 2 (Ranbp2) is a cytosolic molecular hub for rate-limiting steps of disassembly and phase transitions of Ran-GTP-bound protein ensembles exiting nuclear pores. Chaperones also play central roles in phase transitions and proteostasis by suppressing protein aggregation. Ranbp2 haploinsufficiency promotes the age-dependent neuroprotection of the chorioretina against photo-oxidative stress by proteostatic regulations of Ranbp2 substrates and by countering the build-up of poly-ubiquitylated substrates. Further, the peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone activities of the cyclophilin domain (CY) of Ranbp2 modulate the proteostasis of selective neuroprotective substrates, such as hnRNPA2B1, STAT3, HDAC4 or L/M-opsin, while promoting a decline of ubiquitylated substrates. However, links between CY PPIase activity on client substrates and its effect(s) on ubiquitylated substrates are unclear. Here, proteomics of genetically modified mice with deficits of Ranbp2 uncovered the regulation of the small heat shock chaperones - crystallins by Ranbp2 in the chorioretina. Loss of CY PPIase of Ranbp2 up-regulates αA-crystallin proteostasis, which is repressed in non-lenticular tissues. Conversely, the αA-crystallin's substrates, γ-crystallins, are down-regulated by impairment of CY's C-terminal chaperone activity. These CY-dependent effects cause the age-dependent decline of ubiquitylated substrates without overt chorioretinal morphological changes. A model emerges whereby the Ranbp2 CY-dependent remodeling of crystallins' proteostasis subdues molecular aging and preordains chorioretinal neuroprotection by augmenting the chaperone buffering capacity and the decline of ubiquitylated substrates against proteostatic impairments. Further, CY's moonlighting activity holds pan -therapeutic potential against neurodegeneration.
Collapse
|
46
|
Claeyssen C, Bulangalire N, Bastide B, Agbulut O, Cieniewski-Bernard C. Desmin and its molecular chaperone, the αB-crystallin: How post-translational modifications modulate their functions in heart and skeletal muscles? Biochimie 2024; 216:137-159. [PMID: 37827485 DOI: 10.1016/j.biochi.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Maintenance of the highly organized striated muscle tissue requires a cell-wide dynamic network through protein-protein interactions providing an effective mechanochemical integrator of morphology and function. Through a continuous and complex trans-cytoplasmic network, desmin intermediate filaments ensure this essential role in heart and in skeletal muscle. Besides their role in the maintenance of cell shape and architecture (permitting contractile activity efficiency and conferring resistance towards mechanical stress), desmin intermediate filaments are also key actors of cell and tissue homeostasis. Desmin participates to several cellular processes such as differentiation, apoptosis, intracellular signalisation, mechanotransduction, vesicle trafficking, organelle biogenesis and/or positioning, calcium homeostasis, protein homeostasis, cell adhesion, metabolism and gene expression. Desmin intermediate filaments assembly requires αB-crystallin, a small heat shock protein. Over its chaperone activity, αB-crystallin is involved in several cellular functions such as cell integrity, cytoskeleton stabilization, apoptosis, autophagy, differentiation, mitochondria function or aggresome formation. Importantly, both proteins are known to be strongly associated to the aetiology of several cardiac and skeletal muscles pathologies related to desmin filaments disorganization and a strong disturbance of desmin interactome. Note that these key proteins of cytoskeleton architecture are extensively modified by post-translational modifications that could affect their functional properties. Therefore, we reviewed in the herein paper the impact of post-translational modifications on the modulation of cellular functions of desmin and its molecular chaperone, the αB-crystallin.
Collapse
Affiliation(s)
- Charlotte Claeyssen
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Nathan Bulangalire
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France; Université de Lille, CHU Lille, F-59000 Lille, France
| | - Bruno Bastide
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France.
| |
Collapse
|
47
|
Wang C, Teng L, Liu ZS, Kamalova A, McMenimen KA. HspB5 Chaperone Structure and Activity Are Modulated by Chemical-Scale Interactions in the ACD Dimer Interface. Int J Mol Sci 2023; 25:471. [PMID: 38203641 PMCID: PMC10778692 DOI: 10.3390/ijms25010471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Small heat shock proteins (sHsps) are a family of ATP-independent molecular chaperones that function as "holdases" and prevent protein aggregation due to changes in temperature, pH, or oxidation state. sHsps have a conserved α-crystallin domain (ACD), which forms the dimer building block, flanked by variable N- and C-terminal regions. sHsps populate various oligomeric states as a function of their sequestrase activity, and these dynamic structural features allow the proteins to interact with a plethora of cellular substrates. However, the molecular mechanisms of their dynamic conformational assembly and the interactions with various substrates remains unclear. Therefore, it is important to gain insight into the underlying physicochemical properties that influence sHsp structure in an effort to understand their mechanism(s) of action. We evaluated several disease-relevant mutations, D109A, F113Y, R116C, R120G, and R120C, in the ACD of HspB5 for changes to in vitro chaperone activity relative to that of wildtype. Structural characteristics were also evaluated by ANS fluorescence and CD spectroscopy. Our results indicated that mutation Y113F is an efficient holdase, while D109A and R120G, which are found in patients with myofibrillar myopathy and cataracts, respectively, exhibit a large reduction in holdase activity in a chaperone-like light-scattering assay, which indicated alterations in substrate-sHsp interactions. The extent of the reductions in chaperone activities are different among the mutants and specific to the substrate protein, suggesting that while sHsps are able to interact with many substrates, specific interactions provide selectivity for some substrates compared to others. This work is consistent with a model for chaperone activity where key electrostatic interactions in the sHsp dimer provide structural stability and influence both higher-order sHsp interactions and facilitate interactions with substrate proteins that define chaperone holdase activity.
Collapse
Affiliation(s)
- Chenwei Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA; (C.W.); (L.T.); (Z.S.L.)
| | - Lilong Teng
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA; (C.W.); (L.T.); (Z.S.L.)
| | - Zhiyan Silvia Liu
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA; (C.W.); (L.T.); (Z.S.L.)
| | - Aichurok Kamalova
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA 01075, USA;
| | - Kathryn A. McMenimen
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA; (C.W.); (L.T.); (Z.S.L.)
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA 01075, USA;
- Department of Chemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| |
Collapse
|
48
|
Karaś P, Kochanowicz K, Pitek M, Domanski P, Obuchowski I, Tomiczek B, Liberek K. Evolution towards simplicity in bacterial small heat shock protein system. eLife 2023; 12:RP89813. [PMID: 38063373 PMCID: PMC10708888 DOI: 10.7554/elife.89813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Evolution can tinker with multi-protein machines and replace them with simpler single-protein systems performing equivalent functions in an equally efficient manner. It is unclear how, on a molecular level, such simplification can arise. With ancestral reconstruction and biochemical analysis, we have traced the evolution of bacterial small heat shock proteins (sHsp), which help to refold proteins from aggregates using either two proteins with different functions (IbpA and IbpB) or a secondarily single sHsp that performs both functions in an equally efficient way. Secondarily single sHsp evolved from IbpA, an ancestor specialized in strong substrate binding. Evolution of an intermolecular binding site drove the alteration of substrate binding properties, as well as the formation of higher-order oligomers. Upon two mutations in the α-crystallin domain, secondarily single sHsp interacts with aggregated substrates less tightly. Paradoxically, less efficient binding positively influences the ability of sHsp to stimulate substrate refolding, since the dissociation of sHps from aggregates is required to initiate Hsp70-Hsp100-dependent substrate refolding. After the loss of a partner, IbpA took over its role in facilitating the sHsp dissociation from an aggregate by weakening the interaction with the substrate, which became beneficial for the refolding process. We show that the same two amino acids introduced in modern-day systems define whether the IbpA acts as a single sHsp or obligatorily cooperates with an IbpB partner. Our discoveries illuminate how one sequence has evolved to encode functions previously performed by two distinct proteins.
Collapse
Affiliation(s)
- Piotr Karaś
- Intercollegiate Faculty of Biotechnology UG-MUG, University of GdanskGdańskPoland
| | - Klaudia Kochanowicz
- Intercollegiate Faculty of Biotechnology UG-MUG, University of GdanskGdańskPoland
| | - Marcin Pitek
- Intercollegiate Faculty of Biotechnology UG-MUG, University of GdanskGdańskPoland
| | - Przemyslaw Domanski
- Intercollegiate Faculty of Biotechnology UG-MUG, University of GdanskGdańskPoland
| | - Igor Obuchowski
- Intercollegiate Faculty of Biotechnology UG-MUG, University of GdanskGdańskPoland
| | - Barlomiej Tomiczek
- Intercollegiate Faculty of Biotechnology UG-MUG, University of GdanskGdańskPoland
| | - Krzysztof Liberek
- Intercollegiate Faculty of Biotechnology UG-MUG, University of GdanskGdańskPoland
| |
Collapse
|
49
|
Pratt MR, Vocadlo DJ. Understanding and exploiting the roles of O-GlcNAc in neurodegenerative diseases. J Biol Chem 2023; 299:105411. [PMID: 37918804 PMCID: PMC10687168 DOI: 10.1016/j.jbc.2023.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
O-GlcNAc is a common modification found on nuclear and cytoplasmic proteins. Determining the catalytic mechanism of the enzyme O-GlcNAcase (OGA), which removes O-GlcNAc from proteins, enabled the creation of potent and selective inhibitors of this regulatory enzyme. Such inhibitors have served as important tools in helping to uncover the cellular and organismal physiological roles of this modification. In addition, OGA inhibitors have been important for defining the augmentation of O-GlcNAc as a promising disease-modifying approach to combat several neurodegenerative diseases including both Alzheimer's disease and Parkinson's disease. These studies have led to development and optimization of OGA inhibitors for clinical application. These compounds have been shown to be well tolerated in early clinical studies and are steadily advancing into the clinic. Despite these advances, the mechanisms by which O-GlcNAc protects against these various types of neurodegeneration are a topic of continuing interest since improved insight may enable the creation of more targeted strategies to modulate O-GlcNAc for therapeutic benefit. Relevant pathways on which O-GlcNAc has been found to exert beneficial effects include autophagy, necroptosis, and processing of the amyloid precursor protein. More recently, the development and application of chemical methods enabling the synthesis of homogenous proteins have clarified the biochemical effects of O-GlcNAc on protein aggregation and uncovered new roles for O-GlcNAc in heat shock response. Here, we discuss the features of O-GlcNAc in neurodegenerative diseases, the application of inhibitors to identify the roles of this modification, and the biochemical effects of O-GlcNAc on proteins and pathways associated with neurodegeneration.
Collapse
Affiliation(s)
- Matthew R Pratt
- Department of Chemistry and Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
50
|
Wu Y, Zhao J, Tian Y, Jin H. Cellular functions of heat shock protein 20 (HSPB6) in cancer: A review. Cell Signal 2023; 112:110928. [PMID: 37844714 DOI: 10.1016/j.cellsig.2023.110928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Heat shock proteins (HSP) are a large family of peptide proteins that are widely found in cells. Studies have shown that the expression and function of HSPs in cells are very complex, and they can participate in cellular physiological and pathological processes through multiple pathways. Multiple heat shock proteins are associated with cancer cell growth, proliferation, metastasis, and resistance to anticancer drugs, and they play a key role in cancer development by ensuring the correct folding or degradation of proteins in cancer cells. As research hotspots, HSP90, HSP70 and HSP27 have been extensively studied in cancer so far. However, HSP20, also referred to as HSPB6, as a member of the small heat shock protein family, has been shown to play an important role in the cardiovascular system, but little research has been conducted on HSP20 in cancer. This review summarizes the current cellular functions of HSP20 in different cancer types, as well as its effects on cancer proliferation, progression, prognosis, and its other functions in cancer, to illustrate the close association between HSP20 and cancer. We show that, unlike most HSPs, HSP20 mainly plays an active anticancer role in cancer development, which is expected to provide new ideas and help for cancer diagnosis and treatment and research.
Collapse
Affiliation(s)
- Yifeng Wu
- Department of General Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Jinjin Zhao
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, People's Republic of China
| | - Yun Tian
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, People's Republic of China.
| | - Hongdou Jin
- Department of General Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China.
| |
Collapse
|