1
|
Coluzzi C, Piscon B, Dérozier S, Chiapello H, Gal-Mor O. Comparative genomics of Salmonella enterica serovars Paratyphi A, Typhi and Typhimurium reveals distinct profiles of their pangenome, mobile genetic elements, antimicrobial resistance and defense systems repertoire. Virulence 2025; 16:2504658. [PMID: 40394957 PMCID: PMC12101602 DOI: 10.1080/21505594.2025.2504658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/05/2025] [Accepted: 05/06/2025] [Indexed: 05/22/2025] Open
Abstract
Salmonella enterica (S. enterica) is a highly ubiquitous and diverse animal and human pathogen. Distinct S. enterica serovars may present varying host-specificity and cause different diseases. While the human-restricted serovars S. Typhi (STY) and S. Paratyphi A (SPA) cause in humans a systemic life-threatening enteric fever, the host-generalist serovar, S. Typhimurium (STM) causes in immunocompetent individuals a self-limited gastroenteritis. Here, we have performed whole-genome sequencing and hybrid assembly of new SPA and STY typhoidal strains and took a comparative genomics approach to examine their phylogeny, pangenome structure and accessory genome content in comparison to the reference non-typhoidal serovar, STM. Our results identified previously uncharacterized lineages of SPA and refined the presence and distribution of core pseudogenes in typhoidal serovars. Pangenome analysis showed that while these serovars have a relatively similar core-genome size, the accessory genome of STM is more than four times larger than those of typhoidal Salmonellae and that STY and SPA display a more closed pangenome than STM. Unexpectedly, we demonstrate that STY and SPA present distinct differences in their pangenome composition, with a noticeable lower number of prophages, conjugative elements and antimicrobial genes per genome in SPA vs. STY. These results suggest that although SPA and STY are closely related at the DNA level, share a similar lifestyle and cause a symptomatic-indistinguishable disease, their genomic evolution and accessory genomes are markedly different. Moreover, these results may provide genomic explanation to phenotypic and epidemiological differences in antimicrobial resistance profiles associated with these serovars globally.
Collapse
Affiliation(s)
- Charles Coluzzi
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
- Microbial Evolutionary Genomics, Institut Pasteur, Université Paris Cité, CNRS, Paris, France
| | - Bar Piscon
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Sandra Dérozier
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
| | | | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
2
|
Serna C, Calderón Bernal JM, Torre-Fuentes L, García Muñoz Á, Díez Guerrier A, Hernández M, Fernández-Garayzábal JF, Vela AI, Cid D, Alvarez J. Integrative and conjugative elements associated with antimicrobial resistance in multidrug resistant Pasteurella multocida isolates from bovine respiratory disease (BRD)-affected animals in Spanish feedlots. Vet Q 2025; 45:1-15. [PMID: 40055923 PMCID: PMC11892046 DOI: 10.1080/01652176.2025.2474220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/16/2024] [Accepted: 02/24/2025] [Indexed: 05/13/2025] Open
Abstract
The emergence of multidrug-resistance (MDR) in Pasteurella multocida, a major contributor to bovine respiratory disease (BRD) is being increasingly reported, often linked to the carriage of antimicrobial resistance genes (ARGs) on integrative and conjugative elements (ICEs). The resistance phenotype for 19 antimicrobials was determined using broth microdilution in 75 Pasteurella multocida isolates from healthy and BRD-affected cattle from five feedlots. The genomes of 32 isolates were sequenced to identify ARG) and mobile genetic elements (MGEs) and assess their genetic diversity. MDR isolates (with phenotypic resistance to aminoglycosides, macrolides, fluoroquinolones and/or tetracyclines) were primarily found among BRD-affected compared to healthy animals. Non-susceptible isolates, belonging to ST79 and ST13, harbored point mutations and four to nine ARGs, including rarely reported mechanisms in Europe (mph(E), msr(E) and aadA31 ARGs and newly described mutations in the gyrA/parC genes). All ARGs were linked to the presence of MGEs including two ICEs, Tn7407 and the novel Tn7809, a prophage and a putative composite transposon. Clonally related isolates were found in different batches from the same feedlot, suggesting maintenance of MDR strains. Our findings demonstrate the diverse genetic basis of AMR in P. multocida from BRD-affected cattle in Spain, emphasizing the role of MGEs in the ARG dissemination.
Collapse
Affiliation(s)
- Carlos Serna
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | - Laura Torre-Fuentes
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET,), Universidad Complutense, Madrid, Spain
| | - Ángel García Muñoz
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Alberto Díez Guerrier
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET,), Universidad Complutense, Madrid, Spain
| | - Marta Hernández
- Laboratorio de Biología Molecular y Microbiología, Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain
| | - José Francisco Fernández-Garayzábal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET,), Universidad Complutense, Madrid, Spain
| | - Ana Isabel Vela
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET,), Universidad Complutense, Madrid, Spain
| | - Dolores Cid
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Julio Alvarez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET,), Universidad Complutense, Madrid, Spain
| |
Collapse
|
3
|
Wang S, Zhou Y, Wang Y, Tang K, Wang D, Hong J, Wang P, Ye S, Yan J, Li S, Zhou Z, Du J. Genetic landscape and evolution of Acinetobacter pittii, an underestimated emerging nosocomial pathogen. Commun Biol 2025; 8:738. [PMID: 40360786 PMCID: PMC12075791 DOI: 10.1038/s42003-025-08156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
As a member of Acinetobacter calcoaceticus-baumannii complex, Acinetobacter pittii has been an emerging concern in nosocomial infection due to its increasing prevalence and multidrug resistance (MDR). However, its population structure remains broadly unknown, hampering efficient tracing of its transmission and evolution. In this study, we developed a distributed core genome multilocus sequence typing (dcgMLST) for A. pittii based on 750 genomes and employed it to map the genetic landscape and evolution of A. pittii. The results demonstrated that two hierarchical clustering (HC) levels effectively correspond to genetic diversity from species (HC1100) to natural populations (HC450), as well as that a predominant lineage, HC1100_4, accounts for 33.9% of A. pittii strains. Subsequent analysis revealed that specific gene gain and loss events within HC1100_4 are linked to adaptations to environmental stress. Moreover, we identified a cluster of multidrug-resistant plasmids PT_712 responsible for the dissemination of blaNDM-1 genes within the genus of Acinetobacter. This study provides a framework for characterizing genetic diversity, evolutionary dynamics, molecular population distribution, and tracing of A. pittii, which has the potential to improve infection control strategies and public health policy.
Collapse
Affiliation(s)
- Shengke Wang
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Institute of One Health, Wenzhou Medical University, Wenzhou, China
| | - Yan Zhou
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuezhuo Wang
- Key Laboratory of Alkene-carbon Fibres-based Technology & Application for Detection of Major Infectious Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, China
| | - Keshu Tang
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Institute of One Health, Wenzhou Medical University, Wenzhou, China
| | - Danqi Wang
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Institute of One Health, Wenzhou Medical University, Wenzhou, China
| | - Jiawen Hong
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Institute of One Health, Wenzhou Medical University, Wenzhou, China
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Pengcheng Wang
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Institute of One Health, Wenzhou Medical University, Wenzhou, China
| | - Sheng Ye
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Institute of One Health, Wenzhou Medical University, Wenzhou, China
| | - Jie Yan
- School of Medicine, Zhejiang University, Hangzhou, China.
| | - Shengkai Li
- Key Laboratory of Alkene-carbon Fibres-based Technology & Application for Detection of Major Infectious Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Zhemin Zhou
- Key Laboratory of Alkene-carbon Fibres-based Technology & Application for Detection of Major Infectious Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Jimei Du
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Institute of One Health, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
4
|
Ma JX, Bai SC, Xu JQ, He ZQ, Qi YX, Wang JX, Shi YX, Li YB, Wang MG. Molecular epidemiology of New Delhi metallo-β-lactamase-producing Escherichia coli in retail market chickens, Shandong, China. Front Microbiol 2025; 16:1550742. [PMID: 40330729 PMCID: PMC12052942 DOI: 10.3389/fmicb.2025.1550742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
Background The global spread of carbapenem-resistant Escherichia coli is a major public health concern. An investigation of their presence in the human and food chain products would facilitate the elucidation of the route of their food-borne transmission. Thus, the aim of this study was to investigate the prevalence of NDM-positive E. coli isolates in chicken at retail markets in Shandong, China. Methods A total of 60 NDM-positive isolates were recovered from 531 E. coli isolates obtained from chickens at the retail market in Shandong. Antimicrobial susceptibility testing and polymerase chain reaction screening were performed to investigate the phenotype and genotype of carbapenemase resistance. Genomic characteristics of the -producing isolates were determined by WGS and bioinformatic analysis. Results All of these isolates were multidrug-resistant (MDR), with a majority exhibiting resistance to meropenem, ampicillin, ceftazidime, cefotaxime, florfenicol, sulfamethoxazole/trimethoprim, and tetracycline. Whole genome sequencing (WGS) analysis indicated that these isolates were belonged to 18 distinct sequence types (STs), with the most prevalent STs being ST515 (17/60) and ST69 (11/60). Additionally, WGS analysis revealed that clonal spread of NDM-positive ST69 and ST515 E. coli isolates at markets in different cities in Shandong. Phylogenomic analysis showed that NDM-positive E. coli isolates from chickens were closely related to those of human origin. Conclusion This study provides a new insight into the spread of NDM-positive E. coli isolates from retail chicken, and offers essential data for public health management.
Collapse
Affiliation(s)
- Jing-Xian Ma
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Shuan-Cheng Bai
- College of Smart Agriculture, Yulin Normal University, Yulin, China
| | - Jia-Qi Xu
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Zhao-Qing He
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Yu-Xiang Qi
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Jia-xin Wang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Yu-Xia Shi
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Yu-Bao Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
- College of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Min-Ge Wang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| |
Collapse
|
5
|
Samper-Cativiela C, Torre-Fuentes L, Diéguez-Roda B, Maex M, Ugarte-Ruiz M, Carrizo P, Hernández M, Höfle Ú, Sáez JL, de Frutos C, Agüero M, Moreno MÁ, Domínguez L, Herrera-León S, Alvarez J. Molecular epidemiology of Salmonella Enteritidis in humans and animals in Spain. Antimicrob Agents Chemother 2025; 69:e0073824. [PMID: 40029002 PMCID: PMC11963599 DOI: 10.1128/aac.00738-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/11/2025] [Indexed: 03/05/2025] Open
Abstract
Salmonella Enteritidis, the most prevalent serovar-causing human gastroenteritis, has been traditionally linked to poultry sources. Although antimicrobial resistance (AMR) is not common in this serovar, increasing levels of resistance to fluoroquinolones and ampicillin have been reported in the last few years. Here, 298 isolates retrieved from different sources (human, livestock, wildlife, food, and environment) and years (2002-2021) in Spain were analyzed to evaluate their diversity, the distribution of AMR-conferring genes (ARGs), and mutations and reconstruct the epidemiology of infection due to this serovar. Isolates were clustered in two major clades (I and II), with strains in clade I (including 61.5% of all human isolates) displaying a pan-susceptible phenotype and not carrying AMR determinants. In contrast, clade II included 80.7% of isolates from animal/food/environmental sources, with the majority (69.8%) harboring mutations in the quinolone resistance determinant regions (QRDR). ARGs, although rare, were mostly found in clade II strains that also carried plasmid replicons, among which IncX1 was the most common. Although higher levels of phenotypic resistance were found in animal isolates, extended-spectrum beta-lactamase, plasmid-mediated AmpC, and carbapenemase-encoding genes were only found among human isolates. In summary, the majority of human and animal isolates from Spanish sources in our collection were classified in different phylogenetic branches, suggesting that additional sources are contributing to the occurrence of foodborne infections in Spain. Furthermore, the different distributions of virulence factors and ARGs in isolates from different sources and their association with specific plasmids suggest the presence of different dynamics contributing to the selection of resistant strains.
Collapse
Affiliation(s)
- Clara Samper-Cativiela
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Laura Torre-Fuentes
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | | | - Margo Maex
- Division of Human Bacterial Diseases, Sciensano, Uccle, Belgium
| | - María Ugarte-Ruiz
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Paula Carrizo
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Marta Hernández
- Departamento de Anatomía Patológica, Microbiología, Medicina Preventiva y Salud Pública, Medicina Legal y Forense. Facultad de Medicina, Universidad de Valladolid Facultad de Medicina, Valladolid, Spain
| | - Úrsula Höfle
- IREC, Instituto de Investigación en Recursos Cinegéticos, Ciudad Real, Spain
| | - José Luis Sáez
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de la Producción Agraria, Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Cristina de Frutos
- Laboratorio Central de Veterinaria, Ministerio de Agricultura, Pesca y Alimentación, Algete, Spain
| | - Montserrat Agüero
- Laboratorio Central de Veterinaria, Ministerio de Agricultura, Pesca y Alimentación, Algete, Spain
| | - Miguel Ángel Moreno
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Silvia Herrera-León
- Laboratorio de Referencia e Investigación en Enfermedades Bacterianas Transmitidas por Alimentos, Instituto de Salud Carlos III, Madrid, Spain
| | - Julio Alvarez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
6
|
Timilsina S, Iruegas-Bocardo F, Jibrin MO, Sharma A, Subedi A, Kaur A, Minsavage GV, Huguet-Tapia JC, Klein-Gordon J, Adhikari P, Adhikari TB, Cirvilleri G, de la Barrera LBT, Bernal E, Creswell TC, Doan TTK, Coutinho TA, Egel DS, Félix-Gastélum R, Francis DM, Kebede M, Ivey ML, Louws FJ, Luo L, Maynard ET, Miller SA, Nguyen NTT, Osdaghi E, Quezado-Duval AM, Roach R, Rotondo F, Ruhl GE, Shutt VM, Thummabenjapone P, Trueman C, Roberts PD, Jones JB, Vallad GE, Goss EM. Diversification of an emerging bacterial plant pathogen; insights into the global spread of Xanthomonas euvesicatoria pv. perforans. PLoS Pathog 2025; 21:e1013036. [PMID: 40203032 PMCID: PMC12047805 DOI: 10.1371/journal.ppat.1013036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 05/02/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
Emerging and re-emerging plant diseases continue to present multifarious threats to global food security. Considerable recent efforts are therefore being channeled towards understanding the nature of pathogen emergence, their spread and evolution. Xanthomonas euvesicatoria pv. perforans (Xep), one of the causal agents of bacterial spot of tomato, rapidly emerged and displaced other bacterial spot xanthomonads in many tomato production regions around the world. In less than three decades, it has become a dominant xanthomonad pathogen in tomato production systems across the world and presents a compelling example for understanding diversification of recently emerged bacterial plant pathogens. Although Xep has been continuously monitored in Florida since its discovery, the global population structure and evolution at the genome-scale is yet to be fully explored. The objectives of this work were to determine genetic diversity globally to ascertain if different tomato production regions contain genetically distinct Xep populations, to examine genetic relatedness of strains collected in tomato seed production areas in East Asia and other production regions, and to evaluate variation in type III secretion effectors, which are critical pathogenicity and virulence factors, in relationship to population structure. We used genome data from 270 strains from 13 countries for phylogenetic analysis and characterization of type III effector gene diversity among strains. Our results showed notable genetic diversity in the pathogen. We found genetically similar strains in distant tomato production regions, including seed production regions, and diversification over the past 100 years, which is consistent with intercontinental dissemination of the pathogen in hybrid tomato production chains. Evolution of the Xep pangenome, including the acquisition and loss of type III secreted effectors, is apparent within and among phylogenetic lineages. The apparent long-distance movement of the pathogen, together with variants that may not yet be widely distributed, poses risks of emergence of new variants in tomato production.
Collapse
Affiliation(s)
- Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Fernanda Iruegas-Bocardo
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Mustafa O. Jibrin
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
- Department of Crop Protection, Ahmadu Bello University, Zaria, Nigeria
- Southwest Florida Research and Education Center, University of Florida, Immokalee, Florida, United States of America
| | - Anuj Sharma
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Aastha Subedi
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Amandeep Kaur
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Gerald V. Minsavage
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Jose C. Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Jeannie Klein-Gordon
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Pragya Adhikari
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Tika B. Adhikari
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Gabriella Cirvilleri
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Sezione Patologia Vegetale, Catania, Italy
| | | | - Eduardo Bernal
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, Ohio, United States of America
| | - Tom C. Creswell
- Botany and Plant Pathology Department, Purdue University, West Lafayette, Indiana, United States of America
| | - Tien Thi Kieu Doan
- Department of Plant Protection, College of Agriculture, Can Tho University, Can Tho, Vietnam
| | - Teresa A. Coutinho
- Department Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Daniel S. Egel
- Botany and Plant Pathology Department, Purdue University, West Lafayette, Indiana, United States of America
| | - Rubén Félix-Gastélum
- Departamento de Ciencias Naturales y Exactas, Universidad Autónoma de Occidente, Unidad Regional Los Mochis, Los Mochis, Sinaloa, México
| | - David M. Francis
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, Ohio, United States of America
| | - Misrak Kebede
- Biotechnology Department, Collage of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Melanie Lewis Ivey
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, United States of America
| | - Frank J. Louws
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Laixin Luo
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Elizabeth T. Maynard
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Sally A. Miller
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, United States of America
| | - Nga Thi Thu Nguyen
- Department of Plant Protection, College of Agriculture, Can Tho University, Can Tho, Vietnam
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | | | - Rebecca Roach
- Queensland Department of Agriculture and Fisheries, Brisbane, Queensland, Australia
| | - Francesca Rotondo
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, United States of America
| | - Gail E. Ruhl
- Botany and Plant Pathology Department, Purdue University, West Lafayette, Indiana, United States of America
| | - Vou M. Shutt
- Department Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Plant Agriculture, Ridgetown Campus, University of Guelph, Ridgetown, Ontario, Canada
| | | | - Cheryl Trueman
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, United States of America
| | - Pamela D. Roberts
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
- Southwest Florida Research and Education Center, University of Florida, Immokalee, Florida, United States of America
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Gary E. Vallad
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
- Division of Entomology and Plant Pathology, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Erica M. Goss
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogen Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
7
|
Chowdhury G, Hoshiko Y, Okuno M, Kitahara K, Albert MJ, Miyoshi SI, Ogura Y, Dutta S, Ramamurthy T, Mukhopadhyay AK. Whole-genome-based characterization of Escherichia albertii strains isolated from paediatric diarrhoeal cases in Kolkata, India. Microb Genom 2025; 11:001363. [PMID: 40198110 PMCID: PMC11979293 DOI: 10.1099/mgen.0.001363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/17/2025] [Indexed: 04/10/2025] Open
Abstract
Escherichia albertii is a Gram-negative facultative anaerobic bacterium that causes diarrhoea in humans. This study shows the isolation of E. albertii from hospitalized paediatric diarrhoeal cases and genome-based characteristics with putative virulence factors and antimicrobial resistance. E. albertii isolates were identified by species-specific PCR, targeting the gene encoding cytolethal distending toxin (Ea-cdt). The genome of E. albertii was sequenced to identify (i) genes encoding virulence factors (ii) antibiotic resistance-encoding genes, including the mobile genetic elements and (iii) core gene-based phylogenetic relationships and pan-genome features. A total of 10 (1.2%) E. albertii isolates were isolated from 854 faecal samples, of which 6 (60%) were found as the sole pathogen and the remaining 4 (40%) were identified along with other pathogens, such as enteroaggregative Escherichia coli, rotavirus and adenovirus. Patients from whom E. albertii was isolated presented cholera-like diarrhoea, i.e. with watery stool (60%) with moderate dehydration (100%), fever (20%) and abdominal pain (20%). The antimicrobial susceptibility testing of E. albertii showed that most of the isolates were susceptible or reduced susceptible to most of the antibiotics except resistance to erythromycin (80%), tetracycline (50%), nalidixic acid (40%), ampicillin (40%), doxycycline (30%) and ceftriaxone (20%). In the whole-genome sequence, E. albertii isolates revealed several virulence-encoding genes, namely the intimin (eae, E. coli attaching and effacing), the cytolethal distending toxin type II subunit A (cdt-IIA), adhesion (paa, porcine attaching- and effacing-associated), non-LEE (locus of enterocyte effacement) encoded effector A (nleA) and antimicrobial resistance genes (ARGs) conferring resistance to tetracycline (tetA, tetR), sulphonamides (sul2), fluoroquinolones (qnrS) and beta-lactamases (bla CTX-M, blaTEM). The SNP-based phylogenetic analysis of 647 whole genomes of E. albertii isolates from the National Center for Biotechnology Information databases did not reveal any comparable clustering pattern based on the biological source and place of isolation. The genome of some of the E. albertii was closely related to those of the isolates from China and the United Kingdom. The PFGE patterns revealed that most of the E. albertii isolates were distinct clones. This study reports on the extensive genome analysis of diarrhoea-associated E. albertii harbouring multiple virulence and ARGs.
Collapse
Affiliation(s)
- Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
- Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Yuki Hoshiko
- Division of Microbiology, Department of Infectious Medicine, School of Medicine, Kurume University, Fukuoka, Japan
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, School of Medicine, Kurume University, Fukuoka, Japan
| | - Kei Kitahara
- Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - M John Albert
- Department of Microbiology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | - Shin-ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, School of Medicine, Kurume University, Fukuoka, Japan
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K. Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
8
|
Salamzade R, Kottapalli A, Kalan LR. skDER & CiDDER: two scalable approaches for microbial genome dereplication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.09.27.559801. [PMID: 38045253 PMCID: PMC10690176 DOI: 10.1101/2023.09.27.559801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
An abundance of microbial genomes have been sequenced in the past two decades. For fundamental comparative genomic investigations, where the goal is to determine the major gain and loss events shaping the pangenome of a species, it is often unnecessary and computationally onerous to include all available genomes in studies. In addition, over-representation of specific lineages due to sampling and sequencing bias can have undesired effects on evolutionary analyses. To assist users with genomic dereplication, selecting a subset of representative genomes, for downstream comparative genomic investigations, we developed skDER & CiDDER (https://github.com/raufs/skDER). skDER combines recent advances to efficiently estimate average nucleotide identity (ANI) between thousands of microbial genomes with two efficient algorithms for genomic dereplication. Further, CiDDER implements an approach whereby protein clusters are determined across all genomes and genomes are iteratively selected as representatives until a user-defined saturation of the total protein space is achieved. To support ease of use, several auxiliary functionalities are implemented within the two programs, including arguments to: (i) test the number of representative genomes resulting from a variety of clustering parameters, (ii) automate downloading of genomes belonging to a bacterial species or genus by name, (iii) cluster non-representative genomes to their closest representative genomes, and (iv) automatically filter predicted plasmids and phages prior to dereplication. We further assess the effects of filtering mobile genetic elements (MGEs) on ANI and alignment fraction (AF) estimates between pairs of genomes and find that MGEs tend to slightly deflate both metrics in one species.
Collapse
Affiliation(s)
- Rauf Salamzade
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Aamuktha Kottapalli
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Lindsay R Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Jia C, Huang C, Zhou H, Zhou X, Wang Z, Siddique A, Kang X, Cao Q, Huang Y, He F, Li Y, Yue M. Avian-specific Salmonella transition to endemicity is accompanied by localized resistome and mobilome interaction. eLife 2025; 13:RP101241. [PMID: 40035424 PMCID: PMC11879110 DOI: 10.7554/elife.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Bacterial regional demonstration after global dissemination is an essential pathway for selecting distinct finesses. However, the evolution of the resistome during the transition to endemicity remains unaddressed. Using the most comprehensive whole-genome sequencing dataset of Salmonella enterica serovar Gallinarum (S. Gallinarum) collected from 15 countries, including 45 newly recovered samples from two related local regions, we established the relationship among avian-specific pathogen genetic profiles and localization patterns. Initially, we revealed the international transmission and evolutionary history of S. Gallinarum to recent endemicity through phylogenetic analysis conducted using a spatiotemporal Bayesian framework. Our findings indicate that the independent acquisition of the resistome via the mobilome, primarily through plasmids and transposons, shapes a unique antimicrobial resistance profile among different lineages. Notably, the mobilome-resistome combination among distinct lineages exhibits a geographical-specific manner, further supporting a localized endemic mobilome-driven process. Collectively, this study elucidates resistome adaptation in the endemic transition of an avian-specific pathogen, likely driven by the localized farming style, and provides valuable insights for targeted interventions.
Collapse
Affiliation(s)
- Chenghao Jia
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
| | - Chenghu Huang
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
- Hainan Institute of Zhejiang UniversityNingboChina
| | - Haiyang Zhou
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
- Hainan Institute of Zhejiang UniversityNingboChina
| | - Xiao Zhou
- Ningbo Academy of Agricultural SciencesNingboChina
| | - Zining Wang
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
- Hainan Institute of Zhejiang UniversityNingboChina
| | - Abubakar Siddique
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
- Hainan Institute of Zhejiang UniversityNingboChina
| | - Xiamei Kang
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
| | - Qianzhe Cao
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
| | - Yingying Huang
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
- Hainan Institute of Zhejiang UniversityNingboChina
| | - Fang He
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech ParkZhejiangChina
| | - Yan Li
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
- Hainan Institute of Zhejiang UniversityNingboChina
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
- Hainan Institute of Zhejiang UniversityNingboChina
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of SciencesHangzhouChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhouChina
| |
Collapse
|
10
|
Cawthraw S, Wales A, Guzinski J, Trew J, Ring I, Huby T, Hussaini A, Petrovska L, Martelli F. Salmonella Infantis outbreak on six broiler units in Great Britain: investigation, epidemiology, and control. J Appl Microbiol 2025; 136:lxaf040. [PMID: 39987448 DOI: 10.1093/jambio/lxaf040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/06/2025] [Accepted: 02/20/2025] [Indexed: 02/24/2025]
Abstract
AIMS To describe the analysis, epidemiology, and control of six contemporaneous and linked outbreaks of Salmonella enterica subsp. enterica serovar Infantis on British broiler farms. Salmonella Infantis is a potentially multidrug-resistant foodborne zoonosis and can persistently colonize poultry flocks and farms. METHODS AND RESULTS Routine monitoring initially identified the organism, which was tracked to six farms associated with a single company. Extensive, repeat sampling identified widespread and, in some cases, persistent contamination. Salmonella Infantis was also isolated from three associated processing factories and catching crew equipment, but not from associated hatcheries and feed mills. Whole genome sequencing and resistance phenotyping revealed one strain was present in the processing plants and on five farms. However, on one of those farms, several highly genetically distinct strains were also detected, including one also found in one of the processing plants. The sixth farm had a strain that was genetically unrelated to strains collected from the other premises and which exhibited an extended spectrum beta-lactamase phenotype. Cleaning and disinfection were enhanced, and the organism was eventually cleared from all farms. CONCLUSIONS There were multiple incursions of varied strains, with a possible link to processing factories. Elimination of S. Infantis from premises can be challenging but achievable.
Collapse
Affiliation(s)
- Shaun Cawthraw
- Department of Bacteriology, Animal and Plant Health Agency (APHA-Weybridge), New Haw, Surrey KT15 3NB, United Kingdom
| | - Andrew Wales
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, United Kingdom
| | - Jaromir Guzinski
- Department of Bacteriology, Animal and Plant Health Agency (APHA-Weybridge), New Haw, Surrey KT15 3NB, United Kingdom
| | - Jahcub Trew
- Department of Bacteriology, Animal and Plant Health Agency (APHA-Weybridge), New Haw, Surrey KT15 3NB, United Kingdom
| | - Isaac Ring
- Department of Bacteriology, Animal and Plant Health Agency (APHA-Weybridge), New Haw, Surrey KT15 3NB, United Kingdom
| | - Tom Huby
- Department of Bacteriology, Animal and Plant Health Agency (APHA-Weybridge), New Haw, Surrey KT15 3NB, United Kingdom
| | - Arslan Hussaini
- Department of Bacteriology, Animal and Plant Health Agency (APHA-Weybridge), New Haw, Surrey KT15 3NB, United Kingdom
| | - Liljana Petrovska
- Gastrointestinal Infections & Food Safety (One Health) Division, UK Health Security Agency, London, NW9 5EQ, United Kingdom
| | - Francesca Martelli
- Department of Bacteriology, Animal and Plant Health Agency (APHA-Weybridge), New Haw, Surrey KT15 3NB, United Kingdom
| |
Collapse
|
11
|
Wang Z, Jiang Z, Cao Q, Jia C, Zhou H, Huang C, Huang L, Huang Y, Li Y, Yue M. A genomic and phenotypic investigation of pigeon-adaptive Salmonella. PLoS Pathog 2025; 21:e1012992. [PMID: 40096063 PMCID: PMC11957392 DOI: 10.1371/journal.ppat.1012992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/31/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
Salmonella, a significant threat to public safety, inflicts substantial economic losses on the poultry industry. The unique "parental feeding" breeding model of pigeon farms, against the "all-in & all-out" biosecurity strategy, makes them susceptible to Salmonella infections and subsequent outbreaks of pigeon paratyphoid. This study initially studied three pigeon paratyphoid outbreak incidents in Henan, China, in which 53 strains of pigeon-origin Salmonella Typhimurium (STM) were identified. Whole-genome sequencing (WGS) and antimicrobial-resistant profile analysis revealed that the three outbreaks were caused by distinct STM clones (ST128-DT2, ST19-DT99). Global phylogenetic analysis suggested that the United States is a possible origin, indicating a risk of intercontinental transmission via pigeon eggs. Further bacterial virulence and invasion assays, including in vitro and in vivo assays, revealed that pigeon-host-adaptive STM, compared to broad-host-range STM, carried fewer resistance genes, exhibited higher invasion indices and pseudogene levels, displayed a non-rdar (red dry and rough) phenotype, and had strong biofilm formation capability. Additionally, they showed reduced virulence and invasiveness in mice but a pigeon-adaptive feature in cogent models. The collective results support the host adaptation for pigeons among DT2 and DT99 phage-type isolates.
Collapse
Affiliation(s)
- Zining Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering and State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zenghai Jiang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Qianzhe Cao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chenghao Jia
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Haiyang Zhou
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Chenghu Huang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Linlin Huang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yingying Huang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Yan Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Min Yue
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Zheng X, Xiang Y, Li X, Du X, Wang Y, Tian S, Xue J, Huang Y, Liu H, Wang Q, Liu H, Wang H, Wang C, Yang M, Jia H, Wang L, Xu X, Song L, Song H, Qiu S. An MDR Salmonella Enteritidis sublineage associated with gastroenteritis outbreaks and invasive disease in China. J Infect 2025; 90:106421. [PMID: 39855357 DOI: 10.1016/j.jinf.2025.106421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
OBJECTIVES Salmonella enterica serovar Enteritidis (S. Enteritidis) is a commonly reported pathogen which adapts to multiple hosts and causes critical disease burden at a global level. Here, we investigated a recently derived epidemic sublineage with multidrug resistance (MDR), which have caused extended time-period and cross-regional gastroenteritis outbreaks and even invasive nontyphoidal Salmonella disease (iNTS) in China. METHODS Whole-genome sequencing and antimicrobial resistance (AMR) testing were applied to 729 Chinese S. Enteritidis isolates in relation to gastroenteritis outbreaks, gastrointestinal-sporadic and iNTS infections, spanning 28 years (1994-2021) in China. Phylogenomic analysis was performed to explore the population structure and evolutionary history of the Chinese isolates within a global context. Molecular investigations of AMR genes, virulence factors, mobile genetic elements and pan-genomes were also performed. RESULTS The Chinese S. Enteritidis collections exhibited a high level of multidrug resistance (MDR), including high resistance to nalidixic acid (97.67%). Notably, the multidrug resistance rate of iNTS strains has significantly increased over the past decade. Phylogenomic analysis showed that the majority of the Chinese isolates (98.63%) were distributed in the global pandemic lineage L1, while the other lineages were highly continent-specific. Particularly, the Chinese isolates were predominantly distributed in sublineages L1.2 (37.45%) and L1.3 (59.26%), forming two main Chinese clades (MCC1&2). The most recent common ancestor of MCC1&2 dated back to 1944 and 2004, respectively. The lineage L1, especially MCC1&2, harbored the most amount of AMR determinants and virulence genes, which was mainly due to the presence of a hybrid virulence-resistance plasmid and coexistence of different types of AMR plasmids in S. Enteritidis. CONCLUSIONS S. Enteritidis has evolved unique clonal clusters, MCC1&2, with critical MDR in China, which phylogenetically constitute an extension of the globally epidemic lineage and were characterized by distinct genetic traits. These clades have induced extensive outbreaks of gastroenteritis and serious cases of iNTS in China, underscoring the pressing nature and severity of this public health crisis. Implementing the One-Health strategy, longstanding routine surveillance and further genomic epidemiological studies are urgently required to capture epidemics, monitor changes in bacterial populations and determine the consequent risk to global public health.
Collapse
Affiliation(s)
- Xiaoyi Zheng
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ying Xiang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Xiaoying Li
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Xinying Du
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Yule Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Sai Tian
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Jingzhuang Xue
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Ying Huang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Hongbo Liu
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Qi Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Hongbo Liu
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Hui Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Chao Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Mingjuan Yang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Huiqun Jia
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Ligui Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Xuebin Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Hongbin Song
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China.
| | - Shaofu Qiu
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China.
| |
Collapse
|
13
|
Huang J, Alzahrani KO, Zhou G, Alsalman SA, Alsufyani AT, Alotaibi NM, Al-Akeel SI, Alajlan AA, Mukhtar LE, Almansour AM, Al-Reshoodi FM, Al Rashidy MS, Alhussain S, Althobaiti A, Almusa M, Almadi T, Almutairi N, Alzauhair A, Alhadlaq MA, Alshodokhi E, Alhamed A, AlHarbi AL, Banzhaf M, Milner M, AlArawi M, Alajel SM, Moradigaravand D. Genomic survey of multidrug resistant Salmonella enterica serovar Minnesota clones in chicken products. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:10. [PMID: 39934234 DOI: 10.1038/s44259-025-00077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025]
Abstract
Salmonella enterica serovar Minnesota (S. Minnesota) is an emerging serovar that persists within poultry supply chains, potentially causing outbreaks in humans. Understanding its population genomics is crucial for designing preventive measures. We performed a genomic surveillance study of S. Minnesota by analyzing 259 isolates from poultry in Saudi Arabia. Whole-genome sequencing data for these isolates were analyzed to characterize emerging clones and the genetic factors underlying antimicrobial resistance and virulence. We compared the isolates to all available global genomes of S. Minnesota. Our results revealed the emergence of four clones, three of which were mixed with global strains. These clones exhibited higher levels of antimicrobial resistance and virulence due to the acquisition of multiple plasmids, particularly IncC plasmids, carrying resistance and virulence genes. IncC plasmids underwent genomic rearrangements, presenting diverse configurations of resistance genes. Our findings demonstrate the emergence and persistence of pathogenic and multidrug-resistant S. Minnesota clones.
Collapse
Affiliation(s)
- Jiayi Huang
- Laboratory of Infectious Disease Epidemiology, KAUST Center of Excellence for Smart Health and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | | | - Ge Zhou
- Laboratory of Infectious Disease Epidemiology, KAUST Center of Excellence for Smart Health and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Shahad A Alsalman
- Saudi Food and Drug Authority (SFDA), Riyadh, Kingdom of Saudi Arabia
| | - Amani T Alsufyani
- Saudi Food and Drug Authority (SFDA), Riyadh, Kingdom of Saudi Arabia
| | - Nourah M Alotaibi
- Saudi Food and Drug Authority (SFDA), Riyadh, Kingdom of Saudi Arabia
| | - Saleh I Al-Akeel
- Saudi Food and Drug Authority (SFDA), Riyadh, Kingdom of Saudi Arabia
| | | | - Lenah E Mukhtar
- Saudi Food and Drug Authority (SFDA), Riyadh, Kingdom of Saudi Arabia
| | - Ayidh M Almansour
- Saudi Food and Drug Authority (SFDA), Riyadh, Kingdom of Saudi Arabia
| | | | | | | | - Afnan Althobaiti
- Saudi Food and Drug Authority (SFDA), Riyadh, Kingdom of Saudi Arabia
| | - Manal Almusa
- Saudi Food and Drug Authority (SFDA), Riyadh, Kingdom of Saudi Arabia
| | - Talah Almadi
- Saudi Food and Drug Authority (SFDA), Riyadh, Kingdom of Saudi Arabia
| | - Nouf Almutairi
- Saudi Food and Drug Authority (SFDA), Riyadh, Kingdom of Saudi Arabia
| | | | | | - Elaf Alshodokhi
- Saudi Food and Drug Authority (SFDA), Riyadh, Kingdom of Saudi Arabia
| | - Ashwag Alhamed
- Saudi Food and Drug Authority (SFDA), Riyadh, Kingdom of Saudi Arabia
| | | | - Manuel Banzhaf
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mathew Milner
- Laboratory of Infectious Disease Epidemiology, KAUST Center of Excellence for Smart Health and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Mohammad AlArawi
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Sulaiman M Alajel
- Saudi Food and Drug Authority (SFDA), Riyadh, Kingdom of Saudi Arabia.
| | - Danesh Moradigaravand
- Laboratory of Infectious Disease Epidemiology, KAUST Center of Excellence for Smart Health and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
14
|
Frascarelli G, Galise TR, D'Agostino N, Cafasso D, Cozzolino S, Cortinovis G, Sparvoli F, Bellucci E, Di Vittori V, Nanni L, Pieri A, Rossato M, Vincenzi L, Benazzo A, Delledonne M, Bitocchi E, Papa R. The evolutionary history of the common bean (Phaseolus vulgaris) revealed by chloroplast and nuclear genomes analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:47. [PMID: 39920343 PMCID: PMC11805837 DOI: 10.1007/s00122-025-04832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025]
Abstract
KEY MESSAGE The origin of common bean was investigated throughout chloroplast and nuclear WGS data considering recombination events. Our results support the Mesoamerican origin of common bean. The remarkable evolutionary history of the common bean (Phaseolus vulgaris L.) has led to the emergence of three wild main gene pools corresponding to three different eco-geographical areas: Mesoamerica, the Andes and northern Peru/Ecuador. Recent works proposed novel scenarios, and the northern Peru/Ecuador population has been described as a new species called P. debouckii, rekindling the debate about the origin of P. vulgaris. Here we shed light on the origin of P. vulgaris by analyzing the chloroplast and nuclear genomes of a large varietal collection representing the entire geographical distribution of wild forms including a large collection of Mesoamerican and Andean individuals. We assembled 37 chloroplast genomes de novo and used them to construct a time frame for the divergence of the genotypes under investigation, revealing that the separation of the Mesoamerican and northern Peru/Ecuador gene pools occurred ~ 0.15 Mya. Our results clearly support a Mesoamerican origin of the common bean and reject the recent P. deboukii hypothesis. These results also imply two independent migratory events from Mesoamerica to the North and South Andes, probably facilitated by birds. Our work represents a paradigmatic example of the importance of taking into account the genetic rearrangements produced by recombination when investigating phylogeny and of the analysis of wild forms when studying the evolutionary history of a crop species.
Collapse
Affiliation(s)
- Giulia Frascarelli
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131, Ancona, Italy
| | - Teresa R Galise
- Department of Biology, University Federico II of Naples, Complesso Universitario Monte Sant'Angelo, Naples, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Naples, Italy
| | - Donata Cafasso
- Department of Biology, University Federico II of Naples, Complesso Universitario Monte Sant'Angelo, Naples, Italy
| | - Salvatore Cozzolino
- Department of Biology, University Federico II of Naples, Complesso Universitario Monte Sant'Angelo, Naples, Italy
| | - Gaia Cortinovis
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Sparvoli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133, Milan, Italy
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131, Ancona, Italy
| | - Valerio Di Vittori
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131, Ancona, Italy
| | - Laura Nanni
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131, Ancona, Italy
| | - Alice Pieri
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131, Ancona, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Leonardo Vincenzi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44100, Ferrara, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
15
|
Payne CJ, Phuong VH, Phuoc NN, Dung TT, Phuoc LH, Crumlish M. Genomic diversity and evolutionary patterns of Edwardsiella ictaluri affecting farmed striped catfish ( Pangasianodon hypophthalmus) in Vietnam over 20 years. Microb Genom 2025; 11:001368. [PMID: 39969283 PMCID: PMC11840174 DOI: 10.1099/mgen.0.001368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Edwardsiella ictaluri continues to pose a significant risk to the health and production of striped catfish (Pangasianodon hypophthalmus) in Vietnam. Whilst recent advances in genomic sequencing provide an insight into the global genomic diversity of this important fish pathogen, genome-wide analysis of Vietnamese isolates recovered over time is lacking. In this study, we used a whole-genome sequencing approach to compare the genomes of 31 E. ictaluri isolates recovered over a 20-year period (2001-2021) and performed comparative genomic analysis to explore temporal changes in genome diversity, population structure and mechanisms driving pathogenesis and antimicrobial resistance. Our findings revealed an open pan-genome with 4148 genes and a core genome (3 060 genes) accounting for over two-thirds of the genome. Moreover, we found the genomes sequenced to classify into two distinct lineages and estimated the ancestral origin of these lineages within Vietnam to date back to the 1950s. Plasmids were highly prevalent in Vietnamese E. ictaluri, with isolates harbouring up to four plasmids within their genome. Further, a diverse mobilome was observed with nine different plasmid types detected across the genome collection. Exploration of putative plasmids revealed a diverse set of antimicrobial resistance genes (ARGs) against key antibiotics used in Vietnamese aquaculture and virulence genes associated with protein secretion systems. Correlation analysis revealed the total number of ARGs detected in genomes to increase with isolate recovery time. Whilst the number of virulence genes remained relatively stable, temporal variation was noted in several virulence factors related to motility and immune system modulation. Findings from this study highlight the need for continued genomic surveillance to monitor changes in antimicrobial resistance and pathogenesis, to help inform the development of disease control and management strategies.
Collapse
Affiliation(s)
- Christopher J. Payne
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Vo Hong Phuong
- Southern Monitoring Center for Aquaculture Environment and Epidemic, Research Institute for Aquaculture No. 2, Ho Chi Minh City, Vietnam
| | - Nguyen Ngoc Phuoc
- Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Tu Thanh Dung
- Faculty of Aquatic Pathology, College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - Le Hong Phuoc
- Southern Monitoring Center for Aquaculture Environment and Epidemic, Research Institute for Aquaculture No. 2, Ho Chi Minh City, Vietnam
| | - Margaret Crumlish
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
16
|
Matsumara Y, Peirano G, Kock M, Pitout JDD. Genomic Epidemiology of Pseudomonas aeruginosa Sequence Type 111. Eur J Clin Microbiol Infect Dis 2025; 44:375-381. [PMID: 39658728 DOI: 10.1007/s10096-024-05010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024]
Abstract
PURPOSE Pseudomonas aeruginosa ST111 is a global multidrug resistant (MDR) high-risk clone and comprehensive data about its molecular epidemiology is limited in Canada. Comprehensive data about the evolution of ST111 clades is limited. We characterized a Canadian collection of ST111 causing bloodstream infections and investigated the genomic relationship between Canadian and global ST111. MATERIAL AND METHODS We used long and short read WGS to characterize Canadian ST111 (n = 10 from 2010-18). We performed phylogenetic analysis on a global collection of ST111 (n = 969) and investigated the evolutionary history of clades using BEAST. RESULTS ST111 belonged to 3 clades (A, B, C) and two subclades (C1, C2). ST111-A was the ancestral clade while clades B, C1 and C2 emerged during the 1700s and 1800s. ST111-C2 dominated the global ST111 population. Serotype switching from O4 to O12 and the acquisition of Tn21, gyrA_T83I, parC_S87L, In59 with blaVIM-2 and aacA29 over time, were important in the evolution of ST111-C2. The Calgary ST111 strains consisted of a diverse collection that belonged to ST111-A (O4), ST111-C1 (O4) and ST111-C2 (O12) with different transposon structures. CONCLUSIONS We provided details on the emergence and evolution of different ST111 clades over time and highlighted the roles of serotype switching and the acquisition of certain AMR determinants and transposon structures in the evolution of ST111-C2.
Collapse
Affiliation(s)
| | - Gisele Peirano
- Cummings School of Medicine, University of Calgary, #9, 3535 Research Road NW, Calgary, AB, Canada
- Alberta Precision Laboratories, Calgary, AB, Canada
| | - Marleen Kock
- University of Pretoria, Pretoria, Gauteng, South Africa
| | - Johann D D Pitout
- Cummings School of Medicine, University of Calgary, #9, 3535 Research Road NW, Calgary, AB, Canada.
- Alberta Precision Laboratories, Calgary, AB, Canada.
- University of Pretoria, Pretoria, Gauteng, South Africa.
| |
Collapse
|
17
|
Morey-León G, Mejía-Ponce PM, Fernández-Cadena JC, García-Moreira E, Andrade-Molina D, Licona-Cassani C, Fresia P, Berná L. Global epidemiology of Mycobacterium tuberculosis lineage 4 insights from Ecuadorian genomic data. Sci Rep 2025; 15:3823. [PMID: 39885182 PMCID: PMC11782492 DOI: 10.1038/s41598-025-86079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025] Open
Abstract
Tuberculosis is a global public health concern, and understanding Mycobacterium tuberculosis transmission routes and genetic diversity of M. tuberculosis is crucial for outbreak control. This study aimed to explore the genomic epidemiology and genetic diversity of M. tuberculosis in Ecuador by analyzing 88 local isolates and 415 public genomes from 19 countries within the Euro-American lineage (L4). Our results revealed significant genomic diversity among the isolates, particularly in the genes related to protein processing, carbohydrate metabolism, lipid metabolism, and xenobiotic biodegradation and metabolism. The population structure analysis showed that sub-lineages 4.3.2/3 (35.4%), 4.1.2.1 (22.7%), 4.4.1 (12.7%), and 4.1.1. (10.7%) were the most prevalent. Phylogenetic and transmission network analyses suggest that these isolates circulating within Ecuador share genetic ties with isolates from other continents, implying historical and ongoing intercontinental transmission events. Our findings underscore the importance of integrating genomic data into public health strategies for tuberculosis control and suggest that enhanced genomic surveillance is essential for understanding and mitigating the global spread of M. tuberculosis. This study provides a comprehensive genomic framework for future epidemiological investigations and control measures targeting M. tuberculosis L4 in Ecuador.
Collapse
Affiliation(s)
- Gabriel Morey-León
- Facultad de Ciencias de la Salud, Universidad Espíritu Santo, Samborondón, Ecuador.
- Universidad de la República, Montevideo, Uruguay.
- Laboratorio de Ciencias Ómicas, Universidad Espíritu Santo, Samborondón, Ecuador.
| | - Paulina M Mejía-Ponce
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | - Juan Carlos Fernández-Cadena
- Laboratorio de Ciencias Ómicas, Universidad Espíritu Santo, Samborondón, Ecuador
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| | | | - Derly Andrade-Molina
- Facultad de Ciencias de la Salud, Universidad Espíritu Santo, Samborondón, Ecuador
- Laboratorio de Ciencias Ómicas, Universidad Espíritu Santo, Samborondón, Ecuador
| | - Cuauhtémoc Licona-Cassani
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | - Pablo Fresia
- Unidad Mixta Pasteur + INIA (UMPI), Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Luisa Berná
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay.
- Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
18
|
Du Z, Wang X, Duan Y, Liu S, Tian L, Song F, Cai W, Li H. Global Invasion History and Genomic Signatures of Adaptation of the Highly Invasive Sycamore Lace Bug. GENOMICS, PROTEOMICS & BIOINFORMATICS 2025; 22:qzae074. [PMID: 39400548 PMCID: PMC11993305 DOI: 10.1093/gpbjnl/qzae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Invasive species cause massive economic and ecological damages. Climate change has resulted in an unprecedented increase in the number and impact of invasive species; however, the mechanisms underlying these invasions are unclear. The sycamore lace bug, Corythucha ciliata, is a highly invasive species originating from North America and has expanded across the Northern Hemisphere since the 1960s. In this study, we assembled the C. ciliata genome using high-coverage Pacific Biosciences (PacBio), Illumina, and high-throughput chromosome conformation capture (Hi-C) sequencing. A total of 15,278 protein-coding genes were identified, and expansions of gene families with oxidoreductase and metabolic activities were observed. In-depth resequencing of 402 samples from native and nine invaded countries across three continents revealed 2.74 million single nucleotide polymorphisms. Two major invasion routes of C. ciliata were identified from North America to Europe and Japan, with a contact zone forming in East Asia. Genomic signatures of selection associated with invasion and long-term balancing selection in native ranges were identified. These genomic signatures overlapped with each other as well as with expanded genes, suggesting improvements in the oxidative stress and thermal tolerance of C. ciliata. These findings offer valuable insights into the genomic architecture and adaptive evolution underlying the invasive capabilities of species during rapid environmental changes.
Collapse
Affiliation(s)
- Zhenyong Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuan Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shanlin Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
19
|
Betancourt-Resendes I, Pérez-Rodríguez R, Piller KR, Domínguez-Domínguez O. Phylogeography of the Mesa Silverside fish Chirostoma jordani (Woolman, 1894) throughout the Mexican Plateau. PeerJ 2024; 12:e18256. [PMID: 39677957 PMCID: PMC11646419 DOI: 10.7717/peerj.18256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/16/2024] [Indexed: 12/17/2024] Open
Abstract
Background Understanding the processes that influence distribution of organisms is a major goal in evolutionary biology. Speciation in freshwater fishes is mainly associated with the "island-like" model of evolution, in which the formation of land barriers between different hydrographic basins interrupts gene flow and promotes isolation. Freshwater fish therefore provide an excellent model system for macro- and micro-evolutionary studies. The Mesa Silverside, Chirostoma jordani, is one of the most widespread freshwater fish species in the Mexican Plateau, a geologically complex physiographic region with a long history of genesis, destruction and compartmentalization of hydrographic basins that has promoted the dispersal and isolation of freshwater fishes. Methods We used mitochondrial (Cytb and D-loop) and nuclear (first intron of the ribosomal protein S7) data and used phylogeographic and coalescent based methods to elucidate the evolutionary history of C. jordani throughout its distributional range on the Mexican Plateau. Results The results obtained in the present study revealed that C. jordani consists of two main genetic groups with geographical correspondence. Clade I occur exclusively in north-western basin and shows population structure. Clade II is widely distributed across the west, central and eastern basins without population structure. The split between these two main clades was estimated at 1.4 Mya. This cladogenetic event may be associated with the allopatric process promoted by the fragmentation and compartmentalization of hydrographic basins induced by the geological and climatic history of the Mexican Plateau.
Collapse
Affiliation(s)
- Isai Betancourt-Resendes
- CONAHCYT-Laboratorio de Ecología y Diversidad Faunística, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Querétaro, Mexico
- PIDCB, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
| | - Rodolfo Pérez-Rodríguez
- Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Kyle R. Piller
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, United States of America
| | - Omar Domínguez-Domínguez
- Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| |
Collapse
|
20
|
Li J, Huang F, Zhou Y, Huang T, Tong X, Zhang M, Chen J, Zhang Z, Du H, Liu Z, Zhou M, Xiahou Y, Ai H, Chen C, Huang L. Comprehensive lung microbial gene and genome catalogs assist the mechanism survey of Mesomycoplasma hyopneumoniae strains causing pig lung lesions. IMETA 2024; 3:e258. [PMID: 39742304 PMCID: PMC11683470 DOI: 10.1002/imt2.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025]
Abstract
Understanding the community structure of the lower respiratory tract microbiome is crucial for elucidating its roles in respiratory tract diseases. However, there are few studies about this topic due to the difficulty in obtaining microbial samples from both healthy and disease individuals. Here, using 744 high-depth metagenomic sequencing data of lower respiratory tract microbial samples from 675 well-phenotyped pigs, we constructed a lung microbial gene catalog containing the largest scale of 10,031,593 nonredundant genes to date, 44.8% of which are novel. We obtained 356 metagenome-assembled genomes (MAGs) which were further clustered into 256 species-level genome bins with 41.8% being first reported in the current databases. Based on these data sets and through integrated analysis of the isolation of the related bacterial strains, in vitro infection, and RNA sequencing, we identified and confirmed that Mesomycoplasma hyopneumoniae (M. hyopneumoniae) MAG_47 and its adhesion-related virulence factors (VFs) were associated with lung lesions in pigs. Differential expression levels of adhesion- and immunomodulation-related VFs likely determined the heterogenicity of adhesion and pathogenicity among M. hyopneumoniae strains. M. hyopneumoniae adhesion activated several pathways, including nuclear factor kappa-light-chain-enhancer of activated B, mitogen-activated protein kinase, cell apoptosis, T helper 1 and T helper 2 cell differentiation, tumor necrosis factor signaling, interleukin-6/janus kinase 2/signal transducer and activator of transcription signaling, and response to reactive oxygen species, leading to cilium loss, epithelial cell‒cell barrier disruption, and lung tissue lesions. Finally, we observed the similar phylogenetic compositions of the lung microbiome between humans with Mycoplasma pneumoniae and pigs infected with M. hyopneumoniae. The results provided important insights into pig lower respiratory tract microbiome and its relationship with lung health.
Collapse
Affiliation(s)
- Jingquan Li
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Fei Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Yunyan Zhou
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Tao Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Xinkai Tong
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Mingpeng Zhang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Jiaqi Chen
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Zhou Zhang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Huipeng Du
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Zifeng Liu
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Meng Zhou
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Yiwen Xiahou
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Huashui Ai
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Congying Chen
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Lusheng Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| |
Collapse
|
21
|
Thakur S, Baines SL, Sia CM, Valcanis M, Judd LM, Howden BP, Newton HJ, Ingle DJ. Genomic epidemiology and phenotypic characterisation of Salmonella enterica serovar Panama in Victoria, Australia. PLoS Negl Trop Dis 2024; 18:e0012666. [PMID: 39565816 PMCID: PMC11616866 DOI: 10.1371/journal.pntd.0012666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/04/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Salmonella enterica serovar Panama, a causative agent of non-typhoidal salmonellosis (NTS), is one of several serovars that causes invasive NTS disease (iNTS) in humans. S. Panama is an understudied pathogen, with its pathobiology poorly understood. It is a predominant iNTS serovar in Australia, a high-income country with high rates of salmonellosis, where S. Panama has been documented to have a high odds ratio (13.9-15.26) for causing iNTS. This study investigates the genomic epidemiology and antimicrobial resistance profiles of all S. Panama isolates recovered in Victoria, Australia, between 2000 and 2021. We examined the infection dynamics of S. Panama in seven isolates, representing the genetic diversity of the study population. Two sub-lineages, encompassed within a previously described Asian lineage, were identified. Multi-drug resistance (resistance to ≥3 drug classes) was detected in 46 (51.7%) Australian isolates. The plasmid-mediated colistin resistance gene, mcr1.1, was detected in one Australian S. Panama isolate, carried by an IncI plasmid previously reported in Salmonella and Escherichia coli isolates collected from poultry in South-East Asia. Examination of the intracellular replication dynamics of S. Panama isolates demonstrated diverse phenotypes. In THP-1 derived macrophages, despite low host cell uptake, S. Panama showed higher replication rates over time compared to S. enterica serovar Typhimurium. However, a causative genotype could not be identified to explain this observed phenotype. This study provides insights into the S. Panama isolates circulating in Australia over two-decades, finding that 78% were linked to international travel suggesting importation in Australia. It shows MDR was common in this iNTS serovar, and colistin resistance reported for the first time. It provides the first data on the host-pathogen interactions of S. Panama in Australia, which will aid our collective understanding of the pathobiology of S. Panama and iNTS serovars more broadly.
Collapse
Affiliation(s)
- Samriddhi Thakur
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Sarah L. Baines
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Cheryll M. Sia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Louise M. Judd
- Innovation Hub, Centre for Pathogen Genomics, University of Melbourne, Parkville, Victoria Australia
| | - Benjamin P. Howden
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
- Innovation Hub, Centre for Pathogen Genomics, University of Melbourne, Parkville, Victoria Australia
| | - Hayley J. Newton
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Danielle J. Ingle
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| |
Collapse
|
22
|
Zhang F, Li Z, Liu X, Li Z, Lei Z, Zhao J, Zhang Y, Wu Y, Yang X, Lu B. In-host intra- and inter-species transfer of bla KPC-2 and bla NDM-1 in Serratia marcescens and its local and global epidemiology. Int J Antimicrob Agents 2024; 64:107327. [PMID: 39245329 DOI: 10.1016/j.ijantimicag.2024.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVES The aim of this study was to investigate interspecies transfer of resistance gene blaNDM-1 and intraspecies transfer of resistance gene blaKPC-2 in Serratia marcescens, and explore the epidemical and evolutionary characteristics of carbapenemase-producing S. marcescens (CPSM) regionally and globally. METHODS Interspecies and intraspecies transfer of blaKPC-2- or blaNDM-1 were identified by antimicrobial susceptibility testing, plasmid conjugation and curing, discovery of transposable units (TUs), outer membrane vesicles (OMVs), qPCR, whole-genome sequencing (WGS) and bioinformatic analysis. The genomic evolution of CPSM strains was explored by cgSNP and maximum-likelihood phylogenetic tree. RESULTS CPSM S50079 strain, co-carrying blaKPC-2 and blaNDM-1 on one plasmid, was isolated from the blood of a patient with acute pancreatitis and could generate TUs carrying either blaKPC-2 or blaNDM-1. The interspecies transfer of blaNDM-1-carrying plasmid from Providencia rettgeri P50213, producing the identical blaNDM-1-carrying TUs, to S. marcescens S50079K, an S50079 variant via plasmid curing, was identified through blaNDM-1-harbouring plasmid conjugation and OMVs transfer. Moreover, the intraspecies transfer of blaKPC-2, mediated by IS26 from plasmid to chromosome in S50079, was also identified. In another patient, who underwent lung transplantation, interspecies transfer of blaNDM-1 carried by IncX3 plasmid was identified among S. marcescens and Citrobacter freundii as well as Enterobacter hormaechei via plasmid transfer. Furthermore, 11 CPSM from 349 non-repetitive S. marcescens strains were identified in the same hospital, and clonal dissemination, with carbapenemase evolution from blaKPC-2 to both blaKPC-2 and blaNDM-1, was found in the 8 CPSM across 4 years. Finally, the analysis of 236 global CPSM from 835 non-repetitive S. marcescens genomes, retrieved from the NCBI database, revealed long-term spread and evolution worldwide, and would cause the convergence of more carbapenemase genes. CONCLUSIONS Interspecies transfer of resistance gene blaNDM-1 and intraspecies transfer of resistance gene blaKPC-2 in CPSM were identified. Nosocomial and global dissemination of CPSM were revealed and more urgent surveillance was acquired.
Collapse
Affiliation(s)
- Feilong Zhang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China.; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihua Li
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China.; Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xinmeng Liu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Ziyao Li
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zichen Lei
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China.; China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China
| | - Jiankang Zhao
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Yulin Zhang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Yongli Wu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China.; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinrui Yang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China.; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Binghuai Lu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, PR China.; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.; Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.; China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China..
| |
Collapse
|
23
|
Urrutia C, Leyton-Carcaman B, Abanto Marin M. Contribution of the Mobilome to the Configuration of the Resistome of Corynebacterium striatum. Int J Mol Sci 2024; 25:10499. [PMID: 39408827 PMCID: PMC11477358 DOI: 10.3390/ijms251910499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Corynebacterium striatum, present in the microbiota of human skin and nasal mucosa, has recently emerged as a causative agent of hospital-acquired infections, notable for its resistance to multiple antimicrobials. Its mobilome comprises several mobile genetic elements, such as plasmids, transposons, insertion sequences and integrons, which contribute to the acquisition of antimicrobial resistance genes. This study analyzes the contribution of the C. striatum mobilome in the transfer and dissemination of resistance genes. In addition, integrative and conjugative elements (ICEs), essential in the dissemination of resistance genes between bacterial populations, whose role in C. striatum has not yet been studied, are examined. This study examined 365 C. striatum genomes obtained from the NCBI Pathogen Detection database. Phylogenetic and pangenome analyses were performed, the resistance profile of the bacterium was recognized, and mobile elements, including putative ICE, were detected. Bioinformatic analyses identified 20 antimicrobial resistance genes in this species, with the Ermx gene being the most predominant. Resistance genes were mainly associated with plasmid sequence regions and class 1 integrons. Although an ICE was detected, no resistance genes linked to this element were found. This study provided valuable information on the geographic spread and prevalence of outbreaks observed through phylogenetic and pangenome analyses, along with identifying antimicrobial resistance genes and mobile genetic elements that carry many of the resistance genes and may be the subject of future research and therapeutic approaches.
Collapse
Affiliation(s)
- Catherine Urrutia
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile; (C.U.); (B.L.-C.)
- Carrera de Biotecnología, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Benjamin Leyton-Carcaman
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile; (C.U.); (B.L.-C.)
- Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4811230, Chile
| | - Michel Abanto Marin
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile; (C.U.); (B.L.-C.)
| |
Collapse
|
24
|
Gong X, Cui Q, Zhang W, Shi Y, Zhang P, Zhang C, Hu G, Sahin O, Wang L, Shen Z, Fu M. Genomic insight into the diversity of Glaesserella parasuis isolates from 19 countries. mSphere 2024; 9:e0023124. [PMID: 39194201 PMCID: PMC11423579 DOI: 10.1128/msphere.00231-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Glaesserella parasuis is a commensal bacterial organism found in the upper respiratory tract of healthy pigs and the etiological agent of Glässer's disease, which causes severe economic losses in the swine industry. This study aimed to better understand the epidemiological characteristics of this opportunistic pathogen. We investigated the prevalence and distribution of sequence types (STs), serovars, antimicrobial resistance genes (ARGs), and potential virulence factors (VFs) in 764 G. parasuis isolates collected from diseased and healthy pigs from 19 countries, including China. Multilocus sequence typing showed a high degree of variation with 334 STs, of which 93 were not previously recognized. Phylogenetic analysis revealed two major clades distinguished by isolation year, source, country, and serovar. The dominant serovars of G. parasuis were serovars 4 (19.50%), 7 (15.97%), 5/12 (13.87%), and 13 (12.30%). Serovar 7 gradually became one of the dominant serovars in G. parasuis with more VFs and fewer ARGs. Serovars 4 and 5/12 were the most frequent serovars in diseased pigs, whereas serovars 2, 8, and 11 were predominant in healthy pigs. Serovars 7 and 13 possessed more VFs than the other serovars. This study provides novel insights into the global prevalence and epidemiology of G. parasuis and valuable clues for further investigation into the pathogenicity of G. parasuis, which will facilitate the development of effective vaccines.IMPORTANCEGlaesserella parasuis is a clinically important gram-negative opportunistic pathogen, which causes serious financial losses in swine industry on a global scale. No vaccine is known that provides cross-protection against all 15 serovars; furthermore, the correlation between serovar and virulence is largely unknown. This study provides a large number of sequenced strains in 19 countries and compares the genomic diversity of G. parasuis between diseased and healthy pigs. We found a slight change in the dominant serovar of G. parasuis in the world, with serovar 7 gradually emerging as one of the predominant serovars. The observed higher average number of VFs in this particular serovar strain challenges the previously held notion that serovar 7 is non-virulent, indicating a more complex virulence landscape than previously understood. Our analysis indicating that six ARGs [tet(B), sul2, aph(3')-Ia, aph (6)-Id, blaROB-1, and aph(3'')-Ib] are likely to be transmitted horizontally in their entirety. By analyzing VFs, we provided an improved understanding of the virulence of G. parasuis, and these key findings suggest that vaccine development will be challenging.
Collapse
Affiliation(s)
- Xiaowei Gong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qingpo Cui
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yuqian Shi
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peng Zhang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chaoyang Zhang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Lu Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhangqi Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mengjiao Fu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Lin AL, Zou MM, Cao LJ, Hayashi F, Yang D, Liu XY. Synergistic effects of Pleistocene geological and climatic events on complex phylogeographic history of widespread sympatric species of Megaloptera in East Asia. Zool Res 2024; 45:1131-1146. [PMID: 39257376 PMCID: PMC11491776 DOI: 10.24272/j.issn.2095-8137.2024.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 09/12/2024] Open
Abstract
Unraveling the phylogeographic histories of species remains a key endeavor for comprehending the evolutionary processes contributing to the rich biodiversity and high endemism found in East Asia. In this study, we explored the phylogeographic patterns and demographic histories of three endemic fishfly and dobsonfly species ( Neochauliodes formosanus, Protohermes costalis, and Neoneuromus orientalis) belonging to the holometabolan order Megaloptera. These species, which share a broad and largely overlapping distribution, were analyzed using comprehensive mitogenomic data. Our findings revealed a consistent influence of vicariance on the population isolation of Neoc. formosanus and P. costalis between Hainan, Taiwan, and the East Asian mainland during the early Pleistocene, potentially hindering subsequent colonization of the later diverged Neon. orientalis to these islands. Additionally, we unveiled the dual function of the major mountain ranges in East Asia, serving both as barriers and conduits, in shaping the population structure of all three species. Notably, we demonstrated that these co-distributed species originated from Southwest, Southern, and eastern Central China, respectively, then subsequently migrated along multi-directional routes, leading to their sympatric distribution on the East Asian mainland. Furthermore, our results highlighted the significance of Pleistocene land bridges along the eastern coast of East Asia in facilitating the dispersal of mountain-dwelling insects with low dispersal ability. Overall, this study provides novel insight into the synergistic impact of Pleistocene geological and climatic events in shaping the diversity and distribution of aquatic insects in East Asia.
Collapse
Affiliation(s)
- Ai-Li Lin
- Department of Entomology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572025, China
- International Joint Laboratory of Taxonomy and Systematic Evolution of Insecta, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Ming-Ming Zou
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Li-Jun Cao
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fumio Hayashi
- Department of Biology, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ding Yang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xing-Yue Liu
- Department of Entomology, China Agricultural University, Beijing 100193, China. E-mail:
| |
Collapse
|
26
|
Li Q, Dai JJ, Chen SY, Sun RY, Wang D, Bai SC, Wang MG, Sun J, Liao XP, Liu YH, Fang LX. Prevalence and molecular characteristics of intestinal pathogenic Escherichia coli isolated from diarrheal pigs in Southern China. Vet Microbiol 2024; 296:110171. [PMID: 38981202 DOI: 10.1016/j.vetmic.2024.110171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
Intestinal pathogenic Escherichia coli (InPEC) is one of the most common causes of bacterial diarrhea in farm animals, including profuse neonatal diarrhea and post weaning diarrhea (PWD) in piglets. In this study, we investigated the prevalence of InPEC and associated primary virulence factors among 543 non-duplicate E. coli isolates from diarrheal pigs from 15 swine farms in southern China. Six major virulence genes associated with InPEC were identified among 69 (12.71 %) E. coli isolates and included est (6.62 %), K88 (4.79 %), elt (3.68 %), eae (1.47 %), stx2 (0.92 %) and F18 (0.55 %). Three pathotypes of InPEC were identified including ETEC (8.10 %), EPEC (1.29 %) and STEC/ETEC (0.92 %). In particular, K88 was only found in ETEC from breeding farms, whereas F18 was only present in STEC/ETEC hybrid from finishing farms. Whole genome sequence analysis of 37 E. coli isolates revealed that InPEC strains frequently co-carried multiple antibiotic resistance gene (ARG). est, elt and F18 were also found to co-locate with ARGs on a single IncFIB/IncFII plasmid. InPEC isolates from different pathotypes also possessed different profiles of virulence genes and antimicrobial resistance genes. Population structure analysis demonstrated that InPEC isolates from different pathotypes were highly heterogeneous whereas those of the same pathotype were extremely similar. Plasmid analysis revealed that K88 and/or est/elt were found on pGX18-2-like/pGX203-2-like and pGX203-1-like IncFII plasmids, while F18 and elt/est, as well as diverse ARGs were found to co-locate on IncFII/IncFIB plasmids with a non-typical backbone. Moreover, these key virulence genes were flanked by or adjacent to IS elements. Our findings indicated that both clonal expansion and horizontal spread of epidemic IncFII plasmids contributed to the prevalence of InPEC and the specific virulence genes (F4, F18, elt and est) in the tested swine farms.
Collapse
Affiliation(s)
- Qian Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jing-Jing Dai
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Shu-Yi Chen
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ruan-Yang Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Dong Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Shuan-Cheng Bai
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Min-Ge Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses Yangzhou University, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses Yangzhou University, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses Yangzhou University, China
| | - Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses Yangzhou University, China.
| |
Collapse
|
27
|
Parajuli A, Subedi A, Timilsina S, Minsavage GV, Kenyon L, Chen JR, Goss EM, Paret ML, Jones JB. Phenotypic and Genetic Diversity of Xanthomonads Isolated from Pepper ( Capsicum spp.) in Taiwan from 1989 to 2019. PHYTOPATHOLOGY 2024; 114:2033-2044. [PMID: 38809758 DOI: 10.1094/phyto-11-23-0449-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Bacterial spot caused by Xanthomonas spp. is an economically important disease of pepper causing significant yield losses in Taiwan. Monitoring the pathogen population on a continuous basis is necessary for developing disease management strategies. We analyzed a collection of xanthomonad strains isolated from pepper in Taiwan between 1989 and 2019. Among the sequenced genomes, 65 were identified as Xanthomonas euvesicatoria, and 10 were X. perforans. Thirty-five X. euvesicatoria and 10 X. perforans strains were copper tolerant, whereas only four X. euvesicatoria and none of the X. perforans strains were tolerant to streptomycin. Nine X. euvesicatoria strains were amylolytic, which is considered an unusual characteristic for X. euvesicatoria. Bayesian analysis of the population structure based on core gene single-nucleotide polymorphisms clustered the strains into five clusters for X. euvesicatoria and three clusters for X. perforans. One X. perforans cluster, designated as TP-2019, appears to be a novel genetic cluster based on core genes, accessory gene content, and effector profile. This knowledge of pathogen diversity with whole genomic information will be useful in future comparative studies and in improving breeding programs to develop disease-resistant cultivars and other disease management options.
Collapse
Affiliation(s)
- Apekshya Parajuli
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, U.S.A
| | - Aastha Subedi
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Sujan Timilsina
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Gerald V Minsavage
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Lawrence Kenyon
- World Vegetable Center, P.O. Box 42, Shanhua, Tainan 74199, Taiwan
| | - Jaw-Rong Chen
- World Vegetable Center, P.O. Box 42, Shanhua, Tainan 74199, Taiwan
| | - Erica M Goss
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, U.S.A
| | - Mathews L Paret
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, U.S.A
| | - Jeffrey B Jones
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
28
|
Timms VJ, Sim E, Pey K, Sintchenko V. Can genomics and meteorology predict outbreaks of legionellosis in urban settings? Appl Environ Microbiol 2024; 90:e0065824. [PMID: 39016616 PMCID: PMC11337837 DOI: 10.1128/aem.00658-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
Legionella pneumophila is ubiquitous and sporadically infects humans causing Legionnaire's disease (LD). Globally, reported cases of LD have risen fourfold from 2000 to 2014. In 2016, Sydney, Australia was the epicenter of an outbreak caused by L. pneumophila serogroup 1 (Lpsg1). Whole-genome sequencing was instrumental in identifying the causal clone which was found in multiple locations across the city. This study examined the epidemiology of Lpsg1 in an urban environment, assessed typing schemes to classify resident clones, and investigated the association between local climate variables and LD outbreaks. Of 223 local Lpsg1 isolates, we identified dominant clones with one clone isolated from patients in high frequency during outbreak investigations. The core genome multi-locus sequence typing scheme was the most reliable in identifying this Lpsg1 clone. While an increase in humidity and rainfall was found to coincide with a rise in LD cases, the incidence of the major L. pneumophila outbreak clone did not link to weather phenomena. These findings demonstrated the role of high-resolution typing and weather context assessment in determining source attribution for LD outbreaks in urban settings, particularly when clinical isolates remain scarce.IMPORTANCEWe investigated the genomic and meteorological influences of infections caused by Legionella pneumophila in Sydney, Australia. Our study contributes to a knowledge gap of factors that drive outbreaks of legionellosis compared to sporadic infections in urban settings. In such cases, clinical isolates can be rare, and thus, other data are needed to inform decision-making around control measures. The study revealed that core genome multi-locus sequence typing is a reliable and adaptable technique when investigating Lpsg1 outbreaks. In Sydney, the genomic profile of Lpsg1 was dominated by a single clone, which was linked to numerous community cases over a period of 40 years. Interestingly, the peak in legionellosis cases during Autumn was not associated with this prevalent outbreak clone. Incorporating meteorological data with Lpsg1 genomics can support risk assessment strategies for legionellosis in urban environments, and this approach may be relevant for other densely populated regions globally.
Collapse
Affiliation(s)
- Verlaine J. Timms
- Center for Infectious Diseases and Microbiology- Public Health, Westmead Hospital, Sydney, New South Wales, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, New South Wales, Australia
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - Eby Sim
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, New South Wales, Australia
- Center for Infectious Diseases and Microbiology- Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, New South Wales, Australia
| | - Keenan Pey
- Center for Infectious Diseases and Microbiology- Public Health, Westmead Hospital, Sydney, New South Wales, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Vitali Sintchenko
- Center for Infectious Diseases and Microbiology- Public Health, Westmead Hospital, Sydney, New South Wales, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, New South Wales, Australia
- Center for Infectious Diseases and Microbiology- Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Deng L, Lv LC, Tu J, Yue C, Bai Y, He X, Liao M, Liu JH. Clonal spread of blaNDM-1-carrying Salmonella enterica serovar Typhimurium clone ST34 and wide spread of IncHI2/ST3-blaNDM-5 plasmid in China. J Antimicrob Chemother 2024; 79:1900-1909. [PMID: 38943539 DOI: 10.1093/jac/dkae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/13/2024] [Indexed: 07/01/2024] Open
Abstract
OBJECTIVES To characterize blaNDM-carrying Salmonella recovered from a pig slaughterhouse. METHODS In this study, 46 environment samples were collected from a slaughterhouse in China, and screened for carbapenem-resistant Enterobacterales. WGS, antimicrobial susceptibility testing and conjugation experiments were carried out to identify the isolates' resistance phenotypes and genetic characteristics. The phylogenetic relatedness of the Salmonella isolates obtained in this study and Salmonella (ST34 and ST29) in GenBank was determined. RESULTS Two ST34 Salmonella Typhimurium and one ST29 Salmonella Stanley, recovered from three environmental samples (6.52%), were positive for blaNDM-1 and blaNDM-5, respectively. The two ST34 S. Typhimurium strains exhibited a close relationship (10-36 SNPs) with two human-derived blaNDM-1-bearing isolates from China (Hong Kong and Guangxi Province) and two blaNDM-negative ST34 Salmonella strains from the UK. The blaNDM-1 genes were located on IncHI2/ST3 plasmids. The capture of blaNDM-1 by the IncHI2/ST3 plasmid seems to be due to homologous recombination mediated by circular structures, as the genetic arrangements of the blaNDM-1 gene contain two IS26 elements of the same orientation. The blaNDM-5 gene was also carried by the IncHI2/ST3 plasmid, which shares highly similar structures with other blaNDM-5-bearing IncHI2/ST3 plasmids from other sources (fish, chicken, duck, human). CONCLUSIONS This is the first report of a blaNDM-5-carrying IncHI2/ST3 plasmid in Salmonella. The clonal spread of NDM-1-producing ST34 S. Typhimurium across human and animal-associated environments, and the widespread dissemination of epidemic blaNDM-5-carrying IncHI2/ST3 plasmids among Enterobacteriaceae in China indicate the potential of further dissemination of blaNDM among Salmonella, which poses a threat to public health.
Collapse
Affiliation(s)
- Limin Deng
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Lu-Chao Lv
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Jieying Tu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Chao Yue
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Yuman Bai
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Xiaotong He
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Min Liao
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Jian-Hua Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| |
Collapse
|
30
|
Blázquez M, Pérez-Vargas I, Garrido-Benavent I, Villar-dePablo M, Turégano Y, Frías-López C, Sánchez-Gracia A, de los Ríos A, Gasulla F, Pérez-Ortega S. Endless forms most frustrating: disentangling species boundaries in the Ramalina decipiens group ( Lecanoromycetes, Ascomycota), with the description of six new species and a key to the group. PERSOONIA 2024; 52:44-93. [PMID: 39161630 PMCID: PMC11319839 DOI: 10.3767/persoonia.2024.52.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/08/2023] [Accepted: 11/15/2023] [Indexed: 08/21/2024]
Abstract
Oceanic islands have been recognized as natural laboratories in which to study a great variety of evolutionary processes. One such process is evolutionary radiations, the diversification of a single ancestor into a number of species that inhabit different environments and differ in the traits that allow them to exploit those environments. The factors that drive evolutionary radiations have been studied for decades in charismatic organisms such as birds or lizards, but are lacking in lichen-forming fungi, despite recent reports of some lineages showing diversification patterns congruent with radiation. Here we propose the Ramalina decipiens group as a model system in which to carry out such studies. This group is currently thought to be comprised of five saxicolous species, all of them endemic to the Macaronesian region (the Azores, Madeira, Selvagens, Canary and Cape Verde islands). Three species are single-island endemics (a rare geographic distribution pattern in lichens), whereas two are widespread and show extreme morphological variation. The latter are suspected to harbor unrecognized species-level lineages. In order to use the Ramalina decipiens group as a model system it is necessary to resolve the group's phylogeny and to clarify its species boundaries. In this study we attempt to do so following an integrative taxonomy approach. We constructed a phylogenetic tree based on six molecular markers, four of which are newly developed and generated competing species hypotheses based on molecular (species discovery strategies based on both single locus and multilocus datasets) and phenotypic data (unsupervised clustering algorithms based on morphology, secondary chemistry and geographic origin). We found that taxonomic diversity in the Ramalina decipiens group has been highly underestimated in previous studies. In consequence, we describe six new species, most of them single-island endemics and provide a key to the group. Phylogenetic relationships among species have been reconstructed with almost full support which, coupled with the endemic character of the group, makes it an excellent system for the study of island radiations in lichen-forming fungi. Citation: Blázquez M, Pérez-Vargas I, Garrido-Benavent I, et al. 2024. Endless forms most frustrating: disentangling species boundaries in the Ramalina decipiens group (Lecanoromycetes, Ascomycota), with the description of six new species and a key to the group. Persoonia 52: 44-93. https://doi.org/10.3767/persoonia.2024.52.03 .
Collapse
Affiliation(s)
- M. Blázquez
- Department of Mycology, Real Jardín Botánico (CSIC), Madrid, Spain
| | - I. Pérez-Vargas
- Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - I. Garrido-Benavent
- Departament de Botànica i Geologia, Facultat de Ciències Biològiques, Universitat de València (UV), València, Spain
| | - M. Villar-dePablo
- Department of Microbial Ecology and Geomicrobiology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Y. Turégano
- Department of Mycology, Real Jardín Botánico (CSIC), Madrid, Spain
| | - C. Frías-López
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - A. Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - A. de los Ríos
- Department of Microbial Ecology and Geomicrobiology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - F. Gasulla
- Department of Life Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
| | - S. Pérez-Ortega
- Department of Mycology, Real Jardín Botánico (CSIC), Madrid, Spain
| |
Collapse
|
31
|
Chen J, Wu Y, Zhang G, Kang W, Wang T, Li J, Zhou M, Zhang L, Liu Y, Xu X, Jia X, Xu Y, Liu Y. Tracing the possible evolutionary trends of Morganella morganii: insights from molecular epidemiology and phylogenetic analysis. mSystems 2024; 9:e0030624. [PMID: 38884495 PMCID: PMC11264931 DOI: 10.1128/msystems.00306-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Morganella morganii, encompassing two subspecies, subsp. morganii and subsp. sibonii, is a common opportunistic pathogen, notable for intrinsic resistance to multiple antimicrobial agents. Despite its clinical significance, research into the potential evolutionary dynamics of M. morganii remains limited. This study involved the analysis of genome sequences from 431 M. morganii isolates, comprising 206 isolates that cause host infections, obtained from this study and 225 from the NCBI genome data sets. A diverse array of antimicrobial resistance genes (ARGs) was identified in M. morganii isolates, including mcr-1, tet(X4), tmexCD-toprJ, and various carbapenemase genes. In addition, a novel blaKPC-2-bearing plasmid with demonstrated conjugative capability was discovered in M. morganii. The majority of virulence-related genes (VRGs), except for the hlyCABD gene cluster, were found in almost all M. morganii. Three novel genospecies of M. morganii were identified, designated as M. chanii, M. variant1, and M. variant2. Compared to M. sibonii, M. chanii genospecies possessed a greater number of flagellar-related genes, typically located within mobile genetic elements (MGEs), suggesting potential for better environmental adaptability. Phylogenetic analysis further disclosed that M. morganii was divided into 12 sequence clusters (SCs). Particularly, SC9 harbored an elevated abundance of ARGs and VRGs, mainly toxin-related genes, and was associated with a higher presence of MGEs compared to non-SC9 strains. The collective findings suggest that M. morganii undergoes evolution driven by the influence of MGEs, thereby significantly enhancing its adaptability to selective pressures of environmental changes and clinical antimicrobial agents.IMPORTANCEThe growing clinical significance of Morganella morganii arises from its abundant virulence factors and antimicrobial resistance genes, resulting in elevated infection rates and increased clinical scrutiny. However, research on the molecular epidemiology and evolutionary trends of M. morganii has been scarce. Our study established a list of virulence-related genes (VRGs) for M. morganii and conducted a large-scale epidemiological investigation into these VRGs. Based on genomic classification, three novel genotypes of M. morganii were identified, representing evolutionary adaptations and responses to environmental challenges. Furthermore, we discovered the emergence of a sequence cluster enriched with antimicrobial resistance genes, VRGs, and mobile genetic elements, attributed to the selective pressure of antimicrobial agents. In addition, we identified a novel conjugative plasmid harboring the blaKPC-2 gene. These findings hold significance in monitoring and comprehending the epidemiology of M. morganii.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Wu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ge Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Kang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tong Wang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin Li
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Menglan Zhou
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Liu
- Department of Clinical Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuesong Xu
- Department of Clinical Laboratory, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xinmiao Jia
- Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingchun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yali Liu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Xiang Y, Zhu K, Min K, Zhang Y, Liu J, Liu K, Han Y, Li X, Du X, Wang X, Huang Y, Li X, Peng Y, Yang C, Liu H, Liu H, Li X, Wang H, Wang C, Wang Q, Jia H, Yang M, Wang L, Wu Y, Cui Y, Chen F, Yang H, Baker S, Xu X, Yang J, Song H, Qiu S. Characterization of a Salmonella enterica serovar Typhimurium lineage with rough colony morphology and multidrug resistance. Nat Commun 2024; 15:6123. [PMID: 39033143 PMCID: PMC11271444 DOI: 10.1038/s41467-024-50331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a major cause of salmonellosis, and the emergence of multidrug-resistant pathovariants has become a growing concern. Here, we investigate a distinct rough colony variant exhibiting a strong biofilm-forming ability isolated in China. Whole-genome sequencing on 2,212 Chinese isolates and 1,739 publicly available genomes reveals the population structure and evolutionary history of the rough colony variants. Characterized by macro, red, dry, and rough (mrdar) colonies, these variants demonstrate enhanced biofilm formation at 28 °C and 37 °C compared to typical rdar colonies. The mrdar variants exhibit extensive multidrug resistance, with significantly higher resistance to at least five classes of antimicrobial agents compared to non-mrdar variants. This resistance is primarily conferred by an IncHI2 plasmid harboring 19 antimicrobial resistance genes. Phylogenomic analysis divides the global collections into six lineages. The majority of mrdar variants belong to sublineage L6.5, which originated from Chinese smooth colony strains and possibly emerged circa 1977. Among the mrdar variants, upregulation of the csgDEFG operons is observed, probably due to a distinct point mutation (-44G > T) in the csgD gene promoter. Pangenome and genome-wide association analyses identify 87 specific accessory genes and 72 distinct single nucleotide polymorphisms associated with the mrdar morphotype.
Collapse
Affiliation(s)
- Ying Xiang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Kunpeng Zhu
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
- Kaifeng Center for Disease Control and Prevention, Kaifeng, China
| | - Kaiyuan Min
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yaowen Zhang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
- Daxing Center for Disease Control and Prevention, Beijing, China
| | - Jiangfeng Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Kangkang Liu
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Yiran Han
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Xinge Li
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Xinying Du
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Xin Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Ying Huang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Xinping Li
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Yuqian Peng
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Chaojie Yang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Hongbo Liu
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Hongbo Liu
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Xiaoying Li
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Hui Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Chao Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Qi Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Huiqun Jia
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Mingjuan Yang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Ligui Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Stephen Baker
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Xuebin Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| | - Juntao Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Hongbin Song
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China.
| | - Shaofu Qiu
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China.
| |
Collapse
|
33
|
White RT, Bakker S, Burton M, Castro ML, Couldrey C, Dyet K, Eustace A, Harland C, Hutton S, Macartney-Coxson D, Tarring C, Velasco C, Voss EM, Williamson J, Bloomfield M. Rapid identification and subsequent contextualization of an outbreak of methicillin-resistant Staphylococcus aureus in a neonatal intensive care unit using nanopore sequencing. Microb Genom 2024; 10:001273. [PMID: 38967541 PMCID: PMC11316549 DOI: 10.1099/mgen.0.001273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
Outbreaks of methicillin-resistant Staphylococcus aureus (MRSA) are well described in the neonatal intensive care unit (NICU) setting. Genomics has revolutionized the investigation of such outbreaks; however, to date, this has largely been completed retrospectively and has typically relied on short-read platforms. In 2022, our laboratory established a prospective genomic surveillance system using Oxford Nanopore Technologies sequencing for rapid outbreak detection. Herein, using this system, we describe the detection and control of an outbreak of sequence-type (ST)97 MRSA in our NICU. The outbreak was identified 13 days after the first MRSA-positive culture and at a point where there were only two known cases. Ward screening rapidly defined the extent of the outbreak, with six other infants found to be colonized. There was minimal transmission once the outbreak had been detected and appropriate infection control measures had been instituted; only two further ST97 cases were detected, along with three unrelated non-ST97 MRSA cases. To contextualize the outbreak, core-genome single-nucleotide variants were identified for phylogenetic analysis after de novo assembly of nanopore data. Comparisons with global (n=45) and national surveillance (n=35) ST97 genomes revealed the stepwise evolution of methicillin resistance within this ST97 subset. A distinct cluster comprising nine of the ten ST97-IVa genomes from the NICU was identified, with strains from 2020 to 2022 national surveillance serving as outgroups to this cluster. One ST97-IVa genome presumed to be part of the outbreak formed an outgroup and was retrospectively excluded. A second phylogeny was created using Illumina sequencing, which considerably reduced the branch lengths of the NICU isolates on the phylogenetic tree. However, the overall tree topology and conclusions were unchanged, with the exception of the NICU outbreak cluster, where differences in branch lengths were observed. This analysis demonstrated the ability of a nanopore-only prospective genomic surveillance system to rapidly identify and contextualize an outbreak of MRSA in a NICU.
Collapse
Affiliation(s)
- Rhys T. White
- Institute of Environmental Science and Research, Health Group, Porirua 5022, New Zealand
| | - Sarah Bakker
- Institute of Environmental Science and Research, Health Group, Porirua 5022, New Zealand
| | - Megan Burton
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington 6021, New Zealand
| | - M. Leticia Castro
- Institute of Environmental Science and Research, Health Group, Porirua 5022, New Zealand
| | - Christine Couldrey
- Livestock Improvement Corporation, Research and Development, Newstead 3286, New Zealand
| | - Kristin Dyet
- Institute of Environmental Science and Research, Health Group, Porirua 5022, New Zealand
| | - Alexandra Eustace
- Institute of Environmental Science and Research, Health Group, Porirua 5022, New Zealand
| | - Chad Harland
- Livestock Improvement Corporation, Research and Development, Newstead 3286, New Zealand
| | - Samantha Hutton
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington 6021, New Zealand
| | - Donia Macartney-Coxson
- Institute of Environmental Science and Research, Health Group, Porirua 5022, New Zealand
| | - Claire Tarring
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington 6021, New Zealand
| | - Charles Velasco
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington 6021, New Zealand
| | - Emma M. Voss
- Livestock Improvement Corporation, Research and Development, Newstead 3286, New Zealand
- University of Otago, Department of Microbiology and Immunology, Dunedin 9016, New Zealand
| | - John Williamson
- University of Otago, Department of Microbiology and Immunology, Dunedin 9016, New Zealand
| | - Max Bloomfield
- Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington 6021, New Zealand
- Te Whatu Ora/Health New Zealand, Infection Prevention and Control, Capital, Coast & Hutt Valley, Wellington 6021, New Zealand
| |
Collapse
|
34
|
Xu Y, Zheng Z, Sun R, Ye L, Chan EWC, Chen S. Epidemiological and genetic characterization of multidrug-resistant non-O1 and non-O139 Vibrio cholerae from food in southern China. Int J Food Microbiol 2024; 418:110734. [PMID: 38759293 DOI: 10.1016/j.ijfoodmicro.2024.110734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
This study reports a comprehensive epidemiological and genetic analysis of V. cholerae strains, specifically non-O1/non-O139 serogroups, isolated from animal-derived food samples in Guangdong province from 2015 to 2019. A total of 21 V. cholerae strains were obtained, which exhibited high resistance rates for nalidixic acid (57.14 %, 12/21), ampicillin (33.33 %, 7/21), and ciprofloxacin (19.05 %, 4/21). The quinolone resistance-related gene, qnrVC, was prevalent in 80.95 % (17/21) of the isolates. Additionally, chromosomally mediated quinolone-resistance mutations, including mutations in GyrA at position 83 (S83I) and ParC at position 85 (S85L), were detected in 47.62 % of the isolates. The combination of target mutation and qnrVC genes was shown to mediate resistance or intermediate resistance to ciprofloxacin in V. cholerae. Furthermore, an IncC-type conjugative plasmid carrying thirteen antibiotic resistance genes, including genes conferring resistance to two clinically important antibiotics, cephalosporins and fluoroquinolones, was identified in the shrimp-derived strain Vc516. While none of our food isolates harbored the toxigenic CTX- and TCP-encoding genes, they did possess genes encoding toxins such as HlyA and Autoinducer-2. Notably, some V. cholerae strains from this study exhibited a close genetic relationship with clinical strains, suggesting their potential to cause human infections. Taken together, this study provides a comprehensive view of the epidemiological features and genetic basis of antimicrobial resistance and virulence potential of V. cholerae strains isolated from food in southern China, thereby advancing our understanding of this important pathogen.
Collapse
Affiliation(s)
- Yating Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zhiwei Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Ruanyang Sun
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sheng Chen
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, People's Republic of China.
| |
Collapse
|
35
|
Fetherston SC, Lonsinger RC, Perkins LB, Lehman CP, Adams JR, Waits LP. Genetic analysis of harvest samples reveals population structure in a highly mobile generalist carnivore. Ecol Evol 2024; 14:e11411. [PMID: 38799390 PMCID: PMC11116766 DOI: 10.1002/ece3.11411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Delineating wildlife population boundaries is important for effective population monitoring and management. The bobcat (Lynx rufus) is a highly mobile generalist carnivore that is ecologically and economically important. We sampled 1225 bobcats harvested in South Dakota, USA (2014-2019), of which 878 were retained to assess genetic diversity and infer population genetic structure using 17 microsatellite loci. We assigned individuals to genetic clusters (K) using spatial and nonspatial Bayesian clustering algorithms and quantified differentiation (F ST and G ST ″ ) among clusters. We found support for population genetic structure at K = 2 and K = 4, with pairwise F ST and G ST ″ values indicating weak to moderate differentiation, respectively, among clusters. For K = 2, eastern and western clusters aligned closely with historical bobcat management units and were consistent with a longitudinal suture zone for bobcats previously identified in the Great Plains. We did not observe patterns of population genetic structure aligning with major rivers or highways. Genetic divergence observed at K = 4 aligned roughly with ecoregion breaks and may be associated with environmental gradients, but additional sampling with more precise locational data may be necessary to validate these patterns. Our findings reveal that cryptic population structure may occur in highly mobile and broadly distributed generalist carnivores, highlighting the importance of considering population structure when establishing population monitoring programs or harvest regulations. Our study further demonstrates that for elusive furbearers, harvest can provide an efficient, broad-scale sampling approach for genetic population assessments.
Collapse
Affiliation(s)
- Stuart C. Fetherston
- Natural Resource ManagementSouth Dakota State UniversityBrookingsSouth DakotaUSA
- Present address:
U.S. Fish and Wildlife Service, Texas Fish and Wildlife Conservation OfficeSan MarcosTexasUSA
| | - Robert C. Lonsinger
- U.S. Geological Survey, Oklahoma Cooperative Fish and Wildlife Research UnitOklahoma State UniversityStillwaterOklahomaUSA
| | - Lora B. Perkins
- Natural Resource ManagementSouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Chadwick P. Lehman
- South Dakota Department of Game, Fish and Parks, Custer State ParkCusterSouth DakotaUSA
| | | | | |
Collapse
|
36
|
Chen S, Du Z, Zhao P, Wang X, Wu Y, Li H, Cai W. Phylogeographic Pattern of the Assassin Bug Sycanus bifidus Inferred from Mitochondrial Genomes and Nuclear Genes. BIOLOGY 2024; 13:305. [PMID: 38785787 PMCID: PMC11118239 DOI: 10.3390/biology13050305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
The assassin bug Sycanus bifidus has a wide distribution across southern China. This study explored its distribution and evolution by analyzing mitochondrial and nuclear ribosomal RNA genes, revealing how Pleistocene climate and geological changes shaped its phylogeography. We identified two main clades, A and B, that diverged in the Middle Pleistocene. Hainan Island's populations form a unique group within Clade A, suggesting that the Qiongzhou Strait served as a dispersal corridor during glaciation. Rising sea levels likely separated the Hainan population afterward. Ecological niche modeling showed that both populations have been viable since the last interglacial period, with demographic analyses indicating possible expansions during the Middle and Late Pleistocene, driven by favorable climates. This study highlights the significant effects of Pleistocene sea-level and climatic changes on the distribution and evolution of S. bifidus in China.
Collapse
Affiliation(s)
- Suyi Chen
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.C.); (Z.D.); (X.W.)
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Zhenyong Du
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.C.); (Z.D.); (X.W.)
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Ping Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Ministry of Education) and Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China;
- Department of Plant Protection, Kaili University, Kaili 556000, China
| | - Xuan Wang
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.C.); (Z.D.); (X.W.)
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Yunfei Wu
- College of Biology and Food Engineering, Chuzhou University, Chuzhou 239000, China;
| | - Hu Li
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.C.); (Z.D.); (X.W.)
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Wanzhi Cai
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.C.); (Z.D.); (X.W.)
- Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
37
|
Hala S, Malaikah M, Huang J, Bahitham W, Fallatah O, Zakri S, Antony CP, Alshehri M, Ghazzali RN, Ben-Rached F, Alsahafi A, Alsaedi A, AlAhmadi G, Kaaki M, Alazmi M, AlhajHussein B, Yaseen M, Zowawi HM, Alghoribi MF, Althaqafi AO, Al-Amri A, Moradigaravand D, Pain A. The emergence of highly resistant and hypervirulent Klebsiella pneumoniae CC14 clone in a tertiary hospital over 8 years. Genome Med 2024; 16:58. [PMID: 38637822 PMCID: PMC11025284 DOI: 10.1186/s13073-024-01332-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae is a major bacterial and opportunistic human pathogen, increasingly recognized as a healthcare burden globally. The convergence of resistance and virulence in K. pneumoniae strains has led to the formation of hypervirulent and multidrug-resistant strains with dual risk, limiting treatment options. K. pneumoniae clones are known to emerge locally and spread globally. Therefore, an understanding of the dynamics and evolution of the emerging strains in hospitals is warranted to prevent future outbreaks. METHODS In this study, we conducted an in-depth genomic analysis on a large-scale collection of 328 multidrug-resistant (MDR) K. pneumoniae strains recovered from 239 patients from a single major hospital in the western coastal city of Jeddah in Saudi Arabia from 2014 through 2022. We employed a broad range of phylogenetic and phylodynamic methods to understand the evolution of the predominant clones on epidemiological time scales, virulence and resistance determinants, and their dynamics. We also integrated the genomic data with detailed electronic health record (EHR) data for the patients to understand the clinical implications of the resistance and virulence of different strains. RESULTS We discovered a diverse population underlying the infections, with most strains belonging to Clonal Complex 14 (CC14) exhibiting dominance. Specifically, we observed the emergence and continuous expansion of strains belonging to the dominant ST2096 in the CC14 clade across hospital wards in recent years. These strains acquired resistance mutations against colistin and extended spectrum β-lactamase (ESBL) and carbapenemase genes, namely blaOXA-48 and blaOXA-232, located on three distinct plasmids, on epidemiological time scales. Strains of ST2096 exhibited a high virulence level with the presence of the siderophore aerobactin (iuc) locus situated on the same mosaic plasmid as the ESBL gene. Integration of ST2096 with EHR data confirmed the significant link between colonization by ST2096 and the diagnosis of sepsis and elevated in-hospital mortality (p-value < 0.05). CONCLUSIONS Overall, these results demonstrate the clinical significance of ST2096 clones and illustrate the rapid evolution of an emerging hypervirulent and MDR K. pneumoniae in a clinical setting.
Collapse
Affiliation(s)
- Sharif Hala
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Jeddah, Makkah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Mohammed Malaikah
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Jeddah, Makkah, Saudi Arabia
- Laboratory of Infectious Disease Epidemiology, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jiayi Huang
- Laboratory of Infectious Disease Epidemiology, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Wesam Bahitham
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Omniya Fallatah
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Samer Zakri
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Chakkiath Paul Antony
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Jeddah, Makkah, Saudi Arabia
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Mohammed Alshehri
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Raeece Naeem Ghazzali
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Jeddah, Makkah, Saudi Arabia
| | - Fathia Ben-Rached
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Jeddah, Makkah, Saudi Arabia
| | - Abdullah Alsahafi
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Asim Alsaedi
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Ghadeer AlAhmadi
- King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Mai Kaaki
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Meshari Alazmi
- KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- College of Computer Science and Engineering, University of Hail, Hail, Saudi Arabia
| | - Baraa AlhajHussein
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Muhammad Yaseen
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Hosam M Zowawi
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia
| | - Majed F Alghoribi
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Abdulhakeem O Althaqafi
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Abdulfattah Al-Amri
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Danesh Moradigaravand
- Laboratory of Infectious Disease Epidemiology, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Jeddah, Makkah, Saudi Arabia.
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.
| |
Collapse
|
38
|
van Hal SJ, Jensen SO, Tong SYC, Bentley S, Holden MT. Unravelling the complex interplay between antibiotic consumption and adaptive changes in methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 2024; 79:891-896. [PMID: 38412336 DOI: 10.1093/jac/dkae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
OBJECTIVES This study aims to elucidate the genomic dynamics driving the emergence of antimicrobial resistance (AMR), with a specific focus on the interplay between AMR and antimicrobial usage. METHODS We conducted a comprehensive analysis using a ST239 methicillin-resistant Staphylococcus aureus (MRSA) dataset over a continuous 12-year period from a single hospital. Genomic analyses were performed tracking the changes in MRSA populations, particularly the emergence of reduced vancomycin susceptibility, and assessing the impact of glycopeptide use on these emergence events. RESULTS Our findings reveal a significant correlation between hospital glycopeptide usage and the selection of MRSA strains with reduced vancomycin susceptibility. Genomic analyses provided insights into the molecular mechanisms driving resistance emergence, including the slowing of the molecular clock rate in response to heightened antimicrobial consumption. CONCLUSIONS In conclusion, this study the highlights the complex dynamics between AMR and antimicrobial use at the hospital level. The observed correlation between antimicrobial consumption and the development of less susceptible MRSA strains underscores the importance of antimicrobial stewardship programmes and the establishment of optimal consumption thresholds for mitigating AMR effectively.
Collapse
Affiliation(s)
- Sebastiaan J van Hal
- Department of Microbiology and Infectious Diseases, Royal Prince Alfred Hospital, Sydney, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Antimicrobial Resistance and Mobile Elements Group, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| | - Slade O Jensen
- Antimicrobial Resistance and Mobile Elements Group, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- Microbiology and Infectious Diseases, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Stephen Y C Tong
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Stephen Bentley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Matthew T Holden
- School of Medicine, University of St Andrews, St Andrews, Fife KY16 9TF, UK
| |
Collapse
|
39
|
Gu D, Wu Y, Chen K, Zhang Y, Ju X, Yan Z, Xie M, Chan EWC, Chen S, Ruan Z, Zhang R, Zhang J. Recovery and genetic characterization of clinically-relevant ST2 carbapenem-resistant Acinetobacter baumannii isolates from untreated hospital sewage in Zhejiang Province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170058. [PMID: 38218490 DOI: 10.1016/j.scitotenv.2024.170058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
The global transmission of carbapenem-resistant Acinetobacter baumannii (CRAB) poses a significant and grave threat to human health. To investigate the potential relationship between hospital sewage and the transmission of CRAB within healthcare facilities, isolates of Acinetobacter spp. obtained from untreated hospital sewage samples were subjected to antimicrobial susceptibility tests, genome sequencing, and bioinformatic and phylogenetic tree analysis, and that data were matched with those of the clinical isolates. Among the 70 Acinetobacter spp. sewage isolates tested, A. baumannii was the most prevalent and detectable in 5 hospitals, followed by A. nosocomialis and A. gerneri. Worryingly, 57.14 % (40/70) of the isolates were MDR, with 25.71 % (18/70) being resistant to carbapenem. When utilizing the Pasteur scheme, ST2 was the predominant type among these CRAB isolates, with Tn2006 (ΔISAba1-blaOXA-23-ATPase-yeeB-yeeA-ΔISAba1) and Tn2009 (ΔISAba1-blaOXA-23-ATPase-hp-parA-yeeC-hp-yeeB-ΔISAba1) being the key mobile genetic elements that encode carbapenem resistance. Seven A. gerneri isolates which harbored Tn2008 (ISAba1-blaOXA-23 -ATPase) and the blaPER-1 gene were also identified. Besides, an A. soil isolate was found to exhibit high-level of meropenem resistance (MIC ≥128 mg/L) and harbor a blaNDM-1 gene located in a core genetic structure of ISAba125-blaNDM-1-ble-trpF-dsbC-cutA. To investigate the genetic relatedness between isolates recovered from hospital sewage and those collected from ICUs, a phylogenetic tree was constructed for 242 clinical isolates and 9 sewage isolates. The results revealed the presence of two evolutionary clades, each containing isolates from both ICU and sewage water, suggesting that CRAB isolates in untreated sewage water were also the transmission clones or closely related evolutionary isolates recoverable in hospital settings. Findings in this work confirm that hospital sewage is a potential reservoir of CRAB.
Collapse
Affiliation(s)
- Danxia Gu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China; Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuchen Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Kaichao Chen
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yanyan Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiaoyang Ju
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Zelin Yan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Miaomiao Xie
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Edward Wai Chi Chan
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Sheng Chen
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Rong Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
40
|
Guzinski J, Tang Y, Chattaway MA, Dallman TJ, Petrovska L. Development and validation of a random forest algorithm for source attribution of animal and human Salmonella Typhimurium and monophasic variants of S. Typhimurium isolates in England and Wales utilising whole genome sequencing data. Front Microbiol 2024; 14:1254860. [PMID: 38533130 PMCID: PMC10963456 DOI: 10.3389/fmicb.2023.1254860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/22/2023] [Indexed: 03/28/2024] Open
Abstract
Source attribution has traditionally involved combining epidemiological data with different pathogen characterisation methods, including 7-gene multi locus sequence typing (MLST) or serotyping, however, these approaches have limited resolution. In contrast, whole genome sequencing data provide an overview of the whole genome that can be used by attribution algorithms. Here, we applied a random forest (RF) algorithm to predict the primary sources of human clinical Salmonella Typhimurium (S. Typhimurium) and monophasic variants (monophasic S. Typhimurium) isolates. To this end, we utilised single nucleotide polymorphism diversity in the core genome MLST alleles obtained from 1,061 laboratory-confirmed human and animal S. Typhimurium and monophasic S. Typhimurium isolates as inputs into a RF model. The algorithm was used for supervised learning to classify 399 animal S. Typhimurium and monophasic S. Typhimurium isolates into one of eight distinct primary source classes comprising common livestock and pet animal species: cattle, pigs, sheep, other mammals (pets: mostly dogs and horses), broilers, layers, turkeys, and game birds (pheasants, quail, and pigeons). When applied to the training set animal isolates, model accuracy was 0.929 and kappa 0.905, whereas for the test set animal isolates, for which the primary source class information was withheld from the model, the accuracy was 0.779 and kappa 0.700. Subsequently, the model was applied to assign 662 human clinical cases to the eight primary source classes. In the dataset, 60/399 (15.0%) of the animal and 141/662 (21.3%) of the human isolates were associated with a known outbreak of S. Typhimurium definitive type (DT) 104. All but two of the 141 DT104 outbreak linked human isolates were correctly attributed by the model to the primary source classes identified as the origin of the DT104 outbreak. A model that was run without the clonal DT104 animal isolates produced largely congruent outputs (training set accuracy 0.989 and kappa 0.985; test set accuracy 0.781 and kappa 0.663). Overall, our results show that RF offers considerable promise as a suitable methodology for epidemiological tracking and source attribution for foodborne pathogens.
Collapse
Affiliation(s)
- Jaromir Guzinski
- Animal and Plant Health Agency, Bacteriology Department, Addlestone, United Kingdom
| | - Yue Tang
- Animal and Plant Health Agency, Bacteriology Department, Addlestone, United Kingdom
| | - Marie Anne Chattaway
- Gastrointestinal Bacteria Reference Unit, UK Health Security Agency, London, United Kingdom
| | - Timothy J. Dallman
- Gastrointestinal Bacteria Reference Unit, UK Health Security Agency, London, United Kingdom
| | - Liljana Petrovska
- Animal and Plant Health Agency, Bacteriology Department, Addlestone, United Kingdom
| |
Collapse
|
41
|
Arizala D, Arif M. Impact of Homologous Recombination on Core Genome Evolution and Host Adaptation of Pectobacterium parmentieri. Genome Biol Evol 2024; 16:evae032. [PMID: 38385549 PMCID: PMC10946231 DOI: 10.1093/gbe/evae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
Homologous recombination is a major force mechanism driving bacterial evolution, host adaptability, and acquisition of novel virulence traits. Pectobacterium parmentieri is a plant bacterial pathogen distributed worldwide, primarily affecting potatoes, by causing soft rot and blackleg diseases. The goal of this investigation was to understand the impact of homologous recombination on the genomic evolution of P. parmentieri. Analysis of P. parmentieri genomes using Roary revealed a dynamic pan-genome with 3,742 core genes and over 55% accessory genome variability. Bayesian population structure analysis identified 7 lineages, indicating species heterogeneity. ClonalFrameML analysis displayed 5,125 recombination events, with the lineage 4 exhibiting the highest events. fastGEAR analysis identified 486 ancestral and 941 recent recombination events ranging from 43 bp to 119 kb and 36 bp to 13.96 kb, respectively, suggesting ongoing adaptation. Notably, 11% (412 genes) of the core genome underwent recent recombination, with lineage 1 as the main donor. The prevalence of recent recombination (double compared to ancient) events implies continuous adaptation, possibly driven by global potato trade. Recombination events were found in genes involved in vital cellular processes (DNA replication, DNA repair, RNA processing, homeostasis, and metabolism), pathogenicity determinants (type secretion systems, cell-wall degrading enzymes, iron scavengers, lipopolysaccharides (LPS), flagellum, etc.), antimicrobial compounds (phenazine and colicin) and even CRISPR-Cas genes. Overall, these results emphasize the potential role of homologous recombination in P. parmentieri's evolutionary dynamics, influencing host colonization, pathogenicity, adaptive immunity, and ecological fitness.
Collapse
Affiliation(s)
- Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
42
|
Peirano G, Matsumara Y, Nobrega D, Church D, Pitout JDD. Population-based genomic surveillance of Pseudomonas aeruginosa causing bloodstream infections in a large Canadian health region. Eur J Clin Microbiol Infect Dis 2024; 43:501-510. [PMID: 38197977 DOI: 10.1007/s10096-024-04750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
PURPOSE Population-based surveillance was undertaken to determine clinical factors, susceptibility patterns, and incidence rates (IR) of Pseudomonas aeruginosa causing bloodstream infections (BSIs) in a Canadian region (2010-2018). METHODS We combined clinical data with genomics to characterize P. aeruginosa (BSIs) (n = 167) in a well-defined Canadian (Calgary) human population over a 9-year period (2010-2018). RESULTS The annual population IR per 100,000 patient years increased from 3.4/100,000 in 2010 to 5.9/100,000 in 2018, with the highest IRs in elderly males from the hospital setting. Over a quarter of patients presented with febrile neutropenia, followed by urinary tract infections and pneumonia. Antimicrobial resistance (AMR) rates and determinants were rare. The P. aeruginosa population was polyclonal consisting of three dominant sequence types (STs), namely ST244, ST111, and ST17. Antimicrobial-susceptible ST244 was the most common clone and belonged to three clades (A, B, C). The ST244 IR/100,000 increased over time due to the expansion of clade C. Multidrug-resistant ST111 was the second most common clone and IR/100,000 decreased over time. ST111 belonged to three clades (A, B, C) with clade C containing blaVIM-2. Different serotypes were linked to various STs. The IR/100,000 of P. aeruginosa that belonged to serotypes O6 increased significantly over time. CONCLUSION An effective multivalent vaccine consisting of five serotypes (O1, O3, O5, O6, O11) would confer protection to > 70% of Calgary residents with P. aeruginosa BSIs. This study has provided a unique perspective of the population dynamics over time of P. aeruginosa STs, clades, and serotypes responsible for BSIs.
Collapse
Affiliation(s)
- Gisele Peirano
- Cummings School of Medicine, University of Calgary, #9, 3535 Research Road NW, Calgary, Alberta, T2L 2K8, Canada
- Alberta Precision Laboratories, Calgary, Alberta, Canada
| | | | - Diego Nobrega
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Deirdre Church
- Cummings School of Medicine, University of Calgary, #9, 3535 Research Road NW, Calgary, Alberta, T2L 2K8, Canada
- Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Johann D D Pitout
- Cummings School of Medicine, University of Calgary, #9, 3535 Research Road NW, Calgary, Alberta, T2L 2K8, Canada.
- Alberta Precision Laboratories, Calgary, Alberta, Canada.
- University of Pretoria, Pretoria, Gauteng, South Africa.
| |
Collapse
|
43
|
Li B, Duan Y, Du Z, Wang X, Liu S, Feng Z, Tian L, Song F, Yang H, Cai W, Lin Z, Li H. Natural selection and genetic diversity maintenance in a parasitic wasp during continuous biological control application. Nat Commun 2024; 15:1379. [PMID: 38355730 PMCID: PMC10866907 DOI: 10.1038/s41467-024-45631-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Aphidius gifuensis is a parasitoid wasp and primary endoparasitoid enemy of the peach potato aphid, Myzus persicae. Artificially reared, captive wasps of this species have been extensively and effectively used to control populations of aphids and limit crop loss. However, the consequences of large-scale releasing of captive A. gifuensis, such as genetic erosion and reduced fitness in wild populations of this species, remains unclear. Here, we sequence the genomes of 542 A. gifuensis individuals collected across China, including 265 wild and 277 human-intervened samples. Population genetic analyses on wild individuals recovered Yunnan populations as the ancestral group with the most complex genetic structure. We also find genetic signature of environmental adaptation during the dispersal of wild populations from Yunnan to other regions. While comparative genomic analyses of captive wasps revealed a decrease in genetic diversity during long-term rearing, population genomic analyses revealed signatures of natural selection by several biotic (host plants) or abiotic (climate) factors, which support maintenance of the gene pool of wild populations in spite of the introduction of captive wasps. Therefore, the impact of large-scale release is reduced. Our study suggests that A. gifuensis is a good system for exploring the genetic and evolutionary effects of mass rearing and release on species commonly used as biocontrol agents.
Collapse
Affiliation(s)
- Bingyan Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhenyong Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xuan Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Shanlin Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zengbei Feng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | | | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhonglong Lin
- Yunnan Tobacco Company of China National Tobacco Corporation, Kunming, 650011, China.
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
44
|
Guzinski J, Potter J, Tang Y, Davies R, Teale C, Petrovska L. Geographical and temporal distribution of multidrug-resistant Salmonella Infantis in Europe and the Americas. Front Microbiol 2024; 14:1244533. [PMID: 38414709 PMCID: PMC10896835 DOI: 10.3389/fmicb.2023.1244533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/04/2023] [Indexed: 02/29/2024] Open
Abstract
Recently emerged S. Infantis strains carrying resistance to several commonly used antimicrobials have been reported from different parts of the globe, causing human cases of salmonellosis and with occurrence reported predominantly in broiler chickens. Here, we performed phylogenetic and genetic clustering analyses to describe the population structure of 417 S. Infantis originating from multiple European countries and the Americas collected between 1985 and 2019. Of these, 171 were collected from 56 distinct premises located in England and Wales (E/W) between 2009 and 2019, including isolates linked to incursions of multidrug-resistant (MDR) strains from Europe associated with imported poultry meat. The analysis facilitated the comparison of isolates from different E/W sources with isolates originating from other countries. There was a high degree of congruency between the outputs of different types of population structure analyses revealing that the E/W and central European (Germany, Hungary, and Poland) isolates formed several disparate groups, which were distinct from the cluster relating to the United States (USA) and Ecuador/Peru, but that isolates from Brazil were closely related to the E/W and the central European isolates. Nearly half of the analysed strains/genomes (194/417) harboured the IncFIB(pN55391) replicon typical of the "parasitic" pESI-like megaplasmid found in diverse strains of S. Infantis. The isolates that contained the IncFIB(pN55391) replicon clustered together, despite originating from different parts of the globe. This outcome was corroborated by the time-measured phylogeny, which indicated that the initial acquisition of IncFIB(pN55391) likely occurred in Europe in the late 1980s, with a single introduction of IncFIB(pN55391)-carrying S. Infantis to the Americas several years later. Most of the antimicrobial resistance (AMR) genes were identified in isolates that harboured one or more different plasmids, but based on the short-read assemblies, only a minority of the resistance genes found in these isolates were identified as being associated with the detected plasmids, whereas the hybrid assemblies comprising the short and long reads demonstrated that the majority of the identified AMR genes were associated with IncFIB(pN55391) and other detected plasmid replicon types. This finding underlies the importance of applying appropriate methodologies to investigate associations of AMR genes with bacterial plasmids.
Collapse
Affiliation(s)
- Jaromir Guzinski
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Joshua Potter
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Yue Tang
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Rob Davies
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | | | | |
Collapse
|
45
|
Yuan C, An T, Li X, Zou J, Lin Z, Gu J, Hu R, Fang Z. Genomic analysis of Ralstonia pickettii reveals the genetic features for potential pathogenicity and adaptive evolution in drinking water. Front Microbiol 2024; 14:1272636. [PMID: 38370577 PMCID: PMC10869594 DOI: 10.3389/fmicb.2023.1272636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/13/2023] [Indexed: 02/20/2024] Open
Abstract
Ralstonia pickettii, the most critical clinical pathogen of the genus Ralstonia, has been identified as a causative agent of numerous harmful infections. Additionally, Ralstonia pickettii demonstrates adaptability to extreme environmental conditions, such as those found in drinking water. In this study, we conducted a comprehensive genomic analysis to investigate the genomic characteristics related to potential pathogenicity and adaptive evolution in drinking water environments of Ralstonia pickettii. Through phylogenetic analysis and population genetic analysis, we divided Ralstonia pickettii into five Groups, two of which were associated with drinking water environments. The open pan-genome with a large and flexible gene repertoire indicated a high genetic plasticity. Significant differences in functional enrichment were observed between the core- and pan-genome of different groups. Diverse mobile genetic elements (MGEs), extensive genomic rearrangements, and horizontal gene transfer (HGT) events played a crucial role in generating genetic diversity. In drinking water environments, Ralstonia pickettii exhibited strong adaptability, and the acquisition of specific adaptive genes was potentially facilitated by genomic islands (GIs) and HGT. Furthermore, environmental pressures drove the adaptive evolution of Ralstonia pickettii, leading to the accumulation of unique mutations in key genes. These mutations may have a significant impact on various physiological functions, particularly carbon metabolism and energy metabolism. The presence of virulence-related elements associated with macromolecular secretion systems, virulence factors, and antimicrobial resistance indicated the potential pathogenicity of Ralstonia pickettii, making it capable of causing multiple nosocomial infections. This study provides comprehensive insights into the potential pathogenicity and adaptive evolution of Ralstonia pickettii in drinking water environments from a genomic perspective.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Tianfeng An
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xinlong Li
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jiao Zou
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhan Lin
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jiale Gu
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ruixia Hu
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhongze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health, Tianjin Medical University, Tianjin, China
| |
Collapse
|
46
|
Zhang K, Potter RF, Marino J, Muenks CE, Lammers MG, Dien Bard J, Dingle TC, Humphries R, Westblade LF, Burnham CAD, Dantas G. Comparative genomics reveals the correlations of stress response genes and bacteriophages in developing antibiotic resistance of Staphylococcus saprophyticus. mSystems 2023; 8:e0069723. [PMID: 38051037 PMCID: PMC10734486 DOI: 10.1128/msystems.00697-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Staphylococcus saprophyticus is the second most common bacteria associated with urinary tract infections (UTIs) in women. The antimicrobial treatment regimen for uncomplicated UTI is normally nitrofurantoin, trimethoprim-sulfamethoxazole (TMP-SMX), or a fluoroquinolone without routine susceptibility testing of S. saprophyticus recovered from urine specimens. However, TMP-SMX-resistant S. saprophyticus has been detected recently in UTI patients, as well as in our cohort. Herein, we investigated the understudied resistance patterns of this pathogenic species by linking genomic antibiotic resistance gene (ARG) content to susceptibility phenotypes. We describe ARG associations with known and novel SCCmec configurations as well as phage elements in S. saprophyticus, which may serve as intervention or diagnostic targets to limit resistance transmission. Our analyses yielded a comprehensive database of phenotypic data associated with the ARG sequence in clinical S. saprophyticus isolates, which will be crucial for resistance surveillance and prediction to enable precise diagnosis and effective treatment of S. saprophyticus UTIs.
Collapse
Affiliation(s)
- Kailun Zhang
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Robert F. Potter
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Jamie Marino
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Carol E. Muenks
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Matthew G. Lammers
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Jennifer Dien Bard
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, California, USA
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Tanis C. Dingle
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Romney Humphries
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lars F. Westblade
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Carey-Ann D. Burnham
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Gautam Dantas
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
47
|
Bai S, Fang L, Xiao H, Zhang Y, Guo W, Zhang J, Liu J, Zhang Y, Wang M, Sun R, Han L, Yu Y, Sun J, Liu Y, Liao X. Genomics analysis of KPC-2 and NDM-5-producing Enterobacteriaceae in migratory birds from Qinghai Lake, China. Appl Microbiol Biotechnol 2023; 107:7531-7542. [PMID: 37861819 DOI: 10.1007/s00253-023-12746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/02/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023]
Abstract
The study examined the epidemiological characteristics of carbapenem-resistant Enterobacteriaceae (CRE) isolated from migratory birds and surroundings in Qinghai Lake, China. We identified 69 (15.7%) CRE isolates from a total of 439 samples including 29 (6.6%) blaNDM-5 Escherichia coli and 40 (9.1%) blaKPC-2 Klebsiella pneumoniae. WGS analysis indicated that ST746, ST48, ST1011, and ST167 were the primary sequence types (ST) for blaNDM-5 E. coli, while all blaKPC-2 K. pneumoniae were ST11 and harbored numerous antibiotic resistance gene types including blaCTX-M, qnrS, and rmtB. A phylogenetic tree based on core genomes revealed that blaNDM-5 E. coli was highly heterogeneous while the blaKPC-2 K. pneumoniae was highly genetically similar within the group and to human Chinese isolates. IncX3, IncHI2, and IncFIB-HI2 plasmid replicon types were associated with blaNDM-5 spread, while IncFII-R and IncFII plasmids mediated blaKPC-2 spread. We also identified IncFII-R hybrid plasmids most likely formed by IS26-mediated integration of IncFII into IncR plasmid backbones. This also facilitated the persistence of IncFII-R plasmids and antibiotic resistance genes including blaKPC-2. In addition, all of the blaKPC-2 K. pneumoniae isolates harbored a pLVKP-like virulence plasmid carrying a combination of two or more hypervirulence markers that included peg-344, iroB, iucA, rmpA, and rmpA2. This is the first description of ST11 K. pneumoniae that co-carried blaKPC-2- and pLVKP-like virulence plasmids from migratory birds. The blaKPC-2 K. pneumoniae carried by migratory birds displayed high genetic relatedness to human isolates highlighting a high risk of transmission of these K. pneumoniae. KEY POINTS: • Multidrug resistance plasmids (blaKPC-2, bla436NDM-5, bla CTX-M, qnrS, and rmtB). • Co-occurrence of plasmid-mediated resistance and virulence genes. • High similarity between migratory bird genomes and humans.
Collapse
Affiliation(s)
- Shuancheng Bai
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Liangxing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hongliang Xiao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yin Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wenying Guo
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jixing Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Juan Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yan Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Minge Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ruanyang Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lu Han
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yang Yu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yahong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaoping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
48
|
Liu Y, Chan KN, Li X, Zhao X, Chu D, Yin Y, Liu Y, Chen A. The Genetic Diversity of White-Backed Planthoppers ( Sogatella furcifera) between Myanmar and Yunnan Province of China. Genes (Basel) 2023; 14:2164. [PMID: 38136986 PMCID: PMC10743027 DOI: 10.3390/genes14122164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
In order to clarify the migration route and the source of white-backed planthopper (WBPH) (Sogatella furcifera) between Myanmar and Yunnan Province, China, we collected six populations throughout Myanmar and five populations around the border areas in Yunnan Province, China. A total of 790 base pairs in the mtDNA COI genes from 416 individuals were obtained. A total of 43 haplotypes were identified, among which 37 were unique haplotypes, and the remaining 6 were shared among different populations. Two common shared haplotypes (H_1 and H_2) had a widespread distribution in all populations and accounted for 88.8% of the total haplotype frequency, suggesting a high-level gene flow among the Myanmar and Yunnan populations. Bayesian skyline plot (BSP) analysis results indicated that the effective population size of WBPH expanded between about 10,000 and 7000 years ago, and S. furcifera might follow the post-LGM (Last Glacial Maximum) expansion pattern. Based on the total migrant (Nem) value, it can be deduced that north and northeast Myanmar were the primary migration sources for WBPH populations in the southwest and south Yunnan regions. This study aims to contribute to the sustainable regional management of this important rice pest and provide new insights into the genetic diversity of WBPH in Southeast Asia.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province/Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China (Y.Y.)
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Khin Nyein Chan
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province/Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China (Y.Y.)
- Biotechnology Research Department, Ministry of Education, Mandalay 05151, Myanmar
| | - Xiangyong Li
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province/Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China (Y.Y.)
| | - Xueqing Zhao
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province/Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China (Y.Y.)
| | - Dong Chu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanqiong Yin
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province/Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China (Y.Y.)
| | - Ying Liu
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province/Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China (Y.Y.)
| | - Aidong Chen
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province/Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China (Y.Y.)
| |
Collapse
|
49
|
Sarafidou G, Tsaparis D, Issaris Y, Chatzigeorgiou G, Grigoriou P, Chatzinikolaou E, Pavloudi C. Insights on Pinna nobilis population genetic structure in the Aegean and Ionian Sea. PeerJ 2023; 11:e16491. [PMID: 38047017 PMCID: PMC10693241 DOI: 10.7717/peerj.16491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/29/2023] [Indexed: 12/05/2023] Open
Abstract
The fan mussel Pinna nobilis Linnaeus, 1758 is an endemic species of the Mediterranean Sea, protected by international agreements. It is one of the largest bivalves in the world, playing an important role in the benthic communities; yet it has been recently characterized as Critically Endangered by the IUCN, due to mass mortality events. In this context, the assessment of the genetic variation of the remaining P. nobilis populations and the evaluation of connectivity among them are crucial elements for the conservation of the species. For this purpose, samples were collected from six regions of the Eastern Mediterranean Sea; the Islands of Karpathos, Lesvos and Crete; the Chalkidiki and Attica Peninsulas; and the Amvrakikos Gulf. Sampling was performed either by collecting tissue from the individuals or by using a non-invasive method, i.e., by scraping the inside of their shells aiming to collect their mucus and thus avoid stress induction to them. Conventional molecular techniques with the use of the COI and 16S rRNA mitochondrial markers were selected for the depiction of the intra-population genetic variability. The analyses included 104 samples from the present study and publicly available sequences of individuals across the whole Mediterranean Sea. The results of this work (a) suggest the use of eDNA as an efficient sampling method for protected bivalves and (b) shed light to the genetic structure of P. nobilis population in the Eastern Mediterranean; this latter knowledge might prove to be fundamental for the species conservation and hence the ecosystem resilience. The haplotype analyses reinforced the evidence that there is a certain degree of connectivity among the distinct regions of the Mediterranean; yet there is evidence of population distinction within the basin, namely between the Western and the Eastern basins. The combination of both genetic markers in the same analysis along with the inclusion of a large number of individuals produced more robust results, revealing a group of haplotypes being present only in the Eastern Mediterranean and providing insights for the species' most suitable conservation management.
Collapse
Affiliation(s)
- Georgia Sarafidou
- Institute of Oceanography (IO), Hellenic Centre for Marine Research (HCMR), Anavyssos, Greece
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Crete, Greece
| | - Dimitris Tsaparis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Crete, Greece
| | - Yiannis Issaris
- Institute of Oceanography (IO), Hellenic Centre for Marine Research (HCMR), Anavyssos, Greece
| | - Giorgos Chatzigeorgiou
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Crete, Greece
| | - Panos Grigoriou
- Cretaquarium, Hellenic Centre for Marine Research (HCMR), Heraklion, Crete, Greece
| | - Eva Chatzinikolaou
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Crete, Greece
| | - Christina Pavloudi
- PSL Research University: EPHE-UPVD-CNRS, UAR CNRS 3278 Centre de Recherche Insulaire et Observatoire de l’Environnement (CRIOBE), Perpignan, France
- Laboratoire d’Excellence “CORAIL”, Centre de Recherche Insulaire et Observatoire de l’Environnement (CRIOBE), Moorea, French Polynesia
| |
Collapse
|
50
|
Feng Y, Pan H, Zheng B, Li F, Teng L, Jiang Z, Feng M, Zhou X, Peng X, Xu X, Wang H, Wu B, Xiao Y, Baker S, Zhao G, Yue M. An integrated nationwide genomics study reveals transmission modes of typhoid fever in China. mBio 2023; 14:e0133323. [PMID: 37800953 PMCID: PMC10653838 DOI: 10.1128/mbio.01333-23] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Typhoid fever is a life-threatening disease caused by Salmonella enterica serovar Typhi, resulting in a significant disease burden across developing countries. Historically, China was very much close to the global epicenter of typhoid, but the role of typhoid transmission within China and among epicenter remains overlooked in previous investigations. By using newly produced genomics on a national scale, we clarify the complex local and global transmission history of such a notorious disease agent in China spanning the most recent five decades, which largely undermines the global public health network.
Collapse
Affiliation(s)
- Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang Pan
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Li
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Lin Teng
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Zhijie Jiang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Mengyao Feng
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xiao Zhou
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xianqi Peng
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xuebin Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Haoqiu Wang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Beibei Wu
- Zhejiang Province Center for Disease Control and Prevention, Hangzhou, China
- School of Public Health and Managemet, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Stephen Baker
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Guoping Zhao
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|