1
|
Poole LG, Wei Z, Schulte A, Cline HM, Bernard MP, Buchweitz JP, McGill MR, Luyendyk JP. Kupffer cell expression of macrophage receptor with collagenous structure modulates macrophage gene induction and limits acute liver injury. Toxicol Sci 2025; 205:417-427. [PMID: 40117216 PMCID: PMC12118956 DOI: 10.1093/toxsci/kfaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
Macrophages displaying a pro-repair and anti-inflammatory polarization have been implicated in resolution of acute liver injury. Macrophage receptor with collagenous structure (MARCO) expression marks tolerogenic hepatic macrophages and is expressed by pro-resolution macrophages in the injured liver. We tested the hypothesis that MARCO promotes repair of the acetaminophen (APAP)-injured liver. Robust and sustained induction of MARCO mRNA and protein expression was evident in livers of mice challenged with a hepatotoxic dose of APAP (i.e. 300 mg/kg), whereas hepatic MARCO induction failed in mice with APAP-induced liver failure (i.e. 600 mg/kg). Serum proteomics identified a significant increase in serum MARCO levels in surviving acute liver failure (ALF) patients, but not in ALF patients who died. MARCO expression was high in F480+ liver macrophages, and MARCO deficiency reduced macrophage expression of pro-resolution markers such as Gpnmb and Mertk during the repair phase (i.e. 48 h). The results suggested a delay in necrosis resolution along with a trend toward increased mortality in APAP-challenged MARCO-/- mice. Notably, a robust increase in peak hepatic injury (i.e. 6- to 24-h post-APAP challenge) was evident in MARCO-/- mice, which could not be ascribed to differences in NAPQI/APAP-adduct generation nor changes in hepatic neutrophil/macrophage numbers. Interestingly, a reduction in hepatic CD11c+ cells, shown previously to limit APAP-induced liver injury, was evident 24 h after APAP challenge in MARCO-/- mice. The results indicate that MARCO deficiency worsens APAP-induced acute liver injury in mice and provide experimental and initial translational evidence linking MARCO induction to positive outcomes in acute liver injury.
Collapse
Affiliation(s)
- Lauren G Poole
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Zimu Wei
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, United States
| | - Anthony Schulte
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, United States
| | - Holly M Cline
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, United States
| | - Matthew P Bernard
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - John P Buchweitz
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, United States
| | - Mitchell R McGill
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - James P Luyendyk
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
2
|
Kendall RL, Postma B, Holian A. TMEM175 activity in BK-deficient macrophages maintains lysosomal function and mediates silica-induced inflammatory response in macrophages. Inhal Toxicol 2025:1-10. [PMID: 40402504 DOI: 10.1080/08958378.2025.2507251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025]
Abstract
Objective: Lysosomal ion channel function in macrophages contributes to the development of silica-induced inflammation. Recent studies have shown that blocking K+ entry into the lysosome via the BK channel reduces silica-induced damage and inflammation in macrophages. This study aims to explore the mechanisms of particle-induced inflammation in BK-/- macrophages. Methods: Bone marrow derived macrophages (BMdM) from C57BL/6 wildtype (WT) and BK-/- mice were exposed in vitro to silica and IL-1β release and cell death assessed. The effect of BK-/- on lysosomal pH, proteolytic activity, and cholesterol accumulation was evaluated. Results: BK-/- BMdM failed to demonstrate a reduction in IL-1β or cell death following silica exposure. BK-/- BMdM had comparable lysosome function to WT suggesting a compensatory mechanism was maintaining lysosome function. BK-/- macrophages demonstrated an upregulation of a second lysosomal potassium channel, TMEM175. Inhibition of TMEM175 activity caused an increase in lysosomal pH and reduced silica-induced cell death and IL-1β release in both BK-/- and WT BMdM. Conclusion: BK-/- BMdM did not exhibit the same phenotype seen with pharmaceutical abrogation of BK channel activity and showed no differences from WT in response to silica exposure. Upregulation of TMEM175 in BK-/- macrophages appears to prevent changes in lysosomal pH and cholesterol accumulation. Inhibiting TMEM175 activity in both BK-/- and WT BMdM resulted in an increase in lysosomal pH and reduced silica-induced inflammation, suggesting that reduced particle-induced cell damage and inflammation is not dependent on the activity of a single lysosomal ion channel but rather on mechanisms that elevate lysosomal pH.
Collapse
Affiliation(s)
- Rebekah L Kendall
- Center for Environmental Health Sciences, University of Montana, Missoula, Montana, USA
| | - Britten Postma
- Center for Environmental Health Sciences, University of Montana, Missoula, Montana, USA
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
3
|
Hu HJ, Fu YY, Du SL, Zhang YH, Zhang ZQ, Han GZ. Role of macrophage ATP metabolism disorder in SiO 2‑induced pulmonary fibrosis: a review. Purinergic Signal 2025:10.1007/s11302-025-10093-8. [PMID: 40358809 DOI: 10.1007/s11302-025-10093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Silicosis, a chronic lung disease, results from prolonged inhalation of silica dust (SiO2) in occupational environments, and its pathogenesis remains incompletely elucidated. Studies have shown that alveolar macrophages (AMs) play a pivotal role in its development. These AMs phagocytose the inhaled SiO2, which leads to morphological, structural, and functional abnormalities that result in lung fibrosis. During this process, adenosine triphosphate (ATP) not only provides energy for the physiological and pathological activities but also acts as a key intracellular and extracellular signaling molecule and regulates cytokine synthesis and secretion. This complex process has not been systematically summarized. In this study, first, the current data on ATP metabolism in the development of SiO2-induced pulmonary fibrosis are introduced. ATP metabolism disorder, caused by impaired production, utilization, or distribution of ATP, disrupts macrophage energy homeostasis. Then, how ATP metabolism disorder affects macrophage morphology and function and the inflammatory and fibrotic processes of the lungs by activating the P2X7 receptor-mediated ATP signaling pathway are discussed. Finally, current therapeutic strategies targeting ATP metabolism disorder and ATP signaling pathways in silicosis are summarized. In conclusion, SiO2-induced ATP metabolism disorder indirectly accelerates the progression of silicosis fibrosis.
Collapse
Affiliation(s)
- Hui-Jie Hu
- School of Public Health, Shandong Second Medical University, Weifang, China
- School of Public Health, Jining Medical University, Jining, Shandong, China
| | - Yuan-Yuan Fu
- School of Public Health, Jining Medical University, Jining, Shandong, China
| | - Shu-Ling Du
- School of Public Health, Shandong Second Medical University, Weifang, China
- School of Public Health, Jining Medical University, Jining, Shandong, China
| | - Yu-Han Zhang
- School of Public Health, Jining Medical University, Jining, Shandong, China
| | - Zhao-Qiang Zhang
- School of Public Health, Jining Medical University, Jining, Shandong, China.
| | - Gui-Zhi Han
- School of Public Health, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
4
|
Galli G, Leleu D, Depaire A, Blanco P, Contin-Bordes C, Truchetet ME. Crystalline silica on the lung-environment interface: Impact on immunity, epithelial cells, and therapeutic perspectives for autoimmunity. Autoimmun Rev 2025; 24:103730. [PMID: 39701338 DOI: 10.1016/j.autrev.2024.103730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Crystalline silica (the most abundant form of silicon dioxide) is a natural element that is ubiquitous in the Earth's crust. Chronic personal or professional exposure has been implicated in various pathologies, including silicosis and autoimmune diseases since the early 20th century. More recently, a specific pathogenic role for crystalline silica has been identified through its impact on lung epithelial cells as well as immune cells present at this organism barrier. This review summarizes the current in vitro and in vivo knowledge regarding the physiopathology of crystalline silica at the lung-environment interface, discusses its effects on innate and adaptive immune cells and epithelial cells, and reviews current therapeutic perspectives explored in mouse models to alleviate its impact, especially on autoimmune phenotypes.
Collapse
Affiliation(s)
- Gaël Galli
- Univ. Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, F-33000 Bordeaux, France; CHU de Bordeaux, FHU ACRONIM, Centre national de référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), F-33000 Bordeaux, France; CHU de Bordeaux, Service de Médecine Interne, Immunologie Clinique et Maladies Infectieuses, UMR 5164, F-33000 Bordeaux, France.
| | - Damien Leleu
- Univ. Bourgogne Franche-Comté, INSERM, LNC UMR1231, LabEx LipSTIC, F-21000 Dijon, France; CHRU Dijon Bourgogne, Laboratory of Clinical Chemistry, F-21000 Dijon, France
| | - Agathe Depaire
- Univ. Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, F-33000 Bordeaux, France; MED'INN'Pharma, F-25000 Besançon, France
| | - Patrick Blanco
- Univ. Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, F-33000 Bordeaux, France; CHU de Bordeaux, FHU ACRONIM, Centre national de référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), F-33000 Bordeaux, France; CHU de Bordeaux, Service d'Immunologie, UMR 5164, F-33000 Bordeaux, France
| | - Cécile Contin-Bordes
- Univ. Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, F-33000 Bordeaux, France; CHU de Bordeaux, FHU ACRONIM, Centre national de référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), F-33000 Bordeaux, France; CHU de Bordeaux, Service d'Immunologie, UMR 5164, F-33000 Bordeaux, France
| | - Marie-Elise Truchetet
- Univ. Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, F-33000 Bordeaux, France; CHU de Bordeaux, FHU ACRONIM, Centre national de référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), F-33000 Bordeaux, France; CHU de Bordeaux, Service de Rhumatologie, UMR 5164, F-33000 Bordeaux, France
| |
Collapse
|
5
|
Kawasaki H. A mechanistic review-regulation of silica-induced pulmonary inflammation by IL-10 and exacerbation by Type I IFN. Inhal Toxicol 2025; 37:59-73. [PMID: 39955624 DOI: 10.1080/08958378.2025.2465378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Occupational exposure to crystalline silica (CS) is known to induce silicosis, a chronic lung disease characterized by the formation of granulomas and severe lung fibrosis. Specifically, individuals exposed to low doses of CS may develop silicosis after a decade or more of exposure. Similarly, in rat silicosis models exposed to occupationally relevant doses of α-quartz, there is an initial phase characterized by minimal and well-controlled pulmonary inflammation, followed by the development of robust and persistent inflammation. During the initial phase, the inflammation provoked by α-quartz is subdued by two mechanisms. Firstly, α-quartz particles are engulfed by alveolar macrophages (AMs) of the alternatively activated (M2) subtype and interstitial macrophages (IMs), limiting their interaction with other lung cells. Secondly, the anti-inflammatory cytokine, interleukin (IL)-10, is constitutively expressed by these macrophages, further dampening the inflammatory response. In the later inflammatory phase, IL-10-dependent anti-inflammatory state is disrupted by Type I interferons (IFNs), leading to the production of pro-inflammatory cytokines in response to α-quartz, aided by lipopolysaccharides (LPS). This review delves into the complex pathways involving IL-10, LPS, and Type I IFNs in α-quartz-induced pulmonary inflammation, offering a detailed analysis of the underlying mechanisms and identifying areas for future research.
Collapse
|
6
|
Hou X, Wei Z, Jiang X, Wei C, Dong L, Li Y, Liang R, Nie J, Shi Y, Qin X. A comprehensive retrospect on the current perspectives and future prospects of pneumoconiosis. Front Public Health 2025; 12:1435840. [PMID: 39866352 PMCID: PMC11757636 DOI: 10.3389/fpubh.2024.1435840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/24/2024] [Indexed: 01/28/2025] Open
Abstract
Pneumoconiosis is a widespread occupational pulmonary disease caused by inhalation and retention of dust particles in the lungs, is characterized by chronic pulmonary inflammation and progressive fibrosis, potentially leading to respiratory and/or heart failure. Workers exposed to dust, such as coal miners, foundry workers, and construction workers, are at risk of pneumoconiosis. This review synthesizes the international and national classifications, epidemiological characteristics, strategies for prevention, clinical manifestations, diagnosis, pathogenesis, and treatment of pneumoconiosis. Current research on the pathogenesis of pneumoconiosis focuses on the influence of autophagy, apoptosis, and pyroptosis on the progression of the disease. In addition, factors such as lipopolysaccharide and nicotine have been found to play crucial roles in the development of pneumoconiosis. This review provides a comprehensive summary of the most fundamental achievements in the treatment of pneumoconiosis with the purpose of indicating the future direction of its treatment and control. New technologies of integrative omics, artificial intelligence, systemic administration of mesenchymal stromal cells have proved useful in solving the conundrum of pneumoconiosis. These directional studies will provide novel therapeutic targets for the treatment of pneumoconiosis.
Collapse
Affiliation(s)
- Xiaomin Hou
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
- Environmental Exposures Vascular Disease Institute, Shanxi Medical University, Taiyuan, Shanxi, China
- China Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhengqian Wei
- Department of General Medicine, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuelu Jiang
- Environmental Exposures Vascular Disease Institute, Shanxi Medical University, Taiyuan, Shanxi, China
- Academy of Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chengjie Wei
- Environmental Exposures Vascular Disease Institute, Shanxi Medical University, Taiyuan, Shanxi, China
- Academy of Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lin Dong
- Environmental Exposures Vascular Disease Institute, Shanxi Medical University, Taiyuan, Shanxi, China
- Academy of Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhua Li
- Department of Foreign Languages, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruifeng Liang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jisheng Nie
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Taiyuan, Shanxi, China
| | - Yiwei Shi
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Taiyuan, Shanxi, China
- Department of Pulmonary and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- NHC Key Laboratory of Pneumoconiosis, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaojiang Qin
- Environmental Exposures Vascular Disease Institute, Shanxi Medical University, Taiyuan, Shanxi, China
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Taiyuan, Shanxi, China
- NHC Key Laboratory of Pneumoconiosis, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
7
|
Morin L, Lecureur V, Lescoat A. Results from omic approaches in rat or mouse models exposed to inhaled crystalline silica: a systematic review. Part Fibre Toxicol 2024; 21:10. [PMID: 38429797 PMCID: PMC10905840 DOI: 10.1186/s12989-024-00573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Crystalline silica (cSiO2) is a mineral found in rocks; workers from the construction or denim industries are particularly exposed to cSiO2 through inhalation. cSiO2 inhalation increases the risk of silicosis and systemic autoimmune diseases. Inhaled cSiO2 microparticles can reach the alveoli where they induce inflammation, cell death, auto-immunity and fibrosis but the specific molecular pathways involved in these cSiO2 effects remain unclear. This systematic review aims to provide a comprehensive state of the art on omic approaches and exposure models used to study the effects of inhaled cSiO2 in mice and rats and to highlight key results from omic data in rodents also validated in human. METHODS The protocol of systematic review follows PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Eligible articles were identified in PubMed, Embase and Web of Science. The search strategy included original articles published after 1990 and written in English which included mouse or rat models exposed to cSiO2 and utilized omic approaches to identify pathways modulated by cSiO2. Data were extracted and quality assessment was based on the SYRCLE's Risk of Bias tool for animal studies. RESULTS Rats and male rodents were the more used models while female rodents and autoimmune prone models were less studied. Exposure of animals were both acute and chronic and the timing of outcome measurement through omics approaches were homogeneously distributed. Transcriptomic techniques were more commonly performed while proteomic, metabolomic and single-cell omic methods were less utilized. Immunity and inflammation were the main domains modified by cSiO2 exposure in lungs of mice and rats. Less than 20% of the results obtained in rodents were finally verified in humans. CONCLUSION Omic technics offer new insights on the effects of cSiO2 exposure in mice and rats although the majority of data still need to be validated in humans. Autoimmune prone model should be better characterised and systemic effects of cSiO2 need to be further studied to better understand cSiO2-induced autoimmunity. Single-cell omics should be performed to inform on pathological processes induced by cSiO2 exposure.
Collapse
Affiliation(s)
- Laura Morin
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en sante, environnement et travail), UMR_S 1085, 35000, Rennes, France
| | - Valérie Lecureur
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en sante, environnement et travail), UMR_S 1085, 35000, Rennes, France.
| | - Alain Lescoat
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en sante, environnement et travail), UMR_S 1085, 35000, Rennes, France
- Department of Internal Medicine, Rennes University Hospital, 35000, Rennes, France
| |
Collapse
|
8
|
Ding L, Qian J, Yu X, Wu Q, Mao J, Liu X, Wang Y, Guo D, Su R, Xie H, Yin S, Zhou L, Zheng S. Blocking MARCO + tumor-associated macrophages improves anti-PD-L1 therapy of hepatocellular carcinoma by promoting the activation of STING-IFN type I pathway. Cancer Lett 2024; 582:216568. [PMID: 38065400 DOI: 10.1016/j.canlet.2023.216568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
The PD-L1/PD-1 axis is a classic immunotherapy target. However, anti-PD-L1/PD-1 therapy alone can not achieve satisfactory results in solid tumors, especially liver cancer. Among the several factors involved in tumor anti-PD-L1/PD-1 treatment resistance, tumor-associated macrophages (TAMs) have attracted attention because of their immunosuppressive ability. TAMs with a macrophage receptor with a collagenous structure (MARCO) are a macrophage subset group with strong immunosuppressive abilities. Clinical specimens and animal experiments revealed a negative correlation between MARCO + TAMs and patient prognosis with liver cancer. Transcriptional data and in vitro and in vivo experiments revealed that MARCO + TAM immunosuppressive ability was related to secretion. MARCO suppressed IFN-β secretion from TAMs, reducing antigen presentation molecule expression, infiltration, and CD8+T cell dysfunction, thus producing an immunosuppressive microenvironment in liver cancer. MARCO can promote dying tumor cell clearance by macrophages, reducing tumor-derived cGAMP and ATP accumulation in the tumor microenvironment and inhibiting sting-IFN-β pathway activation mediated by P2X7R in MARCO+TAMs. Animal experiments revealed that the MARCO and PD-L1 monoclonal antibody combination could significantly inhibit liver cancer growth. Conclusively, targeting MARCO+TAMs can significantly improve anti-PD-L1 resistance in liver cancer, making it a potential novel immune target for liver cancer therapy.
Collapse
Affiliation(s)
- Limin Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Junjie Qian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Xizhi Yu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Qinchuan Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Jing Mao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Xi Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Yubo Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Danjing Guo
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Rong Su
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Haiyang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Shengyong Yin
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Lin Zhou
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China.
| | - ShuSen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), Hangzhou, 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China.
| |
Collapse
|
9
|
Zhou G, Zhang L, Shao S. The application of MARCO for immune regulation and treatment. Mol Biol Rep 2024; 51:246. [PMID: 38300385 DOI: 10.1007/s11033-023-09201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
Macrophage receptor with collagen structure (MARCO) is a member of scavenger receptor class A (SR-A) and shares structural and functional similarities with SR-A1. In recent years, many studies have shown that MARCO can trigger an immune response and has therapeutic potential as a target for immunotherapy. Studies have shown that alterations in MARCO expression following pathogen infection cause changes in the functions of innate and adaptive immune cells, including macrophages, dendritic cells, B cells, and T cells, affecting the body's immune response to invading pathogens; thus, MARCO plays a crucial role in triggering the immune response, bridging innate and adaptive immunity, and eliminating pathogens. This paper is a comprehensive summary of the recent research on MARCO. This review focuses on the multiple functions of MARCO, including adhesion, migration, phagocytosis, and cytokine secretion with special emphasis on the complex interactions between MARCO and various types of cells involved in the immune response, as well as possible immune-related mechanisms. In summary, in this review, we discuss the structure and function of MARCO and its role in the immune response and highlight the therapeutic potential of MARCO as a target for immunotherapy. We hope that this review provides a theoretical basis for future research on MARCO.
Collapse
Affiliation(s)
- Guiyuan Zhou
- Department of Histology and Embryology, Hebei Medical University, No. 361, Zhongshan East Road, Chang'an District, Shijiazhuang, 050017, China
| | - Lei Zhang
- Shijiazhuang Vocational College of City Economy, No. 12, Wenming Road, Economic and Technological Development Zone, Shijiazhuang, 050017, China.
| | - Suxia Shao
- Department of Histology and Embryology, Hebei Medical University, No. 361, Zhongshan East Road, Chang'an District, Shijiazhuang, 050017, China.
| |
Collapse
|
10
|
Li S, Zhao J, Han G, Zhang X, Li N, Zhang Z. Silicon dioxide-induced endoplasmic reticulum stress of alveolar macrophages and its role on the formation of silicosis fibrosis: a review article. Toxicol Res (Camb) 2023; 12:1024-1033. [PMID: 38145097 PMCID: PMC10734631 DOI: 10.1093/toxres/tfad099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/01/2023] [Accepted: 10/07/2023] [Indexed: 12/26/2023] Open
Abstract
Silicosis is a chronic lung inflammatory disease induced by long-term inhalation of high concentrations of silicon dioxide (SiO2), characterized by pulmonary fibrosis. Inhalation of silica invades alveolar macrophages (AMs) and changes the micro-environment of the cell, resulting in abnormal morphology and dysfunction of the endoplasmic reticulum (ER). Once beyond the range of cell regulation, the endoplasmic reticulum stress (ERS) will occur, which will lead to cell damage, necrosis, and apoptosis, eventually causing silicosis fibrosis through various mechanisms. This is a complex and delicate process accompanied by various macrophage-derived cytokines. Unfortunately, the details have not been systematically summarized yet. In this review, we systematically introduce the basic two processes: the process of inducing ERS by inhaling SiO2 and the process of inducing pulmonary fibrosis by ERS. Moreover, the underlying mechanism of the above two sequential events is also be discussed. We conclude that the ERS of alveolar macrophages caused by silica dust are involved deeply in the pathogenesis of silicosis. Therefore, changing the states of SiO2-induced ERS of macrophage may be an attractive therapeutic target for silicosis fibrosis.
Collapse
Affiliation(s)
- Shuang Li
- Department of Public Health and Management, Binzhou Medical University, Guanhai Road 346, Yantai 264003, Shandong Province, China
- Department of Public Health, Jining Medical University, Jianshe South Road 45, Jining 272067, Shandong Province, China
| | - Jiahui Zhao
- Department of Public Health, Jining Medical University, Jianshe South Road 45, Jining 272067, Shandong Province, China
- Department of Public Health, Weifang Medical University, Baotong west Street 7166, Weifang 261053, Shandong Province, China
| | - Guizhi Han
- Department of Public Health, Jining Medical University, Jianshe South Road 45, Jining 272067, Shandong Province, China
| | - Xin Zhang
- Department of Public Health and Management, Binzhou Medical University, Guanhai Road 346, Yantai 264003, Shandong Province, China
| | - Ning Li
- Department of Public Health and Management, Binzhou Medical University, Guanhai Road 346, Yantai 264003, Shandong Province, China
| | - Zhaoqiang Zhang
- Department of Public Health and Management, Binzhou Medical University, Guanhai Road 346, Yantai 264003, Shandong Province, China
- Department of Public Health, Jining Medical University, Jianshe South Road 45, Jining 272067, Shandong Province, China
| |
Collapse
|
11
|
TIAN X, HOU R, LIU X, ZHAO P, TIAN Y, LI J. Yangqing Chenfei formula alleviates crystalline silica induced pulmonary inflammation and fibrosis by suppressing macrophage polarization. J TRADIT CHIN MED 2023; 43:1126-1139. [PMID: 37946475 PMCID: PMC10623247 DOI: 10.19852/j.cnki.jtcm.20230517.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/23/2022] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To explore the underlying mechanisms of the effects of Yangqing Chenfei formula (, YCF) on inflammation and fibrosis in silicosis via inhibition of macrophage polarization. METHODS A silicotic rat model was established via a single intratracheal instillation of silica particles on the first day of week 0. Subsequently, YCF was administered intragastrically to silicotic rats during weeks 0-2 and 5-8 twice daily. The mouse-derived alveolar macrophage cell line was used to investigate the mechanisms of YCF in M1/M2 polarization. RESULTS YCF treatment effectively inhibited lung pathological changes, including inflammatory cell infiltration and tissue damage, and increased the forced expiratory volume in the first 0.3 s, functional residual capacity, and maximal mid-expiratory flow in weeks 2 and 8. Furthermore, the treatment improved lung functions by upregulating tidal volume, pause increase, and expiratory flow at 50% tidal volume from weeks 5 to 8. Moreover, YCF could significantly suppressed the progression of inflammation and fibrosis, by reducing the levels of inflammatory cytokines, as well as collagen- I and III. YCF treatment also decreased the numbers of macrophages and M1/M2 macrophages and the level of transforming growth factor-β (TGF-β). Additionally, YCF5, the effective substance in YCF, decreased lipopolysaccharide and interferon-γ-induced M1 macrophage polarization in a concentration-dependent manner. The mechanism of anti-M1 polarization might be related to a decrease in extracellular signal-regulated kinase, c-JUN N-terminal kinase, P38, and P65 phosphorylation. Furthermore, YCF5 inhibited interleukin-4-induced M2 macrophages by decreasing the protein and mRNA expressions of arginase-1 and CD206 as well as the levels of profibrotic factors, such as TGF-β and connective tissue growth factor. The mechanisms underlying the anti-M2 polarization of YCF5 were primarily associated with the inhibition of the nuclear translocation of phosphorylated signal transducer and activator of transcription 6 (p-STAT6). CONCLUSION YCF significantly inhibits inflammation and fibrosis in silicotic rats probably via the suppression of M1/M2 macrophage polarization mediated by the inhibition of mitogen-activated protein kinase and nuclear factor kappa B signaling pathways and Janus kinase/STAT6 pathways.
Collapse
Affiliation(s)
- Xinrong TIAN
- 1 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
- 3 Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Runsu HOU
- 1 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
- 3 Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xinguang LIU
- 1 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
- 3 Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Peng ZHAO
- 1 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
- 3 Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yange TIAN
- 1 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
- 3 Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jiansheng LI
- 4 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
- 5 Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co constructed by Henan province and Education Ministry of P.R. China, Zhengzhou 450046, China
- 6 Department of Respiratory Diseases, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| |
Collapse
|
12
|
Martínez-López A, Candel S, Tyrkalska SD. Animal models of silicosis: fishing for new therapeutic targets and treatments. Eur Respir Rev 2023; 32:230078. [PMID: 37558264 PMCID: PMC10424253 DOI: 10.1183/16000617.0078-2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/08/2023] [Indexed: 08/11/2023] Open
Abstract
Silicosis as an occupational lung disease has been present in our lives for centuries. Research studies have already developed and implemented many animal models to study the pathogenesis and molecular basis of the disease and enabled the search for treatments. As all experimental animal models used to date have their advantages and disadvantages, there is a continuous search for a better model, which will not only accelerate basic research, but also contribute to clinical aspects and drug development. We review here, for the first time, the main animal models developed to date to study silicosis and the unique advantages of the zebrafish model that make it an optimal complement to other models. Among the main advantages of zebrafish for modelling human diseases are its ease of husbandry, low maintenance cost, external fertilisation and development, its transparency from early life, and its amenability to chemical and genetic screening. We discuss the use of zebrafish as a model of silicosis, its similarities to other animal models and the characteristics of patients at molecular and clinical levels, and show the current state of the art of inflammatory and fibrotic zebrafish models that could be used in silicosis research.
Collapse
Affiliation(s)
- Alicia Martínez-López
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- These authors contributed equally to this work
| | - Sergio Candel
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- These authors contributed equally to this work
| | - Sylwia D Tyrkalska
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
13
|
Wei Y, You Y, Zhang J, Ban J, Min H, Li C, Chen J. Crystalline silica-induced macrophage pyroptosis interacting with mitophagy contributes to pulmonary fibrosis via modulating mitochondria homeostasis. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131562. [PMID: 37148789 DOI: 10.1016/j.jhazmat.2023.131562] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/05/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Environmental exposure to crystalline silica (CS) can lead to silicosis. Alveolar macrophages (AMs) play a crucial role in the pathogenesis of silicosis. Previously, we demonstrated that enhancing AMs mitophagy exerted protective effects on silicosis with a restrained inflammatory response. However, the exact molecular mechanisms are elusive. Pyroptosis and mitophagy are two different biological processes that determine cell fate. Exploring whether there were interactions or balances between these two processes in AMs would provide new insight into treating silicosis. Here we reported that crystalline silica induced pyroptosis in silicotic lungs and AMs with apparent mitochondria injury. Notably, we identified a reciprocal inhibitory effect between mitophagy and pyroptosis cascades in AMs. By enhancing or diminishing mitophagy, we demonstrated that PINK1-mediated mitophagy helped clear damaged mitochondria to negatively regulate CS-induced pyroptosis. While constraining pyroptosis cascades by NLRP3, Caspase1, and GSDMD inhibitors, respectively, displayed enhanced PINK1-dependent mitophagy with lessened CS-injured mitochondria. These observed effects were echoed in the mice with enhanced mitophagy. Therapeutically, we demonstrated abolishing GSDMD-dependent pyroptosis by disulfiram attenuated CS-induced silicosis. Collectively, our data demonstrated that macrophage pyroptosis interacting with mitophagy contributes to pulmonary fibrosis via modulating mitochondria homeostasis, which may provide potential therapeutic targets.
Collapse
Affiliation(s)
- Yungeng Wei
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Yichuan You
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Jiarui Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China; Experimental Teaching Center, School of Public health, China Medical University, Shenyang 110122, Liaoning, China
| | - Jiaqi Ban
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, Liaoning, China
| | - Chao Li
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China.
| | - Jie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
14
|
Pulmonary Toxicity of Silica Linked to Its Micro- or Nanometric Particle Size and Crystal Structure: A Review. NANOMATERIALS 2022; 12:nano12142392. [PMID: 35889616 PMCID: PMC9318389 DOI: 10.3390/nano12142392] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
Silicon dioxide (SiO2) is a mineral compound present in the Earth’s crust in two mineral forms: crystalline and amorphous. Based on epidemiological and/or biological evidence, the pulmonary effects of crystalline silica are considered well understood, with the development of silicosis, emphysema, chronic bronchitis, or chronic obstructive pulmonary disease. The structure and capacity to trigger oxidative stress are recognized as relevant determinants in crystalline silica’s toxicity. In contrast, natural amorphous silica was long considered nontoxic, and was often used as a negative control in experimental studies. However, as manufactured amorphous silica nanoparticles (or nanosilica or SiNP) are becoming widely used in industrial applications, these paradigms must now be reconsidered at the nanoscale (<100 nm). Indeed, recent experimental studies appear to point towards significant toxicity of manufactured amorphous silica nanoparticles similar to that of micrometric crystalline silica. In this article, we present an extensive review of the nontumoral pulmonary effects of silica based on in vitro and in vivo experimental studies. The findings of this review are presented both for micro- and nanoscale particles, but also based on the crystalline structure of the silica particles.
Collapse
|
15
|
Leinardi R, Longo Sanchez-Calero C, Huaux F. Think Beyond Particle Cytotoxicity: When Self-Cellular Components Released After Immunogenic Cell Death Explain Chronic Disease Development. FRONTIERS IN TOXICOLOGY 2022; 4:887228. [PMID: 35846433 PMCID: PMC9284505 DOI: 10.3389/ftox.2022.887228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The prolonged perturbation of the immune system following the release of a plethora of self-molecules (known as damage-associated molecular patterns, DAMPs) by stressed or dying cells triggers acute and chronic pathological responses. DAMPs are commonly released after plasma membrane damage or complete rupture due to immunogenic cell death (ICD), upon numerous stressors including infectious and toxic agents. The set of DAMPs released after ICD include mature proinflammatory cytokines and alarmins, but also polymeric macromolecules. These self-intracellular components are recognized by injured and healthy surrounding cells via innate receptors, and induce upregulation of stress-response mechanisms, including inflammation. In this review, by overstepping the simple toxicological evaluation, we apply ICD and DAMP concepts to silica cytotoxicity, providing new insights on the mechanisms driving the progress and/or the exacerbation of certain SiO2–related pathologies. Finally, by proposing self-DNA as new crucial DAMP, we aim to pave the way for the development of innovative and easy-to-perform predictive tests to better identify the hazard of fine and ultrafine silica particles. Importantly, such mechanisms could be extended to nano/micro plastics and diesel particles, providing strategic advice and reports on their health issues.
Collapse
|
16
|
Lam M, Mansell A, Tate MD. Another One Fights the Dust - Targeting the NLRP3 Inflammasome for the Treatment of Silicosis. Am J Respir Cell Mol Biol 2022; 66:601-611. [PMID: 35290170 DOI: 10.1165/rcmb.2021-0545tr] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Silicosis is a multifaceted lung disease, characterised by persistent inflammation and structural remodelling. Despite its poor prognosis, there are no treatments currently available for patients with silicosis. Recent pre-clinical findings in models of lung fibrosis have suggested a major role for the nucleotide binding domain and leucine-rich repeat pyrin domain containing 3 (NLRP3) inflammasome in silica-driven inflammation and fibrosis. This review outlines the beneficial effects of targeting the NLRP3 inflammasome in in vitro cell experiments and in in vivo animal models, whereby inflammation and fibrosis are abrogated following NLRP3 inflammasome inhibition. While preclinical evidence is promising, studies which explore NLRP3 inflammasomes in the clinical setting are warranted. In particular, there is still a need to identify biomarkers which may be helpful for the early detection of silicosis and to fully elucidate mechanisms underlying these beneficial effects to further develop or repurpose existing anti-NLRP3 drugs as novel treatments that limit disease progression.
Collapse
Affiliation(s)
- Maggie Lam
- Hudson Institute of Medical Research Centre for Innate Immunity and Infectious Diseases, 366840, Clayton, Victoria, Australia.,Monash University , Department of Molecular and Translational Sciences, Clayton, Victoria, Australia
| | - Ashley Mansell
- Hudson Institute of Medical Research Centre for Innate Immunity and Infectious Diseases, 366840, Clayton, Victoria, Australia.,Monash Univerisity, Department of Molecular and Translational Sciences, Clayton, Victoria, Australia.,Adiso Therapeutics Inc, Concord, Massachusetts, United States
| | - Michelle D Tate
- Hudson Institute of Medical Research Centre for Innate Immunity and Infectious Diseases, 366840, Clayton, Victoria, Australia.,Monash University, Department of Molecular and Translational Sciences, Clayton, Victoria, Australia;
| |
Collapse
|
17
|
Thomas ST, Wierenga KA, Pestka JJ, Olive AJ. Fetal Liver-Derived Alveolar-like Macrophages: A Self-Replicating Ex Vivo Model of Alveolar Macrophages for Functional Genetic Studies. Immunohorizons 2022; 6:156-169. [PMID: 35193942 DOI: 10.4049/immunohorizons.2200011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/19/2022] Open
Abstract
Alveolar macrophages (AMs) are tissue-resident cells in the lungs derived from the fetal liver that maintain lung homeostasis and respond to inhaled stimuli. Although the importance of AMs is undisputed, they remain refractory to standard experimental approaches and high-throughput functional genetics, as they are challenging to isolate and rapidly lose AM properties in standard culture. This limitation hinders our understanding of key regulatory mechanisms that control AM maintenance and function. In this study, we describe the development of a new model, fetal liver-derived alveolar-like macrophages (FLAMs), which maintains cellular morphologies, expression profiles, and functional mechanisms similar to murine AMs. FLAMs combine treatment with two key cytokines for AM maintenance, GM-CSF and TGF-β. We leveraged the long-term stability of FLAMs to develop functional genetic tools using CRISPR-Cas9-mediated gene editing. Targeted editing confirmed the role of AM-specific gene Marco and the IL-1 receptor Il1r1 in modulating the AM response to crystalline silica. Furthermore, a genome-wide knockout library using FLAMs identified novel genes required for surface expression of the AM marker Siglec-F, most notably those related to the peroxisome. Taken together, our results suggest that FLAMs are a stable, self-replicating model of AM function that enables previously impossible global genetic approaches to define the underlying mechanisms of AM maintenance and function.
Collapse
Affiliation(s)
- Sean T Thomas
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing MI
| | - Kathryn A Wierenga
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI
| | - James J Pestka
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing MI.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI; and.,Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI
| | - Andrew J Olive
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing MI;
| |
Collapse
|
18
|
Scavenger receptor MARCO contributes to macrophage phagocytosis and clearance of tumor cells. Exp Cell Res 2021; 408:112862. [PMID: 34626585 DOI: 10.1016/j.yexcr.2021.112862] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/04/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022]
Abstract
Macrophage receptor with collagenous structure (MARCO) is a member of the class A scavenger receptor family which is expressed on the cell surface of macrophages. It is well known that MARCO avidly binds to unopsonized pathogens, leading to its ingestion by macrophages. However, the role of MARCO in the recognition and phagocytosis of tumor cells by macrophages remains poorly understood. In this study, we used lentiviral technology to knockdown and overexpress MARCO and investigated the ability of macrophages to phagocytose tumor cells. Our results showed that MARCO expression was correlated with the ability of macrophages to carry on phagocytosis. MARCO knockdown led to significant decreases in the number of engulfment pseudopodia of macrophages and inhibition of the phagocytosis of tumor cells. On the other hand, MARCO overexpression elevated activity of SYK, PI3K and Rac1 in macrophages, which led to changes in macrophage morphology and enhanced phagocytosis by promoting formation of stress fibers and pseudopodia. By Co-IP analysis we showed that MARCO directly binds to the β5 integrin of SL4 tumor cells. In summary, these results demonstrated the important role for MARCO in demonstrated tumor cells uptake and clearance by macrophages.
Collapse
|
19
|
Sadanandan P, Payne NL, Sun G, Ashokan A, Gowd SG, Lal A, Satheesh KMK, Pulakkat S, Nair SV, Menon KN, Bernard CCA, Koyakutty M. Exploiting the preferential phagocytic uptake of nanoparticle-antigen conjugates for the effective treatment of autoimmunity. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 40:102481. [PMID: 34748963 DOI: 10.1016/j.nano.2021.102481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/09/2021] [Accepted: 10/23/2021] [Indexed: 10/19/2022]
Abstract
Tolerance induction is central to the suppression of autoimmunity. Here, we engineered the preferential uptake of nano-conjugated autoantigens by spleen-resident macrophages to re-introduce self-tolerance and suppress autoimmunity. The brain autoantigen, myelin oligodendrocyte glycoprotein (MOG), was conjugated to 200 or 500 nm silica nanoparticles (SNP) and delivered to the spleen and liver-resident macrophages of experimental autoimmune encephalomyelitis (EAE) mice model of multiple sclerosis. MOG-SNP conjugates significantly reduced signs of EAE at a very low dose (50 μg) compared to the higher dose (>800 μg) of free-MOG. This was associated with reduced proliferation of splenocytes and pro-inflammatory cytokines secretion, decreased spinal cord inflammation, demyelination and axonal damage. Notably, biodegradable porous SNP showed an enhanced disease suppression assisted by elevated levels of regulatory T cells and programmed-death ligands (PD-L1/2) in splenic and lymph node cells. Our results demonstrate that targeting nano-conjugated autoantigens to tissue-resident macrophages in lymphoid organs can effectively suppress autoimmunity.
Collapse
Affiliation(s)
- Prashant Sadanandan
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India; Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Natalie L Payne
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Guizhi Sun
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Anusha Ashokan
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Siddaramana G Gowd
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Arsha Lal
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Kumar M K Satheesh
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Sreeranjini Pulakkat
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Shantikumar V Nair
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Krishnakumar N Menon
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| | - Claude C A Bernard
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia.
| | - Manzoor Koyakutty
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| |
Collapse
|
20
|
Favor OK, Pestka JJ, Bates MA, Lee KSS. Centrality of Myeloid-Lineage Phagocytes in Particle-Triggered Inflammation and Autoimmunity. FRONTIERS IN TOXICOLOGY 2021; 3:777768. [PMID: 35295146 PMCID: PMC8915915 DOI: 10.3389/ftox.2021.777768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
Exposure to exogenous particles found as airborne contaminants or endogenous particles that form by crystallization of certain nutrients can activate inflammatory pathways and potentially accelerate autoimmunity onset and progression in genetically predisposed individuals. The first line of innate immunological defense against particles are myeloid-lineage phagocytes, namely macrophages and neutrophils, which recognize/internalize the particles, release inflammatory mediators, undergo programmed/unprogrammed death, and recruit/activate other leukocytes to clear the particles and resolve inflammation. However, immunogenic cell death and release of damage-associated molecules, collectively referred to as "danger signals," coupled with failure to efficiently clear dead/dying cells, can elicit unresolved inflammation, accumulation of self-antigens, and adaptive leukocyte recruitment/activation. Collectively, these events can promote loss of immunological self-tolerance and onset/progression of autoimmunity. This review discusses critical molecular mechanisms by which exogenous particles (i.e., silica, asbestos, carbon nanotubes, titanium dioxide, aluminum-containing salts) and endogenous particles (i.e., monosodium urate, cholesterol crystals, calcium-containing salts) may promote unresolved inflammation and autoimmunity by inducing toxic responses in myeloid-lineage phagocytes with emphases on inflammasome activation and necrotic and programmed cell death pathways. A prototypical example is occupational exposure to respirable crystalline silica, which is etiologically linked to systemic lupus erythematosus (SLE) and other human autoimmune diseases. Importantly, airway instillation of SLE-prone mice with crystalline silica elicits severe pulmonary pathology involving accumulation of particle-laden alveolar macrophages, dying and dead cells, nuclear and cytoplasmic debris, and neutrophilic inflammation that drive cytokine, chemokine, and interferon-regulated gene expression. Silica-induced immunogenic cell death and danger signal release triggers accumulation of T and B cells, along with IgG-secreting plasma cells, indicative of ectopic lymphoid tissue neogenesis, and broad-spectrum autoantibody production in the lung. These events drive early autoimmunity onset and accelerate end-stage autoimmune glomerulonephritis. Intriguingly, dietary supplementation with ω-3 fatty acids have been demonstrated to be an intervention against silica-triggered murine autoimmunity. Taken together, further insight into how particles drive immunogenic cell death and danger signaling in myeloid-lineage phagocytes and how these responses are influenced by the genome will be essential for identification of novel interventions for preventing and treating inflammatory and autoimmune diseases associated with these agents.
Collapse
Affiliation(s)
- Olivia K. Favor
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Melissa A. Bates
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
21
|
Walters EH, Shukla SD. Silicosis: Pathogenesis and utility of animal models of disease. Allergy 2021; 76:3241-3242. [PMID: 34596272 DOI: 10.1111/all.14880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Eugene Haydn Walters
- School of Medicine and Menzies Institute University of Tasmania Hobart TAS Australia
| | - Shakti D. Shukla
- Graduate School of Health University of Technology Sydney Ultimo NSW Australia
| |
Collapse
|
22
|
Transcriptome profiling reveals new insights into the roles of neuronal nitric oxide synthase on macrophage polarization towards classically activated phenotype. PLoS One 2021; 16:e0257908. [PMID: 34587205 PMCID: PMC8480887 DOI: 10.1371/journal.pone.0257908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 09/13/2021] [Indexed: 01/09/2023] Open
Abstract
In response to various stimuli, naïve macrophages usually polarize to M1 (classically activated) or M2 (alternatively activated) cells with distinct biological functions. Neuronal nitric oxide synthase (NOS1) is involved in M1 macrophage polarization at an early stage. Here, we show for the first time that NOS1 is dispensable for M2 macrophage polarization for the first time. Further, differentially expressed genes (DEGs) regulated by NOS1 signaling in M1-polarized macrophages stimulated with lipopolysaccharide (LPS) were characterized by transcriptome analysis of wild-type (WT) and NOS1 knockout mouse macrophages. Thousands of affected genes were detected 2 h post LPS challenge, and this wide-ranging effect became greater with a longer stimulation time (8 h post LPS). NOS1 deficiency caused dysregulated expression of hundreds of LPS-responsive genes. Most DEGs were enriched in biological processes related to transcription and regulation of the immune and inflammatory response. At 2 h post-LPS, the toll-like receptor (TLR) signaling pathway, cytokine-cytokine receptor interaction, and NOD-like receptor signaling pathway were the major pathways affected, whereas the main pathways affected at 8 h post-LPS were Th1 and Th2 cell differentiation, FoxO, and AMPK signaling pathway. Identified DEGs were validated by real-time quantitative PCR and interacted in a complicated signaling pathway network. Collectively, our data show that NOS1 is dispensable for M2 macrophage polarization and reveal novel insights in the role of NOS1 signaling at different stages of M1 macrophage polarization through distinct TLR4 plasma membrane-localized and endosome-internalized signaling pathways.
Collapse
|
23
|
Zhang Y, Huang S, Tan S, Chen M, Yang S, Chen S. 3-methyadenine inhibits lipopolysaccharides-induced pulmonary inflammation at the early stage of silicosis via blocking NF-κB signaling pathway. Toxicol Ind Health 2021; 37:662-673. [PMID: 34565256 DOI: 10.1177/07482337211039426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Occupational exposure to silica dust is related to pulmonary inflammation and silicosis. Lipopolysaccharides (LPSs) could aggravate apoptosis in alveolar macrophages (AMs) of human silicosis through autophagy, yet how the reduction of autophagy attenuated LPS-induced lung injury and the related mechanisms need to be investigated. In the study, we aim to understand the role of 3-methyladenine (3-MA), an inhibitor of autophagy, in LPS-mediated inflammatory responses and fibrosis. We collected AMs from observers/silicosis patients. The results showed that LPS induced NF-κB-related pulmonary inflammation in observers and silicosis patients, as confirmed by an increase in the expression of IL-1β, IL-6, TNF-α, and p65, which could be inhibited by 3-MA treatment. In mice models, at the early stage (7d) of silicosis, but not the late (28d) stage, blocking autophagy reversed the increased levels of IL-1β, IL-6, TNF-α, and p65 caused by LPS. Mechanism study revealed that LPS triggered the expression of LC3 II, p62, and cleaved caspase-3 at the early stage exposed to silica, which could be restored by 3-MA, while there was no difference in the expression of LAMP1 either at the early or late stage of silicosis in different groups. Similarly, 3-MA treatment did not prevent fibrosis characterized by destroyed alveoli, collagen deposition, and increased expression of α-SMA and Col-1 induced by LPS at the late stage of silicosis. The results suggested that 3-MA has a role in the protection of lung injury at the early stage of silicosis and provided an experimental basis for preventive strategies of pulmonary inflammation and silicosis.
Collapse
Affiliation(s)
- Yujing Zhang
- Key Laboratory of Molecular Epidemiology of Hunan Province, 12568Hunan Normal University, Changsha, Hunan Province, China
| | - Shuai Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, 12568Hunan Normal University, Changsha, Hunan Province, China
| | - Shiyi Tan
- Key Laboratory of Molecular Epidemiology of Hunan Province, 12568Hunan Normal University, Changsha, Hunan Province, China
| | - Mingke Chen
- Key Laboratory of Molecular Epidemiology of Hunan Province, 12568Hunan Normal University, Changsha, Hunan Province, China
| | - Shang Yang
- Key Laboratory of Molecular Epidemiology of Hunan Province, 12568Hunan Normal University, Changsha, Hunan Province, China
| | - Shi Chen
- Key Laboratory of Molecular Epidemiology of Hunan Province, 12568Hunan Normal University, Changsha, Hunan Province, China
| |
Collapse
|
24
|
Current Concepts in Pathogenesis, Diagnosis, and Management of Silicosis and Its Subtypes. CURRENT PULMONOLOGY REPORTS 2021. [DOI: 10.1007/s13665-021-00279-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Alberts A, Klingberg A, Hoffmeister L, Wessig AK, Brand K, Pich A, Neumann K. Binding of Macrophage Receptor MARCO, LDL, and LDLR to Disease-Associated Crystalline Structures. Front Immunol 2020; 11:596103. [PMID: 33363539 PMCID: PMC7753766 DOI: 10.3389/fimmu.2020.596103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Endogenous and exogenous crystalline structures are involved in various pathologies and diseases in humans by inducing sterile inflammation, mechanical stress, or obstruction of excretory organs. The best studied of these diseases is gout, in which crystallization of uric acid in the form of monosodium urate (MSU) mainly in synovial fluid of the joints leads to sterile inflammation. Though some of these diseases have been described for centuries, little is known about if and how the immune system recognizes the associated crystals. Thus, in this study we aimed at identifying possible recognition molecules of MSU using liquid chromatography-mass spectrometry (LC-MS) analysis of MSU-binding serum proteins. Among the strongest binding proteins, we unexpectedly found two transmembrane receptors, namely macrophage receptor with collagenous structure (MARCO) and low-density lipoprotein (LDL) receptor (LDLR). We show that recombinant versions of both human and mouse MARCO directly bind to unopsonized MSU and several other disease-associated crystals. Recombinant LDLR binds many types of crystals mainly when opsonized with serum proteins. We show that this interaction is predominantly mediated by LDL, which we found to bind to all crystalline structures tested except for cholesterol crystals. However, murine macrophages lacking LDLR expression do neither show altered phagocytosis nor interleukin-1β (IL-1β) production in response to opsonized crystals. Binding of LDL to MSU has previously been shown to inhibit the production of reactive oxygen species (ROS) by human neutrophils. We extend these findings and show that LDL inhibits neutrophil ROS production in response to most crystals tested, even cholesterol crystals. The inhibition of neutrophil ROS production only partly correlated with the inhibition of IL-1β production by peripheral blood mononuclear cells (PBMCs): LDL inhibited IL-1β production in response to large MSU crystals, but not small MSU or silica crystals. This may suggest distinct upstream signals for IL-1β production depending on the size or the shape of the crystals. Together, we identify MARCO and LDLR as potential crystal recognition receptors, and show that LDL binding to diverse disease-associated crystalline structures has variable effects on crystal-induced innate immune cell activation.
Collapse
Affiliation(s)
- Anika Alberts
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Annika Klingberg
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Leonie Hoffmeister
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Research Core Unit Proteomics & Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Konstantin Neumann
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
26
|
Hoy RF, Chambers DC. Silica-related diseases in the modern world. Allergy 2020; 75:2805-2817. [PMID: 31989662 DOI: 10.1111/all.14202] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 11/28/2022]
Abstract
Silicosis is an ancient and potentially fatal pneumoconiosis caused by exposure to respirable crystalline silica. Silicosis is historically a disease of miners; however, failure to recognize and control the risk associated with silica exposure in contemporary work practices such as sandblasting denim jeans and manufacturing of artificial stone benchtops has led to re-emergence of silicosis around the world. This review outlines the mineralogy, epidemiology, clinical and radiological features of the various forms of silicosis and other silica-associated diseases. Perspective is provided on the most recent studies shedding light on pathogenesis, including the central role of innate immune effector cells and subsequent inflammatory cascades in propagating pulmonary fibrosis and the extrapulmonary manifestations, which uniquely characterize this pneumoconiosis. Clinical conundrums in differential diagnosis, particularly between silicosis and sarcoidosis, are highlighted, as is the importance of obtaining a careful occupational history in the patient presenting with pulmonary infiltrates and/or fibrosis. While silicosis is a completely preventable disease, unfortunately workers around the world continue to be affected and experience progressive or even fatal disease. Although no treatments have been proven, opportunities to intervene to prevent progressive disease, founded in a thorough cellular and molecular understanding of the immunopathology of silicosis, are highlighted.
Collapse
Affiliation(s)
- Ryan F. Hoy
- Department of Epidemiology and Preventive Medicine School of Public Health and Preventive Medicine Monash University Melbourne VIC. Australia
- Department of Respiratory Medicine Alfred Hospital Melbourne VIC. Australia
| | - Daniel C. Chambers
- School of Clinical Medicine The University of Queensland Brisbane QLD Australia
- Queensland Lung Transplant Program The Prince Charles Hospital Brisbane QLD Australia
| |
Collapse
|
27
|
Guo X, Wang C, Xu T, Yang L, Liu C, Qi X. SiO 2 prompts host defense against Acinetobacter baumannii infection by mTORC1 activation. SCIENCE CHINA-LIFE SCIENCES 2020; 64:982-990. [PMID: 32880864 DOI: 10.1007/s11427-020-1781-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/16/2020] [Indexed: 11/29/2022]
Abstract
Host-pathogen interactions in the setting of chronic pulmonary inflammation remain unclear, and the occurrence of pneumonia is increased in patients with chronic obstructive pulmonary disease who use immunosuppressive drugs. We performed Acinetobacter baumannii infection in mice with chronic pulmonary inflammation after intranasal administration of SiO2 and found SiO2 treatment increased host defense against A. baumannii infection. Innate immune responses initiated by NF-κB, type 1 interferon, NLRP3 and AIM2 inflammasomes were dispensable for SiO2-mediated host defense. SiO2 treatment activated the mTORC1 signaling, and mTORC1 was crucial for host defense against A. baumannii infection. Our study highlights the protective role of mTORC1 signaling in host defense against bacterial infection, offers novel insights into understanding the mechanisms of immunosuppressive drug-related pneumonia, and provides potential host-directed therapeutics to treat bacterial infections.
Collapse
Affiliation(s)
- Xiaomin Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chaoming Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Tao Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaopeng Qi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. .,Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
28
|
Wang W, Li T, Luo X, Zhang K, Cao N, Liu K, Li X, Zhu Y. Cytotoxic effects of dental prosthesis grinding dust on RAW264.7 cells. Sci Rep 2020; 10:14364. [PMID: 32873894 PMCID: PMC7463159 DOI: 10.1038/s41598-020-71485-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/17/2020] [Indexed: 11/08/2022] Open
Abstract
Respiratory diseases, including pulmonary fibrosis, silicosis, and allergic pneumonia, can be caused by long-term exposure to dental prosthesis grinding dust. The extent of the toxicity and pathogenicity of exposure to PMMA dust, Vitallium dust, and dentin porcelain dust differs. The dust from grinding dental prosthesis made of these three materials was characterized in terms of morphology, particle size, and elemental composition. The adverse effects of different concentrations of grinding dust (50, 150, 300, 450, and 600 μg ml-l) on RAW264.7 macrophages were evaluated, including changes in cell morphology and the production of lactate dehydrogenase (LDH) and reactive oxygen species (ROS). The dust particles released by grinding dental prosthesis made of these materials had different morphologies, particle sizes, and elemental compositions. They also induced varying degrees of cytotoxicity in RAW264.7 macrophages. A possible cytotoxicity mechanism is the induction of lipid peroxidation and plasma membrane damage as the dust particles penetrate cells. Therefore, clinicians who regularly work with these materials should wear the appropriate personal protection equipment to minimize exposure and reduce the health risks caused by these particulates.
Collapse
Affiliation(s)
- Wei Wang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110002, China
| | - Tianshu Li
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110002, China
| | - Xue Luo
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110002, China
| | - Ke Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Nanjue Cao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Keda Liu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110002, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China.
| | - Yuhe Zhu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110002, China.
| |
Collapse
|
29
|
Hamasaki M, Terkawi MA, Onodera T, Tian Y, Ebata T, Matsumae G, Alhasan H, Takahashi D, Iwasaki N. Transcriptional profiling of murine macrophages stimulated with cartilage fragments revealed a strategy for treatment of progressive osteoarthritis. Sci Rep 2020; 10:7558. [PMID: 32371954 PMCID: PMC7200748 DOI: 10.1038/s41598-020-64515-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/14/2020] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidence suggests that synovitis is associated with osteoarthritic process. Macrophages play principal role in development of synovitis. Our earlier study suggests that interaction between cartilage fragments and macrophages exacerbates osteoarthritic process. However, molecular mechanisms by which cartilage fragments trigger cellular responses remain to be investigated. Therefore, the current study aims at analyzing molecular response of macrophages to cartilage fragments. To this end, we analyzed the transcriptional profiling of murine macrophages exposed to cartilage fragments by RNA sequencing. A total 153 genes were differentially upregulated, and 105 genes were down-regulated in response to cartilage fragments. Bioinformatic analysis revealed that the most significantly enriched terms of the upregulated genes included scavenger receptor activity, integrin binding activity, TNF signaling, and toll-like receptor signaling. To further confirm our results, immunohistochemical staining was performed to detected regulated molecules in synovial tissues of OA patients. In consistence with RNA-seq results, MARCO, TLR2 and ITGα5 were mainly detected in the intima lining layer of synovial tissues. Moreover, blockade of TLR2 or ITGα5 but not Marco using specific antibody significantly reduced production of TNF-α in stimulated macrophages by cartilage fragments. Our data suggested that blocking TLR2 or ITGα5 might be promising therapeutic strategy for treating progressive osteoarthritis.
Collapse
Affiliation(s)
- Masanari Hamasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan.
- Global Institution for Collaborative Research and Education (GI-CoRE), Frontier Research Center for Advanced Material and Life Science Bldg No 2, Hokkaido University, Sapporo, Japan.
| | - Tomohiro Onodera
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan.
- Global Institution for Collaborative Research and Education (GI-CoRE), Frontier Research Center for Advanced Material and Life Science Bldg No 2, Hokkaido University, Sapporo, Japan.
| | - Yuan Tian
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Taku Ebata
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Gen Matsumae
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hend Alhasan
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Daisuke Takahashi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
- Global Institution for Collaborative Research and Education (GI-CoRE), Frontier Research Center for Advanced Material and Life Science Bldg No 2, Hokkaido University, Sapporo, Japan
| |
Collapse
|
30
|
Chen FF, Tang HY, Yu F, Que CL, Zhou FD, Wang SX, Wang GF, Zhao MH. Renal involvement in a silicosis patient - case report and literature review. Ren Fail 2020; 41:1045-1053. [PMID: 31809666 PMCID: PMC6913658 DOI: 10.1080/0886022x.2019.1696209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A 43-year-old Chinese man with a silicosis history was admitted to our hospital due to bilateral lower extremity edema for 1 year, exacerbating with hematuria for 2 months. He started working as a coal miner 30 years ago, and was diagnosed as silicosis 3 months ago. Lab tests revealed hematuria 3+, proteinuria 3+, and a serum creatinine value 2.47 mg/dl on routine check. He was diagnosed with focal proliferative IgA nephropathy (IgAN) and acute tubulo-interstitial nephritis by renal biopsy. He was treated with corticosteroids and got a remission 4 months later. Immunohistochemical staining showed the deposition of macrophage receptor with collagenous structure (MARCO), nod-like receptor pyrin domain-containing-3 (NLRP3), Caspase-1, apoptosis-associated speck (ASC), interleukin (IL)-1β, and IL-18 in both glomerular and tubulo-interstitial areas. We proposed that the silicon exposure could be related to his kidney disease in the patient and NLRP3 mediated inflammation might be involved in its pathogenesis which needs further explorations.
Collapse
Affiliation(s)
- Fei-Fei Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, P.R. China.,Institute of Nephrology, Peking University, Beijing, P.R. China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, P.R. China
| | - Hai-Yan Tang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, P.R. China
| | - Feng Yu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, P.R. China.,Institute of Nephrology, Peking University, Beijing, P.R. China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, P.R. China.,Renal Division, Peking University International Hospital, Beijing, P.R. China
| | - Cheng-Li Que
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, P.R. China
| | - Fu-de Zhou
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, P.R. China.,Institute of Nephrology, Peking University, Beijing, P.R. China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, P.R. China
| | - Su-Xia Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, P.R. China.,Institute of Nephrology, Peking University, Beijing, P.R. China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, P.R. China
| | - Guang-Fa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, P.R. China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, P.R. China.,Institute of Nephrology, Peking University, Beijing, P.R. China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, P.R. China
| |
Collapse
|
31
|
Zhao Y, Hao C, Bao L, Wang D, Li Y, Qu Y, Ding M, Zhao A, Yao W. Silica particles disorganize the polarization of pulmonary macrophages in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110364. [PMID: 32114243 DOI: 10.1016/j.ecoenv.2020.110364] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Silicosis is a fatal fibrotic lung disease caused by long-term silica particle exposure, in which pulmonary macrophages play an important role. However, the relationship between macrophage polarization and silicosis remains unclear. We established an experimental silicosis mouse model to investigate macrophage polarization during silicosis development. C57BL/c mice were exposed to silica by intra-tracheal instillation and sacrificed at different time points. Lung tissues and bronchoalveolar lavage fluid were collected for flow cytometry, quantitative reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assays, western blotting, and histology examinations. The polarization of pulmonary macrophages was dysregulated during silicosis development. In the early stage of silicosis, M1 macrophages were induced and played a leading role in eliciting inflammatory; in the late stage, M2 macrophages were induced to promote tissue repair. Levels of several cytokines in lung tissue microenvironment changed with macrophage polarization. Inflammatory cytokines such as tumor necrosis factor-α and interleukin (IL)-1β and IL-6 were upregulated in the inflammation stage, while the anti-inflammatory cytokine IL-10 was upregulated in the fibrosis stage. Furthermore, we found that STAT (signal transducer and activator of transcription) and IRF (interferon regulatory factor) signaling pathway were involved in the regulation of macrophage polarization in silicosis. In summary, macrophage polarization is closely related to the occurrence and development of silicosis and may be a key point for further elucidating silicosis pathogenesis.
Collapse
Affiliation(s)
- Youliang Zhao
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Changfu Hao
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Lei Bao
- School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Di Wang
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yiping Li
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yaqian Qu
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Mingcui Ding
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ahui Zhao
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wu Yao
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
32
|
Mulay SR, Steiger S, Shi C, Anders HJ. A guide to crystal-related and nano- or microparticle-related tissue responses. FEBS J 2020; 287:818-832. [PMID: 31829497 DOI: 10.1111/febs.15174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022]
Abstract
Crystals and nano- and microparticles form inside the human body from intrinsic proteins, minerals, or metabolites or enter the body as particulate matter from occupational and environmental sources. Associated tissue injuries and diseases mostly develop from cellular responses to such crystal deposits and include inflammation, cell necrosis, granuloma formation, tissue fibrosis, and stone-related obstruction of excretory organs. But how do crystals and nano- and microparticles trigger these biological processes? Which pathomechanisms are identical across different particle types, sizes, and shapes? In addition, which mechanisms are specific to the atomic or molecular structure of crystals or to specific sizes or shapes? Do specific cellular or molecular mechanisms qualify as target for therapeutic interventions? Here, we provide a guide to approach this diverse and multidisciplinary research domain. We give an overview about the clinical spectrum of crystallopathies, about shared and specific pathomechanisms as a conceptual overview before digging deeper into the specialty field of interest.
Collapse
Affiliation(s)
- Shrikant R Mulay
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Stefanie Steiger
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Germany
| | - Chongxu Shi
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Germany
| | - Hans-Joachim Anders
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Germany
| |
Collapse
|
33
|
Development of experimental silicosis in inbred and outbred mice depends on instillation volume. Sci Rep 2019; 9:14190. [PMID: 31578388 PMCID: PMC6775097 DOI: 10.1038/s41598-019-50725-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/13/2019] [Indexed: 01/17/2023] Open
Abstract
There is considerable variation in methods to induce experimental silicosis with the effects of dose and route of exposure being well documented. However, to what extent the volume of silica suspension alters the dispersion and severity of silicosis has not been adequately investigated. In this study, the optimal volume of a crystalline silica suspension required to obtain uniform distribution and greatest incidence and severity of silicosis was determined in inbred and outbred mice. Silica dispersal, detected by co-inspiration with India ink and polarized light microscopy, was highly dependent upon volume. Furthermore, although peribronchitis, perivasculitis, and increases in bronchoalveolar lavage fluid cell numbers were detected a lower doses and volumes, significant alveolitis required exposure to 5 mg of silica in 50 μl. This dose and volume of transoral instillation led to a greater penetrance of silicosis in the genetically heterogeneous Diversity Outbred strain as well as greater alveolar inflammation typical of the silicosis in human disease. These findings underscore the critical importance of instillation volume on the induction, severity, and type of inflammatory pathology in experimental silicosis.
Collapse
|
34
|
Therapeutic effects of scavenger receptor MARCO ligand on silica-induced pulmonary fibrosis in rats. Toxicol Lett 2019; 311:1-10. [PMID: 31028789 DOI: 10.1016/j.toxlet.2019.04.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Pulmonary fibrosis induced by prolonged exposure to silica particles is a chronic and irreversible lung disease without effective treatment till now. Our previous study has shown that early intervention with MARCO antagonist PolyG could alleviate pulmonary fibrosis in silica-exposed rats. However, the therapeutic effects of PolyG on silica-induced pulmonary fibrosis have rarely been reported. In this study, we explored the effects of administration (on the 28th day after silica exposure) of PolyG (MARCO inhibitor) on an established rat silicosis model. The lungs were analyzed histopathologically in rats using HE and Masson staining. The silica-induced ERS-related apoptosis, EMT and fibrosis were evaluated using western blotting, qRT-PCR and immunohistochemical analyses. The results suggested that silica exposure could increase the MARCO activity, and induce ERS and EMT in lung tissues. Pharmacological targeting of MARCO with PolyG attenuated the development of pulmonary fibrosis in silica-exposed rats. Further study indicated that PolyG could inhibit silica-induced ERS-related apoptosis and EMT process. Together, our findings reveal an essential function of ERS-related apoptosis and EMT in the processes of pulmonary fibrosis caused by silica, and identify MARCO as a potential therapeutic pharmacological target for silicosis.
Collapse
|
35
|
Yang M, Qian X, Wang N, Ding Y, Li H, Zhao Y, Yao S. Inhibition of MARCO ameliorates silica-induced pulmonary fibrosis by regulating epithelial-mesenchymal transition. Toxicol Lett 2018; 301:64-72. [PMID: 30391304 DOI: 10.1016/j.toxlet.2018.10.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/17/2018] [Accepted: 10/29/2018] [Indexed: 01/02/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is linked to fibrosis following exposure to silica. The scavenger receptor, macrophage receptor with collagenous structure (MARCO) plays an important role in silica-induced inflammation, however, the effect of MARCO on silica-induced fibrosis has not been identified. We hypothesized that MARCO would regulate EMT and be involved in the development of silicosis. Herein, we found that MARCO was highly expressed in lung tissue after exposure to silica and a MARCO inhibitor PolyG could alleviate pulmonary fibrosis in vivo. Our results confirmed that the expression of epithelial marker such as E-cadherin decreased, while the expression of mesenchymal markers, including vimentin and α-SMA increased after silica treatment. Furthermore, PolyG administration efficiently blocked the mRNA and protein expression of EMT markers and decreased the level of fibrosis-related transcription factors and proteins, such as Col1a1, Col3a1, Collagen I and Collagen III in the lungs of silica-exposed rats. The findings demonstrate that the macrophage membrane receptor MARCO controls the fibrotic response through regulating EMT in experimental silicosis and suggest a novel target for preventive intervention.
Collapse
Affiliation(s)
- Meng Yang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China; School of Public health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinlai Qian
- The third Affiliated Hospital, Xinxiang Medical University, Xinxiang, 453003, China
| | - Na Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yingying Ding
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Haibin Li
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yingzheng Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
36
|
Innate immunity to inhaled particles: A new paradigm of collective recognition. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Nakayama M. Macrophage Recognition of Crystals and Nanoparticles. Front Immunol 2018; 9:103. [PMID: 29434606 PMCID: PMC5796913 DOI: 10.3389/fimmu.2018.00103] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/12/2018] [Indexed: 12/26/2022] Open
Abstract
Inhalation of exogenous crystals such as silica, asbestos, and carbon nanotubes can cause lung fibrosis and cancer. Endogenous crystals such as monosodium urate, cholesterol, and hydroxyapatite are associated with pathogenesis of gout, atherosclerosis, and osteoarthritis, respectively. These crystal-associated-inflammatory diseases are triggered by the macrophage NLRP3 inflammasome activation and cell death. Therefore, it is important to understand how macrophages recognize crystals. However, it is unlikely that macrophages have evolutionally acquired receptors specific for crystals or recently emerged nanoparticles. Several recent studies have reported that some crystal particles are negatively charged and are recognized by scavenger receptor family members in a charge-dependent manner. Alternatively, a model for receptor-independent phagocytosis of crystals has also been proposed. This review focuses on the mechanisms by which macrophages recognize crystals and nanoparticles.
Collapse
Affiliation(s)
- Masafumi Nakayama
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
38
|
Biswas R, Trout KL, Jessop F, Harkema JR, Holian A. Imipramine blocks acute silicosis in a mouse model. Part Fibre Toxicol 2017; 14:36. [PMID: 28893276 PMCID: PMC5594487 DOI: 10.1186/s12989-017-0217-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 08/31/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Inhalation of crystalline silica is associated with pulmonary inflammation and silicosis. Although silicosis remains a prevalent health problem throughout the world, effective treatment choices are limited. Imipramine (IMP) is a FDA approved tricyclic antidepressant drug with lysosomotropic characteristics. The aim of this study was to evaluate the potential for IMP to reduce silicosis and block phagolysosome membrane permeabilization. METHODS C57BL/6 alveolar macrophages (AM) exposed to crystalline silica ± IMP in vitro were assessed for IL-1β release, cytotoxicity, particle uptake, lysosomal stability, and acid sphingomyelinase activity. Short term (24 h) in vivo studies in mice instilled with silica (± IMP) evaluated inflammation and cytokine release, in addition to cytokine release from ex vivo cultured AM. Long term (six to ten weeks) in vivo studies in mice instilled with silica (± IMP) evaluated histopathology, lung damage, and hydroxyproline content as an indicator of collagen accumulation. RESULTS IMP significantly attenuated silica-induced cytotoxicity and release of mature IL-1β from AM in vitro. IMP treatment in vivo reduced silica-induced inflammation in a short-term model. Furthermore, IMP was effective in blocking silica-induced lung damage and collagen deposition in a long-term model. The mechanism by which IMP reduces inflammation was explored by assessing cellular processes such as particle uptake and acid sphingomyelinase activity. CONCLUSIONS Taken together, IMP was anti-inflammatory against silica exposure in vitro and in vivo. The results were consistent with IMP blocking silica-induced phagolysosomal lysis, thereby preventing cell death and IL-1β release. Thus, IMP could be therapeutic for silica-induced inflammation and subsequent disease progression as well as other diseases involving phagolysosomal lysis.
Collapse
Affiliation(s)
- Rupa Biswas
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Kevin L Trout
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Forrest Jessop
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, USA
| | - Andrij Holian
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
39
|
Braga TT, Moura IC, Lepique AP, Camara NOS. Editorial: Macrophages Role in Integrating Tissue Signals and Biological Processes in Chronic Inflammation and Fibrosis. Front Immunol 2017; 8:845. [PMID: 28785266 PMCID: PMC5519522 DOI: 10.3389/fimmu.2017.00845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/05/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
| | - Ivan C Moura
- Institut national de la santé et de la recherche médicale (INSERM), Paris, France
| | | | - Niels Olsen Saraiva Camara
- Immunology Department, University of São Paulo, São Paulo, Brazil.,Nephrology Division, Medicine Department, Federal University of São Paulo, São Paulo, Brazil.,Renal Physiology Laboratory, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Wu M, Gibbons JG, DeLoid GM, Bedugnis AS, Thimmulappa RK, Biswal S, Kobzik L. Immunomodulators targeting MARCO expression improve resistance to postinfluenza bacterial pneumonia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L138-L153. [PMID: 28408365 DOI: 10.1152/ajplung.00075.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 01/12/2023] Open
Abstract
Downregulation of the alveolar macrophage (AM) receptor with collagenous structure (MARCO) leads to susceptibility to postinfluenza bacterial pneumonia, a major cause of morbidity and mortality. We sought to determine whether immunomodulation of MARCO could improve host defense and resistance to secondary bacterial pneumonia. RNAseq analysis identified a striking increase in MARCO expression between days 9 and 11 after influenza infection and indicated important roles for Akt and Nrf2 in MARCO recovery. In vitro, primary human AM-like monocyte-derived macrophages (AM-MDMs) and THP-1 macrophages were treated with IFNγ to model influenza effects. Activators of Nrf2 (sulforaphane) or Akt (SC79) caused increased MARCO expression and a MARCO-dependent improvement in phagocytosis in IFNγ-treated cells and improved survival in mice with postinfluenza pneumococcal pneumonia. Transcription factor analysis also indicated a role for transcription factor E-box (TFEB) in MARCO recovery. Overexpression of TFEB in THP-1 cells led to marked increases in MARCO. The ability of Akt activation to increase MARCO expression in IFNγ-treated AM-MDMs was abrogated in TFEB-knockdown cells, indicating Akt increases MARCO expression through TFEB. Increasing MARCO expression by targeting Nrf2 signaling or the Akt-TFEB-MARCO pathway are promising strategies to improve bacterial clearance and survival in postinfluenza bacterial pneumonia.
Collapse
Affiliation(s)
- Muzo Wu
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - John G Gibbons
- Biology Department, Clark University, Worcester, Massachusetts; and
| | - Glen M DeLoid
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Alice S Bedugnis
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Rajesh K Thimmulappa
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Shyam Biswal
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Lester Kobzik
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts;
| |
Collapse
|
41
|
Peng HB, Wang RX, Deng HJ, Wang YH, Tang JD, Cao FY, Wang JH. Protective effects of oleanolic acid on oxidative stress and the expression of cytokines and collagen by the AKT/NF-κB pathway in silicotic rats. Mol Med Rep 2017; 15:3121-3128. [DOI: 10.3892/mmr.2017.6402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/06/2017] [Indexed: 11/06/2022] Open
|
42
|
Carneiro PJ, Clevelario AL, Padilha GA, Silva JD, Kitoko JZ, Olsen PC, Capelozzi VL, Rocco PRM, Cruz FF. Bosutinib Therapy Ameliorates Lung Inflammation and Fibrosis in Experimental Silicosis. Front Physiol 2017; 8:159. [PMID: 28360865 PMCID: PMC5350127 DOI: 10.3389/fphys.2017.00159] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/01/2017] [Indexed: 12/16/2022] Open
Abstract
Silicosis is an occupational lung disease for which no effective therapy exists. We hypothesized that bosutinib, a tyrosine kinase inhibitor, might ameliorate inflammatory responses, attenuate pulmonary fibrosis, and thus improve lung function in experimental silicosis. For this purpose, we investigated the potential efficacy of bosutinib in the treatment of experimental silicosis induced in C57BL/6 mice by intratracheal administration of silica particles. After 15 days, once disease was established, animals were randomly assigned to receive DMSO or bosutinib (1 mg/kg/dose in 0.1 mL 1% DMSO) by oral gavage, twice daily for 14 days. On day 30, lung mechanics and morphometry, total and differential cell count in alveolar septa and granuloma, levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-4, transforming growth factor (TGF)-β, and vascular endothelial growth factor in lung homogenate, M1 and M2 macrophages, total leukocytes, and T cells in BALF, lymph nodes, and thymus, and collagen fiber content in alveolar septa and granuloma were analyzed. In a separate in vitro experiment, RAW264.7 macrophages were exposed to silica particles in the presence or absence of bosutinib. After 24 h, gene expressions of arginase-1, IL-10, IL-12, inducible nitric oxide synthase (iNOS), metalloproteinase (MMP)-9, tissue inhibitor of metalloproteinase (TIMP)-1, and caspase-3 were evaluated. In vivo, in silicotic animals, bosutinib, compared to DMSO, decreased: (1) fraction area of collapsed alveoli, (2) size and number of granulomas, and mononuclear cell granuloma infiltration; (3) IL-1β, TNF-α, IFN-γ, and TGF-β levels in lung homogenates, (4) collagen fiber content in lung parenchyma, and (5) viscoelastic pressure and static lung elastance. Bosutinib also reduced M1 cell counts while increasing M2 macrophage population in both lung parenchyma and granulomas. Total leukocyte, regulatory T, CD4+, and CD8+ cell counts in the lung-draining lymph nodes also decreased with bosutinib therapy without affecting thymus cellularity. In vitro, bosutinib led to a decrease in IL-12 and iNOS and increase in IL-10, arginase-1, MMP-9, and TIMP-1. In conclusion, in the current model of silicosis, bosutinib therapy yielded beneficial effects on lung inflammation and remodeling, therefore resulting in lung mechanics improvement. Bosutinib may hold promise for silicosis; however, further studies are required.
Collapse
Affiliation(s)
- Priscila J Carneiro
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Amanda L Clevelario
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Gisele A Padilha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Johnatas D Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Jamil Z Kitoko
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de Janeiro, Brazil; Laboratory of Clinical Bacteriology and Immunology, Department of Toxicological and Clinical Analysis, School of Pharmacy, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Priscilla C Olsen
- Laboratory of Clinical Bacteriology and Immunology, Department of Toxicological and Clinical Analysis, School of Pharmacy, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Vera L Capelozzi
- Laboratory of Pulmonary Genomics, Department of Pathology, School of Medicine, University of São Paulo São Paulo, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
43
|
Tsugita M, Morimoto N, Tashiro M, Kinoshita K, Nakayama M. SR-B1 Is a Silica Receptor that Mediates Canonical Inflammasome Activation. Cell Rep 2017; 18:1298-1311. [DOI: 10.1016/j.celrep.2017.01.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 12/13/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022] Open
|
44
|
High M, Cho HY, Marzec J, Wiltshire T, Verhein KC, Caballero MT, Acosta PL, Ciencewicki J, McCaw ZR, Kobzik L, Miller-DeGraff L, Gladwell W, Peden DB, Serra ME, Shi M, Weinberg C, Suzuki O, Wang X, Bell DA, Polack FP, Kleeberger SR. Determinants of host susceptibility to murine respiratory syncytial virus (RSV) disease identify a role for the innate immunity scavenger receptor MARCO gene in human infants. EBioMedicine 2016; 11:73-84. [PMID: 27554839 PMCID: PMC5049919 DOI: 10.1016/j.ebiom.2016.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 11/29/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) is the global leading cause of lower respiratory tract infection in infants. Nearly 30% of all infected infants develop severe disease including bronchiolitis, but susceptibility mechanisms remain unclear. Methods We infected a panel of 30 inbred strains of mice with RSV and measured changes in lung disease parameters 1 and 5 days post-infection and they were used in genome-wide association (GWA) studies to identify quantitative trait loci (QTL) and susceptibility gene candidates. Findings GWA identified QTLs for RSV disease phenotypes, and the innate immunity scavenger receptor Marco was a candidate susceptibility gene; targeted deletion of Marco worsened murine RSV disease. We characterized a human MARCO promoter SNP that caused loss of gene expression, increased in vitro cellular response to RSV infection, and associated with increased risk of disease severity in two independent populations of children infected with RSV. Interpretation Translational integration of a genetic animal model and in vitro human studies identified a role for MARCO in human RSV disease severity. Because no RSV vaccines are approved for clinical use, genetic studies have implications for diagnosing individuals who are at risk for severe RSV disease, and disease prevention strategies (e.g. RSV antibodies). In a panel of inbred strains of mice, RSV disease phenotypes were characterized that resemble those in human disease. We identified Marco as a susceptibility gene, and a human MARCO mutation increased risk of disease severity in children. These studies have implications for diagnosing individuals who are at risk for severe RSV disease and prevent disease.
RSV disease is the primary global cause for hospitalization one year after birth but the causes of differential RSV disease severity are not understood. We show that RSV disease phenotypes vary significantly between inbred strains of mice, and resemble those in human disease. We used genetic approaches to identify and validate the innate immunity gene Marco as a host susceptibility determinant for murine RSV disease. We then characterized a loss of function polymorphism in human MARCO that increases risk of severe RSV disease risk in infants. Results have important implications for identifying genetic risk factors for severe RSV disease.
Collapse
Affiliation(s)
- Monica High
- Immunity, Inflammation, and Diseases Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Hye-Youn Cho
- Immunity, Inflammation, and Diseases Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jacqui Marzec
- Immunity, Inflammation, and Diseases Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Tim Wiltshire
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Kirsten C Verhein
- Immunity, Inflammation, and Diseases Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Patricio L Acosta
- Fundación INFANT, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires, Argentina
| | - Jonathan Ciencewicki
- Immunity, Inflammation, and Diseases Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Zackary R McCaw
- Immunity, Inflammation, and Diseases Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lester Kobzik
- Department of Environmental Health, Harvard University School of Public Health, Boston, MA, USA
| | - Laura Miller-DeGraff
- Immunity, Inflammation, and Diseases Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Wes Gladwell
- Immunity, Inflammation, and Diseases Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - David B Peden
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Min Shi
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Clarice Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Oscar Suzuki
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Xuting Wang
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Douglas A Bell
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Fernando P Polack
- Fundación INFANT, Buenos Aires, Argentina; Department of Pediatrics, Vanderbilt University, Nashville, TN, USA.
| | - Steven R Kleeberger
- Immunity, Inflammation, and Diseases Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
45
|
Abstract
Inhalation of dust containing crystalline silica is associated with a number of acute and chronic diseases including systemic autoimmune diseases. Evidence for the link with autoimmune disease comes from epidemiological studies linking occupational exposure to crystalline silica dust with the systemic autoimmune diseases systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Although little is known regarding the mechanism by which silica exposure leads to systemic autoimmune disease, there is a voluminous literature on silica exposure and silicosis that may help identify immune processes that precede development of autoimmunity. The pathophysiology of silicosis consists of deposition of silica particles in the alveoli of the lung. Ingestion of these particles by macrophages initiates an inflammatory response, which stimulates fibroblasts to proliferate and produce collagen. Silica particles are encased by collagen leading to fibrosis and the nodular lesions characteristic of the disease. The steps in the development of silicosis, including acute and chronic inflammation and fibrosis, have different molecular and cellular requirements, suggesting that silica-induced inflammation and fibrosis may be mechanistically separate. Significantly, it is unclear whether silica-induced inflammation and fibrosis contribute similarly to the development of autoimmunity. Nonetheless, the findings from human and animal model studies are consistent with an autoimmune pathogenesis that begins with activation of the innate immune system leading to proinflammatory cytokine production, pulmonary inflammation leading to activation of adaptive immunity, breaking of tolerance, and autoantibodies and tissue damage. The variable frequency of these immunological features following silica exposure suggests substantial genetic involvement and gene/environment interaction in silica-induced autoimmunity. However, numerous questions remain unanswered.
Collapse
Affiliation(s)
- Kenneth Michael Pollard
- Department of Molecular and Experimental Medicine, The Scripps Research Institute , La Jolla, CA , USA
| |
Collapse
|
46
|
Ferreira TPT, Mariano LL, Ghilosso-Bortolini R, de Arantes ACS, Fernandes AJ, Berni M, Cecchinato V, Uguccioni M, Maj R, Barberis A, Silva PMRE, Martins MA. Potential of PEGylated Toll-Like Receptor 7 Ligands for Controlling Inflammation and Functional Changes in Mouse Models of Asthma and Silicosis. Front Immunol 2016; 7:95. [PMID: 27014274 PMCID: PMC4786742 DOI: 10.3389/fimmu.2016.00095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/26/2016] [Indexed: 01/06/2023] Open
Abstract
Prior investigations show that signaling activation through pattern recognition receptors can directly impact a number of inflammatory lung diseases. While toll-like receptor (TLR) 7 agonists have raised interest for their ability to inhibit allergen-induced pathological changes in experimental asthma conditions, the putative benefit of this treatment is limited by adverse effects. Our aim was to evaluate the therapeutic potential of two PEGylated purine-like compounds, TMX-302 and TMX-306, characterized by TLR7 partial agonistic activity; therefore, the compounds are expected to induce lower local and systemic adverse reactions. In vitro approaches and translation to murine models of obstructive and restrictive lung diseases were explored. In vitro studies with human PBMCs showed that both TMX-302 and TMX-306 marginally affects cytokine production as compared with equivalent concentrations of the TLR7 full agonist, TMX-202. The PEGylated compounds did not induce monocyte-derived DC maturation or B cell proliferation, differently from what observed after stimulation with TMX-202. Impact of PEGylated ligands on lung function and inflammatory changes was studied in animal models of acute lung injury, asthma, and silicosis following Lipopolysaccharide (LPS), allergen (ovalbumin), and silica inhalation, respectively. Subcutaneous injection of TMX-302 prevented LPS- and allergen-induced airway hyper-reactivity (AHR), leukocyte infiltration, and production of pro-inflammatory cytokines in the lung. However, intranasal instillation of TMX-302 led to neutrophil infiltration and failed to prevent allergen-induced AHR, despite inhibiting leukocyte counts in the BAL. Aerosolized TMX-306 given prophylactically, but not therapeutically, inhibited pivotal asthma features. Interventional treatment with intranasal instillation of TMX-306 significantly reduced the pulmonary fibrogranulomatous response and the number of silica particles in lung interstitial space in silicotic mice. These findings highlight the potential of TMX-306, emphasizing its value in drug development for lung diseases, and particularly silicosis.
Collapse
Affiliation(s)
| | - Lívia Lacerda Mariano
- Laboratory of Inflammation, Oswaldo Cruz Institute, FIOCRUZ , Rio de Janeiro , Brazil
| | | | | | | | - Michelle Berni
- Institute for Research in Biomedicine, Universitá della Svizzera Italiana , Bellinzona , Switzerland
| | - Valentina Cecchinato
- Institute for Research in Biomedicine, Universitá della Svizzera Italiana , Bellinzona , Switzerland
| | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, Universitá della Svizzera Italiana , Bellinzona , Switzerland
| | | | | | | | - Marco Aurélio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, FIOCRUZ , Rio de Janeiro , Brazil
| |
Collapse
|
47
|
Hung NA, Eiholzer RA, Kirs S, Zhou J, Ward-Hartstonge K, Wiles AK, Frampton CM, Taha A, Royds JA, Slatter TL. Telomere profiles and tumor-associated macrophages with different immune signatures affect prognosis in glioblastoma. Mod Pathol 2016; 29:212-26. [PMID: 26769142 DOI: 10.1038/modpathol.2015.156] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 01/02/2023]
Abstract
Telomere maintenance is a hallmark of cancer and likely to be targeted in future treatments. In glioblastoma established methods of identifying telomerase and alternative lengthening of telomeres leave a significant proportion of tumors with no defined telomere maintenance mechanism. This study investigated the composition of these tumors using RNA-Seq. Glioblastomas with an indeterminate telomere maintenance mechanism had an increased immune signature compared with alternative lengthening of telomeres and telomerase-positive tumors. Immunohistochemistry for CD163 confirmed that the majority (80%) of tumors with an indeterminate telomere maintenance mechanism had a high presence of tumor-associated macrophages. The RNA-Seq and immunostaining data separated tumors with no defined telomere maintenance mechanism into three subgroups: alternative lengthening of telomeres like tumors with a high presence of tumor-associated macrophages and telomerase like tumors with a high presence of tumor-associated macrophages. The third subgroup had no increase in tumor-associated macrophages and may represent a distinct category. The presence of tumor-associated macrophages conferred a worse prognosis with reduced patient survival times (alternative lengthening of telomeres with and without macrophages P=0.0004, and telomerase with and without macrophages P=0.013). The immune signatures obtained from RNA-Seq were significantly different between telomere maintenance mechanisms. Alternative lengthening of telomeres like tumors with macrophages had increased expression of interferon-induced proteins with tetratricopeptide repeats (IFIT1-3). Telomerase-positive tumors with macrophages had increased expression of macrophage receptor with collagenous structure (MARCO), CXCL12 and sushi-repeat containing protein x-linked 2 (SRPX2). Telomerase-positive tumors with macrophages were also associated with a reduced frequency of total/near total resections (44% vs >76% for all other subtypes, P=0.014). In summary, different immune signatures are found among telomere maintenance mechanism-based subgroups in glioblastoma. The reduced extent of surgical resection of telomerase-positive tumors with macrophages suggests that some tumor-associated macrophages are more unfavorable.
Collapse
Affiliation(s)
- Noelyn A Hung
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ramona A Eiholzer
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Stenar Kirs
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Jean Zhou
- Department of Radiology, Southern District Health Board, Dunedin, New Zealand
| | - Kirsten Ward-Hartstonge
- Department of Microbiology and Immunology, Dunedin School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Anna K Wiles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Chris M Frampton
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Ahmad Taha
- Neurosurgery, Southern District Health Board, Dunedin, New Zealand
| | - Janice A Royds
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tania L Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
48
|
Beamer GL, Seaver BP, Jessop F, Shepherd DM, Beamer CA. Acute Exposure to Crystalline Silica Reduces Macrophage Activation in Response to Bacterial Lipoproteins. Front Immunol 2016; 7:49. [PMID: 26913035 PMCID: PMC4753301 DOI: 10.3389/fimmu.2016.00049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/01/2016] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have examined the relationship between alveolar macrophages (AMs) and crystalline silica (SiO2) using in vitro and in vivo immunotoxicity models; however, exactly how exposure to SiO2 alters the functionality of AM and the potential consequences for immunity to respiratory pathogens remains largely unknown. Because recognition and clearance of inhaled particulates and microbes are largely mediated by pattern recognition receptors (PRRs) on the surface of AM, we hypothesized that exposure to SiO2 limits the ability of AM to respond to bacterial challenge by altering PRR expression. Alveolar and bone marrow-derived macrophages downregulate TLR2 expression following acute SiO2 exposure (e.g., 4 h). Interestingly, these responses were dependent on interactions between SiO2 and the class A scavenger receptor CD204, but not MARCO. Furthermore, SiO2 exposure decreased uptake of fluorescently labeled Pam2CSK4 and Pam3CSK4, resulting in reduced secretion of IL-1β, but not IL-6. Collectively, our data suggest that SiO2 exposure alters AM phenotype, which in turn affects their ability to uptake and respond to bacterial lipoproteins.
Collapse
Affiliation(s)
- Gillian L Beamer
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine, Tufts University , North Grafton, MA , USA
| | - Benjamin P Seaver
- Department of Biomedical and Pharmaceutical Sciences, University of Montana , Missoula, MT , USA
| | - Forrest Jessop
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA; Center for Environmental Health Sciences, Missoula, MT, USA
| | - David M Shepherd
- Department of Biomedical and Pharmaceutical Sciences, University of Montana , Missoula, MT , USA
| | - Celine A Beamer
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA; Center for Biomolecular Structure and Dynamics, Missoula, MT, USA
| |
Collapse
|
49
|
Park AM, Kanai K, Itoh T, Sato T, Tsukui T, Inagaki Y, Selman M, Matsushima K, Yoshie O. Heat Shock Protein 27 Plays a Pivotal Role in Myofibroblast Differentiation and in the Development of Bleomycin-Induced Pulmonary Fibrosis. PLoS One 2016; 11:e0148998. [PMID: 26859835 PMCID: PMC4747463 DOI: 10.1371/journal.pone.0148998] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/26/2016] [Indexed: 02/06/2023] Open
Abstract
Heat shock protein 27 (HSP27) is a member of the small molecular weight HSP family. Upon treatment with transforming growth factor β1 (TGF-β1), we observed upregulation of HSP27 along with that of α-smooth muscle actin (α-SMA), a marker of myofibroblast differentiation, in cultured human and mouse lung fibroblasts. Furthermore, by using siRNA knockdown, we demonstrated that HSP27 was involved in cell survival and upregulation of fibronectin, osteopontin (OPN) and type 1 collagen, all functional markers of myofibroblast differentiation, in TGF-β1-treated MRC-5 cells. In lung tissues of bleomycin-treated mice, HSP27 was strongly upregulated and substantially co-localized with α-SMA, OPN and type I collagen but not with proSP-C (a marker of type II alveolar epithelial cells), E-cadherin (a marker of epithelial cells) or F4/80 (a marker of macrophages). A similar co-localization of HSP27 and α-SMA was observed in lung tissues of patients with idiopathic pulmonary fibrosis. Furthermore, airway delivery of HSP27 siRNA effectively suppressed bleomycin-induced pulmonary fibrosis in mice. Collectively, our findings indicate that HSP27 is critically involved in myofibroblast differentiation of lung fibroblasts and may be a promising therapeutic target for lung fibrotic diseases.
Collapse
Affiliation(s)
- Ah-Mee Park
- Department of Microbiology and Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kyosuke Kanai
- Department of Microbiology and Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tatsuki Itoh
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Takao Sato
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tatsuya Tsukui
- Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yutaka Inagaki
- Department of Regenerative Medicine, Tokai University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias, México DF, Mexico
| | - Kouji Matsushima
- Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Osamu Yoshie
- Department of Microbiology and Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
- * E-mail:
| |
Collapse
|
50
|
Yao W, Liu S, Li J, Hao C. Silica promotes the transdifferentiation of rat circulating fibrocytes in vitro. Mol Med Rep 2015; 12:5828-36. [PMID: 26299717 PMCID: PMC4581811 DOI: 10.3892/mmr.2015.4212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 07/21/2015] [Indexed: 01/18/2023] Open
Abstract
To investigate the effects of silica on circulating fibrocytes (cFbs), the present study established a primary culture model of rat alveolar macrophages and cFbs in vitro. Macrophages were treated with free silica, and their supernatant was used to stimulate cFbs. The mRNA expression levels of collagen I, collagen III and α-smooth muscle actin (SMA) in cFbs were analyzed by reverse transcription-quantitative polymerase chain reaction. The intracellular and extracellular protein expression levels of collagen I, collagen III and α-SMA were detected by ELISA and immunofluorescence staining. The results indicated that in the cell model, the free silica effectively increased the protein and mRNA expression levels of collagen-I, collagen-III and α-SMA. The free silica significantly promoted the transdifferentiation of cFbs into myofibroblasts in a dose-and time-dependent manner.
Collapse
Affiliation(s)
- Wu Yao
- Department of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Suna Liu
- Department of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Ju Li
- Department of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Changfu Hao
- Department of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|