1
|
Javaid D, Ganie SY, Qadri SS, Reyaz A, Reshi MS. Eco-friendly nanotherapeutics: Metallic nanoparticles for targeting breast cancer. Eur J Pharmacol 2025; 996:177603. [PMID: 40189083 DOI: 10.1016/j.ejphar.2025.177603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/13/2025]
Abstract
Breast cancer continues to be a major cause of death among women globally, with triple-negative breast cancer (TNBC) presenting a particularly difficult challenge due to its aggressive behaviour and the lack of effective treatment options. Nanotechnology, particularly the use of silver nanoparticles (AgNPs), has emerged as a promising avenue in oncological research. This review explores into the escalating field of green synthesis of nanoparticles, emphasizing sustainable approaches utilizing plant-based resources. Critical factors influencing nanoparticle synthesis, including reaction conditions, precursor types, and plant phytochemicals, are explored alongside advanced characterization techniques essential for evaluating nanoparticle properties. Special focus is given to the phytofabrication of silver nanoparticles and their multifaceted roles in breast cancer treatment, with detailed insights into their mechanisms, such as inducing apoptosis, generating reactive oxygen species (ROS), and disrupting mitochondrial function, particularly in TNBC cells. The review further highlights the advantages of plant-derived AgNPs, such as biocompatibility and reduced toxicity, while addressing challenges like scalability, reproducibility, and regulatory hurdles. Concluding with future prospects, this paper reflects the potential of green-synthesized AgNPs as a keystone in next-generation cancer therapeutics, paving the way for innovative and eco-friendly approaches in oncology.
Collapse
Affiliation(s)
- Darakhshan Javaid
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Shahid Yousuf Ganie
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Syed Sanober Qadri
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Adfar Reyaz
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Mohd Salim Reshi
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India.
| |
Collapse
|
2
|
Rajpal VR, Nongthongbam B, Bhatia M, Singh A, Raina SN, Minkina T, Rajput VD, Zahra N, Husen A. The nano-paradox: addressing nanotoxicity for sustainable agriculture, circular economy and SDGs. J Nanobiotechnology 2025; 23:314. [PMID: 40275357 PMCID: PMC12023416 DOI: 10.1186/s12951-025-03371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Engineered nanomaterials (ENMs) have aroused extensive interest in agricultural, industrial, and medical applications. The integration of ENMs into the agricultural systems aligns with the principles of United Nations' sustainable development goals (SDGs), circular economy (CE) and bio-economy (BE) principles. This approach offers excellent opportunities to enhance productivity and address global climate change challenges. The revelation of the adverse effects of nanomaterials (NMs) on various organisms and ecosystems, however, has fueled the debate on 'Nano-paradox' leading to emergence of a new research domain 'Nanotoxicology'. ENMs have shown different interactions with biological and environmental systems as compared to their bulk counterparts. They bioaccumulate in organisms, soils, and other environmental matrices, move through food chains and reach higher trophic levels including humans ultimately resulting in oxidative stress and cellular damage. Understanding nano-bio interactions, the mechanism of gene- and cytotoxicity, and associated potential hazards, is therefore, essential to mitigate their toxicological outputs. This review comprehensively examines the cyto- and genotoxicity mechanisms of ENMs in biological systems, covering aspects such as their entry, uptake, cellular responses, dynamic interactions in biological environments their long-term effects and environmental risk assessment (ERA). It also discusses toxicological assessment methods, regulatory policies, strategies for toxicity management/mitigation and future research directions in nanotechnology, all within the context of SDGs, CE, promoting resource efficiency and sustainability. Navigating the nano-paradox involves balancing the benefits of nanomaterials with concerns about nanotoxicity. Prioritizing thorough research on above facets can ensure sustainability and safety, enabling responsible harnessing of nanotechnology's transformative potential in various applications including mitigating global climate change and enhancing agricultural productivity.
Collapse
Affiliation(s)
| | | | - Manika Bhatia
- TERI School of Advanced Studies, Vasant Kunj Institutional Area, New Delhi, Delhi, 110070, India
| | - Apekshita Singh
- Department of Biotechnology, Amity University of Biotechnology, Noida, Uttar Pradesh, India
| | - Soom Nath Raina
- Department of Biotechnology, Amity University of Biotechnology, Noida, Uttar Pradesh, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Noreen Zahra
- Department of Botany, Government College Women University, Faisalabad, 38000, Pakistan
- Postgraduate Office, Amin Campus, The University of Faisalabad, Faisalabad, 38000, Pakistan
| | - Azamal Husen
- Wolaita Sodo University, PO Box 138, Wolaita, Ethiopia.
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
3
|
Chen X, Weng Z, Zhang H, Jiao J, Liang J, Xu J, Wang D, Liu Q, Yan Q, Gu A. Nano-zinc oxide (nZnO) targets the AMPK-ULK1 pathway to promote bone regeneration. Stem Cell Res Ther 2025; 16:206. [PMID: 40275329 PMCID: PMC12023698 DOI: 10.1186/s13287-025-04322-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Nano-zinc oxide (nZnO) has attracted significant attention in bone tissue engineering due to its antibacterial properties, anti-inflammatory effects, biocompatibility, and chemical stability. Although numerous studies have demonstrated the enhancement of osteogenic differentiation by nZnO-modified tissue engineering materials, the underlying mechanisms remain poorly characterized. METHODS This study aimed to identify the molecular mechanisms how nZnO promoted osteogenic differentiation and bone regeneration using transcriptome analysis, drug intervention, and shRNA knockdown techniques, etc. First, the study evaluated the in vivo effects of gelatin methacryloyl (GelMA) containing nZnO on bone regeneration using a mouse calvarial defect model. The impact of nZnO exposure on the osteogenic differentiation of mesenchymal stem cells (MSCs) was then assessed. The combined treatment of nZnO and MSCs in GelMA for bone regeneration was assessed in the mouse calvarial defect model thereafter. RESULTS nZnO induced osteoblastic differentiation to promote bone regeneration. nZnO activated the AMP-dependent protein kinase (AMPK)-ULK1 signals to stimulate autophagosomes formation and facilitate autophagy flow, which was the essential pathway to induce osteogenic differentiation. The combined treatment of MSCs and nZnO significantly enhanced bone regeneration in calvarial defect mice. Conversely, AMPK inhibitor Compound C (C.C) reversed the effects on autophagy flow and osteogenic potentiality induced by nZnO. CONCLUSIONS These results highlight that nZnO can regulate bone regeneration by activating autophagy through the AMPK/ULK1 signaling pathway, which may provide a novel therapeutic strategy for addressing bone defects using nZnO.
Collapse
Affiliation(s)
- Xiu Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Jiangsu Environmental Health Risk Assessment Engineering Research Center, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Jiangsu Environmental Health Risk Assessment Engineering Research Center, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
- Changzhou Second People's Hospital, Changzhou Medical Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 213004, China
| | - Hongchao Zhang
- School of Medicine, Shanghai East Hospital & Institute of Gallstone Disease, Tongji University, Shanghai, Nanjing, 200120, 211166, China
| | - Jian Jiao
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Jiangsu Environmental Health Risk Assessment Engineering Research Center, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jingjia Liang
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Jiangsu Environmental Health Risk Assessment Engineering Research Center, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Jiangsu Environmental Health Risk Assessment Engineering Research Center, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Dongmei Wang
- Changzhou Second People's Hospital, Changzhou Medical Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 213004, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Jiangsu Environmental Health Risk Assessment Engineering Research Center, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Qing Yan
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, 211166, China.
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Jiangsu Environmental Health Risk Assessment Engineering Research Center, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
4
|
Tripathy DB, Pradhan S, Gupta A, Agarwal P. Nanoparticles induced neurotoxicity. Nanotoxicology 2025:1-28. [PMID: 40237487 DOI: 10.1080/17435390.2025.2488310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/24/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025]
Abstract
The early development of nanotechnology has spurred major interest on the toxicity of nanoparticles (NPs) due to their ability to penetrate the biological barriers such as the BBB. This review aims at addressing how silver (AgNPs), titanium dioxide (TiO2NPs), zinc oxide (ZnONPs), iron oxide (Fe3O4NPs), carbon NPs, Copper (Cu-NPs), silicon oxide (SiO2 NPs) nanoparticles and quantum dots cause neurotoxicity. Some of the major signaling that occur are the signaling related to oxidative stress, neuroinflammation, mitochondrial dysfunction and cell equilibrium, hence results in neuronal damage and neurodegeneration. It is critical to describe that there are multiple ways by how NPs may be toxic based on their size and surface, dosage, and the recipient's age and health condition. A review on in vitro and in vivo analysis provides information about the toxic potentials of NPs and preventive measures including modification of NP surface and antioxidant treatment. The results underline the necessity of comprehensive safety assessments to allow the further utilization of nanoparticles across the economy.
Collapse
Affiliation(s)
- Divya Bajpai Tripathy
- Department of Chemistry, School of Basic Sciences, Galgotias University, Greater Noida, India
| | - Subhalaxmi Pradhan
- Department of Chemistry, School of Basic Sciences, Galgotias University, Greater Noida, India
| | - Anjali Gupta
- Department of Chemistry, School of Basic Sciences, Galgotias University, Greater Noida, India
| | - Pooja Agarwal
- Department of Chemistry, School of Basic Sciences, Galgotias University, Greater Noida, India
| |
Collapse
|
5
|
Wang H, Li Y, Qiu D, Pan Q, Xu Y, Liu Y, Wu Y. Personalized Nanomedicine-Mediated immune regulation for Anti-Rejection in organ transplantation. Int J Pharm 2025; 674:125450. [PMID: 40122222 DOI: 10.1016/j.ijpharm.2025.125450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/20/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025]
Abstract
The advent of personalized medicine and nanomedicine has led to significant advancements in organ transplantation. Personalized medicine leverages individual patient profiles, including genetic, epigenetic, and immune characteristics, to tailor treatment regimens. Nanomedicine, involving the use of nanoparticles and nanotechnology, offers precise drug delivery and innovative diagnostic tools. The integration of personalized nanomedicine into these fields has the potential to revolutionize transplantation by enhancing graft survival, minimizing adverse effects, and achieving immune tolerance. This review explores the current landscape of personalized nanomedicine for organ transplantation, focusing on immune modulation and therapeutic strategies tailored to individual patient profiles. We also discuss future research directions, including large-scale clinical trials, and regulatory considerations. This review concludes by examining the potential of personalized nanomedicine in improving long-term transplant outcomes and enhancing patient quality of life.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yutong Li
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Dan Qiu
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Qinyu Pan
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yong Xu
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Department of Endocrinology and Metabolism, The Affiliated Hospital, Southwest Medical University, Luzhou 646000 Sichuan, China.
| | - Yong Liu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Ya Wu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
6
|
Lee H, Lee EJ, Park K, Lee DG, Kim AY, Park S, Kim J. MicroRNA transcriptome analysis for post-mortem interval estimation. Forensic Sci Int 2025; 370:112473. [PMID: 40250071 DOI: 10.1016/j.forsciint.2025.112473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/18/2025] [Accepted: 04/09/2025] [Indexed: 04/20/2025]
Abstract
Estimating the post-mortem interval (PMI) is a critical aspect of forensic science; however, current methods often lack precision because of the variability in external and internal factors. This study investigated the potential use of microRNAs (miRNAs) as stable molecular biomarkers for PMI estimation. We analysed the miRNA expression profiles in myocardial tissue from 18 BALB/c mice sampled at six PMIs (0, 12, 24, 36, 48 h, and 6 d) using high-throughput sequencing and qRT-PCR. In total, 154 differentially expressed (DE) miRNAs were identified, of which 55 were upregulated and 99 were downregulated. Five upregulated (miR-206-3p, miR-200a-3p, miR-205-5p, miR-200b-3p, miR-429-3p) and four downregulated (miR-541-5p, miR-455-3p, miR-30c-5p, and miR-149-5p) apoptosis-related miRNAs were validated through qRT-PCR analysis, indicating their potential as supportive biomarkers in PMI estimation. Gene ontology analysis revealed their involvement in processes such as cardiac muscle cell proliferation, nuclear migration, and miRNA metabolic regulation. Linear regression models demonstrated significant correlations between specific miRNA expression levels and the PMI. These findings provide a molecular basis that may contribute to improving PMI estimation accuracy and supporting forensic methodologies.
Collapse
Affiliation(s)
- Haneul Lee
- Department of Forensic Science, Graduate school, Catholic University of Pusan, Busan 46252, Republic of Korea; Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Republic of Korea
| | - Eun Ju Lee
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea; Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Republic of Korea; Korea Mycobacterium Resource Center (KMRC), Department of Research and Development, The Korean Institute of Tuberculosis, Osong, 28158, Republic of Korea
| | - Kwangmin Park
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea; Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Republic of Korea
| | - Dong Geon Lee
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea; Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Republic of Korea
| | - Ah Yeoung Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea; Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Republic of Korea
| | - Sunyoung Park
- School of Mechanical Engineering, Yonsei University, Seoul 03772, Republic of Korea.
| | - Jungho Kim
- Department of Forensic Science, Graduate school, Catholic University of Pusan, Busan 46252, Republic of Korea; Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea; Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Republic of Korea.
| |
Collapse
|
7
|
Plotnikov EV, Drozd AG, Artamonov AA, Larkina MS, Belousov MV, Lomov IV, Garibo D, Pestryakov AN, Bogdanchikova N. Silver nanoparticles enhance neutron radiation sensitivity in cancer cells: An in vitro study. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 65:102813. [PMID: 40024490 DOI: 10.1016/j.nano.2025.102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/25/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Growing interest in cancer radiotherapy has led to the application of nanoparticles as radiosensitizers. Here, we, for the first time, present the results of the radiosensitizing properties of silver nanoparticles (AgNPs) (possessing low toxicity towards human body) against cancer cells under neutron irradiation. Five standard cancer cultures (including glioblastoma, known for its resistance to conventional photon radiation) were used to evaluate the radiosensitizing properties of AgNPs suing MTT test, flow cytometry, and optical fluorescence microscopy. Neutron irradiation was applied in the absorbed dose of 0.5-1.5 Gy with an average neutron energy of 7.5 MeV. AgNPs increased the irradiation efficiency with the radiosensitivity enhancement ratios 1.02-2.32, for glioblastoma with ratios 1.22-1.47. It was revealed that at 1.5 Gy, AgNP-induced cytotoxicity made a significant contribution to the total observed radiosensitizer effect: on average, for five cell types, 29.8 and 96.2 % at the AgNP concentration of 0.2 and 1.6 μg/mL, respectively.
Collapse
Affiliation(s)
- Evgenii V Plotnikov
- National Research Tomsk Polytechnic University, Tomsk, Russia; Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | | | - Anton A Artamonov
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Maria S Larkina
- National Research Tomsk Polytechnic University, Tomsk, Russia; Department of Pharmaceutical Analysis, Siberian State Medical University, 634050 Tomsk, Russia
| | - Mikhail V Belousov
- National Research Tomsk Polytechnic University, Tomsk, Russia; Department of Pharmaceutical Analysis, Siberian State Medical University, 634050 Tomsk, Russia
| | - Ivan V Lomov
- National Research Tomsk Polytechnic University, Tomsk, Russia
| | - D Garibo
- Nanoscience and Nanotechnology Center (CNyN), Campus Ensenada, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | | | - Nina Bogdanchikova
- Nanoscience and Nanotechnology Center (CNyN), Campus Ensenada, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico.
| |
Collapse
|
8
|
Harley-Troxell ME, Pedersen AP, Newby SD, Christoph E, Stephenson S, Masi TJ, Crouch DL, Anderson DE, Dhar M. 3D-Printed Poly (Lactic-Co-Glycolic Acid) and Graphene Oxide Nerve Guidance Conduit with Mesenchymal Stem Cells for Effective Axon Regeneration in a Rat Sciatic Nerve Defect Model. Int J Nanomedicine 2025; 20:3201-3217. [PMID: 40098718 PMCID: PMC11912936 DOI: 10.2147/ijn.s501241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Peripheral nerve injuries (PNIs) impact the quality of life of millions of people. The current gold standard of treatment, the autograft, fails to restore nerve function and is often associated with untoward effects. The alternative interventions available remain unable to ensure full functional recovery. For this study we developed a 3D printed nerve guidance conduit (NGC) composed of poly (lactic-co-glycolic acid) (PLGA) and 0.25% graphene oxide (GO), that can be seeded with human adipose-derived mesenchymal stem cells (MSCs), to develop a more effective treatment for PNI. Methods We evaluated material degradation, surface topography, and MSC attachment in vitro. For the in vivo analyses, a 10-mm long sciatic nerve defect model was created, and rats were randomly divided into 4 treatment groups: autograft, PLGA, PLGA/GO, and PLGA/GO with 1×106 MSCs. For a 6-month period: biomechanics were evaluated using a pressure mat walkway to determine functional repair; systemic toxicity was evaluated using transmission electron microscopy of kidney and lung tissue; immunohistochemistry evaluated local adverse effects, myelin sheath and axonal repair; and gross muscle analyses of the lateral gastrocnemius, medial gastrocnemius, and soleus evaluated muscle reinnervation. Results In vitro results showed expected degradation rates, and the addition of GO exhibited cytocompatibility and favorable cell attachment. In vivo results showed biocompatibility with no translocation of the graphene nanoparticles. Histology showed evidence of axonal and myelin sheath repair. Biomechanics and gross muscle analyses had contradicting evidence of functional repair with the addition of GO. No differences were seen with the addition of MSCs. Conclusion Our novel PLGA/GO NGC, both with and without MSCs, showed results comparable to or greater than the current gold standard, as well as ease of use surgically. With further studies to validate functional recovery, this specific combination of PLGA and GO may provide an effective biomimetic therapy to repair PNIs.
Collapse
Affiliation(s)
- Meaghan E Harley-Troxell
- Tissue Engineering and Regenerative Medicine Laboratory, Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, 37996, USA
| | - Alisha P Pedersen
- Tissue Engineering and Regenerative Medicine Laboratory, Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, 37996, USA
| | - Steven D Newby
- Tissue Engineering and Regenerative Medicine Laboratory, Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, 37996, USA
| | - Eli Christoph
- Tissue Engineering and Regenerative Medicine Laboratory, Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, 37996, USA
| | - Stacy Stephenson
- Plastic and Reconstructive Surgery, University of Tennessee Medical Center, Knoxville, TN, 37920, USA
| | - Thomas J Masi
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, TN, 37996, USA
| | - Dustin L Crouch
- Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - David E Anderson
- Tissue Engineering and Regenerative Medicine Laboratory, Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, 37996, USA
| | - Madhu Dhar
- Tissue Engineering and Regenerative Medicine Laboratory, Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
9
|
Mahnoor, Malik K, Kazmi A, Sultana T, Raja NI, Bibi Y, Abbas M, Badruddin IA, Ali MM, Bashir MN. A mechanistic overview on green assisted formulation of nanocomposites and their multifunctional role in biomedical applications. Heliyon 2025; 11:e41654. [PMID: 39916856 PMCID: PMC11800088 DOI: 10.1016/j.heliyon.2025.e41654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 02/09/2025] Open
Abstract
The importance of nanocomposites constantly attains attention because of their unique properties all across the fields especially in medical perspectives. The study of green-synthesized nanocomposites has grown to be extremely fascinating in the field of research. Nanocomposites are more promising than mono-metallic nanoparticles because they exhibit synergistic effects. This review encapsulates the current development in the formulation of plant-mediated nanocomposites by using several plant species and the impact of secondary metabolites on their biocompatible functioning. Phyto-synthesis produces diverse nanomaterials with biocompatibility, environment-friendliness, and in vivo actions, characterized by varying sizes, shapes, and biochemical nature. This process is advantageous to conventional physical and chemical procedures. New studies have been conducted to determine the biomedical efficacy of nanocomposites against various diseases. Unfortunately, there has been inadequate investigation into green-assisted nanocomposites. Incorporating phytosynthesized nanocomposites in therapeutic interventions not only enhances healing processes but also augments the host's immune defenses against infections. This review highlights the phytosynthesis of nanocomposites and their various biomedical applications, including antibacterial, antidiabetic, antiviral, antioxidant, antifungal, anti-cancer, and other applications, as well as their toxicity. This review also explores the mechanistic action of nanocomposites to achieve their designated tasks. Biogenic nanocomposites for multimodal imaging have the potential to exchange the conventional methods and materials in biomedical research. Well-designed nanocomposites have the potential to be utilized in various biomedical fields as innovative theranostic agents with the subsequent objective of efficiently diagnosing and treating a variety of human disorders.
Collapse
Affiliation(s)
- Mahnoor
- Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Pakistan
| | - Khafsa Malik
- Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Pakistan
| | - Abeer Kazmi
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tahira Sultana
- Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Pakistan
| | - Yamin Bibi
- Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Mazhar Abbas
- Department of Biochemistry, University of Veterinary and Animal Science Lahore (Jhang Campus), Jhang, 35200, Pakistan
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - M. Mahmood Ali
- Department of Mechatronic Engineering, Atlantic Technological University Sligo, Ash Lane, F91 YW50, Sligo, Ireland
| | - Muhammad Nasir Bashir
- Department of Mechanical Engineering, Yonsei University, Seoul, 120-749, Republic of Korea
- National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
10
|
Kawasaki H. A mechanistic review-regulation of silica-induced pulmonary inflammation by IL-10 and exacerbation by Type I IFN. Inhal Toxicol 2025; 37:59-73. [PMID: 39955624 DOI: 10.1080/08958378.2025.2465378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Occupational exposure to crystalline silica (CS) is known to induce silicosis, a chronic lung disease characterized by the formation of granulomas and severe lung fibrosis. Specifically, individuals exposed to low doses of CS may develop silicosis after a decade or more of exposure. Similarly, in rat silicosis models exposed to occupationally relevant doses of α-quartz, there is an initial phase characterized by minimal and well-controlled pulmonary inflammation, followed by the development of robust and persistent inflammation. During the initial phase, the inflammation provoked by α-quartz is subdued by two mechanisms. Firstly, α-quartz particles are engulfed by alveolar macrophages (AMs) of the alternatively activated (M2) subtype and interstitial macrophages (IMs), limiting their interaction with other lung cells. Secondly, the anti-inflammatory cytokine, interleukin (IL)-10, is constitutively expressed by these macrophages, further dampening the inflammatory response. In the later inflammatory phase, IL-10-dependent anti-inflammatory state is disrupted by Type I interferons (IFNs), leading to the production of pro-inflammatory cytokines in response to α-quartz, aided by lipopolysaccharides (LPS). This review delves into the complex pathways involving IL-10, LPS, and Type I IFNs in α-quartz-induced pulmonary inflammation, offering a detailed analysis of the underlying mechanisms and identifying areas for future research.
Collapse
|
11
|
Wang Y, Tang Y, Guo L, Yang X, Wu S, Yue Y, Xu C. Recent advances in zeolitic imidazolate frameworks as drug delivery systems for cancer therapy. Asian J Pharm Sci 2025; 20:101017. [PMID: 39931355 PMCID: PMC11808527 DOI: 10.1016/j.ajps.2025.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 04/16/2024] [Accepted: 11/24/2024] [Indexed: 02/13/2025] Open
Abstract
Biological nanotechnologies based on functional nanoplatforms have synergistically catalyzed the emergence of cancer therapies. As a subtype of metal-organic frameworks (MOFs), zeolitic imidazolate frameworks (ZIFs) have exploded in popularity in the field of biomaterials as excellent protective materials with the advantages of conformational flexibility, thermal and chemical stability, and functional controllability. With these superior properties, the applications of ZIF-based materials in combination with various therapies for cancer treatment have grown rapidly in recent years, showing remarkable achievements and great potential. This review elucidates the recent advancements in the use of ZIFs as drug delivery agents for cancer therapy. The structures, synthesis methods, properties, and various modifiers of ZIFs used in oncotherapy are presented. Recent advances in the application of ZIF-based nanoparticles as single or combination tumor treatments are reviewed. Furthermore, the future prospects, potential limitations, and challenges of the application of ZIF-based nanomaterials in cancer treatment are discussed. We except to fully explore the potential of ZIF-based materials to present a clear outline for their application as an effective cancer treatment to help them achieve early clinical application.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yixin Tang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Lei Guo
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xi Yang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Shanli Wu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ying Yue
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
12
|
Nie B, Zhang D, Liu X, Lei C, Li Z, Zhang N, Zhang S, Wei Y, Zhang J. Oxidative potential determines the oxidative stress and ferroptotic toxicity of airborne particulate matter on pulmonary epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117845. [PMID: 39923565 DOI: 10.1016/j.ecoenv.2025.117845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/11/2025]
Abstract
Exposure to airborne particulate matter (PM) is a major risk which increases pulmonary diseases such as asthma, chronic bronchitis, or chronic obstructive pulmonary disease (COPD). PM is a complex mixture with physiochemical properties that can vary over time and space, presenting a challenge when attempting to analyze their health risks. In this study, we compared two kinds of commercial PM with real PM to explore an index which takes account of both the diverse physicochemical properties of PM and accurate prediction of their toxicities. Our results indicated that the oxidative potential (OP) of PM significantly affects their cytotoxicity. In comparison to two kinds of commercial PM such as carbon black and SRM-1648a, real ambient PM2.5 induced more significant oxidative stress and ferroptosis, which was closely associated with its higher OP. Notably, the use of radical scavengers like vitamin C and coumarin decreased the OP of PM2.5 effectively, thereby leading to a decrease in its cytotoxic effects. Furthermore, the reduction of OP reversed redox imbalance and alleviated lung damage in vivo. This study provides additional insights into the structure-activity relationship for PM's toxicity. It also sheds light on further investigations on the detoxication of PM.
Collapse
Affiliation(s)
- Bingxue Nie
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Shengli Oilfield Central Hospital, Clinical Laboratory department, Dongying, Shandong 257000, China
| | - Daoqiang Zhang
- Weihai Central Hospital, Central Laboratory, Weihai, Shandong 264400, China
| | - Xin Liu
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Chengying Lei
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Zhiruo Li
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Nan Zhang
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Shuping Zhang
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yiju Wei
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jie Zhang
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
13
|
Liu N, Zhang B, Lin N. Review on the role of autophagy in the toxicity of nanoparticles and the signaling pathways involved. Chem Biol Interact 2025; 406:111356. [PMID: 39701490 DOI: 10.1016/j.cbi.2024.111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
As the development of nanotechnology, the application of nanoproducts and the advancement of nanomedicine, the contact of nanoparticles (NPs) with human body is becoming increasingly prevalent. This escalation elevates the risk of NPs exposure for workers, consumers, researchers, and both aquatic and terrestrial organisms throughout the production, usage, and disposal stages. Consequently, evaluating nanotoxicity remains critically important, though standardized assessment criteria are still lacking. The diverse and complex properties of NPs further complicate the understanding of their toxicological mechanisms. Autophagy, a fundamental cellular process, exhibits dual functions-both pro-survival and pro-death. This review offers an updated perspective on the dual roles of autophagy in nanotoxicity and examines the factors influencing autophagic responses. However, no definitive framework exists for predicting NPs-induced autophagy. Beyond the conventional autophagy pathways, the review highlights specific transcription factors activated by NPs and explores metabolic reprogramming. Particular attention is given to NPs-induced selective autophagy, including mitophagy, ER-phagy, ferritinophagy, lysophagy, and lipophagy. Additionally, the review investigates autophagy's involvement in NPs-mediated biological processes such as ferroptosis, inflammation, macrophage polarization, epithelial-mesenchymal transition, tumor cell proliferation and drug resistance, as well as liver and kidney injury, neurotoxicity, and other diseases. In summary, this review presents a novel update on selective autophagy-mediated nanotoxicity and elucidates the broader interactions of autophagy in NPs-induced biological processes. Collectively, these insights offer valuable strategies for mitigating nanotoxicity through autophagy modulation and advancing the development of NPs in biomedical applications.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| |
Collapse
|
14
|
Tripathy NS, Sahoo L, Paikray S, Dilnawaz F. Emerging nanoplatforms towards microenvironment-responsive glioma therapy. Med Oncol 2025; 42:46. [PMID: 39812745 DOI: 10.1007/s12032-024-02596-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
Gliomas are aggressive intracranial tumors of the central nervous system with a poor prognosis, high risk of recurrence, and low survival rates. Radiation, surgery, and chemotherapy are traditional cancer therapies. It is very challenging to accurately image and differentiate the malignancy grade of gliomas due to their heterogeneous and infiltrating nature and the obstruction of the blood-brain barrier. Imaging plays a crucial role in gliomas which significantly plays an important role in the accuracy of the diagnosis followed by any subsequent surgery or therapy. Other diagnostic methods (such as biopsies or surgery) are often very invasive. Preoperative imaging and intraoperative image-guided surgery perform the most significant safe resection. In recent years, the rapid growth of nanotechnology has opened up new avenues for glioma diagnosis and treatment. For better therapeutic efficacy, developing microenvironment-responsive nanoplatforms, including novel nanotherapeutic platforms of sonodynamic therapy, photodynamic therapy, and photothermal treatments, are employed for improved patient survival and better clinical control outcome. In this review recent advancement of multifunctional nanoplatforms leading toward treatment of glioma is discussed.
Collapse
Affiliation(s)
- Nigam Sekhar Tripathy
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Liza Sahoo
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Safal Paikray
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Fahima Dilnawaz
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India.
| |
Collapse
|
15
|
Khan J, Kim ND, Bromhead C, Truman P, Kruger MC, Mallard BL. Hepatotoxicity of titanium dioxide nanoparticles. J Appl Toxicol 2025; 45:23-46. [PMID: 38740968 PMCID: PMC11634566 DOI: 10.1002/jat.4626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
The food additive E171 (titanium dioxide, TiO2), is widely used in foods, pharmaceuticals and cosmetics. It is a fine white powder, with at least one third of its particles sized in the nanoparticulate (˂100 nm range, TiO2 NPs). The use of E171 is controversial as its relevant risk assessment has never been satisfactorily accomplished. In vitro and in vivo studies have shown dose-dependent toxicity in various organs including the liver. TiO2 NPs have been shown to induce inflammation, cell death and structural and functional changes within the liver. The toxicity of TiO2 NPs in experimental models varies between organs and according to their physiochemical characteristics and parameters such as dosage and route of administration. Among these factors, ingestion is the most significant exposure route, and the liver is a key target organ. The aim of this review is to highlight the reported adverse effects of orally administered TiO2 NPs on the liver and to discuss the controversial state of its toxicity.
Collapse
Affiliation(s)
- Jangrez Khan
- School of Health SciencesMassey UniversityPO Box 756Wellington6021New Zealand
| | - Nicholas D. Kim
- School of Health SciencesMassey UniversityPO Box 756Wellington6021New Zealand
| | - Collette Bromhead
- School of Health SciencesMassey UniversityPO Box 756Wellington6021New Zealand
| | - Penelope Truman
- School of Health SciencesMassey UniversityPO Box 756Wellington6021New Zealand
| | - Marlena C. Kruger
- School of Health SciencesMassey UniversityPO Box 756Wellington6021New Zealand
| | - Beth L. Mallard
- School of Health SciencesMassey UniversityPO Box 756Wellington6021New Zealand
| |
Collapse
|
16
|
Cai L, Sun T, Han F, Zhang H, Zhao J, Hu Q, Shi T, Zhou X, Cheng F, Peng C, Zhou Y, Long S, Sun W, Fan J, Du J, Peng X. Degradable and Piezoelectric Hollow ZnO Heterostructures for Sonodynamic Therapy and Pro-Death Autophagy. J Am Chem Soc 2024; 146:34188-34198. [PMID: 39582172 DOI: 10.1021/jacs.4c14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Piezoelectric materials can generate charges and reactive oxygen species (ROS) under external force stimulation for ultrasound-induced sonodynamic therapy (SDT). However, their poor piezoelectricity, fast electron-hole pair recombination rate, and biological toxicity of piezoelectric materials limit the therapeutic effects of piezoelectric SDT. In this study, hollow ZnO (HZnO) nanospheres were synthesized by using a one-step method. The hollow structure facilitated the deformation of HZnO under stimulation by ultrasound mechanical force and increased the piezoelectric constant. Subsequently, black phosphorus quantum dots (BPQDs) and arginine-glycine-aspartic acid peptide (RGD)-poly(ethylene glycol) (PEG) were combined with HZnO to further enhance the piezoelectric effect by constructing heterojunctions and enable tumor-targeting ability. During treatment, HZnO-BPQDs-PEG could degrade in an acidic tumor microenvironment and release Zn2+ and PO43- ions to induce pro-death autophagy. The ROS produced by SDT also accelerated autophagy and promoted ferroptosis in cancer cells. This study demonstrates that HZnO-BPQDs-PEG has a strong piezoelectric SDT effect and can effectively induce autophagy in cancer cells, providing a new idea for the design and application of piezoelectric materials for tumor therapy.
Collapse
Affiliation(s)
- Lihan Cai
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Tao Sun
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Fuping Han
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Han Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jiyu Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qiao Hu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Tiancong Shi
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiao Zhou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P. R. China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P. R. China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P. R. China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
17
|
El-Saadony MT, Fang G, Yan S, Alkafaas SS, El Nasharty MA, Khedr SA, Hussien AM, Ghosh S, Dladla M, Elkafas SS, Ibrahim EH, Salem HM, Mosa WFA, Ahmed AE, Mohammed DM, Korma SA, El-Tarabily MK, Saad AM, El-Tarabily KA, AbuQamar SF. Green Synthesis of Zinc Oxide Nanoparticles: Preparation, Characterization, and Biomedical Applications - A Review. Int J Nanomedicine 2024; 19:12889-12937. [PMID: 39651353 PMCID: PMC11624689 DOI: 10.2147/ijn.s487188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 12/11/2024] Open
Abstract
Over the last decade, biomedical nanomaterials have garnered significant attention due to their remarkable biological properties and diverse applications in biomedicine. Metal oxide nanoparticles (NPs) are particularly notable for their wide range of medicinal uses, including antibacterial, anticancer, biosensing, cell imaging, and drug/gene delivery. Among these, zinc oxide (ZnO) NPs stand out for their versatility and effectiveness. Recently, ZnO NPs have become a primary material in various sectors, such as pharmaceutical, cosmetic, antimicrobials, construction, textile, and automotive industries. ZnO NPs can generate reactive oxygen species and induce cellular apoptosis, thus underpinning their potent anticancer and antibacterial properties. To meet the growing demand, numerous synthetic approaches have been developed to produce ZnO NPs. However, traditional manufacturing processes often involve significant economic and environmental costs, prompting a search for more sustainable alternatives. Intriguingly, biological synthesis methods utilizing plants, plant extracts, or microorganisms have emerged as ideal for producing ZnO NPs. These green production techniques offer numerous medicinal, economic, environmental, and health benefits. This review highlights the latest advancements in the green synthesis of ZnO NPs and their biomedical applications, showcasing their potential to revolutionize the field with eco-friendly and cost-effective solutions.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Guihong Fang
- School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, 571199, People’s Republic of China
- Qionghai People’s Hospital, Qionghai, Hainan, 571400, People’s Republic of China
| | - Si Yan
- Qionghai People’s Hospital, Qionghai, Hainan, 571400, People’s Republic of China
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mahmoud A El Nasharty
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta, 31733, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21531, Egypt
| | - Soumya Ghosh
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Mthokozisi Dladla
- Human Molecular Biology Unit (School of Biomedical Sciences), Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Shebin El Kom, Menofia, 32511, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Essam H Ibrahim
- Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
- Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo, 12611, Egypt
| | - Heba Mohammed Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
18
|
Flasz B, Babczyńska A, Tarnawska M, Ajay AK, Kędziorski A, Napora-Rutkowski Ł, Augustyniak M. Graphene oxide in low concentrations can change mitochondrial potential, autophagy, and apoptosis paths in two strains of invertebrates with different life strategies. Biochem Biophys Res Commun 2024; 736:150898. [PMID: 39467354 DOI: 10.1016/j.bbrc.2024.150898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024]
Abstract
Nanoparticles, like graphene oxide (GO), are particles with unique physiochemical properties that enable their wide application in various areas of life. The effects of GO on individual cell organelles like mitochondria and the effects of interactions are worth investigating, as they can activate multiple cellular processes, such as autophagy or apoptosis. Mitochondrial injury plays an essential role in the majority of cell death routines. In the project, we investigated cell health status measured as mitochondrial inner membrane depolarization, autophagy, and apoptosis induction during long-term GO administration in food (0.02 μg g-1 and 0.2 μg g-1 of food). Two unique Acheta domesticus strains that differ in life strategy were used: wild-type and long-lived at three different life stages (larva, young adult, mature adult). The changes in mitochondrial trans-membrane potential were marked in the wild-type strain. The autophagy was lower in all GO-treated groups in both strains, and the apoptosis was lower in both strains in the mature adult crickets. Low GO concentrations treatment for the whole life, despite mitochondrial dysfunction, may lead to inhibition of autophagy and apoptosis by arresting the cell cycle for the duration of repair, and other repair tools are involved in the process of restoring homeostasis.
Collapse
Affiliation(s)
- Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Poland.
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Poland
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Poland
| | - Amrendra K Ajay
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Poland
| | - Łukasz Napora-Rutkowski
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, 43-520, Chybie, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Poland
| |
Collapse
|
19
|
Rajsiglova L, Babic M, Krausova K, Lukac P, Kalkusova K, Taborska P, Sojka L, Bartunkova J, Stakheev D, Vannucci L, Smrz D. Immunogenic properties of nickel-doped maghemite nanoparticles and the implication for cancer immunotherapy. J Immunotoxicol 2024; 21:2416988. [PMID: 39484726 DOI: 10.1080/1547691x.2024.2416988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024] Open
Abstract
Nanoparticles are commonly used in diagnostics and therapy. They are also increasingly being implemented in cancer immunotherapy because of their ability to deliver drugs and modulate the immune system. However, the effect of nanoparticles on immune cells involved in the anti-tumor immune response is not well understood. The study reported here showed that nickel-doped maghemite nanoparticles (FN NP) are differentially cytotoxic to cultured mouse and human cancer cell lines, causing their death without negatively impacting the subsequent anticancer immune response. It also found that FN NP induced cell death in the mouse colorectal cancer cell line CT26 and human prostate cancer cell line PC-3, but not in the human prostate cancer cell line LNCaP. The induced cancer cell death did not affect the phenotype and responsivity of the isolated mouse peritoneal macrophages, or ex vivo-generated mouse bone marrow-derived, or human monocyte-derived dendritic cells. Additionally, the induced cancer cell death did not prevent the ex vivo-generated mouse or human dendritic cells from stimulating lymphocytes and enriching cell cultures with cancer cell-reactive T-cells. In conclusion, this study shows that FN NP could be a valuable platform for targeting cancer cells without causing immunosuppressive effects on the subsequent anticancer immune response.
Collapse
Affiliation(s)
- Lenka Rajsiglova
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Babic
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Krausova
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Prague, Czech Republic
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Pavol Lukac
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Katerina Kalkusova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Pavla Taborska
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Ludek Sojka
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
- Department of Technical Operations, SOTIO, a.s., Prague, Czech Republic
| | - Jirina Bartunkova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Dmitry Stakheev
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Prague, Czech Republic
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Luca Vannucci
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Prague, Czech Republic
| | - Daniel Smrz
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Prague, Czech Republic
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
20
|
Bi J, Zeng J, Liu X, Mo C, Yao M, Zhang J, Yuan P, Jia B, Xu S. Drug delivery for age-related bone diseases: From therapeutic targets to common and emerging therapeutic strategies. Saudi Pharm J 2024; 32:102209. [PMID: 39697472 PMCID: PMC11653637 DOI: 10.1016/j.jsps.2024.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
With the accumulation of knowledge on aging, people have gradually realized that among the many factors that cause individual aging, the accumulation of aging cells is an essential cause of organ degeneration and, ultimately, age-related diseases. Most cells present in the bone microenvironment gradually age over time, leading to an imbalance of osteogenesis, osteoclastogenesis, adipogenesis, and chondrogenesis. This imbalance contributes to age-related bone loss and the development of age-related bone diseases, such as osteoporosis. Bone aging can prolong the lifespan and delay the development of age-related diseases. Nanoparticles have controllable and stable physical and chemical properties and can precisely target different tissues and organs. By preparing multiple easily modified and biocompatible nanoparticles as different drug delivery carriers, specifically targeting various diseased tissues for controlled-release and sustained-release administration, the delivery efficiency of drugs can be significantly improved, and the toxicity and side effects of drugs can be substantially reduced, thereby improving the therapeutic effect of age-related bone diseases. In addition, other novel anti-aging strategies (such as stem cell exosomes) also have significant scientific and practical significance in anti-aging research on age-related bone diseases. This article reviews the research progress of various nano-drug-loaded particles and emerging anti-aging methods for treating age-related bone diseases, offering new insights and directions for precise targeted clinical therapies.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiawei Zeng
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaohao Liu
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingyan Yao
- Department of Endocrinology, Baoding No.1 Central Hospital, Baoding, China
| | - Jing Zhang
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Yang T, Guo L. Advancing gastric cancer treatment: nanotechnology innovations and future prospects. Cell Biol Toxicol 2024; 40:101. [PMID: 39565472 PMCID: PMC11579161 DOI: 10.1007/s10565-024-09943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024]
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide, particularly prevalent in Asia, especially in China, where both its incidence and mortality rates are significantly high. Meanwhile, nanotechnology has demonstrated great potential in the treatment of GC. In particular, nanodrug delivery systems have improved therapeutic efficacy and targeting through various functional modifications, such as targeting peptides, tumor microenvironment responsiveness, and instrument-based methods. For instance, silica (SiO2) has excellent biocompatibility and can be used as a drug carrier, with its porous structure enhancing drug loading capacity. Polymer nanoparticles regulate drug release rates and mechanisms by altering material composition and preparation methods. Lipid nanoparticles efficiently encapsulate hydrophilic drugs and promote cellular uptake, while carbon-based nanoparticles can be used in biosensors and drug delivery. Targets such as integrins, HER2 receptors, and the tumor microenvironment have been used to improve drug efficacy in GC treatment. Nanodrug delivery techniques not only enhance drug efficacy and delivery capabilities but also selectively target tumor cells. Currently, there is a lack of systematic summarization and synthesis regarding the relationship between nanodrug delivery systems and GC treatment, which to some extent hinders researchers and clinicians from efficiently searching for and referencing related studies, thereby reducing work efficiency. This study aims to systematically summarize the existing research on the relationship between nanodrug delivery systems and GC treatment, making it easier for professionals to search and reference, and thereby promoting further research on the role of nanodrug delivery systems and their clinical applications in GC. This review discusses the applications of functionalized nanocarriers in the treatment of GC in recent years, including surface modifications with targeted markers, the combination of phototherapy, chemotherapy, and immunotherapy, along with their advantages and challenges. It also examines the future prospects of targeted nanomaterials in GC treatment. The review particularly focuses on the combined application of nanocarriers in multiple treatment modalities, such as phototherapy, chemotherapy, and immunotherapy, demonstrating their potential in multimodal treatments. Furthermore, it thoroughly explores the specific challenges that nanocarriers face in GC treatment, such as biocompatibility, drug release control, and clinical translation issues, while providing a systematic outlook on future developments. Additionally, this study emphasizes the potential value and feasibility of nanocarriers in clinical applications, contrasting with most reviews that focus on basic research. Through these innovations, we offer new perspectives and directions for the development of nanotechnology in the treatment of GC.
Collapse
Affiliation(s)
- Tengfei Yang
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, P. R. China
| | - Lin Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, P. R. China.
| |
Collapse
|
22
|
Silva AC, Viçozzi GP, Farina M, Ávila DS. Caenorhabditis elegans as a Model for Evaluating the Toxicology of Inorganic Nanoparticles. J Appl Toxicol 2024. [PMID: 39506203 DOI: 10.1002/jat.4704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 11/08/2024]
Abstract
Inorganic nanoparticles are nanomaterials with a central core composed of inorganic specimens, especially metals, which give them interesting applications but can impact the environment and human health. Their short- and long-term effects are not completely known and to investigate that, alternative models have been successfully used. Among these, the nematode Caenorhabditis elegans has been increasingly applied in nanotoxicology in recent years because of its many features and advantages for toxicological screening. This non-parasitic nematode may inhabit any environment where organic matter is available; therefore, it is interesting for ecotoxicological assessments. Moreover, this worm has a high genetic homology to humans, making the findings translatable. A notable number of published studies unraveled the level of toxicity of different nanoparticles, including the mechanisms by which their toxicity occurs. This narrative review collects and describes the most relevant toxicological data for inorganic nanoparticles obtained using C. elegans and also supports its application in safety assessments for regulatory purposes.
Collapse
Affiliation(s)
- Aline Castro Silva
- Graduation Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Gabriel Pedroso Viçozzi
- Graduation Program in Biological Sciences (Toxicological Biochemistry), Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Marcelo Farina
- Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, SC, Brazil
| | - Daiana Silva Ávila
- Graduation Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa, Uruguaiana, RS, Brazil
- Graduation Program in Biological Sciences (Toxicological Biochemistry), Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
23
|
Zhou H, Wu C, Jin Y, Wu O, Chen L, Guo Z, Wang X, Chen Q, Kwan KYH, Li YM, Xia D, Chen T, Wu A. Role of oxidative stress in mitochondrial dysfunction and their implications in intervertebral disc degeneration: Mechanisms and therapeutic strategies. J Orthop Translat 2024; 49:181-206. [PMID: 39483126 PMCID: PMC11526088 DOI: 10.1016/j.jot.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 11/03/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is widely recognized as one of the leading causes of low back pain. Intervertebral disc cells are the main components of the intervertebral disc (IVD), and their functions include synthesizing and secreting collagen and proteoglycans to maintain the structural and functional stability of the IVD. In addition, IVD cells are involved in several physiological processes. They help maintain nutrient metabolism balance in the IVD. They also have antioxidant and anti-inflammatory effects. Because of these roles, IVD cells are crucial in IVDD. When IVD cells are subjected to oxidative stress, mitochondria may become damaged, affecting normal cell function and accelerating degenerative changes. Mitochondria are the energy source of the cell and regulate important intracellular processes. As a key site for redox reactions, excessive oxidative stress and reactive oxygen species can damage mitochondria, leading to inflammation, DNA damage, and apoptosis, thus accelerating disc degeneration. Aim of review Describes the core knowledge of IVDD and oxidative stress. Comprehensively examines the complex relationship and potential mechanistic pathways between oxidative stress, mitochondrial dysfunction and IVDD. Highlights potential therapeutic targets and frontier therapeutic concepts. Draws researchers' attention and discussion on the future research of all three. Key scientific concepts of review Origin, development and consequences of IVDD, molecular mechanisms of oxidative stress acting on mitochondria, mechanisms of oxidative stress damage to IVD cells, therapeutic potential of targeting mitochondria to alleviate oxidative stress in IVDD. The translational potential of this article Targeted therapeutic strategies for oxidative stress and mitochondrial dysfunction are particularly critical in the treatment of IVDD. Using antioxidants and specific mitochondrial therapeutic agents can help reduce symptoms and pain. This approach is expected to significantly improve the quality of life for patients. Individualized therapeutic approaches, on the other hand, are based on an in-depth assessment of the patient's degree of oxidative stress and mitochondrial functional status to develop a targeted treatment plan for more precise and effective IVDD management. Additionally, we suggest preventive measures like customized lifestyle changes and medications. These are based on understanding how IVDD develops. The aim is to slow down the disease and reduce the chances of it coming back. Actively promoting clinical trials and evaluating the safety and efficacy of new therapies helps translate cutting-edge treatment concepts into clinical practice. These measures not only improve patient outcomes and quality of life but also reduce the consumption of healthcare resources and the socio-economic burden, thus having a positive impact on the advancement of the IVDD treatment field.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Chenyu Wu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Yuxin Jin
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Ouqiang Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Zhenyu Guo
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Xinzhou Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Qizhu Chen
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China
| | - Kenny Yat Hong Kwan
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 5/F Professorial Block, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, China
| | - Yan Michael Li
- Minimally Invasive Brain and Spine Institute, Upstate Medical University 475 Irving Ave, #402 Syracuse, NY, 13210, USA
| | - Dongdong Xia
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Tao Chen
- Department of Orthopaedics, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| |
Collapse
|
24
|
Kahil N, Abouzeinab NS, Hussein MAA, Khalil MI. Intraperitoneal hepatorenal toxicity of zinc oxide and nickel oxide nanoparticles in rats: a systematic review. Nanotoxicology 2024; 18:583-598. [PMID: 39319754 DOI: 10.1080/17435390.2024.2407352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Zinc oxide (ZnO) and nickel oxide (NiO) nanoparticles (NPs) are widely used in various industries due to their distinctive physico-chemical and biological properties. However, concerns have been raised about their potential toxicity in humans. While many studies have reviewed their effects on visceral organs upon ingestion, inhalation, or skin contact, limited reviews are available regarding their adverse consequences on the liver and kidneys resulting from intraperitoneal administration in rats. Hence, this systematic review is the first to uniquely address this issue. A systematic search was performed on PubMed and Google scholar to identify articles that explored the toxic effects of ZnO-NPs and NiO-NPs in rats following intraperitoneal injection. The quality of the articles was assessed using SYCLE's risk of bias tool, leading to the selection of 16 articles; 14 for ZnO-NPs, 1 for NiO-NPs and 1 for both NPs. This review revealed that ZnO-NPs induces an acute toxicity in liver and kidney that is dose dependent. The impairments were marked by changes in organs functional markers, lipid and glucose levels and antioxidant deficiencies and lipid peroxidation. NiO-NPs also showed considerable toxicity, despite the limited studies. Further, variability of physico-chemical properties among studies complicated the toxicity assessment. To conclude, this study provides a novel contribution by summarizing the literature findings that suggest potential adverse intraperitoneal hepatorenal toxic outcomes associated with ZnO-NPs and NiO-NPs. Future research should focus on long-term effects and standardizing protocols to ensure the safe use of ZnO-NPs and NiO-NPs in industrial and clinical practices.
Collapse
Affiliation(s)
- Nour Kahil
- Department of Biological Sciences, Beirut Arab University, Beirut, Lebanon
| | - Noura S Abouzeinab
- Department of Biological Sciences, Beirut Arab University, Beirut, Lebanon
| | - Mohamed A A Hussein
- Department of Internal Medicine, Beirut Arab University, Beirut, Lebanon
- Department of Internal Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud I Khalil
- Department of Biological Sciences, Beirut Arab University, Beirut, Lebanon
- Molecular Biology Unit, Department of Zoology, Alexandria University, Alexandria, Egypt
| |
Collapse
|
25
|
Rosa V, Silikas N, Yu B, Dubey N, Sriram G, Zinelis S, Lima AF, Bottino MC, Ferreira JN, Schmalz G, Watts DC. Guidance on the assessment of biocompatibility of biomaterials: Fundamentals and testing considerations. Dent Mater 2024; 40:1773-1785. [PMID: 39129079 DOI: 10.1016/j.dental.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Assessing the biocompatibility of materials is crucial for ensuring the safety and well-being of patients by preventing undesirable, toxic, immune, or allergic reactions, and ensuring that materials remain functional over time without triggering adverse reactions. To ensure a comprehensive assessment, planning tests that carefully consider the intended application and potential exposure scenarios for selecting relevant assays, cell types, and testing parameters is essential. Moreover, characterizing the composition and properties of biomaterials allows for a more accurate understanding of test outcomes and the identification of factors contributing to cytotoxicity. Precise reporting of methodology and results facilitates research reproducibility and understanding of the findings by the scientific community, regulatory agencies, healthcare providers, and the general public. AIMS This article aims to provide an overview of the key concepts associated with evaluating the biocompatibility of biomaterials while also offering practical guidance on cellular principles, testing methodologies, and biological assays that can support in the planning, execution, and reporting of biocompatibility testing.
Collapse
Affiliation(s)
- Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| | - Nikolaos Silikas
- Dental Biomaterials, Dentistry, The University of Manchester, Manchester, United Kingdom.
| | - Baiqing Yu
- Faculty of Dentistry, National University of Singapore, Singapore.
| | - Nileshkumar Dubey
- ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore; Division of Cariology and Operative Dentistry, Department of Comprehensive Dentistry, University of Maryland School of Dentistry, Baltimore, United States.
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| | - Spiros Zinelis
- School of Dentistry National and Kapodistrian University of Athens (NKUA), Greece.
| | - Adriano F Lima
- Dental Research Division, Paulista University, Sao Paulo, Brazil.
| | - Marco C Bottino
- School of Dentistry, University of Michigan, Ann Arbor, USA.
| | - Joao N Ferreira
- Center of Excellence for Innovation for Oral Health and Healthy Longevity, Faculty of Dentistry, Chulalongkorn University, Thailand.
| | - Gottfried Schmalz
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany; Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| | - David C Watts
- School of Medical Sciences and Photon Science Institute, University of Manchester, United Kingdom.
| |
Collapse
|
26
|
Wang Y, Lv J, Liu G, Yao Q, Wang Z, Liu N, He Y, Il D, Tusupovich JI, Jiang Z. ZnO NPs Impair the Viability and Function of Porcine Granulosa Cells Through Autophagy Regulated by ROS Production. Antioxidants (Basel) 2024; 13:1295. [PMID: 39594437 PMCID: PMC11591140 DOI: 10.3390/antiox13111295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
The zinc oxide nanoparticles (ZnO NPs) is one of the most extensively utilized metal oxide nanoparticles in biomedicine, human food, cosmetics and livestock farming. However, growing evidence suggests that there is a potential risk for humans and animals because of the accumulation of ZnO NPs in cells, which leads to cell death through several different pathways. Nevertheless, the effects of ZnO NPs on porcine granulosa cells (PGCs) and how ZnO NPs regulate the follicular cells are unknown. In this study, we aimed to elucidate the role of ZnO NPs in the porcine ovary by using PGCs. Firstly, we identified the characterization of ZnO NPs used in this study and the results showed that the size of ZnO NPs was 29.0 nm. The results also demonstrated that ZnO NPs impaired cell viability and decreased steroid hormone secretion in PGCs. In addition, ZnO NPs induced reactive oxygen species (ROS) production, leading to oxidative stress of PGCs. Meanwhile, ZnO NPs also triggered autophagy in PGCs by increasing the ratio of LC3-II/LC3-I, along with the expression of SQSTM1 and ATG7. Finally, the results from N-acetylcysteine (NAC) addition suggested that ZnO NPs promoted autophagy through the enhancement of ROS production. In summary, this study demonstrates that ZnO NPs impair the viability and function of PGCs through autophagy, which is regulated by ROS production.
Collapse
Affiliation(s)
- Yifan Wang
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang 712100, China
| | - Jing Lv
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang 712100, China
| | - Guangyu Liu
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang 712100, China
| | - Qichun Yao
- Animal Husbandry and Veterinary Station of Zhenba County, Hanzhong 723600, China
| | - Ziqi Wang
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang 712100, China
| | - Ning Liu
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang 712100, China
| | - Yutao He
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang 712100, China
| | - Dmitry Il
- Department of Food Security, Agrotechnological Faculty, Kozybayev University, 86, Pushkin Street, Petropavlovsk 150000, Kazakhstan
| | - Jakupov Isatay Tusupovich
- Department of Veterinary Medicine, Seifullin Kazakh Agro Technical Research University, 62, Zhenis Avenue, Astana 010011, Kazakhstan
| | - Zhongliang Jiang
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang 712100, China
| |
Collapse
|
27
|
Gao M, Yang Z, Zhang Z, Chen L, Xu B. Nervous system exposure of different classes of nanoparticles: A review on potential toxicity and mechanistic studies. ENVIRONMENTAL RESEARCH 2024; 259:119473. [PMID: 38908667 DOI: 10.1016/j.envres.2024.119473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Nanoparticles (NPs) are generally defined as very small particles in the size range of 1-100 nm. Due to the rapid development of modern society, many new materials have been developed. The widespread use of NPs in medical applications, the food industry and the textile industry has led to an increase in NPs in the environment and the possibility of human contact, which poses a serious threat to human health. The nervous system plays a leading role in maintaining the integrity and unity of the body and maintaining a harmonious balance with the external environment. Therefore, based on two categories of organic and inorganic NPs, this paper systematically summarizes the toxic effects and mechanisms of NPs released into the nervous system. The results showed that exposure to NPs may damage the nervous system, decrease learning and cognitive ability, and affect embryonic development. Finally, a remediation scheme for NPs entering the body via the environment is also introduced. This scheme aims to reduce the neurotoxicity caused by NPs by supplementing NPs with a combination of antioxidant and anti-inflammatory compounds. The results provide a valuable reference for future research in this field.
Collapse
Affiliation(s)
- Mingyang Gao
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China; Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Ziye Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhen Zhang
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Baoshan Xu
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
| |
Collapse
|
28
|
Zhang Y, Shang L, Roffel S, Spiekstra SW, Deng D, Gibbs S. Streptococcus mitis enhances metal-induced apoptosis in reconstructed human gingiva but not skin. Toxicol In Vitro 2024; 100:105913. [PMID: 39079590 DOI: 10.1016/j.tiv.2024.105913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND Commensal bacteria colonizing oral mucosa and skin play an essential role in maintaining host-microbiome homeostasis. It is unknown whether cytotoxicity resulting from metal ions leaching from medical devices may be influenced by commensal microbes. OBJECTIVE Determine whether the extent of apoptosis triggered by nickel or titanium ions is influenced by Streptococcus mitis and whether apoptosis occurs via the intrinsic or extrinsic apoptosis pathway. METHODS Reconstructed Human Gingiva (RHG) and Skin (RHS) were topically exposed to titanium or nickel salts in the presence or absence of S. mitis. Cytotoxicity and apoptosis were assessed by histology, immunohistochemistry, TUNEL assay, and Western Blot. RESULTS S. mitis alone resulted in negligible cytotoxicity. After metal exposure, localized apoptosis was observed in the epithelium and fibroblasts within the lamina propria hydrogel of both RHG and RHS. S. mitis enhanced metal-mediated apoptosis in gingiva but not in skin. Apoptosis was mediated via the extrinsic pathway caspase 8. Activation of the execution phase of apoptosis occurred via caspases 3 and 7, and PARP-1. CONCLUSION Our study supports the finding that metals have irritant, cytotoxic properties resulting in apoptosis when leaching into skin or gingiva. Particularly for gingiva, commensal microbes exaggerate this detrimental effect.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Orthodontic, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lin Shang
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sanne Roffel
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sander W Spiekstra
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
29
|
Hlapisi N, Songca SP, Ajibade PA. Capped Plasmonic Gold and Silver Nanoparticles with Porphyrins for Potential Use as Anticancer Agents-A Review. Pharmaceutics 2024; 16:1268. [PMID: 39458600 PMCID: PMC11510308 DOI: 10.3390/pharmaceutics16101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) are potential cancer treatment methods that are minimally invasive with high specificity for malignant cells. Emerging research has concentrated on the application of metal nanoparticles encapsulated in porphyrin and their derivatives to improve the efficacy of these treatments. Gold and silver nanoparticles have distinct optical properties and biocompatibility, which makes them efficient materials for PDT and PTT. Conjugation of these nanoparticles with porphyrin derivatives increases their light absorption and singlet oxygen generation that create a synergistic effect that increases phototoxicity against cancer cells. Porphyrin encapsulation with gold or silver nanoparticles improves their solubility, stability, and targeted tumor delivery. This paper provides comprehensive review on the design, functionalization, and uses of plasmonic silver and gold nanoparticles in biomedicine and how they can be conjugated with porphyrins for synergistic therapeutic effects. Furthermore, it investigates this dual-modal therapy's potential advantages and disadvantages and offers perspectives for future prospects. The possibility of developing gold, silver, and porphyrin nanotechnology-enabled biomedicine for combination therapy is also examined.
Collapse
Affiliation(s)
| | | | - Peter A. Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa; (N.H.); (S.P.S.)
| |
Collapse
|
30
|
Chen M, Chen S, Liu K, Ye Z, Qian Y, He J, Xia J, Xing P, Yang J, Wa Ng Y, Wu T. Putative Adverse Outcome Pathway for Parkinson's Disease-like Symptoms Induced by Silicon Quantum Dots based on In Vivo/ Vitro Approaches. ACS NANO 2024; 18:25271-25289. [PMID: 39186478 DOI: 10.1021/acsnano.4c08516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Given the commercial proliferation of silicon quantum dots (SiQDs) and their inevitable environmental dispersal, this study critically examines their biological and public health implications, specifically regarding Parkinson's disease. The study investigated the toxicological impact of SiQDs on the onset and development of PD-like symptoms through the induction of ferroptosis, utilizing both in vivo [Caenorhabditis elegans (C. elegans)] and in vitro (SH-SY5Y neuroblastoma cell line) models. Our findings demonstrated that SiQDs, characterized by their stable and water-soluble physicochemical properties, tended to accumulate in neuronal tissues. This accumulation precipitated dopaminergic neurodegeneration, manifested as diminished dopamine-dependent behaviors, and escalated the expression of PD-specific genes in C. elegans. Importantly, the results revealed that SiQDs induced ferritinophagy, a selective autophagy pathway that triggered ferroptosis and resulted in PD-like symptoms, even exacerbating disease progression in biological models. These insights were incorporated into a putatively qualitative and quantitative adverse outcome pathway framework, highlighting the serious neurodegenerative risks posed by SiQDs through ferroptosis pathways. This study provides a multidisciplinary analysis critical for informing policy on the regulation of SiQDs exposure to safeguard susceptible populations and guiding the responsible development of nanotechnologies impacting environmental and public health.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
- Yancheng Kindergarten Teachers College, Yancheng 224005, P. R. China
| | - Siyuan Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Kehan Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Zongjian Ye
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Yijing Qian
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Jing He
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Jieyi Xia
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Pengcheng Xing
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Jiafu Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Yán Wa Ng
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230032, P. R. China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| |
Collapse
|
31
|
Summer M, Ashraf R, Ali S, Bach H, Noor S, Noor Q, Riaz S, Khan RRM. Inflammatory response of nanoparticles: Mechanisms, consequences, and strategies for mitigation. CHEMOSPHERE 2024; 363:142826. [PMID: 39002651 DOI: 10.1016/j.chemosphere.2024.142826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Numerous nano-dimensioned materials have been generated as a result of several advancements in nanoscale science such as metallic nanoparticles (mNPs) which have aided in the advancement of related research. As a result, several significant nanoscale materials are being produced commercially. It is expected that in the future, products that are nanoscale, like mNPs, will be useful in daily life. Despite certain benefits, widespread use of metallic nanoparticles and nanotechnology has negative effects and puts human health at risk because of their continual accumulation in closed biological systems, along with their complex and diverse migratory and transformation pathways. Once within the human body, nanoparticles (NPs) disrupt the body's natural biological processes and trigger inflammatory responses. These NPs can also affect the immune system by activating separate pathways that either function independently or interact with one another. Cytotoxic effects, inflammatory response, genetic material damage, and mitochondrial dysfunction are among the consequences of mNPs. Oxidative stress and reactive oxygen species (ROS) generation caused by mNPs depend upon a multitude of factors that allow NPs to get inside cells and interact with biological macromolecules and cell organelles. This review focuses on how mNPs cause inflammation and oxidative stress, as well as disrupt cellular signaling pathways that support these effects. In addition, possibilities and problems to be reduced are addressed to improve future research on the creation of safer and more environmentally friendly metal-based nanoparticles for commercial acceptance and sustainable use in medicine and drug delivery.
Collapse
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Rimsha Ashraf
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Horacio Bach
- Department of Medicine, Division of Infectious Diseases, 2660 Oak Street, Vancouver, BC, V6H3Z6, Canada
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Qudsia Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Saima Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Rana Rashad Mahmood Khan
- Department of Chemistry, Government College University Lahore, Faculty of Chemistry and Life Sciences, Pakistan
| |
Collapse
|
32
|
Zhou J, Shen W, Feng W, Zhang X, Wu T, Zhou J, Su Z, Yin T. Temperature Self-Limited Intelligent Thermo-chemotherapeutic Lipid Nanosystem for P-gp Reversal Time Window Matched Pulse Treatment of MDR Tumor. NANO LETTERS 2024; 24:10631-10641. [PMID: 39150779 DOI: 10.1021/acs.nanolett.4c02978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Mild photothermal therapy (PTT) shows the potential for chemosensitization by tumor-localized P-glycoprotein (P-gp) modulation. However, conventional mild PTT struggles with real-time uniform temperature control, obscuring the temperature-performance relationship and resulting in thermal damage. Besides, the time-performance relationship and the underlying mechanism of mild PTT-mediated P-gp reversal remains elusive. Herein, we developed a temperature self-limiting lipid nanosystem (RFE@PD) that integrated a reversible organic heat generator (metal-phenolic complexes) and metal chelator (deferiprone, DFP) encapsulated phase change material. Upon NIR irradiation, RFE@PD released DFP for blocking ligand-metal charge transfer to self-limit temperature below 45 °C, and rapidly reduced P-gp within 3 h via Ubiquitin-proteasome degradation. Consequently, the DOX·HCl-loaded thermo-chemotherapeutic lipid nanosystem (RFE@PD-DOX) led to dramatically improved drug accumulation and 5-fold chemosensitization in MCF-7/ADR tumor models by synchronizing P-gp reversal and drug pulse liberation, achieving a tumor inhibition ratio of 82.42%. This lipid nanosystem integrated with "intrinsic temperature-control" and "temperature-responsive pulse release" casts new light on MDR tumor therapy.
Collapse
Affiliation(s)
- Jiyuan Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Weiyang Shen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Wenna Feng
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xin Zhang
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Tongyu Wu
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jianping Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Zhigui Su
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Tingjie Yin
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
33
|
Lv S, Li Y, Li X, Zhu L, Zhu Y, Guo C, Li Y. Silica nanoparticles triggered epithelial ferroptosis via miR-21-5p/GCLM signaling to contribute to fibrogenesis in the lungs. Chem Biol Interact 2024; 399:111121. [PMID: 38944326 DOI: 10.1016/j.cbi.2024.111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
The toxicity of silica nanoparticles (SiNPs) to lung is known. We previously demonstrated that exposure to SiNPs promoted pulmonary impairments, but the precise pathogenesis remains elucidated. Ferroptosis has now been identified as a unique form of oxidative cell death, but whether it participated in SiNPs-induced lung injury remains unclear. In this work, we established a rat model with sub-chronic inhalation exposure of SiNPs via intratracheal instillation, and conducted histopathological examination, iron detection, and ferroptosis-related lipid peroxidation and protein assays. Moreover, we evaluated the effect of SiNPs on epithelial ferroptosis, possible mechanisms using in vitro-cultured human bronchial epithelial cells (16HBE), and also assessed the ensuing impact on fibroblast activation for fibrogenesis. Consequently, fibrotic lesions occurred in the rat lungs, concomitantly by enhanced lipid peroxidation, iron overload, and ferroptosis. Consistently, the in vitro data showed SiNPs triggered oxidative stress and caused the accumulation of lipid peroxides, resulting in ferroptosis. Importantly, the mechanistic investigation revealed miR-21-5p as a key player in the epithelial ferroptotic process induced by SiNPs via targeting GCLM for GSH depletion. Of note, ferrostatin-1 could greatly suppress ferroptosis and alleviate epithelial injury and ensuing fibroblast activation by SiNPs. In conclusion, our findings first revealed SiNPs triggered epithelial ferroptosis through miR-21-5p/GCLM signaling and thereby promoted fibroblast activation for fibrotic lesions, and highlighted the therapeutic potential of inhibiting ferroptosis against lung impairments upon SiNPs exposure.
Collapse
Affiliation(s)
- Songqing Lv
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Xueyan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Lingnan Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yurou Zhu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
34
|
Gong HZ, Li S, Wang FY, Zhu Y, Jiang QL, Zhu XL, Zeng Y, Jiang J. Titanium dioxide nanoparticles Disrupt ultrastructure and function of Rat thyroid tissue via oxidative stress. Heliyon 2024; 10:e34722. [PMID: 39130420 PMCID: PMC11315151 DOI: 10.1016/j.heliyon.2024.e34722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Nano-TiO2 is widely used in various fields such as industry, daily necessities, food and medicine. Previous studies have shown that it can enter mammalian tissues through the digestive tract or respiratory tract and have effects on various organs and systems. However, the effect of nano-TiO2 on the mammalian thyroid gland has not been reported. In this study, we fed SD rats with rutile nano-TiO2 at a dose of 5 mg/kg body weight for 3 weeks, and then examined the thyroid histology and thyroid function of the rats. In vitro experiments were conducted to determine the effects of nano-TiO2 on the viability, apoptosis, inflammatory factors, antioxidant enzymes, and oxidative stress of human thyroid follicular epithelial cells. Histological evidence showed abnormal morphology of rat thyroid follicles and organelle damage in follicular epithelial cells. Nano-TiO2 caused a decrease in the level of sodium/iodide symporter (NIS), an increase in the level of apoptotic protein cleaved-caspase 3, and an increase in the levels of pro-inflammatory factors IL-1β and TNF-α in rat thyroid tissue. Nano-TiO2 also resulted in increased serum FT4 and TPO-Ab levels. In in vitro experiments, nano-TiO2 reduced the viability of human thyroid follicular cells, downregulated the levels and activities of antioxidant enzymes CAT, GPX1 and SOD, and increased the levels of ROS and MDA caused by oxidative stress. These results indicate that nano-TiO2 damages the structure and function of thyroid follicular epithelial cells through oxidative stress. Long-term exposure to nano-TiO2 could be a potential risk factor for thyroid dysfunction.
Collapse
Affiliation(s)
- Hong-Zhen Gong
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Sha Li
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Fu-Yi Wang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Ye Zhu
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Qi-Lan Jiang
- Department of Clinical Nutrition, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xiao-Ling Zhu
- Department of Intensive Care, Deyang People's Hospital, Deyang, Sichuan Province, China
| | - Yang Zeng
- Department of Orthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
35
|
Mei L, Liao K, Chen H, Zhang Y, Zhang Z, Li Q, Li M. Application of Nanomaterials and Related Drug Delivery Systems in Autophagy. Molecules 2024; 29:3513. [PMID: 39124918 PMCID: PMC11313712 DOI: 10.3390/molecules29153513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Autophagy, a lysosomal self-degradation pathway, plays a critical role in cellular homeostasis by degrading endogenous damaged organelles and protein aggregates into recyclable biological molecules. Additionally, it detoxifies extracellular toxic substances, including drugs and toxic materials, thereby preserving the stability of the intracellular environment. The swift progression of nanotechnology has led to an increased focus on understanding the relationship between nanomaterials and autophagy. The effects of various nanomaterials and nano drug delivery systems on autophagy and their biological functions have been preliminarily assessed, revealing that modulation of intracellular autophagy levels by these agents represents a novel cellular response mechanism. Notably, autophagy regulation based on nanomaterials or nano drug delivery systems for a range of diseases is currently the subject of extensive research. Given the close association between autophagy levels and tumors, the regulation of autophagy has emerged as a highly active area of research in the development of innovative tumor therapies. This review synthesizes the current understanding of the application of nanomaterials or nano drug delivery systems on autophagy and their potential biological functions, suggesting a new avenue for nanomaterial-based autophagy regulation.
Collapse
Affiliation(s)
- Ling Mei
- Engineering Research Center for Pharmaceuticals and Equipment of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; (L.M.)
| | - Kai Liao
- Engineering Research Center for Pharmaceuticals and Equipment of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; (L.M.)
| | - Haiyan Chen
- Engineering Research Center for Pharmaceuticals and Equipment of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; (L.M.)
| | - Yifan Zhang
- Engineering Research Center for Pharmaceuticals and Equipment of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; (L.M.)
| | - Zihan Zhang
- Engineering Research Center for Pharmaceuticals and Equipment of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; (L.M.)
| | - Qiangwei Li
- Engineering Research Center for Pharmaceuticals and Equipment of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; (L.M.)
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
36
|
Yan Y, Huang W, Lu X, Chen X, Shan Y, Luo X, Li Y, Yang X, Li C. Zinc oxide nanoparticles induces cell death and consequently leading to incomplete neural tube closure through oxidative stress during embryogenesis. Cell Biol Toxicol 2024; 40:51. [PMID: 38958792 PMCID: PMC11222284 DOI: 10.1007/s10565-024-09894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
The implementation of Zinc oxide nanoparticles (ZnO NPs) raises concerns regarding their potential toxic effects on human health. Although more and more researches have confirmed the toxic effects of ZnO NPs, limited attention has been given to their impact on the early embryonic nervous system. This study aimed to explore the impact of exposure to ZnO NPs on early neurogenesis and explore its underlying mechanisms. We conducted experiments here to confirm the hypothesis that exposure to ZnO NPs causes neural tube defects in early embryonic development. We first used mouse and chicken embryos to confirm that ZnO NPs and the Zn2+ they release are able to penetrate the placental barrier, influence fetal growth and result in incomplete neural tube closure. Using SH-SY5Y cells, we determined that ZnO NPs-induced incomplete neural tube closure was caused by activation of various cell death modes, including ferroptosis, apoptosis and autophagy. Moreover, dissolved Zn2+ played a role in triggering widespread cell death. ZnO NPs were accumulated within mitochondria after entering cells, damaging mitochondrial function and resulting in the over production of reactive oxygen species, ultimately inducing cellular oxidative stress. The N-acetylcysteine (NAC) exhibits significant efficacy in mitigating cellular oxidative stress, thereby alleviating the cytotoxicity and neurotoxicity brought about by ZnO NPs. These findings indicated that the exposure of ZnO NPs in early embryonic development can induce cell death through oxidative stress, resulting in a reduced number of cells involved in early neural tube closure and ultimately resulting in incomplete neural tube closure during embryo development. The findings of this study could raise public awareness regarding the potential risks associated with the exposure and use of ZnO NPs in early pregnancy.
Collapse
Affiliation(s)
- Yu Yan
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wenyi Huang
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Research Center of Integrative Medicine, School Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoting Lu
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Research Center of Integrative Medicine, School Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianxian Chen
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Research Center of Integrative Medicine, School Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingyi Shan
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai, 200233, China
| | - Xin Luo
- Department of Urology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Yu Li
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Xuesong Yang
- Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, 510632, China.
- Clinical Research Center, Clifford Hospital, Guangzhou, 511495, China.
| | - Chun Li
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
37
|
Liu G, Lv J, Wang Y, Sun K, Gao H, Li Y, Yao Q, Ma L, Kochshugulova G, Jiang Z. ZnO NPs induce miR-342-5p mediated ferroptosis of spermatocytes through the NF-κB pathway in mice. J Nanobiotechnology 2024; 22:390. [PMID: 38961442 PMCID: PMC11223436 DOI: 10.1186/s12951-024-02672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Zinc oxide nanoparticle (ZnO NP) is one of the metal nanomaterials with extensive use in many fields such as feed additive and textile, which is an emerging threat to human health due to widely distributed in the environment. Thus, there is an urgent need to understand the toxic effects associated with ZnO NPs. Although previous studies have found accumulation of ZnO NPs in testis, the molecular mechanism of ZnO NPs dominated a decline in male fertility have not been elucidated. RESULTS We reported that ZnO NPs exposure caused testicular dysfunction and identified spermatocytes as the primary damaged site induced by ZnO NPs. ZnO NPs led to the dysfunction of spermatocytes, including impaired cell proliferation and mitochondrial damage. In addition, we found that ZnO NPs induced ferroptosis of spermatocytes through the increase of intracellular chelatable iron content and lipid peroxidation level. Moreover, the transcriptome analysis of testis indicated that ZnO NPs weakened the expression of miR-342-5p, which can target Erc1 to block the NF-κB pathway. Eventually, ferroptosis of spermatocytes was ameliorated by suppressing the expression of Erc1. CONCLUSIONS The present study reveals a novel mechanism in that miR-342-5p targeted Erc1 to activate NF-κB signaling pathway is required for ZnO NPs-induced ferroptosis, and provide potential targets for further research on the prevention and treatment of male reproductive disorders related to ZnO NPs.
Collapse
Affiliation(s)
- Guangyu Liu
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Jing Lv
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Yifan Wang
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Kaikai Sun
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Huimin Gao
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Yuanyou Li
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Qichun Yao
- Animal Husbandry and Veterinary Station of Zhenba County, Hanzhong, 723600, Shaanxi, China
| | - Lizhu Ma
- College of Animal Science and Technology, China Agricultural University, Beijing, 100080, China
| | - Gulzat Kochshugulova
- Department of Food Security, Agrotechnological Faculty, Kozybayev University, 86, Pushkin Street, Petropavlovsk, 150000, Kazakhstan
| | - Zhongliang Jiang
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
38
|
Abady MM, Jeong JS, Kwon HJ, Assiri AM, Cho J, Saadeldin IM. The reprotoxic adverse side effects of neurogenic and neuroprotective drugs: current use of human organoid modeling as a potential alternative to preclinical models. Front Pharmacol 2024; 15:1412188. [PMID: 38948466 PMCID: PMC11211546 DOI: 10.3389/fphar.2024.1412188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
The management of neurological disorders heavily relies on neurotherapeutic drugs, but notable concerns exist regarding their possible negative effects on reproductive health. Traditional preclinical models often fail to accurately predict reprotoxicity, highlighting the need for more physiologically relevant systems. Organoid models represent a promising approach for concurrently studying neurotoxicity and reprotoxicity, providing insights into the complex interplay between neurotherapeutic drugs and reproductive systems. Herein, we have examined the molecular mechanisms underlying neurotherapeutic drug-induced reprotoxicity and discussed experimental findings from case studies. Additionally, we explore the utility of organoid models in elucidating the reproductive complications of neurodrug exposure. Have discussed the principles of organoid models, highlighting their ability to recapitulate neurodevelopmental processes and simulate drug-induced toxicity in a controlled environment. Challenges and future perspectives in the field have been addressed with a focus on advancing organoid technologies to improve reprotoxicity assessment and enhance drug safety screening. This review underscores the importance of organoid models in unraveling the complex relationship between neurotherapeutic drugs and reproductive health.
Collapse
Affiliation(s)
- Mariam M. Abady
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
- Department of Nutrition and Food Science, National Research Centre, Cairo, Egypt
| | - Ji-Seon Jeong
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Ha-Jeong Kwon
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Abdullah M. Assiri
- Deperament of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Islam M. Saadeldin
- Deperament of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
39
|
Bao L, Liu Q, Wang J, Shi L, Pang Y, Niu Y, Zhang R. The interactions of subcellular organelles in pulmonary fibrosis induced by carbon black nanoparticles: a comprehensive review. Arch Toxicol 2024; 98:1629-1643. [PMID: 38536500 DOI: 10.1007/s00204-024-03719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/29/2024] [Indexed: 05/21/2024]
Abstract
Owing to the widespread use and improper emissions of carbon black nanoparticles (CBNPs), the adverse effects of CBNPs on human health have attracted much attention. In toxicological research, carbon black is frequently utilized as a negative control because of its low toxicity and poor solubility. However, recent studies have indicated that inhalation exposure to CBNPs could be a risk factor for severe and prolonged pulmonary inflammation and fibrosis. At present, the pathogenesis of pulmonary fibrosis induced by CBNPs is still not fully elucidated, but it is known that with small particle size and large surface area, CBNPs are more easily ingested by cells, leading to organelle damage and abnormal interactions between organelles. Damaged organelle and abnormal organelles interactions lead to cell structure and function disorders, which is one of the important factors in the development and occurrence of various diseases, including pulmonary fibrosis. This review offers a comprehensive analysis of organelle structure, function, and interaction mechanisms, while also summarizing the research advancements in organelles and organelle interactions in CBNPs-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Lei Bao
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Qingping Liu
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Jingyuan Wang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Lili Shi
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Yaxian Pang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Rong Zhang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
40
|
Liu N, Liang Y, Wei T, Huang X, Zhang T, Tang M. ROS-mediated NRF2/p-ERK1/2 signaling-involved mitophagy contributes to macrophages activation induced by CdTe quantum dots. Toxicology 2024; 505:153825. [PMID: 38710382 DOI: 10.1016/j.tox.2024.153825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Cadmium telluride (CdTe) quantum dots (QDs) have garnered significant attention for tumor imaging due to their exceptional properties. However, there remains a need for further investigation into their potential toxicity mechanisms and corresponding enhancements. Herein, CdTe QDs were observed to accumulate in mouse liver, leading to a remarkable overproduction of IL-1β and IL-6. Additionally, there was evidence of macrophage infiltration and activation following exposure to 12.5 μmol/kg body weight of QDs. To elucidate the underlying mechanism of macrophage activation, CdTe QDs functionalized with 3-mercaptopropionic acid (MPA) were utilized. In vitro experiments revealed that 1.0 μM MPA-CdTe QDs activated PINK1-dependent mitophagy in RAW264.7 macrophages. Critically, the autophagic flux remained unimpeded, as demonstrated by the absence of p62 accumulation, LC3 turnover assay results, and successful fusion of autophagosomes with lysosomes. Mechanically, QDs increased reactive oxygen species (ROS) and mitoROS by damaging both mitochondria and lysosomes. ROS, in turn, inhibited NRF2, resulting in the phosphorylation of ERK1/2 and subsequent activation of mitophagy. Notably, 1.0 μM QDs disrupted lysosomes but autophagic flux was not impaired. Eventually, the involvement of the ROS-NRF2-ERK1/2 pathway-mediated mitophagy in the increase of IL-1β and IL-6 in macrophages was confirmed using Trolox, MitoTEMPO, ML385, specific siRNAs, and lentivirus-based interventions. This study innovatively revealed the pro-inflammatory rather than anti-inflammatory role of mitophagy in nanotoxicology, shedding new light on the mechanisms of mitochondrial disorders induced by QDs and identifying several molecular targets to comprehend the toxicological mechanisms of CdTe QDs.
Collapse
Affiliation(s)
- Na Liu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China
| | - Ying Liang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiaoquan Huang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
41
|
Wahab A, Muhammad M, Ullah S, Abdi G, Shah GM, Zaman W, Ayaz A. Agriculture and environmental management through nanotechnology: Eco-friendly nanomaterial synthesis for soil-plant systems, food safety, and sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171862. [PMID: 38527538 DOI: 10.1016/j.scitotenv.2024.171862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Through the advancement of nanotechnology, agricultural and food systems are undergoing strategic enhancements, offering innovative solutions to complex problems. This scholarly essay thoroughly examines nanotechnological innovations and their implications within these critical industries. Traditional practices are undergoing radical transformation as nanomaterials emerge as novel agents in roles traditionally filled by fertilizers, pesticides, and biosensors. Micronutrient management and preservation techniques are further enhanced, indicating a shift towards more nutrient-dense and longevity-oriented food production. Nanoparticles (NPs), with their unique physicochemical properties, such as an extraordinary surface-to-volume ratio, find applications in healthcare, diagnostics, agriculture, and other fields. However, concerns about their potential overuse and bioaccumulation raise unanswered questions about their health effects. Molecule-to-molecule interactions and physicochemical dynamics create pathways through which nanoparticles cause toxicity. The combination of nanotechnology and environmental sustainability principles leads to the examination of green nanoparticle synthesis. The discourse extends to how nanomaterials penetrate biological systems, their applications, toxicological effects, and dissemination routes. Additionally, this examination delves into the ecological consequences of nanomaterial contamination in natural ecosystems. Employing robust risk assessment methodologies, including the risk allocation framework, is recommended to address potential dangers associated with nanotechnology integration. Establishing standardized, universally accepted guidelines for evaluating nanomaterial toxicity and protocols for nano-waste disposal is urged to ensure responsible stewardship of this transformative technology. In conclusion, the article summarizes global trends, persistent challenges, and emerging regulatory strategies shaping nanotechnology in agriculture and food science. Sustained, in-depth research is crucial to fully benefit from nanotechnology prospects for sustainable agriculture and food systems.
Collapse
Affiliation(s)
- Abdul Wahab
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Murad Muhammad
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, China
| | - Shahid Ullah
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran
| | | | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
42
|
Lyu Z, Kou Y, Fu Y, Xie Y, Yang B, Zhu H, Tian J. Comparative transcriptomics revealed neurodevelopmental impairments and ferroptosis induced by extremely small iron oxide nanoparticles. Front Genet 2024; 15:1402771. [PMID: 38826799 PMCID: PMC11140123 DOI: 10.3389/fgene.2024.1402771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 06/04/2024] Open
Abstract
Iron oxide nanoparticles are a type of nanomaterial composed of iron oxide (Fe3O4 or Fe2O3) and have a wide range of applications in magnetic resonance imaging. Compared to iron oxide nanoparticles, extremely small iron oxide nanoparticles (ESIONPs) (∼3 nm in diameter) can improve the imaging performance due to a smaller size. However, there are currently no reports on the potential toxic effects of ESIONPs on the human body. In this study, we applied ESIONPs to a zebrafish model and performed weighted gene co-expression network analysis (WGCNA) on differentially expressed genes (DEGs) in zebrafish embryos of 48 hpf, 72 hpf, 96 hpf, and 120 hpf using RNA-seq technology. The key hub genes related to neurotoxicity and ferroptosis were identified, and further experiments also demonstrated that ESIONPs impaired the neuronal and muscle development of zebrafish, and induced ferroptosis, leading to oxidative stress, cell apoptosis, and inflammatory response. Here, for the first time, we analyzed the potential toxic effects of ESIONPs through WGCNA. Our studies indicate that ESIONPs might have neurotoxicity and could induce ferroptosis, while abnormal accumulation of iron ions might increase the risk of early degenerative neurological diseases.
Collapse
Affiliation(s)
- Zhaojie Lyu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
- Center for Automated and Innovative Drug Discovery, School of Medicine, Northwest University, Xi’an, China
| | - Yao Kou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Yao Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Yuxuan Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Bo Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Hongjie Zhu
- Center for Automated and Innovative Drug Discovery, School of Medicine, Northwest University, Xi’an, China
| | - Jing Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
- Center for Automated and Innovative Drug Discovery, School of Medicine, Northwest University, Xi’an, China
| |
Collapse
|
43
|
Dowaidar M. Guidelines for the role of autophagy in drug delivery vectors uptake pathways. Heliyon 2024; 10:e30238. [PMID: 38707383 PMCID: PMC11066435 DOI: 10.1016/j.heliyon.2024.e30238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
The process of autophagy refers to the intracellular absorption of cytoplasm (such as proteins, nucleic acids, tiny molecules, complete organelles, and so on) into the lysosome, followed by the breakdown of that cytoplasm. The majority of cellular proteins are degraded by a process called autophagy, which is both a naturally occurring activity and one that may be induced by cellular stress. Autophagy is a system that can save cells' integrity in stressful situations by restoring metabolic basics and getting rid of subcellular junk. This happens as a component of an endurance response. This mechanism may have an effect on disease, in addition to its contribution to the homeostasis of individual cells and tissues as well as the control of development in higher species. The main aim of this study is to discuss the guidelines for the role of autophagy in drug delivery vector uptake pathways. In this paper, we discuss the meaning and concept of autophagy, the mechanism of autophagy, the role of autophagy in drug delivery vectors, autophagy-modulating drugs, nanostructures for delivery systems of autophagy modulators, etc. Later in this paper, we talk about how to deliver chemotherapeutics, siRNA, and autophagy inducers and inhibitors. We also talk about how hard it is to make a drug delivery system that takes nanocarriers' roles as autophagy modulators into account.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
- Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| |
Collapse
|
44
|
Slama Y, Arcambal A, Septembre-Malaterre A, Morel AL, Pesnel S, Gasque P. Evaluation of core-shell Fe 3O 4@Au nanoparticles as radioenhancer in A549 cell lung cancer model. Heliyon 2024; 10:e29297. [PMID: 38644868 PMCID: PMC11033100 DOI: 10.1016/j.heliyon.2024.e29297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
In radiotherapy, metallic nanoparticles are of high interest in the fight against cancer for their radiosensitizing effects. This study aimed to evaluate the ability of core-shell Fe3O4@Au nanoparticles to potentiate the irradiation effects on redox-, pro-inflammatory markers, and cell death of A549 human pulmonary cancer cells. The hybrid Fe3O4@Au nanoparticles were synthesized using green chemistry principles by the sonochemistry method. Their characterization by transmission electron microscopy demonstrated an average size of 8 nm and a homogeneous distribution of gold. The decreased hydrodynamic size of these hybrid nanoparticles compared to magnetite (Fe3O4) nanoparticles showed that gold coating significantly reduced the aggregation of Fe3O4 particles. The internalization and accumulation of the Fe3O4@Au nanoparticles within the cells were demonstrated by Prussian Blue staining. The reactive oxygen species (ROS) levels measured by the fluorescent probe DCFH-DA were up-regulated, as well as mRNA expression of SOD, catalase, GPx antioxidant enzymes, redox-dependent transcription factor Nrf2, and ROS-producing enzymes (Nox2 and Nox4), quantified by RT-qPCR. Furthermore, irradiation coupled with Fe3O4@Au nanoparticles increased the expression of canonical pro-inflammatory cytokines and chemokines (TNF-α, IL-1β, IL-6, CXCL8, and CCL5) assessed by RT-qPCR and ELISA. Hybrid nanoparticles did not potentiate the increased DNA damage detected by immunofluorescence following the irradiation. Nevertheless, Fe3O4@Au caused cellular damage, leading to apoptosis through activation of caspase 3/7, secondary necrosis quantified by LDH release, and cell growth arrest evaluated by clonogenic-like assay. This study demonstrated the potential of Fe3O4@Au nanoparticles to potentiate the radiosensitivity of cancerous cells.
Collapse
Affiliation(s)
- Youssef Slama
- Université de La Réunion, Unité de Recherche Etudes Pharmaco-Immunologiques (EPI), CHU de La Réunion, Site Felix Guyon, Allée des Topazes, SC11021, 97400, Saint-Denis, La Réunion, France
- Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400, Saint-Denis, La Réunion, France
| | - Angelique Arcambal
- Université de La Réunion, Unité de Recherche Etudes Pharmaco-Immunologiques (EPI), CHU de La Réunion, Site Felix Guyon, Allée des Topazes, SC11021, 97400, Saint-Denis, La Réunion, France
| | - Axelle Septembre-Malaterre
- Université de La Réunion, Unité de Recherche Etudes Pharmaco-Immunologiques (EPI), CHU de La Réunion, Site Felix Guyon, Allée des Topazes, SC11021, 97400, Saint-Denis, La Réunion, France
| | - Anne-Laure Morel
- Torskal, Nanosciences, 2 Rue Maxime Rivière, 97490 Sainte-Clotilde, La Réunion, France
| | - Sabrina Pesnel
- Torskal, Nanosciences, 2 Rue Maxime Rivière, 97490 Sainte-Clotilde, La Réunion, France
| | - Philippe Gasque
- Université de La Réunion, Unité de Recherche Etudes Pharmaco-Immunologiques (EPI), CHU de La Réunion, Site Felix Guyon, Allée des Topazes, SC11021, 97400, Saint-Denis, La Réunion, France
| |
Collapse
|
45
|
Belenichev I, Popazova O, Bukhtiyarova N, Savchenko D, Oksenych V, Kamyshnyi O. Modulating Nitric Oxide: Implications for Cytotoxicity and Cytoprotection. Antioxidants (Basel) 2024; 13:504. [PMID: 38790609 PMCID: PMC11118938 DOI: 10.3390/antiox13050504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the significant progress in the fields of biology, physiology, molecular medicine, and pharmacology; the designation of the properties of nitrogen monoxide in the regulation of life-supporting functions of the organism; and numerous works devoted to this molecule, there are still many open questions in this field. It is widely accepted that nitric oxide (•NO) is a unique molecule that, despite its extremely simple structure, has a wide range of functions in the body, including the cardiovascular system, the central nervous system (CNS), reproduction, the endocrine system, respiration, digestion, etc. Here, we systematize the properties of •NO, contributing in conditions of physiological norms, as well as in various pathological processes, to the mechanisms of cytoprotection and cytodestruction. Current experimental and clinical studies are contradictory in describing the role of •NO in the pathogenesis of many diseases of the cardiovascular system and CNS. We describe the mechanisms of cytoprotective action of •NO associated with the regulation of the expression of antiapoptotic and chaperone proteins and the regulation of mitochondrial function. The most prominent mechanisms of cytodestruction-the initiation of nitrosative and oxidative stresses, the production of reactive oxygen and nitrogen species, and participation in apoptosis and mitosis. The role of •NO in the formation of endothelial and mitochondrial dysfunction is also considered. Moreover, we focus on the various ways of pharmacological modulation in the nitroxidergic system that allow for a decrease in the cytodestructive mechanisms of •NO and increase cytoprotective ones.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Olena Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Dmytro Savchenko
- Department of Pharmacy and Industrial Drug Technology, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
46
|
Viloria Angarita JE, Insuasty D, Rodríguez M JD, Castro JI, Valencia-Llano CH, Zapata PA, Delgado-Ospina J, Navia-Porras DP, Albis A, Grande-Tovar CD. Biological activity of lyophilized chitosan scaffolds with inclusion of chitosan and zinc oxide nanoparticles. RSC Adv 2024; 14:13565-13582. [PMID: 38665501 PMCID: PMC11043666 DOI: 10.1039/d4ra00371c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The constant demand for biocompatible and non-invasive materials for regenerative medicine in accidents and various diseases has driven the development of innovative biomaterials that promote biomedical applications. In this context, using sol-gel and ionotropic gelation methods, zinc oxide nanoparticles (NPs-ZnO) and chitosan nanoparticles (NPs-CS) were synthesized with sizes of 20.0 nm and 11.98 nm, respectively. These nanoparticles were incorporated into chitosan scaffolds through the freeze-drying method, generating a porous morphology with small (<100 μm), medium (100-200 μm), and large (200-450 μm) pore sizes. Moreover, the four formulations showed preliminary bioactivity after hydrolytic degradation, facilitating the formation of a hydroxyapatite (HA) layer on the scaffold surface, as evidenced by the presence of Ca (4%) and P (5.1%) during hydrolytic degradation. The scaffolds exhibited average antibacterial activity of F1 = 92.93%, F2 = 99.90%, F3 = 74.10%, and F4 = 88.72% against four bacterial strains: K. pneumoniae, E. cloacae, S. enterica, and S. aureus. In vivo, evaluation confirmed the biocompatibility of the functionalized scaffolds, where F2 showed accelerated resorption attributed to the NPs-ZnO. At the same time, F3 exhibited controlled degradation with NPs-CS acting as initiation points for degradation. On the other hand, F4 combined NPs-CS and NPs-ZnO, resulting in progressive degradation, reduced inflammation, and an organized extracellular matrix. All the results presented expand the boundaries in tissue engineering and regenerative medicine by highlighting the crucial role of nanoparticles in optimizing scaffold properties.
Collapse
Affiliation(s)
- Jorge Eliecer Viloria Angarita
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico Carrera 30 Número 8-49 Puerto Colombia 081008 Colombia +57-5-3599-484
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte Km 5 Vía Puerto Colombia Barranquilla 081007 Colombia
| | - Juan David Rodríguez M
- Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Libre Km 5 Vía Puerto Colombia Barranquilla 081007 Colombia
| | - Jorge Iván Castro
- Tribology, Polymers, Powder Metallurgy and Solid Waste Transformations Research Group, Universidad del Valle Calle 13 No. 100-00 Cali 76001 Colombia
| | | | - Paula A Zapata
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago 9170020 Chile
| | - Johannes Delgado-Ospina
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali Carrera 122 # 6-65 Cali 76001 Colombia
| | - Diana Paola Navia-Porras
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali Carrera 122 # 6-65 Cali 76001 Colombia
| | - Alberto Albis
- Grupo de Investigación en Bioprocesos, Universidad del Atlántico, Facultad de Ingeniería Carrera 30 Número 8-49 Puerto Colombia 081008 Colombia
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico Carrera 30 Número 8-49 Puerto Colombia 081008 Colombia +57-5-3599-484
| |
Collapse
|
47
|
Florance I, Cordani M, Pashootan P, Moosavi MA, Zarrabi A, Chandrasekaran N. The impact of nanomaterials on autophagy across health and disease conditions. Cell Mol Life Sci 2024; 81:184. [PMID: 38630152 PMCID: PMC11024050 DOI: 10.1007/s00018-024-05199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 04/19/2024]
Abstract
Autophagy, a catabolic process integral to cellular homeostasis, is constitutively active under physiological and stress conditions. The role of autophagy as a cellular defense response becomes particularly evident upon exposure to nanomaterials (NMs), especially environmental nanoparticles (NPs) and nanoplastics (nPs). This has positioned autophagy modulation at the forefront of nanotechnology-based therapeutic interventions. While NMs can exploit autophagy to enhance therapeutic outcomes, they can also trigger it as a pro-survival response against NP-induced toxicity. Conversely, a heightened autophagy response may also lead to regulated cell death (RCD), in particular autophagic cell death, upon NP exposure. Thus, the relationship between NMs and autophagy exhibits a dual nature with therapeutic and environmental interventions. Recognizing and decoding these intricate patterns are essential for pioneering next-generation autophagy-regulating NMs. This review delves into the present-day therapeutic potential of autophagy-modulating NMs, shedding light on their status in clinical trials, intervention of autophagy in the therapeutic applications of NMs, discusses the potency of autophagy for application as early indicator of NM toxicity.
Collapse
Affiliation(s)
- Ida Florance
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Parya Pashootan
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box 14965/161, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box 14965/161, Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
48
|
Wu Q, Cao J, Liu X, Zhu X, Huang C, Wang X, Song Y. Micro(nano)-plastics exposure induced programmed cell death and corresponding influence factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171230. [PMID: 38402958 DOI: 10.1016/j.scitotenv.2024.171230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/30/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Plastic products have played an indispensable role in our daily lives for several decades, primarily due to their cost-effectiveness and unmatched convenience. Nevertheless, recent developments in nanotechnology have propelled our attention toward a distinct category of plastic fine particulates known as micro(nano)-plastics (MPs/NPs). The investigation of the cytotoxic effects of MPs/NPs has emerged as a central and burgeoning area of research in environmental toxicology and cell biology. In the scope of this comprehensive review, we have meticulously synthesized recent scientific inquiries to delve into the intricate interplay between MPs/NPs and programmed cell death mechanisms, which encompass a range of highly regulated processes. First, the signaling pathways and molecular mechanisms of different programmed death modalities induced by MPs/NPs were elaborated, including apoptosis, autophagy, necroptosis, ferroptosis, and pyroptosis. The causes of different programmed deaths induced by MPs/NPs, such as size, surface potential, functional group modification, aging, biological crown, and co-exposure of MPs/NPs are further analyzed. In contrast, the various cellular programmed death modes induced by MPs/NPs are not alone most of the time, and lastly, the connections between different cellular programmed death modes induced by MPs/NPs, such as interconversion, mutual promotion, and mutual inhibition, are explained. Our primary objective is to unveil the multifaceted toxicological implications of MPs/NPs on the intricate web of cellular fate and biological homeostasis. This endeavor not only broadens our understanding of the potential risks associated with MPs/NPs exposure but also underscores the urgent need for comprehensive risk assessments and regulatory measures in the context of environmental health.
Collapse
Affiliation(s)
- Qingchun Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianzhong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuting Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyu Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunfeng Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
49
|
Fan J, Liu L, Lu Y, Chen Q, Fan S, Yang Y, Long Y, Liu X. Acute exposure to polystyrene nanoparticles promotes liver injury by inducing mitochondrial ROS-dependent necroptosis and augmenting macrophage-hepatocyte crosstalk. Part Fibre Toxicol 2024; 21:20. [PMID: 38610056 PMCID: PMC11010371 DOI: 10.1186/s12989-024-00578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The global use of plastic materials has undergone rapid expansion, resulting in the substantial generation of degraded and synthetic microplastics and nanoplastics (MNPs), which have the potential to impose significant environmental burdens and cause harmful effects on living organisms. Despite this, the detrimental impacts of MNPs exposure towards host cells and tissues have not been thoroughly characterized. RESULTS In the present study, we have elucidated a previously unidentified hepatotoxic effect of 20 nm synthetic polystyrene nanoparticles (PSNPs), rather than larger PS beads, by selectively inducing necroptosis in macrophages. Mechanistically, 20 nm PSNPs were rapidly internalized by macrophages and accumulated in the mitochondria, where they disrupted mitochondrial integrity, leading to heightened production of mitochondrial reactive oxygen species (mtROS). This elevated mtROS generation essentially triggered necroptosis in macrophages, resulting in enhanced crosstalk with hepatocytes, ultimately leading to hepatocyte damage. Additionally, it was demonstrated that PSNPs induced necroptosis and promoted acute liver injury in mice. This harmful effect was significantly mitigated by the administration of a necroptosis inhibitor or systemic depletion of macrophages prior to PSNPs injection. CONCLUSION Collectively, our study suggests a profound toxicity of environmental PSNP exposure by triggering macrophage necroptosis, which in turn induces hepatotoxicity via intercellular crosstalk between macrophages and hepatocytes in the hepatic microenvironment.
Collapse
Affiliation(s)
- Junjie Fan
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China
| | - Li Liu
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Shijun Fan
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Yongjun Yang
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Yupeng Long
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China.
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China.
| |
Collapse
|
50
|
Chen M, Chen S, Wang X, Ye Z, Liu K, Qian Y, Tang M, Wu T. The discovery of regional neurotoxicity-associated metabolic alterations induced by carbon quantum dots in brain of mice using a spatial metabolomics analysis. Part Fibre Toxicol 2024; 21:19. [PMID: 38600504 PMCID: PMC11005155 DOI: 10.1186/s12989-024-00580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Recently, carbon quantum dots (CQDs) have been widely used in various fields, especially in the diagnosis and therapy of neurological disorders, due to their excellent prospects. However, the associated inevitable exposure of CQDs to the environment and the public could have serious severe consequences limiting their safe application and sustainable development. RESULTS In this study, we found that intranasal treatment of 5 mg/kg BW (20 µL/nose of 0.5 mg/mL) CQDs affected the distribution of multiple metabolites and associated pathways in the brain of mice through the airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) technique, which proved effective in discovery has proven to be significantly alerted and research into tissue-specific toxic biomarkers and molecular toxicity analysis. The neurotoxic biomarkers of CQDs identified by MSI analysis mainly contained aminos, lipids and lipid-like molecules which are involved in arginine and proline metabolism, biosynthesis of unsaturated fatty acids, and glutamine and glutamate metabolism, etc. as well as related metabolic enzymes. The levels or expressions of these metabolites and enzymes changed by CQDs in different brain regions would induce neuroinflammation, organelle damage, oxidative stress and multiple programmed cell deaths (PCDs), leading to neurodegeneration, such as Parkinson's disease-like symptoms. This study enlightened risk assessments and interventions of QD-type or carbon-based nanoparticles on the nervous system based on toxic biomarkers regarding region-specific profiling of altered metabolic signatures. CONCLUSION These findings provide information to advance knowledge of neurotoxic effects of CQDs and guide their further safety evaluation.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, 210009, Nanjing, P.R. China
| | - Siyuan Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, 210009, Nanjing, P.R. China
| | - Xinyu Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, 210009, Nanjing, P.R. China
| | - Zongjian Ye
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, 210009, Nanjing, P.R. China
| | - Kehan Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, 210009, Nanjing, P.R. China
| | - Yijing Qian
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, 210009, Nanjing, P.R. China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, 210009, Nanjing, P.R. China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, 210009, Nanjing, P.R. China.
| |
Collapse
|