1
|
Zimbelman AR, Wong B, Murray CH, Wolf ME, Stefanik MT. Dopamine D1 and NMDA Receptor Co-Regulation of Protein Translation in Cultured Nucleus Accumbens Neurons. Neurochem Res 2024; 50:27. [PMID: 39567459 PMCID: PMC11888153 DOI: 10.1007/s11064-024-04283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
Protein translation is essential for some forms of synaptic plasticity. Here we used fluorescent noncanonical amino acid tagging (FUNCAT) to examine whether dopamine modulates protein translation in cultured nucleus accumbens (NAc) medium spiny neurons (MSN). These neurons were co-cultured with cortical neurons to restore excitatory synapses. We measured translation in MSNs under basal conditions and after disinhibiting excitatory transmission using the GABAA receptor antagonist bicuculline (2 h). Under basal conditions, translation was not altered by the D1-class receptor (D1R) agonist SKF81297 or the D2-class receptor (D2R) agonist quinpirole. Bicuculline alone robustly increased translation. This was reversed by quinpirole but not SKF81297. It was also reversed by co-incubation with the D1R antagonist SCH23390, but not the D2R antagonist eticlopride, suggesting dopaminergic tone at D1Rs. This was surprising because no dopamine neurons are present. An alternative explanation is that bicuculline activates translation by increasing glutamate tone at NMDA receptors (NMDAR) within D1R/NMDAR heteromers. Supporting this, immunocytochemistry and proximity ligation assays revealed D1R/NMDAR heteromers on NAc cells both in vitro and in vivo, confirming previous results. Furthermore, bicuculline's effect was reversed to the same extent by SCH23390 alone, the NMDAR antagonist APV alone, or SCH23390 + APV. These results suggest that: (1) excitatory transmission stimulates translation in NAc MSNs, (2) this is opposed when glutamate activates D1R/NMDAR heteromers, even in the absence of dopamine, and (3) antagonist occupation of D1Rs within the heteromers prevents their activation. Our study is the first to suggest a role for D2 receptors and D1R/NMDAR heteromers in regulating protein translation.
Collapse
Affiliation(s)
- Alexa R Zimbelman
- Department of Psychology and Neuroscience, North Central College, 30 N. Brainard St., Naperville, IL, 60540, USA
| | - Benjamin Wong
- Department of Psychology and Neuroscience, North Central College, 30 N. Brainard St., Naperville, IL, 60540, USA
| | - Conor H Murray
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
- Present Address: UCLA Center for Cannabis and Cannabinoids, Semel Institute for Neuroscience & Human Behavior, Los Angeles, CA, 90025, USA
| | - Marina E Wolf
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
- Present Address: Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
| | - Michael T Stefanik
- Department of Psychology and Neuroscience, North Central College, 30 N. Brainard St., Naperville, IL, 60540, USA.
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
2
|
Bakhtiarzadeh F, Shahpasand K, Shojaei A, Fathollahi Y, Roohi N, Barkley V, Mirnajafi-Zadeh J. Age-dependent Effects of Dopamine on Working Memory and Synaptic Plasticity in Hippocampal CA3-CA1 Synapses in Mice. Neuroscience 2023; 532:14-22. [PMID: 37741356 DOI: 10.1016/j.neuroscience.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Normal aging in mammals is accompanied by a decline in learning and memory. Dopamine plays a vital role in regulating cognitive functions, but it declines with age: During non-pathological aging, dopamine levels, receptors, and transporters decrease. Regarding the role of the dopaminergic system's changes in old age, we examined the effect of age and applied dopamine on working memory, synaptic transmission, and long-term potentiation (LTP) induction and maintenance in young adult and mature adult mice. We employed the Y-maze spontaneous alteration test to evaluate working memory. Maturation had no observed effect on working memory performance. Interestingly, working memory performance increased following intracerebroventricular administration of dopamine only in mature adult mice. We employed evoked field potential recording (in vitro) to assess the effects of age and maturation on the long-term potentiation (LTP) induction and maintenance. There was no difference in LTP induction and maintenance between young and mature adult mice before dopamine application. However, the application of dopamine on mature adult murine slices increased LTP magnitude compared to slices from young adults. According to the obtained results, it may be concluded that hippocampal neural excitability increased in mature adult subjects, and application of dopamine abolished the difference in neural excitability among young mature and adult mature groups; which was accompanied with increment of working memory and synaptic potentiation in mature adult animals.
Collapse
Affiliation(s)
- Fatemeh Bakhtiarzadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nahid Roohi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vicrotia Barkley
- Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Rodríguez-Durán LF, López-Ibarra DL, Herrera-Xithe G, Bermúdez-Rattoni F, Osorio-Gómez D, Escobar ML. Synergistic photoactivation of VTA-catecholaminergic and BLA-glutamatergic projections induces long-term potentiation in the insular cortex. Neurobiol Learn Mem 2023; 205:107845. [PMID: 37865264 DOI: 10.1016/j.nlm.2023.107845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
The presentation of novel stimuli induces a reliable dopamine release in the insular cortex (IC) from the ventral tegmental area (VTA). The novel stimuli could be associated with motivational and emotional signals induced by cortical glutamate release from the basolateral amygdala (BLA). Dopamine and glutamate are essential for acquiring and maintaining behavioral tasks, including visual and taste recognition memories. In this study, we hypothesize that the simultaneous activation of dopaminergic and glutamatergic projections to the neocortex can underlie synaptic plasticity. High-frequency stimulation of the BLA-IC circuit has demonstrated a reliable long-term potentiation (LTP), a widely acknowledged synaptic plasticity that underlies memory consolidation. Therefore, the concurrent optogenetic stimulation of the insula's glutamatergic and dopaminergic terminal fibers would induce reliable LTP. Our results confirmed that combined photostimulation of the VTA and BLA projections to the IC induces a slow-onset LTP. We also found that optogenetically-induced LTP in the IC relies on both glutamatergic NMDA receptors and dopaminergic D1/D5 receptors, suggesting that the combined effects of these neurotransmitters can trigger synaptic plasticity in the neocortex. Overall, our findings provide compelling evidence supporting the essential role of both dopaminergic and glutamatergic projections in modulating synaptic plasticity within the IC. Furthermore, our results suggest that the synergistic actions of these projections have a pivotal influence on the formation of motivational memories.
Collapse
Affiliation(s)
- Luis F Rodríguez-Durán
- Instituto de Fisiología Celular, UNAM, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Diana L López-Ibarra
- Instituto de Fisiología Celular, UNAM, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Gabriela Herrera-Xithe
- Instituto de Fisiología Celular, UNAM, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Federico Bermúdez-Rattoni
- Instituto de Fisiología Celular, UNAM, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Daniel Osorio-Gómez
- Instituto de Fisiología Celular, UNAM, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico.
| | - Martha L Escobar
- Facultad de Psicología, UNAM, División de Investigación y Estudios de Posgrado, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Mexico City, Mexico.
| |
Collapse
|
4
|
Zimbelman AR, Wong B, Murray CH, Wolf ME, Stefanik MT. Dopamine D1 and NMDA receptor co-regulation of protein translation in cultured nucleus accumbens neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.02.535293. [PMID: 37034633 PMCID: PMC10081306 DOI: 10.1101/2023.04.02.535293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Protein translation is essential for some forms of synaptic plasticity. We used nucleus accumbens (NAc) medium spiny neurons (MSN), co-cultured with cortical neurons to restore excitatory synapses, to examine whether dopamine modulates protein translation in NAc MSN. FUNCAT was used to measure translation in MSNs under basal conditions and after disinhibiting excitatory transmission using the GABAA receptor antagonist bicuculline (2 hr). Under basal conditions, translation was not altered by the D1-class receptor (D1R) agonist SKF81297 or the D2-class receptor (D2R) agonist quinpirole. Bicuculline alone robustly increased translation. This was reversed by quinpirole but not SKF81297. It was also reversed by co-incubation with the D1R antagonist SCH23390, but not the D2R antagonist eticlopride, suggesting dopaminergic tone at D1Rs. This was surprising because no dopamine neurons are present. An alternative explanation is that bicuculline activates translation by increasing glutamate tone at NMDA receptors (NMDAR) within D1R/NMDAR heteromers, which have been described in other cell types. Supporting this, immunocytochemistry and proximity ligation assays revealed D1/NMDAR heteromers on NAc cells both in vitro and in vivo. Further, bicuculline's effect was reversed to the same extent by SCH23390 alone, the NMDAR antagonist APV alone, or SCH23390+APV. These results suggest that: 1) excitatory synaptic transmission stimulates translation in NAc MSNs, 2) this is opposed when glutamate activates D1R/NMDAR heteromers, even in the absence of dopamine, and 3) antagonist occupation of D1Rs within the heteromers prevents their activation. Our study is the first to suggest a role for D2 receptors and D1R/NMDAR heteromers in regulating protein translation.
Collapse
Affiliation(s)
- Alexa R. Zimbelman
- Department of Psychology and Neuroscience, North Central College, Naperville, IL 60540
| | - Benjamin Wong
- Department of Psychology and Neuroscience, North Central College, Naperville, IL 60540
| | - Conor H. Murray
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064
- Present address: Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL
| | - Marina E. Wolf
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064
- These authors contributed equally
- Present address: Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97212
| | - Michael T. Stefanik
- Department of Psychology and Neuroscience, North Central College, Naperville, IL 60540
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064
- These authors contributed equally
| |
Collapse
|
5
|
Fuchsberger T, Clopath C, Jarzebowski P, Brzosko Z, Wang H, Paulsen O. Postsynaptic burst reactivation of hippocampal neurons enables associative plasticity of temporally discontiguous inputs. eLife 2022; 11:e81071. [PMID: 36226826 PMCID: PMC9612916 DOI: 10.7554/elife.81071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/09/2022] [Indexed: 11/20/2022] Open
Abstract
A fundamental unresolved problem in neuroscience is how the brain associates in memory events that are separated in time. Here, we propose that reactivation-induced synaptic plasticity can solve this problem. Previously, we reported that the reinforcement signal dopamine converts hippocampal spike timing-dependent depression into potentiation during continued synaptic activity (Brzosko et al., 2015). Here, we report that postsynaptic bursts in the presence of dopamine produce input-specific LTP in mouse hippocampal synapses 10 min after they were primed with coincident pre- and post-synaptic activity (post-before-pre pairing; Δt = -20 ms). This priming activity induces synaptic depression and sets an NMDA receptor-dependent silent eligibility trace which, through the cAMP-PKA cascade, is rapidly converted into protein synthesis-dependent synaptic potentiation, mediated by a signaling pathway distinct from that of conventional LTP. This synaptic learning rule was incorporated into a computational model, and we found that it adds specificity to reinforcement learning by controlling memory allocation and enabling both 'instructive' and 'supervised' reinforcement learning. We predicted that this mechanism would make reactivated neurons activate more strongly and carry more spatial information than non-reactivated cells, which was confirmed in freely moving mice performing a reward-based navigation task.
Collapse
Affiliation(s)
- Tanja Fuchsberger
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of CambridgeCambridgeUnited Kingdom
| | - Claudia Clopath
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| | - Przemyslaw Jarzebowski
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of CambridgeCambridgeUnited Kingdom
| | - Zuzanna Brzosko
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of CambridgeCambridgeUnited Kingdom
| | - Hongbing Wang
- Department of Physiology, Michigan State UniversityEast LansingUnited States
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
6
|
Miszkiel J, Jastrzębska J, Filip M, Przegaliński E. Amphetamine Self-Administration and Its Extinction Alter the 5-HT 1B Receptor Protein Levels in Designated Structures of the Rat Brain. Neurotox Res 2018; 35:217-229. [PMID: 30168018 PMCID: PMC6313351 DOI: 10.1007/s12640-018-9950-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/01/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022]
Abstract
Manipulation of the serotonin (5-HT)1B receptors can modify the behavioral effects of amphetamine including its reinforcing properties. Focus of this study was to examine changes in 5-HT1B receptor protein expression in several brain structures linked to substance drug disorder in different stages of amphetamine addiction—single session of amphetamine self-administration, 20 consecutive days of amphetamine self-administration, and 3 and 14 days of extinction from chronic drug intake. “Yoked” procedure was employed to set apart pharmacological and motivational effects of amphetamine intoxication. Immunohistofluorescence was performed on brain slices containing the following regions: nucleus accumbens (NAc) shell and core, globus pallidum (GP) lateral and ventral, hippocampus (HIP), substantia nigra (SN), and ventral tegmental area (VTA). Single amphetamine session decreased the amount of 5-HT1B receptors in SN, VTA, and HIP in active and yoked rats. On the contrary, 20 days of chronic amphetamine exposure triggered elevation of 5-HT1B receptors exclusively in animals that voluntarily administered the drug in NAc core, GP ventral, and HIP. Furthermore, 14-day (but not 3-day) extinction from amphetamine increased the 5-HT1B receptor expression in ventral and lateral GP, HIP, and SN. This study is the first to demonstrate that exposure to amphetamine and its extinction alter the expression of 5-HT1B receptors in various rat brain regions, and those changes seem to be transient and region specific. Importantly, since increased expression of 5-HT1B receptor after chronic amphetamine self-administration was limited only to active group of animals, we suggest that 5-HT1B receptor is linked to motivational aspect of addiction.
Collapse
Affiliation(s)
- Joanna Miszkiel
- Department of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| | - Joanna Jastrzębska
- Department of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Edmund Przegaliński
- Department of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| |
Collapse
|
7
|
Locus Coeruleus and Dopamine-Dependent Memory Consolidation. Neural Plast 2017; 2017:8602690. [PMID: 29123927 PMCID: PMC5662828 DOI: 10.1155/2017/8602690] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/06/2017] [Accepted: 06/18/2017] [Indexed: 12/12/2022] Open
Abstract
Most everyday memories including many episodic-like memories that we may form automatically in the hippocampus (HPC) are forgotten, while some of them are retained for a long time by a memory stabilization process, called initial memory consolidation. Specifically, the retention of everyday memory is enhanced, in humans and animals, when something novel happens shortly before or after the time of encoding. Converging evidence has indicated that dopamine (DA) signaling via D1/D5 receptors in HPC is required for persistence of synaptic plasticity and memory, thereby playing an important role in the novelty-associated memory enhancement. In this review paper, we aim to provide an overview of the key findings related to D1/D5 receptor-dependent persistence of synaptic plasticity and memory in HPC, especially focusing on the emerging evidence for a role of the locus coeruleus (LC) in DA-dependent memory consolidation. We then refer to candidate brain areas and circuits that might be responsible for detection and transmission of the environmental novelty signal and molecular and anatomical evidence for the LC-DA system. We also discuss molecular mechanisms that might mediate the environmental novelty-associated memory enhancement, including plasticity-related proteins that are involved in initial memory consolidation processes in HPC.
Collapse
|
8
|
Milienne-Petiot M, Groenink L, Minassian A, Young JW. Blockade of dopamine D 1-family receptors attenuates the mania-like hyperactive, risk-preferring, and high motivation behavioral profile of mice with low dopamine transporter levels. J Psychopharmacol 2017; 31:1334-1346. [PMID: 28950781 PMCID: PMC10773978 DOI: 10.1177/0269881117731162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Patients with bipolar disorder mania exhibit poor cognition, impulsivity, risk-taking, and goal-directed activity that negatively impact their quality of life. To date, existing treatments for bipolar disorder do not adequately remediate cognitive dysfunction. Reducing dopamine transporter expression recreates many bipolar disorder mania-relevant behaviors (i.e. hyperactivity and risk-taking). The current study investigated whether dopamine D1-family receptor blockade would attenuate the risk-taking, hypermotivation, and hyperactivity of dopamine transporter knockdown mice. METHODS Dopamine transporter knockdown and wild-type littermate mice were tested in mouse versions of the Iowa Gambling Task (risk-taking), Progressive Ratio Breakpoint Test (effortful motivation), and Behavioral Pattern Monitor (activity). Prior to testing, the mice were treated with the dopamine D1-family receptor antagonist SCH 23390 hydrochloride (0.03, 0.1, or 0.3 mg/kg), or vehicle. RESULTS Dopamine transporter knockdown mice exhibited hyperactivity and hyperexploration, hypermotivation, and risk-taking preference compared with wild-type littermates. SCH 23390 hydrochloride treatment decreased premature responding in dopamine transporter knockdown mice and attenuated their hypermotivation. SCH 23390 hydrochloride flattened the safe/risk preference, while reducing activity and exploratory levels of both genotypes similarly. CONCLUSIONS Dopamine transporter knockdown mice exhibited mania-relevant behavior compared to wild-type mice. Systemic dopamine D1-family receptor antagonism attenuated these behaviors in dopamine transporter knockdown, but not all effects were specific to only the knockdown mice. The normalization of behavior via blockade of dopamine D1-family receptors supports the hypothesis that D1 and/or D5 receptors could contribute to the mania-relevant behaviors of dopamine transporter knockdown mice.
Collapse
Affiliation(s)
- Morgane Milienne-Petiot
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States of America
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States of America
| | - Jared W. Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States of America
- Research Service, VA San Diego Healthcare System, San Diego, CA, United States of America
| |
Collapse
|
9
|
Chai AP, Ma WP, Wang LP, Cao J, Xu L, Yang YX, Mao RR. Chronic constant light-induced hippocampal late-phase long-term potentiation impairment in vitro is attenuated by antagonist of D1/D5 receptors. Brain Res 2015; 1622:72-80. [DOI: 10.1016/j.brainres.2015.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/05/2015] [Accepted: 06/17/2015] [Indexed: 12/25/2022]
|
10
|
Shivarama Shetty M, Gopinadhan S, Sajikumar S. Dopamine D1/D5 receptor signaling regulates synaptic cooperation and competition in hippocampal CA1 pyramidal neurons via sustained ERK1/2 activation. Hippocampus 2015; 26:137-50. [PMID: 26194339 PMCID: PMC5054950 DOI: 10.1002/hipo.22497] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2015] [Indexed: 12/30/2022]
Abstract
Synaptic cooperation and competition are important components of synaptic plasticity that tune synapses for the formation of associative long‐term plasticity, a cellular correlate of associative long‐term memory. We have recently reported that coincidental activation of weak synapses within the vicinity of potentiated synapses will alter the cooperative state of synapses to a competitive state thus leading to the slow decay of long‐term plasticity, but the molecular mechanism underlying this is still unknown. Here, using acute hippocampal slices of rats, we have examined how increasing extracellular dopamine concentrations interact and/or affect electrically induced long‐term potentiation (LTP) in the neighboring synapses. We demonstrate that D1/D5‐receptor‐mediated potentiation at the CA1 Schaffer collateral synapses differentially regulates synaptic co‐operation and competition. Further investigating the molecular players involved, we reveal an important role for extracellular signal‐regulated kinases‐1 and 2 (ERK1/2) as signal integrators and dose‐sensors. Interestingly, a sustained activation of ERK1/2 pathway seems to be involved in the differential regulation of synaptic associativity. The concentration‐dependent effects of the modulatory transmitter, as demonstrated for dopaminergic signaling in the present study, might offer additional computational power by fine tuning synaptic associativity processes for establishing long‐term associative memory in neural networks. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mahesh Shivarama Shetty
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology/Aging Program, Life Sciences Institute (LSI), National University of Singapore, Singapore
| | - Suma Gopinadhan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology/Aging Program, Life Sciences Institute (LSI), National University of Singapore, Singapore
| |
Collapse
|
11
|
Growth Hormone Secretagogue Receptor Dimers: A New Pharmacological Target. eNeuro 2015; 2:eN-REV-0053-14. [PMID: 26464979 PMCID: PMC4596092 DOI: 10.1523/eneuro.0053-14.2015] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/25/2015] [Accepted: 04/07/2015] [Indexed: 01/04/2023] Open
Abstract
The growth hormone secretagogue receptor (GHSR1a), the target of the ghrelin peptide, is widely distributed throughout the brain, and, while studies have often reported very low or absent levels of central ghrelin, it is now known that GHSR1a, even in the absence of a natural ligand, has physiological roles. Not only do these roles originate from the receptor's constitutive activity, but recent data indicate that GHSR1a dimerizes with a wide array of other receptors. These include the dopamine 1 receptor (D1R), the dopamine 2 receptor (D2R), the melanocortin-3 receptor (MC3R), the serotonin 2C receptor (5-HT2C), and possibly the cannabinoid type 1 receptor (CB1). Within these dimers, signaling of the protomers involved are modified through facilitation, inhibition, and even modification of signaling pathways resulting in physiological consequences not seen in the absence of these dimers. While in some cases the ghrelin peptide is not required for these modifications to occur, in others, the presence is necessary for these changes to take effect. These heterodimers demonstrate the broad array of roles and complexity of the ghrelin system. By better understanding how these dimers work, it is hoped that improved treatments for a variety of disorders, including Parkinson's disease, schizophrenia, addiction, obesity, diabetes, and more, can be devised. In this review, we examine the current state of knowledge surrounding GHSR heterodimers, and how we can apply this knowledge to various pharmacological treatments.
Collapse
|
12
|
Rocchetti J, Isingrini E, Dal Bo G, Sagheby S, Menegaux A, Tronche F, Levesque D, Moquin L, Gratton A, Wong TP, Rubinstein M, Giros B. Presynaptic D2 dopamine receptors control long-term depression expression and memory processes in the temporal hippocampus. Biol Psychiatry 2015; 77:513-25. [PMID: 24742619 DOI: 10.1016/j.biopsych.2014.03.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/04/2014] [Accepted: 03/13/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Dysfunctional mesocorticolimbic dopamine signaling has been linked to alterations in motor and reward-based functions associated with psychiatric disorders. Converging evidence from patients with psychiatric disorders and use of antipsychotics suggests that imbalance of dopamine signaling deeply alters hippocampal functions. However, given the lack of full characterization of a functional mesohippocampal pathway, the precise role of dopamine transmission in memory deficits associated with these disorders and their dedicated therapies is unknown. In particular, the positive outcome of antipsychotic treatments, commonly antagonizing D2 dopamine receptors (D2Rs), on cognitive deficits and memory impairments remains questionable. METHODS Following pharmacologic and genetic manipulation of dopamine transmission, we performed anatomic, neurochemical, electrophysiologic, and behavioral investigations to uncover the role of D2Rs in hippocampal-dependent plasticity and learning. Naïve mice (n = 4-21) were used in the different procedures. RESULTS Dopamine modulated both long-term potentiation and long-term depression in the temporal hippocampus as well as spatial and recognition learning and memory in mice through D2Rs. Although genetic deletion or pharmacologic blockade of D2Rs led to the loss of long-term potentiation expression, the specific genetic removal of presynaptic D2Rs impaired long-term depression and performances on spatial memory tasks. CONCLUSIONS Presynaptic D2Rs in dopamine fibers of the temporal hippocampus tightly modulate long-term depression expression and play a major role in the regulation of hippocampal learning and memory. This direct role of mesohippocampal dopamine input as uncovered here adds a new dimension to dopamine involvement in the physiology underlying deficits associated with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jill Rocchetti
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Elsa Isingrini
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Gregory Dal Bo
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Sara Sagheby
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Aurore Menegaux
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - François Tronche
- Institut national de la santé et de la recherche médicale, Unité Mixte de Recherche en Santé 1130, and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8246, Sorbonne University Université Pierre et Marie Curie, Neuroscience Paris Seine, Paris, France
| | - Daniel Levesque
- Département de Pharmacie, Université de Montréal, Montreal, Quebec, Canada
| | - Luc Moquin
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Alain Gratton
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Tak Pan Wong
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Instituto de Investigaciones en Ingenieria Genética y Biologia Molecular (CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina. and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Bruno Giros
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Institut national de la santé et de la recherche médicale, Unité Mixte de Recherche en Santé 1130, and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8246, Sorbonne University Université Pierre et Marie Curie, Neuroscience Paris Seine, Paris, France.
| |
Collapse
|
13
|
Gangarossa G, Ceolin L, Paucard A, Lerner-Natoli M, Perroy J, Fagni L, Valjent E. Repeated stimulation of dopamine D1-like receptor and hyperactivation of mTOR signaling lead to generalized seizures, altered dentate gyrus plasticity, and memory deficits. Hippocampus 2014; 24:1466-81. [DOI: 10.1002/hipo.22327] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2014] [Indexed: 01/18/2023]
Affiliation(s)
- Giuseppe Gangarossa
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier France
- INSERM, U661; Montpellier France
- Universités de Montpellier 1 & 2; UMR-5203 Montpellier France
| | - Laura Ceolin
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier France
- INSERM, U661; Montpellier France
- Universités de Montpellier 1 & 2; UMR-5203 Montpellier France
| | - Alexia Paucard
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier France
- INSERM, U661; Montpellier France
- Universités de Montpellier 1 & 2; UMR-5203 Montpellier France
| | - Mireille Lerner-Natoli
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier France
- INSERM, U661; Montpellier France
- Universités de Montpellier 1 & 2; UMR-5203 Montpellier France
| | - Julie Perroy
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier France
- INSERM, U661; Montpellier France
- Universités de Montpellier 1 & 2; UMR-5203 Montpellier France
| | - Laurent Fagni
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier France
- INSERM, U661; Montpellier France
- Universités de Montpellier 1 & 2; UMR-5203 Montpellier France
| | - Emmanuel Valjent
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier France
- INSERM, U661; Montpellier France
- Universités de Montpellier 1 & 2; UMR-5203 Montpellier France
| |
Collapse
|
14
|
David O, Barrera I, Chinnakkaruppan A, Kaphzan H, Nakazawa T, Yamamoto T, Rosenblum K. Dopamine-induced tyrosine phosphorylation of NR2B (Tyr1472) is essential for ERK1/2 activation and processing of novel taste information. Front Mol Neurosci 2014; 7:66. [PMID: 25100942 PMCID: PMC4103512 DOI: 10.3389/fnmol.2014.00066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/02/2014] [Indexed: 01/14/2023] Open
Abstract
Understanding the heterosynaptic interaction between glutamatergic and neuromodulatory synapses is highly important for revealing brain function in health and disease. For instance, the interaction between dopamine and glutamate neurotransmission is vital for memory and synaptic plasticity consolidation, and it is known to converge on extracellular signal-regulated kinase (ERK)-MAPK signaling in neurons. Previous studies suggest that dopamine induces N-methyl-D-aspartate (NMDA) receptor phosphorylation at the NR2B Y1472 subunit, influencing receptor internalization at the synaptic plasma membrane. However, it is unclear whether this phosphorylation is upstream to and/or necessary for ERK1/2 activation, which is known to be crucial for synaptic plasticity and memory consolidation. Here, we tested the hypothesis that tyrosine phosphorylation of NR2B at Y1472 is correlated with ERK1/2 activation by dopamine and necessary for it as well. We find that dopamine receptor D1, but not D2, activates ERK1/2 and leads to NR2BY1472 phosphorylation in the mature hippocampus and cortex. Moreover, our results indicate that NR2B Y1472 phosphorylation is necessary for ERK1/2 activation. Importantly, application of dopamine or the D1 receptor agonist SKF38393 to hippocampal slices from NR2B F1472 mutant mice did not result in ERK1/2 activation, suggesting this site is not only correlated with ERK1/2 activation by dopamine stimulation, but also necessary for it. In addition, NR2B F1472 mice show impairment in learning of attenuation of taste neophobia but not associative taste learning. Our study shows that the dopaminergic and glutamatergic transmission converge on the NMDA receptor itself, at the Y1472 site of the NR2B subunit, and that this convergence is essential for ERK1/2 activation in the mature brain and for processing new sensory information in the cortex.
Collapse
Affiliation(s)
- Orit David
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel
| | - Iliana Barrera
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel
| | | | - Hanoch Kaphzan
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel
| | - Takanobu Nakazawa
- Division of Oncology, Institute of Medical Science, University of Tokyo Tokyo, Japan
| | - Tadashi Yamamoto
- Division of Oncology, Institute of Medical Science, University of Tokyo Tokyo, Japan
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel ; Center for Gene Manipulation in the Brain, University of Haifa Haifa, Israel
| |
Collapse
|
15
|
Suárez LM, Bustamante J, Orensanz LM, Martín del Río R, Solís JM. Cooperation of taurine uptake and dopamine D1 receptor activation facilitates the induction of protein synthesis-dependent late LTP. Neuropharmacology 2014; 79:101-11. [DOI: 10.1016/j.neuropharm.2013.10.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 01/07/2023]
|
16
|
Hansen N, Manahan-Vaughan D. Dopamine D1/D5 receptors mediate informational saliency that promotes persistent hippocampal long-term plasticity. Cereb Cortex 2014; 24:845-58. [PMID: 23183712 PMCID: PMC3948488 DOI: 10.1093/cercor/bhs362] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA) plays an essential role in the enablement of cognition. It adds color to experience-dependent information storage, conferring salience to the memories that result. At the synaptic level, experience-dependent information storage is enabled by synaptic plasticity, and given its importance for memory formation, it is not surprising that DA comprises a key neuromodulator in the enablement of synaptic plasticity, and particularly of plasticity that persists for longer periods of time: Analogous to long-term memory. The hippocampus, that is a critical structure for the synaptic processing of semantic, episodic, spatial, and declarative memories, is specifically affected by DA, with the D1/D5 receptor proving crucial for hippocampus-dependent memory. Furthermore, D1/D5 receptors are pivotal in conferring the properties of novelty and reward to information being processed by the hippocampus. They also facilitate the expression of persistent forms of synaptic plasticity, and given reports that both long-term potentiation and long-term depression encode different aspects of spatial representations, this suggests that D1/D5 receptors can drive the nature and qualitative content of stored information in the hippocampus. In light of these observations, we propose that D1/D5 receptors gate hippocampal long-term plasticity and memory and are pivotal in conferring the properties of novelty and reward to information being processed by the hippocampus.
Collapse
Affiliation(s)
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty,Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
17
|
Young JW, Geyer MA. Evaluating the role of the alpha-7 nicotinic acetylcholine receptor in the pathophysiology and treatment of schizophrenia. Biochem Pharmacol 2013; 86:1122-32. [PMID: 23856289 DOI: 10.1016/j.bcp.2013.06.031] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 12/16/2022]
Abstract
The group of schizophrenia disorders affects approximately 1% of the population and has both genetic and environmental etiologies. Sufferers report various behavioral abnormalities including hallucinations and delusions (positive symptoms), reduced joy and amotivation (negative symptoms), plus inattention and poor learning (cognitive deficits). Despite the heterogeneous symptoms experienced, most patients smoke. The self-medication hypothesis posits that patients smoke to alleviate symptoms, consistent with evidence for nicotine-induced enhancement of cognition. While nicotine acts on multiple nicotinic acetylcholine receptors (nAChRs), the primary target of research is often the homomeric α7 nAChR. Given genetic linkages between schizophrenia and this receptor, its association with P50 sensory gating deficits, and its reduced expression in post-mortem brains, many have attempted to develop α7 nAChR ligands for treating schizophrenia. Recent evidence that ligands can be orthosteric agonists or positive allosteric modulators (PAMs) has revitalized the hope for treatment discovery. Herein, we present evidence regarding: (1) pathophysiological alterations of α7 nAChRs that might occur in patients; (2) mechanistic evidence for the normal action of α7 nAChRs; (3) preclinical studies using α7 nAChR orthosteric agonists and type I/II PAMs; and (4) where successful translational testing has occurred for particular compounds, detailing what is still required. We report that the accumulating evidence is positive, but that greater work is required using positron emission tomography to understand current alterations in α7 nAChR expression and their relationship to symptoms. Finally, cross-species behavioral tasks should be used more regularly to determine the predictive efficacy of treatments.
Collapse
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0804, United States; Research Service, San Diego Veteran's Affairs Hospital, 3350 La Jolla Drive, San Diego, CA 92037, United States.
| | | |
Collapse
|
18
|
Acheson DT, Twamley EW, Young JW. Reward learning as a potential target for pharmacological augmentation of cognitive remediation for schizophrenia: a roadmap for preclinical development. Front Neurosci 2013; 7:103. [PMID: 23785309 PMCID: PMC3684768 DOI: 10.3389/fnins.2013.00103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/23/2013] [Indexed: 12/14/2022] Open
Abstract
Rationale: Impaired cognitive abilities are a key characteristic of schizophrenia. Although currently approved pharmacological treatments have demonstrated efficacy for positive symptoms, to date no pharmacological treatments successfully reverse cognitive dysfunction in these patients. Cognitively-based interventions such as cognitive remediation (CR) and other psychosocial interventions however, may improve some of the cognitive and functional deficits of schizophrenia. Given that these treatments are time-consuming and labor-intensive, maximizing their effectiveness is a priority. Augmenting psychosocial interventions with pharmacological treatments may be a viable strategy for reducing the impact of cognitive deficits in patients with schizophrenia. Objective: We propose a strategy to develop pharmacological treatments that can enhance the reward-related learning processes underlying successful skill-learning in psychosocial interventions. Specifically, we review clinical and preclinical evidence and paradigms that can be utilized to develop these pharmacological augmentation strategies. Prototypes for this approach include dopamine D1 receptor and α7 nicotinic acetylcholine receptor agonists as attractive targets to specifically enhance reward-related learning during CR. Conclusion: The approach outlined here could be used broadly to develop pharmacological augmentation strategies across a number of cognitive domains underlying successful psychosocial treatment.
Collapse
Affiliation(s)
- Dean T Acheson
- Department of Psychiatry, University of California San Diego La Jolla, San Diego, CA, USA ; Research Service, San Diego Veteran's Affairs Hospital San Diego, CA, USA
| | | | | |
Collapse
|
19
|
Roggenhofer E, Fidzinski P, Shor O, Behr J. Reduced threshold for induction of LTP by activation of dopamine D1/D5 receptors at hippocampal CA1-subiculum synapses. PLoS One 2013; 8:e62520. [PMID: 23626827 PMCID: PMC3633881 DOI: 10.1371/journal.pone.0062520] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 03/21/2013] [Indexed: 11/18/2022] Open
Abstract
The phasic release of dopamine in the hippocampal formation has been shown to facilitate the encoding of novel information. There is evidence that the subiculum operates as a detector and distributor of sensory information, which incorporates the novelty and relevance of signals received from CA1. The subiculum acts as the final hippocampal relay station for outgoing information. Subicular pyramidal cells have been classified as regular- and burst-spiking neurons. The goal of the present study was to study the effect of dopamine D1/D5 receptor activation on synaptic transmission and plasticity in the subicular regular-spiking neurons of 4–6 week old Wistar rats. We demonstrate that prior activation of D1/D5 receptors reduces the threshold for the induction of long-term potentiation (LTP) in subicular regular-spiking neurons. Our results indicate that D1/D5 receptor activation facilitates a postsynaptic form of LTP in subicular regular-spiking cells that is NMDA receptor-dependent, relies on postsynaptic Ca2+ signaling, and requires the activation of protein kinase A. The enhanced propensity of subicular regular-spiking cells to express postsynaptic LTP after activation of D1/D5 receptors provides an intriguing mechanism for the encoding of hippocampal output information.
Collapse
Affiliation(s)
- Elisabeth Roggenhofer
- Department of Psychiatry and Psychotherapy, Charite, Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
20
|
Hodas JJL, Nehring A, Höche N, Sweredoski MJ, Pielot R, Hess S, Tirrell DA, Dieterich DC, Schuman EM. Dopaminergic modulation of the hippocampal neuropil proteome identified by bioorthogonal noncanonical amino acid tagging (BONCAT). Proteomics 2012; 12:2464-76. [PMID: 22744909 DOI: 10.1002/pmic.201200112] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Local protein synthesis and its activity-dependent modulation via dopamine receptor stimulation play an important role in synaptic plasticity - allowing synapses to respond dynamically to changes in their activity patterns. We describe here the metabolic labeling, enrichment, and MS-based identification of candidate proteins specifically translated in intact hippocampal neuropil sections upon treatment with the selective D1/D5 receptor agonist SKF81297. Using the noncanonical amino acid azidohomoalanine and click chemistry, we identified over 300 newly synthesized proteins specific to dendrites and axons. Candidates specific for the SKF81297-treated samples were predominantly involved in protein synthesis and synapse-specific functions. Furthermore, we demonstrate a dendrite-specific increase in proteins synthesis upon application of SKF81297. This study provides the first snapshot in the dynamics of the dopaminergic hippocampal neuropil proteome.
Collapse
Affiliation(s)
- Jennifer J L Hodas
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
THE MULTIPLE ETIOLOGIES OF SCHIZOPHRENIA PROMPT US TO RAISE THE QUESTION: what final common pathway can induce a convincing sense of the reality of the hallucinations in this disease? The observation that artificial stimulation of an intermediate order of neurons of a normal nervous system induces hallucinations indicates that the lateral entry of activity (not resulting from canonical synaptic transmission) at intermediate neuronal orders may provide a mechanism for hallucinations. Meaningful hallucinations can be de-constructed into an organized temporal sequence of internal sensations of associatively learned items that occur in the absence of any external stimuli. We hypothesize that these hallucinations are autonomously generated by the re-activation of pathological non-specific functional LINKs formed between the postsynaptic membranes at certain neuronal orders and are examined as a final common mechanism capable of explaining most of the features of the disease. Reversible and stabilizable hemi-fusion between simultaneously activated adjacent postsynaptic membranes is viewed as one of the normal mechanisms for functional LINK formation and is dependent on lipid membrane composition. Methods of removing the proteins that may traverse the non-specifically hemi-fused membrane segments and attempts to replace the phospholipid side chains to convert the membrane composition to a near-normal state may offer therapeutic opportunities.
Collapse
Affiliation(s)
- Kunjumon I Vadakkan
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
22
|
A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP. Trends Neurosci 2011; 34:536-47. [PMID: 21851992 DOI: 10.1016/j.tins.2011.07.006] [Citation(s) in RCA: 312] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/27/2011] [Accepted: 07/08/2011] [Indexed: 01/04/2023]
Abstract
According to the Hebb rule, the change in the strength of a synapse depends only on the local interaction of presynaptic and postsynaptic events. Studies at many types of synapses indicate that the early phase of long-term potentiation (LTP) has Hebbian properties. However, it is now clear that the Hebb rule does not account for late LTP; this requires an additional signal that is non-local. For novel information and motivational events such as rewards this signal at hippocampal CA1 synapses is mediated by the neuromodulator, dopamine. In this Review we discuss recent experimental findings that support the view that this 'neoHebbian' framework can account for memory behavior in a variety of learning situations.
Collapse
|
23
|
Dopaminergic modulation of cortical inputs during maturation of adult-born dentate granule cells. J Neurosci 2011; 31:4113-23. [PMID: 21411652 DOI: 10.1523/jneurosci.4913-10.2011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adult neurogenesis, a particular form of plasticity in the adult brain, is under dynamic control of neuronal activity mediated by various neurotransmitters. Despite accumulating evidence suggesting that the neurotransmitter dopamine (DA) regulates proliferation of neural precursor cells in the neurogenic zones, whether and how it acts on newly generated neurons that integrate into the established network remains unknown. Using patch-clamp recordings from retrovirus-labeled newborn hippocampal dentate granule cells (DGCs) in acute mouse brain slices, we found that DA not only caused a long-lasting attenuation of medial perforant path (MPP) inputs to the young DGCs, but also decreased their capacity to express long-term potentiation (LTP). In contrast, DA suppressed MPP transmission to mature DGCs to a similar extent but did not influence their LTP expression. This difference was linked to activation of distinct subtypes of DA receptors in DGCs at different developmental stages. Our observations suggest that DA is particularly effective in modulating the activities of hyperexcitable young neurons, which may have important implications for the dentate function as a filter for incoming information to the hippocampus.
Collapse
|
24
|
Buonanno A. The neuregulin signaling pathway and schizophrenia: from genes to synapses and neural circuits. Brain Res Bull 2010; 83:122-31. [PMID: 20688137 PMCID: PMC2958213 DOI: 10.1016/j.brainresbull.2010.07.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 07/14/2010] [Accepted: 07/20/2010] [Indexed: 02/07/2023]
Abstract
Numerous genetic linkage and association studies implicate members of the Neuregulin-ErbB receptor (NRG-ErbB) signaling pathway as schizophrenia "at risk" genes. An emphasis of this review is to propose plausible neurobiological mechanisms, regulated by the Neuregulin-ErbB signaling network, that may be altered in schizophrenia and contribute to its etiology. To this end, the distinct neurotransmitter pathways, neuronal subtypes and neural network systems altered in schizophrenia are initially discussed. Next, the review focuses on the possible significance of genetic studies associating NRG1 and ErbB4 with schizophrenia, in light of the functional role of this signaling pathway in regulating glutamatergic, GABAergic and dopaminergic neurotransmission, as well as modulating synaptic plasticity and gamma oscillations. The importance of restricted ErbB4 receptor expression in GABAergic interneurons is emphasized, particularly their expression at glutamatergic synapses of parvalbumin-positive fast-spiking interneurons where modulation of inhibitory drive could account for the dramatic effects of NRG-ErbB signaling on gamma oscillations and pyramidal neuron output. A case is made for reasons that the NRG-ErbB signaling pathway constitutes a "biologically plausible" system for understanding the pathogenic mechanisms that may underlie the complex array of positive, negative and cognitive deficits associated with schizophrenia during development.
Collapse
Affiliation(s)
- Andrés Buonanno
- National Institutes of Health, Eunice Shriver Kennedy NICHD, Section on Molecular Neurobiology, Program of Developmental Neurobiology, 35 Lincoln Drive, Bethesda, MD 20892-3714, USA.
| |
Collapse
|
25
|
Lodge DJ, Grace AA. Developmental pathology, dopamine, stress and schizophrenia. Int J Dev Neurosci 2010; 29:207-13. [PMID: 20727962 DOI: 10.1016/j.ijdevneu.2010.08.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 01/12/2023] Open
Abstract
Psychological stress is a contributing factor for a wide variety of neuropsychiatric diseases including substance use disorders, anxiety, depression and schizophrenia. However, it has not been conclusively determined how stress augments the symptoms of these diseases. Here we review evidence that the ventral hippocampus may be a site of convergence whereby a number of seemingly discrete risk factors, including stress, may interact to precipitate psychosis in schizophrenia. Specifically, aberrant hippocampal activity has been demonstrated to underlie both the elevated dopamine neuron activity and associated behavioral hyperactivity to dopamine agonists in a verified animal model of schizophrenia. In addition, stress, psychostimulant drug use, prenatal infection and select genetic polymorphisms all appear to augment ventral hippocampal function that may therefore exaggerate or precipitate psychotic symptoms. Such information is critical for our understanding into the pathology of psychiatric disease with the ultimate aim being the development of more effective therapeutics.
Collapse
Affiliation(s)
- Daniel J Lodge
- Department of Pharmacology & Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA.
| | | |
Collapse
|
26
|
Wolf ME. Regulation of AMPA receptor trafficking in the nucleus accumbens by dopamine and cocaine. Neurotox Res 2010; 18:393-409. [PMID: 20361291 DOI: 10.1007/s12640-010-9176-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 12/27/2022]
Abstract
Nucleus accumbens (NAc) neurons are excited primarily by AMPA-type glutamate receptors (AMPAR). This is required for cocaine seeking in animal models of cocaine addiction, suggesting AMPAR transmission in the NAc as a key control point for cocaine-related behaviors. This review will briefly describe AMPAR properties and trafficking, with a focus on studies in NAc neurons, and then consider mechanisms by which cocaine may alter AMPAR transmission. Two examples will be discussed that may be important in two different stages of addiction: learning about drugs and drug-related cues during the period of drug exposure, and persistent vulnerability to craving and relapse after abstinence is achieved. The first example is drawn from studies of cultured NAc neurons. Elevation of dopamine levels (as would occur following cocaine exposure) facilitates activity-dependent strengthening of excitatory synapses onto medium spiny neurons, the main cell type and projection neuron of the NAc. This occurs because activation of D1-class dopamine receptors primes AMPAR for synaptic insertion. This may create a temporal window in which stimuli related to cocaine-taking are more efficacious at eliciting synaptic plasticity and thus being encoded into memory. The second example involves rat models of cocaine addiction. Cell surface and synaptic expression of AMPAR on NAc neurons is persistently increased after withdrawal from repeated cocaine exposure. We hypothesize that this increases the reactivity of NAc neurons to glutamate inputs from cortex and limbic structures, facilitating the ability of these inputs to trigger cocaine seeking and thus contributing to the persistent vulnerability to relapse that characterizes addiction.
Collapse
Affiliation(s)
- Marina E Wolf
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064-3095, USA.
| |
Collapse
|
27
|
Coppa-Hopman R, Galle J, Pimkine D. D1 receptor antagonist-induced long-term depression in the medial prefrontal cortex of rat, in vivo: an animal model of psychiatric hypofrontality. J Psychopharmacol 2009; 23:672-85. [PMID: 18635697 DOI: 10.1177/0269881108091256] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of the following experiment was to induce a pathogenic hypofrontal condition by administering a dopamine-1 receptor (D(1)R) antagonist to rats. The pathophysiological effect of this manipulation upon glutamate-based long-term potentiation (LTP) in the medial prefrontal cortex (mPFC) was examined in vivo. Subjects were surgically implanted with stimulating electrodes into the corpus callosum and recording electrodes into the mPFC. High-frequency stimulation (HFS) was combined with the administration of the selective D(1)R family agonist A68930 hydrochloride (0.4 mg/kg/mL) and the selective D(1)R family antagonist SKF 83566 (0.15 mg/kg/mL). The administration of SKF 83566 hydrobromide prevented mPFC LTP, and resulted in HFS-induced long-term depression. This indicates that D(1)R activation is necessary for the induction of mPFC glutamate-based LTP. This is supported by our finding that the administration of A68930 hydrochloride combined with HFS induced LTP comparable with saline control levels, suggesting that D(1)R activation is necessary for the induction of baseline levels of mPFC LTP. Given that the mPFC governs executive behaviours that are subserved by LTP, such as working memory, these findings are relevant for the study of psychopathological conditions in which hypodopaminergic conditions exist in the mPFC and are correlated with psychiatric symptomotology, such as drug addiction and schizophrenia.
Collapse
Affiliation(s)
- Rd Coppa-Hopman
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, Ontario, Canada.
| | | | | |
Collapse
|
28
|
Neugebauer F, Korz V, Frey JU. Modulation of extracellular monoamine transmitter concentrations in the hippocampus after weak and strong tetanization of the perforant path in freely moving rats. Brain Res 2009; 1273:29-38. [PMID: 19345680 DOI: 10.1016/j.brainres.2009.03.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/11/2009] [Accepted: 03/25/2009] [Indexed: 12/29/2022]
Abstract
Hippocampal long-term potentiation (LTP) is considered as a cellular model of memory formation. Specific, electrical weak tetanization of distinct afferents such as the medial perforant path results in a short-lasting, protein synthesis-independent early-LTP (up to 4 h) within the dentate gyrus. A stronger tetanization leads to late-LTP (>4 h), which is protein synthesis-dependent and requires heterosynaptic activation during its induction, the latter of which can be provided by afferents from cortical brain regions or subcortical nuclei during memory formation in the behaving animal. In particular, noradrenaline (NA) is required for late-LTP in the dentate gyrus and dopamine for late-LTP in the apical CA1-dendrites. However, little is known about the concentrations and temporal dynamics of such neuromodulators like NA, serotonin (5-HT) and dopamine (DA) during LTP. We now implemented the microdialysis method to study this topic after stimulating the dentate gyrus in more detail. A weak tetanus of the perforant path, which normally leads to early-LTP, transiently but significantly decreased the concentration of NA (3 h) and increased the concentration of 5-HT (about 2 h) and DA (about 1 h) in the hippocampus. A strong tetanus, normally resulting in late-LTP, increased concentrations of NA and DA significantly and long-lasting (for about 5 h), whereas 5-HT concentration was increased with a delay (after about 30 min) and only for a short time (30 min). Thus different stimulation protocols resulted in different release patterns of neuromodulators, that may support discriminative processing of incoming information in the hippocampus.
Collapse
Affiliation(s)
- Frank Neugebauer
- Department of Neurophysiology, Leibniz-Institute for Neurobiology, Brenneckestrabetasse 6, Magdeburg 39118, Germany
| | | | | |
Collapse
|
29
|
Bales JW, Wagner AK, Kline AE, Dixon CE. Persistent cognitive dysfunction after traumatic brain injury: A dopamine hypothesis. Neurosci Biobehav Rev 2009; 33:981-1003. [PMID: 19580914 DOI: 10.1016/j.neubiorev.2009.03.011] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/10/2009] [Accepted: 03/23/2009] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) represents a significant cause of death and disability in industrialized countries. Of particular importance to patients the chronic effect that TBI has on cognitive function. Therapeutic strategies have been difficult to evaluate because of the complexity of injuries and variety of patient presentations within a TBI population. However, pharmacotherapies targeting dopamine (DA) have consistently shown benefits in attention, behavioral outcome, executive function, and memory. Still it remains unclear what aspect of TBI pathology is targeted by DA therapies and what time-course of treatment is most beneficial for patient outcomes. Fortunately, ongoing research in animal models has begun to elucidate the pathophysiology of DA alterations after TBI. The purpose of this review is to discuss clinical and experimental research examining DAergic therapies after TBI, which will in turn elucidate the importance of DA for cognitive function/dysfunction after TBI as well as highlight the areas that require further study.
Collapse
Affiliation(s)
- James W Bales
- Brain Trauma Research Center, University of Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
30
|
Dopamine D1 receptor modulates hippocampal representation plasticity to spatial novelty. J Neurosci 2009; 28:13390-400. [PMID: 19074012 DOI: 10.1523/jneurosci.2680-08.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The human hippocampus is critical for learning and memory. In rodents, hippocampal pyramidal neurons fire in a location-specific manner, forming relational representations of environmental cues. The importance of glutamatergic systems in learning and in hippocampal neural synaptic plasticity has been shown. However, the role of dopaminergic systems in the response of hippocampal neural plasticity to novel and familiar spatial stimuli remains unclear. To clarify this important issue, we recorded hippocampal neurons from dopamine D(1) receptor knock-out (D1R-KO) mice and their wild-type (WT) littermates under the manipulation of distinct spatial cues in a familiar and a novel environment. Here we report that in WT mice, the majority of place cells quickly responded to the manipulations of distal and proximal cues in both familiar and novel environments. In contrast, the influence of distal cues on spatial firing in D1R-KO mice was abolished. In the D1R-KO mice, the influence of proximal cues was facilitated in a familiar environment, and in a novel environment most of the place cells were less likely to respond to changes of spatial cues. Our results demonstrate that hippocampal neurons in mice can rapidly and flexibly encode information about space from both distal and proximal cues to cipher a novel environment. This ability is necessary for many types of learning, and lacking D1R can radically alter this learning-related neural activity. We propose that D1R is crucially implicated in encoding spatial information in novel environments, and influences the plasticity of hippocampal representations, which is important in spatial learning and memory.
Collapse
|
31
|
Neuregulin-1 regulates LTP at CA1 hippocampal synapses through activation of dopamine D4 receptors. Proc Natl Acad Sci U S A 2008; 105:15587-92. [PMID: 18832154 DOI: 10.1073/pnas.0805722105] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Neuregulin-1 (NRG-1) is genetically linked with schizophrenia, a neurodevelopmental cognitive disorder characterized by imbalances in glutamatergic and dopaminergic function. NRG-1 regulates numerous neurodevelopmental processes and, in the adult, suppresses or reverses long-term potentiation (LTP) at hippocampal glutamatergic synapses. Here we show that NRG-1 stimulates dopamine release in the hippocampus and reverses early-phase LTP via activation of D4 dopamine receptors (D4R). NRG-1 fails to depotentiate LTP in hippocampal slices treated with the antipsychotic clozapine and other more selective D4R antagonists. Moreover, LTP is not depotentiated in D4R null mice by either NRG-1 or theta-pulse stimuli. Conversely, direct D4R activation mimics NRG-1 and reduces AMPA receptor currents and surface expression. These findings demonstrate that NRG-1 mediates its unique role in counteracting LTP via dopamine signaling and opens future directions to study new aspects of NRG function. The novel functional link between NRG-1, dopamine, and glutamate has important implications for understanding how imbalances in Neuregulin-ErbB signaling can impinge on dopaminergic and glutamatergic function, neurotransmitter pathways associated with schizophrenia.
Collapse
|
32
|
Lodge DJ, Grace AA. Amphetamine activation of hippocampal drive of mesolimbic dopamine neurons: a mechanism of behavioral sensitization. J Neurosci 2008; 28:7876-82. [PMID: 18667619 PMCID: PMC2562638 DOI: 10.1523/jneurosci.1582-08.2008] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 06/30/2008] [Accepted: 06/30/2008] [Indexed: 11/21/2022] Open
Abstract
The repeated administration of psychostimulants induces an enhanced behavioral response to a subsequent drug challenge. This behavioral sensitization is proposed to model the increased drug craving observed in human psychostimulant abusers. Using in vivo extracellular recordings from identified ventral tegmental area dopamine (DA) neurons, we report that amphetamine-sensitized rats display an activation of ventral hippocampal neuron firing and a significantly greater number of spontaneously active DA neurons compared with saline-treated rats. Moreover, TTX inactivation of the ventral hippocampus restores DA neuron activity to control levels and also blocks the expression of locomotor sensitization. Taken as a whole, we propose that behavioral sensitization to psychostimulant drugs is attributable, at least in part, to persistent activation of the ventral hippocampus-nucleus accumbens pathway, with the resultant increase in tonic DA neuron firing enabling an abnormally higher response to subsequent psychostimulant administration.
Collapse
Affiliation(s)
- Daniel J Lodge
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | |
Collapse
|
33
|
Stramiello M, Wagner JJ. D1/5 receptor-mediated enhancement of LTP requires PKA, Src family kinases, and NR2B-containing NMDARs. Neuropharmacology 2008; 55:871-7. [PMID: 18644393 DOI: 10.1016/j.neuropharm.2008.06.053] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 06/25/2008] [Accepted: 06/26/2008] [Indexed: 11/17/2022]
Abstract
The efficacy of the D1/5 agonist SKF38393 (100nM-60microM) to increase long-term potentiation (LTP) in the CA1 region was investigated in the rat hippocampal slice preparation. The receptor specificity of this enhancing effect was confirmed using the D1/5 antagonist SKF83566 (2microM). Although the ability of D1/5 receptors to increase both the persistence and the early magnitude of LTP has previously been linked to activation of the cAMP/PKA pathway, the subsequent molecular events leading to the enhancement of LTP have not been characterized. In experiments using SKF38393 (20microM), a requirement for the activation of both protein kinase A (PKA) and Src family tyrosine kinase pathways was demonstrated, as pretreatment with either H89 (10microM) or PP2 (10microM) kinase inhibitors prevented the D1/5-mediated enhancement of LTP. In addition, NMDA receptors containing the NR2B subunit were identified as a potential downstream target for this signaling pathway, as pretreatment with the selective antagonist Ro 25-6981 (1microM) also prevented the D1/5-mediated enhancement of LTP. The results identify a crucial role for NR2B-containing NMDA receptors in the modulation of LTP by D1/5-receptors in the CA1, suggesting that endogenously released dopamine may act through this mechanism as a modulator of hippocampal-dependent learning and memory tasks.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Animals, Newborn
- Cyclic AMP-Dependent Protein Kinases/physiology
- Dopamine Agonists/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Electric Stimulation/methods
- Enzyme Inhibitors/pharmacology
- Hippocampus/drug effects
- Hippocampus/physiology
- In Vitro Techniques
- Long-Term Potentiation/drug effects
- Long-Term Potentiation/physiology
- Male
- Phenols/pharmacology
- Piperidines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/physiology
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- src-Family Kinases/physiology
Collapse
Affiliation(s)
- Michael Stramiello
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602-7389, USA
| | | |
Collapse
|
34
|
Gobert D, Topolnik L, Azzi M, Huang L, Badeaux F, Desgroseillers L, Sossin WS, Lacaille JC. Forskolin induction of late-LTP and up-regulation of 5' TOP mRNAs translation via mTOR, ERK, and PI3K in hippocampal pyramidal cells. J Neurochem 2008; 106:1160-74. [PMID: 18466337 DOI: 10.1111/j.1471-4159.2008.05470.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The late phase of long-term potentiation (LTP) requires activation of the mammalian target of rapamycin (mTOR) pathway and synthesis of new proteins. mTOR regulates protein synthesis via phosphorylation of 4E-binding proteins (4E-BPs) and S6K, and via selective up-regulation of 5' terminal oligopyrimidine (5' TOP) mRNAs that encode components of the translational machinery. In this study, we explored the regulation of 5' TOP mRNAs during late-LTP (L-LTP). Synaptic plasticity was studied at Schaffer collateral--CA1 pyramidal cell synapses in rat organotypic hippocampal slices. Forskolin, an adenylate cyclase activator, induced L-LTP in organotypic slices that was mTOR-dependent. To determine if 5' TOP mRNAs are specifically up-regulated during L-LTP, we generated a 5' TOP-myr-dYFP reporter to selectively monitor 5' TOP translation. Confocal imaging experiments in cultured slices revealed an increase in somatic and dendritic fluorescence after forskolin treatment. This up-regulation was dependent on an intact TOP sequence and was mTOR, extracellular signal-regulated kinase (ERK), and phosphatidylinositol 3-kinase (PI3K)-dependent. Our findings indicate that forskolin induces L-LTP in hippocampal neurons and up-regulates 5' TOP mRNAs translation via mTOR, suggesting that up-regulation of the translational machinery is a candidate mechanism for the stabilization of LTP.
Collapse
Affiliation(s)
- Delphine Gobert
- Département de Physiologie, Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Schicknick H, Schott BH, Budinger E, Smalla KH, Riedel A, Seidenbecher CI, Scheich H, Gundelfinger ED, Tischmeyer W. Dopaminergic modulation of auditory cortex-dependent memory consolidation through mTOR. ACTA ACUST UNITED AC 2008; 18:2646-58. [PMID: 18321872 PMCID: PMC2567422 DOI: 10.1093/cercor/bhn026] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previous studies in the auditory cortex of Mongolian gerbils on discrimination learning of the direction of frequency-modulated tones (FMs) revealed that long-term memory formation involves activation of the dopaminergic system, activity of the protein kinase mammalian target of rapamycin (mTOR), and protein synthesis. This led to the hypothesis that the dopaminergic system might modulate memory formation via regulation of mTOR, which is implicated in translational control. Here, we report that the D1/D5 dopamine receptor agonist SKF-38393 substantially improved gerbils’ FM discrimination learning when administered systemically or locally into the auditory cortex shortly before, shortly after, or 1 day before conditioning. Although acquisition performance during initial training was normal, the discrimination of FMs was enhanced during retraining performed hours or days after agonist injection compared with vehicle-injected controls. The D1/D5 receptor antagonist SCH-23390, the mTOR inhibitor rapamycin, and the protein synthesis blocker anisomycin suppressed this effect. By immunohistochemistry, D1 dopamine receptors were identified in the gerbil auditory cortex predominantly in the infragranular layers. Together, these findings suggest that in the gerbil auditory cortex dopaminergic inputs regulate mTOR-mediated, protein synthesis-dependent mechanisms, thus controlling for hours or days the consolidation of memory required for the discrimination of complex auditory stimuli.
Collapse
|
36
|
Granado N, Ortiz O, Suárez LM, Martín ED, Ceña V, Solís JM, Moratalla R. D1 but not D5 Dopamine Receptors Are Critical for LTP, Spatial Learning, and LTP-Induced arc and zif268 Expression in the Hippocampus. Cereb Cortex 2007; 18:1-12. [PMID: 17395606 DOI: 10.1093/cercor/bhm026] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent evidence suggests that glutamatergic and dopaminergic afferents must be activated to induce persistent long-term potentiation (LTP) in the hippocampus. Whereas extensive evidence supports the role of glutamate receptors in long-lasting synaptic plasticity and spatial learning and memory, there is less evidence regarding the role of dopamine receptors in these processes. Here, we used dopamine D(1) receptor knockout (D(1)R(-/-)) mice to explore the role of D(1)R in hippocampal LTP and its associated gene expression. We show that the magnitude of early and late phases of LTP (E-LTP and L-LTP) was markedly reduced in hippocampal slices from D(1)R(-/-) mice compared with wild-type mice. SCH23390, a D(1)/D(5)R antagonist, did not further reduce L-LTP in D(1)R(-/-) mice, suggesting that D(5)Rs are not involved. D(1)R(-/-) mice also showed a significant reduction of D(1)R-induced potentiation of N-Methyl-D-aspartic acid-mediated currents, via protein kinase activated by cyclic adenosine 3',5'-monophosphate activation. Finally, LTP-induced expression of the immediate early genes zif268 and arc in the hippocampal CA1 area was abolished in D(1)R(-/-) mice, and these mice showed impaired learning. These results indicate that D(1)R but not D(5)R are critical for hippocampal LTP and for the induction of Zif268 and Arc, proteins required for the transition from E-LTP to L-LTP and for memory consolidation in mammals.
Collapse
Affiliation(s)
- Noelia Granado
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
El-Ghundi M, O'Dowd BF, George SR. Insights into the Role of Dopamine Receptor Systems in Learning and Memory. Rev Neurosci 2007; 18:37-66. [PMID: 17405450 DOI: 10.1515/revneuro.2007.18.1.37] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is well established that learning and memory are complex processes involving and recruiting different brain modulatory neurotransmitter systems. Considerable evidence points to the involvement of dopamine in various aspects of cognition, and interest has been focused on investigating the clinical relevance of dopamine systems to age-related cognitive decline and manifestations of cognitive impairment in schizophrenia, Alzheimer's disease, Parkinson's disease and other neurodegenerative diseases. In the past decade or so, in spite of the molecular cloning of the five dopamine receptor subtypes, their specific roles in brain function remained inconclusive due to the lack of completely selective ligands that could distinguish between the members of the D1-like and D2-like dopamine receptor families. One of the most important advances in the field of dopamine research has been the generation of mutant mouse models permitting evaluation of the dopaminergic system using gene targeting technologies. These mouse models represent an important approach to explore the functional roles of closely related receptor subtypes. In this review, we present and discuss evidence on the role of dopamine receptors in different aspects of learning and memory at the cellular, molecular and behavioral levels. We compare evidence using conventional pharmacological, lesion or electrophysiological studies with results from mice with targeted deletions of different subtypes of dopamine receptor genes. We particularly focus on dopamine D1 and D2 receptors in an effort to delineate their specific roles in various aspects of cognitive function. We provide strong evidence, from our own recent work as well as others, that dopamine is part of the network that plays a very important role in cognitive function, and that although multiple dopamine receptor subtypes contribute to different aspects of learning and memory, the D1 receptor seems to play a more prominent role in mediating plasticity and specific aspects of cognitive function, including spatial learning and memory processes, reversal learning, extinction learning, and incentive learning.
Collapse
Affiliation(s)
- Mufida El-Ghundi
- Department of Pharmacology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
39
|
Kaphzan H, O'Riordan KJ, Mangan KP, Levenson JM, Rosenblum K. NMDA and dopamine converge on the NMDA-receptor to induce ERK activation and synaptic depression in mature hippocampus. PLoS One 2006; 1:e138. [PMID: 17205142 PMCID: PMC1762427 DOI: 10.1371/journal.pone.0000138] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 12/07/2006] [Indexed: 01/19/2023] Open
Abstract
The formation of enduring internal representation of sensory information demands, in many cases, convergence in time and space of two different stimuli. The first conveys the sensory input, mediated via fast neurotransmission. The second conveys the meaning of the input, hypothesized to be mediated via slow neurotransmission. We tested the biochemical conditions and feasibility for fast (NMDA) and slow (dopamine) neurotransmission to converge on the Mitogen Activated Protein Kinase signaling pathways, crucial in several forms of synaptic plasticity, and recorded its effects upon synaptic transmission. We detected differing kinetics of ERK2 activation and synaptic strength changes in the CA1 for low and high doses of neurotransmitters in hippocampal slices. Moreover, when weak fast and slow inputs are given together, they converge on ERK2, but not on p38 or JNK, and induce strong short-term synaptic depression. Surprisingly, pharmacological analysis revealed that a probable site of such convergence is the NMDA receptor itself, suggesting it serves as a detector and integrator of fast and slow neurotransmission in the mature mammalian brain, as revealed by ERK2 activation and synaptic function.
Collapse
Affiliation(s)
- Hanoch Kaphzan
- Center for Brain and Behavior, Department of Neurobiology and Ethology, Haifa University, Haifa, Israel
| | - Kenneth J. O'Riordan
- Department of Pharmacology and the Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Kile P. Mangan
- Department of Pharmacology and the Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Jonathan M. Levenson
- Department of Pharmacology and the Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Kobi Rosenblum
- Center for Brain and Behavior, Department of Neurobiology and Ethology, Haifa University, Haifa, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
O’Carroll CM, Martin SJ, Sandin J, Frenguelli B, Morris RG. Dopaminergic modulation of the persistence of one-trial hippocampus-dependent memory. Learn Mem 2006; 13:760-9. [PMID: 17142305 PMCID: PMC1783630 DOI: 10.1101/lm.321006] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 08/30/2006] [Indexed: 02/07/2023]
Abstract
The persistence of new memory traces in the hippocampus, encoded following appropriate activation of glutamatergic receptors and the induction of synaptic plasticity, can be influenced by heterosynaptic activation of neuromodulatory brain systems. We therefore investigated the effects of a hippocampus-specific blockade of dopamine D1/D5 receptors on the persistence of spatial memory encoded in one trial using a delayed matching-to-place (DMP) task in a watermaze in which rats learn a new escape location each day. A within-subjects design was used such that both short (20 min) and long (6 h) retention intervals, and both drug (SCH23390, a D1/D5 receptor antagonist) and vehicle (aCSF) infusions were tested on different days in the same animals. Bilateral intrahippocampal infusion of SCH23390 (5 microg in 1 microL per side) prior to trial 1 (encoding) caused a differential impairment as a function of memory delay-with no effect during trial 2 (memory retrieval) after a 20-min interval, but a block of memory at 6 h. Further experiments revealed that infusion of SCH23390 immediately after trial 1 had no effect on retention 6 h later, and the poor memory seen at long retention intervals when the drug was present at encoding was not due to a state-dependent failure of retrieval. These results suggest that activation of D1/D5 receptors during memory encoding is necessary for the formation of a persistent memory trace in the hippocampus. The complementary effects of D1/D5 receptor blockade on the persistence of LTP and the duration of memory are consistent with the idea that changes in synaptic strength underlie memory.
Collapse
Affiliation(s)
- Colin M. O’Carroll
- Laboratory for Cognitive Neuroscience, Centre for Cognitive and Neural Systems, The University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Stephen J. Martin
- Laboratory for Cognitive Neuroscience, Centre for Cognitive and Neural Systems, The University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Johan Sandin
- Translational Pharmacology, Department of Disease Biology, Astra Zeneca, SE-151 85 Södertälje, Sweden
| | - Bruno Frenguelli
- Division of Pathology and Neuroscience, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, United Kingdom
| | - Richard G.M. Morris
- Laboratory for Cognitive Neuroscience, Centre for Cognitive and Neural Systems, The University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| |
Collapse
|
41
|
Leonard SK, Ferry-Leeper P, Mailman RB. Low affinity binding of the classical D1 antagonist SCH23390 in rodent brain: potential interaction with A2A and D2-like receptors. Brain Res 2006; 1117:25-37. [PMID: 16962565 PMCID: PMC1945230 DOI: 10.1016/j.brainres.2006.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 08/04/2006] [Indexed: 11/19/2022]
Abstract
Whereas structurally dissimilar D(1) antagonists competing for [(3)H]-SCH23390 binding recognize primarily one site in striatum, two distinct affinity states are observed in both amygdala and hippocampus. The binding profile of SCH23390 is similar in both of these regions, with the high affinity site (K(D) approximately 0.4 nM) consistent with D(1)/D(5) receptors. The appearance of the low affinity site (K(D) approximately 300 nM) is dependent upon the absence of MgCl(2), but independent of D(1) expression (i.e., still present in D(1) knockout mice). Although the density of high affinity state receptor is lower in hippocampus or amygdala of D(1) knockout mice, some residual binding remains, consistent with the known expression of D(5) receptors in these regions. Remarkably, in hippocampus, the affinity of the low affinity site is shifted rightward in the presence of the D(2) antagonist domperidone and is largely absent in the hippocampus of D(2) knockout animals. Additionally, this site is also shifted rightward in the presence of the A(2A) ligands SCH58261, CSC, or NECA, or in the absence of A(2A) receptors. The affinity of SCH23390 for this low affinity site is greater than seen for SCH23390 binding to D(2) receptors in heterologous expression systems, consistent with the hypothesis that both D(2) and A(2A) receptors are involved in the low affinity binding site. Therefore, we suggest that the heteromerization of D(2) and A(2A) receptors reported previously in vitro also may occur in the brain of both rats and mice.
Collapse
MESH Headings
- Adenosine/metabolism
- Animals
- Benzazepines/metabolism
- Benzazepines/pharmacology
- Binding Sites/drug effects
- Binding Sites/genetics
- Binding, Competitive/drug effects
- Binding, Competitive/genetics
- Brain/anatomy & histology
- Brain/drug effects
- Brain/metabolism
- Domperidone/pharmacology
- Dopamine/metabolism
- Dopamine/pharmacology
- Dopamine Antagonists/metabolism
- Dopamine Antagonists/pharmacology
- Female
- HeLa Cells
- Humans
- Magnesium Chloride/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Radioligand Assay
- Rats
- Receptor Aggregation/drug effects
- Receptor Aggregation/genetics
- Receptor, Adenosine A2A/drug effects
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/metabolism
Collapse
Affiliation(s)
| | | | - Richard B. Mailman
- * Corresponding author. Fax: +1 919 966 9604. E-mail address: (R.B. Mailman)
| |
Collapse
|
42
|
Williams S, Mmbaga N, Chirwa S. Dopaminergic D1 receptor agonist SKF 38393 induces GAP-43 expression and long-term potentiation in hippocampus in vivo. Neurosci Lett 2006; 402:46-50. [PMID: 16675111 DOI: 10.1016/j.neulet.2006.03.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 03/30/2006] [Accepted: 03/30/2006] [Indexed: 10/24/2022]
Abstract
We evaluated whether activating dopamine D1 receptors (D1R) with an agonist will mimic the effects of long-term potentiation (LTP)-inducing electrical stimulation and trigger the expression of the presynaptic growth-associated protein 43 (GAP-43), a putative synaptic plasticity factor. Thus, we conducted GAP-43 protein analyses together with assessments of LTP across CA3/CA1 synapses in guinea pigs administered with SKF38393 (the D1R agonist) and/or SCH23390 (the D1R antagonist). Our results showed that guinea pigs treated with SKF38393 coupled with low-frequency stimulation gradually exhibited an LTP-like potentiation in correlation with increased GAP-43 protein expression. However, when SKF38393 treatment was preceded by administration of SCH23390, this antagonized the occurrence of both synaptic potentiation and GAP-43 up-regulation. By comparison, persistent LTP was readily expressed after brief high frequency tetanic stimulation in control guinea pigs, whereas animals injected with SCH23390 and tetanized only developed early-LTP but not late-LTP. Western blot analyses showed GAP-43 up-regulation in the tetanized control guinea pigs but not those injected with SCH23390. We conclude that direct D1R activations with an agonist can mimic LTP-inducing electrical stimulation to produce GAP-43 up-regulation and synaptic plasticity.
Collapse
Affiliation(s)
- Shimere Williams
- Division of Neurobiology and Neurotoxicology, Department of Biomedical Sciences, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208, USA
| | | | | |
Collapse
|
43
|
Gao C, Sun X, Wolf ME. Activation of D1 dopamine receptors increases surface expression of AMPA receptors and facilitates their synaptic incorporation in cultured hippocampal neurons. J Neurochem 2006; 98:1664-77. [PMID: 16800848 DOI: 10.1111/j.1471-4159.2006.03999.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Considerable evidence indicates that neuroadaptations leading to addiction involve the same cellular processes that enable learning and memory, such as long-term potentiation (LTP), and that psychostimulants influence LTP through dopamine (DA)-dependent mechanisms. In hippocampal CA1 pyramidal neurons, LTP involves insertion of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors into excitatory synapses. We used dissociated cultures to test the hypothesis that D1 family DA receptors influence synaptic plasticity in hippocampal neurons by modulating AMPA receptor trafficking. Brief exposure (5 min) to a D1 agonist increased surface expression of glutamate receptor (GluR)1-containing AMPA receptors by increasing their rate of externalization at extrasynaptic sites. This required the secretory pathway but not protein synthesis, and was mediated mainly by protein kinase A (PKA) with a smaller contribution from Ca2+-calmodulin-dependent protein kinase II (CaMKII). Prior D1 receptor stimulation facilitated synaptic insertion of GluR1 in response to subsequent stimulation of synaptic NMDA receptors with glycine. Our results support a model for synaptic GluR1 incorporation in which PKA is required for initial insertion into the extrasynaptic membrane whereas CaMKII mediates translocation into the synapse. By increasing the size of the extrasynaptic GluR1 pool, D1 receptors may promote LTP. Psychostimulants may usurp this mechanism, leading to inappropriate plasticity that contributes to addiction-related behaviors.
Collapse
Affiliation(s)
- Can Gao
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064-3095, USA
| | | | | |
Collapse
|
44
|
Huang YY, Kandel ER. Age-related enhancement of a protein synthesis-dependent late phase of LTP induced by low frequency paired-pulse stimulation in hippocampus. Learn Mem 2006; 13:298-306. [PMID: 16741282 PMCID: PMC1475810 DOI: 10.1101/lm.166906] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 02/21/2006] [Indexed: 11/25/2022]
Abstract
Protein synthesis-dependent late phase of LTP (L-LTP) is typically induced by repeated high-frequency stimulation (HFS). This form of L-LTP is reduced in the aged animal and is positively correlated with age-related memory loss. Here we report a novel form of protein synthesis-dependent late phase of LTP in the CA1 region of hippocampus induced by a brief 1-Hz paired-pulse stimulation (PP-1 Hz, 1 min). In contrast to L-LTP induced by HFS, the late phase of PP-1 Hz LTP does not exist in young adult animals. Rather, it emerges and becomes enhanced in an age-related way. Thus, in 1.5- to 2-mo-old mice, a brief PP-1 Hz stimulation induces only a short lasting LTP, decaying to baseline in about 90 min. By contrast, PP-1 Hz stimulation induces an enduring and protein synthesis dependent LTP in 12- to 18-mo-old mice. The PP-1 Hz-induced L-LTP is dependent on NMDA receptor activation, requires voltage-dependent calcium channels, and is modulated by dopamine D1/D5 receptors. Because memory ability declines with aging, the age-related enhancement of L-LTP induced by PP-1 Hz stimulation indicates that this form of L-LTP appears to be inversely correlated with memory ability.
Collapse
Affiliation(s)
- Yan-You Huang
- Kavli Institute for Brain Science, New York, New York, USA
| | | |
Collapse
|
45
|
Abstract
The theta rhythm is the largest extracellular synchronous signal that can be recorded from the mammalian brain, and has been strongly implicated in mnemonic functions of the hippocampus. We advance the proposal that the theta rhythm represents a "tag" for short-term memory processing in the hippocampus. We propose that the hippocampus receives two main types of input, theta from ascending brainstem-diencephalo-septal systems and "information bearing" mainly from thalamocortical and cortical systems. The temporal convergence of activity of these two systems results in the encoding of information in the hippocampus, primarily reaching it via cortical routes. By analogy to processes associated with long-term potentiation (LTP), we suggest that theta represents a strong depolarizing influence on NMDA receptor-containing cells of the hippocampus. The temporal coupling of a theta-induced depolarization and the release of glutamate to these cells from intra- and extrahippocampal sources activates them. This, in turn, initiates processes leading to a (short-term) strengthening of connections between presynaptic ("information bearing") and postsynaptic neurons of the hippocampus. Theta is selectively present in the rat during active exploratory movements. During exploration, a rat continually gathers and updates information about its environment. If this information is temporally coupled to theta (as with the case of locomotion), it becomes temporarily stored in the hippocampus by mechanisms similar to the early phase of LTP (E-LTP). If the exploratory behavior of the rat goes unreinforced, these relatively short-lasting traces (1-3 h) gradually weaken and eventually fade-to be reupdated. On the other hand, if the explorations of the rat lead to rewards (or punishments), additional modulatory inputs to the hippocampus become activated and convert the short-term, theta-dependent memory, into long-term stores.
Collapse
Affiliation(s)
- Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, 33431, USA.
| |
Collapse
|
46
|
Sutton MA, Schuman EM. Local translational control in dendrites and its role in long-term synaptic plasticity. ACTA ACUST UNITED AC 2005; 64:116-31. [PMID: 15883999 DOI: 10.1002/neu.20152] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Local protein synthesis in dendrites has emerged as a key mechanism contributing to enduring forms of synaptic plasticity. Although the translational capability of dendrites has been appreciated for over 20 years, it is only recently that significant progress has been made in elucidating mechanisms that contribute to its regulation. It is clear from work over the last few years that the control of translation in dendrites is complex, involving a host of unique (and often surprising) mechanisms that can operate together or in parallel to tightly control gene expression in time and space. Here, we discuss the strategies used by neurons to regulate translation in dendrites and how these are implemented in the service of long-term information storage.
Collapse
Affiliation(s)
- Michael A Sutton
- Division of Biology 114-96, California Institute of Technology, Pasadena, 91125, USA
| | | |
Collapse
|
47
|
Smith WB, Starck SR, Roberts RW, Schuman EM. Dopaminergic stimulation of local protein synthesis enhances surface expression of GluR1 and synaptic transmission in hippocampal neurons. Neuron 2005; 45:765-79. [PMID: 15748851 DOI: 10.1016/j.neuron.2005.01.015] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 12/01/2004] [Accepted: 01/07/2005] [Indexed: 10/25/2022]
Abstract
The use-dependent modification of synapses is strongly influenced by dopamine, a transmitter that participates in both the physiology and pathophysiology of animal behavior. In the hippocampus, dopaminergic signaling is thought to play a key role in protein synthesis-dependent forms of synaptic plasticity. The molecular mechanisms by which dopamine influences synaptic function, however, are not well understood. Using a GFP-based reporter, as well as a small-molecule reporter of endogenous protein synthesis, we show that dopamine D1/D5 receptor activation stimulates local protein synthesis in the dendrites of hippocampal neurons. We also identify the GluR1 subunit of AMPA receptors as one protein upregulated by dopamine receptor activation, with increased incorporation of surface GluR1 at synaptic sites. The insertion of new GluRs is accompanied by an increase in the frequency of miniature synaptic events. Together, these data suggest a local protein synthesis-dependent activation of previously silent synapses as a result of dopamine receptor stimulation.
Collapse
Affiliation(s)
- W Bryan Smith
- Division of Biology 114-96 and, HHMI, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
48
|
Chirwa S, Aduonum A, Pizarro J, Reasor J, Kawai Y, Gonzalez M, McAdory BS, Onaivi E, Barea-Rodriguez EJ. Dopaminergic DA1 signaling couples growth-associated protein-43 and long-term potentiation in guinea pig hippocampus. Brain Res Bull 2005; 64:433-40. [PMID: 15607831 DOI: 10.1016/j.brainresbull.2004.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 09/02/2004] [Accepted: 09/27/2004] [Indexed: 11/28/2022]
Abstract
The basic goal of the project was to determine whether dopaminergic DA1 receptor (DA1R) signaling couples growth-associated protein 43 (GAP-43; a putative "plasticity" protein) and long-term potentiation (LTP; an enduring form of synaptic plasticity). Thus, guinea pigs were prepped to stimulate the CA3 and evoke population spikes in the CA1 neurons in the hippocampus in vivo. Animals were injected with either saline or SCH23390 (a selective DA1R antagonist), 1-2 h prior to recordings. It was found that tetanic stimulation (100 Hz, 1 s, three trains at 15 s intervals) readily produced early-LTP and late-LTP in the saline group. In contrast, none of the guinea pigs pre-treated with SCH23390 developed late-LTP, though early-LTP had been present. Furthermore, both GAP-43 mRNA and protein were up-regulated after LTP induction in the saline group. However, GAP-43 protein up-regulation was blocked in animals treated with SCH23390. Anti-GAP-43 immunoreactivity was intense in CA3/CA1 synaptic regions, whereas GAP-43 mRNA hybridization was localized to somatic layers in the hippocampus. Altogether, our results suggest that dopaminergic DA1 signaling partly couples GAP-43 and LTP.
Collapse
Affiliation(s)
- Sanika Chirwa
- Department of Physiology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Holmes A, Lachowicz JE, Sibley DR. Phenotypic analysis of dopamine receptor knockout mice; recent insights into the functional specificity of dopamine receptor subtypes. Neuropharmacology 2005; 47:1117-34. [PMID: 15567422 DOI: 10.1016/j.neuropharm.2004.07.034] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 06/20/2004] [Accepted: 07/28/2004] [Indexed: 12/11/2022]
Abstract
The functional specificity of dopamine receptor subtypes remains incompletely understood, in part due to the absence of highly selective agonists and antagonists. Phenotypic analysis of dopamine receptor knockout mice has been instrumental in identifying the role of dopamine receptor subtypes in mediating dopamine's effects on motor function, cognition, reward, and emotional behaviors. In this article, we provide an update of recent studies in dopamine receptor knockout mice and discuss the limitations and future promise of this approach.
Collapse
Affiliation(s)
- Andrew Holmes
- Section on Behavioral Science and Genetics, National Institute of Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
50
|
Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 2005; 74:1-58. [PMID: 15381316 DOI: 10.1016/j.pneurobio.2004.05.006] [Citation(s) in RCA: 1132] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 05/04/2004] [Indexed: 12/17/2022]
Abstract
Mesocortical [corrected] dopamine (DA) inputs to the prefrontal cortex (PFC) play a critical role in normal cognitive process and neuropsychiatic pathologies. This DA input regulates aspects of working memory function, planning and attention, and its dysfunctions may underlie positive and negative symptoms and cognitive deficits associated with schizophrenia. Despite intense research, there is still a lack of clear understanding of the basic principles of actions of DA in the PFC. In recent years, there has been considerable efforts by many groups to understand the cellular mechanisms of DA modulation of PFC neurons. However, the results of these efforts often lead to contradictions and controversies. One principal feature of DA that is agreed by most researchers is that DA is a neuromodulator and is clearly not an excitatory or inhibitory neurotransmitter. The present article aims to identify certain principles of DA mechanisms by drawing on published, as well as unpublished data from PFC and other CNS sites to shed light on aspects of DA neuromodulation and address some of the existing controversies. Eighteen key features about DA modulation have been identified. These points directly impact on the end result of DA neuromodulation, and in some cases explain why DA does not yield identical effects under all experimental conditions. It will become apparent that DA's actions in PFC are subtle and depend on a variety of factors that can no longer be ignored. Some of these key factors include distinct bell-shaped dose-response profiles of postsynaptic DA effects, different postsynaptic responses that are contingent on the duration of DA receptor stimulation, prolonged duration effects, bidirectional effects following activation of D1 and D2 classes of receptors and membrane potential state and history dependence of subsequent DA actions. It is hoped that these factors will be borne in mind in future research and as a result a more consistent picture of DA neuromodulation in the PFC will emerge. Based on these factors, a theory is proposed for DA's action in PFC. This theory suggests that DA acts to expand or contract the breadth of information held in working memory buffers in PFC networks.
Collapse
Affiliation(s)
- Jeremy K Seamans
- Department of Physiology, MUSC, 173 Ashley Avenue, Suite 403, Charleston, SC 29425, USA.
| | | |
Collapse
|