1
|
Pietrobon D, Conti F. Astrocytic Na +, K + ATPases in physiology and pathophysiology. Cell Calcium 2024; 118:102851. [PMID: 38308916 DOI: 10.1016/j.ceca.2024.102851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
The Na+, K+ ATPases play a fundamental role in the homeostatic functions of astrocytes. After a brief historic prologue and discussion of the subunit composition and localization of the astrocytic Na+, K+ ATPases, the review focuses on the role of the astrocytic Na+, K+ pumps in extracellular K+ and glutamate homeostasis, intracellular Na+ and Ca2+ homeostasis and signaling, regulation of synaptic transmission and neurometabolic coupling between astrocytes and neurons. Loss-of-function mutations in the gene encoding the astrocytic α2 Na+, K+ ATPase cause a rare monogenic form of migraine with aura (familial hemiplegic migraine type 2). On the other hand, the α2 Na+, K+ ATPase is upregulated in spinal cord and brain samples from amyotrophic lateral sclerosis and Alzheimer disease patients, respectively. In the last part, the review focuses on i) the migraine relevant phenotypes shown by familial hemiplegic migraine type 2 knock-in mice with 50 % reduced expression of the astrocytic α2 Na+, K+ ATPase and the insights into the pathophysiology of migraine obtained from these genetic mouse models, and ii) the evidence that upregulation of the astrocytic α2 Na+, K+ ATPase in mouse models of amyotrophic lateral sclerosis and Alzheimer disease promotes neuroinflammation and contributes to progressive neurodegeneration.
Collapse
Affiliation(s)
- Daniela Pietrobon
- Department of Biomedical Sciences and Padova Neuroscience Center (PNC), University of Padova, Padova 35131, Italy.
| | - Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy.
| |
Collapse
|
2
|
Shirbandi K, Rikhtegar R, Khalafi M, Mirza Aghazadeh Attari M, Rahmani F, Javanmardi P, Iraji S, Babaei Aghdam Z, Rezaei Rashnoudi AM. Functional Magnetic Resonance Spectroscopy of Lactate in Alzheimer Disease: A Comprehensive Review of Alzheimer Disease Pathology and the Role of Lactate. Top Magn Reson Imaging 2023; 32:15-26. [PMID: 37093700 PMCID: PMC10121369 DOI: 10.1097/rmr.0000000000000303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/27/2023] [Accepted: 02/17/2023] [Indexed: 04/13/2023]
Abstract
ABSTRACT Functional 1H magnetic resonance spectroscopy (fMRS) is a derivative of dynamic MRS imaging. This modality links physiologic metabolic responses with available activity and measures absolute or relative concentrations of various metabolites. According to clinical evidence, the mitochondrial glycolysis pathway is disrupted in many nervous system disorders, especially Alzheimer disease, resulting in the activation of anaerobic glycolysis and an increased rate of lactate production. Our study evaluates fMRS with J-editing as a cutting-edge technique to detect lactate in Alzheimer disease. In this modality, functional activation is highlighted by signal subtractions of lipids and macromolecules, which yields a much higher signal-to-noise ratio and enables better detection of trace levels of lactate compared with other modalities. However, until now, clinical evidence is not conclusive regarding the widespread use of this diagnostic method. The complex machinery of cellular and noncellular modulators in lactate metabolism has obscured the potential roles fMRS imaging can have in dementia diagnosis. Recent developments in MRI imaging such as the advent of 7 Tesla machines and new image reconstruction methods, coupled with a renewed interest in the molecular and cellular basis of Alzheimer disease, have reinvigorated the drive to establish new clinical options for the early detection of Alzheimer disease. Based on the latter, lactate has the potential to be investigated as a novel diagnostic and prognostic marker for Alzheimer disease.
Collapse
Affiliation(s)
- Kiarash Shirbandi
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Rikhtegar
- Department of Intracranial Endovascular Therapy, Alfried Krupp Krankenhaus Essen, Essen, Germany
| | - Mohammad Khalafi
- Medical Imaging Sciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farzaneh Rahmani
- Department of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Pouya Javanmardi
- Radiologic Technology Department, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajjad Iraji
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Babaei Aghdam
- Medical Imaging Sciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
3
|
Rocha A, Bellaver B, Souza DG, Schu G, Fontana IC, Venturin GT, Greggio S, Fontella FU, Schiavenin ML, Machado LS, Miron D, da Costa JC, Rosa-Neto P, Souza DO, Pellerin L, Zimmer ER. Clozapine induces astrocyte-dependent FDG-PET hypometabolism. Eur J Nucl Med Mol Imaging 2022; 49:2251-2264. [PMID: 35122511 DOI: 10.1007/s00259-022-05682-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/09/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE Advances in functional imaging allowed us to visualize brain glucose metabolism in vivo and non-invasively with [18F]fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) imaging. In the past decades, FDG-PET has been instrumental in the understanding of brain function in health and disease. The source of the FDG-PET signal has been attributed to neuronal uptake, with hypometabolism being considered as a direct index of neuronal dysfunction or death. However, other brain cells are also metabolically active, including astrocytes. Based on the astrocyte-neuron lactate shuttle hypothesis, the activation of the glutamate transporter 1 (GLT-1) acts as a trigger for glucose uptake by astrocytes. With this in mind, we investigated glucose utilization changes after pharmacologically downregulating GLT-1 with clozapine (CLO), an anti-psychotic drug. METHODS Adult male Wistar rats (control, n = 14; CLO, n = 12) received CLO (25/35 mg kg-1) for 6 weeks. CLO effects were evaluated in vivo with FDG-PET and cortical tissue was used to evaluate glutamate uptake and GLT-1 and GLAST levels. CLO treatment effects were also assessed in cortical astrocyte cultures (glucose and glutamate uptake, GLT-1 and GLAST levels) and in cortical neuronal cultures (glucose uptake). RESULTS CLO markedly reduced in vivo brain glucose metabolism in several brain areas, especially in the cortex. Ex vivo analyses demonstrated decreased cortical glutamate transport along with GLT-1 mRNA and protein downregulation. In astrocyte cultures, CLO decreased GLT-1 density as well as glutamate and glucose uptake. By contrast, in cortical neuronal cultures, CLO did not affect glucose uptake. CONCLUSION This work provides in vivo demonstration that GLT-1 downregulation induces astrocyte-dependent cortical FDG-PET hypometabolism-mimicking the hypometabolic signature seen in people developing dementia-and adds further evidence that astrocytes are key contributors of the FDG-PET signal.
Collapse
Affiliation(s)
- Andréia Rocha
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Bruna Bellaver
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Débora G Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Guilherme Schu
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Proaction Laboratory, Faculty of Psychology and Education Sciences, University of Coimbra, Coimbra, Portugal
| | - Igor C Fontana
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Gianina T Venturin
- Preclinical Research Center, Brain Institute (BraIns) of Rio Grande Do Sul, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Samuel Greggio
- Preclinical Research Center, Brain Institute (BraIns) of Rio Grande Do Sul, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Fernanda U Fontella
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Manoela L Schiavenin
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Luiza S Machado
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Diogo Miron
- Faculty of Pharmacy, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Jaderson C da Costa
- Preclinical Research Center, Brain Institute (BraIns) of Rio Grande Do Sul, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Diogo O Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Luc Pellerin
- Inserm U1313, Université et CHU de Poitiers, Poitiers, France
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
- Department of Pharmacology, Universidade Federal Do Rio Grande Do Sul, (UFRGS), 2600 Ramiro Barcelos St, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
4
|
Jackson JG, Krizman E, Takano H, Lee M, Choi GH, Putt ME, Robinson MB. Activation of Glutamate Transport Increases Arteriole Diameter in v ivo: Implications for Neurovascular Coupling. Front Cell Neurosci 2022; 16:831061. [PMID: 35308116 PMCID: PMC8930833 DOI: 10.3389/fncel.2022.831061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
In order to meet the energetic demands of cell-to-cell signaling, increases in local neuronal signaling are matched by a coordinated increase in local blood flow, termed neurovascular coupling. Multiple different signals from neurons, astrocytes, and pericytes contribute to this control of blood flow. Previously, several groups demonstrated that inhibition/ablation of glutamate transporters attenuates the neurovascular response. However, it was not determined if glutamate transporter activation was sufficient to increase blood flow. Here, we used multiphoton imaging to monitor the diameter of fluorescently labeled cortical arterioles in anesthetized C57/B6J mice. We delivered vehicle, glutamate transporter substrates, or a combination of a glutamate transporter substrate with various pharmacologic agents via a glass micropipette while simultaneously visualizing changes in arteriole diameter. We developed a novel image analysis method to automate the measurement of arteriole diameter in these time-lapse analyses. Using this workflow, we first conducted pilot experiments in which we focally applied L-glutamate, D-aspartate, or L-threo-hydroxyaspartate (L-THA) and measured arteriole responses as proof of concept. We subsequently applied the selective glutamate transport substrate L-THA (applied at concentrations that do not activate glutamate receptors). We found that L-THA evoked a significantly larger dilation than that observed with focal saline application. This response was blocked by co-application of the potent glutamate transport inhibitor, L-(2S,3S)-3-[3-[4-(trifluoromethyl)-benzoylamino]benzyloxy]-aspartate (TFB-TBOA). Conversely, we were unable to demonstrate a reduction of this effect through co-application of a cocktail of glutamate and GABA receptor antagonists. These studies provide the first direct evidence that activation of glutamate transport is sufficient to increase arteriole diameter. We explored potential downstream mechanisms mediating this transporter-mediated dilation by using a Ca2+ chelator or inhibitors of reversed-mode Na+/Ca2+ exchange, nitric oxide synthetase, or cyclo-oxygenase. The estimated effects and confidence intervals suggested some form of inhibition for a number of these inhibitors. Limitations to our study design prevented definitive conclusions with respect to these downstream inhibitors; these limitations are discussed along with possible next steps. Understanding the mechanisms that control blood flow are important because changes in blood flow/energy supply are implicated in several neurodegenerative disorders and are used as a surrogate measure of neuronal activity in widely used techniques such as functional magnetic resonance imaging (fMRI).
Collapse
Affiliation(s)
- Joshua G. Jackson
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| | - Elizabeth Krizman
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| | - Hajime Takano
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Meredith Lee
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Grace H. Choi
- Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Mary E. Putt
- Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael B. Robinson
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Eren-Koçak E, Dalkara T. Ion Channel Dysfunction and Neuroinflammation in Migraine and Depression. Front Pharmacol 2021; 12:777607. [PMID: 34858192 PMCID: PMC8631474 DOI: 10.3389/fphar.2021.777607] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/22/2021] [Indexed: 01/15/2023] Open
Abstract
Migraine and major depression are debilitating disorders with high lifetime prevalence rates. Interestingly these disorders are highly comorbid and show significant heritability, suggesting shared pathophysiological mechanisms. Non-homeostatic function of ion channels and neuroinflammation may be common mechanisms underlying both disorders: The excitation-inhibition balance of microcircuits and their modulation by monoaminergic systems, which depend on the expression and function of membrane located K+, Na+, and Ca+2 channels, have been reported to be disturbed in both depression and migraine. Ion channels and energy supply to synapses not only change excitability of neurons but can also mediate the induction and maintenance of inflammatory signaling implicated in the pathophysiology of both disorders. In this respect, Pannexin-1 and P2X7 large-pore ion channel receptors can induce inflammasome formation that triggers release of pro-inflammatory mediators from the cell. Here, the role of ion channels involved in the regulation of excitation-inhibition balance, synaptic energy homeostasis as well as inflammatory signaling in migraine and depression will be reviewed.
Collapse
Affiliation(s)
- Emine Eren-Koçak
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.,Department of Psychiatry, Medical Faculty, Hacettepe University, Ankara, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Patsatzis DG, Tingas EA, Goussis DA, Sarathy SM. Computational singular perturbation analysis of brain lactate metabolism. PLoS One 2019; 14:e0226094. [PMID: 31846455 PMCID: PMC6917278 DOI: 10.1371/journal.pone.0226094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 11/19/2019] [Indexed: 01/09/2023] Open
Abstract
Lactate in the brain is considered an important fuel and signalling molecule for neuronal activity, especially during neuronal activation. Whether lactate is shuttled from astrocytes to neurons or from neurons to astrocytes leads to the contradictory Astrocyte to Neuron Lactate Shuttle (ANLS) or Neuron to Astrocyte Lactate Shuttle (NALS) hypotheses, both of which are supported by extensive, but indirect, experimental evidence. This work explores the conditions favouring development of ANLS or NALS phenomenon on the basis of a model that can simulate both by employing the two parameter sets proposed by Simpson et al. (J Cereb. Blood Flow Metab., 27:1766, 2007) and Mangia et al. (J of Neurochemistry, 109:55, 2009). As most mathematical models governing brain metabolism processes, this model is multi-scale in character due to the wide range of time scales characterizing its dynamics. Therefore, we utilize the Computational Singular Perturbation (CSP) algorithm, which has been used extensively in multi-scale systems of reactive flows and biological systems, to identify components of the system that (i) generate the characteristic time scale and the fast/slow dynamics, (ii) participate to the expressions that approximate the surfaces of equilibria that develop in phase space and (iii) control the evolution of the process within the established surfaces of equilibria. It is shown that a decisive factor on whether the ANLS or NALS configuration will develop during neuronal activation is whether the lactate transport between astrocytes and interstitium contributes to the fast dynamics or not. When it does, lactate is mainly generated in astrocytes and the ANLS hypothesis is realised, while when it doesn't, lactate is mainly generated in neurons and the NALS hypothesis is realised. This scenario was tested in exercise conditions.
Collapse
Affiliation(s)
- Dimitris G. Patsatzis
- King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (CCRC), Thuwal, Saudi Arabia
- Department of Mechanics, School of Applied Mathematics and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Efstathios-Al. Tingas
- King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (CCRC), Thuwal, Saudi Arabia
- Perth College, University of the Highlands and Islands, Crieff Rd, Perth PH1 2NX, United Kingdom
| | - Dimitris A. Goussis
- Department of Mechanical Engineering, Khalifa University of Science, Technology and Research (KUSTAR), Abu Dhabi, United Arab Emirates
| | - S. Mani Sarathy
- King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (CCRC), Thuwal, Saudi Arabia
| |
Collapse
|
7
|
Calì C, Tauffenberger A, Magistretti P. The Strategic Location of Glycogen and Lactate: From Body Energy Reserve to Brain Plasticity. Front Cell Neurosci 2019; 13:82. [PMID: 30894801 PMCID: PMC6415680 DOI: 10.3389/fncel.2019.00082] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/18/2019] [Indexed: 01/08/2023] Open
Abstract
Brain energy metabolism has been the object of intense research in recent years. Pioneering work has identified the different cell types involved in energy production and use. Recent evidence has demonstrated a key role of L-Lactate in brain energy metabolism, producing a paradigm-shift in our understanding of the neuronal energy metabolism. At the center of this shift, is the identification of a central role of astrocytes in neuroenergetics. Thanks to their morphological characteristics, they are poised to take up glucose from the circulation and deliver energy substrates to neurons. Astrocyte neuron lactate shuttle (ANLS) model, has shown that the main energy substrate that astrocytes deliver to neurons is L-Lactate, to sustain neuronal oxidative metabolism. L-Lactate can also be produced from glycogen, the storage form of glucose, which is exclusively localized in astrocytes. Inhibition of glycogen metabolism and the ensuing inhibition of L-Lactate production leads to cognitive dysfunction. Experimental evidence indicates that the role of lactate in cognitive function relates not only to its role as a metabolic substrate for neurons but also as a signaling molecule for synaptic plasticity. Interestingly, a similar metabolic uncoupling appears to exist in peripheral tissues plasma, whereby glucose provides L-Lactate as the substrate for cellular oxidative metabolism. In this perspective article, we review the known information on the distribution of glycogen and lactate within brain cells, and how this distribution relates to the energy regime of glial vs. neuronal cells.
Collapse
Affiliation(s)
- Corrado Calì
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Arnaud Tauffenberger
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pierre Magistretti
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
8
|
Jakkamsetti V, Marin-Valencia I, Ma Q, Good LB, Terrill T, Rajasekaran K, Pichumani K, Khemtong C, Hooshyar MA, Sundarrajan C, Patel MS, Bachoo RM, Malloy CR, Pascual JM. Brain metabolism modulates neuronal excitability in a mouse model of pyruvate dehydrogenase deficiency. Sci Transl Med 2019; 11:eaan0457. [PMID: 30787166 PMCID: PMC6637765 DOI: 10.1126/scitranslmed.aan0457] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/25/2018] [Accepted: 01/31/2019] [Indexed: 12/25/2022]
Abstract
Glucose is the ultimate substrate for most brain activities that use carbon, including synthesis of the neurotransmitters glutamate and γ-aminobutyric acid via mitochondrial tricarboxylic acid (TCA) cycle. Brain metabolism and neuronal excitability are thus interdependent. However, the principles that govern their relationship are not always intuitive because heritable defects of brain glucose metabolism are associated with the paradoxical coexistence, in the same individual, of episodic neuronal hyperexcitation (seizures) with reduced basal cerebral electrical activity. One such prototypic disorder is pyruvate dehydrogenase (PDH) deficiency (PDHD). PDH is central to metabolism because it steers most of the glucose-derived flux into the TCA cycle. To better understand the pathophysiology of PDHD, we generated mice with brain-specific reduced PDH activity that paralleled salient human disease features, including cerebral hypotrophy, decreased amplitude electroencephalogram (EEG), and epilepsy. The mice exhibited reductions in cerebral TCA cycle flux, glutamate content, spontaneous, and electrically evoked in vivo cortical field potentials and gamma EEG oscillation amplitude. Episodic decreases in gamma oscillations preceded most epileptiform discharges, facilitating their prediction. Fast-spiking neuron excitability was decreased in brain slices, contributing to in vivo action potential burst prolongation after whisker pad stimulation. These features were partially reversed after systemic administration of acetate, which augmented cerebral TCA cycle flux, glutamate-dependent synaptic transmission, inhibition and gamma oscillations, and reduced epileptiform discharge duration. Thus, our results suggest that dysfunctional excitability in PDHD is consequent to reduced oxidative flux, which leads to decreased neuronal activation and impaired inhibition, and can be mitigated by an alternative metabolic substrate.
Collapse
Affiliation(s)
- Vikram Jakkamsetti
- Rare Brain Disorders Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Isaac Marin-Valencia
- Rare Brain Disorders Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - Qian Ma
- Rare Brain Disorders Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Levi B Good
- Rare Brain Disorders Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tyler Terrill
- Rare Brain Disorders Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Karthik Rajasekaran
- Rare Brain Disorders Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kumar Pichumani
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chalermchai Khemtong
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - M Ali Hooshyar
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Chandrasekhar Sundarrajan
- Rare Brain Disorders Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mulchand S Patel
- Department of Biochemistry, SUNY Buffalo, Buffalo, NY 14203, USA
| | - Robert M Bachoo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan M Pascual
- Rare Brain Disorders Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Eugene McDermott Center for Human Growth & Development / Center for Human Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
9
|
Abstract
Lactate in the brain has long been associated with ischaemia; however, more recent evidence shows that it can be found there under physiological conditions. In the brain, lactate is formed predominantly in astrocytes from glucose or glycogen in response to neuronal activity signals. Thus, neurons and astrocytes show tight metabolic coupling. Lactate is transferred from astrocytes to neurons to match the neuronal energetic needs, and to provide signals that modulate neuronal functions, including excitability, plasticity and memory consolidation. In addition, lactate affects several homeostatic functions. Overall, lactate ensures adequate energy supply, modulates neuronal excitability levels and regulates adaptive functions in order to set the 'homeostatic tone' of the nervous system.
Collapse
|
10
|
Lourenço CF, Ledo A, Barbosa RM, Laranjinha J. Neurovascular-neuroenergetic coupling axis in the brain: master regulation by nitric oxide and consequences in aging and neurodegeneration. Free Radic Biol Med 2017; 108:668-682. [PMID: 28435052 DOI: 10.1016/j.freeradbiomed.2017.04.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 02/21/2017] [Accepted: 04/18/2017] [Indexed: 02/08/2023]
Abstract
The strict energetic demands of the brain require that nutrient supply and usage be fine-tuned in accordance with the specific temporal and spatial patterns of ever-changing levels of neuronal activity. This is achieved by adjusting local cerebral blood flow (CBF) as a function of activity level - neurovascular coupling - and by changing how energy substrates are metabolized and shuttled amongst astrocytes and neurons - neuroenergetic coupling. Both activity-dependent increase of CBF and O2 and glucose utilization by active neural cells are inextricably linked, establishing a functional metabolic axis in the brain, the neurovascular-neuroenergetic coupling axis. This axis incorporates and links previously independent processes that need to be coordinated in the normal brain. We here review evidence supporting the role of neuronal-derived nitric oxide (•NO) as the master regulator of this axis. Nitric oxide is produced in tight association with glutamatergic activation and, diffusing several cell diameters, may interact with different molecular targets within each cell type. Hemeproteins such as soluble guanylate cyclase, cytochrome c oxidase and hemoglobin, with which •NO reacts at relatively fast rates, are but a few of the key in determinants of the regulatory role of •NO in the neurovascular-neuroenergetic coupling axis. Accordingly, critical literature supporting this concept is discussed. Moreover, in view of the controversy regarding the regulation of catabolism of different neural cells, we further discuss key aspects of the pathways through which •NO specifically up-regulates glycolysis in astrocytes, supporting lactate shuttling to neurons for oxidative breakdown. From a biomedical viewpoint, derailment of neurovascular-neuroenergetic axis is precociously linked to aberrant brain aging, cognitive impairment and neurodegeneration. Thus, we summarize current knowledge of how both neurovascular and neuroenergetic coupling are compromised in aging, traumatic brain injury, epilepsy and age-associated neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, suggesting that a shift in cellular redox balance may contribute to divert •NO bioactivity from regulation to dysfunction.
Collapse
Affiliation(s)
- Cátia F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ana Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Rui M Barbosa
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
11
|
Bonvento G, Valette J, Flament J, Mochel F, Brouillet E. Imaging and spectroscopic approaches to probe brain energy metabolism dysregulation in neurodegenerative diseases. J Cereb Blood Flow Metab 2017; 37:1927-1943. [PMID: 28276944 PMCID: PMC5464722 DOI: 10.1177/0271678x17697989] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/10/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022]
Abstract
Changes in energy metabolism are generally considered to play an important role in neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases. Whether these changes are causal or simply a part of self-defense mechanisms is a matter of debate. Furthermore, energy defects have often been discussed solely in the context of their probable neuronal origin without considering the cellular heterogeneity of the brain. Recent data point towards the existence of a tri-cellular compartmentation of brain energy metabolism between neurons, astrocytes, and oligodendrocytes, each cell type having a distinctive metabolic profile. Still, the number of methods to follow energy metabolism in patients is extremely limited and existing clinical techniques are blind to most cellular processes. There is a need to better understand how brain energy metabolism is regulated in health and disease through experiments conducted at different scales in animal models to implement new methods in the clinical setting. The purpose of this review is to offer a brief overview of the broad spectrum of methodological approaches that have emerged in recent years to probe energy metabolism in more detail. We conclude that multi-modal neuroimaging is needed to follow non-cell autonomous energy metabolism dysregulation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Gilles Bonvento
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut d’Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Julien Valette
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut d’Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Julien Flament
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut d’Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
- INSERM US 27, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France
| | - Fanny Mochel
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, France
- Department of Genetics, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
- University Pierre and Marie Curie, Neurometabolic Research Group, Paris, France
| | - Emmanuel Brouillet
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut d’Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
12
|
Olajide OJ, Ugbosanmi AT, Enaibe BU, Ogunrinola KY, Lewu SF, Asogwa NT, Akapa T, Imam A, Ibrahim A, Gbadamosi IT, Yawson EO. Cerebellar Molecular and Cellular Characterization in Rat Models of Alzheimer's Disease: Neuroprotective Mechanisms of Garcinia Biflavonoid Complex. Ann Neurosci 2017; 24:32-45. [PMID: 28827919 DOI: 10.1159/000464421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/04/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recent evidences suggest that cerebellar degeneration may be associated with the development of Alzheimer's disease (AD). However, previous reports were mainly observational, lacking substantial characterization of cellular and molecular cerebellar features during AD progression. PURPOSE This study is aimed at characterizing the cerebellum in rat models of AD and assessing the corresponding neuroprotective mechanisms of Garcinia biflavonoid complex (GBc). METHODS Male Wistar rats were grouped and treated alone or in combination with PBS (ad libitum)/day, corn oil (CO; 2 mL/kgBw/day), GBc (200 mg/kgBw/day), sodium azide (NaN3) (15 mg/kgBw/day) and aluminium chloride (AlCl3) (100 mg/kgBw/day). Groups A and B received PBS and CO, respectively; C received GBc; D received NaN3; E received AlCl3; F received NaN3 then GBc subsequently; G received AlCl3 then GBc subsequently; H received NaN3 and GBc simultaneously while I received AlCl3 and GBc simultaneously. Following treatments, cerebellar cortices were processed for histology, immunohistochemistry and colorimetric assays. RESULTS Our data revealed that cryptic granule neurons and pyknotic Purkinje cell bodies (characterized by short dendritic/axonal processes) correspond to indistinctly demarcated cerebellar layers in rats treated with AlCl3 and NaN3. These correlates, with observed hypertrophic astrogliosis, increased the neurofilament deposition, depleted the antioxidant system-shown by expressed superoxide dismutase and glutathione peroxidase, and cerebellar glucose bioenergetics dysfunction-exhibited in assayed lactate dehydrogenase and glucose-6-phosphate dehydrogenase. We further showed that GBc reverses cerebellar degeneration through modulation of neurochemical signaling pathways and stressor molecules that underlie AD pathogenesis. CONCLUSION Cellular, molecular and metabolic neurodegeneration within the cerebellum is associated with AlCl3 and NaN3-induced AD while GBc significantly inhibits corresponding neurotoxicity and is more efficacious when pre-administered.
Collapse
Affiliation(s)
- Olayemi Joseph Olajide
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Anita Temi Ugbosanmi
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Bernard Ufuoma Enaibe
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Kehinde Yomi Ogunrinola
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Susan Folashade Lewu
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Tosan Akapa
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - Aminu Imam
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Abdulmumin Ibrahim
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Emmanuel Olusola Yawson
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
13
|
Mazuel L, Blanc J, Repond C, Bouchaud V, Raffard G, Déglon N, Bonvento G, Pellerin L, Bouzier-Sore AK. A neuronal MCT2 knockdown in the rat somatosensory cortex reduces both the NMR lactate signal and the BOLD response during whisker stimulation. PLoS One 2017; 12:e0174990. [PMID: 28388627 PMCID: PMC5384673 DOI: 10.1371/journal.pone.0174990] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/17/2017] [Indexed: 12/20/2022] Open
Abstract
Although several in vitro and ex vivo evidence support the existence of lactate exchange between astrocytes and neurons, a direct demonstration in vivo is still lacking. In the present study, a lentiviral vector carrying a short hairpin RNA (shRNA) was used to downregulate the expression of the monocarboxylate transporter type 2 (MCT2) in neurons of the rat somatosensory cortex (called S1BF) by ~ 25%. After one hour of whisker stimulation, HRMAS 1H-NMR spectroscopy analysis of S1BF perchloric acid extracts showed that while an increase in lactate content is observed in both uninjected and shRNA-control injected extracts, such an effect was abrogated in shMCT2 injected rats. A 13C-incorporation analysis following [1-13C]glucose infusion during the stimulation confirmed that the elevated lactate observed during activation originates from newly synthesized [3-13C]lactate, with blood-derived [1-13C]glucose being the precursor. Moreover, the analysis of the 13C-labeling of glutamate in position C3 and C4 indicates that upon activation, there is an increase in TCA cycle velocity for control rats while a decrease is observed for MCT2 knockdown animals. Using in vivo localized 1H-NMR spectroscopy, an increase in lactate levels is observed in the S1BF area upon whisker stimulation for shRNA-control injected rats but not for MCT2 knockdown animals. Finally, while a robust BOLD fMRI response was evidenced in control rats, it was absent in MCT2 knockdown rats. These data not only demonstrate that glucose-derived lactate is locally produced following neuronal activation but also suggest that its use by neurons via MCT2 is probably essential to maintain synaptic activity within the barrel cortex.
Collapse
Affiliation(s)
- Leslie Mazuel
- Centre de Résonance Magnétique des Systèmes Biologiques UMR 5536, CNRS—Université Bordeaux 146 rue Léo-Saignat, Bordeaux, France
| | - Jordy Blanc
- Centre de Résonance Magnétique des Systèmes Biologiques UMR 5536, CNRS—Université Bordeaux 146 rue Léo-Saignat, Bordeaux, France
| | - Cendrine Repond
- Département de Physiologie, 7 rue du Bugnon, CH Lausanne, Switzerland
| | - Véronique Bouchaud
- Centre de Résonance Magnétique des Systèmes Biologiques UMR 5536, CNRS—Université Bordeaux 146 rue Léo-Saignat, Bordeaux, France
| | - Gérard Raffard
- Centre de Résonance Magnétique des Systèmes Biologiques UMR 5536, CNRS—Université Bordeaux 146 rue Léo-Saignat, Bordeaux, France
| | - Nicole Déglon
- Department of Clinical Neurosciences, Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne University Hospital, Lausanne, Switzerland
- Neurosciences Research Center (CRN), LCMN, Lausanne University Hospital, Lausanne, Switzerland
| | - Gilles Bonvento
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut d’Imagerie Biomédicale (I2BM), Molecular Imaging Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Luc Pellerin
- Centre de Résonance Magnétique des Systèmes Biologiques UMR 5536, CNRS—Université Bordeaux 146 rue Léo-Saignat, Bordeaux, France
- Département de Physiologie, 7 rue du Bugnon, CH Lausanne, Switzerland
| | - Anne-Karine Bouzier-Sore
- Centre de Résonance Magnétique des Systèmes Biologiques UMR 5536, CNRS—Université Bordeaux 146 rue Léo-Saignat, Bordeaux, France
| |
Collapse
|
14
|
Chatton JY, Magistretti PJ, Barros LF. Sodium signaling and astrocyte energy metabolism. Glia 2016; 64:1667-76. [PMID: 27027636 DOI: 10.1002/glia.22971] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/10/2016] [Accepted: 01/13/2016] [Indexed: 12/21/2022]
Abstract
The Na(+) gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na(+) -dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na(+) load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na(+) extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na(+) following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na(+) as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na(+) and the metabolic machinery. GLIA 2016;64:1667-1676.
Collapse
Affiliation(s)
- Jean-Yves Chatton
- Department of Fundamental Neurosciences, University of Lausanne, Rue Du Bugnon 9, Lausanne, Switzerland
| | - Pierre J Magistretti
- King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Brain Mind Institute, Ecole Polytechnique Fédérale De Lausanne (EPFL), Lausanne, Switzerland
| | | |
Collapse
|
15
|
Pascual JM, Ronen GM. Glucose Transporter Type I Deficiency (G1D) at 25 (1990-2015): Presumptions, Facts, and the Lives of Persons With This Rare Disease. Pediatr Neurol 2015; 53:379-93. [PMID: 26341673 PMCID: PMC4609610 DOI: 10.1016/j.pediatrneurol.2015.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/30/2015] [Accepted: 08/02/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND As is often the case for rare diseases, the number of published reviews and case reports of glucose transporter type I deficiency (G1D) approaches or exceeds that of original research. This can indicate medical interest, but also scientific stagnation. METHODS In assessing this state of affairs here, we focus not on what is peculiar or disparate about G1D, but on the assumptions that have reigned thus far undisputed, and critique them as a potential impediment to progress. To summarize the most common G1D phenotype, we trace the 25-year story of G1D in parallel with the natural history of one of two index patients, identified in 1990 by one of us (G.M.R.) and brought up to date by the other (J.M.P.) while later examining widely repeated but little-scrutinized statements. Among them are those that pertain to assumptions about brain fuels; energy failure; cerebrospinal glucose concentration; the purpose of ketogenic diet; the role of the defective blood-brain barrier; genotype-phenotype correlations; a bewildering array of phenotypes; ictogenesis, seizures, and the electroencephalograph; the use of mice to model the disorder; and what treatments may and may not be expected to accomplish. RESULTS We reach the forgone conclusion that the proper study of mankind-and of one of its ailments (G1D) -is man itself (rather than mice, isolated cells, or extrapolated inferences) and propose a framework for rigorous investigation that we hope will lead to a better understanding and to better treatments for this and for rare disorders in general. CONCLUSIONS These considerations, together with experience drawn from other disorders, lead, as a logical consequence, to the nullification of the view that therapeutic development (i.e., trials) for rare diseases could or should be accelerated without the most vigorous scientific scrutiny: trial and error constitute an inseparable couple, such that, at the present time, hastening the former is bound to precipitate the latter.
Collapse
Affiliation(s)
- Juan M. Pascual
- Rare Brain Disorders Program, Departments of Neurology and Neurotherapeutics, Physiology and Pediatrics, and Eugene McDermott Center for Human Growth and Development / Center for Human Genetics. The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gabriel M. Ronen
- Department of Pediatrics, McMaster Child Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
16
|
Tadi M, Allaman I, Lengacher S, Grenningloh G, Magistretti PJ. Learning-Induced Gene Expression in the Hippocampus Reveals a Role of Neuron -Astrocyte Metabolic Coupling in Long Term Memory. PLoS One 2015; 10:e0141568. [PMID: 26513352 PMCID: PMC4625956 DOI: 10.1371/journal.pone.0141568] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/10/2015] [Indexed: 12/20/2022] Open
Abstract
We examined the expression of genes related to brain energy metabolism and particularly those encoding glia (astrocyte)-specific functions in the dorsal hippocampus subsequent to learning. Context-dependent avoidance behavior was tested in mice using the step-through Inhibitory Avoidance (IA) paradigm. Animals were sacrificed 3, 9, 24, or 72 hours after training or 3 hours after retention testing. The quantitative determination of mRNA levels revealed learning-induced changes in the expression of genes thought to be involved in astrocyte-neuron metabolic coupling in a time dependent manner. Twenty four hours following IA training, an enhanced gene expression was seen, particularly for genes encoding monocarboxylate transporters 1 and 4 (MCT1, MCT4), alpha2 subunit of the Na/K-ATPase and glucose transporter type 1. To assess the functional role for one of these genes in learning, we studied MCT1 deficient mice and found that they exhibit impaired memory in the inhibitory avoidance task. Together, these observations indicate that neuron-glia metabolic coupling undergoes metabolic adaptations following learning as indicated by the change in expression of key metabolic genes.
Collapse
Affiliation(s)
- Monika Tadi
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Igor Allaman
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvain Lengacher
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gabriele Grenningloh
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre J. Magistretti
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, KSA, Saudi Arabia
- * E-mail:
| |
Collapse
|
17
|
Magistretti PJ, Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron 2015; 86:883-901. [PMID: 25996133 DOI: 10.1016/j.neuron.2015.03.035] [Citation(s) in RCA: 816] [Impact Index Per Article: 81.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The energy demands of the brain are high: they account for at least 20% of the body's energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and point at a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales.
Collapse
Affiliation(s)
- Pierre J Magistretti
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia; Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland; Center for Psychiatric Neurosciences, Department of Psychiatry, University of Lausanne, Lausanne 1008, Switzerland.
| | - Igor Allaman
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
18
|
Glycolytic flux controls D-serine synthesis through glyceraldehyde-3-phosphate dehydrogenase in astrocytes. Proc Natl Acad Sci U S A 2015; 112:E2217-24. [PMID: 25870284 DOI: 10.1073/pnas.1416117112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
D-Serine is an essential coagonist with glutamate for stimulation of N-methyl-D-aspartate (NMDA) glutamate receptors. Although astrocytic metabolic processes are known to regulate synaptic glutamate levels, mechanisms that control D-serine levels are not well defined. Here we show that d-serine production in astrocytes is modulated by the interaction between the D-serine synthetic enzyme serine racemase (SRR) and a glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (GAPDH). In primary cultured astrocytes, glycolysis activity was negatively correlated with D-serine level. We show that SRR interacts directly with GAPDH, and that activation of glycolysis augments this interaction. Biochemical assays using mutant forms of GAPDH with either reduced activity or reduced affinity to SRR revealed that GAPDH suppresses SRR activity by direct binding to GAPDH and through NADH, a product of GAPDH. NADH allosterically inhibits the activity of SRR by promoting the disassociation of ATP from SRR. Thus, astrocytic production of D-serine is modulated by glycolytic activity via interactions between GAPDH and SRR. We found that SRR is expressed in astrocytes in the subiculum of the human hippocampus, where neurons are known to be particularly vulnerable to loss of energy. Collectively, our findings suggest that astrocytic energy metabolism controls D-serine production, thereby influencing glutamatergic neurotransmission in the hippocampus.
Collapse
|
19
|
Astrocyte sodium signaling and neuro-metabolic coupling in the brain. Neuroscience 2015; 323:121-34. [PMID: 25791228 DOI: 10.1016/j.neuroscience.2015.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 11/20/2022]
Abstract
At tripartite synapses, astrocytes undergo calcium signaling in response to release of neurotransmitters and this calcium signaling has been proposed to play a critical role in neuron-glia interaction. Recent work has now firmly established that, in addition, neuronal activity also evokes sodium transients in astrocytes, which can be local or global depending on the number of activated synapses and the duration of activity. Furthermore, astrocyte sodium signals can be transmitted to adjacent cells through gap junctions and following release of gliotransmitters. A main pathway for activity-related sodium influx into astrocytes is via high-affinity sodium-dependent glutamate transporters. Astrocyte sodium signals differ in many respects from the well-described glial calcium signals both in terms of their temporal as well as spatial distribution. There are no known buffering systems for sodium ions, nor is there store-mediated release of sodium. Sodium signals thus seem to represent rather direct and unbiased indicators of the site and strength of neuronal inputs. As such they have an immediate influence on the activity of sodium-dependent transporters which may even reverse in response to sodium signaling, as has been shown for GABA transporters for example. Furthermore, recovery from sodium transients through Na(+)/K(+)-ATPase requires a measurable amount of ATP, resulting in an activation of glial metabolism. In this review, we present basic principles of sodium regulation and the current state of knowledge concerning the occurrence and properties of activity-related sodium transients in astrocytes. We then discuss different aspects of the relationship between sodium changes in astrocytes and neuro-metabolic coupling, putting forward the idea that indeed sodium might serve as a new type of intracellular ion signal playing an important role in neuron-glia interaction and neuro-metabolic coupling in the healthy and diseased brain.
Collapse
|
20
|
Pascual JM. Glut1 Deficiency (G1D). Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00050-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
Stobart JL, Anderson CM. Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Front Cell Neurosci 2013; 7:38. [PMID: 23596393 PMCID: PMC3622037 DOI: 10.3389/fncel.2013.00038] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/26/2013] [Indexed: 01/01/2023] Open
Abstract
Dynamic adjustments to neuronal energy supply in response to synaptic activity are critical for neuronal function. Glial cells known as astrocytes have processes that ensheath most central synapses and express G-protein-coupled neurotransmitter receptors and transporters that respond to neuronal activity. Astrocytes also release substrates for neuronal oxidative phosphorylation and have processes that terminate on the surface of brain arterioles and can influence vascular smooth muscle tone and local blood flow. Membrane receptor or transporter-mediated effects of glutamate represent a convergence point of astrocyte influence on neuronal bioenergetics. Astrocytic glutamate uptake drives glycolysis and subsequent shuttling of lactate from astrocytes to neurons for oxidative metabolism. Astrocytes also convert synaptically reclaimed glutamate to glutamine, which is returned to neurons for glutamate salvage or oxidation. Finally, astrocytes store brain energy currency in the form of glycogen, which can be mobilized to produce lactate for neuronal oxidative phosphorylation in response to glutamatergic neurotransmission. These mechanisms couple synaptically driven astrocytic responses to glutamate with release of energy substrates back to neurons to match demand with supply. In addition, astrocytes directly influence the tone of penetrating brain arterioles in response to glutamatergic neurotransmission, coordinating dynamic regulation of local blood flow. We will describe the role of astrocytes in neurometabolic and neurovascular coupling in detail and discuss, in turn, how astrocyte dysfunction may contribute to neuronal bioenergetic deficit and neurodegeneration. Understanding the role of astrocytes as a hub for neurometabolic and neurovascular coupling mechanisms is a critical underpinning for therapeutic development in a broad range of neurodegenerative disorders characterized by chronic generalized brain ischemia and brain microvascular dysfunction.
Collapse
Affiliation(s)
- Jillian L Stobart
- Division of Neurodegenerative Disorders, Department of Pharmacology and Therapeutics, St. Boniface Hospital Research, University of Manitoba Winnipeg, MB, Canada ; Department of Nuclear Medicine, Institute of Pharmacology and Toxicology, University of Zürich Zürich, Switzerland
| | | |
Collapse
|
22
|
The bioenergetic status relates to dopamine neuron loss in familial PD with PINK1 mutations. PLoS One 2012; 7:e51308. [PMID: 23251494 PMCID: PMC3519591 DOI: 10.1371/journal.pone.0051308] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/31/2012] [Indexed: 02/03/2023] Open
Abstract
Mutations in the PINK1 gene cause autosomal recessive familial Parkinson’s disease (PD). The gene encodes a mitochondrial protein kinase that plays an important role in maintaining mitochondrial function and integrity. However, the pathophysiological link between mutation-related bioenergetic deficits and the degenerative process in dopaminergic neurons remains to be elucidated. We performed phosphorous (31P) and proton (1H) 3-T magnetic resonance spectroscopic imaging (MRSI) in 11 members of a German family with hereditary PD due to PINK1 mutations (PARK6) compared to 23 age-matched controls. All family members had prior 18-Fluorodopa (FDOPA) positron emission tomography (PET). The striatal FDOPA uptake was correlated with quantified metabolic brain mapping in MRSI. At group level, the heterozygous PINK1 mutation carriers did not show any MRSI abnormalities relative to controls. In contrast, homozygous individuals with manifest PD had putaminal GPC, PCr, HEP and β-ATP levels well above the 2SD range of controls. Across all subjects, the FDOPA Ki values correlated positively with MI (r = 0.879, p<0.001) and inversely with β-ATP (r = −0.784, p = 0.008) and GPC concentrations (r = −0.651, p = 0.030) in the putamen. Our combined imaging data suggest that the dopaminergic deficit in this family with PD due to PINK1 mutations relates to osmolyte dysregulation, while the delivery of high energy phosphates was preserved. Our results corroborate the hypothesis that PINK1 mutations result in reduced neuronal survival, most likely due to impaired cellular stress resistance.
Collapse
|
23
|
Pellerin L, Magistretti PJ. Sweet sixteen for ANLS. J Cereb Blood Flow Metab 2012; 32:1152-66. [PMID: 22027938 PMCID: PMC3390819 DOI: 10.1038/jcbfm.2011.149] [Citation(s) in RCA: 523] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 08/24/2011] [Accepted: 09/22/2011] [Indexed: 02/03/2023]
Abstract
Since its introduction 16 years ago, the astrocyte-neuron lactate shuttle (ANLS) model has profoundly modified our understanding of neuroenergetics by bringing a cellular and molecular resolution. Praised or disputed, the concept has never ceased to attract attention, leading to critical advances and unexpected insights. Here, we summarize recent experimental evidence further supporting the main tenets of the model. Thus, evidence for distinct metabolic phenotypes between neurons (mainly oxidative) and astrocytes (mainly glycolytic) have been provided by genomics and classical metabolic approaches. Moreover, it has become clear that astrocytes act as a syncytium to distribute energy substrates such as lactate to active neurones. Glycogen, the main energy reserve located in astrocytes, is used as a lactate source to sustain glutamatergic neurotransmission and synaptic plasticity. Lactate is also emerging as a neuroprotective agent as well as a key signal to regulate blood flow. Characterization of monocarboxylate transporter regulation indicates a possible involvement in synaptic plasticity and memory. Finally, several modeling studies captured the implications of such findings for many brain functions. The ANLS model now represents a useful, experimentally based framework to better understand the coupling between neuronal activity and energetics as it relates to neuronal plasticity, neurodegeneration, and functional brain imaging.
Collapse
Affiliation(s)
- Luc Pellerin
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Pierre J Magistretti
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, and Center for Psychiatric Neuroscience UNIL-CHUV, Lausanne, Switzerland
| |
Collapse
|
24
|
Dawson N, Thompson RJ, McVie A, Thomson DM, Morris BJ, Pratt JA. Modafinil reverses phencyclidine-induced deficits in cognitive flexibility, cerebral metabolism, and functional brain connectivity. Schizophr Bull 2012; 38:457-74. [PMID: 20810469 PMCID: PMC3329989 DOI: 10.1093/schbul/sbq090] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE In the present study, we employ mathematical modeling (partial least squares regression, PLSR) to elucidate the functional connectivity signatures of discrete brain regions in order to identify the functional networks subserving PCP-induced disruption of distinct cognitive functions and their restoration by the procognitive drug modafinil. METHODS We examine the functional connectivity signatures of discrete brain regions that show overt alterations in metabolism, as measured by semiquantitative 2-deoxyglucose autoradiography, in an animal model (subchronic phencyclidine [PCP] treatment), which shows cognitive inflexibility with relevance to the cognitive deficits seen in schizophrenia. RESULTS We identify the specific components of functional connectivity that contribute to the rescue of this cognitive inflexibility and to the restoration of overt cerebral metabolism by modafinil. We demonstrate that modafinil reversed both the PCP-induced deficit in the ability to switch attentional set and the PCP-induced hypometabolism in the prefrontal (anterior prelimbic) and retrosplenial cortices. Furthermore, modafinil selectively enhanced metabolism in the medial prelimbic cortex. The functional connectivity signatures of these regions identified a unifying functional subsystem underlying the influence of modafinil on cerebral metabolism and cognitive flexibility that included the nucleus accumbens core and locus coeruleus. In addition, these functional connectivity signatures identified coupling events specific to each brain region, which relate to known anatomical connectivity. CONCLUSIONS These data support clinical evidence that modafinil may alleviate cognitive deficits in schizophrenia and also demonstrate the benefit of applying PLSR modeling to characterize functional brain networks in translational models relevant to central nervous system dysfunction.
Collapse
Affiliation(s)
- Neil Dawson
- Psychiatric Research Institute of Neuroscience in Glasgow (PsyRING), University of Glasgow, G12 8QQ, UK.
| | | | | | | | | | | |
Collapse
|
25
|
Martin C, Houitte D, Guillermier M, Petit F, Bonvento G, Gurden H. Alteration of sensory-evoked metabolic and oscillatory activities in the olfactory bulb of GLAST-deficient mice. Front Neural Circuits 2012; 6:1. [PMID: 22291618 PMCID: PMC3265768 DOI: 10.3389/fncir.2012.00001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 01/02/2012] [Indexed: 12/24/2022] Open
Abstract
Astrocytes are key cellular elements in both the tripartite synapse and the neurovascular unit. To fulfill this dual role in synaptic activity and metabolism, they express a panel of receptors and transporters that sense glutamate. Among them, the GLT-1 and GLAST transporters are known to regulate extracellular glutamate concentrations at excitatory synapses and consequently modulate glutamate receptor signaling. These major uptake systems are also involved in energy supply to neurons. However, the functional role of GLAST in concurrent regulation of metabolic and neuronal activity is currently unknown. We took advantage of the attractive structural and functional features of the main olfactory bulb to explore the impact of GLAST on sensory information processing while probing both glutamate uptake and neuronal activity in glomeruli and deeper cellular layers, respectively. Using odor-evoked 2-deoxyglucose imaging and local field potential recordings in GLAST knockout mice, we show in vivo that deletion of GLAST alters both glucose uptake and neuronal oscillations in olfactory bulb networks.
Collapse
Affiliation(s)
- Claire Martin
- Laboratoire Imagerie et Modélisation en Neurobiologie et Cancérologie UMR 8165, Université Paris-Sud, CNRS, Orsay, France
| | | | | | | | | | | |
Collapse
|
26
|
Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 2011; 14:724-38. [PMID: 22152301 DOI: 10.1016/j.cmet.2011.08.016] [Citation(s) in RCA: 1593] [Impact Index Per Article: 113.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/25/2011] [Accepted: 08/04/2011] [Indexed: 01/13/2023]
Abstract
The energy requirements of the brain are very high, and tight regulatory mechanisms operate to ensure adequate spatial and temporal delivery of energy substrates in register with neuronal activity. Astrocytes-a type of glial cell-have emerged as active players in brain energy delivery, production, utilization, and storage. Our understanding of neuroenergetics is rapidly evolving from a "neurocentric" view to a more integrated picture involving an intense cooperativity between astrocytes and neurons. This review focuses on the cellular aspects of brain energy metabolism, with a particular emphasis on the metabolic interactions between neurons and astrocytes.
Collapse
Affiliation(s)
- Mireille Bélanger
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | | | | |
Collapse
|
27
|
Gusdon AM, Chu CT. To eat or not to eat: neuronal metabolism, mitophagy, and Parkinson's disease. Antioxid Redox Signal 2011; 14:1979-87. [PMID: 21126205 PMCID: PMC3078495 DOI: 10.1089/ars.2010.3763] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neurons are exquisitely dependent upon mitochondrial respiration to support energy-demanding functions. Mechanisms that regulate mitochondrial quality control have recently taken center stage in Parkinson's disease research, particularly the selective degradation of mitochondria by autophagy (mitophagy). Unlike other cells, neurons show limited glycolytic potential, and both insufficient and excessive mitophagy have been linked to neurodegeneration. Kinases implicated in regulating mammalian mitophagy include extracellular signal-regulated protein kinases (ERK1/2) and PTEN-induced kinase 1 (PINK1). Increased expression of full-length PINK1 enhances recruitment of parkin to chemically depolarized mitochondria, resulting in rapid mitochondrial clearance in transformed cell lines. As parkin and PINK1 mutations cause autosomal recessive parkinsonism, potential defects in clearing dysfunctional mitochondria may contribute to mitochondrial abnormalities in disease. Given the unique features of metabolic regulation in neurons, however, mechanisms regulating mitochondrial network stability and the threshold for mitophagy are likely to vary from cells that preferentially utilize aerobic glycolysis. Moreover, removal of the entire mitochondrial complement may represent part of a neuronal cell death pathway. Future work utilizing physiological injuries that affect only a subset of mitochondria would help to elucidate whether defective recognition of damaged mitochondria, or alternatively, inability to maintain or generate healthy mitochondria, play the major roles in parkinsonian neurodegeneration.
Collapse
Affiliation(s)
- Aaron M Gusdon
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
28
|
|
29
|
Glycolysis inhibition decreases the levels of glutamate transporters and enhances glutamate neurotoxicity in the R6/2 Huntington's disease mice. Neurochem Res 2010; 35:1156-63. [PMID: 20401690 DOI: 10.1007/s11064-010-0168-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 04/02/2010] [Indexed: 10/19/2022]
Abstract
Excitotoxicity has been associated with the loss of medium spiny neurons (MSN) in Huntington's disease (HD). We have previously observed that the content of the glial glutamate transporters, glutamate transporter 1 (GLT-1) and glutamate-aspartate transporter (GLAST), diminishes in R6/2 mice at 14 weeks of age but not at 10 weeks, and that this change correlates with an increased vulnerability of striatal neurons to glutamate toxicity. We have also reported that inhibition of the glycolytic pathway decreases glutamate uptake and enhances glutamate neurotoxicity in the rat brain. We now show that at 10-weeks of age, glutamate excitotoxicity is precipitated in R6/2 mice, after the treatment with iodoacetate (IOA), an inhibitor of the glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). IOA induces a larger inhibition of GAPDH in R6/2 mice, while it similarly reduces the levels of GLT-1 and GLAST in wild-type and transgenic animals. Results suggest that metabolic failure and altered glutamate uptake are involved in the vulnerability of striatal neurons to glutamate excitotoxicity in HD.
Collapse
|
30
|
Abstract
The coupling between synaptic activity and glucose utilization (neurometabolic coupling) is a central physiologic principle of brain function that has provided the basis for 2-deoxyglucose-based functional imaging with positron emission tomography. Approximately 10 y ago we provided experimental evidence that indicated a central role of glutamate signaling on astrocytes in neurometabolic coupling. The basic mechanism in neurometabolic coupling is the glutamate-stimulated aerobic glycolysis in astrocytes, such that the sodium-coupled reuptake of glutamate by astrocytes and the ensuing activation of the Na(+)-K(+) ATPase triggers glucose uptake and its glycolytic processing, which results in the release of lactate from astrocytes. Lactate can then contribute to the activity-dependent fueling of the neuronal energy demands associated with synaptic transmission. Analyses of this coupling have been extended in vivo and have defined the methods of coupling for inhibitory neurotransmission as well as its spatial extent in relation to the propagation of metabolic signals within the astrocytic syncytium. On the basis of a large body of experimental evidence, we proposed an operational model, "the astrocyte-neuron lactate shuttle." A series of results obtained by independent laboratories have provided further support for this model. This body of evidence provides a molecular and cellular basis for interpreting data that are obtained with functional brain imaging studies.
Collapse
|
31
|
Shin JW, Nguyen KTD, Pow DV, Knight T, Buljan V, Bennett MR, Balcar VJ. Distribution of glutamate transporter GLAST in membranes of cultured astrocytes in the presence of glutamate transport substrates and ATP. Neurochem Res 2009; 34:1758-66. [PMID: 19440835 DOI: 10.1007/s11064-009-9982-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 04/20/2009] [Indexed: 11/27/2022]
Abstract
Neurotransmitter L-glutamate released at central synapses is taken up and "recycled" by astrocytes using glutamate transporter molecules such as GLAST and GLT. Glutamate transport is essential for prevention of glutamate neurotoxicity, it is a key regulator of neurotransmitter metabolism and may contribute to mechanisms through which neurons and glia communicate with each other. Using immunocytochemistry and image analysis we have found that extracellular D-aspartate (a typical substrate for glutamate transport) can cause redistribution of GLAST from cytoplasm to the cell membrane. The process appears to involve phosphorylation/dephosphorylation and requires intact cytoskeleton. Glutamate transport ligands L-trans-pyrrolidine-2,4-dicarboxylate and DL-threo-3-benzyloxyaspartate but not anti,endo-3,4-methanopyrrolidine dicarboxylate have produced similar redistribution of GLAST. Several representative ligands for glutamate receptors whether of ionotropic or metabotropic type, were found to have no effect. In addition, extracellular ATP induced formation of GLAST clusters in the cell membranes by a process apparently mediated by P2 receptors. The present data suggest that GLAST can rapidly and specifically respond to changes in the cellular environment thus potentially helping to fine-tune the functions of astrocytes.
Collapse
Affiliation(s)
- Jae-Won Shin
- Anatomy and Histology, School of Medical Sciences and Bosch Institute for Biomedical Research, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
32
|
Mangia S, Giove F, Tkác I, Logothetis NK, Henry PG, Olman CA, Maraviglia B, Di Salle F, Uğurbil K. Metabolic and hemodynamic events after changes in neuronal activity: current hypotheses, theoretical predictions and in vivo NMR experimental findings. J Cereb Blood Flow Metab 2009; 29:441-63. [PMID: 19002199 PMCID: PMC2743443 DOI: 10.1038/jcbfm.2008.134] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unraveling the energy metabolism and the hemodynamic outcomes of excitatory and inhibitory neuronal activity is critical not only for our basic understanding of overall brain function, but also for the understanding of many brain disorders. Methodologies of magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) are powerful tools for the noninvasive investigation of brain metabolism and physiology. However, the temporal and spatial resolution of in vivo MRS and MRI is not suitable to provide direct evidence for hypotheses that involve metabolic compartmentalization between different cell types, or to untangle the complex neuronal microcircuitry, which results in changes of electrical activity. This review aims at describing how the current models of brain metabolism, mainly built on the basis of in vitro evidence, relate to experimental findings recently obtained in vivo by (1)H MRS, (13)C MRS, and MRI. The hypotheses related to the role of different metabolic substrates, the metabolic neuron-glia interactions, along with the available theoretical predictions of the energy budget of neurotransmission will be discussed. In addition, the cellular and network mechanisms that characterize different types of increased and suppressed neuronal activity will be considered within the sensitivity-constraints of MRS and MRI.
Collapse
Affiliation(s)
- Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Leu BH, Schmidt JT. Arachidonic acid as a retrograde signal controlling growth and dynamics of retinotectal arbors. Dev Neurobiol 2008; 68:18-30. [PMID: 17918241 DOI: 10.1002/dneu.20561] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the developing visual system, correlated presynaptic activity between neighboring retinal ganglion cells (RGC) stabilizes retinotopic synapses via a postsynaptic NMDAR (N-methyl-D-aspartate receptor)-dependent mechanism. Blocking NMDARs makes individual axonal arbors larger, which underlies an unsharpened map, and also increases branch turnover, as if a stabilizing factor from the postsynaptic partner is no longer released. Arachidonic acid (AA), a candidate retrograde stabilizing factor, is released by cytoplasmic phospholipase A2 (cPLA2) after Ca(2+) entry through activated NMDARs, and can activate presynaptic protein kinase C to phosphorylate various substrates such as GAP43 to regulate cytoskeletal dynamics. To test the role of cPLA2 in the retinotectal system of developing zebrafish, we first used PED6, a fluorescent reporter of cPLA2 activity, to show that 1-3 min of strobe flashes activated tectal cPLA2 by an NMDAR-dependent mechanism. Second, we imaged the dynamic growth of retinal arbors during both local inhibition of tectal cPLA2 by a pharmacological inhibitor, arachidonic tri-fluoromethylketone, and its suppression by antisense oligonucleotides (both injected intraventricularly). Both methods produced larger arbors and faster branch dynamics as occurs with blocking NMDARs. In contrast, intraocular suppression of retinal cPLA2 with large doses of antisense oligos produced none of the effects of tectal cPLA2 inhibition. Finally, if AA is the retrograde messenger, the application of exogenous AA to the tectum should reverse the increased branch turnover caused by blocking either NMDARs or cPLA2. In both cases, intraventricular injection of AA stabilized the overall branch dynamics, bringing rates down below the normal values. The results suggest that AA generated postsynaptically by cPLA2 downstream of Ca(2+) entry through NMDARs acts as a retrograde signal to regulate the dynamic growth of retinal arbors.
Collapse
Affiliation(s)
- B H Leu
- Department of Biological Sciences, University at Albany SUNY, Albany, NY 12222, USA
| | | |
Collapse
|
34
|
Camacho A, Montiel T, Massieu L. Sustained metabolic inhibition induces an increase in the content and phosphorylation of the NR2B subunit of N-methyl-d-aspartate receptors and a decrease in glutamate transport in the rat hippocampus in vivo. Neuroscience 2007; 145:873-86. [PMID: 17331654 DOI: 10.1016/j.neuroscience.2006.12.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 12/18/2006] [Accepted: 12/19/2006] [Indexed: 11/15/2022]
Abstract
The concentration of glutamate is regulated to ensure neurotransmission with a high temporal and local resolution. It is removed from the extracellular medium by high-affinity transporters, dependent on the maintenance of the Na(+) gradient through the activity of Na(+),K(+)-ATPases. Failure of glutamate clearance can lead to neuronal damage, named excitotoxic damage, due to the prolonged activation of glutamate receptors. Severe impairment of glycolytic metabolism during ischemia and hypoglycemia, leads to glutamate transport dysfunction inducing the elevation of extracellular glutamate and aspartate, and neuronal damage. Altered glucose metabolism has also been associated with some neurodegenerative diseases such as Alzheimer's and Huntington's, and a role of excitotoxicity in the neuropathology of these disorders has been raised. Alterations in glutamate transporters and N-methyl-D-aspartate (NMDA) receptors have been observed in these patients, suggesting altered glutamatergic neurotransmission. We hypothesize that inhibition of glucose metabolism might induce changes in glutamatergic neurotransmission rendering neurons more vulnerable to excitotoxicity. We have previously reported that sustained glycolysis impairment in vivo induced by inhibition of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), facilitates glutamate-mediated neuronal damage. We have now investigated whether this facilitating effect involves altered glutamate uptake, and/or NMDA receptors in the rat hippocampus in vivo. Results indicate that metabolic inhibition leads to the progressive elevation of extracellular glutamate and aspartate levels in the hippocampus, which correlates with decreased content of the GLT-1 glutamate transporter and diminished glutamate uptake. In addition, we observed increased Tyr(1472) phosphorylation and protein content of the NR2B subunit of the NMDA receptor. Results suggest that moderate sustained glycolysis inhibition alters glutamatergic neurotransmission.
Collapse
Affiliation(s)
- A Camacho
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, México D.F. CP.04510, Mexico
| | | | | |
Collapse
|
35
|
Gurden H, Uchida N, Mainen ZF. Sensory-evoked intrinsic optical signals in the olfactory bulb are coupled to glutamate release and uptake. Neuron 2007; 52:335-45. [PMID: 17046695 DOI: 10.1016/j.neuron.2006.07.022] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 06/08/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
Functional imaging signals arise from metabolic and hemodynamic activity, but how these processes are related to the synaptic and electrical activity of neurons is not well understood. To provide insight into this issue, we used in vivo imaging and simultaneous local pharmacology to study how sensory-evoked neural activity leads to intrinsic optical signals (IOS) in the well-defined circuitry of the olfactory glomerulus. Odor-evoked IOS were tightly coupled to release of glutamate and were strongly modulated by activation of presynaptic dopamine and GABA-B receptors. Surprisingly, IOS were independent of postsynaptic transmission through ionotropic or metabotropic glutamate receptors, but instead were inhibited when uptake by astrocytic glutamate transporters was blocked. These data suggest that presynaptic glutamate release and uptake by astrocytes form a critical pathway through which neural activity is linked to metabolic processing and hence to functional imaging signals.
Collapse
Affiliation(s)
- Hirac Gurden
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York, 11724, USA
| | | | | |
Collapse
|
36
|
Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ. Activity-dependent regulation of energy metabolism by astrocytes: An update. Glia 2007; 55:1251-1262. [PMID: 17659524 DOI: 10.1002/glia.20528] [Citation(s) in RCA: 591] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Astrocytes play a critical role in the regulation of brain metabolic responses to activity. One detailed mechanism proposed to describe the role of astrocytes in some of these responses has come to be known as the astrocyte-neuron lactate shuttle hypothesis (ANLSH). Although controversial, the original concept of a coupling mechanism between neuronal activity and glucose utilization that involves an activation of aerobic glycolysis in astrocytes and lactate consumption by neurons provides a heuristically valid framework for experimental studies. In this context, it is necessary to provide a survey of recent developments and data pertaining to this model. Thus, here, we review very recent experimental evidence as well as theoretical arguments strongly supporting the original model and in some cases extending it. Aspects revisited include the existence of glutamate-induced glycolysis in astrocytes in vitro, ex vivo, and in vivo, lactate as a preferential oxidative substrate for neurons, and the notion of net lactate transfer between astrocytes and neurons in vivo. Inclusion of a role for glycogen in the ANLSH is discussed in the light of a possible extension of the astrocyte-neuron lactate shuttle (ANLS) concept rather than as a competing hypothesis. New perspectives offered by the application of this concept include a better understanding of the basis of signals used in functional brain imaging, a role for neuron-glia metabolic interactions in glucose sensing and diabetes, as well as novel strategies to develop therapies against neurodegenerative diseases based upon improving astrocyte-neuron coupled energetics.
Collapse
Affiliation(s)
- Luc Pellerin
- Département de Physiologie, Université de Lausanne, Switzerland
| | - Anne-Karine Bouzier-Sore
- Unité de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS-Université Victor Segalen, Bordeaux, France
| | - Agnès Aubert
- Département de Physiologie, Université de Lausanne, Switzerland
| | - Sébastien Serres
- Unité de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS-Université Victor Segalen, Bordeaux, France
| | - Michel Merle
- Unité de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS-Université Victor Segalen, Bordeaux, France
| | - Robert Costalat
- INSERM U678, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Pierre J Magistretti
- Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne and Centre de Neurosciences Psychiatriques, Hôpital de Cery, Prilly, Switzerland
| |
Collapse
|
37
|
Abstract
Astrocytes produce trophic factors, regulate neurotransmitter and ion concentrations, and remove toxins and debris from the extracellular space of the CNS, maintaining an extracellular milieu that is optimally suited for neuronal function. Consequently, astrocytic functional impairments, as well as physiological reactions of astrocytes to injury have the potential to induce and/or exacerbate neuronal dysfunction. This mini-review showcases contemporary evidence provoking reformulation of concepts of the inter-dependence between astrocytes and neurons and advances several mechanisms used by astrocytes in potentiating or nullifying the final pathway of neuropathologic injury. Though clearly possessing an array of protective systems and upregulating a large number of protective molecules in response to xenobiotic exposure, recent evidence also invokes astrocytes in secondary amplification of cell injury in multiple neurodegenerative disorders.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1083, USA.
| | | | | |
Collapse
|
38
|
Herard AS, Dubois A, Escartin C, Tanaka K, Delzescaux T, Hantraye P, Bonvento G. Decreased metabolic response to visual stimulation in the superior colliculus of mice lacking the glial glutamate transporter GLT-1. Eur J Neurosci 2006; 22:1807-11. [PMID: 16197522 DOI: 10.1111/j.1460-9568.2005.04346.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
During a specific task, an increase in glucose utilization anatomically restricted to the functionally activated region(s) is a landmark of brain physiology. While this response represents the biological bases for functional brain imaging, the underlying signalling pathway(s) are still not fully characterized. Recent evidence suggests that glial glutamate (re)uptake plays a key role. We provide evidence that the metabolic response to synaptic activation (i.e. enhancement of glucose uptake) is decreased in the superior colliculus during visual stimulation in young adult mice deficient in the glial glutamate transporter GLT-1. A similar reduction was not observed in the glial glutamate transporter GLAST-knockout mice. Consistent with our previous observation obtained in the somatosensory cortex, our data suggest that a metabolic crosstalk takes place between neurons and astrocytes in the adult brain which would be regulated by synaptic activity and mediated by GLT-1.
Collapse
Affiliation(s)
- Anne-Sophie Herard
- CEA CNRS URA 2210, Service Hospitalier Frédéric Joliot, 4, place du Général Leclerc, 91401 Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
According to the astrocyte-neurone-lactate shuttle (ANLS) hypothesis, activated neurones use lactate released by astrocytes as their energy substrate. The hypothesis, based largely on in vitro experiments, postulates that lactate is derived from the uptake by astrocytes of synaptically released glutamate. The time course of changes in lactate, derived from in vivo experiments, is incompatible with the ANLS model. Neuronal activation leads to a delayed rise in lactate followed by a slow decay, which greatly outlasts the period of neuronal activation. The present review proposes that the uptake of stimulated glutamate release from astrocytes, rather than synaptically released glutamate, is the source of lactate released following neuronal activation. This rise in lactate occurs too late to provide energy for neuronal activity. Furthermore, there is no evidence that lactate undergoes local oxidative phosphorylation. In conclusion, under physiological conditions, there is no evidence that lactate is a significant source of energy for activated neurones.
Collapse
Affiliation(s)
- Marianne Fillenz
- University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
40
|
Pellerin L. How astrocytes feed hungry neurons. Mol Neurobiol 2005; 32:59-72. [PMID: 16077184 DOI: 10.1385/mn:32:1:059] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Accepted: 12/17/2004] [Indexed: 11/11/2022]
Abstract
For years glucose was thought to constitute the sole energy substrate for neurons; it was believed to be directly provided to neurons via the extracellular space by the cerebral circulation. It was recently proposed that in addition to glucose, neurons might rely on lactate to sustain their activity. Therefore, it was demonstrated that lactate is a preferred oxidative substrate for neurons not only in vitro but also in vivo. Moreover, the presence of specific monocarboxylate transporters on neurons as well as on astrocytes is consistent with the hypothesis of a transfer of lactate from astrocytes to neurons. Evidence has been provided for a mechanism whereby astrocytes respond to glutamatergic activity by enhancing their glycolytic activity, resulting in increased lactate release. This is accomplished via the uptake of glutamate by glial glutamate transporters, leading to activation of the Na+/K+ ATPase and a stimulation of astrocytic glycolysis. Several recent observations obtained both in vitro and in vivo with different approaches have reinforced this view of brain energetics. Such an understanding might be critically important, not only because it forms the basis of some classical functional brain imaging techniques but also because several neurodegenerative diseases exhibit diverse alterations in energy metabolism.
Collapse
Affiliation(s)
- Luc Pellerin
- Département de Physiologie, Université de Lausanne, Switzerland.
| |
Collapse
|
41
|
Nanitsos EK, Nguyen KTD, St'astný F, Balcar VJ. Glutamatergic hypothesis of schizophrenia: involvement of Na+/K+-dependent glutamate transport. J Biomed Sci 2005; 12:975-84. [PMID: 16228297 DOI: 10.1007/s11373-005-9015-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 07/27/2005] [Indexed: 11/25/2022] Open
Abstract
Hypothetical model based on deficient glutamatergic neurotransmission caused by hyperactive glutamate transport in astrocytes surrounding excitatory synapses in the prefrontal cortex is examined in relation to the aetiology of schizophrenia. The model is consistent with actions of neuroleptics, such as clozapine, in animal experiments and it is strongly supported by recent findings of increased expression of glutamate transporter GLT in prefrontal cortex of patients with schizophrenia. It is proposed that mechanisms regulating glutamate transport be investigated as potential targets for novel classes of neuroactive compounds with neuroleptic characteristics. Development of new efficient techniques designed specifically for the purpose of studying rapid activity-dependent translocation of glutamate transporters and associated molecules such as Na+, K+-ATPase is essential and should be encouraged.
Collapse
Affiliation(s)
- Ellas K Nanitsos
- Anatomy and Histology, Institute for Biomedical Research and School of Medical Sciences, The University of Sydney, Anderson Stuart Building F 13, Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
42
|
Bonvento G, Herard AS, Voutsinos-Porche B. The astrocyte--neuron lactate shuttle: a debated but still valuable hypothesis for brain imaging. J Cereb Blood Flow Metab 2005; 25:1394-9. [PMID: 15843788 DOI: 10.1038/sj.jcbfm.9600127] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gilles Bonvento
- URA CEA CNRS, Service Hospitalier Frédéric Joliot, Orsay, France.
| | | | | |
Collapse
|
43
|
Pellerin L, Magistretti PJ. Ampakine CX546 bolsters energetic response of astrocytes: a novel target for cognitive-enhancing drugs acting as alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor modulators. J Neurochem 2005; 92:668-77. [PMID: 15659236 DOI: 10.1111/j.1471-4159.2004.02905.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glutamate was previously shown to enhance aerobic glycolysis i.e. increase glucose utilization and lactate production with no change in oxygen levels, in mouse cortical astrocytes by a mechanism involving glutamate uptake. It is reported here that a similar response is produced in both hippocampal and cerebellar astrocytes. Application of the cognitive-enhancing drug CX546 promoted further enhancement of glucose utilization by astrocytes from each brain area following glutamate exposure. alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors represent the purported molecular target of cognitive-enhancing drugs such as CX546, and the presence of AMPA receptor subunits GluR1-4 was evidenced in astrocytes from all three regions by immunocytochemistry. AMPA itself did not stimulate aerobic glycolysis, but in the presence of CX546, a strong enhancement of glucose utilization and lactate production was obtained in cortical, hippocampal and cerebellar astrocytes. The effect of CX546 was concentration-dependent, with an EC(50) of 93.2 microm in cortical astrocytes. AMPA-induced glucose utilization in the presence of CX546 was prevented by the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and the negative modulator GYKI 52466. In addition, the metabolic effect of CX546 in the presence of AMPA was mimicked by the AMPA receptor modulator cyclothiazide. Our data suggest that astrocyte energetics represents a novel target for cognitive-enhancing drugs acting as AMPA receptor modulators.
Collapse
Affiliation(s)
- Luc Pellerin
- Department of Physiology, University of Lausanne, 7 rue du Bugnon, 1005 Lausanne, Switzerland.
| | | |
Collapse
|
44
|
Nanitsos EK, Acosta GB, Saihara Y, Stanton D, Liao LP, Shin JW, Rae C, Balcar VJ. Effects of glutamate transport substrates and glutamate receptor ligands on the activity of Na-/K(+)-ATPase in brain tissue in vitro. Clin Exp Pharmacol Physiol 2005; 31:762-9. [PMID: 15566390 DOI: 10.1111/j.1440-1681.2004.04090.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. It has been suggested that Na+/K(+)-ATPase and Na(+)-dependent glutamate transport (GluT) are tightly linked in brain tissue. In the present study, we have investigated Na+/K(+)-ATPase activity using Rb+ uptake by 'minislices' (prisms) of the cerebral cortex. This preparation preserves the morphology of neurons, synapses and astrocytes and is known to possess potent GluT that has been well characterized. Uptake of Rb+ was determined by estimating Rb+ in aqueous extracts of the minislices, using atomic absorption spectroscopy. 2. We determined the potencies of several known substrates/inhibitors of GluT, such as L-trans-pyrrolidine-2,4-dicarboxylate (LtPDC), DL-threo-3-benzyloxyaspartic acid, (2S,3S,4R)-2-(carboxycyclopropyl)-glycine (L-CCG III) and L-anti,endo-3,4-methanopyrrolidine dicarboxylic acid, as inhibitors of [3H]-L-glutamate uptake by cortical prisms. In addition, we established the susceptibility of GluT, measured as [3H]-L-glutamate uptake in brain cortical prisms, to the inhibition of Na+/K(+)-ATPase by ouabain. Then, we tested the hypothesis that the Na+/K(+)-ATPase (measured as Rb+ uptake) can respond to changes in the activity of GluT produced by using GluT substrates as GluT-specific pharmacological tools. 3. The Na+/K(+)-ATPase inhibitor ouabain completely blocked Rb+ uptake (IC50 = 17 micromol/L), but it also potently inhibited a fraction of GluT (approximately 50% of [3H]-L-glutamate uptake was eliminated; IC50 < 1 micromol/L). 4. None of the most commonly used GluT substrates and inhibitors, such as L-aspartate, D-aspartate, L-CCG III and LtPDC (all at 500 micromol/L), produced any significant changes in Rb+ uptake. 5. The N-methyl-D-aspartate (NMDA) receptor agonists (R,S)-(tetrazol-5-yl)-glycine and NMDA decreased Rb+ uptake in a manner compatible with their known neurotoxic actions. 6. None of the agonists or antagonists for any of the other major classes of glutamate receptors caused significant changes in Rb+ uptake. 7. We conclude that, even if a subpopulation of glutamate transporters in the rat cerebral cortex may be intimately linked to a fraction of Na+/K(+)-ATPase, it is not possible, under the present experimental conditions, to detect regulation of Na+/K(+)-ATPase by GluT.
Collapse
Affiliation(s)
- Ellas K Nanitsos
- School of Medical Sciences and Institute for Biomedical Research, The University of Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
A key goal in functional neuroimaging is to use signals that are related to local changes in metabolism and blood flow to track the neuronal correlates of mental activity. Recent findings indicate that the dendritic processing of excitatory synaptic inputs correlates more closely than the generation of spikes with brain imaging signals. The correlation is often nonlinear and context-sensitive, and cannot be generalized for every condition or brain region. The vascular signals are mainly produced by increases in intracellular calcium in neurons and possibly astrocytes, which activate important enzymes that produce vasodilators to generate increments in flow and the positive blood oxygen level dependent signal. Our understanding of the cellular mechanisms of functional imaging signals places constraints on the interpretation of the data.
Collapse
Affiliation(s)
- Martin Lauritzen
- Department of Clinical Neurophysiology, Glostrup Hospital, DK-2600 Glostrup, Denmark.
| |
Collapse
|
46
|
Affiliation(s)
- Leif Hertz
- College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
47
|
|
48
|
Patel AB, de Graaf RA, Mason GF, Kanamatsu T, Rothman DL, Shulman RG, Behar KL. Glutamatergic neurotransmission and neuronal glucose oxidation are coupled during intense neuronal activation. J Cereb Blood Flow Metab 2004; 24:972-85. [PMID: 15356418 DOI: 10.1097/01.wcb.0000126234.16188.71] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
13C nuclear magnetic resonance (NMR) experiments have previously shown that glutamatergic neurotransmitter flux (Vcycle(Glu/Gln)) changes proportionately with neuronal glucose oxidation (CMRglc(ox)N) in the nonactivated cortex of anesthetized rats. Positron Emission Tomography measurements of glucose and oxygen uptake during sensory stimulation had shown that the incremental glucose utilization is greater than oxygen leading to the suggestion that the energy required for stimulated neuronal activity arises from nonoxidative glucose metabolism. In this study, the authors used spatially localized 1H-observed, 13C-edited NMR spectroscopy during an infusion of [1,6-13C2]glucose to assess the relationship between changes in Vcycle(Glu/Gln) and glucose utilization (CMRglc(ox)N and CMRglc(nonox)) during the intense cortical activity associated with bicuculline-induced seizures. Metabolic fluxes were determined by model-based analysis of the 13C-enrichment time courses of glutamate-C4 and glutamine-C4 (CMRglc(ox)N, Vcycle(Glu/Gln)) and lactate-C3 (CMRglc(nonox)). The exchange rate between alpha-ketoglutarate and glutamate was found to be significantly faster than TCA cycle flux both for control (41 micromol.g(-1).min(-1); 95% CI, 5 to 109 micromol.g(-1).min(-1)) and during seizures (21 micromol.g(-1).min(-1); 95% CI, 4.4 to 51.8 micromol.g(-1).min(-1)). During seizures, total glucose utilization (CMRglc(ox+nonox)) increased substantially (466% between 0 and 6 minutes; 277% between 6 and 55 minutes). Glucose oxidation (CMRglc(ox)N) also increased (214%; from 0.26 +/- 0.02 to 0.57 +/- 0.07 micromol.g(-1).min(-1)) but to a lesser degree, resulting in a large increase in cortical lactate concentration. Vcycle(Glu/Gln) increased 233% (from 0.22 +/- 0.04 to 0.52 +/- 0.07 micromol.g(-1).min(-1)), which was similar to the increase in glucose oxidation. The value of Vcycle(Glu/Gln) and CMRglc(ox)N obtained here lie on the line predicted in a previous study. These results indicate that neuronal glucose oxidation and not total glucose utilization is coupled to the glutamate/glutamine cycle during intense cortical activation.
Collapse
Affiliation(s)
- Anant B Patel
- Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Dienel GA, Cruz NF. Nutrition during brain activation: does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought? Neurochem Int 2004; 45:321-51. [PMID: 15145548 DOI: 10.1016/j.neuint.2003.10.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2003] [Revised: 10/24/2003] [Accepted: 10/27/2003] [Indexed: 10/26/2022]
Abstract
Functional activation of astrocytic metabolism is believed, according to one hypothesis, to be closely linked to excitatory neurotransmission and to provide lactate as fuel for oxidative metabolism in neighboring neurons. However, review of emerging evidence suggests that the energetic demands of activated astrocytes are higher and more complex than recognized and much of the lactate presumably produced by astrocytes is not locally oxidized during activation. In vivo activation studies in normal subjects reveal that the rise in consumption of blood-borne glucose usually exceeds that of oxygen, especially in retina compared to brain. When the contribution of glycogen, the brain's major energy reserve located in astrocytes, is taken into account the magnitude of the carbohydrate-oxygen utilization mismatch increases further because the magnitude of glycogenolysis greatly exceeds the incremental increase in utilization of blood-borne glucose. Failure of local oxygen consumption to equal that of glucose plus glycogen in vivo is strong evidence against stoichiometric transfer of lactate from astrocytes to neighboring neurons for oxidation. Thus, astrocytes, not nearby neurons, use the glycogen for energy during physiological activation in normal brain. These findings plus apparent compartmentation of metabolism of glycogen and blood-borne glucose during activation lead to our working hypothesis that activated astrocytes have high energy demands in their fine perisynaptic processes (filopodia) that might be met by glycogenolysis and glycolysis coupled to rapid lactate clearance. Tissue culture studies do not consistently support the lactate shuttle hypothesis because key elements of the model, glutamate-induced increases in glucose utilization and lactate release, are not observed in many astrocyte preparations, suggesting differences in their oxidative capacities that have not been included in the model. In vivo nutritional interactions between working neurons and astrocytes are not as simple as implied by "sweet (glucose-glycogen) and sour (lactate) food for thought."
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, Slot 830, University of Arkansas for Medical Sciences, Room 715, Shorey Building, 4301 W. Markham Street, Little Rock, AR 72205, USA.
| | | |
Collapse
|
50
|
Pellerin L, Magistretti PJ. Neuroenergetics: calling upon astrocytes to satisfy hungry neurons. Neuroscientist 2004; 10:53-62. [PMID: 14987448 DOI: 10.1177/1073858403260159] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Classical neuroenergetics states that glucose is the exclusive energy substrate of brain cells and its full oxidation provides all the necessary energy to support brain function. Recent data have revealed a more intricate picture in which astrocytes play a key role in supplying lactate as an additional energy substrate in register with glutamatergic activity.
Collapse
Affiliation(s)
- Luc Pellerin
- Institut de Physiologie, Université de Lausanne, Switzerland.
| | | |
Collapse
|