1
|
Koter MD, Żurczak M, Matuszkiewicz M, Święcicka M, Kotliński M, Barczak-Brzyżek A, Filipecki M. Proteomic Dynamics in the Interaction of Susceptible and Resistant Tomato Cultivars and Potato Cyst Nematodes. Int J Mol Sci 2025; 26:2823. [PMID: 40141466 PMCID: PMC11943225 DOI: 10.3390/ijms26062823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
This study investigates the proteomic dynamics in tomato cultivars with differing resistance to potato cyst nematodes (PCNs). Cyst-forming nematodes, significant agricultural pests, induce complex molecular responses in host plants, forming syncytia in roots for their nutrition. This research employs mass spectrometry to analyze the proteomes of infected and uninfected roots from susceptible (Moneymaker) and resistant (LA1792 and L10) tomato lines. Over 2800 high-confidence protein hits were identified, revealing significant differences in abundance between susceptible and resistant lines. Notably, resistant lines exhibited a higher number of newly expressed proteins compared to susceptible lines; however, the proportion of induced and suppressed proteins was strongly genotype-dependent. Gene ontology (GO) analysis highlighted that nematode infection in susceptible line significantly regulates many defense-related proteins, particularly those involved in oxidative stress, with a similar number being upregulated and downregulated. Some GO terms enriched among nematode-regulated proteins also indicate the involvement of programmed cell death (PCD)-related processes. The susceptible line exhibited a prevalence of downregulated proteins, among which defense associated GO terms were significantly overrepresented. Four proteins (APY2, NIA2, GABA-T, and AATP1) potentially crucial for nematode parasitism were identified and their Arabidopsis orthologs were studied. Mutant Arabidopsis lines showed altered nematode resistance, supporting the involvement of these proteins in plant defense. This study highlights the complexity of host-nematode interactions and emphasizes the importance of proteomic analyses in identifying key factors and understanding plant defense mechanisms.
Collapse
Affiliation(s)
- Marek D. Koter
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.D.K.); (M.M.); (M.Ś.); (A.B.-B.)
| | - Marek Żurczak
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.D.K.); (M.M.); (M.Ś.); (A.B.-B.)
| | - Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.D.K.); (M.M.); (M.Ś.); (A.B.-B.)
| | - Magdalena Święcicka
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.D.K.); (M.M.); (M.Ś.); (A.B.-B.)
| | - Maciej Kotliński
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Pawińskiego 5A, 02-106 Warsaw, Poland;
| | - Anna Barczak-Brzyżek
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.D.K.); (M.M.); (M.Ś.); (A.B.-B.)
| | - Marcin Filipecki
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.D.K.); (M.M.); (M.Ś.); (A.B.-B.)
| |
Collapse
|
2
|
Liu X, Mitchum MG. A major role of class III HD-ZIPs in promoting sugar beet cyst nematode parasitism in Arabidopsis. PLoS Pathog 2024; 20:e1012610. [PMID: 39509386 PMCID: PMC11542791 DOI: 10.1371/journal.ppat.1012610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/21/2024] [Indexed: 11/15/2024] Open
Abstract
Cyst nematodes use a stylet to secrete CLE-like peptide effector mimics into selected root cells of their host plants to hijack endogenous plant CLE signaling pathways for feeding site (syncytium) formation. Here, we identified ATHB8, encoding a HD-ZIP III family transcription factor, as a downstream component of the CLE signaling pathway in syncytium formation. ATHB8 is expressed in the early stages of syncytium initiation, and then transitions to neighboring cells of the syncytium as it expands; an expression pattern coincident with auxin response at the infection site. Conversely, MIR165a, which expresses in endodermal cells and moves into the vasculature to suppress HD-ZIP III TFs, is down-regulated near the infection site. Knocking down HD-ZIP III TFs by inducible over-expression of MIR165a in Arabidopsis dramatically reduced female development of the sugar beet cyst nematode (Heterodera schachtii). HD-ZIP III TFs are known to function downstream of auxin to promote cellular quiescence and define stem cell organizer cells in vascular patterning. Taken together, our results suggest that HD-ZIP III TFs function together with a CLE and auxin signaling network to promote syncytium formation, possibly by inducing root cells into a quiescent status and priming them for initial syncytial cell establishment and/or subsequent cellular incorporation.
Collapse
Affiliation(s)
- Xunliang Liu
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Georgia, United States of America
| | - Melissa G. Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Georgia, United States of America
| |
Collapse
|
3
|
Gogoi K, Gogoi H, Borgohain M, Saikia R, Chikkaputtaiah C, Hiremath S, Basu U. The molecular dynamics between reactive oxygen species (ROS), reactive nitrogen species (RNS) and phytohormones in plant's response to biotic stress. PLANT CELL REPORTS 2024; 43:263. [PMID: 39412663 DOI: 10.1007/s00299-024-03343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/24/2024] [Indexed: 11/15/2024]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are critical for plant development as well as for its stress response. They can function as signaling molecules to orchestrate a well-defined response of plants to biotic stress. These responses are further fine-tuned by phytohormones, such as salicylic acid, jasmonic acid, and ethylene, to modulate immune response. In the past decades, the intricacies of redox and phytohormonal signaling have been uncovered during plant-pathogen interactions. This review explores the dynamic interplay of these components, elucidating their roles in perceiving biotic threats and shaping the plant's defense strategy. Molecular regulators and sites of oxidative burst have been explored during pathogen perception. Further, the interplay between various components of redox and phytohormonal signaling has been explored during bacterial, fungal, viral, and nematode infections as well as during insect pest infestation. Understanding these interactions highlights gaps in the current knowledge and provides insights into engineering crop varieties with enhanced resistance to pathogens and pests. This review also highlights potential applications of manipulating regulators of redox signaling to bolster plant immunity and ensure global food security. Future research should explore regulators of these signaling pathways as potential target to develop biotic stress-tolerant crops. Further insights are also needed into roles of endophytes and host microbiome modulating host ROS and RNS pool for exploiting them as biocontrol agents imparting resistance against pathogens in plants.
Collapse
Affiliation(s)
- Krishna Gogoi
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
| | - Hunmoyna Gogoi
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- The Assam Kaziranga University, Jorhat, Assam, 785006, India
| | - Manashi Borgohain
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- The Assam Kaziranga University, Jorhat, Assam, 785006, India
| | - Ratul Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shridhar Hiremath
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Centre for Infectious Diseases, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India.
| | - Udita Basu
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Liu X, Mitchum MG. Evaluation of Chemical-Inducible Gene Expression Systems for Beet Cyst Nematode Infection Assays in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:611-618. [PMID: 38862124 DOI: 10.1094/mpmi-04-24-0042-ta] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Cyst nematodes co-opt plant developmental programs for the establishment of a permanent feeding site called a syncytium in plant roots. In recent years, the role of plant developmental genes in syncytium formation has gained much attention. One main obstacle in studying the function of development-related genes in syncytium formation is that mutation or ectopic expression of such genes can cause pleiotropic phenotypes, making it difficult to interpret nematode-related phenotypes or, in some cases, impossible to carry out infection assays due to aberrant root development. Here, we tested three commonly used inducible gene expression systems for their application in beet cyst nematode infection assays of the model plant Arabidopsis thaliana. We found that even a low amount of ethanol diminished nematode development, deeming the ethanol-based system unsuitable for use in cyst nematode infection assays, whereas treatment with estradiol or dexamethasone did not negatively affect cyst nematode viability. Dose and time course responses showed that in both systems, a relatively low dose of inducer (1 μM) is sufficient to induce high transgene expression within 24 h of treatment. Transgene expression peaked at 3 to 5 days post-induction and began to decline thereafter, providing a perfect window for inducible transgenes to interfere with syncytium establishment while minimizing any adverse effects on root development. These results indicate that both estradiol- and dexamethasone-based inducible gene expression systems are suitable for cyst nematode infection assays. The employment of such systems provides a powerful tool to investigate the function of essential plant developmental genes in syncytium formation. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xunliang Liu
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA 30602, U.S.A
| | - Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA 30602, U.S.A
| |
Collapse
|
5
|
Yang D, Rui L, Qiu YJ, Wen TY, Ye JR, Wu XQ. The Bursaphelenchus xylophilus Effector BxNMP1 Targets PtTLP-L2 to Mediate PtGLU Promoting Parasitism and Virulence in Pinus thunbergii. Int J Mol Sci 2024; 25:7452. [PMID: 39000560 PMCID: PMC11242139 DOI: 10.3390/ijms25137452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Pinus is an important economic tree species, but pine wilt disease (PWD) seriously threatens the survival of pine trees. PWD caused by Bursaphelenchus xylophilus is a major quarantine disease worldwide that causes significant economic losses. However, more information about its molecular pathogenesis is needed, resulting in a lack of effective prevention and treatment measures. In recent years, effectors have become a hot topic in exploring the molecular pathogenic mechanism of pathogens. Here, we identified a specific effector, BxNMP1, from B. xylophilus. In situ hybridization experiments revealed that BxNMP1 was specifically expressed in dorsal gland cells and intestinal cells, and RT-qPCR experiments revealed that BxNMP1 was upregulated in the early stage of infection. The sequence of BxNMP1 was different in the avirulent strain, and when BxNMP1-silenced B. xylophilus was inoculated into P. thunbergii seedlings, the disease severity significantly decreased. We demonstrated that BxNMP1 interacted with the thaumatin-like protein PtTLP-L2 in P. thunbergii. Additionally, we found that the β-1,3-glucanase PtGLU interacted with PtTLP-L2. Therefore, we hypothesized that BxNMP1 might indirectly interact with PtGLU through PtTLP-L2 as an intermediate mediator. Both targets can respond to infection, and PtTLP-L2 can enhance the resistance of pine trees. Moreover, we detected increased salicylic acid contents in P. thunbergii seedlings inoculated with B. xylophilus when BxNMP1 was silenced or when the PtTLP-L2 recombinant protein was added. In summary, we identified a key virulence effector of PWNs, BxNMP1. It positively regulates the pathogenicity of B. xylophilus and interacts directly with PtTLP-L2 and indirectly with PtGLU. It also inhibits the expression of two targets and the host salicylic acid pathway. This study provides theoretical guidance and a practical basis for controlling PWD and breeding for disease resistance.
Collapse
Affiliation(s)
- Dan Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (D.Y.); (L.R.); (Y.-J.Q.); (T.-Y.W.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Lin Rui
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (D.Y.); (L.R.); (Y.-J.Q.); (T.-Y.W.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Yi-Jun Qiu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (D.Y.); (L.R.); (Y.-J.Q.); (T.-Y.W.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Tong-Yue Wen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (D.Y.); (L.R.); (Y.-J.Q.); (T.-Y.W.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Jian-Ren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (D.Y.); (L.R.); (Y.-J.Q.); (T.-Y.W.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (D.Y.); (L.R.); (Y.-J.Q.); (T.-Y.W.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Guarneri N, Schwelm A, Goverse A, Smant G. Switching perspectives: The roles of plant cellular reprogramming during nematode parasitism. PLANT, CELL & ENVIRONMENT 2024; 47:2327-2335. [PMID: 38393297 DOI: 10.1111/pce.14859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Summary statementWe propose exploring plant biotrophic parasitism from both a pathogen‐centred and a plant‐centred perspective. This can generate novel research questions and reveal common plant mitigation strategies in response to biotrophic pathogens.
Collapse
Affiliation(s)
- Nina Guarneri
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Arne Schwelm
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
- Department of Environment, Soils and Landuse, Teagasc, Johnstown Castle, Wexford, Ireland
| | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
7
|
Kamaraju D, Chatterjee M, Papolu PK, Shivakumara TN, Sreevathsa R, Hada A, Rao U. Host-induced RNA interference targeting the neuromotor gene FMRFamide-like peptide-14 (Mi-flp14) perturbs Meloidogyne incognita parasitic success in eggplant. PLANT CELL REPORTS 2024; 43:178. [PMID: 38907748 DOI: 10.1007/s00299-024-03259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/04/2024] [Indexed: 06/24/2024]
Abstract
KEY MESSAGE The study demonstrates the successful management of Meloidogyne incognita in eggplant using Mi-flp14 RNA interference, showing reduced nematode penetration and reproduction without off-target effects across multiple generations. Root-knot nematode, Meloidogyne incognita, causes huge yield losses worldwide. Neuromotor function in M. incognita governed by 19 neuropeptides is vital for parasitism and parasite biology. The present study establishes the utility of Mi-flp14 for managing M. incognita in eggplant in continuation of our earlier proof of concept in tobacco (US patent US2015/0361445A1). Mi-flp14 hairpin RNA construct was used for generating 19 independent transgenic eggplant events. PCR and Southern hybridization analysis confirmed transgene integration and its orientation, while RT-qPCR and Northern hybridization established the generation of dsRNA and siRNA of Mi-flp14. In vitro and in vivo bio-efficacy analysis of single-copy events against M. incognita showed reduced nematode penetration and development at various intervals that negatively impacted reproduction. Interestingly, M. incognita preferred wild-type plants over the transgenics even when unbiased equal opportunity was provided for the infection. A significant reduction in disease parameters was observed in transgenic plants viz., galls (40-48%), females (40-50%), egg masses (35-40%), eggs/egg mass (50-55%), and derived multiplication factor (60-65%) compared to wild type. A unique demonstration of perturbed expression of Mi-flp14 in partially penetrated juveniles and female nematodes established successful host-mediated RNAi both at the time of penetration even before the nematodes started withdrawing plant nutrients and later stage, respectively. The absence of off-target effects in transgenic plants was supported by the normal growth phenotype of the plants and T-DNA integration loci. Stability in the bio-efficacy against M. incognita across T1- to T4-generation transgenic plants established the utility of silencing Mi-flp14 for nematode management. This study demonstrates the significance of targeting Mi-flp14 in eggplant for nematode management, particularly to address global agricultural challenges posed by M. incognita.
Collapse
Affiliation(s)
- Divya Kamaraju
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Madhurima Chatterjee
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Pradeep K Papolu
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Alkesh Hada
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, 7505101, Bet Dagan, Israel.
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- Engrave Biolabs Pvt Ltd. , Shanthipuram, Kukatpally, Hyderabad, 500072, India.
| |
Collapse
|
8
|
Kang W, Duan Y, Lei P. Transcriptomic changes in soybean underlying growth promotion and defense against cyst nematode after Bacillus simplex Sneb545 treatment. Gene 2024; 898:148080. [PMID: 38101712 DOI: 10.1016/j.gene.2023.148080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/11/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Bacillus simplex Sneb45 is a plant-growth-promoting rhizobacterium that promotes soybean growth and systemic resistance to cyst nematode. To investigate transcriptional changes in soybean roots in response to B. simplex Sneb45 treatment, transcriptome analysis and quantitative real-time PCR were conducted to detect and validate the differentially expressed genes (DEGs). In total, 19,109 DEGs were obtained. After B. simplex Sneb545 treatment, 970 and 1265 genes were up- and down-regulated at 5 days post-inoculation (dpi), respectively, and 142 and 47 genes were up- and down-regulated at 10 dpi, respectively, compared with untreated soybean roots. Functional annotation of DEGs indicated that B. simplex Sneb545 regulated soybean growth and defense against cyst nematode possibly through genes related to auxin, gibberellin, and NB-LRR protein. In addition, GO and KEGG enrichment analyses indicated that the DEGs were enriched in metabolism, signal transduction, and plant-pathogen interaction pathways. Moreover, the auxin and gibberellin contents were lower in B. simplex Sneb545-treated soybean roots than in untreated roots at 5 dpi. B. simplex Sneb545 possibly altered the expression of wound-induced protein and NAC transcription factor to regulate soybean growth and defense against cyst nematode. Our study provided deep insights into the alterations in soybean transcriptome after exposure to B. simplex Sneb45 and a theoretical basis for further exploring molecular functions underlying the biological control activity of B. simplex Sneb545.
Collapse
Affiliation(s)
- Wenshu Kang
- College of Environment, Shenyang University, Shenyang 110044, PR China
| | - Yuxi Duan
- College of plant protection, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Piao Lei
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China.
| |
Collapse
|
9
|
Bali S, Gleason C. Unveiling the Diversity: Plant Parasitic Nematode Effectors and Their Plant Interaction Partners. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:179-189. [PMID: 37870371 DOI: 10.1094/mpmi-09-23-0124-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Root-knot and cyst nematodes are two groups of plant parasitic nematodes that cause the majority of crop losses in agriculture. As a result, these nematodes are the focus of most nematode effector research. Root-knot and cyst nematode effectors are defined as secreted molecules, typically proteins, with crucial roles in nematode parasitism. There are likely hundreds of secreted effector molecules exuded through the nematode stylet into the plant. The current research has shown that nematode effectors can target a variety of host proteins and have impacts that include the suppression of plant immune responses and the manipulation of host hormone signaling. The discovery of effectors that localize to the nucleus indicates that the nematodes can directly modulate host gene expression for cellular reprogramming during feeding site formation. In addition, plant peptide mimicry by some nematode effectors highlights the sophisticated strategies the nematodes employ to manipulate host processes. Here we describe research on the interactions between nematode effectors and host proteins that will provide insights into the molecular mechanisms underpinning plant-nematode interactions. By identifying the host proteins and pathways that are targeted by root-knot and cyst nematode effectors, scientists can gain a better understanding of how nematodes establish feeding sites and subvert plant immune responses. Such information will be invaluable for future engineering of nematode-resistant crops, ultimately fostering advancements in agricultural practices and crop protection. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.
Collapse
Affiliation(s)
- Sapinder Bali
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
| | - Cynthia Gleason
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
| |
Collapse
|
10
|
Matuszkiewicz M, Sobczak M. Syncytium Induced by Plant-Parasitic Nematodes. Results Probl Cell Differ 2024; 71:371-403. [PMID: 37996687 DOI: 10.1007/978-3-031-37936-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Plant-parasitic nematodes from the genera Globodera, Heterodera (cyst-forming nematodes), and Meloidogyne (root-knot nematodes) are notorious and serious pests of crops. They cause tremendous economic losses between US $80 and 358 billion a year. Nematodes infect the roots of plants and induce the formation of specialised feeding structures (syncytium and giant cells, respectively) that nourish juveniles and adults of the nematodes. The specialised secretory glands enable nematodes to synthesise and secrete effectors that facilitate migration through root tissues and alter the morphogenetic programme of host cells. The formation of feeding sites is associated with the suppression of plant defence responses and deep reprogramming of the development and metabolism of plant cells.In this chapter, we focus on syncytia induced by the sedentary cyst-forming nematodes and provide an overview of ultrastructural changes that occur in the host roots during syncytium formation in conjunction with the most important molecular changes during compatible and incompatible plant responses to infection with nematodes.
Collapse
Affiliation(s)
- Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland.
| | - Mirosław Sobczak
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| |
Collapse
|
11
|
Abril-Urias P, Ruiz-Ferrer V, Cabrera J, Olmo R, Silva AC, Díaz-Manzano FE, Domínguez-Figueroa J, Martínez-Gómez Á, Gómez-Rojas A, Moreno-Risueno MÁ, Fenoll C, Escobar C. Divergent regulation of auxin responsive genes in root-knot and cyst nematodes feeding sites formed in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1024815. [PMID: 36875577 PMCID: PMC9976713 DOI: 10.3389/fpls.2023.1024815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Cysts (CNs) and root-knot nematodes (RKNs) induce specialized feeding cells, syncytia, and giant cells (GCs), respectively, within plant roots. The plant tissues around the GCs usually by respond forming a root swelling called a gall that contains the GCs. The ontogenesis of feeding cells is different. GC formation is a process of new organogenesis from vascular cells, which are still not well characterized, that differentiate into GCs. In contrast, syncytia formation involves the fusion of adjacent cells that have already differentiated. Nonetheless, both feeding sites show an auxin maximum pertinent to feeding site formation. However, data on the molecular divergences and similarities between the formation of both feeding sites regarding auxin-responsive genes are still scarce. We studied genes from the auxin transduction pathways that are crucial during gall and lateral root (LR) development in the CN interaction by using promoter-reporter (GUS/LUC)transgenic lines, as well as loss of function lines of Arabidopsis. The promoters pGATA23 and several deletions of pmiR390a were active in syncytia, as were in galls, but pAHP6 or putative up-stream regulators as ARF5/7/19 were not active in syncytia. Additionally, none of these genes seemed to play a key role during cyst nematode establishment in Arabidopsis, as the infection rates in loss of function lines did not show significant differences compared to control Col-0 plants. Furthermore, the presence of only canonical AuxRe elements in their proximal promoter regions is highly correlated with their activation in galls/GCs (AHP6, LBD16), but those promoters active in syncytia (miR390, GATA23) carry AuxRe overlapping core cis-elements for other transcription factor families (i.e., bHLH, bZIP). Strikingly, in silico transcriptomic analysis showed very few genes upregulated by auxins common to those induced in GCs and syncytia, despite the high number of upregulated IAA responsive genes in syncytia and galls. The complex regulation of auxin transduction pathways, where different members of the auxin response factor (ARF) family may interact with other factors, and the differences in auxin sensitivity, as indicated by the lower induction of the DR5 sensor in syncytia than galls, among other factors, may explain the divergent regulation of auxin responsive genes in the two types of nematode feeding sites.
Collapse
Affiliation(s)
- Patricia Abril-Urias
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Virginia Ruiz-Ferrer
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Javier Cabrera
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid and Instituto de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (UPM-INIA/CSIC), Campus de Montegancedo, Madrid, Spain
| | - Rocio Olmo
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
- FFoQSI GmbH—Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Ana Cláudia Silva
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
- Centro Tecnológico Nacional Agroalimentario "Extremadura", Badajoz, Spain
| | | | - Jose Domínguez-Figueroa
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
- Technical University of Madrid, Madrid, Spain
| | - Ángela Martínez-Gómez
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Almudena Gómez-Rojas
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Miguel Ángel Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid and Instituto de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (UPM-INIA/CSIC), Campus de Montegancedo, Madrid, Spain
| | - Carmen Fenoll
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Carolina Escobar
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
12
|
Guarneri N, Willig J, Sterken MG, Zhou W, Hasan MS, Sharon L, Grundler FMW, Willemsen V, Goverse A, Smant G, Lozano‐Torres JL. Root architecture plasticity in response to endoparasitic cyst nematodes is mediated by damage signaling. THE NEW PHYTOLOGIST 2023; 237:807-822. [PMID: 36285401 PMCID: PMC10108316 DOI: 10.1111/nph.18570] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Plant root architecture plasticity in response to biotic stresses has not been thoroughly investigated. Infection by endoparasitic cyst nematodes induces root architectural changes that involve the formation of secondary roots at infection sites. However, the molecular mechanisms regulating secondary root formation in response to cyst nematode infection remain largely unknown. We first assessed whether secondary roots form in a nematode density-dependent manner by challenging wild-type Arabidopsis plants with increasing numbers of cyst nematodes (Heterodera schachtii). Next, using jasmonate-related reporter lines and knockout mutants, we tested whether tissue damage by nematodes triggers jasmonate-dependent secondary root formation. Finally, we verified whether damage-induced secondary root formation depends on local auxin biosynthesis at nematode infection sites. Intracellular host invasion by H. schachtii triggers a transient local increase in jasmonates, which activates the expression of ERF109 in a COI1-dependent manner. Knockout mutations in COI1 and ERF109 disrupt the nematode density-dependent increase in secondary roots observed in wild-type plants. Furthermore, ERF109 regulates secondary root formation upon H. schachtii infection via local auxin biosynthesis. Host invasion by H. schachtii triggers secondary root formation via the damage-induced jasmonate-dependent ERF109 pathway. This points at a novel mechanism underlying plant root plasticity in response to biotic stress.
Collapse
Affiliation(s)
- Nina Guarneri
- Laboratory of NematologyWageningen University & Research6708 PBWageningenthe Netherlands
| | - Jaap‐Jan Willig
- Laboratory of NematologyWageningen University & Research6708 PBWageningenthe Netherlands
| | - Mark G. Sterken
- Laboratory of NematologyWageningen University & Research6708 PBWageningenthe Netherlands
| | - Wenkun Zhou
- Laboratory of Molecular Biology, Cluster of Plant Developmental BiologyWageningen University & Research6708 PBWageningenthe Netherlands
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological Sciences, China Agricultural UniversityBeijing100193China
| | - M. Shamim Hasan
- Institute of Crop Science and Resource Conservation (INRES), Molecular PhytomedicineUniversity of Bonn53115BonnGermany
| | - Letia Sharon
- Institute of Crop Science and Resource Conservation (INRES), Molecular PhytomedicineUniversity of Bonn53115BonnGermany
| | - Florian M. W. Grundler
- Institute of Crop Science and Resource Conservation (INRES), Molecular PhytomedicineUniversity of Bonn53115BonnGermany
| | - Viola Willemsen
- Laboratory of Molecular Biology, Cluster of Plant Developmental BiologyWageningen University & Research6708 PBWageningenthe Netherlands
| | - Aska Goverse
- Laboratory of NematologyWageningen University & Research6708 PBWageningenthe Netherlands
| | - Geert Smant
- Laboratory of NematologyWageningen University & Research6708 PBWageningenthe Netherlands
| | - Jose L. Lozano‐Torres
- Laboratory of NematologyWageningen University & Research6708 PBWageningenthe Netherlands
| |
Collapse
|
13
|
Kumar A, Fitoussi N, Sanadhya P, Sichov N, Bucki P, Bornstein M, Belausuv E, Brown Miyara S. Two Candidate Meloidogyne javanica Effector Genes, MjShKT and MjPUT3: A Functional Investigation of Their Roles in Regulating Nematode Parasitism. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:79-94. [PMID: 36324054 DOI: 10.1094/mpmi-10-22-0212-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
During parasitism, root-knot nematode Meloidogyne spp. inject molecules termed effectors that have multifunctional roles in construction and maintenance of nematode feeding sites. As an outcome of transcriptomic analysis of Meloidogyne javanica, we identified and characterized two differentially expressed genes encoding the predicted proteins MjShKT, carrying a Stichodactyla toxin (ShKT) domain, and MjPUT3, carrying a ground-like domain, both expressed during nematode parasitism of the tomato plant. Fluorescence in-situ hybridization revealed expression of MjShKT and MjPUT3 in the dorsal esophageal glands, suggesting their injection into host cells. MjShKT expression was upregulated during the parasitic life stages, to a maximum at the mature female stage, whereas MjPUT3 expression increased in third- to fourth-stage juveniles. Subcellular in-planta localization of MjShKT and MjPUT3 using a fused fluorescence marker indicated MjShKT co-occurrence with the endoplasmic reticulum, the perinuclear endoplasmatic reticulum, and the Golgi organelle markers, while MjPUT3 localized, to some extent, within the endoplasmatic reticulum and was clearly observed within the nucleoplasm. MjShKT inhibited programmed cell death induced by overexpression of MAPKKKα and Gpa2/RBP-1. Overexpression of MjShKT in tomato hairy roots allowed an increase in nematode reproduction, as indicated by the high number of eggs produced on roots overexpressing MjShKT. Roots overexpressing MjPUT3 were characterized by enhanced root growth, with no effect on nematode development on those roots. Investigation of the two candidate effectors suggested that MjShKT is mainly involved in manipulating the plant effector-triggered immune response toward establishment and maintenance of active feeding sites, whereas MjPUT3 might modulate roots morphology in favor of nematode fitness in the host roots. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| | - Nathalia Fitoussi
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
- Department of Plant Pathology and Microbiology, the Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Payal Sanadhya
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| | - Natalia Sichov
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| | - Patricia Bucki
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| | - Menachem Bornstein
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet Dagan 50250, Israel
| | - Eduard Belausuv
- Department of Plant Sciences, ARO, Volcani Center, Bet Dagan 50250, Israel
| | - Sigal Brown Miyara
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| |
Collapse
|
14
|
Chen J, Chen S, Xu C, Yang H, Achom M, Wang X. A key virulence effector from cyst nematodes targets host autophagy to promote nematode parasitism. THE NEW PHYTOLOGIST 2023; 237:1374-1390. [PMID: 36349395 DOI: 10.1111/nph.18609] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Autophagy, an intracellular degradation system conserved in eukaryotes, has been increasingly recognized as a key battlefield in plant-pathogen interactions. However, the role of plant autophagy in nematode parasitism is mostly unknown. We report here the identification of a novel and conserved effector, Nematode Manipulator of Autophagy System 1 (NMAS1), from plant-parasitic cyst nematodes (Heterodera and Globodera spp.). We used molecular and genetic analyses to demonstrate that NMAS1 is required for nematode parasitism. The NMAS1 effectors are potent suppressors of reactive oxygen species (ROS) induced by flg22 and cell death mediated by immune receptors in Nicotiana benthamiana, suggesting a key role of NMAS1 effectors in nematode virulence. Arabidopsis atg mutants defective in autophagy showed reduced susceptibility to nematode infection. The NMAS1 effectors contain predicted AuTophaGy-related protein 8 (ATG8)-interacting motif (AIM) sequences. In planta protein-protein interaction assays further demonstrated that NMAS1 effectors specifically interact with host plant ATG8 proteins. Interestingly, mutation in AIM2 of GrNMAS1 from the potato cyst nematode Globodera rostochiensis abolishes its interaction with potato StATG8 proteins and its activity in ROS suppression. Collectively, our results reveal for the first time that cyst nematodes employ a conserved AIM-containing virulence effector capable of targeting a key component of host autophagy to promote disease.
Collapse
Affiliation(s)
- Jiansong Chen
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shiyan Chen
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Chunling Xu
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Huijun Yang
- Robert W. Holley Center for Agriculture and Health, US Department of Agriculture, Agricultural Research Service, Ithaca, NY, 14853, USA
| | - Mingkee Achom
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xiaohong Wang
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Robert W. Holley Center for Agriculture and Health, US Department of Agriculture, Agricultural Research Service, Ithaca, NY, 14853, USA
| |
Collapse
|
15
|
Yang Y, Wang J, Xu Y, Abbas F, Xu D, Tao S, Xie X, Song F, Huang Q, Sharma A, Zheng L, Yan D, Wang X, Zheng B, Yuan H, Wu R, He Y. Genome-wide identification and expression analysis of AUX/LAX family genes in Chinese hickory ( Carya cathayensis Sarg.) Under various abiotic stresses and grafting. FRONTIERS IN PLANT SCIENCE 2023; 13:1060965. [PMID: 36684757 PMCID: PMC9849883 DOI: 10.3389/fpls.2022.1060965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Auxin is essential for regulating plant growth and development as well as the response of plants to abiotic stresses. AUX/LAX proteins are auxin influx transporters belonging to the amino acid permease family of proton-driven transporters, and are involved in the transport of indole-3-acetic acid (IAA). However, how AUX/LAX genes respond to abiotic stresses in Chinese hickory is less studied. For the first time identification, structural characteristics as well as gene expression analysis of the AUX/LAX gene family in Chinese hickory were conducted by using techniques of gene cloning and real-time fluorescent quantitative PCR. Eight CcAUX/LAXs were identified in Chinese hickory, all of which had the conserved structural characteristics of AUX/LAXs. CcAUX/LAXs were most closely related to their homologous proteins in Populus trichocarpa , which was in consistence with their common taxonomic character of woody trees. CcAUX/LAXs exhibited different expression profiles in different tissues, indicating their varying roles during growth and development. A number of light-, hormone-, and abiotic stress responsive cis-acting regulatory elements were detected on the promoters of CcAUX/LAX genes. CcAUX/LAX genes responded differently to drought and salt stress treatments to varying degrees. Furthermore, CcAUX/LAX genes exhibited complex expression changes during Chinese hickory grafting. These findings not only provide a valuable resource for further functional validation of CcAUX/LAXs, but also contribute to a better understanding of their potential regulatory functions during grafting and abiotic stress treatments in Chinese hickory.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
| | - Jiayan Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
| | - Yan Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
| | - Farhat Abbas
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
| | - Dongbin Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
| | - Shenchen Tao
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
| | - Xiaoting Xie
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
| | - Feng Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
| | - Qiaoyu Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
| | - Luqing Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Daoliang Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
| | - Xiaofei Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
| | - Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
| | - Rongling Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
- Departments of Public Health Sciences and Statistics, Center for Statistical Genetics, Pennsylvania State University, Hershey, PA, United States
| | - Yi He
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang Agriculture and Forestry (A&F) University, Hangzhou, China
| |
Collapse
|
16
|
Kong F, Yang L. Pathogen-triggered changes in plant development: Virulence strategies or host defense mechanism? Front Microbiol 2023; 14:1122947. [PMID: 36876088 PMCID: PMC9975269 DOI: 10.3389/fmicb.2023.1122947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
Plants, as sessile organisms, are constantly exposed to pathogens in nature. Plants rely on physical barriers, constitutive chemical defenses, and sophisticated inducible immunity to fight against pathogens. The output of these defense strategies is highly associated with host development and morphology. Successful pathogens utilize various virulence strategies to colonize, retrieve nutrients, and cause disease. In addition to the overall defense-growth balance, the host-pathogen interactions often lead to changes in the development of specific tissues/organs. In this review, we focus on recent advances in understanding the molecular mechanisms of pathogen-induced changes in plants' development. We discuss that changes in host development could be a target of pathogen virulence strategies or an active defense strategy of plants. Current and ongoing research about how pathogens shape plant development to increase their virulence and causes diseases could give us novel views on plant disease control.
Collapse
Affiliation(s)
- Feng Kong
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Li Yang
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| |
Collapse
|
17
|
Hada A, Singh D, Banakar P, Papolu PK, Kassam R, Chatterjee M, Yadav J, Rao U. Host-delivered RNAi-mediated silencing using fusion cassettes of different functional groups of genes precludes Meloidogyne incognita multiplication in Nicotiana tabacum. PLANT CELL REPORTS 2023; 42:29-43. [PMID: 36462028 DOI: 10.1007/s00299-022-02934-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/04/2022] [Indexed: 06/17/2023]
Abstract
This study demonstrates multi-gene silencing approach for simultaneous silencing of several functional genes through a fusion gene strategy for protecting plants against root-knot nematode, Meloidogyne incognita. The ability of root-knot nematode (RKN), Meloidogyne incognita, to cause extensive yield decline in a wide range of cultivated crops is well-documented. Due to the inadequacies of current management approaches, the alternatively employed contemporary RNA interference (RNAi)-based host-delivered gene silencing (HD-RNAi) strategy targeting different functional effectors/genes has shown substantial potential to combat RKNs. In this direction, we have explored the possibility of simultaneous silencing of four esophageal gland genes, six plant cell-wall modifying enzymes (PCWMEs) and a serine protease gene of M. incognita using the fusion approach. In vitro RNAi showed that combinatorial gene silencing is the most effective in affecting nematode behavior in terms of reduced attraction, penetration, development, and reproduction in tomato and adzuki beans. In addition, qRT-PCR analysis of M. incognita J2s soaked in fusion-dsRNA showed perturbed expression of all the genes comprising the fusion construct confirming successful dsRNA processing which is also supported by increased mRNA abundance of five key-RNAi pathway genes. In addition, hairpin RNA expressing constructs of multi-gene fusion cassettes were developed and used for generation of Nicotiana tabacum transgenic plants. The integration of gene constructs and expression of siRNAs in transgenic events were confirmed by Southern and Northern blot analyses. Besides, bio-efficacy analyses of transgenic events, conferred up to 87% reduction in M. incognita multiplication. Correspondingly, reduced transcript accumulation of the target genes in the M. incognita females extracted from transgenic events confirmed successful gene silencing.
Collapse
Affiliation(s)
- Alkesh Hada
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Divya Singh
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Prakash Banakar
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- Department of Nematology and Centre for Bio-Nanotechnology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, India.
| | - Pradeep K Papolu
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rami Kassam
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Madhurima Chatterjee
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Jyoti Yadav
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
18
|
Verma A, Lin M, Smith D, Walker JC, Hewezi T, Davis EL, Hussey RS, Baum TJ, Mitchum MG. A novel sugar beet cyst nematode effector 2D01 targets the Arabidopsis HAESA receptor-like kinase. MOLECULAR PLANT PATHOLOGY 2022; 23:1765-1782. [PMID: 36069343 PMCID: PMC9644282 DOI: 10.1111/mpp.13263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Plant-parasitic cyst nematodes use a stylet to deliver effector proteins produced in oesophageal gland cells into root cells to cause disease in plants. These effectors are deployed to modulate plant defence responses and developmental programmes for the formation of a specialized feeding site called a syncytium. The Hg2D01 effector gene, coding for a novel 185-amino-acid secreted protein, was previously shown to be up-regulated in the dorsal gland of parasitic juveniles of the soybean cyst nematode Heterodera glycines, but its function has remained unknown. Genome analyses revealed that Hg2D01 belongs to a highly diversified effector gene family in the genomes of H. glycines and the sugar beet cyst nematode Heterodera schachtii. For functional studies using the model Arabidopsis thaliana-H. schachtii pathosystem, we cloned the orthologous Hs2D01 sequence from H. schachtii. We demonstrate that Hs2D01 is a cytoplasmic effector that interacts with the intracellular kinase domain of HAESA (HAE), a cell surface-associated leucine-rich repeat (LRR) receptor-like kinase (RLK) involved in signalling the activation of cell wall-remodelling enzymes important for cell separation during abscission and lateral root emergence. Furthermore, we show that AtHAE is expressed in the syncytium and, therefore, could serve as a viable host target for Hs2D01. Infective juveniles effectively penetrated the roots of HAE and HAESA-LIKE2 (HSL2) double mutant plants; however, fewer nematodes developed on the roots, consistent with a role for this receptor family in nematode infection. Taken together, our results suggest that the Hs2D01-AtHAE interaction may play an important role in sugar beet cyst nematode parasitism.
Collapse
Affiliation(s)
- Anju Verma
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
| | - Marriam Lin
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
- Boyle Frederickson Intellectual Property LawMilwaukeeWisconsinUSA
| | - Dante Smith
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
- Conagra Brands, Inc., Corporate Microbiology, Research and DevelopmentOmahaNebraskaUSA
| | - John C. Walker
- Division of Biological SciencesUniversity of MissouriColumbiaMissouriUSA
| | - Tarek Hewezi
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Eric L. Davis
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Richard S. Hussey
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
| | - Thomas J. Baum
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIowaUSA
| | - Melissa G. Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
19
|
Willig J, Guarneri N, van Steenbrugge JJM, de Jong W, Chen J, Goverse A, Lozano Torres JL, Sterken MG, Bakker J, Smant G. The Arabidopsis transcription factor TCP9 modulates root architectural plasticity, reactive oxygen species-mediated processes, and tolerance to cyst nematode infections. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1070-1083. [PMID: 36181710 PMCID: PMC9828446 DOI: 10.1111/tpj.15996] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/06/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Infections by root-feeding nematodes have profound effects on root system architecture and consequently shoot growth of host plants. Plants harbor intraspecific variation in their growth responses to belowground biotic stresses by nematodes, but the underlying mechanisms are not well understood. Here, we show that the transcription factor TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR-9 (TCP9) modulates root system architectural plasticity in Arabidopsis thaliana in response to infections by the endoparasitic cyst nematode Heterodera schachtii. Young seedlings of tcp9 knock-out mutants display a significantly weaker primary root growth inhibition response to cyst nematodes than wild-type Arabidopsis. In older plants, tcp9 reduces the impact of nematode infections on the emergence and growth of secondary roots. Importantly, the altered growth responses by tcp9 are most likely not caused by less biotic stress on the root system, because TCP9 does not affect the number of infections, nematode development, and size of the nematode-induced feeding structures. RNA-sequencing of nematode-infected roots of the tcp9 mutants revealed differential regulation of enzymes involved in reactive oxygen species (ROS) homeostasis and responses to oxidative stress. We also found that root and shoot growth of tcp9 mutants is less sensitive to exogenous hydrogen peroxide and that ROS accumulation in nematode infection sites in these mutants is reduced. Altogether, these observations demonstrate that TCP9 modulates the root system architectural plasticity to nematode infections via ROS-mediated processes. Our study further points at a novel regulatory mechanism contributing to the tolerance of plants to root-feeding nematodes by mitigating the impact of belowground biotic stresses.
Collapse
Affiliation(s)
- Jaap‐Jan Willig
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| | - Nina Guarneri
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| | | | - Willem de Jong
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| | - Jingrong Chen
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| | - Aska Goverse
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| | - José L. Lozano Torres
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| | - Mark G. Sterken
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| | - Jaap Bakker
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| | - Geert Smant
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| |
Collapse
|
20
|
Zhao J, Liu S. Beet cyst nematode HsSNARE1 interacts with both AtSNAP2 and AtPR1 and promotes disease in Arabidopsis. J Adv Res 2022; 47:27-40. [PMID: 35872350 PMCID: PMC10173200 DOI: 10.1016/j.jare.2022.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Plant parasitic cyst nematodes secrete a number of effectors into hosts to initiate formation of syncytia and infection causing huge yield losses. OBJECTIVES The identified cyst nematode effectors are still limited, and the cyst nematode effectors-involved interaction mechanisms between cyst nematodes and plants remain largely unknown. METHODS The t-SNARE domain-containing effector in beet cyst nematode (BCN) was identified by In situ hybridization and immunohistochemistry analyses. The mutant of effector gene was designed by protein structure modeling analysis. The functions of effector gene and its mutant were analyzed by genetic transformation in Arabidopsis and infection by BCN. The protein-protein interaction was analyzed by yeast two hybrid, BiFC and pulldown assays. Gene expression was assayed by quantitative real-time PCR. RESULTS A t-SNARE domain-containing BCN HsSNARE1 was identified as an effector, and its mutant HsSNARE1-M1 carrying three mutations (E141D, A143T and -148S) that altered regional structure from random coils to α-helixes was designed and constructed. Transgenic analyses indicated that expression of HsSNARE1 significantly enhanced while expression of HsSNARE1-M1 and highly homologous HgSNARE1 remarkably suppressed BCN susceptibility of Arabidopsis. HsSNARE1 interacted with AtSNAP2 and AtPR1 via its t-SNARE domain and N-terminal, respectively, while HsSNARE1-M1/HgSNARE1 could not interact with AtPR1 but bound AtSNAP2. AtSNAP2, AtSHMT4 and AtPR1 interacted pairwise, but neither HsSNARE1 nor HsSNARE1-M1/HgSNARE1 could interact with AtSHMT4. Expression of HsSNARE1 significantly suppressed while expression of HsSNARE1-M1/HgSNARE1 considerably induced both AtSHMT4 and AtPR1 in transgenic Arabidopsis infected with BCN. Overexpression of AtPR1 significantly suppressed BCN susceptibility of Arabidopsis. CONCLUSIONS This work identified a t-SNARE-domain containing cyst nematode effector HsSNARE1 and deciphered a molecular mode of action of the t-SNARE-domain containing cyst nematode effectors that HsSNARE1 promotes cyst nematode disease by interaction with both AtSNAP2 and AtPR1 and significant suppression of both AtSHMT4 and AtPR1, which is mediated by three structure change-causing amino acid residues.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Shiming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
21
|
RNA-Seq of Cyst Nematode Infestation of Potato (Solanum tuberosum L.): A Comparative Transcriptome Analysis of Resistant and Susceptible Cultivars. PLANTS 2022; 11:plants11081008. [PMID: 35448735 PMCID: PMC9025382 DOI: 10.3390/plants11081008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/02/2022]
Abstract
Potato (Solanum tuberosum L.) is an important food crop worldwide, and potato cyst nematodes (PCNs) are among the most serious pests. The identification of disease resistance genes and molecular markers for PCN infestation can aid in crop improvement research programs against PCN infestation. In the present study, we used high-throughput RNA sequencing to investigate the comprehensive resistance mechanisms induced by PCN infestation in the resistant cultivar Kufri Swarna and the susceptible cultivar Kufri Jyoti. PCN infestation induced 791 differentially expressed genes in resistant cultivar Kufri Swarna, comprising 438 upregulated and 353 downregulated genes. In susceptible cultivar Kufri Jyoti, 2225 differentially expressed genes were induced, comprising 1247 upregulated and 978 downregulated genes. We identified several disease resistance genes (KIN) and transcription factors (WRKY, HMG, and MYB) that were upregulated in resistant Kufri Swarna. The differentially expressed genes from several enriched KEGG pathways, including MAPK signaling, contributed to the disease resistance in Kufri Swarna. Functional network analysis showed that several cell wall biogenesis genes were induced in Kufri Swarna in response to infestation. This is the first study to identify underlying resistance mechanisms against PCN and host interaction in Indian potato varieties.
Collapse
|
22
|
Pulavarty A, Egan A, Karpinska A, Horgan K, Kakouli-Duarte T. Plant Parasitic Nematodes: A Review on Their Behaviour, Host Interaction, Management Approaches and Their Occurrence in Two Sites in the Republic of Ireland. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112352. [PMID: 34834715 PMCID: PMC8624893 DOI: 10.3390/plants10112352] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 06/01/2023]
Abstract
Plant parasitic nematodes are a major problem for growers worldwide, causing severe crop losses. Several conventional strategies, such as chemical nematicides and biofumigation, have been employed in the past to manage their infection in plants and spread in soils. However, the search for the most sustainable and environmentally safe practices is still ongoing. This review summarises information on plant parasitic nematodes, their distribution, and their interaction with their host plants, along with various approaches to manage their infestations. It also focuses on the application of microbial and fermentation-based bionematicides that have not only been successful in controlling nematode infection but have also led to plant growth promotion and proven to be environmentally safe. Studies with new information on the relative abundance of plant parasitic nematodes in two agricultural sites in the Republic of Ireland are also reported. This review, with the information it provides, will help to generate an up-to-date knowledge base on plant parasitic nematodes and their management practices.
Collapse
Affiliation(s)
- Anusha Pulavarty
- Molecular Ecology and Nematode Research Group, enviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny Road, R93 V960 Carlow, Ireland; (A.P.); (A.E.); (A.K.)
| | - Aoife Egan
- Molecular Ecology and Nematode Research Group, enviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny Road, R93 V960 Carlow, Ireland; (A.P.); (A.E.); (A.K.)
| | - Anna Karpinska
- Molecular Ecology and Nematode Research Group, enviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny Road, R93 V960 Carlow, Ireland; (A.P.); (A.E.); (A.K.)
| | - Karina Horgan
- Alltech Bioscience Centre, A86 X006 Dunboyne, County Meath, Ireland;
| | - Thomais Kakouli-Duarte
- Molecular Ecology and Nematode Research Group, enviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny Road, R93 V960 Carlow, Ireland; (A.P.); (A.E.); (A.K.)
| |
Collapse
|
23
|
Dodueva I, Lebedeva M, Lutova L. Dialog between Kingdoms: Enemies, Allies and Peptide Phytohormones. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112243. [PMID: 34834606 PMCID: PMC8618561 DOI: 10.3390/plants10112243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 05/14/2023]
Abstract
Various plant hormones can integrate developmental and environmental responses, acting in a complex network, which allows plants to adjust their developmental processes to changing environments. In particular, plant peptide hormones regulate various aspects of plant growth and development as well as the response to environmental stress and the interaction of plants with their pathogens and symbionts. Various plant-interacting organisms, e.g., bacterial and fungal pathogens, plant-parasitic nematodes, as well as symbiotic and plant-beneficial bacteria and fungi, are able to manipulate phytohormonal level and/or signaling in the host plant in order to overcome plant immunity and to create the habitat and food source inside the plant body. The most striking example of such phytohormonal mimicry is the ability of certain plant pathogens and symbionts to produce peptide phytohormones of different classes. To date, in the genomes of plant-interacting bacteria, fungi, and nematodes, the genes encoding effectors which mimic seven classes of peptide phytohormones have been found. For some of these effectors, the interaction with plant receptors for peptide hormones and the effect on plant development and defense have been demonstrated. In this review, we focus on the currently described classes of peptide phytohormones found among the representatives of other kingdoms, as well as mechanisms of their action and possible evolutional origin.
Collapse
|
24
|
Masonbrink RE, Maier TR, Hudson M, Severin A, Baum T. A chromosomal assembly of the soybean cyst nematode genome. Mol Ecol Resour 2021; 21:2407-2422. [PMID: 34036752 DOI: 10.1111/1755-0998.13432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/16/2021] [Accepted: 05/13/2021] [Indexed: 01/02/2023]
Abstract
The soybean cyst nematode (Heterodera glycines) is a sedentary plant parasite that exceeds billion USD annually in yield losses. This problem is exacerbated by H. glycines populations overcoming the limited sources of natural resistance in soybean and by the lack of effective and safe alternative treatments. Although there are genetic determinants that render soybeans resistant to nematode genotypes, resistant soybeans are increasingly ineffective because their multiyear usage has selected for virulent H. glycines populations. Successful H. glycines infection relies on the comprehensive re-engineering of soybean root cells into a syncytium, as well as the long-term suppression of host defences to ensure syncytial viability. At the forefront of these complex molecular interactions are effectors, the proteins secreted by H. glycines into host root tissues. The mechanisms that control genomic effector acquisition, diversification, and selection are important insights needed for the development of essential novel control strategies. As a foundation to obtain this understanding, we created a nine-scaffold, 158 Mb pseudomolecule assembly of the H. glycines genome using PacBio, Chicago, and Hi-C sequencing. A Mikado consensus gene prediction produced an annotation of 22,465 genes using short- and long-read expression data. To evaluate assembly and annotation quality, we cross-examined synteny among H. glycines assemblies, and compared BUSCO across related species. To describe the predicted proteins involved in H. glycines' secretory pathway, we contrasted expression between preparasitic and parasitic stages with functional gene information. Here, we present the results from our assembly and annotation of the H. glycines genome and contribute this resource to the scientific community.
Collapse
Affiliation(s)
- Rick E Masonbrink
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA, USA
| | - Tom R Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Matthew Hudson
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Andrew Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA, USA
| | - Thomas Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| |
Collapse
|
25
|
Coke MC, Mantelin S, Thorpe P, Lilley CJ, Wright KM, Shaw DS, Chande A, Jones JT, Urwin PE. The GpIA7 effector from the potato cyst nematode Globodera pallida targets potato EBP1 and interferes with the plant cell cycle programme. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:erab353. [PMID: 34310681 PMCID: PMC8547150 DOI: 10.1093/jxb/erab353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
The potato cyst nematode Globodera pallida acquires all of its nutrients from an elaborate feeding site that it establishes in a host plant root. Normal development of the root cells is re-programmed in a process coordinated by secreted nematode effector proteins. The biological function of the G. pallida GpIA7 effector was investigated in this study. GpIA7 is specifically expressed in the subventral pharyngeal glands of pre-parasitic stage nematodes. Ectopic expression of GpIA7 in potato plants affected plant growth and development, suggesting a potential role for this effector in feeding site establishment. Potato plants overexpressing GpIA7 were shorter, with reduced tuber weight and delayed flowering. We provide evidence that GpIA7 associates with the plant growth regulator StEBP1 (ErbB-3 epidermal growth factor receptor-binding protein 1). GpIA7 modulates the regulatory function of StEBP1, altering the expression level of downstream target genes, including ribonucleotide reductase 2, cyclin D3;1 and retinoblastoma related 1, which are downregulated in plants overexpressing GpIA7. We provide an insight into the molecular mechanism used by the nematode to manipulate the host cell cycle and provide evidence that this may rely, at least in part, on hindering the function of host EBP1.
Collapse
Affiliation(s)
- Mirela C Coke
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sophie Mantelin
- The James Hutton Institute, Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, UK
| | - Peter Thorpe
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
- The James Hutton Institute, Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, UK
| | | | - Kathryn M Wright
- The James Hutton Institute, Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, UK
| | - Daniel S Shaw
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Adams Chande
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - John T Jones
- The James Hutton Institute, Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, UK
- School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9TZ, UK
| | - Peter E Urwin
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
26
|
Oosterbeek M, Lozano-Torres JL, Bakker J, Goverse A. Sedentary Plant-Parasitic Nematodes Alter Auxin Homeostasis via Multiple Strategies. FRONTIERS IN PLANT SCIENCE 2021; 12:668548. [PMID: 34122488 PMCID: PMC8193132 DOI: 10.3389/fpls.2021.668548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Sedentary endoparasites such as cyst and root-knot nematodes infect many important food crops and are major agro-economical pests worldwide. These plant-parasitic nematodes exploit endogenous molecular and physiological pathways in the roots of their host to establish unique feeding structures. These structures function as highly active transfer cells and metabolic sinks and are essential for the parasites' growth and reproduction. Plant hormones like indole-3-acetic acid (IAA) are a fundamental component in the formation of these feeding complexes. However, their underlying molecular and biochemical mechanisms are still elusive despite recent advances in the field. This review presents a comprehensive overview of known functions of various auxins in plant-parasitic nematode infection sites, based on a systematic analysis of current literature. We evaluate multiple aspects involved in auxin homeostasis in plants, including anabolism, catabolism, transport, and signalling. From these analyses, a picture emerges that plant-parasitic nematodes have evolved multiple strategies to manipulate auxin homeostasis to establish a successful parasitic relationship with their host. Additionally, there appears to be a potential role for auxins other than IAA in plant-parasitic nematode infections that might be of interest to be further elucidated.
Collapse
|
27
|
Price JA, Coyne D, Blok VC, Jones JT. Potato cyst nematodes Globodera rostochiensis and G. pallida. MOLECULAR PLANT PATHOLOGY 2021; 22:495-507. [PMID: 33709540 PMCID: PMC8035638 DOI: 10.1111/mpp.13047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 05/12/2023]
Abstract
TAXONOMY Phylum Nematoda; class Chromadorea; order Rhabditida; suborder Tylenchina; infraorder Tylenchomorpha; superfamily Tylenchoidea; family Heteroderidae; subfamily Heteroderinae; Genus Globodera. BIOLOGY Potato cyst nematodes (PCN) are biotrophic, sedentary endoparasitic nematodes. Invasive (second) stage juveniles (J2) hatch from eggs in response to the presence of host root exudates and subsequently locate and invade the host. The nematodes induce the formation of a large, multinucleate syncytium in host roots, formed by fusion of up to 300 root cell protoplasts. The nematodes rely on this single syncytium for the nutrients required to develop through a further three moults to the adult male or female stage. This extended period of biotrophy-between 4 and 6 weeks in total-is almost unparalleled in plant-pathogen interactions. Females remain at the root while adult males revert to the vermiform body plan of the J2 and leave the root to locate and fertilize the female nematodes. The female body forms a cyst that contains the next generation of eggs. HOST RANGE The host range of PCN is limited to plants of the Solanaceae family. While the most economically important hosts are potato (Solanum tuberosum), tomato (Solanum lycopersicum), and aubergine (Solanum melongena), over 170 species of Solanaceae are thought to be potential hosts for PCN (Sullivan et al., 2007). DISEASE SYMPTOMS Symptoms are similar to those associated with nutrient deficiency, such as stunted growth, yellowing of leaves and reduced yields. This absence of specific symptoms reduces awareness of the disease among growers. DISEASE CONTROL Resistance genes (where available in suitable cultivars), application of nematicides, crop rotation. Great effort is put into reducing the spread of PCN through quarantine measures and use of certified seed stocks. USEFUL WEBSITES Genomic information for PCN is accessible through WormBase ParaSite.
Collapse
Affiliation(s)
- James A. Price
- School of BiologyBiomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsUK
- Cell & Molecular Sciences DepartmentThe James Hutton InstituteDundeeUK
| | - Danny Coyne
- International Institute of Tropical Agriculture (IITA)NairobiKenya
| | - Vivian C. Blok
- Cell & Molecular Sciences DepartmentThe James Hutton InstituteDundeeUK
| | - John T. Jones
- School of BiologyBiomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsUK
- Cell & Molecular Sciences DepartmentThe James Hutton InstituteDundeeUK
| |
Collapse
|
28
|
Zhang X, Peng H, Zhu S, Xing J, Li X, Zhu Z, Zheng J, Wang L, Wang B, Chen J, Ming Z, Yao K, Jian J, Luan S, Coleman-Derr D, Liao H, Peng Y, Peng D, Yu F. Nematode-Encoded RALF Peptide Mimics Facilitate Parasitism of Plants through the FERONIA Receptor Kinase. MOLECULAR PLANT 2020; 13:1434-1454. [PMID: 32896643 DOI: 10.1016/j.molp.2020.08.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/13/2020] [Accepted: 08/27/2020] [Indexed: 05/22/2023]
Abstract
The molecular mechanism by which plants defend against plant root-knot nematodes (RKNs) is largely unknown. The plant receptor kinase FERONIA and its peptide ligands, rapid alkalinization factors (RALFs), regulate plant immune responses and cell expansion, which are two important factors for successful RKN parasitism. In this study, we found that mutation of FERONIA in Arabidopsis thaliana resulted in plants showing low susceptibility to the RKN Meloidogyne incognita. To identify the underlying mechanisms associated with this phenomenon, we identified 18 novel RALF-likes from multiple species of RKNs and showed that two RALF-likes (i.e., MiRALF1 and MiRALF3) from M. incognita were expressed in the esophageal gland with high expression during the parasitic stages of nematode development. These nematode RALF-likes also possess the typical activities of plant RALFs and can directly bind to the extracellular domain of FERONIA to modulate specific steps of nematode parasitism-related immune responses and cell expansion. Genetically, both MiRALF1/3 and FERONIA are required for RKN parasitism in Arabidopsis and rice. Collectively, our study suggests that nematode-encoded RALFs facilitate parasitism via plant-encoded FERONIA and provides a novel paradigm for studying host-pathogen interactions.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Huan Peng
- State Key Laboratory of Plant Disease and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Junjie Xing
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P.R. China
| | - Xin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Zhaozhong Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Jingyuan Zheng
- Institute of Vegetable Research, Hunan Academy of Agricultural Sciences, Changsha 410125, P.R. China
| | - Long Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Bingqian Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Jia Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, P.R. China
| | - Ke Yao
- State Key Laboratory of Plant Disease and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Jinzhuo Jian
- State Key Laboratory of Plant Disease and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Devin Coleman-Derr
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Hongdong Liao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China.
| | - Yousong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China.
| | - Deliang Peng
- State Key Laboratory of Plant Disease and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China; State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P.R. China.
| |
Collapse
|
29
|
Joshi I, Kumar A, Kohli D, Singh AK, Sirohi A, Subramaniam K, Chaudhury A, Jain PK. Conferring root-knot nematode resistance via host-delivered RNAi-mediated silencing of four Mi-msp genes in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110592. [PMID: 32771150 DOI: 10.1016/j.plantsci.2020.110592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 05/27/2023]
Abstract
The root-knot nematode (RKN) Meloidogyne incognita is considered one of the most damaging pests among phytonematodes. The majority of nematode oesophageal gland effector genes are indispensable in facilitating M. incognita parasitization of host plants. We report the effect of host-delivered RNAi (HD-RNAi) silencing of four selected M. incognita effector genes, namely, Mi-msp3, Mi-msp5, Mi-msp18 and Mi-msp24, in Arabidopsis thaliana. Mi-msp5, Mi-msp18 and Mi-msp24, which are dorsal gland genes, were found to be maximally expressed in the adult female stage, whereas Mi-msp3, which is a sub-ventral gland gene, was maximally expressed in an earlier stage. In transgenic plants expressing dsRNA, the reduction in the number of galls on roots was 89 %, 78 %, 86 % and 89 % for the Mi-msp3, Mi-msp5, Mi-msp18 and Mi-msp24 RNAi events, respectively. Moreover, gene transcript abundance was significantly reduced in RKN females feeding on dsRNA-expressing lines by up to 60 %, 84 %, 31 % and 61 % for Mi-msp3, Mi-msp5, Mi-msp18 and Mi-msp24, respectively. Furthermore, the M. incognita reproduction factor was reduced up to 71-, 344-, 107- and 114-fold in Arabidopsis plants expressing Mi-msp3, Mi-msp5, Mi-msp18 and Mi-msp24 dsRNA constructs, respectively. This study provides a set of potential target genes to curb nematode infestation in economically important crops via the HD-RNAi approach.
Collapse
Affiliation(s)
- Ila Joshi
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India; Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Anil Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Deshika Kohli
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Ashish K Singh
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anil Sirohi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - K Subramaniam
- Department of Biotechnology, Indian Institute of Technology, Madras, India
| | - Ashok Chaudhury
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Pradeep K Jain
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
30
|
Wang J, Yeckel G, Kandoth PK, Wasala L, Hussey RS, Davis EL, Baum TJ, Mitchum MG. Targeted suppression of soybean BAG6-induced cell death in yeast by soybean cyst nematode effectors. MOLECULAR PLANT PATHOLOGY 2020; 21:1227-1239. [PMID: 32686295 PMCID: PMC7411569 DOI: 10.1111/mpp.12970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 05/29/2023]
Abstract
While numerous effectors that suppress plant immunity have been identified from bacteria, fungi, and oomycete pathogens, relatively little is known for nematode effectors. Several dozen effectors have been reported from the soybean cyst nematode (SCN). Previous studies suggest that a hypersensitive response-like programmed cell death is triggered at nematode feeding sites in soybean during an incompatible interaction. However, virulent SCN populations overcome this incompatibility using unknown mechanisms. A soybean BAG6 (Bcl-2 associated anthanogene 6) gene previously reported by us to be highly up-regulated in degenerating feeding sites induced by SCN in a resistant soybean line was attenuated in response to a virulent SCN population. We show that GmBAG6-1 induces cell death in yeast like its Arabidopsis homolog AtBAG6 and also in soybean. This led us to hypothesize that virulent SCN may target GmBAG6-1 as part of their strategy to overcome soybean defence responses during infection. Thus, we used a yeast viability assay to screen SCN effector candidates for their ability to specifically suppress GmBAG6-1-induced cell death. We identified several effectors that strongly suppressed cell death mediated by GmBAG6-1. Two effectors identified as suppressors showed direct interaction with GmBAG6-1 in yeast, suggesting that one mechanism of cell death suppression may occur through an interaction with this host protein.
Collapse
Affiliation(s)
- Jianying Wang
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
| | - Greg Yeckel
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
- Present address:
Corteva AgriscienceJohnstonIAUSA
| | - Pramod K. Kandoth
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
- Present address:
National Agri‐food Biotechnology InstituteMohaliIndia
| | - Lakmini Wasala
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
- Present address:
Department of Veterinary PathobiologyUniversity of MissouriColumbiaMOUSA
| | | | - Eric L. Davis
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| | - Thomas J. Baum
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Melissa G. Mitchum
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGAUSA
| |
Collapse
|
31
|
Favery B, Dubreuil G, Chen MS, Giron D, Abad P. Gall-Inducing Parasites: Convergent and Conserved Strategies of Plant Manipulation by Insects and Nematodes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:1-22. [PMID: 32853101 DOI: 10.1146/annurev-phyto-010820-012722] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Gall-inducing insects and nematodes engage in sophisticated interactions with their host plants. These parasites can induce major morphological and physiological changes in host roots, leaves, and other tissues. Sedentary endoparasitic nematodes, root-knot and cyst nematodes in particular, as well as gall-inducing and leaf-mining insects, manipulate plant development to form unique organs that provide them with food from feeding cells. Sometimes, infected tissues may undergo a developmental switch resulting in the formation of aberrant and spectacular structures (clubs or galls). We describe here the complex interactions between these plant-reprogramming sedentary endoparasites and their infected hosts, focusing on similarities between strategies of plant manipulation. We highlight progress in our understanding of the host plant response to infection and focus on the nematode and insect molecules secreted in planta. We suggest thatlooking at similarities may identify convergent and conserved strategies and shed light on the promise they hold for the development of new management strategies in agriculture and forestry.
Collapse
Affiliation(s)
- Bruno Favery
- INRAE, CNRS, Université Côte d'Azur, ISA, F-06600 Sophia-Antipolis, France;
| | - Géraldine Dubreuil
- Institut de Recherche sur la Biologie de l'Insecte, CNRS, Université de Tours, UMR 7261, 37200 Tours, France;
| | - Ming-Shun Chen
- USDA-ARS and Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte, CNRS, Université de Tours, UMR 7261, 37200 Tours, France;
| | - Pierre Abad
- INRAE, CNRS, Université Côte d'Azur, ISA, F-06600 Sophia-Antipolis, France;
| |
Collapse
|
32
|
Pokhare SS, Thorpe P, Hedley P, Morris J, Habash SS, Elashry A, Eves-van den Akker S, Grundler FMW, Jones JT. Signatures of adaptation to a monocot host in the plant-parasitic cyst nematode Heterodera sacchari. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1263-1274. [PMID: 32623778 DOI: 10.1111/tpj.14910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/18/2020] [Indexed: 05/03/2023]
Abstract
Interactions between plant-parasitic nematodes and their hosts are mediated by effectors, i.e. secreted proteins that manipulate the plant to the benefit of the pathogen. To understand the role of effectors in host adaptation in nematodes, we analysed the transcriptome of Heterodera sacchari, a cyst nematode parasite of rice (Oryza sativa) and sugarcane (Saccharum officinarum). A multi-gene phylogenetic analysis showed that H. sacchari and the cereal cyst nematode Heterodera avenae share a common evolutionary origin and that they evolved to parasitise monocot plants from a common dicot-parasitic ancestor. We compared the effector repertoires of H. sacchari with those of the dicot parasites Heterodera glycines and Globodera rostochiensis to understand the consequences of this transition. While, in general, effector repertoires are similar between the species, comparing effectors and non-effectors of H. sacchari and G. rostochiensis shows that effectors have accumulated more mutations than non-effectors. Although most effectors show conserved spatiotemporal expression profiles and likely function, some H. sacchari effectors are adapted to monocots. This is exemplified by the plant-peptide hormone mimics, the CLAVATA3/EMBRYO SURROUNDING REGION-like (CLE) effectors. Peptide hormones encoded by H. sacchari CLE effectors are more similar to those from rice than those from other plants, or those from other plant-parasitic nematodes. We experimentally validated the functional significance of these observations by demonstrating that CLE peptides encoded by H. sacchari induce a short root phenotype in rice, whereas those from a related dicot parasite do not. These data provide a functional example of effector evolution that co-occurred with the transition from a dicot-parasitic to a monocot-parasitic lifestyle.
Collapse
Affiliation(s)
- Somnath S Pokhare
- Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany
- Crop Protection Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Peter Thorpe
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK
| | - Pete Hedley
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Jennifer Morris
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Samer S Habash
- Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany
| | - Abdelnaser Elashry
- Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany
| | | | - Florian M W Grundler
- Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany
| | - John T Jones
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK
| |
Collapse
|
33
|
Dodueva IE, Lebedeva MA, Kuznetsova KA, Gancheva MS, Paponova SS, Lutova LL. Plant tumors: a hundred years of study. PLANTA 2020; 251:82. [PMID: 32189080 DOI: 10.1007/s00425-020-03375-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/11/2020] [Indexed: 05/21/2023]
Abstract
The review provides information on the mechanisms underlying the development of spontaneous and pathogen-induced tumors in higher plants. The activation of meristem-specific regulators in plant tumors of various origins suggests the meristem-like nature of abnormal plant hyperplasia. Plant tumor formation has more than a century of research history. The study of this phenomenon has led to a number of important discoveries, including the development of the Agrobacterium-mediated transformation technique and the discovery of horizontal gene transfer from bacteria to plants. There are two main groups of plant tumors: pathogen-induced tumors (e.g., tumors induced by bacteria, viruses, fungi, insects, etc.), and spontaneous ones, which are formed in the absence of any pathogen in plants with certain genotypes (e.g., interspecific hybrids, inbred lines, and mutants). The causes of the transition of plant cells to tumor growth are different from those in animals, and they include the disturbance of phytohormonal balance and the acquisition of meristematic characteristics by differentiated cells. The aim of this review is to discuss the mechanisms underlying the development of most known examples of plant tumors.
Collapse
Affiliation(s)
- Irina E Dodueva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia.
| | - Maria A Lebedeva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Kseniya A Kuznetsova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Maria S Gancheva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Svetlana S Paponova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Ludmila L Lutova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
34
|
Modulation of Arabidopsis Flavonol Biosynthesis Genes by Cyst and Root-Knot Nematodes. PLANTS 2020; 9:plants9020253. [PMID: 32079157 PMCID: PMC7076660 DOI: 10.3390/plants9020253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/28/2020] [Accepted: 02/07/2020] [Indexed: 12/02/2022]
Abstract
Although it is well established that flavonoid synthesis is induced in diverse plant species during nematode parasitism, little is known about the regulation of genes controlling flavonol biosynthesis during the plant–nematode interaction. In this study, expression of the Arabidopsis thaliana flavonol-specific transcription factor, AtMYB12, the flavonol synthase genes, AtFLS1, 2, 3, 4, and 5, and the gene encoding the central flavonoid enzyme, chalcone synthase (AtCHS), were examined in plant roots during infection by Heterodera schachtii (sugar beet cyst) and Meloidogyne incognita (root-knot) nematodes. These experiments showed that AtMYB12 was transiently upregulated at 9 dpi in syncytia associated with sugar beet cyst nematode infection and that an Atmyb12-deficient line was less susceptible to the parasite. This suggests that, rather than contributing to plant defense, this gene is essential for productive infection. However, the AtCHS and AtFLS1 genes, which are controlled by AtMYB12, did not exhibit a similar transient increase, but rather were expressly downregulated in syncytia relative to adjacent uninfected root tissue. Genetic analyses further indicated that AtFLS1 contributes to plant defense against Cyst nematode infection, while other AtFLS gene family members do not, consistent with prior reports that these other genes encode little or no enzyme activity. Together, these findings indicate a role of AtMyb12 in promoting the early stages of Cyst nematode infection, while flavonols produced through the action of AtFLS1 are essential for plant defense. On the other hand, a transient induction of AtMYB12 was not observed in galls produced during root-knot nematode infection, but this gene was instead substantially downregulated, starting at the 9 dpi sampling point, as were AtCHS and AtFLS1. In addition, both the AtMYB12- and AtFLS1-deficient lines were more susceptible to infection by this parasite. There was again little evidence for contributions from the other AtFLS gene family members, although an AtFLS5-deficient line appeared to be somewhat more susceptible to infection. Taken together, this study shows that sugar-beet cyst and root-knot nematodes modulate differently the genes involved in flavonol biosynthesis in order to successfully infect host roots and that AtFLS1 may be involved in the plant basal defense response against nematode infection.
Collapse
|
35
|
Hu Y, You J, Li C, Pan F, Wang C. The Heterodera glycines effector Hg16B09 is required for nematode parasitism and suppresses plant defense response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110271. [PMID: 31623793 DOI: 10.1016/j.plantsci.2019.110271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
Soybean cyst nematode (Heterodera glycines Ichinohe) is a sedentary root endoparasite that causes serious yield losses on soybean (Glycine max) worldwide. H. glycines secrets effector proteins into host cells to facilitate the success of parasitism. Nowadays, a large number of candidate effectors were identified from the genome sequence of H. glycines. However, the precise functions of these effectors in the nematode-host plant interaction are unknown. Here, an effector gene of dorsal gland protein Hg16B09 from H. glycines was cloned and functionally characterized through generating the transgenic soybean hairy roots. In situ hybridization assay and qRT-PCR analysis indicated Hg16B09 is exclusively expressed in the dorsal esophageal cells and up-regulated in the parasitic-stage juveniles. The constitutive expression of Hg16B09 in soybean hairy roots caused an enhanced susceptibility to H. glycines. In contrast, in planta silencing of Hg16B09 exhibited that nematode reproduction in hairy roots was decreased compared to the empty vector control. In addition, Hg16B09 also suppressed the expression of soybean defense-related genes induced by the pathogen-associated molecular pattern flg22. These data indicate that the effector Hg16B09 might aid H. glycines parasitism through suppressing plant basal defenses in the early parasitic stages.
Collapse
Affiliation(s)
- Yanfeng Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China
| | - Jia You
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China; University of Chinese Academy of Science, Beijing, PR China
| | - Chunjie Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China
| | - Fengjuan Pan
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China
| | - Congli Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China.
| |
Collapse
|
36
|
Sun X, Zhang L, Tang Z, Shi X, Ma J, Cui R. Transcriptome analysis of roots from resistant and susceptible rice varieties infected with Hirschmanniella mucronata. FEBS Open Bio 2019; 9:1968-1982. [PMID: 31571430 PMCID: PMC6823281 DOI: 10.1002/2211-5463.12737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/14/2019] [Accepted: 09/27/2019] [Indexed: 01/23/2023] Open
Abstract
Hirschmanniella mucronata is a plant-parasitic nematode that is widespread in rice production areas and causes 10-25% yield losses a year on average. Here, we investigated the mechanism of resistance to this nematode by comparing the transcriptomes of roots from resistant (Jiabali) and susceptible (Bawangbian) varieties of rice. Of 39 233 unigenes, 2243. exhibited altered total expression levels between control and infected resistant and susceptible varieties. Significant differences were observed in the expression levels of genes related to stress, peptidase regulation or inhibition, oxidoreductase activity, peroxidase activity and antioxidant activity. The up-regulated genes related to plant secondary metabolites, such as phenylpropanoid, lignin, cellulose or hemicellulose, may result in an increase in the degree of resistance of Jiabali to the H. mucronata infection compared with that of Bawangbian by affecting cell wall organization or biogenesis. Of the genes that responded similarly to H. mucronata infection, ~252 (~76.59%) showed greater changes (whether induced or suppressed) in RN155 (susceptible varieties infected by rice root nematode) than in RN51 (resistance varieties infected by rice root nematode). Nineteen pathogenesis-related genes belonging to nine pathogenesis-related gene families were significantly induced by H. mucronata in the infected roots of Jiabali and Bawangbian, and 13 differentially expressed genes showed changes in their abundance only in the susceptible Bawangbian variety. This study may help enhance our understanding of the mechanisms underlying plant resistance to nematodes.
Collapse
Affiliation(s)
- Xiaotang Sun
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lei Zhang
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ziqing Tang
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xugen Shi
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jian Ma
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ruqiang Cui
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
37
|
Neupane S, Purintun JM, Mathew FM, Varenhorst AJ, Nepal MP. Molecular Basis of Soybean Resistance to Soybean Aphids and Soybean Cyst Nematodes. PLANTS 2019; 8:plants8100374. [PMID: 31561499 PMCID: PMC6843664 DOI: 10.3390/plants8100374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 01/25/2023]
Abstract
Soybean aphid (SBA; Aphis glycines Matsumura) and soybean cyst nematode (SCN; Heterodera glycines Ichninohe) are major pests of the soybean (Glycine max [L.] Merr.). Substantial progress has been made in identifying the genetic basis of limiting these pests in both model and non-model plant systems. Classical linkage mapping and genome-wide association studies (GWAS) have identified major and minor quantitative trait loci (QTLs) in soybean. Studies on interactions of SBA and SCN effectors with host proteins have identified molecular cues in various signaling pathways, including those involved in plant disease resistance and phytohormone regulations. In this paper, we review the molecular basis of soybean resistance to SBA and SCN, and we provide a synthesis of recent studies of soybean QTLs/genes that could mitigate the effects of virulent SBA and SCN populations. We also review relevant studies of aphid–nematode interactions, particularly in the soybean–SBA–SCN system.
Collapse
Affiliation(s)
- Surendra Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Jordan M Purintun
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Febina M Mathew
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Adam J Varenhorst
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
38
|
Mejias J, Truong NM, Abad P, Favery B, Quentin M. Plant Proteins and Processes Targeted by Parasitic Nematode Effectors. FRONTIERS IN PLANT SCIENCE 2019; 10:970. [PMID: 31417587 PMCID: PMC6682612 DOI: 10.3389/fpls.2019.00970] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/11/2019] [Indexed: 05/17/2023]
Abstract
Sedentary endoparasitic nematodes, such as root-knot nematodes (RKN; Meloidogyne spp.) and cyst nematodes (CN; Heterodera spp. and Globodera spp.) cause considerable damage to agricultural crops. RKN and CN spend most of their life cycle in plant roots, in which they induce the formation of multinucleate hypertrophied feeding cells, called "giant cells" and "syncytia," respectively. The giant cells result from nuclear divisions of vascular cells without cytokinesis. They are surrounded by small dividing cells and they form a new organ within the root known as a root knot or gall. CN infection leads to the fusion of several root cells into a unique syncytium. These dramatically modified host cells act as metabolic sinks from which the nematode withdraws nutrients throughout its life, and they are thus essential for nematode development. Both RKN and CN secrete effector proteins that are synthesized in the oesophageal glands and delivered to the appropriate cell in the host plant via a syringe-like stylet, triggering the ontogenesis of the feeding structures. Within the plant cell or in the apoplast, effectors associate with specific host proteins, enabling them to hijack important processes for cell morphogenesis and physiology or immunity. Here, we review recent findings on the identification and functional characterization of plant targets of RKN and CN effectors. A better understanding of the molecular determinants of these biotrophic relationships would enable us to improve the yields of crops infected with parasitic nematodes and to expand our comprehension of root development.
Collapse
Affiliation(s)
| | | | | | | | - Michaël Quentin
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut Sophia Agrobiotech, Université Côte d’Azur, Sophia Antipolis, France
| |
Collapse
|
39
|
Huang X, Xu CL, Yang SH, Li JY, Wang HL, Zhang ZX, Chen C, Xie H. Life-stage specific transcriptomes of a migratory endoparasitic plant nematode, Radopholus similis elucidate a different parasitic and life strategy of plant parasitic nematodes. Sci Rep 2019; 9:6277. [PMID: 31000750 PMCID: PMC6472380 DOI: 10.1038/s41598-019-42724-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 04/02/2019] [Indexed: 01/21/2023] Open
Abstract
Radopholus similis is an important migratory endoparasitic nematode, severely harms banana, citrus and many other commercial crops. Little is known about the molecular mechanism of infection and pathogenesis of R. similis. In this study, 64761 unigenes were generated from eggs, juveniles, females and males of R. similis. 11443 unigenes showed significant expression difference among these four life stages. Genes involved in host parasitism, anti-host defense and other biological processes were predicted. There were 86 and 102 putative genes coding for cell wall degrading enzymes and antioxidase respectively. The amount and type of putative parasitic-related genes reported in sedentary endoparasitic plant nematodes are variable from those of migratory parasitic nematodes on plant aerial portion. There were no sequences annotated to effectors in R. similis, involved in feeding site formation of sedentary endoparasites nematodes. This transcriptome data provides a new insight into the parasitic and pathogenic molecular mechanisms of the migratory endoparasitic nematodes. It also provides a broad idea for further research on R. similis.
Collapse
Affiliation(s)
- Xin Huang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
| | - Chun-Ling Xu
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
| | - Si-Hua Yang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jun-Yi Li
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
| | - Hong-Le Wang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
| | - Zi-Xu Zhang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
| | - Chun Chen
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
| | - Hui Xie
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China.
| |
Collapse
|
40
|
Gheysen G, Mitchum MG. Phytoparasitic Nematode Control of Plant Hormone Pathways. PLANT PHYSIOLOGY 2019; 179:1212-1226. [PMID: 30397024 PMCID: PMC6446774 DOI: 10.1104/pp.18.01067] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/24/2018] [Indexed: 05/17/2023]
Abstract
Phytoparasitic nematodes use multiple tactics to influence phytohormone physiology and alter plant developmental programs to establish feeding sites.
Collapse
Affiliation(s)
- Godelieve Gheysen
- Ghent University, Department of Biotechnology, Coupure Links 653, 9000 Ghent, Belgium
| | - Melissa G Mitchum
- University of Missouri, Division of Plant Sciences and Bond Life Sciences Center, Columbia, Missouri 65211
| |
Collapse
|
41
|
Perrine-Walker F. Interactions of endoparasitic and ectoparasitic nematodes within the plant root system. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:295-303. [PMID: 32172739 DOI: 10.1071/fp18176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/07/2018] [Indexed: 05/27/2023]
Abstract
Root-knot and cyst nematodes have sophisticated mechanisms to invade their plant hosts to reprogram the plant developmental program to induce feeding structures essential for nematode survival and reproduction. This has a detrimental effect on the plant as this sedentary endoparasitic interaction affects the growth and yields of many crop plants. However, other migratory endoparasitic nematodes that do not establish root feeding sites are as aggressive on many crop plants. With new information gained from the genome and transcriptomes of the migratory endoparasitic nematode, Pratylenchus spp., this review compares the different lifestyles and the pathogenic interactions these nematodes have with their plant host. Pratylenchus spp. utilises a common arsenal of effectors involved in plant cell wall degradation and the manipulation of plant host innate immunity. The absence of specific cell reprogramming effector genes may explain its migratory endoparasitic lifestyle, making it relevant to pest management approaches in Australia.
Collapse
Affiliation(s)
- Francine Perrine-Walker
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, University of Sydney, Biomedical Building C81, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW 2015, Australia. Email
| |
Collapse
|
42
|
Transcriptional profiling of wheat (Triticum aestivum L.) during a compatible interaction with the cereal cyst nematode Heterodera avenae. Sci Rep 2019; 9:2184. [PMID: 30778126 PMCID: PMC6379437 DOI: 10.1038/s41598-018-37824-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/26/2018] [Indexed: 12/27/2022] Open
Abstract
Cereal cyst nematode (CCN, Heterodera avenae) presents severe challenges to wheat (Triticum aestivum L.) production worldwide. An investigation of the interaction between wheat and CCN can greatly improve our understanding of how nematodes alter wheat root metabolic pathways for their development and could contribute to new control strategies against CCN. In this study, we conducted transcriptome analyses of wheat cv. Wen 19 (Wen19) by using RNA-Seq during the compatible interaction with CCN at 1, 3 and 8 days past inoculation (dpi). In total, 71,569 transcripts were identified, and 10,929 of them were examined as differentially expressed genes (DEGs) in response to CCN infection. Based on the functional annotation and orthologous findings, the protein phosphorylation, oxidation-reduction process, regulation of transcription, metabolic process, transport, and response process as well as many other pathways previously reported were enriched at the transcriptional level. Plant cell wall hydrolysis and modifying proteins, auxin biosynthesis, signalling and transporter genes were up-regulated by CCN infection to facilitate penetration, migration and syncytium establishment. Genes responding to wounding and jasmonic acid stimuli were enriched at 1 dpi. We found 16 NBS-LRR genes, 12 of which were down-regulated, indicating the repression of resistance. The expression of genes encoding antioxidant enzymes, glutathione S-transferases and UDP-glucosyltransferase was significantly up-regulated during CCN infection, indicating that they may play key roles in the compatible interaction of wheat with CCN. Taken together, the results obtained from the transcriptome analyses indicate that the genes involved in oxidation-reduction processes, induction and suppression of resistance, metabolism, transport and syncytium establishment may be involved in the compatible interaction of Wen 19 with CCN. This study provides new insights into the responses of wheat to CCN infection. These insights could facilitate the elucidation of the potential mechanisms of wheat responses to CCN.
Collapse
|
43
|
Masonbrink R, Maier TR, Seetharam AS, Juvale PS, Baber L, Baum TJ, Severin AJ. SCNBase: a genomics portal for the soybean cyst nematode (Heterodera glycines). Database (Oxford) 2019; 2019:baz111. [PMID: 31680133 PMCID: PMC6853641 DOI: 10.1093/database/baz111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/22/2019] [Accepted: 08/09/2019] [Indexed: 11/25/2022]
Abstract
Soybean is an important worldwide crop, and farmers continue to experience significant yield loss due to the soybean cyst nematode (SCN), Heterodera glycines. This soil-borne roundworm parasite is rated the most important pathogen problem in soybean production. The infective nematodes enter into complex interactions with their host plant by inducing the development of specialized plant feeding cells that provide the parasites with nourishment. Addressing the SCN problem will require the development of genomic resources and a global collaboration of scientists to analyze and use these resources. SCNBase.org was designed as a collaborative hub for the SCN genome. All data and analyses are downloadable and can be analyzed with three integrated genomic tools: JBrowse, Feature Search and BLAST. At the time of this writing, a number of genomic and transcriptomic data sets are already available, with 43 JBrowse tracks and 21 category pages describing SCN genomic analyses on gene predictions, transcriptome and read alignments, effector-like genes, expansion and contraction of genomic repeats, orthology and synteny with related nematode species, Single Nucleotide Polymorphism (SNPs) from 15 SCN populations and novel splice sites. Standard functional gene annotations were supplemented with orthologous gene annotations using a comparison to nine related plant-parasitic nematodes, thereby enabling functional annotations for 85% of genes. These annotations led to a greater grasp on the SCN effectorome, which include over 3324 putative effector genes. By designing SCNBase as a hub, future research findings and genomic resources can easily be uploaded and made available for use by others with minimal needs for further curation. By providing these resources to nematode research community, scientists will be empowered to develop novel, more effective SCN management tools.
Collapse
Affiliation(s)
- Rick Masonbrink
- Genome Informatics Facility, Iowa State University, Osborne Dr, Ames, IA 50011, USA
| | - Tom R Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Pammel Dr, Ames, IA 50011, USA
| | - Arun S Seetharam
- Genome Informatics Facility, Iowa State University, Osborne Dr, Ames, IA 50011, USA
| | - Parijat S Juvale
- Department of Plant Pathology and Microbiology, Iowa State University, Pammel Dr, Ames, IA 50011, USA
| | - Levi Baber
- Research IT, Iowa State University, Osborne Dr, Ames, IA 50011, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Pammel Dr, Ames, IA 50011, USA
| | - Andrew J Severin
- Genome Informatics Facility, Iowa State University, Osborne Dr, Ames, IA 50011, USA
| |
Collapse
|
44
|
Barnes SN, Wram CL, Mitchum MG, Baum TJ. The plant-parasitic cyst nematode effector GLAND4 is a DNA-binding protein. MOLECULAR PLANT PATHOLOGY 2018; 19:2263-2276. [PMID: 29719112 PMCID: PMC6637993 DOI: 10.1111/mpp.12697] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/23/2018] [Accepted: 04/30/2018] [Indexed: 05/24/2023]
Abstract
Cyst nematodes are plant pathogens that infect a wide range of economically important crops. One parasitic mechanism employed by cyst nematodes is the production and in planta delivery of effector proteins to modify plant cells and suppress defences to favour parasitism. This study focuses on GLAND4, an effector of Heterodera glycines and H. schachtii, the soybean and sugar beet cyst nematodes, respectively. We show that GLAND4 is recognized by the plant cellular machinery and is transported to the plant nucleus, an organelle for which little is known about plant nematode effector functions. We show that GLAND4 has DNA-binding ability and represses reporter gene expression in a plant transcriptional assay. One DNA fragment that binds to GLAND4 is localized in an Arabidopsis chromosomal region associated with the promoters of two lipid transfer protein genes (LTP). These LTPs have known defence functions and are down-regulated in the nematode feeding site. When expressed in Arabidopsis, the presence of GLAND4 causes the down-regulation of the two LTP genes in question, which is also associated with increased susceptibility to the plant-pathogenic bacterium Pseudomonas syringae. Furthermore, overexpression of one of the LTP genes reduces plant susceptibility to H. schachtii and P. syringae, confirming that LTP repression probably suppresses plant defences. This study makes GLAND4 one of a small subset of characterized plant nematode nuclear effectors and identifies GLAND4 as the first DNA-binding, plant-parasitic nematode effector.
Collapse
Affiliation(s)
- Stacey N. Barnes
- Plant Pathology & Microbiology DepartmentIowa State UniversityAmesIA 50011USA
| | - Catherine L. Wram
- Plant Pathology & Microbiology DepartmentIowa State UniversityAmesIA 50011USA
- Present address:
Department of Botany and Plant PathologyOregon State UniversityCorvallisOR 97330USA
| | - Melissa G. Mitchum
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMO 65211USA
| | - Thomas J. Baum
- Plant Pathology & Microbiology DepartmentIowa State UniversityAmesIA 50011USA
| |
Collapse
|
45
|
Verma A, Lee C, Morriss S, Odu F, Kenning C, Rizzo N, Spollen WG, Lin M, McRae AG, Givan SA, Hewezi T, Hussey R, Davis EL, Baum TJ, Mitchum MG. The novel cyst nematode effector protein 30D08 targets host nuclear functions to alter gene expression in feeding sites. THE NEW PHYTOLOGIST 2018; 219:697-713. [PMID: 29726613 DOI: 10.1111/nph.15179] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 03/15/2018] [Indexed: 05/29/2023]
Abstract
Cyst nematodes deliver effector proteins into host cells to manipulate cellular processes and establish a metabolically hyperactive feeding site. The novel 30D08 effector protein is produced in the dorsal gland of parasitic juveniles, but its function has remained unknown. We demonstrate that expression of 30D08 contributes to nematode parasitism, the protein is packaged into secretory granules and it is targeted to the plant nucleus where it interacts with SMU2 (homolog of suppressor of mec-8 and unc-52 2), an auxiliary spliceosomal protein. We show that SMU2 is expressed in feeding sites and an smu2 mutant is less susceptible to nematode infection. In Arabidopsis expressing 30D08 under the SMU2 promoter, several genes were found to be alternatively spliced and the most abundant functional classes represented among differentially expressed genes were involved in RNA processing, transcription and binding, as well as in development, and hormone and secondary metabolism, representing key cellular processes known to be important for feeding site formation. In conclusion, we demonstrated that the 30D08 effector is secreted from the nematode and targeted to the plant nucleus where its interaction with a host auxiliary spliceosomal protein may alter the pre-mRNA splicing and expression of a subset of genes important for feeding site formation.
Collapse
Affiliation(s)
- Anju Verma
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Chris Lee
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Stephanie Morriss
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Fiona Odu
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Charlotte Kenning
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | | | - William G Spollen
- Informatics Research Core Facility, University of Missouri, Columbia, MO, 65211, USA
| | - Marriam Lin
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Amanda G McRae
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Scott A Givan
- Informatics Research Core Facility, University of Missouri, Columbia, MO, 65211, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Richard Hussey
- Department of Plant Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Eric L Davis
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
46
|
Ali MA, Anjam MS, Nawaz MA, Lam HM, Chung G. Signal Transduction in Plant⁻Nematode Interactions. Int J Mol Sci 2018; 19:ijms19061648. [PMID: 29865232 PMCID: PMC6032140 DOI: 10.3390/ijms19061648] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 12/26/2022] Open
Abstract
To successfully invade and infect their host plants, plant parasitic nematodes (PPNs) need to evolve molecular mechanisms to overcome the defense responses from the plants. Nematode-associated molecular patterns (NAMPs), including ascarosides and certain proteins, while instrumental in enabling the infection, can be perceived by the host plants, which then initiate a signaling cascade leading to the induction of basal defense responses. To combat host resistance, some nematodes can inject effectors into the cells of susceptible hosts to reprogram the basal resistance signaling and also modulate the hosts’ gene expression patterns to facilitate the establishment of nematode feeding sites (NFSs). In this review, we summarized all the known signaling pathways involved in plant–nematode interactions. Specifically, we placed particular focus on the effector proteins from PPNs that mimic the signaling of the defense responses in host plants. Furthermore, we gave an updated overview of the regulation by PPNs of different host defense pathways such as salicylic acid (SA)/jasmonic acid (JA), auxin, and cytokinin and reactive oxygen species (ROS) signaling to facilitate their parasitic successes in plants. This review will enhance the understanding of the molecular signaling pathways involved in both compatible and incompatible plant–nematode interactions.
Collapse
Affiliation(s)
- Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan.
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Muhammad Shahzad Anjam
- Institute of Molecular Biology & Biotechnology, Bahauddin Zakariya University, Multan 66000, Pakistan.
| | | | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea.
| |
Collapse
|
47
|
Pulungan SI, Yano R, Okabe Y, Ichino T, Kojima M, Takebayashi Y, Sakakibara H, Ariizumi T, Ezura H. SlLAX1 is Required for Normal Leaf Development Mediated by Balanced Adaxial and Abaxial Pavement Cell Growth in Tomato. PLANT & CELL PHYSIOLOGY 2018. [PMID: 29528453 DOI: 10.1093/pcp/pcy052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Leaves are the major plant organs with a primary function for photosynthesis. Auxin controls various aspects of plant growth and development, including leaf initiation, expansion and differentiation. Unique and intriguing auxin features include its polar transport, which is mainly controlled by the AUX1/LAX and PIN gene families as influx and efflux carriers, respectively. The role of AUX1/LAX genes in root development is well documented, but the role of these genes in leaf morphogenesis remains unclear. Moreover, most studies have been conducted in the plant model Arabidopsis thaliana, while studies in tomato are still scarce. In this study, we isolated six lines of the allelic curly leaf phenotype 'curl' mutants from a γ-ray and EMS (ethyl methanesulfonate) mutagenized population. Using a map-based cloning strategy combined with exome sequencing, we observed that a mutation occurred in the SlLAX1 gene (Solyc09g014380), which is homologous to an Arabidopsis auxin influx carrier gene, AUX1 (AtAUX1). Characterization of six alleles of single curl mutants revealed the pivotal role of SlLAX1 in controlling tomato leaf flatness by balancing adaxial and abaxial pavement cell growth, which has not been reported in tomato. Using TILLING (Targeting Induced Local Lesions IN Genome) technology, we isolated an additional mutant allele of the SlLAX1 gene and this mutant showed a curled leaf phenotype similar to other curl mutants, suggesting that Solyc09g014380 is responsible for the curl phenotype. These results showed that SlLAX1 is required for normal leaf development mediated by balanced adaxial and abaxial pavement cell growth in tomato.
Collapse
Affiliation(s)
- Sri Imriani Pulungan
- Graduate School Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan
| | - Ryoichi Yano
- Faculty Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan
| | - Yoshihiro Okabe
- Faculty Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8577 Japan
| | - Takuji Ichino
- Faculty Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Suehiro 1-7-22, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Suehiro 1-7-22, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Suehiro 1-7-22, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Tohru Ariizumi
- Faculty Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8577 Japan
| | - Hiroshi Ezura
- Faculty Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8577 Japan
| |
Collapse
|
48
|
Yimer HZ, Nahar K, Kyndt T, Haeck A, Van Meulebroek L, Vanhaecke L, Demeestere K, Höfte M, Gheysen G. Gibberellin antagonizes jasmonate-induced defense against Meloidogyne graminicola in rice. THE NEW PHYTOLOGIST 2018; 218:646-660. [PMID: 29464725 DOI: 10.1111/nph.15046] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/10/2018] [Indexed: 05/23/2023]
Abstract
Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode-plant interactions, still remains to be elucidated. An in-depth characterization of the role of GA in nematode infection was conducted using mutant lines of rice, chemical inhibitors, and phytohormone measurements. Our results showed that GA influences rice-Meloidogyne graminicola interactions in a concentration-dependent manner. Foliar spray of plants with a low concentration of gibberellic acid enhanced nematode infection. Biosynthetic and signaling mutants confirmed the importance of gibberellin for rice susceptibility to M. graminicola infection. Our study also demonstrates that GA signaling suppresses jasmonate (JA)-mediated defense against M. graminicola, and likewise the JA-induced defense against M. graminicola requires SLENDER RICE1 (SLR1)-mediated repression of the GA pathway. In contrast to observations from other plant-pathogen interactions, GA plays a dominant role over JA in determining susceptibility to M. graminicola in rice. This GA-induced nematode susceptibility was largely independent of auxin biosynthesis, but relied on auxin transport. In conclusion, we showed that GA-JA antagonistic crosstalk is at the forefront of the interaction between rice and M. graminicola, and SLR1 plays a central role in the JA-mediated defense response in rice against this nematode.
Collapse
Affiliation(s)
- Henok Zemene Yimer
- Department of Molecular Biotechnology, Ghent University, 9000, Ghent, Belgium
- Department of Crop protection, Ghent University, Ghent, Belgium
| | - Kamrun Nahar
- Department of Molecular Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Tina Kyndt
- Department of Molecular Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Ashley Haeck
- Research Group EnVOC, Department of Sustainable Organic Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Lieven Van Meulebroek
- Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Ghent University, Merelbeke, Belgium
| | - Lynn Vanhaecke
- Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Ghent University, Merelbeke, Belgium
| | - Kristof Demeestere
- Research Group EnVOC, Department of Sustainable Organic Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Monica Höfte
- Department of Crop protection, Ghent University, Ghent, Belgium
| | - Godelieve Gheysen
- Department of Molecular Biotechnology, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
49
|
Chen J, Hu L, Sun L, Lin B, Huang K, Zhuo K, Liao J. A novel Meloidogyne graminicola effector, MgMO237, interacts with multiple host defence-related proteins to manipulate plant basal immunity and promote parasitism. MOLECULAR PLANT PATHOLOGY 2018; 19:1942-1955. [PMID: 29485753 PMCID: PMC6638000 DOI: 10.1111/mpp.12671] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 05/04/2023]
Abstract
Plant-parasitic nematodes can secrete effector proteins into the host tissue to facilitate their parasitism. In this study, we report a novel effector protein, MgMO237, from Meloidogyne graminicola, which is exclusively expressed within the dorsal oesophageal gland cell and markedly up-regulated in parasitic third-/fourth-stage juveniles of M. graminicola. Transient expression of MgMO237 in protoplasts from rice roots showed that MgMO237 was localized in the cytoplasm and nucleus of the host cells. Rice plants overexpressing MgMO237 showed an increased susceptibility to M. graminicola. In contrast, rice plants expressing RNA interference vectors targeting MgMO237 showed an increased resistance to M. graminicola. In addition, yeast two-hybrid and co-immunoprecipitation assays showed that MgMO237 interacted specifically with three rice endogenous proteins, i.e. 1,3-β-glucan synthase component (OsGSC), cysteine-rich repeat secretory protein 55 (OsCRRSP55) and pathogenesis-related BetvI family protein (OsBetvI), which are all related to host defences. Moreover, MgMO237 can suppress host defence responses, including the expression of host defence-related genes, cell wall callose deposition and the burst of reactive oxygen species. These results demonstrate that the effector MgMO237 probably promotes the parasitism of M. graminicola by interacting with multiple host defence-related proteins and suppressing plant basal immunity in the later parasitic stages of nematodes.
Collapse
Affiliation(s)
- Jiansong Chen
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhou510642China
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhou510642China
| | - Lili Hu
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhou510642China
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhou510642China
| | - Longhua Sun
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhou510642China
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhou510642China
| | - Borong Lin
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhou510642China
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhou510642China
| | - Kun Huang
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhou510642China
| | - Kan Zhuo
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhou510642China
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhou510642China
| | - Jinling Liao
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhou510642China
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhou510642China
- Department of Eco‐engineering, Guangdong Eco‐Engineering PolytechnicGuangzhou510520China
| |
Collapse
|
50
|
Affiliation(s)
- Parijat S. Juvale
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Thomas J. Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|