1
|
Zheng D, Zou L, Zou J, Li Q, Lu S. Multi-omics analysis reveals potential mechanisms of diarrhetic shellfish toxin and fatty acid synthesis in marine harmful Prorocentrum. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137674. [PMID: 40007370 DOI: 10.1016/j.jhazmat.2025.137674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/31/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
This study integrates transcriptomic and proteomic approaches to investigate the synthesis pathways of diarrhetic shellfish toxins (DSTs) in Prorocentrum lima and Prorocentrum arenarium, three strains exhibiting distinct toxin profiles. By combining multi-omics data, we identified 45 type I polyketide synthases (PKSs) and 45 type II fatty acid synthases (FASs) as potential candidates involved in DST production. Sequence analysis of the selected PKS and FAS genes revealed a high level of consistency across different omics datasets. Our results highlight the differential expression of proteins associated with fatty acid biosynthesis, with P. arenarium (HN231) exhibiting a significantly higher proportion of saturated fatty acids (SFAs) compared to P. lima (3XS36 and XS336), consistent with the upregulation of proteins involved in fatty acid synthesis pathways. These findings offer new insights into the molecular mechanisms underlying DST production and fatty acid metabolism in dinoflagellates, providing a foundation for future research on environmental contamination by DSTs. This study underscores the importance of multi-omics approaches for understanding hazardous marine toxins and their environmental implications.
Collapse
Affiliation(s)
- Danlin Zheng
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Ligong Zou
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Jian Zou
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Qun Li
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Songhui Lu
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China.
| |
Collapse
|
2
|
Donado-Pestana CM, Vasconcelos AD, Mantovam VB, de Lima GC, Rodrigues L, Barbeiro HV, Fock R, de Souza HP, Franco BDGDM, Fiamoncini J. Circulating inflammatory markers linked to dysregulated postprandial metabolism in postmenopausal women. J Nutr Biochem 2025:109958. [PMID: 40349796 DOI: 10.1016/j.jnutbio.2025.109958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/10/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Menopause induces physiological alterations predisposing women to the development of chronic diseases. The evaluation of postprandial responses allows for a comprehensive assessment of metabolism and biomarkers that may predispose to chronic disease risk. By applying a dietary challenge consisting of the ingestion of a liquid, energy-dense mixed meal, followed by blood sampling over a 6-hour period, we conducted a cross-sectional study to investigate the postprandial metabolism in postmenopausal women (PM) aged 50-70 years and women of reproductive age (RA) aged 20 and 40 years. PM body weight was only 10% higher than RA, but the first displayed twice as much (more than 20%) intrabdominal adipose tissue. PM also displayed elevated fasting and postprandial glycemia (∼20%) and lipidemia compared to RA. Differences were also observed in the postprandial levels of lactate. Both groups displayed a similar increase in white blood cell count during the challenge, despite large differences in peripheral blood mononuclear cells (PBMC) gene expression in both fasting and postprandial states, suggesting a pro-inflammatory state and HIF-α and glycolytic pathway activation in PM. Plasma levels of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF-α) were increased in PM (37 and 52%, respectively). Postprandial plasma levels of incretins presented different kinetics to each group. Our findings reveal that PM display a pro-inflammatory signature and markers of metabolic deterioration after a 12-hour fasting and in the postprandial period when compared to RA.
Collapse
Affiliation(s)
- Carlos M Donado-Pestana
- Department of Food and Experimental Nutrition. School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Food Research Center FoRC, University of São Paulo, São Paulo, SP, Brazil
| | - Amanda D Vasconcelos
- Department of Food and Experimental Nutrition. School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vinicius B Mantovam
- Department of Food and Experimental Nutrition. School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gustavo C de Lima
- Department of Food and Experimental Nutrition. School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Larissa Rodrigues
- Department of Food and Experimental Nutrition. School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Hermes V Barbeiro
- Emergency Medicine Division. School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Ricardo Fock
- Department of Clinical and Toxicological Analysis. School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Heraldo P de Souza
- Emergency Medicine Division. School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Bernadette D G de M Franco
- Department of Food and Experimental Nutrition. School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Food Research Center FoRC, University of São Paulo, São Paulo, SP, Brazil
| | - Jarlei Fiamoncini
- Department of Food and Experimental Nutrition. School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Food Research Center FoRC, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Siew ZY, Ong GK, Wong ST, Leong PP, Tan BS, Leong CO, Chupri JB, Fang CM, Voon K. Safety profile of sikamat virus and its oncolytic potential in leukemic cells and cancer stem cells. Sci Rep 2025; 15:13817. [PMID: 40258869 PMCID: PMC12012088 DOI: 10.1038/s41598-025-96061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/25/2025] [Indexed: 04/23/2025] Open
Abstract
Leukaemia remains a global health concern. The oncotherapy resistance of leukaemia might be due to the existence of cancer stem cell populations. This study investigated the therapeutic potential of Sikamat virus (PRV7S), a Pteropine orthoreovirus, as an oncolytic virus against acute myeloid leukaemia (AML) and chronic myeloid leukaemia (CML). Using AML and CML cell lines (THP-1 and K562), as well as an AML-M5-derived cancer stem cell (CSC) model, PRV7S was shown to infect these leukaemic cells, replicate within them, and reduce their viability. PRV7S-induced cell death was associated with caspase-mediated apoptosis without significant cell cycle arrest. Transcriptomic and proteomic analyses revealed that PRV7S infection altered several cell death pathways, including apoptosis and necroptosis, highlighting its complex cell death mechanisms. PRV7S replicated efficiently in infected cells, though it did not cause persistent infection. An in vivo safety evaluation in immunocompetent mice demonstrated that PRV7S was well-tolerated, showing no adverse effects on survival, body weight, or histopathology, and no evidence of viral persistence. These findings suggest PRV7S as a promising oncolytic candidate for myeloid leukaemia, with potential efficacy against CSCs and a favourable safety profile. In conclusion, the study provides new insights into the cellular pathways involved in PRV7S-mediated oncolysis and supports further exploration of PRV7S's potential against resistant leukaemic and solid tumours.
Collapse
MESH Headings
- Animals
- Neoplastic Stem Cells/virology
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/metabolism
- Humans
- Oncolytic Virotherapy/methods
- Oncolytic Viruses/physiology
- Mice
- Cell Line, Tumor
- Apoptosis
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Cell Survival
Collapse
Affiliation(s)
- Zhen Yun Siew
- School of Pharmacy, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
| | - Ghee Khang Ong
- School of Medicine, IMU University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Siew Tung Wong
- School of Medicine, IMU University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Pooi Pooi Leong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
| | - Boon Shing Tan
- AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Juita Binti Chupri
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Chee-Mun Fang
- School of Pharmacy, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Kenny Voon
- School of Pharmacy, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
- School of Medicine, IMU University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Su S, Hu H, Liu K, Liu S, Luo Z, Yu J, Jiang T, Li X, Sun C, Yu L, Liang Y, Zhou L. Comparative analysis of translatomics and transcriptomics in the longissimus dorsi muscle of Luchuan and Duroc pigs. PLoS One 2025; 20:e0319399. [PMID: 40100799 PMCID: PMC11918432 DOI: 10.1371/journal.pone.0319399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/31/2025] [Indexed: 03/20/2025] Open
Abstract
IMF (Intramuscular fat) content is a crucial indicator of meat quality in the livestock industry. However, the molecular mechanisms underlying IMF deposition remain unclear in pigs. In this study, we conducted RNC-seq (ribosome nascent-chain complex-bound RNA sequencing) and RNA-seq (RNA sequencing) analyses on the longissimus dorsi muscle of Duroc pigs (a lean breed) and Luchuan pigs (a fat breed) to uncover the genetic basis for the divergent IMF content. The results show that the overall translation level of Luchuan pigs is significantly higher than Duroc pigs, while there is no significant difference in the transcription level. Enzymes related to fatty acid synthesis and elongation, such as ACACA, FASN, and ELOVL5, are significantly up-regulated at the translation level, while enzymes associated with fatty acid degradation, namely ALDH1B1 and ALDH2, are significantly down-regulated. However, there is no significant difference in their transcription levels. qRT-PCR and Western Blotting experiments for ELOVL5 confirm the reliability of the sequencing results. Additionally, the translation initiation factor eIF4A1, known to positively regulate gene translation, displayed higher expression in Luchuan pigs rather than in Duroc pigs and the 5'UTR structural features of genes involved in translation up-regulation matched the mRNA selectivity of eIF4A1. In conclusion, these findings suggest the up-regulation of the eIF4A1 gene expression in Luchuan pigs may elevate the translation levels of genes related to lipid synthesis through translational regulation, further resulting in an increase in IMF content.
Collapse
Affiliation(s)
- Songtao Su
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Hailong Hu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Kang Liu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Siqi Liu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zupeng Luo
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsu Yu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Tianyu Jiang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiangling Li
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chang Sun
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lin Yu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yuehui Liang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lei Zhou
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
5
|
Tursi AR, Lages CS, Quayle K, Koenig ZT, Loni R, Eswar S, Cobeña-Reyes J, Thornton S, Tilburgs T, Andorf S. CytoPheno: Automated descriptive cell type naming in flow and mass cytometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.639902. [PMID: 40161808 PMCID: PMC11952469 DOI: 10.1101/2025.03.11.639902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Advances in cytometry have led to increases in the number of cellular markers that are routinely measured. The resulting complexity of the data has prompted a shift from manual to automated analysis methods. Currently, numerous unsupervised methods are available to cluster cells based on marker expression values. However, phenotyping the resulting clusters is typically not part of the automated process. Manually identifying both marker definitions (e.g. CD4+, CCR7+, CD45RA+, CD19-) and descriptive cell type names (e.g. naïve CD4+ T cells) based on marker expression values can be time-consuming, subjective, and error-prone. In this work we propose an algorithm that addresses these problems through the creation of an automated tool, CytoPheno, that assigns marker definitions and cell type names to unidentified clusters. First, post-clustered expression data undergoes per-marker calculations to assign markers as positive or negative. Next, marker names undergo a standardization process to match to Protein Ontology identifier terms. Finally, marker descriptions are matched to cell type names within the Cell Ontology. Each part of the tool was tested with benchmark data to demonstrate performance. Additionally, the tool is encompassed in a graphical user interface (R Shiny) to increase user accessibility and interpretability. Overall, CytoPheno can aid researchers in timely and unbiased phenotyping of post-clustered cytometry data.
Collapse
Affiliation(s)
- Amanda R Tursi
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Celine S Lages
- Division of Rheumatology, Research Flow Cytometry Core, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kenneth Quayle
- Division of Rheumatology, Research Flow Cytometry Core, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zachary T Koenig
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rashi Loni
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Shruti Eswar
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pharmacology, Physiology & Neurobiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - José Cobeña-Reyes
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sherry Thornton
- Division of Rheumatology, Research Flow Cytometry Core, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tamara Tilburgs
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sandra Andorf
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
6
|
Ramelow CC, Dammer EB, Xiao H, Cheng L, Kumar P, Espinosa-Garcia C, Sampson MM, Nelson RS, Malepati S, Kour D, Kumari R, Guo Q, Bagchi P, Duong DM, Seyfried NT, Sloan SA, Rangaraju S. Simultaneous profiling of native-state proteomes and transcriptomes of neural cell types using proximity labeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635500. [PMID: 39974879 PMCID: PMC11838394 DOI: 10.1101/2025.01.29.635500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Deep molecular phenotyping of cells at transcriptomic and proteomic levels is an essential first step to understanding cellular contributions to development, aging, injury, and disease. Since proteome and transcriptome level abundances only modestly correlate with each other, complementary profiling of both is needed. We report a novel method called simultaneous protein and RNA -omics (SPARO) to capture the cell type-specific transcriptome and proteome simultaneously from both in vitro and in vivo experimental model systems. This method leverages the ability of biotin ligase, TurboID, to biotinylate cytosolic proteins including ribosomal and RNA-binding proteins, which allows enrichment of biotinylated proteins for proteomics as well as protein-associated RNA for transcriptomics. We validated this approach first using well-controlled in vitro systems to verify that the proteomes and transcriptomes obtained reflect the ground truth, bulk proteomes and transcriptomes. We also show that the effect of a biological stimulus (e.g., neuroinflammatory activation by lipopolysaccharide) can be faithfully captured. We also applied this approach to obtain native-state proteomes and transcriptomes from two key neural cell types, astrocytes and neurons, thereby validating the in vivo application of SPARO. Next, we used these data to interrogate protein-mRNA concordance and discordance across these cell types, providing insights into groups of molecular processes that exhibit uniform or cell type-specific patterns of mRNA-protein discordance.
Collapse
Affiliation(s)
- Christina C Ramelow
- Department of Neurology, Emory University, Atlanta, GA
- Center for Neurodegenerative Disease, Emory University
- Department of Human Genetics, Emory University
| | - Eric B Dammer
- Center for Neurodegenerative Disease, Emory University
- Department of Biochemistry, Emory University
| | - Hailian Xiao
- Department of Neurology, Emory University, Atlanta, GA
- Center for Neurodegenerative Disease, Emory University
| | - Lihong Cheng
- Center for Neurodegenerative Disease, Emory University
- Department of Pharmacology and Chemical Biology, Emory University
| | - Prateek Kumar
- Department of Neurology, Yale University, New Haven, CT
| | | | | | - Ruth S Nelson
- Department of Neurology, Yale University, New Haven, CT
| | | | - Dilpreet Kour
- Department of Neurology, Yale University, New Haven, CT
| | - Rashmi Kumari
- Department of Neurology, Yale University, New Haven, CT
| | - Qi Guo
- Center for Neurodegenerative Disease, Emory University
- Department of Biochemistry, Emory University
| | | | - Duc M Duong
- Department of Biochemistry, Emory University
- Emory Integrated Proteomics Core, Emory University
| | - Nicholas T Seyfried
- Department of Neurology, Emory University, Atlanta, GA
- Center for Neurodegenerative Disease, Emory University
- Department of Biochemistry, Emory University
- Emory Integrated Proteomics Core, Emory University
| | | | - Srikant Rangaraju
- Department of Neurology, Emory University, Atlanta, GA
- Department of Neurology, Yale University, New Haven, CT
| |
Collapse
|
7
|
Markand S, Kim S, Chrenek MA, Ferdous S, Priyadarshani P, Boatright JH, Nickerson JM. Temporal Regulation of Myopia and Inflammation-Associated Pathways in the Interphotoreceptor Retinoid-Binding Protein Knockout Mouse Model. Curr Eye Res 2025; 50:221-230. [PMID: 39314009 PMCID: PMC11774681 DOI: 10.1080/02713683.2024.2402317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/27/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE Myopia is a complex disorder with etiology involving an interplay between several genetic and environmental factors. Interphotoreceptor retinoid-binding protein (IRBP) is found in the subretinal space and is crucial in the visual cycle. The interphotoreceptor retinoid-binding protein knockout mouse (IRBP KO) was established as a model system to understand myopia and retinal degeneration. The current study investigated genes associated with myopia, retinal homeostasis, and inflammation in IRBP KO. METHODS RNA from retinas of congenic IRBP KO and wild-type C57BL/6J (WT) mice at postnatal day 5 (P5), P40, and P213 were subjected to digital droplet PCR (ddPCR) using a Bio-Rad automated droplet generator and QX200 reader. Target genes were selected based on genome-wide association studies, animal models, myopia studies, and other genes associated with retinal homeostasis and inflammation. HPRT, a housekeeping gene, was used for normalization. An average expression ratio (target/HPRT) and standard deviation (SD) were calculated. ANOVA assessed statistical significance, and a p < 0.05 was considered significant. RESULTS The ddPCR data analysis indicated that numerous myopia and inflammation-associated genes were differentially regulated in IRBP KO retinas with distinct temporal variation (upregulated at P5, decreased at P40, and no change at P213 relative to WT). C1qa, Gjd2, Sntb1, and Vsx2 emerged as top genetic candidate pathways. Compared with WT, immunoblotting analysis of C1qa showed no significant differences at P5 but significantly increased protein levels at P7 in IRBP KOs. Vsx2 remained unaltered at P5 and P7 in KO when compared with WT. CONCLUSIONS Data analysis indicated significant contributions from C1q, Gjd2, Sntb1, and Vsx2 genes in IRBP deficiency.
Collapse
Affiliation(s)
- Shanu Markand
- Ophthalmology Department, Emory University, Atlanta, GA, USA
- Anatomy Department, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, USA
| | - Somin Kim
- Ophthalmology Department, Emory University, Atlanta, GA, USA
| | - Micah A Chrenek
- Ophthalmology Department, Emory University, Atlanta, GA, USA
| | - Salma Ferdous
- Ophthalmology Department, Emory University, Atlanta, GA, USA
| | | | - Jeffrey H. Boatright
- Ophthalmology Department, Emory University, Atlanta, GA, USA
- Rehab Center of Excellence, Atlanta VA Medical Center, Decatur, GA, United States
| | | |
Collapse
|
8
|
Waduge P, Veettil RA, Zhang B, Huang C, Tian H, Li W. Feasibility of Ex Vivo Ligandomics. Biomolecules 2025; 15:145. [PMID: 39858539 PMCID: PMC11763836 DOI: 10.3390/biom15010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
We developed ligandomics for the in vivo profiling of vascular ligands in mice, discovering secretogranin III (Scg3) as a novel angiogenic factor that selectively binds to retinal vessels of diabetic but not healthy mice. This discovery led to the development of anti-Scg3 therapy for ocular vasculopathies. However, in vivo ligandomics requires intracardial perfusion to remove unbound phage clones, limiting its use to vascular endothelial cells (ECs). To extend ligandomics to non-vascular cells, we investigated ex vivo ligandomics. We isolated ECs and retinal ganglion cells (RGCs) from diabetic and healthy mouse retinas by immunopanning. We quantified the binding of clonal phages displaying Scg3 and vascular endothelial growth factor (VEGF), confirming that their binding patterns to isolated diabetic versus healthy ECs matched in vivo patterns. Additionally, Scg3 and VEGF binding to isolated RGCs reflected their in vivo activity. These results support the feasibility of ex vivo ligandomics. We further mapped ligands binding to immunopanned diabetic and healthy ECs and RGCs by ligandomics, confirming that Scg3 was enriched with selective binding to diabetic ECs but not healthy ECs or diabetic/healthy RGCs. These findings demonstrate the feasibility of ex vivo ligandomics, which can be broadly applied to various cell types, tissues, diseases, and species.
Collapse
Affiliation(s)
- Prabuddha Waduge
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Remya Ammassam Veettil
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bojun Zhang
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chengchi Huang
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hong Tian
- LigandomicsRx, LLC, Houston, TX 77098, USA
| | - Wei Li
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
9
|
Li M, Tan Y, Li Z, Min L. Biological characterization and clinical significance of cuproptosis-related genes in lung adenocarcinoma. BMC Pulm Med 2025; 25:13. [PMID: 39799298 PMCID: PMC11725195 DOI: 10.1186/s12890-025-03477-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/02/2025] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Lung cancer has high morbidity and mortality rates, which results in a poor prognosis. Cuproptosis is a novel cell death mechanism. The aim of this study was to examine the biological characteristics and clinical significance of genes associated with cuproptosis in lung adenocarcinoma (LUAD), and to understand the molecular mechanisms underlying the occurrence and progression of LUAD. METHODS We targeted 10 cuproptosis-related genes from previous studies and used the datasets from GEO and TCGA databases to identify differential genes related to cuproptosis; then the data were analyzed by R package, Cytoscape, TISDB, cBioPortal, STRING, CancerSEA, and Disgenet; and finally, the data were detected by immunohistochemistry validation was performed. RESULTS CDKN2A and MTF1 were cuproptosis-associated LUAD differential genes and were differentially expressed in immune subtypes. The expression of CDKN2A and MTF1 showed correlation with multiple functional states of LUAD.CDKN2A was negatively correlated with LUAD survival prognosis. CONCLUSION CDKN2A and MTF1 were correlated with the diagnosis of LUAD, and CDKN2A was negatively correlated with the survival and prognosis of LUAD. CDKN2A has the potential to contribute to the early diagnosis and prognosis analysis of LUAD.
Collapse
Affiliation(s)
- Meilin Li
- Xiangtan Medicine & Health Vocational College, Xiangtan, China
| | - Yu Tan
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Zhixin Li
- Department of Pathology, Xiangtan Central Hospital, Xiangtan, China
| | - Lingfeng Min
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
| |
Collapse
|
10
|
Majumder D, Dey A, Ray S, Bhattacharya D, Nag M, Lahiri D. Use of genomics & proteomics in studying lipase producing microorganisms & its application. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100218. [PMID: 39281291 PMCID: PMC11402113 DOI: 10.1016/j.fochms.2024.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 09/18/2024]
Abstract
In biotechnological applications, lipases are recognized as the most widely utilized and versatile enzymes, pivotal in biocatalytic processes, predominantly produced by various microbial species. Utilizing omics technology, natural sources can be meticulously screened to find microbial flora which are responsible for oil production. Lipases are versatile biocatalysts. They are used in a variety of bioconversion reactions and are receiving a lot of attention because of the quick development of enzyme technology and its usefulness in industrial operations. This article offers recent insights into microbial lipase sources, including fungi, bacteria, and yeast, alongside traditional and modern methods of purification such as precipitation, immunopurification and chromatographic separation. Additionally, it explores innovative methods like the reversed micellar system, aqueous two-phase system (ATPS), and aqueous two-phase flotation (ATPF). The article deals with the use of microbial lipases in a variety of sectors, including the food, textile, leather, cosmetics, paper, detergent, while also critically analyzing lipase-producing microbes. Moreover, it highlights the role of lipases in biosensors, biodiesel production, tea processing, bioremediation, and racemization. This review provides the concept of the use of omics technique in the mechanism of screening of microbial species those are capable of producing lipase and also find the potential applications.
Collapse
Affiliation(s)
- Debashrita Majumder
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India
| | - Ankita Dey
- Department of Chemical Engineering, National Institute of Technology, Agartala, India
| | - Srimanta Ray
- Department of Chemical Engineering, National Institute of Technology, Agartala, India
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India
| | - Moupriya Nag
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India
| | - Dibyajit Lahiri
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India
| |
Collapse
|
11
|
Boldrini M, Xiao Y, Singh T, Zhu C, Jabbi M, Pantazopoulos H, Gürsoy G, Martinowich K, Punzi G, Vallender EJ, Zody M, Berretta S, Hyde TM, Kleinman JE, Marenco S, Roussos P, Lewis DA, Turecki G, Lehner T, Mann JJ. Omics Approaches to Investigate the Pathogenesis of Suicide. Biol Psychiatry 2024; 96:919-928. [PMID: 38821194 PMCID: PMC11563882 DOI: 10.1016/j.biopsych.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Suicide is the second leading cause of death in U.S. adolescents and young adults and is generally associated with a psychiatric disorder. Suicidal behavior has a complex etiology and pathogenesis. Moderate heritability suggests genetic causes. Associations between childhood and recent life adversity indicate contributions from epigenetic factors. Genomic contributions to suicide pathogenesis remain largely unknown. This article is based on a workshop held to design strategies to identify molecular drivers of suicide neurobiology that would be putative new treatment targets. The panel determined that while bulk tissue studies provide comprehensive information, single-nucleus approaches that identify cell type-specific changes are needed. While single-nuclei techniques lack information on cytoplasm, processes, spines, and synapses, spatial multiomic technologies on intact tissue detect cell alterations specific to brain tissue layers and subregions. Because suicide has genetic and environmental drivers, multiomic approaches that combine cell type-specific epigenome, transcriptome, and proteome provide a more complete picture of pathogenesis. To determine the direction of effect of suicide risk gene variants on RNA and protein expression and how these interact with epigenetic marks, single-nuclei and spatial multiomics quantitative trait loci maps should be integrated with whole-genome sequencing and genome-wide association databases. The workshop concluded with a recommendation for the formation of an international suicide biology consortium that will bring together brain banks and investigators with expertise in cutting-edge omics technologies to delineate the biology of suicide and identify novel potential treatment targets to be tested in cellular and animal models for drug and biomarker discovery to guide suicide prevention.
Collapse
Affiliation(s)
- Maura Boldrini
- Department of Psychiatry, Columbia University, New York, New York; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York.
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Tarjinder Singh
- Department of Psychiatry, Columbia University, New York, New York; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York; New York Genome Center, New York, New York
| | - Chenxu Zhu
- New York Genome Center, New York, New York; Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York
| | - Mbemba Jabbi
- Department of Psychiatry and Behavioral Sciences, Mulva Clinics for the Neurosciences, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | - Gamze Gürsoy
- New York Genome Center, New York, New York; Departments of Biomedical Informatics and Computer Science, Columbia University, New York, New York
| | - Keri Martinowich
- Lieber Institute for Brain Development, Department of Psychiatry and Behavioral Sciences, Baltimore, Maryland
| | - Giovanna Punzi
- Lieber Institute for Brain Development, Department of Psychiatry and Behavioral Sciences, Baltimore, Maryland
| | - Eric J Vallender
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Sabina Berretta
- Department of Psychiatry, Harvard Brain Tissue Resource Center, Harvard Medical School, McLean Hospital, Belmont, Massachusetts
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Department of Psychiatry and Behavioral Sciences, Baltimore, Maryland
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Department of Psychiatry and Behavioral Sciences, Baltimore, Maryland
| | - Stefano Marenco
- Human Brain Collection Core, National Institute of Mental Health's (NIMH) Division of Intramural Research Programs, Bethesda, Maryland
| | - Panagiotis Roussos
- Center for Precision Medicine and Translational Therapeutics, Mental Illness Research Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, New York
| | - David A Lewis
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gustavo Turecki
- Department of Psychiatry, Douglas Institute, McGill University, Montréal, Québec, Canada
| | | | - J John Mann
- Department of Psychiatry, Columbia University, New York, New York; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York
| |
Collapse
|
12
|
Jung H, Kang J, Han KM, Kim H. Prognostic Value of Pentraxin3 Protein Expression in Human Malignancies: A Systematic Review and Meta-Analysis. Cancers (Basel) 2024; 16:3754. [PMID: 39594709 PMCID: PMC11593206 DOI: 10.3390/cancers16223754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Pentraxin 3 (PTX3), a member of the pentraxin superfamily, plays diverse roles in immunity and inflammation. Its dual role in tumorigenesis, exhibiting both protumoral and antitumoral effects, has been the subject of conflicting reports. High PTX3 expression levels in serum and tumor tissues have been associated with poor prognosis in various malignancies, suggesting its potential as a prognostic biomarker. Through this meta-analysis, we aim to comprehensively assess the prognostic significance of PTX3 protein expression in human malignancies and evaluate its potential as a pan-cancer prognostic marker. METHODS A systematic literature search was conducted across the PubMed, Embase, Web of Science, MEDLINE, and Cochrane Library databases. Studies were included if they assessed the association between PTX3 protein expression and overall survival (OS) in cancer patients. Hazard ratios (HRs) were pooled using a random-effects model. Subgroup analyses were performed based on the method of PTX3 assessment, and publication bias was evaluated using Egger's and Begg's tests. RESULTS Nine studies encompassing 1215 patients were included in the analysis. High PTX3 expression was significantly associated with poorer OS (HR = 1.89, 95% CI = 1.55-2.32, p < 0.01) with no significant heterogeneity (I2 = 0%). Subgroup analysis revealed consistent results across different assessment methods (immunohistochemistry: HR = 1.93, p < 0.01; immunoassay: HR = 1.86, p < 0.01). However, publication bias was detected (Egger's test, p = 0.03). CONCLUSIONS High PTX3 protein expression is associated with a poor prognosis in various malignancies, supporting its potential as a prognostic biomarker.
Collapse
Affiliation(s)
| | | | | | - Hyunchul Kim
- Department of Pathology, CHA Ilsan Medical Center, Goyang-si 10414, Gyeonggi-do, Republic of Korea (J.K.); (K.-M.H.)
| |
Collapse
|
13
|
Samant RR, Standaert DG, Harms AS. The emerging role of disease-associated microglia in Parkinson's disease. Front Cell Neurosci 2024; 18:1476461. [PMID: 39564189 PMCID: PMC11573507 DOI: 10.3389/fncel.2024.1476461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024] Open
Abstract
Disease-associated microglia (DAM) are a subset of microglia that appear at various stages of central nervous system neurodegenerative diseases. DAM were identified using single-cell RNA sequencing within Alzheimer's Disease (AD) where they were characterized by their unique localization near amyloid-β plaques and their phagocytic and lipid-metabolizing features. Unfortunately, activation and etiology of DAM are only understood within the context of AD where Triggering Receptor Expressed On Myeloid Cells 2 (TREM2), a receptor for amyloid-β, appears to be the key regulator in microglial transition to a DAM state. Despite this reliance on TREM2 in AD, DAM appear across other neurodegenerative diseases in which TREM2 may not be a critical player. This begs the question of if DAM are truly the same across all neurodegenerative diseases or if there exists a heterogeneity to DAM across neurodegenerative pathologies. Investigation into this critical gap in the field regarding DAM etiology and activation, as well as DAM function, could be delineated utilizing models of Parkinson's disease (PD) to complement studies in models of AD. Though highly underexplored regarding DAM, PD with its pattern of protein aggregation-associated pathology like AD could serve as the spatiotemporal comparison against AD findings to ascertain the nature of DAM. The experimental vehicle that could guide the future of such investigation is the multi-omics model. With a compound approach focusing on exploring triggers for DAM at the chromatin or mRNA level and related protein output, it becomes possible to strongly characterize and firmly answer the question of what is a DAM.
Collapse
Affiliation(s)
- Ritika R Samant
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - David G Standaert
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ashley S Harms
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| |
Collapse
|
14
|
Creighton CJ. Clinical proteomics towards multiomics in cancer. MASS SPECTROMETRY REVIEWS 2024; 43:1255-1269. [PMID: 36495097 DOI: 10.1002/mas.21827] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent technological advancements in mass spectrometry (MS)-based proteomics technologies have accelerated its application to study greater and greater numbers of human tumor specimens. Over the last several years, the Clinical Proteomic Tumor Analysis Consortium, the International Cancer Proteogenome Consortium, and others have generated MS-based proteomic profiling data combined with corresponding multiomics data on thousands of human tumors to date. Proteomic data sets in the public domain can be re-examined by other researchers with different questions in mind from what the original studies explored. In this review, we examine the increasing role of proteomics in studying cancer, along with the potential for previous studies and their associated data sets to contribute to improving the diagnosis and treatment of cancer in the clinical setting. We also explore publicly available proteomics and multi-omics data from cancer cell line models to show how such data may aid in identifying therapeutic strategies for cancer subsets.
Collapse
Affiliation(s)
- Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
15
|
Brennan PG, Mota L, Aridi T, Patel N, Liang P, Ferran C. Advancements in Omics and Breakthrough Gene Therapies: A Glimpse into the Future of Peripheral Artery Disease. Ann Vasc Surg 2024; 107:229-246. [PMID: 38582204 DOI: 10.1016/j.avsg.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 04/08/2024]
Abstract
Peripheral artery disease (PAD), a highly prevalent global disease, associates with significant morbidity and mortality in affected patients. Despite progress in endovascular and open revascularization techniques for advanced PAD, these interventions grapple with elevated rates of arterial restenosis and vein graft failure attributed to intimal hyperplasia (IH). Novel multiomics technologies, coupled with sophisticated analyses tools recently powered by advances in artificial intelligence, have enabled the study of atherosclerosis and IH with unprecedented single-cell and spatial precision. Numerous studies have pinpointed gene hubs regulating pivotal atherogenic and atheroprotective signaling pathways as potential therapeutic candidates. Leveraging advancements in viral and nonviral gene therapy (GT) platforms, gene editing technologies, and cutting-edge biomaterial reservoirs for delivery uniquely positions us to develop safe, efficient, and targeted GTs for PAD-related diseases. Gene therapies appear particularly fitting for ex vivo genetic engineering of IH-resistant vein grafts. This manuscript highlights currently available state-of-the-art multiomics approaches, explores promising GT-based candidates, and details GT delivery modalities employed by our laboratory and others to thwart mid-term vein graft failure caused by IH, as well as other PAD-related conditions. The potential clinical translation of these targeted GTs holds the promise to revolutionize PAD treatment, thereby enhancing patients' quality of life and life expectancy.
Collapse
Affiliation(s)
- Phillip G Brennan
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Lucas Mota
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Tarek Aridi
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Nyah Patel
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Patric Liang
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Christiane Ferran
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Division of Nephrology and the Transplant Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| |
Collapse
|
16
|
Garcia-Del Rio DF, Derhourhi M, Bonnefond A, Leblanc S, Guilloy N, Roucou X, Eyckerman S, Gevaert K, Salzet M, Cardon T. Deciphering the ghost proteome in ovarian cancer cells by deep proteogenomic characterization. Cell Death Dis 2024; 15:712. [PMID: 39349928 PMCID: PMC11442847 DOI: 10.1038/s41419-024-07046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024]
Abstract
Proteogenomics is becoming a powerful tool in personalized medicine by linking genomics, transcriptomics and mass spectrometry (MS)-based proteomics. Due to increasing evidence of alternative open reading frame-encoded proteins (AltProts), proteogenomics has a high potential to unravel the characteristics, variants, expression levels of the alternative proteome, in addition to already annotated proteins (RefProts). To obtain a broader view of the proteome of ovarian cancer cells compared to ovarian epithelial cells, cell-specific total RNA-sequencing profiles and customized protein databases were generated. In total, 128 RefProts and 30 AltProts were identified exclusively in SKOV-3 and PEO-4 cells. Among them, an AltProt variant of IP_715944, translated from DHX8, was found mutated (p.Leu44Pro). We show high variation in protein expression levels of RefProts and AltProts in different subcellular compartments. The presence of 117 RefProt and two AltProt variants was described, along with their possible implications in the different physiological/pathological characteristics. To identify the possible involvement of AltProts in cellular processes, cross-linking-MS (XL-MS) was performed in each cell line to identify AltProt-RefProt interactions. This approach revealed an interaction between POLD3 and the AltProt IP_183088, which after molecular docking, was placed between POLD3-POLD2 binding sites, highlighting its possibility of the involvement in DNA replication and repair.
Collapse
Affiliation(s)
- Diego Fernando Garcia-Del Rio
- Univ. Lille, Inserm, CHU Lille, U1192, Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
- VIB Center for Medical Biotechnology, VIB, Ghent, 9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, 9052, Belgium
| | - Mehdi Derhourhi
- Université de Lille, Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France University of Lille, Lille, France
| | - Amelie Bonnefond
- Université de Lille, Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France University of Lille, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Sébastien Leblanc
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E4K8, Canada
| | - Noé Guilloy
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E4K8, Canada
| | - Xavier Roucou
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E4K8, Canada
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology, VIB, Ghent, 9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, 9052, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, 9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, 9052, Belgium
| | - Michel Salzet
- Univ. Lille, Inserm, CHU Lille, U1192, Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France.
| | - Tristan Cardon
- Univ. Lille, Inserm, CHU Lille, U1192, Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France.
| |
Collapse
|
17
|
Fröhlich K, Fahrner M, Brombacher E, Seredynska A, Maldacker M, Kreutz C, Schmidt A, Schilling O. Data-Independent Acquisition: A Milestone and Prospect in Clinical Mass Spectrometry-Based Proteomics. Mol Cell Proteomics 2024; 23:100800. [PMID: 38880244 PMCID: PMC11380018 DOI: 10.1016/j.mcpro.2024.100800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024] Open
Abstract
Data-independent acquisition (DIA) has revolutionized the field of mass spectrometry (MS)-based proteomics over the past few years. DIA stands out for its ability to systematically sample all peptides in a given m/z range, allowing an unbiased acquisition of proteomics data. This greatly mitigates the issue of missing values and significantly enhances quantitative accuracy, precision, and reproducibility compared to many traditional methods. This review focuses on the critical role of DIA analysis software tools, primarily focusing on their capabilities and the challenges they address in proteomic research. Advances in MS technology, such as trapped ion mobility spectrometry, or high field asymmetric waveform ion mobility spectrometry require sophisticated analysis software capable of handling the increased data complexity and exploiting the full potential of DIA. We identify and critically evaluate leading software tools in the DIA landscape, discussing their unique features, and the reliability of their quantitative and qualitative outputs. We present the biological and clinical relevance of DIA-MS and discuss crucial publications that paved the way for in-depth proteomic characterization in patient-derived specimens. Furthermore, we provide a perspective on emerging trends in clinical applications and present upcoming challenges including standardization and certification of MS-based acquisition strategies in molecular diagnostics. While we emphasize the need for continuous development of software tools to keep pace with evolving technologies, we advise researchers against uncritically accepting the results from DIA software tools. Each tool may have its own biases, and some may not be as sensitive or reliable as others. Our overarching recommendation for both researchers and clinicians is to employ multiple DIA analysis tools, utilizing orthogonal analysis approaches to enhance the robustness and reliability of their findings.
Collapse
Affiliation(s)
- Klemens Fröhlich
- Proteomics Core Facility, Biozentrum Basel, University of Basel, Basel, Switzerland
| | - Matthias Fahrner
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany
| | - Eva Brombacher
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Adrianna Seredynska
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maximilian Maldacker
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum Basel, University of Basel, Basel, Switzerland
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany.
| |
Collapse
|
18
|
Nigam K, Verma Y, Dwivedi M, Sanyal S. BER genes expression in oral and pre-oral cancer: Combinatorial approach to propose potential biomarker. Curr Probl Cancer 2024; 50:101104. [PMID: 38718710 DOI: 10.1016/j.currproblcancer.2024.101104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/03/2024] [Accepted: 04/30/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVE DNA repair genes and their variants have been found to alter the risk of oral cancer. METHOD The level of expression of XRCC3, NBS1, and OGG1 genes among 20 cases of oral cancer, 6 pre-oral cancer, and 50 healthy control subjects was measured with RT-PCR. All the subjects were also genotyped for XRCC3 rs861539 C>T, NBS1 rs1805794 C>G, and OGG1 rs1052133 C>G polymorphisms by the PCR-RFLP method; their genotypes were correlated with their level of expression. Further, a localized fold structure analysis of the mRNA sequence surrounding the studied SNPs was performed with RNAfold. RESULTS Results showed increased expression of XRCC3, NBS1, and OGG1 transcripts among oral cancer (4.49 fold, 3.45 fold, and 3.27 fold) as well as pre-oral cancer (3.04 fold, 5.32 fold, and 1.74 fold) as compared to control subjects. The transcript level of OGG1 was found to be significantly increased (6.68 fold, p-value 0.009) with the GG genotype compared to the CC genotype. The C>T polymorphism of XRCC3 and the C>G polymorphism of OGG1 result in an apparent change in its mRNA secondary structure. Folding energy with the C allele for XRCC3 C>T polymorphism was lower than that of the T allele (MFE C vs T: -50.20 kcal/mol vs -48.70 kcal/mol). In the case of OGG1 C>G polymorphism MFE for the C allele was higher (-23.30 kcal/mole) than with the G allele (-24.80 kcal/mol). CONCLUSION Our results showed elevated levels of XRCC3, NBS1, and OGG1 both in oral cancer and pre-oral cancer conditions, which indicates their role as prospective biomarkers of oral cancer and pre-cancerous lesions. SNPs in these genes alter their level of expression, possibly by altering the secondary structure of their transcript. However, due to the small sample size our study can only provide a suggestive conclusion and warned future study with large sample size to verify our findings.
Collapse
Affiliation(s)
- Kumud Nigam
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, Gomti Nagar Ext. Lucknow-226028, India
| | - Yogendra Verma
- Department of Oral Pathology, King George's Medical University, Lucknow, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, Gomti Nagar Ext. Lucknow-226028, India
| | - Somali Sanyal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, Gomti Nagar Ext. Lucknow-226028, India.
| |
Collapse
|
19
|
Sriwattanapong K, Theerapanon T, Khamwachirapitak C, Sae-Ear P, Sa-Ard-Iam N, Shotelersuk V, Porntaveetus T. In-depth investigation of FAM20A insufficiency effects on deciduous dental pulp cells: Altered behaviours, osteogenic differentiation, and inflammatory gene expression. Int Endod J 2024; 57:745-758. [PMID: 38477421 DOI: 10.1111/iej.14056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
AIM Loss-of-function mutations in FAM20A result in amelogenesis imperfecta IG (AI1G) or enamel-renal syndrome, characterized by hypoplastic enamel, ectopic calcification, and gingival hyperplasia, with some cases reporting spontaneous tooth infection. Despite previous reports on the consequence of FAM20A reduction in gingival fibroblasts and transcriptome analyses of AI1G pulp tissues, suggesting its involvement in mineralization and infection, its role in deciduous dental pulp cells (DDP) remains unreported. The aim of this study was to evaluate the properties of DDP obtained from an AI1G patient, providing additional insights into the effects of FAM20A on the mineralization of DDP. METHODOLOGY DDP were obtained from a FAM20A-AI1G patient (mutant cells) and three healthy individuals. Cellular behaviours were examined using flow cytometry, MTT, attachment and spreading, colony formation, and wound healing assays. Osteogenic induction was applied to DDP, followed by alizarin red S staining to assess their osteogenic differentiation. The expression of FAM20A-related genes, osteogenic genes, and inflammatory genes was analysed using real-time PCR, Western blot, and/or immunolocalization. Additionally, STRING analysis was performed to predict potential protein-protein interaction networks. RESULTS The mutant cells exhibited a significant reduction in FAM20A mRNA and protein levels, as well as proliferation, migration, attachment, and colony formation. However, normal FAM20A subcellular localization was maintained. Additionally, osteogenic/odontogenic genes, OSX, OPN, RUNX2, BSP, and DSPP, were downregulated, along with upregulated ALP. STRING analysis suggested a potential correlation between FAM20A and these osteogenic genes. After osteogenic induction, the mutant cells demonstrated reduced mineral deposition and dysregulated expression of osteogenic genes. Remarkably, FAM20A, FAM20C, RUNX2, OPN, and OSX were significantly upregulated in the mutant cells, whilst ALP, and OCN was downregulated. Furthermore, the mutant cells exhibited a significant increase in inflammatory gene expression, that is, IL-1β and TGF-β1, whereas IL-6 and NFκB1 expression was significantly reduced. CONCLUSION The reduction of FAM20A in mutant DDP is associated with various cellular deficiencies, including delayed proliferation, attachment, spreading, and migration as well as altered osteogenic and inflammatory responses. These findings provide novel insights into the biology of FAM20A in dental pulp cells and shed light on the molecular mechanisms underlying AI1G pathology.
Collapse
Affiliation(s)
- Kanokwan Sriwattanapong
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanakorn Theerapanon
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chompak Khamwachirapitak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Pannagorn Sae-Ear
- Oral Biology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Noppadol Sa-Ard-Iam
- Center of Excellence in Periodontal Disease and Dental Implant, Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- International Graduate Program in Geriatric Dentistry and Special Patients Care, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
20
|
Rogers K, WaMaina E, Barber A, Masood S, Love C, Kim YH, Gilmour MI, Jaspers I. Emissions from plastic incineration induce inflammation, oxidative stress, and impaired bioenergetics in primary human respiratory epithelial cells. Toxicol Sci 2024; 199:301-315. [PMID: 38539046 PMCID: PMC11131019 DOI: 10.1093/toxsci/kfae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Inhalation exposure to plastic incineration emissions (PIEs) is a problem of increasing human relevance, as plastic production and waste creation have drastically increased since mainstream integration during the 20th century. We investigated the effects of PIEs on human nasal epithelial cells (HNECs) to understand if such exposures cause damage and dysfunction to respiratory epithelia. Primary HNECs from male and female donors were cultured at air-liquid interface (ALI), and 16HBE cells were cultured on coverslips. Smoke condensates were generated from incineration of plastic at flaming (640°C) and smoldering (500°C) temperatures, and cells were subsequently exposed to these materials at 5-50 μg/cm2 concentrations. HNECs were assessed for mitochondrial dysfunction and 16HBE cells for glutathione oxidation in real-time analyses. HNEC culture supernatants and total RNA were collected at 4-h postexposure for cytokine and gene expression analysis, and results show that PIEs can acutely induce inflammation, oxidative stress, and mitochondrial dysfunction in HNECs, and that incineration temperature modifies biological responses. Specifically, condensates from flaming and smoldering PIEs significantly increased HNEC secretion of cytokines IL-8, IL-1β, and IL-13, as well as expression of xenobiotic metabolism pathways and genes such as CYP1A1 and CYP1B1 at 5 and 20 μg/cm2 concentrations. Only 50 μg/cm2 flaming PIEs significantly increased glutathione oxidation in 16HBEs, and decreased respiration and ATP production in HNEC mitochondria. Impact Statement: Our data reveal the impact of incineration temperatures on biological outcomes associated with PIE exposures, emphasizing the importance of temperature as a factor when evaluating respiratory disease associated with PIEs exposure.
Collapse
Affiliation(s)
- Keith Rogers
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7310, USA
| | | | - Andrew Barber
- North Carolina Central University, Durham, North Carolina 27707, USA
| | - Syed Masood
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7310, USA
| | - Charlotte Love
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7310, USA
| | - Yong Ho Kim
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - M Ian Gilmour
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Ilona Jaspers
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
21
|
Lu YF, Chang YH, Chen YJ, Hsieh MS, Lin MW, Hsu HH, Han CL, Chen YJ, Yu SL, Chen JS, Chen HY. Proteomic profiling of tumor microenvironment and prognosis risk prediction in stage I lung adenocarcinoma. Lung Cancer 2024; 191:107791. [PMID: 38621342 DOI: 10.1016/j.lungcan.2024.107791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVES With the increasing popularity of CT screening, more cases of early-stage lung cancer are being diagnosed. However, 24.5% of stage I non-small-cell lung cancer (NSCLC) patients still experience treatment failure post-surgery. Biomarkers to predict lung cancer patients at high risk of recurrence are needed. MATERIALS AND METHODS We collected protein mass spectrometry data from the Taiwan Lung Cancer Moonshot Project and performed bioinformatics analysis on proteins with differential expressions between tumor and adjacent normal tissues in 74 stage I lung adenocarcinoma (LUAD) cases, aiming to explore the tumor microenvironment related prognostic biomarkers. Findings were further validated in 6 external cohorts. RESULTS The analysis of differentially expressed proteins revealed that the most enriched categories of diseases and biological functions were cellular movement, immune cell trafficking, and cancer. Utilizing proteomic profiling of the tumor microenvironment, we identified five prognostic biomarkers (ADAM10, MIF, TEK, THBS2, MAOA). We then developed a risk score model, which independently predicted recurrence-free survival and overall survival in stage I LUAD. Patients with high risk scores experienced worse recurrence-free survival (adjusted hazard ratio = 8.28, p < 0.001) and overall survival (adjusted hazard ratio = 6.88, p = 0.013). Findings had been also validated in the external cohorts. CONCLUSION The risk score model derived from proteomic profiling of tumor microenvironment can be used to predict recurrence risk and prognosis of stage I LUAD.
Collapse
Affiliation(s)
- Yueh-Feng Lu
- Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taiwan; Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Ya-Hsuan Chang
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Taiwan.
| | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan.
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Mong-Wei Lin
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Hsao-Hsun Hsu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan.
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taiwan.
| | - Jin-Shing Chen
- Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taiwan; Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Hsuan-Yu Chen
- Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taiwan; Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Taiwan; Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
22
|
Asthana S, Mott J, Tong M, Pei Z, Mao Y. The Exon Junction Complex Factor RBM8A in Glial Fibrillary Acid Protein-Expressing Astrocytes Modulates Locomotion Behaviors. Cells 2024; 13:498. [PMID: 38534343 PMCID: PMC10968791 DOI: 10.3390/cells13060498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The role of RNA Binding Motif Protein 8a (RBM8A), an exon junction complex (EJC) component, in neurodevelopmental disorders has been increasingly studied for its crucial role in regulating multiple levels of gene expression. It regulates mRNA splicing, translation, and mRNA degradation and influences embryonic development. RBM8A protein is expressed in both neurons and astrocytes, but little is known about RBM8A's specific role in glial fibrillary acid protein (GFAP)-positive astrocytes. To address the role of RBM8A in astrocytes, we generated a conditional heterozygous knockout (KO) mouse line of Rbm8a in astrocytes using a GFAP-cre line. We confirmed a decreased expression of RBM8A in astrocytes of heterozygous conditional KO mice via RT-PCR and Sanger sequencing, as well as qRT-PCR, immunohistochemistry, and Western blot. Interestingly, these mice exhibit significantly increased movement and mobility, alongside sex-specific altered anxiety in the open field test (OFT) and elevated plus maze (OPM) tests. These tests, along with the rotarod test, suggest that these mice have normal motor coordination but hyperactive phenotypes. In addition, the haploinsufficiency of Rbm8a in astrocytes leads to a sex-specific change in astrocyte density in the dentate gyrus. This study further reveals the contribution of Rbm8a deletion to CNS pathology, generating more insights via the glial lens of an Rbm8a model of neurodevelopmental disorder.
Collapse
Affiliation(s)
- Shravan Asthana
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; (S.A.); (J.M.); (M.T.); (Z.P.)
- Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | - Jennifer Mott
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; (S.A.); (J.M.); (M.T.); (Z.P.)
| | - Mabel Tong
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; (S.A.); (J.M.); (M.T.); (Z.P.)
| | - Zifei Pei
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; (S.A.); (J.M.); (M.T.); (Z.P.)
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; (S.A.); (J.M.); (M.T.); (Z.P.)
| |
Collapse
|
23
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
24
|
Li J, Zhang J, Ye H, Wang Q, Ouyang Y, Luo Y, Gong Y. Pulmonary decellularized extracellular matrix (dECM) modified polyethylene terephthalate three-dimensional cell carriers regulate the proliferation and paracrine activity of mesenchymal stem cells. Front Bioeng Biotechnol 2024; 11:1324424. [PMID: 38260733 PMCID: PMC10800494 DOI: 10.3389/fbioe.2023.1324424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Mesenchymal stem cells (MSCs) possess a high degree of self-renewal capacity and in vitro multi-lineage differentiation potential. Decellularized materials have garnered considerable attention due to their elevated biocompatibility, reduced immunogenicity, excellent biodegradability, and the ability to partially mimic the in vivo microenvironment conducive to cell growth. To address the issue of mesenchymal stem cells losing their stem cell characteristics during two-dimensional (2D) cultivation, this study established three-dimensional cell carriers modified with lung decellularized extracellular matrix and assessed its impact on the life activities of mesenchymal stem cells. Methods: This study employed PET as a substrate material, grafting with polydopamine (PDA), and constructing a decellularized extracellular matrix (dECM) coating on its surface, thus creating the PET/PDA/dECM three-dimensional (3D) composite carrier. Subsequently, material characterization of the cellular carriers was conducted, followed by co-culturing with human umbilical cord mesenchymal stem cells in vitro, aiming to investigate the material's impact on the proliferation and paracrine activity of mesenchymal stem cells. Results and Discussion: Material characterization demonstrated successful grafting of PDA and dECM materials, and it had complete hydrophilicity, high porosity, and excellent mechanical properties. The material was rich in various ECM proteins (collagen I, collagen IV , laminin, fibronectin, elastin), indicating good biocompatibility. In long-term in vitro cultivation (14 days) experiments, the PET/PDA/dECM three-dimensional composite carrier significantly enhanced adhesion and proliferation of human umbilical cord-derived mesenchymal stem cells (HUCMSCs), with a proliferation rate 1.9 times higher than that of cells cultured on tissue culture polystyrene (TCPS) at day 14. Furthermore, it effectively maintained the stem cell characteristics, expressing specific antigens for HUCMSCs. Through qPCR, Western blot, and ELISA experiments, the composite carrier markedly promoted the expression and secretion of key cell factors in HUCMSCs. These results demonstrate that the PET/PDA/dECM composite carrier holds great potential for scaling up MSCs' long-term in vitro cultivation and the production of paracrine factors.
Collapse
Affiliation(s)
- Jinze Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Jiali Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Hao Ye
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Qixuan Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Yanran Ouyang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Yuxi Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou, China
| | - Yihong Gong
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
25
|
Hu Y, Wu W, Huang L, Zhang L, Cao C, Zhang W, Hu Y, Cui X, Li T, Wang S, Luo X. Zinc proteinate with moderate chelation strength enhances zinc absorption by upregulating the expression of zinc and amino acid transporters in primary cultured duodenal epithelial cells of broiler embryos. J Anim Sci 2024; 102:skae204. [PMID: 39031082 PMCID: PMC11362845 DOI: 10.1093/jas/skae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024] Open
Abstract
Recent study showed that zinc (Zn) and amino acid transporters may be involved in enhancing Zn absorption from Zn proteinate with moderate chelation strength (Zn-Prot M) in the duodenum of broilers. However, the specific mechanisms by which Zn-Prot M promotes the above Zn absorption are unknown. Therefore, in this study, 3 experiments were conducted to investigate specific and direct effects of Zn-Prot M and Zn sulfate (ZnS) on Zn absorption and expression of related transporters in primary duodenal epithelial cells of broiler embryos so as to preliminarily address possible mechanisms. In experiment 1, cells were treated with 100 μmol Zn/L as ZnS or Zn-Prot M for 20, 40, 60, 80, 100, or 120 min. Experiment 2 consisted of 3 sub-experiments. In experiment 2A, cells were treated with a Zn-unsupplemented basal medium (Control) or the basal medium supplemented with 100 or 200 μmol Zn/L as ZnS or Zn-Prot M for 60 min; in experiment 2B, cells were treated with a Zn-unsupplemented basal medium (Control) or the basal medium supplemented with 200 μmol Zn/L of as the ZnS or Zn-Prot M for 120 min; in experiment 2C, cells were treated with a Zn-unsupplemented basal medium (Control) or the basal medium supplemented with 400 or 800 μmol Zn/L as ZnS or Zn-Prot M for 120 min. In experiment 3, cells were treated with a Zn-unsupplemented basal medium (Control) or the basal medium supplemented with 400 μmol Zn/L as ZnS or Zn-Prot M for 120 min. The results of experiment 1 indicated that the minimum incubation time for saturable Zn absorption was determined to be 50.83 min using the best fit line. The results in experiment 2 demonstrated that a Zn concentration of 400 μmol/L and an incubation time of 120 min were suitable to increase the absorption of Zn from Zn-Prot M compared to ZnS. In experiment 3, Zn absorption across cell monolayers was significantly increased by Zn addition (P < 0.05), and was significantly greater with Zn-Prot M than with ZnS (P < 0.05). Compared to the control, Zn addition significantly decreased Zn transporter 10 and peptide-transporter 1 mRNA expression levels and increased y + L-type amino transporter 2 (y + LAT2) protein abundance (P < 0.05). Moreover, protein expression levels of zrt/irt-like protein 3 (ZIP3), zrt-irt-like protein 5 (ZIP5), and y + LAT2 were significantly greater for Zn-Prot M than for ZnS (P < 0.05). These findings suggest that Zn-Prot M promote Zn absorption by increasing ZIP3, ZIP5 and y + LAT2 protein expression levels in primary duodenal epithelial cells.
Collapse
Affiliation(s)
- Yun Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
| | - Wei Wu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
| | - Liang Huang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Liyang Zhang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Chunyu Cao
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
| | - Weiyun Zhang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yangyang Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xiaoyan Cui
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
| | - Tingting Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
| | - Shengchen Wang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
26
|
Werner T, Fahrner M, Schilling O. Using proteomics for stratification and risk prediction in patients with solid tumors. PATHOLOGIE (HEIDELBERG, GERMANY) 2023; 44:176-182. [PMID: 37999758 DOI: 10.1007/s00292-023-01261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/25/2023]
Abstract
Proteomics, the study of proteins and their functions, has greatly evolved due to advances in analytical chemistry and computational biology. Unlike genomics or transcriptomics, proteomics captures the dynamic and diverse nature of proteins, which play crucial roles in cellular processes. This is exemplified in cancer, where genomic and transcriptomic information often falls short in reflecting actual protein expression and interactions. Liquid chromatography-mass spectrometry (LC-MS) is pivotal in proteomic data generation, enabling high-throughput analysis of protein samples. The MS-based workflow involves protein digestion, chromatographic separation, ionization, and fragmentation, leading to peptide identification and quantification. Computational biostatistics, particularly using tools in R (R Foundation for Statistical Computing, Vienna, Austria; www.R-project.org ), aid in data analysis, revealing protein expression patterns and correlations with clinical variables. Proteomic studies can be explorative, aiming to characterize entire proteomes, or targeted, focusing on specific proteins of interest. The integration of proteomics with genomics addresses database limitations and enhances peptide identification. Case studies in intrahepatic cholangiocarcinoma, glioblastoma multiforme, and pancreatic ductal adenocarcinoma highlight proteomics' clinical applications, from subtyping cancers to identifying diagnostic markers. Moreover, proteomic data augment molecular tumor boards by providing deeper insights into pathway activities and genomic mutations, supporting personalized treatment decisions. Overall, proteomics contributes significantly to advancing our understanding of cellular biology and improving clinical care.
Collapse
Affiliation(s)
- Tilman Werner
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Centre Freiburg, University of Freiburg, Breisacher Str. 115a, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Matthias Fahrner
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Centre Freiburg, University of Freiburg, Breisacher Str. 115a, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany
| | - Oliver Schilling
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Centre Freiburg, University of Freiburg, Breisacher Str. 115a, 79106, Freiburg, Germany.
- German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany.
| |
Collapse
|
27
|
Bishop DJ, Hoffman NJ, Taylor DF, Saner NJ, Lee MJC, Hawley JA. Discordant skeletal muscle gene and protein responses to exercise. Trends Biochem Sci 2023; 48:927-936. [PMID: 37709636 DOI: 10.1016/j.tibs.2023.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
The ability of skeletal muscle to adapt to repeated contractile stimuli is one of the most intriguing aspects of physiology. The molecular bases underpinning these adaptations involve increased protein activity and/or expression, mediated by an array of pre- and post-transcriptional processes, as well as translational and post-translational control. A longstanding dogma assumes a direct relationship between exercise-induced increases in mRNA levels and subsequent changes in the abundance of the proteins they encode. Drawing on the results of recent studies, we dissect and question the common assumption of a direct relationship between changes in the skeletal muscle transcriptome and proteome induced by repeated muscle contractions (e.g., exercise).
Collapse
Affiliation(s)
- David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.
| | - Nolan J Hoffman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Dale F Taylor
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Nicholas J Saner
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Matthew J-C Lee
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
28
|
Mori K, Matsumoto K, Ikeda M, Koguchi D, Shimizu Y, Tsumura H, Ishii D, Tsuji S, Sato Y, Iwamura M. Membranous Expression of Heart Development Protein with EGF-like Domain 1 Is Associated with a Good Prognosis in Patients with Bladder Cancer. Diagnostics (Basel) 2023; 13:3067. [PMID: 37835810 PMCID: PMC10572329 DOI: 10.3390/diagnostics13193067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVE To investigate the correlation between total protein expression of heart development protein with EGF-like domain 1 (HEG1) and clinicopathological characteristics in patients with bladder cancer (BC) after radical cystectomy (RC). PATIENTS AND METHODS We retrospectively analyzed data from 110 patients who underwent RC at Kitasato University Hospital. And we prepared an anti-HEG1 monoclonal antibody W10B9, which can detect total HEG1 protein. HEG1 protein expression in tumor cells was evaluated separately for membrane and cytoplasmic staining using immunohistochemistry. RESULTS Membranous HEG1 expression was associated with absent lymphovascular invasion (p < 0.01) and low pT stage (p < 0.01). Kaplan-Meier analysis revealed that the membranous HEG1-positive group had significantly long recurrence-free survival (RFS) (p < 0.01) and cancer-specific survival (p = 0.01). Expression of membranous HEG1 was identified as an independent prognostic factor for RFS (p = 0.04). There were no significant differences between cytoplasmic HEG1 expression and clinicopathologic factors including prognosis. CONCLUSION The expression of membranous HEG1 could serve as a favorable prognostic indicator in patients with BC treated with RC.
Collapse
Affiliation(s)
- Kohei Mori
- Department of Urology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (K.M.); (M.I.); (D.K.); (Y.S.); (H.T.); (D.I.); (Y.S.); (M.I.)
| | - Kazumasa Matsumoto
- Department of Urology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (K.M.); (M.I.); (D.K.); (Y.S.); (H.T.); (D.I.); (Y.S.); (M.I.)
| | - Masaomi Ikeda
- Department of Urology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (K.M.); (M.I.); (D.K.); (Y.S.); (H.T.); (D.I.); (Y.S.); (M.I.)
| | - Dai Koguchi
- Department of Urology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (K.M.); (M.I.); (D.K.); (Y.S.); (H.T.); (D.I.); (Y.S.); (M.I.)
| | - Yuriko Shimizu
- Department of Urology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (K.M.); (M.I.); (D.K.); (Y.S.); (H.T.); (D.I.); (Y.S.); (M.I.)
| | - Hideyasu Tsumura
- Department of Urology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (K.M.); (M.I.); (D.K.); (Y.S.); (H.T.); (D.I.); (Y.S.); (M.I.)
| | - Daisuke Ishii
- Department of Urology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (K.M.); (M.I.); (D.K.); (Y.S.); (H.T.); (D.I.); (Y.S.); (M.I.)
| | - Shoutaro Tsuji
- Department of Medical Technology & Clinical Engineering, Gunma University of Health and Welfare, 191-1 Kawamagari-machi, Maebashi-shi 371-0823, Gunma, Japan;
| | - Yuichi Sato
- Department of Urology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (K.M.); (M.I.); (D.K.); (Y.S.); (H.T.); (D.I.); (Y.S.); (M.I.)
- KITASATO-OTSUKA Biomedical Assay Laboratories Co., Ltd., 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0329, Kanagawa, Japan
| | - Masatsugu Iwamura
- Department of Urology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (K.M.); (M.I.); (D.K.); (Y.S.); (H.T.); (D.I.); (Y.S.); (M.I.)
| |
Collapse
|
29
|
Soon HR, Gaunt JR, Bansal VA, Lenherr C, Sze SK, Ch’ng TH. Seizure enhances SUMOylation and zinc-finger transcriptional repression in neuronal nuclei. iScience 2023; 26:107707. [PMID: 37694138 PMCID: PMC10483055 DOI: 10.1016/j.isci.2023.107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
A single episode of pilocarpine-induced status epilepticus can trigger the development of spontaneous recurrent seizures in a rodent model for epilepsy. The initial seizure-induced events in neuronal nuclei that lead to long-term changes in gene expression and cellular responses likely contribute toward epileptogenesis. Using a transgenic mouse model to specifically isolate excitatory neuronal nuclei, we profiled the seizure-induced nuclear proteome via tandem mass tag mass spectrometry and observed robust enrichment of nuclear proteins associated with the SUMOylation pathway. In parallel with nuclear proteome, we characterized nuclear gene expression by RNA sequencing which provided insights into seizure-driven transcriptional regulation and dynamics. Strikingly, we saw widespread downregulation of zinc-finger transcription factors, specifically proteins that harbor Krüppel-associated box (KRAB) domains. Our results provide a detailed snapshot of nuclear events induced by seizure activity and demonstrate a robust method for cell-type-specific nuclear profiling that can be applied to other cell types and models.
Collapse
Affiliation(s)
- Hui Rong Soon
- School of Biological Science, Nanyang Technological University, Singapore 636551, Singapore
| | - Jessica Ruth Gaunt
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Vibhavari Aysha Bansal
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Clara Lenherr
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Centre for Discovery Brain Science, The University of Edinburgh, Edinburgh, UK
| | - Siu Kwan Sze
- Faculty of Applied Health Sciences, Brock University, St. Catherines, ON, Canada
| | - Toh Hean Ch’ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- School of Biological Science, Nanyang Technological University, Singapore 636551, Singapore
| |
Collapse
|
30
|
Hernández-Suárez B, Gillespie DA, Dejnaka E, Kupczyk P, Obmińska-Mrukowicz B, Pawlak A. Studying the DNA damage response pathway in hematopoietic canine cancer cell lines, a necessary step for finding targets to generate new therapies to treat cancer in dogs. Front Vet Sci 2023; 10:1227683. [PMID: 37655260 PMCID: PMC10467447 DOI: 10.3389/fvets.2023.1227683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Background Dogs present a significant opportunity for studies in comparative oncology. However, the study of cancer biology phenomena in canine cells is currently limited by restricted availability of validated antibody reagents and techniques. Here, we provide an initial characterization of the expression and activity of key components of the DNA Damage Response (DDR) in a panel of hematopoietic canine cancer cell lines, with the use of commercially available antibody reagents. Materials and methods The techniques used for this validation analysis were western blot, qPCR, and DNA combing assay. Results Substantial variations in both the basal expression (ATR, Claspin, Chk1, and Rad51) and agonist-induced activation (p-Chk1) of DDR components were observed in canine cancer cell lines. The expression was stronger in the CLBL-1 (B-cell lymphoma) and CLB70 (B-cell chronic lymphocytic leukemia) cell lines than in the GL-1 (B-cell leukemia) cell line, but the biological significance of these differences requires further investigation. We also validated methodologies for quantifying DNA replication dynamics in hematopoietic canine cancer cell lines, and found that the GL-1 cell line presented a higher replication fork speed than the CLBL-1 cell line, but that both showed a tendency to replication fork asymmetry. Conclusion These findings will inform future studies on cancer biology, which will facilitate progress in developing novel anticancer therapies for canine patients. They can also provide new knowledge in human oncology.
Collapse
Affiliation(s)
- Beatriz Hernández-Suárez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - David A. Gillespie
- Facultad de Medicina, Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife, Spain
| | - Ewa Dejnaka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Piotr Kupczyk
- Division of General and Experimental Pathology, Department of Clinical and Experimental Pathology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
31
|
Zhao S, Wang R, Song S, Hao D, Han G, Song X, Zhang J, Pizzi MP, Shanbhag N, Futreal A, Badgwell B, Harada K, Calin G, Vykoukal J, Yu CY, Katayama H, Hanash SM, Wang L, Ajani JA. Proteogenomic landscape of gastric adenocarcinoma peritoneal metastases. iScience 2023; 26:106913. [PMID: 37305699 PMCID: PMC10251128 DOI: 10.1016/j.isci.2023.106913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/01/2022] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Advanced gastric adenocarcinoma (GAC) often leads to peritoneal carcinomatosis (PC) and is associated with very poor outcome. Here we report the comprehensive proteogenomic study of ascites derived cells from a prospective GAC cohort (n = 26 patients with peritoneal carcinomatosis, PC). A total of 16,449 proteins were detected from whole cell extracts (TCEs). Unsupervised hierarchical clustering resulted in three distinct groups that reflected extent of enrichment in tumor cells. Integrated analysis revealed enriched biological pathways and notably, some druggable targets (cancer-testis antigens, kinases, and receptors) that could be exploited to develop effective therapies and/or tumor stratifications. Systematic comparison of expression levels of proteins and mRNAs revealed special expression patterns of key therapeutics target notably high mRNA and low protein expression of HAVCR2 (TIM-3), and low mRNA but high protein expression of cancer-testis antigens CTAGE1 and CTNNA2. These results inform strategies to target GAC vulnerabilities.
Collapse
Affiliation(s)
- Shuangtao Zhao
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruiping Wang
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shumei Song
- GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dapeng Hao
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guangchun Han
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melissa Pool Pizzi
- GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Namita Shanbhag
- GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Futreal
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brian Badgwell
- Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kazuto Harada
- GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Calin
- Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jody Vykoukal
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chuan-Yih Yu
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroyuki Katayama
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir M. Hanash
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A. Ajani
- GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
32
|
Zhang YH, Cho MH, Morrow JD, Castaldi PJ, Hersh CP, Midha MK, Hoopmann MR, Lutz SM, Moritz RL, Silverman EK. Integrating Genetics, Transcriptomics, and Proteomics in Lung Tissue to Investigate Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2023; 68:651-663. [PMID: 36780661 PMCID: PMC10257075 DOI: 10.1165/rcmb.2022-0302oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/13/2023] [Indexed: 02/15/2023] Open
Abstract
The integration of transcriptomic and proteomic data from lung tissue with chronic obstructive pulmonary disease (COPD)-associated genetic variants could provide insight into the biological mechanisms of COPD. Here, we assessed associations between lung transcriptomics and proteomics with COPD in 98 subjects from the Lung Tissue Research Consortium. Low correlations between transcriptomics and proteomics were generally observed, but higher correlations were found for COPD-associated proteins. We integrated COPD risk SNPs or SNPs near COPD-associated proteins with lung transcripts and proteins to identify regulatory cis-quantitative trait loci (QTLs). Significant expression QTLs (eQTLs) and protein QTLs (pQTLs) were found regulating multiple COPD-associated biomarkers. We investigated mediated associations from significant pQTLs through transcripts to protein levels of COPD-associated proteins. We also attempted to identify colocalized effects between COPD genome-wide association studies and eQTL and pQTL signals. Evidence was found for colocalization between COPD genome-wide association study signals and a pQTL for RHOB and an eQTL for DSP. We applied weighted gene co-expression network analysis to find consensus COPD-associated network modules. Two network modules generated by consensus weighted gene co-expression network analysis were associated with COPD with a false discovery rate lower than 0.05. One network module is related to the catenin complex, and the other module is related to plasma membrane components. In summary, multiple cis-acting determinants of transcripts and proteins associated with COPD were identified. Colocalization analysis, mediation analysis, and correlation-based network analysis of multiple omics data may identify key genes and proteins that work together to influence COPD pathogenesis.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- Channing Division of Network Medicine, Harvard Medical School, and
| | - Michael H. Cho
- Channing Division of Network Medicine, Harvard Medical School, and
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts; and
| | | | | | - Craig P. Hersh
- Channing Division of Network Medicine, Harvard Medical School, and
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts; and
| | | | | | - Sharon M. Lutz
- Channing Division of Network Medicine, Harvard Medical School, and
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts; and
| | | | - Edwin K. Silverman
- Channing Division of Network Medicine, Harvard Medical School, and
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts; and
| |
Collapse
|
33
|
Monsivais D, Parks SE, Chandrashekar DS, Varambally S, Creighton CJ. Using cancer proteomics data to identify gene candidates for therapeutic targeting. Oncotarget 2023; 14:399-412. [PMID: 37141409 PMCID: PMC11623401 DOI: 10.18632/oncotarget.28420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
Gene-level associations obtained from mass-spectrometry-based cancer proteomics datasets represent a resource for identifying gene candidates for functional studies. When recently surveying proteomic correlates of tumor grade across multiple cancer types, we identified specific protein kinases having a functional impact on uterine endometrial cancer cells. This previously published study provides just one template for utilizing public molecular datasets to discover potential novel therapeutic targets and approaches for cancer patients. Proteomic profiling data combined with corresponding multi-omics data on human tumors and cell lines can be analyzed in various ways to prioritize genes of interest for interrogating biology. Across hundreds of cancer cell lines, CRISPR loss of function and drug sensitivity scoring can be readily integrated with protein data to predict any gene's functional impact before bench experiments are carried out. Public data portals make cancer proteomics data more accessible to the research community. Drug discovery platforms can screen hundreds of millions of small molecule inhibitors for those that target a gene or pathway of interest. Here, we discuss some of the available public genomic and proteomic resources while considering approaches to how these could be leveraged for molecular biology insights or drug discovery. We also demonstrate the inhibitory effect of BAY1217389, a TTK inhibitor recently tested in a Phase I clinical trial for the treatment of solid tumors, on uterine cancer cell line viability.
Collapse
Affiliation(s)
- Diana Monsivais
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sydney E. Parks
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Darshan S. Chandrashekar
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Genomic Diagnostics and Bioinformatics, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sooryanarayana Varambally
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- The Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Chad J. Creighton
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
34
|
Li B, Chen J, He J, Peng J, Wang Y, Liu S, Jiang Y. Total alkaloids in Stephania tetrandra induce apoptosis by regulating BBC3 in human non-small cell lung cancer cells. Biomed Pharmacother 2023; 162:114635. [PMID: 37044023 DOI: 10.1016/j.biopha.2023.114635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
PURPOSE This study investigated the effects of total alkaloids in Stephania tetrandra (TAS) and the main alkaloid components tetrandrine, fangchinoline and cepharanthine on the biological function of lung cancer cells and the mechanism underlying the synergistic antitumor effects of TAS and cisplatin. METHODS RNA sequencing analysis was performed on TAS-treated H1299 cells. Differentially expressed genes were identified and analyzed, and the regulatory pathway was identified by gene set enrichment analysis. The mRNA and protein expression levels of the differentially expressed genes in cells were determined using quantitative reverse transcription-polymerase chain reaction and western blotting, respectively. Cell viability and wound healing assays evaluated the biological function of TAS and the main alkaloid components in non-small cell lung cancer (NSCLC) cells. Flow cytometry was used to determine the apoptosis rate in NSCLC cells. RESULTS TAS inhibited the proliferation and migration of A549 and H1299 cells and increased the apoptosis rate in a time- and dose-dependent manner. When H1299 cells were treated with TAS (7.5 µg/ml), MGLL and BBC3 were identified as the possible differentially expressed genes. Pathways associated with cisplatin resistance were screened to investigate the effect of TAS on the apoptosis of NSCLC cells. TAS may regulate fatty acid metabolism and induce apoptosis through the upregulated expression of MGLL and BBC3. The combination of TAS at noncytotoxic concentrations (A549: 1.0 μg/ml; H1299: 3.0 μg/ml) and cisplatin significantly inhibited the viability of A549 and H1299 cells. CONCLUSION TAS and the main alkaloid components exert anticancer activity in NSCLC by regulating tumor cell proliferation and apoptosis. Therefore, TAS and the main alkaloid components have the potential to be used as multi-targeted drugs for lung cancer treatment.
Collapse
Affiliation(s)
- Bichen Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Juan Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jia He
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jing Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuxin Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
35
|
Kotowski M, Adamczyk P, Szydlowski J. Micro RNAs and Circular RNAs in Different Forms of Otitis Media. Int J Mol Sci 2023; 24:ijms24076752. [PMID: 37047725 PMCID: PMC10095330 DOI: 10.3390/ijms24076752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
The aim of this comprehensive review was to present the current knowledge on the role of microRNAs (miRNAs) in acute, recurrent, and chronic forms of otitis media. Special attention was focused on cholesteatoma of the middle ear. MicroRNAs modulate gene expression, which, in turn, influences the development and likelihood of the recurrence of acute and aggressive chronic middle ear inflammatory processes. Moreover, this study discusses the modulating role of a specific subgroup of noncoding RNA, circular RNA (circRNA). Recognizing the precise potential pathways and the mechanisms of their function may contribute to a better understanding of the molecular bases of middle ear diseases and identifying novel methods for treating this demanding pathology. Articles published between 2009 and 2022 were used in this analysis. In this review, we provide a complete overview of the latest progress in identifying the role and mechanisms of particular miRNAs and circRNAs in acute, recurrent and chronic forms of otitis media.
Collapse
Affiliation(s)
- Michal Kotowski
- Department of Pediatric Otolaryngology, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| | - Paulina Adamczyk
- Department of Pediatric Otolaryngology, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| | - Jaroslaw Szydlowski
- Department of Pediatric Otolaryngology, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| |
Collapse
|
36
|
Alaqla A, Hu Y, Huang S, Ruiz S, Kawai T, Han X. TLR9 Signaling Is Required for the Porphyromonas gingivalis-Induced Activation of IL-10-Expressing B Cells. Int J Mol Sci 2023; 24:6693. [PMID: 37047666 PMCID: PMC10094902 DOI: 10.3390/ijms24076693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Immune cell pattern-recognition receptors such as Toll-like receptors (TLRs) play important roles in the regulation of host responses to periodontal pathogens. Our previous studies have demonstrated that immune regulatory B cells were activated by TLRs and alleviated periodontitis inflammation and bone loss. The purpose of this study is to determine the role of TLR9 signaling in the activation and IL-10 production of the primed-immune B cells in vitro. Wild-type (WT) and TLR9 knockout (TLR9KO) mice (C57BL/6 background, n = 5) were pre-immunized intraperitoneally with 1 × 108 formalin-fixed P. gingivalis and boosted once with 1 × 107 formalin-fixed P. gingivalis. Isolated splenocytes and purified B cells from each mouse were cultured with 1 × 108 formalin-fixed P. gingivalis for 48 h. Immunocytochemistry was performed to detect CD45+ IL-10+ cells. Levels of IL-10 expression and secretion in splenocytes and B cells were detected using qRT-PCR and ELISA, respectively. After stimulation with fixed P. gingivalis, the percentage of CD45+ IL-10+ B cells and the level of IL-10 expression were significantly increased (p < 0.01) in splenocytes and purified B cells isolated from WT mice. However, these changes were not observed in splenocytes and purified B cells from TLR9KO mice when the cells were treated with fixed P. gingivalis. The percentage of CD45+ IL-10+ B cells was significantly reduced in splenocytes and purified B cells from TLR9KO mice compared to those from WT mice when challenged with P. gingivalis. IL-10 expression in B cells from TLR9KO mice was significantly decreased compared to those from WT mice at both the mRNA and protein levels. Additionally, P. gingivalis-induced up-regulation of TNF-α mRNA expressions were consistently observed in B cells from both WT and TLR9KO mice. P. gingivalis-induced B10 activation and IL-10 production during adaptive responses by primed B cells requires TLR9 signaling and can be achieved independent of T-cell help.
Collapse
Affiliation(s)
- Ali Alaqla
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Yang Hu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Shengyuan Huang
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, 3301 College Ave., Fort Lauderdale, FL 33314, USA
| | - Sunniva Ruiz
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, 3301 College Ave., Fort Lauderdale, FL 33314, USA
| | - Toshihisa Kawai
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, 3301 College Ave., Fort Lauderdale, FL 33314, USA
| | - Xiaozhe Han
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, 3301 College Ave., Fort Lauderdale, FL 33314, USA
| |
Collapse
|
37
|
Parker E, Judge MA, Pastor L, Fuente-Soro L, Jairoce C, Carter KW, Anderson D, Mandomando I, Clifford HD, Naniche D, Le Souëf PN. Gene dysregulation in acute HIV-1 infection – early transcriptomic analysis reveals the crucial biological functions affected. Front Cell Infect Microbiol 2023; 13:1074847. [PMID: 37077524 PMCID: PMC10106835 DOI: 10.3389/fcimb.2023.1074847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
IntroductionTranscriptomic analyses from early human immunodeficiency virus (HIV) infection have the potential to reveal how HIV causes widespread and lasting damage to biological functions, especially in the immune system. Previous studies have been limited by difficulties in obtaining early specimens.MethodsA hospital symptom-based screening approach was applied in a rural Mozambican setting to enrol patients with suspected acute HIV infection (Fiebig stage I-IV). Blood samples were collected from all those recruited, so that acute cases and contemporaneously recruited, uninfected controls were included. PBMC were isolated and sequenced using RNA-seq. Sample cellular composition was estimated from gene expression data. Differential gene expression analysis was completed, and correlations were determined between viral load and differential gene expression. Biological implications were examined using Cytoscape, gene set enrichment analysis, and enrichment mapping.ResultsTwenty-nine HIV infected subjects one month from presentation and 46 uninfected controls were included in this study. Subjects with acute HIV infection demonstrated profound gene dysregulation, with 6131 (almost 13% of the genome mapped in this study) significantly differentially expressed. Viral load was correlated with 1.6% of dysregulated genes, in particular, highly upregulated genes involved in key cell cycle functions, were correlated with viremia. The most profoundly upregulated biological functions related to cell cycle regulation, in particular, CDCA7 may drive aberrant cell division, promoted by overexpressed E2F family proteins. Also upregulated were DNA repair and replication, microtubule and spindle organization, and immune activation and response. The interferome of acute HIV was characterized by broad activation of interferon-stimulated genes with antiviral functions, most notably IFI27 and OTOF. BCL2 downregulation alongside upregulation of several apoptotic trigger genes and downstream effectors may contribute to cycle arrest and apoptosis. Transmembrane protein 155 (TMEM155) was consistently highly overexpressed during acute infection, with roles hitherto unknown.DiscussionOur study contributes to a better understanding of the mechanisms of early HIV-induced immune damage. These findings have the potential to lead to new earlier interventions that improve outcomes.
Collapse
Affiliation(s)
- Erica Parker
- School of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Melinda A. Judge
- School of Medicine, University of Western Australia, Crawley, WA, Australia
- *Correspondence: Melinda A. Judge,
| | - Lucia Pastor
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic–Universitat de Barcelona, Barcelona, Spain
- AIDS Research Institute-IrsiCaixa, Institut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Laura Fuente-Soro
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic–Universitat de Barcelona, Barcelona, Spain
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | | | | | - Inácio Mandomando
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | | | - Denise Naniche
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic–Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Peter Neils Le Souëf
- School of Medicine, University of Western Australia, Crawley, WA, Australia
- Telethon Kids Institute, Perth, WA, Australia
| |
Collapse
|
38
|
Waduge P, Tian H, Webster KA, Li W. Profiling disease-selective drug targets: From proteomics to ligandomics. Drug Discov Today 2023; 28:103430. [PMID: 36343915 PMCID: PMC9974940 DOI: 10.1016/j.drudis.2022.103430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Despite advancements in omics technologies, including proteomics and transcriptomics, identification of therapeutic targets remains challenging. Ligandomics recently emerged as a unique technology of functional proteomics for global profiling of cell-binding protein ligands. When applied to diseased versus healthy vasculatures, comparative ligandomics systematically maps novel disease-restricted ligands that allow selective targeting of pathological but not physiological pathways, providing high efficacy with intrinsic safety. In this review, we discuss the potential of cellular ligands as therapeutic targets and summarize the development of ligandomics. We further compare the advantages and limitations of different omics technologies for drug target discovery and discuss target selection criteria to improve drug R&D success rates.
Collapse
Affiliation(s)
- Prabuddha Waduge
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hong Tian
- LigandomicsRx, LLC, Houston, TX 77098, USA; Everglades Biopharma, LLC, Houston, TX 77098, USA
| | - Keith A Webster
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA; Vascular Biology Institute, Department of Pharmacology, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Wei Li
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
39
|
Li Y, Zhang Z, Jiang S, Xu F, Tulum L, Li K, Liu S, Li S, Chang L, Liddell M, Tu F, Gu X, Carmichael PL, White A, Peng S, Zhang Q, Li J, Zuo T, Kukic P, Xu P. Using transcriptomics, proteomics and phosphoproteomics as new approach methodology (NAM) to define biological responses for chemical safety assessment. CHEMOSPHERE 2023; 313:137359. [PMID: 36427571 DOI: 10.1016/j.chemosphere.2022.137359] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Omic-based technologies are of particular interest and importance for hazard identification and health risk characterization of chemicals. Their application in the new approach methodologies (NAMs) anchored on cellular toxicity pathways is based on the premise that any apical health endpoint change must be underpinned by some alterations at the omic levels. In the present study we examined the cellular responses to two chemicals, caffeine and coumarin, by generating and integrating multi-omic data from multi-dose and multi-time point transcriptomic, proteomic and phosphoproteomic experiments. We showed that the methodology presented here was able to capture the complete chain of events from the first chemical-induced changes at the phosphoproteome level, to changes in gene expression, and lastly to changes in protein abundance, each with vastly different points of departure (PODs). In HepG2 cells we found that the metabolism of lipids and general cellular stress response to be the dominant biological processes in response to caffeine and coumarin exposure, respectively. The phosphoproteomic changes were detected early in time, at very low doses and provided a fast, adaptive cellular response to chemical exposure with 7-37-fold lower points of departure comparing to the transcriptomics. Changes in protein abundance were found much less frequently than transcriptomic changes. While challenges remain, our study provides strong and novel evidence supporting the notion that these three omic technologies can be used in an integrated manner to facilitate a more complete understanding of pathway perturbations and POD determinations for risk assessment of chemical exposures.
Collapse
Affiliation(s)
- Yuan Li
- Department of Biomedicine, Medical College, Guizhou University, Guiyang, 550025, China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Zhenpeng Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Songhao Jiang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China; Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Feng Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Liz Tulum
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Kaixuan Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Shu Liu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Suzhen Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Lei Chang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Mark Liddell
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Fengjuan Tu
- Unilever Research & Development Centre Shanghai, Shanghai, 200335, China
| | - Xuelan Gu
- Unilever Research & Development Centre Shanghai, Shanghai, 200335, China
| | - Paul Lawford Carmichael
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Andrew White
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Shuangqing Peng
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Jin Li
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Tao Zuo
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China.
| | - Predrag Kukic
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK.
| | - Ping Xu
- Department of Biomedicine, Medical College, Guizhou University, Guiyang, 550025, China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China; Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, 071002, China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
40
|
Klotho Protein Decreases MMP-Mediated Degradation of Contractile Proteins during Ischaemia/Reperfusion Injury to the Cardiomyocytes. Int J Mol Sci 2022; 23:ijms232415450. [PMID: 36555091 PMCID: PMC9779408 DOI: 10.3390/ijms232415450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
Ischaemia, followed by reperfusion, causes the generation of reactive oxygen species, overproduction of peroxynitrite, activation of matrix metalloproteinases (MMPs), and subsequently the degradation of heart contractile proteins in the cardiomyocytes. Klotho is a membrane-bound or soluble protein that regulates mineral metabolism and has antioxidative activity. This study aimed to examine the influence of Klotho protein on the MMP-mediated degradation of contractile proteins during ischaemia/reperfusion injury (IRI) to the cardiomyocytes. Human cardiac myocytes (HCM) underwent in vitro chemical IRI (with sodium cyanide and deoxyglucose), with or without the administration of recombinant Klotho protein. The expression of MMP genes, the expression and activity of MMP proteins, as well as the level of contractile proteins such as myosin light chain 1 (MLC1) and troponin I (TnI) in HCM were measured. Administration of Klotho protein resulted in a decreased activity of MMP-2 and reduced the release of MLC1 and TnI that followed in cells subjected to IRI. Thus, Klotho protein contributes to the inhibition of MMP-dependent degradation of contractile proteins and prevents injury to the cardiomyocytes during IRI.
Collapse
|
41
|
Regulatory Role of the RUNX2 Transcription Factor in Lung Cancer Apoptosis. Int J Cell Biol 2022; 2022:5198203. [PMID: 36510562 PMCID: PMC9741537 DOI: 10.1155/2022/5198203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/23/2022] [Accepted: 11/22/2022] [Indexed: 12/07/2022] Open
Abstract
Lung cancer is the leading cause of cancer death globally. Numerous factors intervene in the onset and progression of lung tumors, among which the participation of lineage-specific transcription factors stands out. Several transcription factors important in embryonic development are abnormally expressed in adult tissues and thus participate in the activation of signaling pathways related to the acquisition of the tumor phenotype. RUNX2 is the transcription factor responsible for osteogenic differentiation in mammals. Current studies have confirmed that RUNX2 is closely related to the proliferation, invasion, and bone metastasis of multiple cancer types, such as osteosarcoma, breast cancer (BC), prostate cancer, gastric cancer, colorectal cancer, and lung cancer. Thus, the present study is aimed at evaluating the role of the RUNX2 transcription factor in inhibiting the apoptosis process. Loss-of-function assays using sh-RNA from lentiviral particles and coupled with Annexin/propidium iodide (PI) assays (flow cytometry), immunofluorescence, and quantitative PCR analysis of genes related to cell apoptosis (BAD, BAX, BCL2, BCL-XL, and MCL1) were performed. Silencing assays and Annexin/PI assays demonstrated that when RUNX2 was absent, the percentage of dead cells increased, and the expression levels of the BCL2, BCL-XL, and MCL1 genes were downregulated. Furthermore, to confirm whether the regulatory role of RUNX2 in the expression of these genes is related to its binding to the promoter region, we performed chromatin immunoprecipitation (ChIP) assays. Here, we report that overexpression of the RUNX2 gene in lung cancer may be related to the inhibition of the intrinsic apoptosis pathway, specifically, through direct transcriptional regulation of the antiapoptotic gene BCL2 and indirect regulation of BCL-XL and MCL1.
Collapse
|
42
|
Li W, Deng X, Chen J. RNA-binding proteins in regulating mRNA stability and translation: roles and mechanisms in cancer. Semin Cancer Biol 2022; 86:664-677. [PMID: 35381329 PMCID: PMC9526761 DOI: 10.1016/j.semcancer.2022.03.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 01/10/2023]
Abstract
RNA-binding proteins (RBPs) are key players in cellular physiology through posttranscriptional regulation of the expression of target RNA transcripts. By modulating the processing, stability and translation of cancer-related messenger RNA (mRNA) transcripts, a large set of RBPs play essential roles in various types of cancers. Perturbations in RBP activity have been causally associated with cancer development, tumor metabolism, drug resistance, cancer stem cell self-renewal, and tumor immune evasion. Here, we summarize the recent advances in cancer pathological roles and mechanisms of RBPs in regulating mRNA stability and translation with an emphasis on the emerging category of RNA modification-associated RBPs. The functional diversity of RBPs in different types of cancers and the therapeutic potential of targeting dysregulated RBPs for cancer treatment are also discussed.
Collapse
Affiliation(s)
- Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia 91016, USA
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia 91016, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia 91016, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
43
|
Örsten S, Baysal İ, Çiftçi T, Ünal E, Yabanoğlu Çiftçi S, Doğrul AB, Akıncı D, Akyön Y, Akhan O. Evaluation of Potential Inflammatory Markers for Cystic Echinococcosis: P-selectin and Resistin. TURKIYE PARAZITOLOJII DERGISI 2022; 46:195-200. [PMID: 36094120 DOI: 10.4274/tpd.galenos.2022.55265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Cystic echinococcosis (CE) is one of the most common zoonotic diseases worldwide. Diagnosis of CE is predominantly based on imaging techniques and serological tests are used in cases of non-characteristic imaging findings as diagnostic reference. However, serological test results cannot be completely reliable as they are affected by multi-factors. P-selectin and resistin are inflammatory markers that are altered during the acute stages of infection. In this purpose, inflammatory markers as P-selectin and resistin have been investigated for a potential diagnostic reference for CE diagnosis. METHODS A total of 60 patients who were diagnosed with CE and twenty-five healthy individuals were included in this study. Blood samples were obtained from all participants. Obtained sera were evaluated using the P-selectin and resistin ELISA kits for protein levels. Additionally, the relative expression of SELP (P-selectin) and RETN (resistin) genes were determined using the comparative CT (ΔΔCT) method between groups as CE patients with active and inactive cysts, CE patients and healthy controls. RESULTS SELP (13.9-fold change, p<0.05) and RETN (8.1-fold change, p<0.05) were differentially expressed in CE patients compared in the control group. Whereas resistin protein levels were significantly higher in CE patients than the healthy controls (p<0.001), the difference in P-selectin protein levels was not significant (p>0.05). There was no difference between active and inactive CE patients in terms of P-selectin and resistin in gene and protein levels (p>0.05). CONCLUSION Although there was no difference between the active and inactive CE patients, the good differentiation between the healthy controls and the CE patients suggested that resistin is a potential inflammatory diagnostic reference.
Collapse
Affiliation(s)
- Serra Örsten
- Hacettepe University Vocational School of Health Services, Ankara, Turkey
| | - İpek Baysal
- Hacettepe University Vocational School of Health Services, Ankara, Turkey
| | - Türkmen Çiftçi
- Hacettepe University Faculty of Medicine, Department of Radiology, Ankara, Turkey
| | - Emre Ünal
- Hacettepe University Faculty of Medicine, Department of Radiology, Ankara, Turkey
| | | | - Ahmet Bülent Doğrul
- Hacettepe University Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| | - Devrim Akıncı
- Hacettepe University Faculty of Medicine, Department of Radiology, Ankara, Turkey
| | - Yakut Akyön
- Hacettepe University Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkey
| | - Okan Akhan
- Hacettepe University Faculty of Medicine, Department of Radiology, Ankara, Turkey
| |
Collapse
|
44
|
Wang X, Xu Z, Hu H, Zhou X, Zhang Y, Lafyatis R, Chen K, Huang H, Ding Y, Duerr RH, Chen W. SECANT: a biology-guided semi-supervised method for clustering, classification, and annotation of single-cell multi-omics. PNAS NEXUS 2022; 1:pgac165. [PMID: 36157595 PMCID: PMC9491696 DOI: 10.1093/pnasnexus/pgac165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/16/2022] [Indexed: 01/29/2023]
Abstract
The recent advance of single cell sequencing (scRNA-seq) technology such as Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) allows researchers to quantify cell surface protein abundance and RNA expression simultaneously at single cell resolution. Although CITE-seq and other similar technologies have gained enormous popularity, novel methods for analyzing this type of single cell multi-omics data are in urgent need. A limited number of available tools utilize data-driven approach, which may undermine the biological importance of surface protein data. In this study, we developed SECANT, a biology-guided SEmi-supervised method for Clustering, classification, and ANnoTation of single-cell multi-omics. SECANT is used to analyze CITE-seq data, or jointly analyze CITE-seq and scRNA-seq data. The novelties of SECANT include (1) using confident cell type label identified from surface protein data as guidance for cell clustering, (2) providing general annotation of confident cell types for each cell cluster, (3) utilizing cells with uncertain or missing cell type label to increase performance, and (4) accurate prediction of confident cell types for scRNA-seq data. Besides, as a model-based approach, SECANT can quantify the uncertainty of the results through easily interpretable posterior probability, and our framework can be potentially extended to handle other types of multi-omics data. We successfully demonstrated the validity and advantages of SECANT via simulation studies and analysis of public and in-house datasets from multiple tissues. We believe this new method will be complementary to existing tools for characterizing novel cell types and make new biological discoveries using single-cell multi-omics data.
Collapse
Affiliation(s)
- Xinjun Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zhongli Xu
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Haoran Hu
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xueping Zhou
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yanfu Zhang
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Robert Lafyatis
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kong Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Heng Huang
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Richard H Duerr
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wei Chen
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
45
|
Barta I, Paska C, Antus B. Sputum Cytokine Profiling in COPD: Comparison Between Stable Disease and Exacerbation. Int J Chron Obstruct Pulmon Dis 2022; 17:1897-1908. [PMID: 36017119 PMCID: PMC9397440 DOI: 10.2147/copd.s364982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose Cytokines are extracellular signaling proteins that have been widely implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Here, we investigated cytokine expression both at the mRNA and protein level in the sputum of healthy individuals, stable COPD patients, and those experiencing a severe acute exacerbation (AECOPD) requiring hospitalization. Patients and Methods Sputum was collected in 19 healthy controls, 25 clinically stable COPD patients, and 31 patients with AECOPD. In AECOPD patients sample collection was performed both at the time of hospital admission and at discharge following treatment. Sputum supernatant was analyzed by an antibody microarray detecting 120 cytokines simultaneously, while the mRNA expression of 14 selected cytokines in sputum cells was investigated by real-time PCR (qPCR). Results Proteomic analysis identified interleukin (IL)-6 and growth-regulated oncogene (GRO)α as the only sputum cytokines that were differentially expressed between stable COPD patients and healthy controls. At the onset of AECOPD, several cytokines exhibited altered sputum expression compared to stable COPD. Recovery from AECOPD induced significant changes in the sputum cytokine protein profile; however, the length of hospitalization was insufficient for most cytokines to return to stable levels. With regard to gene expression analysis by qPCR, we found that bone morphogenetic protein (BMP)-4 was up-regulated, while IL-1α, monokine-induced by interferon-γ (MIG), and BMP-6 were down-regulated at the mRNA level in patients with AECOPD compared to stable disease. Conclusion The sputum cytokine signature of AECOPD differs from that of stable COPD. Protein level changes are asynchronous with changes in gene expression at the mRNA level in AECOPD. The observation that the levels of most cytokines do not stabilize with acute treatment of AECOPD suggests a prolonged effect of exacerbation on the status of COPD patients.
Collapse
Affiliation(s)
- Imre Barta
- Department of Pathophysiology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Csilla Paska
- Department of Pathophysiology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Balazs Antus
- Department of Pathophysiology, National Koranyi Institute of Pulmonology, Budapest, Hungary.,Department of Pulmonology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| |
Collapse
|
46
|
Comprehensive Analysis of N6-Methyladenosine (m6A) Writers, Erasers, and Readers in Cervical Cancer. Int J Mol Sci 2022; 23:ijms23137165. [PMID: 35806168 PMCID: PMC9266832 DOI: 10.3390/ijms23137165] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 01/09/2023] Open
Abstract
There is growing scientific evidence for the crucial role of post-transcriptional RNA modifications in carcinogenesis, progression, metastasis, and drug resistance across various cancer entities. N6-methyladenosine (m6A) is the most abundant type of RNA modification. m6A is coordinated by a dynamic interplay of ‘writers’ (METTL3, METTL4, METTL14, WTAP, KIAA1429), ‘erasers’ (FTO, ALKBH5), and ‘readers’ (HNRNPA2B1, HNRNPC, YTHDC1, YTHDC1, YTHDF1-3). In this study, we comprehensively examined protein and mRNA expression levels of m6A writers, readers, and erasers in two cervical cancer (CC) cohorts (UHB CC cohort, N = 118; TCGA CC cohort, N = 307) with regard to clinical outcomes. In the UHB CC cohort, high protein expression levels of METTL14 (p = 0.016), WTAP (p = 0.007), KIAA1439 (p < 0.001), ALKBH5 (p < 0.001), HNRNPC (p = 0.012), YTHDC1 (p < 0.001), and YTHDF3 (p = 0.004) were significantly associated with a shorter overall survival (OS). In the TCGA CC cohort, mRNA expression levels of METTL14 (p = 0.012), WTAP (p = 0.041), KIAA1429 (p = 0.016), and YTHDC1 (p = 0.026) showed prognostic values. However, after correction for multiple testing, statistical significance remained only for m6A protein expression levels (q < 0.1). Our study points towards dysregulated m6A modification in CC. Hence, m6A might serve as a promising prognostic biomarker and therapeutical target in CC.
Collapse
|
47
|
da Silva RC, Fagundes RR, Faber KN, Campos ÉG. Pro-Oxidant and Cytotoxic Effects of Tucum-Do-Cerrado ( Bactris setosa Mart.) Extracts in Colorectal Adenocarcinoma Caco-2 Cells. Nutr Cancer 2022; 74:3723-3734. [PMID: 35703849 DOI: 10.1080/01635581.2022.2086704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Colorectal cancer is one of the most common types of cancer. Bioactive natural compounds can act in cancer chemoprevention as tumor growth inhibitors. Tucum-do-cerrado (Bactris setosa Mart.) is a Brazilian fruit that contains several phenolic compounds. This study investigated the effect of tucum aqueous extract in Caco-2 cells in comparison to primary human intestinal organoids and fibroblasts. Cells were exposed to 0.5 and 1 mg/ml of tucum aqueous extract for 24 h. ROS production, mRNA levels for SOD1 and SOD2, CAT, GPX1, NFE2L2, HIF1A and NOS2 were evaluated in Caco-2 cells exposed to tucum extract. Cell viability of Caco-2 cells was decreased upon tucum extract exposure. Mitochondrial ROS levels increased in Caco-2 cells exposed to tucum extract. The mRNA levels of SOD1, SOD2, CAT, GPX, NFE2L2 and HIF1A were downregulated in Caco-2 cells exposed to tucum extract, while NOS2 mRNA levels remained unchanged. Protein levels of SOD2, CAT and NRF2 remained unchanged in Caco-2 cells treated with tucum extract, indicating that catalase and SOD2 cellular functions may be unaffected by the tucum extract at 24 h, of exposure. Aqueous extract of tucum-do-cerrado may induce cellular toxicity in a cancer cell-specific manner, possibly through increased mitochondrial ROS production and gene expression regulation.
Collapse
Affiliation(s)
- Renata Cristina da Silva
- Programa de Pós-Graduação em Nutrição Humana, Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil.,Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Raphael Rosa Fagundes
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Élida Geralda Campos
- Programa de Pós-Graduação em Nutrição Humana, Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| |
Collapse
|
48
|
Nguyen LT, Lau LY, Fortes MRS. Proteomic Analysis of Hypothalamus and Pituitary Gland in Pre and Postpubertal Brahman Heifers. Front Genet 2022; 13:935433. [PMID: 35774501 PMCID: PMC9237413 DOI: 10.3389/fgene.2022.935433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
Abstract
The hypothalamus and the pituitary gland are directly involved in the complex systemic changes that drive the onset of puberty in cattle. Here, we applied integrated bioinformatics to elucidate the critical proteins underlying puberty and uncover potential molecular mechanisms from the hypothalamus and pituitary gland of prepubertal (n = 6) and postpubertal (n = 6) cattle. Proteomic analysis in the hypothalamus and pituitary gland revealed 275 and 186 differentially abundant (DA) proteins, respectively (adjusted p-value < 0.01). The proteome profiles found herein were integrated with previously acquired transcriptome profiles. These transcriptomic studies used the same tissues harvested from the same heifers at pre- and post-puberty. This comparison detected a small number of matched transcripts and protein changes at puberty in each tissue, suggesting the need for multiple omics analyses for interpreting complex biological systems. In the hypothalamus, upregulated DA proteins at post-puberty were enriched in pathways related to puberty, including GnRH, calcium and oxytocin signalling pathways, whereas downregulated proteins were observed in the estrogen signalling pathway, axon guidance and GABAergic synapse. Additionally, this study revealed that ribosomal pathway proteins in the pituitary were involved in the pubertal development of mammals. The reported molecules and derived protein-protein networks are a starting point for future experimental approaches that might dissect with more detail the role of each molecule to provide new insights into the mechanisms of puberty onset in cattle.
Collapse
Affiliation(s)
- Loan To Nguyen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
- *Correspondence: Loan To Nguyen,
| | - Li Yieng Lau
- Agency of Science, Technology and Research, Singapore, Singapore
| | | |
Collapse
|
49
|
Pott J, Garcia T, Hauck SM, Petrera A, Wirkner K, Loeffler M, Kirsten H, Peters A, Scholz M. Genetically regulated gene expression and proteins revealed discordant effects. PLoS One 2022; 17:e0268815. [PMID: 35604899 PMCID: PMC9126407 DOI: 10.1371/journal.pone.0268815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background Although gene-expression (GE) and protein levels are typically strongly genetically regulated, their correlation is known to be low. Here we investigate this phenomenon by focusing on the genetic background of this correlation in order to understand the similarities and differences in the genetic regulation of these omics layers. Methods and results We performed locus-wide association studies of 92 protein levels measured in whole blood for 2,014 samples of European ancestry and found that 66 are genetically regulated. Three female- and one male-specific effects were detected. We estimated the genetically regulated GE for all significant genes in 49 GTEx v8 tissues. A total of 7 proteins showed negative correlations with their respective GE across multiple tissues. Finally, we tested for causal links of GE on protein expression via Mendelian Randomization, and confirmed a negative causal effect of GE on protein level for five of these genes in a total of 63 gene-tissue pairs: BLMH, CASP3, CXCL16, IL6R, and SFTPD. For IL6R, we replicated the negative causal effect on coronary-artery disease (CAD), while its GE was positively linked to CAD. Conclusion While total GE and protein levels are only weakly correlated, we found high correlations between their genetically regulated components across multiple tissues. Of note, strong negative causal effects of tissue-specific GE on five protein levels were detected. Causal network analyses revealed that GE effects on CAD risks was in general mediated by protein levels.
Collapse
Affiliation(s)
- Janne Pott
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
- * E-mail: (JP); (MS)
| | - Tarcyane Garcia
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Zentrum Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Agnese Petrera
- Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Zentrum Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Kerstin Wirkner
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Annette Peters
- Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Zentrum Munich - German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Chair of Epidemiology, Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
- * E-mail: (JP); (MS)
| |
Collapse
|
50
|
Linoleic acid reduces apoptosis via NF-κB during the in vitro development of induced parthenogenic porcine embryos. Theriogenology 2022; 187:173-181. [PMID: 35596974 DOI: 10.1016/j.theriogenology.2022.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022]
Abstract
Fatty acid has a various role in preimplantation embryo development. Especially, Linoleic acid, polyunsaturated fatty acid, has been reported to affect the apoptosis pathway via nuclear transcription factor-kappa B. But to date, the function of NF-κB has not been demonstrated in porcine preimplantation embryos. We demonstrated that linoleic acid had a positive effect on embryo development at a certain concentration(25 μM), but developmental failure was observed at higher concentration. Furthermore, the expression level of NF-κB increased, unlike that of IL-6, as the concentration of linoleic acid increased. Interestingly, the concentration of NF-κB was found to increase even at the concentration of linoleic acid at which embryo development decreased. We found that pro-apoptotic gene expression was downregulated in the linoleic acid-treated group. It was also found that MCL-1, an anti-apoptotic gene known to be unaffected by IL-6, was found to be increased at the mRNA level in the linoleic acid-treated group. As the concentration of NF-kB increased, the nuclear translocation of C-JUN gradually increased dependent on the linoleic acid concentration. It was confirmed that NF-κB is an important factor in porcine embryos by treated ammonium pyrrolidinedithiocarbamate (APDC 0.1 μM, an inhibitor of NF-κB) affected NF-κB protein expression, IL-6 expression, and blastocyst production. These data supported porcine embryos can use exogenous linoleic acid as a metabolic energy source via NF-κB.
Collapse
|