1
|
Song C, Xie K, Chen H, Xu S, Mao H. Wheat ESCRT-III protein TaSAL1 regulates male gametophyte transmission and controls tillering and heading date. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2372-2384. [PMID: 38206130 DOI: 10.1093/jxb/erae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Charged multivesicular protein 1 (CHMP1) is a member of the endosomal sorting complex required for transport-III (ESCRT-III) complex that targets membrane localized signaling receptors to intralumenal vesicles in the multivesicular body of the endosome and eventually to the lysosome for degradation. Although CHMP1 plays roles in various plant growth and development processes, little is known about its function in wheat. In this study, we systematically analysed the members of the ESCRT-III complex in wheat (Triticum aestivum) and found that their orthologs were highly conserved in eukaryotic evolution. We identified CHMP1 homologous genes, TaSAL1s, and found that they were constitutively expressed in wheat tissues and essential for plant reproduction. Subcellular localization assays showed these proteins aggregated with and closely associated with the endoplasmic reticulum when ectopically expressed in tobacco leaves. We also found these proteins were toxic and caused leaf death. A genetic and reciprocal cross analysis revealed that TaSAL1 leads to defects in male gametophyte biogenesis. Moreover, phenotypic and metabolomic analysis showed that TaSAL1 may regulate tillering and heading date through phytohormone pathways. Overall, our results highlight the role of CHMP1 in wheat, particularly in male gametophyte biogenesis, with implications for improving plant growth and developing new strategies for plant breeding and genetic engineering.
Collapse
Affiliation(s)
- Chengxiang Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaidi Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuhao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Zhang S, Ghatak A, Mohammadi Bazargani M, Kramml H, Zang F, Gao S, Ramšak Ž, Gruden K, Varshney RK, Jiang D, Chaturvedi P, Weckwerth W. Cell-type proteomic and metabolomic resolution of early and late grain filling stages of wheat endosperm. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:555-571. [PMID: 38050335 DOI: 10.1111/pbi.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/21/2023] [Accepted: 10/03/2023] [Indexed: 12/06/2023]
Abstract
The nutritional value of wheat grains, particularly their protein and metabolite composition, is a result of the grain-filling process, especially in the endosperm. Here, we employ laser microdissection (LMD) combined with shotgun proteomics and metabolomics to generate a cell type-specific proteome and metabolome inventory of developing wheat endosperm at the early (15 DAA) and late (26 DAA) grain-filling stages. We identified 1803 proteins and 41 metabolites from four different cell types (aleurone (AL), sub-aleurone (SA), starchy endosperm (SE) and endosperm transfer cells (ETCs). Differentially expressed proteins were detected, 67 in the AL, 31 in the SA, 27 in the SE and 50 in the ETCs between these two-time points. Cell-type accumulation of specific SUT and GLUT transporters, sucrose converting and starch biosynthesis enzymes correlate well with the respective sugar metabolites, suggesting sugar upload and starch accumulation via nucellar projection and ETC at 15 DAA in contrast to the later stage at 26 DAA. Changes in various protein levels between AL, SA and ETC support this metabolic switch from 15 to 26 DAA. The distinct spatial and temporal abundances of proteins and metabolites revealed a contrasting activity of nitrogen assimilation pathways, e.g. for GOGAT, GDH and glutamic acid, in the different cell types from 15 to 26 DAA, which can be correlated with specific protein accumulation in the endosperm. The integration of cell-type specific proteome and metabolome data revealed a complex metabolic interplay of the different cell types and a functional switch during grain development and grain-filling processes.
Collapse
Affiliation(s)
- Shuang Zhang
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Ecophysiology, Ministry of Agriculture/Nanjing Agricultural University, Nanjing, China
| | - Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | | | - Hannes Kramml
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Fujuan Zang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Ecophysiology, Ministry of Agriculture/Nanjing Agricultural University, Nanjing, China
| | - Shuang Gao
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Ecophysiology, Ministry of Agriculture/Nanjing Agricultural University, Nanjing, China
| | - Živa Ramšak
- Department of Systems Biology and Biotechnology, National Institute of Biology, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Systems Biology and Biotechnology, National Institute of Biology, Ljubljana, Slovenia
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Ecophysiology, Ministry of Agriculture/Nanjing Agricultural University, Nanjing, China
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Sehgal D, Oliveira C, Mathioni S, Widdison S, Plumb W, Campos B, Kaundun SS. Genomic characterisation and dissection of the onset of resistance to acetyl CoA carboxylase-inhibiting herbicides in a large collection of Digitaria insularis from Brazil. Front Genet 2024; 15:1340852. [PMID: 38440194 PMCID: PMC10910277 DOI: 10.3389/fgene.2024.1340852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/19/2024] [Indexed: 03/06/2024] Open
Abstract
An in-depth genotypic characterisation of a diverse collection of Digitaria insularis was undertaken to explore the neutral genetic variation across the natural expansion range of this weed species in Brazil. With the exception of Minas Gerais, populations from all other states showed high estimates of expected heterozygosity (HE > 0.60) and genetic diversity. There was a lack of population structure based on geographic origin and a low population differentiation between populations across the landscape as evidenced by average Fst value of 0.02. On combining haloxyfop [acetyl CoA carboxylase (ACCase)-inhibiting herbicide] efficacy data with neutral genetic variation, we found evidence of presence of two scenarios of resistance evolution in this weed species. Whilst populations originating from north-eastern region demonstrated an active role of gene flow, populations from the mid-western region displayed multiple, independent resistance evolution as the major evolutionary mechanism. A target-site mutation (Trp2027Cys) in the ACCase gene, observed in less than 1% of resistant populations, could not explain the reduced sensitivity of 15% of the populations to haloxyfop. The genetic architecture of resistance to ACCase-inhibiting herbicides was dissected using a genome wide association study (GWAS) approach. GWAS revealed association of three SNPs with reduced sensitivity to haloxyfop and clethodim. In silico analysis of these SNPs revealed important non-target site genes belonging to families involved in herbicide detoxification, including UDPGT91C1 and GT2, and genes involved in vacuolar sequestration-based degradation pathway. Exploration of five genomic prediction models revealed that the highest prediction power (≥0.80) was achieved with the models Bayes A and RKHS, incorporating SNPs with additive effects and epistatic interactions, respectively.
Collapse
Affiliation(s)
- Deepmala Sehgal
- Syngenta Ltd., Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Claudia Oliveira
- Syngenta Crop Protection, Holambra Research and Development Center, São Paulo, Brazil
| | - Sandra Mathioni
- Syngenta Crop Protection, Holambra Research and Development Center, São Paulo, Brazil
| | - Stephanie Widdison
- Syngenta Ltd., Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Will Plumb
- Syngenta Ltd., Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Breno Campos
- Syngenta Ltd., Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Shiv Shankhar Kaundun
- Syngenta Ltd., Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| |
Collapse
|
4
|
Masoabi M, Burger NFV, Botha AM, Le Roux ML, Vlok M, Snyman S, Van der Vyver C. Overexpression of the Small Ubiquitin-Like Modifier protease OTS1 gene enhances drought tolerance in sugarcane (Saccharum spp. hybrid). PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1121-1141. [PMID: 37856570 DOI: 10.1111/plb.13585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Sugarcane is an economically important crop plant across the globe as it is the primary source of sugar and biofuel. Its growth and development are greatly influenced by water availability; therefore, in periods of water scarcity, yields are severely compromised. Small Ubiquitin-Like Modifier (SUMO) proteases play an important role in stress responses by regulating the SUMO-related post-translational modification of proteins. In an attempt to enhance drought tolerance in sugarcane, this crop was genetically transformed with a cysteine protease (OVERLY TOLERANT TO SALT-1; OTS1) from Arabidopsis thaliana using particle bombardment. Transgenic plants were analysed in terms of photosynthetic capacity, oxidative damage, antioxidant accumulation and the SUMO-enrich protein profile was assessed. Sugarcane transformed with the AtOTS1 gene displayed enhanced drought tolerance and delayed leaf senescence under water deficit compared to the untransformed wild type (WT). The AtOTS1 transgenic plants maintained a high relative moisture content and higher photosynthesis rate when compared to the WT. In addition, when the transgene was expressed at high levels, the transformed plants were able to maintain higher stomatal conductance and chlorophyl content under moderate stress compared to the WT. Under severe water deficit stress, the transgenic plants accumulated less malondialdehyde and maintained membrane integrity. SUMOylation of total protein and protease activity was lower in the AtOTS1 transformed plants compared to the WT, with several SUMO-enriched proteins exclusively expressed in the transgenics when exposed to water deficit stress. SUMOylation of proteins likely influenced various mechanisms contributing to enhanced drought tolerance in sugarcane.
Collapse
Affiliation(s)
- M Masoabi
- Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
| | - N F V Burger
- Department of Genetics, University of Stellenbosch, Stellenbosch, South Africa
| | - A-M Botha
- Department of Genetics, University of Stellenbosch, Stellenbosch, South Africa
| | - M L Le Roux
- Department of Genetics, University of Stellenbosch, Stellenbosch, South Africa
| | - M Vlok
- Mass Spectrometry Unit, Central Analytic Facility, Stellenbosch University, Stellenbosch, South Africa
| | - S Snyman
- South African Sugarcane Research Institute, Mount Edgecombe, South Africa
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - C Van der Vyver
- Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
5
|
Zeng Y, Liang Z, Liu Z, Li B, Cui Y, Gao C, Shen J, Wang X, Zhao Q, Zhuang X, Erdmann PS, Wong KB, Jiang L. Recent advances in plant endomembrane research and new microscopical techniques. THE NEW PHYTOLOGIST 2023; 240:41-60. [PMID: 37507353 DOI: 10.1111/nph.19134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
The endomembrane system consists of various membrane-bound organelles including the endoplasmic reticulum (ER), Golgi apparatus, trans-Golgi network (TGN), endosomes, and the lysosome/vacuole. Membrane trafficking between distinct compartments is mainly achieved by vesicular transport. As the endomembrane compartments and the machineries regulating the membrane trafficking are largely conserved across all eukaryotes, our current knowledge on organelle biogenesis and endomembrane trafficking in plants has mainly been shaped by corresponding studies in mammals and yeast. However, unique perspectives have emerged from plant cell biology research through the characterization of plant-specific regulators as well as the development and application of the state-of-the-art microscopical techniques. In this review, we summarize our current knowledge on the plant endomembrane system, with a focus on several distinct pathways: ER-to-Golgi transport, protein sorting at the TGN, endosomal sorting on multivesicular bodies, vacuolar trafficking/vacuole biogenesis, and the autophagy pathway. We also give an update on advanced imaging techniques for the plant cell biology research.
Collapse
Affiliation(s)
- Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zizhen Liang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zhiqi Liu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yong Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Philipp S Erdmann
- Human Technopole, Viale Rita Levi-Montalcini, 1, Milan, I-20157, Italy
| | - Kam-Bo Wong
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The CUHK Shenzhen Research Institute, Shenzhen, 518057, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
6
|
Zeng Y, Li B, Huang S, Li H, Cao W, Chen Y, Liu G, Li Z, Yang C, Feng L, Gao J, Lo SW, Zhao J, Shen J, Guo Y, Gao C, Dagdas Y, Jiang L. The plant unique ESCRT component FREE1 regulates autophagosome closure. Nat Commun 2023; 14:1768. [PMID: 36997511 PMCID: PMC10063618 DOI: 10.1038/s41467-023-37185-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/03/2023] [Indexed: 04/01/2023] Open
Abstract
The energy sensor AMP-activated protein kinase (AMPK) can activate autophagy when cellular energy production becomes compromised. However, the degree to which nutrient sensing impinges on the autophagosome closure remains unknown. Here, we provide the mechanism underlying a plant unique protein FREE1, upon autophagy-induced SnRK1α1-mediated phosphorylation, functions as a linkage between ATG conjugation system and ESCRT machinery to regulate the autophagosome closure upon nutrient deprivation. Using high-resolution microscopy, 3D-electron tomography, and protease protection assay, we showed that unclosed autophagosomes accumulated in free1 mutants. Proteomic, cellular and biochemical analysis revealed the mechanistic connection between FREE1 and the ATG conjugation system/ESCRT-III complex in regulating autophagosome closure. Mass spectrometry analysis showed that the evolutionary conserved plant energy sensor SnRK1α1 phosphorylates FREE1 and recruits it to the autophagosomes to promote closure. Mutagenesis of the phosphorylation site on FREE1 caused the autophagosome closure failure. Our findings unveil how cellular energy sensing pathways regulate autophagosome closure to maintain cellular homeostasis.
Collapse
Affiliation(s)
- Yonglun Zeng
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Baiying Li
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuxian Huang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wenhan Cao
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yixuan Chen
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Guoyong Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhenping Li
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Lei Feng
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiayang Gao
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sze Wan Lo
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jierui Zhao
- Vienna BioCenter PhD Program, Doctoral School of the University at Vienna and Medical University of Vienna, Vienna, Austria
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yasin Dagdas
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Liwen Jiang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK Shenzhen Research Institute, Shenzhen, China.
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Zhou L, Chen S, Cai M, Cui S, Ren Y, Zhang X, Liu T, Zhou C, Jin X, Zhang L, Wu M, Zhang S, Cheng Z, Zhang X, Lei C, Lin Q, Guo X, Wang J, Zhao Z, Jiang L, Zhu S, Wan J. ESCRT-III component OsSNF7.2 modulates leaf rolling by trafficking and endosomal degradation of auxin biosynthetic enzyme OsYUC8 in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36702785 DOI: 10.1111/jipb.13460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) is highly conserved in eukaryotic cells and plays an essential role in the biogenesis of multivesicular bodies and cargo degradation to the plant vacuole or lysosomes. Although ESCRT components affect a variety of plant growth and development processes, their impact on leaf development is rarely reported. Here, we found that OsSNF7.2, an ESCRT-III component, controls leaf rolling in rice (Oryza sativa). The Ossnf7.2 mutant rolled leaf 17 (rl17) has adaxially rolled leaves due to the decreased number and size of the bulliform cells. OsSNF7.2 is expressed ubiquitously in all tissues, and its protein is localized in the endosomal compartments. OsSNF7.2 homologs, including OsSNF7, OsSNF7.3, and OsSNF7.4, can physically interact with OsSNF7.2, but their single mutation did not result in leaf rolling. Other ESCRT complex subunits, namely OsVPS20, OsVPS24, and OsBRO1, also interact with OsSNF7.2. Further assays revealed that OsSNF7.2 interacts with OsYUC8 and aids its vacuolar degradation. Both Osyuc8 and rl17 Osyuc8 showed rolled leaves, indicating that OsYUC8 and OsSNF7.2 function in the same pathway, conferring leaf development. This study reveals a new biological function for the ESCRT-III components, and provides new insights into the molecular mechanisms underlying leaf rolling.
Collapse
Affiliation(s)
- Liang Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Saihua Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Maohong Cai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Song Cui
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinyue Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tianzhen Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunlei Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Jin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Limin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Minxi Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuyi Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
8
|
Huang S, Liu Z, Cao W, Li H, Zhang W, Cui Y, Hu S, Luo M, Zhu Y, Zhao Q, Xie L, Gao C, Xiao S, Jiang L. The plant ESCRT component FREE1 regulates peroxisome-mediated turnover of lipid droplets in germinating Arabidopsis seedlings. THE PLANT CELL 2022; 34:4255-4273. [PMID: 35775937 PMCID: PMC9614499 DOI: 10.1093/plcell/koac195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/20/2022] [Indexed: 05/28/2023]
Abstract
Lipid droplets (LDs) stored during seed development are mobilized and provide essential energy and lipids to support seedling growth upon germination. Triacylglycerols (TAGs) are the main neutral lipids stored in LDs. The lipase SUGAR DEPENDENT 1 (SDP1), which hydrolyzes TAGs in Arabidopsis thaliana, is localized on peroxisomes and traffics to the LD surface through peroxisomal extension, but the underlying mechanism remains elusive. Here, we report a previously unknown function of a plant-unique endosomal sorting complex required for transport (ESCRT) component FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1) in regulating peroxisome/SDP1-mediated LD turnover in Arabidopsis. We showed that LD degradation was impaired in germinating free1 mutant; moreover, the tubulation of SDP1- or PEROXIN 11e (PEX11e)-marked peroxisomes and the migration of SDP1-positive peroxisomes to the LD surface were altered in the free1 mutant. Electron tomography analysis showed that peroxisomes failed to form tubules to engulf LDs in free1, unlike in the wild-type. FREE1 interacted directly with both PEX11e and SDP1, suggesting that these interactions may regulate peroxisomal extension and trafficking of the lipase SDP1 to LDs. Taken together, our results demonstrate a pivotal role for FREE1 in LD degradation in germinating seedlings via regulating peroxisomal tubulation and SDP1 targeting.
Collapse
Affiliation(s)
- Shuxian Huang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
| | - Zhiqi Liu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
| | - Wenhan Cao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
| | - Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, 510631, China
| | - Wenxin Zhang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
| | - Yong Cui
- School of Life Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, 361102, China
| | - Shuai Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Mengqian Luo
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
| | - Ying Zhu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Lijuan Xie
- College of Plant Protection, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, 510631, China
| | - Shi Xiao
- School of Life Sciences, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China
| | | |
Collapse
|
9
|
Minamino N, Norizuki T, Mano S, Ebine K, Ueda T. Remodeling of organelles and microtubules during spermiogenesis in the liverwort Marchantia polymorpha. Development 2022; 149:276198. [DOI: 10.1242/dev.200951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/23/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Gametogenesis is an essential event for sexual reproduction in various organisms. Bryophytes employ motile sperm (spermatozoids) as male gametes, which locomote to the egg cells to accomplish fertilization. The spermatozoids of bryophytes harbor distinctive morphological characteristics, including a cell body with a helical shape and two flagella. During spermiogenesis, the shape and cellular contents of the spermatids are dynamically reorganized. However, the reorganization patterns of each organelle remain obscure. In this study, we classified the developmental processes during spermiogenesis in the liverwort Marchantia polymorpha according to changes in cellular and nuclear shapes and flagellar development. We then examined the remodeling of microtubules and the reorganization of endomembrane organelles. The results indicated that the state of glutamylation of tubulin changes during formation of the flagella and spline. We also found that the plasma membrane and endomembrane organelles are drastically reorganized in a precisely regulated manner, which involves the functions of endosomal sorting complexes required for transport (ESCRT) machineries in endocytic and vacuolar transport. These findings are expected to provide useful indices to classify developmental and subcellular processes of spermiogenesis in bryophytes.
Collapse
Affiliation(s)
- Naoki Minamino
- National Institute for Basic Biology 1 Division of Cellular Dynamics , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| | - Takuya Norizuki
- National Institute for Basic Biology 1 Division of Cellular Dynamics , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| | - Shoji Mano
- National Institute for Basic Biology 2 Laboratory of Organelle Regulation , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
- SOKENDAI (The Graduate University for Advanced Studies) 3 Department of Basic Biology , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| | - Kazuo Ebine
- National Institute for Basic Biology 1 Division of Cellular Dynamics , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
- SOKENDAI (The Graduate University for Advanced Studies) 3 Department of Basic Biology , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| | - Takashi Ueda
- National Institute for Basic Biology 1 Division of Cellular Dynamics , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
- SOKENDAI (The Graduate University for Advanced Studies) 3 Department of Basic Biology , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| |
Collapse
|
10
|
Fang Y, Wang Z, Liu X, Tyler BM. Biogenesis and Biological Functions of Extracellular Vesicles in Cellular and Organismal Communication With Microbes. Front Microbiol 2022; 13:817844. [PMID: 35250933 PMCID: PMC8895202 DOI: 10.3389/fmicb.2022.817844] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) represent a prominent mechanism of transport and interaction between cells, especially microbes. Increasing evidence indicates that EVs play a key role in the physiological and pathological processes of pathogens and other symbionts. Recent research has focused on the specific functions of these vesicles during pathogen-host interactions, including trans-kingdom delivery of small RNAs, proteins and metabolites. Much current research on the function of EVs is focused on immunity and the interactions of microbes with human cells, while the roles of EVs during plant-microbe interactions have recently emerged in importance. In this review, we summarize recent research on the biogenesis of these vesicles and their functions in biology and pathology. Many key questions remain unclear, including the full structural and functional diversity of EVs, the roles of EVs in communication among microbes within microbiomes, how specific cargoes are targeted to EVs, whether EVs are targeted to specific destinations, and the full scope of EVs' transport of virulence effectors and of RNA and DNA molecules.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Zhiwen Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xili Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Brett M. Tyler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
11
|
Goodman K, Paez-Valencia J, Pennington J, Sonntag A, Ding X, Lee HN, Ahlquist PG, Molina I, Otegui MS. ESCRT components ISTL1 andLIP5 are required for tapetal function and pollen viability. THE PLANT CELL 2021; 33:2850-2868. [PMID: 34125207 PMCID: PMC8408459 DOI: 10.1093/plcell/koab132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/07/2021] [Indexed: 05/03/2023]
Abstract
Pollen wall assembly is crucial for pollen development and plant fertility. The durable biopolymer sporopollenin and the constituents of the tryphine coat are delivered to developing pollen grains by the highly coordinated secretory activity of the surrounding tapetal cells. The role of membrane trafficking in this process, however, is largely unknown. In this study, we used Arabidopsis thaliana to characterize the role of two late-acting endosomal sorting complex required for transport (ESCRT) components, ISTL1 and LIP5, in tapetal function. Plants lacking ISTL1 and LIP5 form pollen with aberrant exine patterns, leading to partial pollen lethality. We found that ISTL1 and LIP5 are required for exocytosis of plasma membrane and secreted proteins in the tapetal cells at the free microspore stage, contributing to pollen wall development and tryphine deposition. Whereas the ESCRT machinery is well known for its role in endosomal trafficking, the function of ISTL1 and LIP5 in exocytosis is not a typical ESCRT function. The istl1 lip5 double mutants also show reduced intralumenal vesicle concatenation in multivesicular endosomes in both tapetal cells and developing pollen grains as well as morphological defects in early endosomes/trans-Golgi networks, suggesting that late ESCRT components function in the early endosomal pathway and exocytosis.
Collapse
Affiliation(s)
- Kaija Goodman
- Department of Botany, University of Wisconsin-Madison, Wisconsin 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Julio Paez-Valencia
- Department of Botany, University of Wisconsin-Madison, Wisconsin 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Janice Pennington
- Department of Botany, University of Wisconsin-Madison, Wisconsin 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Annika Sonntag
- Department of Biology, Algoma University, Ontario P6A 2G4, Canada
| | - Xinxin Ding
- Department of Botany, University of Wisconsin-Madison, Wisconsin 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Han Nim Lee
- Department of Botany, University of Wisconsin-Madison, Wisconsin 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Paul G. Ahlquist
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Oncology and Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
- Morgridge Institute for Research, Madison, Wisconsin 53706, USA
| | - Isabel Molina
- Department of Biology, Algoma University, Ontario P6A 2G4, Canada
| | - Marisa S. Otegui
- Department of Botany, University of Wisconsin-Madison, Wisconsin 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Author for Correspondence:
| |
Collapse
|
12
|
Liu C, Zeng Y, Li H, Yang C, Shen W, Xu M, Xiao Z, Chen T, Li B, Cao W, Jiang L, Otegui MS, Gao C. A plant-unique ESCRT component, FYVE4, regulates multivesicular endosome biogenesis and plant growth. THE NEW PHYTOLOGIST 2021; 231:193-209. [PMID: 33772801 DOI: 10.1111/nph.17358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
During evolution, land plants generated unique proteins that participate in endosomal sorting and multivesicular endosome (MVE) biogenesis, many of them with specific phosphoinositide-binding capabilities. Nonetheless, the function of most plant phosphoinositide-binding proteins in endosomal trafficking remains elusive. Here, we analysed several Arabidopsis mutants lacking predicted phosphoinositide-binding proteins and first identified fyve4-1 as a mutant with a hypersensitive response to high-boron conditions and defects in degradative vacuolar sorting of membrane proteins such as the borate exporter BOR1-GFP. FYVE4 encodes a plant-unique, FYVE domain-containing protein that interacts with SNF7, a core component of ESCRT-III (Endosomal Sorting Complex Required for Transport III). FYVE4 affects the membrane association of the late-acting ESCRT components SNF7 and VPS4, and modulates the formation of intraluminal vesicles (ILVs) inside MVEs. The critical function of FYVE4 in the ESCRT pathway was further demonstrated by the strong genetic interactions with SNF7B and LIP5. Although the fyve4-1, snf7b and lip5 single mutants were viable, the fyve4-1 snf7b and fyve4-1 lip5 double mutants were seedling lethal, with strong defects in MVE biogenesis and vacuolar sorting of ubiquitinated membrane proteins. Taken together, we identified FYVE4 as a novel plant endosomal regulator, which functions in ESCRTing pathway to regulate MVE biogenesis.
Collapse
Affiliation(s)
- Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yonglun Zeng
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Min Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhidan Xiao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Tongsheng Chen
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Baiying Li
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wenhan Cao
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Marisa S Otegui
- Department of Botany, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
13
|
Dang T, Lavagi-Craddock I, Bodaghi S, Vidalakis G. Next-Generation Sequencing Identification and Characterization of MicroRNAs in Dwarfed Citrus Trees Infected With Citrus Dwarfing Viroid in High-Density Plantings. Front Microbiol 2021; 12:646273. [PMID: 33995303 PMCID: PMC8121382 DOI: 10.3389/fmicb.2021.646273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022] Open
Abstract
Citrus dwarfing viroid (CDVd) induces stunting on sweet orange trees [Citrus sinensis (L.) Osbeck], propagated on trifoliate orange rootstock [Citrus trifoliata (L.), syn. Poncirus trifoliata (L.) Raf.]. MicroRNAs (miRNAs) are a class of non-coding small RNAs (sRNAs) that play important roles in the regulation of tree gene expression. To identify miRNAs in dwarfed citrus trees, grown in high-density plantings, and their response to CDVd infection, sRNA next-generation sequencing was performed on CDVd-infected and non-infected controls. A total of 1,290 and 628 miRNAs were identified in stem and root tissues, respectively, and among those, 60 were conserved in each of these two tissue types. Three conserved miRNAs (csi-miR479, csi-miR171b, and csi-miR156) were significantly downregulated (adjusted p-value < 0.05) in the stems of CDVd-infected trees compared to the non-infected controls. The three stem downregulated miRNAs are known to be involved in various physiological and developmental processes some of which may be related to the characteristic dwarfed phenotype displayed by CDVd-infected C. sinensis on C. trifoliata rootstock field trees. Only one miRNA (csi-miR535) was significantly downregulated in CDVd-infected roots and it was predicted to target genes controlling a wide range of cellular functions. Reverse transcription quantitative polymerase chain reaction analysis performed on selected miRNA targets validated the negative correlation between the expression levels of these targets and their corresponding miRNAs in CDVd-infected trees. Our results indicate that CDVd-responsive plant miRNAs play a role in regulating important citrus growth and developmental processes that may participate in the cellular changes leading to the observed citrus dwarf phenotype.
Collapse
Affiliation(s)
| | | | | | - Georgios Vidalakis
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
14
|
Abstract
Transient expression using protoplasts isolated from Arabidopsis suspension culture cells is a fast and useful tool for analyzing protein subcellular localization and dynamics in plant cells. Recently, super-resolution imaging techniques such as N-SIM (Nikon, Structured Illumination Microscopy) are widely used in cell biology study, allowing cell biologists to obtain unattainable details and relationships of cell structures and functions by conventional confocal imaging. To facilitate the usage of protoplasts transient expression and super-resolution imaging for protein localization and dynamic analysis in plant cell biology research, here we describe updated protocols of protoplasts isolation from Arabidopsis suspension culture cells and transient expression assay for protein trafficking and localization study. Further, using GFP-tagged ERES (Endoplasmic Reticulum Exit Site) marker proteins and RFP-tagged Golgi marker as examples, we illustrate the major tools and methods for protein localization analysis using super-resolution imaging.
Collapse
|
15
|
Wright ZJ, Bartel B. Peroxisomes form intralumenal vesicles with roles in fatty acid catabolism and protein compartmentalization in Arabidopsis. Nat Commun 2020; 11:6221. [PMID: 33277488 PMCID: PMC7718247 DOI: 10.1038/s41467-020-20099-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Peroxisomes are vital organelles that compartmentalize critical metabolic reactions, such as the breakdown of fats, in eukaryotic cells. Although peroxisomes typically are considered to consist of a single membrane enclosing a protein lumen, more complex peroxisomal membrane structure has occasionally been observed in yeast, mammals, and plants. However, technical challenges have limited the recognition and understanding of this complexity. Here we exploit the unusually large size of Arabidopsis peroxisomes to demonstrate that peroxisomes have extensive internal membranes. These internal vesicles accumulate over time, use ESCRT (endosomal sorting complexes required for transport) machinery for formation, and appear to derive from the outer peroxisomal membrane. Moreover, these vesicles can harbor distinct proteins and do not form normally when fatty acid β-oxidation, a core function of peroxisomes, is impaired. Our findings suggest a mechanism for lipid mobilization that circumvents challenges in processing insoluble metabolites. This revision of the classical view of peroxisomes as single-membrane organelles has implications for all aspects of peroxisome biogenesis and function and may help address fundamental questions in peroxisome evolution.
Collapse
Affiliation(s)
| | - Bonnie Bartel
- Biosciences Department, Rice University, Houston, TX, USA.
| |
Collapse
|
16
|
Liu J, Wang Y, Cheng Y. The ESCRT-I components VPS28A and VPS28B are essential for auxin-mediated plant development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1617-1634. [PMID: 33058303 DOI: 10.1111/tpj.15024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
The highly conserved endosomal sorting complex required for transport (ESCRT) pathway plays critical roles in endosomal sorting of ubiquitinated plasma membrane proteins for degradation. However, the functions of many components of the ESCRT machinery in plants remain unsolved. Here we show that the ESCRT-I subunits VPS28A and VPS28B are functionally redundant and required for embryonic development in Arabidopsis. We conducted a screen for genetic enhancers of pid, which is defective in auxin signaling and transport. We isolated a no--cotyledon in pid 104 (ncp104) mutant, which failed to develop cotyledons in a pid background. We discovered that ncp104 was a unique recessive gain-of-function allele of vps28a. VPS28A and VPS28B were expressed during embryogenesis and the proteins were localized to the trans-Golgi network/early endosome and post-Golgi/endosomal compartments, consistent with their functions in endosomal sorting and embryogenesis. The single vps28a and vps28b loss-of-function mutants did not display obvious developmental defects, but their double mutants showed abnormal cell division patterns and were arrested at the globular embryo stage. The vps28a vps28b double mutants showed altered auxin responses, disrupted PIN1-GFP expression patterns, and abnormal PIN1-GFP accumulation in small aberrant vacuoles. The ncp104 mutation may cause the VPS28A protein to become unstable and/or toxic. Taken together, our findings demonstrate that the ESCRT-I components VPS28A and VPS28B redundantly play essential roles in vacuole formation, endosomal sorting of plasma membrane proteins, and auxin-mediated plant development.
Collapse
Affiliation(s)
- Jianyang Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanning Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youfa Cheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
17
|
Adhikari P, Goodrich E, Fernandes SB, Lipka AE, Tranel P, Brown P, Jamann TM. Genetic variation associated with PPO-inhibiting herbicide tolerance in sorghum. PLoS One 2020; 15:e0233254. [PMID: 33052910 PMCID: PMC7556536 DOI: 10.1371/journal.pone.0233254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/26/2020] [Indexed: 11/29/2022] Open
Abstract
Herbicide application is crucial for weed management in most crop production systems, but for sorghum herbicide options are limited. Sorghum is sensitive to residual protoporphyrinogen oxidase (PPO)-inhibiting herbicides, such as fomesafen, and a long re-entry period is required before sorghum can be planted after its application. Improving sorghum for tolerance to such residual herbicides would allow for increased sorghum production and the expansion of herbicide options for growers. In this study, we observed sorghum tolerance to residual fomesafen. To investigate the underlying tolerance mechanism a genome-wide association mapping study was conducted using field-collected sorghum biomass panel (SBP) data, and a greenhouse assay was developed to confirm the field phenotypes. A total of 26 significant SNPs (FDR<0.05), spanning a 215.3 kb region on chromosome 3, were detected. The ten most significant SNPs included two in genic regions (Sobic.003G136800, and Sobic.003G136900) and eight SNPs in the intergenic region encompassing the genes Sobic.003G136700, Sobic.003G136800, Sobic.003G137000, Sobic.003G136900, and Sobic.003G137100. The gene Sobic.003G137100 (PPXI), which encodes the PPO1 enzyme, one of the targets of PPO-inhibiting herbicides, was located 12kb downstream of the significant SNP S03_13152838. We found that PPXI is highly conserved in sorghum and expression does not significantly differ between tolerant and sensitive sorghum lines. Our results suggest that PPXI most likely does not underlie the observed herbicide tolerance. Instead, the mechanism underlying herbicide tolerance in the SBP is likely metabolism-based resistance, possibly regulated by the action of multiple genes. Further research is necessary to confirm candidate genes and their functions.
Collapse
Affiliation(s)
- Pragya Adhikari
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Emma Goodrich
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Samuel B. Fernandes
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Alexander E. Lipka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Patrick Tranel
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Patrick Brown
- Department of Plant Sciences, University of California Davis, Davis, CA, United States of America
| | - Tiffany M. Jamann
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- * E-mail:
| |
Collapse
|
18
|
Xia FN, Zeng B, Liu HS, Qi H, Xie LJ, Yu LJ, Chen QF, Li JF, Chen YQ, Jiang L, Xiao S. SINAT E3 Ubiquitin Ligases Mediate FREE1 and VPS23A Degradation to Modulate Abscisic Acid Signaling. THE PLANT CELL 2020; 32:3290-3310. [PMID: 32753431 PMCID: PMC7534459 DOI: 10.1105/tpc.20.00267] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/13/2020] [Accepted: 07/31/2020] [Indexed: 05/09/2023]
Abstract
In plants, the ubiquitin-proteasome system, endosomal sorting, and autophagy are essential for protein degradation; however, their interplay remains poorly understood. Here, we show that four Arabidopsis (Arabidopsis thaliana) E3 ubiquitin ligases, SEVEN IN ABSENTIA OF ARABIDOPSIS THALIANA1 (SINAT1), SINAT2, SINAT3, and SINAT4, regulate the stabilities of FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING1 (FREE1) and VACUOLAR PROTEIN SORTING23A (VPS23A), key components of the endosomal sorting complex required for transport-I, to modulate abscisic acid (ABA) signaling. GFP-SINAT1, GFP-SINAT2, and GFP-SINAT4 primarily localized to the endosomal and autophagic vesicles. SINATs controlled FREE1 and VPS23A ubiquitination and proteasomal degradation. SINAT overexpressors showed increased ABA sensitivity, ABA-responsive gene expression, and PYRABACTIN RESISTANCE1-LIKE4 protein levels. Furthermore, the SINAT-FREE1/VPS23A proteins were codegraded by the vacuolar pathway. In particular, during recovery post-ABA exposure, SINATs formed homo- and hetero-oligomers in vivo, which were disrupted by the autophagy machinery. Taken together, our findings reveal a novel mechanism by which the proteasomal and vacuolar turnover systems regulate ABA signaling in plants.
Collapse
Affiliation(s)
- Fan-Nv Xia
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Baiquan Zeng
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, People's Republic of China
| | - Hui-Shan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Hua Qi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Li-Juan Xie
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Lu-Jun Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jian-Feng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Yue-Qin Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Liwen Jiang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
19
|
Zhu Y, Ji C, Cao W, Shen J, Zhao Q, Jiang L. Identification and characterization of unconventional membrane protein trafficking regulators in Arabidopsis: A genetic approach. JOURNAL OF PLANT PHYSIOLOGY 2020; 252:153229. [PMID: 32750645 DOI: 10.1016/j.jplph.2020.153229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Proper trafficking and subcellular localization of membrane proteins are essential for plant growth and development. The plant endomembrane system contains several membrane-bound organelles with distinct functions including the endoplasmic reticulum (ER), Golgi apparatus, trans-Golgi network (TGN) or early endosome, prevacuolar compartment (PVC) or multivesicular body (MVB) and vacuole. Multiple approaches have been successfully used to identify and study the regulators and components important for signal transduction, growth and development, as well as membrane trafficking in the endomembrane system in plants. These include the homologous characterization of the counterparts in mammals or yeast employing both reverse genetic as well as the forward genetic screen approaches. However, the deletion or mutation of membrane trafficking related proteins usually leads to seedling lethality due to their essential roles in plant development and organelle biogenesis. To overcome the limitation of lethal phenotype of the target proteins, we used DEX-inducible RNAi knock-down lines to study their function in plants. More recently, we developed and used both RNAi knock-down and T-DNA insertional lines as starting materials to screen for mutations that could suppress and rescue the lethal phenotype, or a suppressor screening. Further characterization of the newly identified suppressor mutants has resulted in the identification of novel negative regulators in mediating membrane trafficking and organelle biogenesis in plants. In this review, we summarize the current approaches in studying protein trafficking in the endomembrane system. We then describe three examples of suppressor screening with distinct starting materials (i.e. FREE1, MON1, and SH3P2 that are regulators of MVB, vacuole, and autophagosomes, respectively) to discuss the rationale, procedures, advantages and disadvantages, and possible outcomes of such a suppressor screening. We finally propose that these novel screening approaches will lead to the identification of new unconventional players in regulating protein trafficking and organelle biogenesis in plants and discuss their impact on plant cell biology research.
Collapse
Affiliation(s)
- Ying Zhu
- Center for Cell and Developmental Biology, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Changyang Ji
- Center for Cell and Developmental Biology, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wenhan Cao
- Center for Cell and Developmental Biology, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Qiong Zhao
- Center for Cell and Developmental Biology, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- Center for Cell and Developmental Biology, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; CUHK Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
20
|
Analysis of Membrane Proteins Transport from Endosomal Compartments to Vacuoles. Methods Mol Biol 2020. [PMID: 32632801 DOI: 10.1007/978-1-0716-0767-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Endocytosis and endosomal trafficking to vacuoles play important roles in regulating the homeostasis of plasma membrane (PM) proteins in plant cells. FREE1 (FYVE domain protein required for endosomal sorting 1) is a plant-unique component of the ESCRT (endosomal sorting complex required for transport) machinery. In free1 mutant plants, PIN-FORMED 2 (PIN2)-GFP was found to mislocalize from the PM to the tonoplast. In this chapter, we describe a detailed protocol for studying vacuolar sorting and degradation of PIN2-GFP by using T-DNA insertional mutants, dexamethasone (DEX) inducible RNAi lines, and other tools, including Fei-Mao (FM) dye staining and dark treatment. By using these methods, we illustrate the endosomal trafficking and vacuolar degradation of PIN2-GFP in plants.
Collapse
|
21
|
Hu S, Li Y, Shen J. A Diverse Membrane Interaction Network for Plant Multivesicular Bodies: Roles in Proteins Vacuolar Delivery and Unconventional Secretion. FRONTIERS IN PLANT SCIENCE 2020; 11:425. [PMID: 32425960 PMCID: PMC7203423 DOI: 10.3389/fpls.2020.00425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/24/2020] [Indexed: 05/15/2023]
Abstract
Vesicle trafficking between the membrane-bound organelles in plant cells plays crucial roles in the precise transportation of various materials, and thus supports cell proliferation and cellular polarization. Conventionally, plant prevacuolar compartments (PVCs), identified as multivesicular bodies (MVBs), play important roles in both the secretory pathway as intermediate compartments and the endocytic pathway as late endosomes. In recent years, the PVC/MVBs have been proposed to play important roles in both protein vacuolar delivery and unconventional secretion, but several important questions on the new regulators and environmental cues that coordinate the PVC/MVB-organelle membrane interactions and their biological significances remain. In this review, we first summarize the identity and nature of the plant PVC/MVBs, and then we present an update on our current understanding on the interaction of PVC/MVBs with other organelles in the plant endomembrane system with focus on the vacuole, autophagosome, and plasma membrane (PM) in plant development and stress responses. Finally, we raise some open questions and present future perspectives in the study of PVC/MVB-organelle interactions and associated biological functions.
Collapse
|
22
|
Schwihla M, Korbei B. The Beginning of the End: Initial Steps in the Degradation of Plasma Membrane Proteins. FRONTIERS IN PLANT SCIENCE 2020; 11:680. [PMID: 32528512 PMCID: PMC7253699 DOI: 10.3389/fpls.2020.00680] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/30/2020] [Indexed: 05/05/2023]
Abstract
The plasma membrane (PM), as border between the inside and the outside of a cell, is densely packed with proteins involved in the sensing and transmission of internal and external stimuli, as well as transport processes and is therefore vital for plant development as well as quick and accurate responses to the environment. It is consequently not surprising that several regulatory pathways participate in the tight regulation of the spatiotemporal control of PM proteins. Ubiquitination of PM proteins plays a key role in directing their entry into the endo-lysosomal system, serving as a signal for triggering endocytosis and further sorting for degradation. Nevertheless, a uniting picture of the different roles of the respective types of ubiquitination in the consecutive steps of down-regulation of membrane proteins is still missing. The trans-Golgi network (TGN), which acts as an early endosome (EE) in plants receives the endocytosed cargo, and here the decision is made to either recycled back to the PM or further delivered to the vacuole for degradation. A multi-complex machinery, the endosomal sorting complex required for transport (ESCRT), concentrates ubiquitinated proteins and ushers them into the intraluminal vesicles of multi-vesicular bodies (MVBs). Several ESCRTs have ubiquitin binding subunits, which anchor and guide the cargos through the endocytic degradation route. Basic enzymes and the mode of action in the early degradation steps of PM proteins are conserved in eukaryotes, yet many plant unique components exist, which are often essential in this pathway. Thus, deciphering the initial steps in the degradation of ubiquitinated PM proteins, which is the major focus of this review, will greatly contribute to the larger question of how plants mange to fine-tune their responses to their environment.
Collapse
|
23
|
Wang X, Xu M, Gao C, Zeng Y, Cui Y, Shen W, Jiang L. The roles of endomembrane trafficking in plant abiotic stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:55-69. [PMID: 31829507 DOI: 10.1111/jipb.12895] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/10/2019] [Indexed: 05/18/2023]
Abstract
Endomembrane trafficking is a fundamental cellular process in all eukaryotic cells and its regulatory mechanisms have been extensively studied. In plants, the endomembrane trafficking system needs to be constantly adjusted to adapt to the ever-changing environment. Evidence has accumulated supporting the idea that endomembrane trafficking is tightly linked to stress signaling pathways to meet the demands of rapid changes in cellular processes and to ensure the correct delivery of stress-related cargo molecules. However, the underlying mechanisms remain unknown. In this review, we summarize the recent findings on the functional roles of both secretory trafficking and endocytic trafficking in different types of abiotic stresses. We also highlight and discuss the unique properties of specific regulatory molecules beyond their conventional functions in endosomal trafficking during plant growth under stress conditions.
Collapse
Affiliation(s)
- Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Min Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, 510631, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, 510631, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yong Cui
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, 510631, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
24
|
Schultz-Larsen T, Lenk A, Kalinowska K, Vestergaard LK, Pedersen C, Isono E, Thordal-Christensen H. The AMSH3 ESCRT-III-Associated Deubiquitinase Is Essential for Plant Immunity. Cell Rep 2019; 25:2329-2338.e5. [PMID: 30485803 DOI: 10.1016/j.celrep.2018.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/04/2018] [Accepted: 10/31/2018] [Indexed: 11/28/2022] Open
Abstract
Plant "nucleotide-binding leucine-rich repeat" receptor proteins (NLRs) detect alterations in host targets of pathogen effectors and trigger immune responses. The Arabidopsis thaliana mutant pen1 syp122 displays autoimmunity, and a mutant screen identified the deubiquitinase "associated molecule with the SH3 domain of STAM3" (AMSH3) to be required for this phenotype. AMSH3 has previously been implicated in ESCRT-mediated vacuolar targeting. Pathology experiments show that AMSH3 activity is required for immunity mediated by the CC-NLRs, RPS2 and RPM1. Co-expressing the autoactive RPM1D505V and the catalytically inactive ESCRT-III protein SKD1E232Q in Nicotiana benthamiana supports the requirement of ESCRT-associated functions for this CC-NLR-activated immunity. Meanwhile, loss of ESCRT function in A. thaliana is lethal, and we find that AMSH3 knockout-triggered seedling lethality is "enhanced disease susceptibility 1" (EDS1) dependent. Future studies may reveal whether AMSH3 is monitored by a TIR-NLR immunity receptor.
Collapse
Affiliation(s)
- Torsten Schultz-Larsen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Andrea Lenk
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Kamila Kalinowska
- Department of Plant Sciences, Technical University of Munich, 85456 Freising, Germany
| | - Lau Kræsing Vestergaard
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Carsten Pedersen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Erika Isono
- Department of Plant Sciences, Technical University of Munich, 85456 Freising, Germany; Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Hans Thordal-Christensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
25
|
Rodriguez-Furlan C, Minina EA, Hicks GR. Remove, Recycle, Degrade: Regulating Plasma Membrane Protein Accumulation. THE PLANT CELL 2019; 31:2833-2854. [PMID: 31628169 PMCID: PMC6925004 DOI: 10.1105/tpc.19.00433] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/23/2019] [Accepted: 10/17/2019] [Indexed: 05/21/2023]
Abstract
Interactions between plant cells and the environment rely on modulation of protein receptors, transporters, channels, and lipids at the plasma membrane (PM) to facilitate intercellular communication, nutrient uptake, environmental sensing, and directional growth. These functions are fine-tuned by cellular pathways maintaining or reducing particular proteins at the PM. Proteins are endocytosed, and their fate is decided between recycling and degradation to modulate localization, abundance, and activity. Selective autophagy is another pathway regulating PM protein accumulation in response to specific conditions or developmental signals. The mechanisms regulating recycling, degradation, and autophagy have been studied extensively, yet we are just now addressing their regulation and coordination. Here, we (1) provide context concerning regulation of protein accumulation, recycling, or degradation by overviewing endomembrane trafficking; (2) discuss pathways regulating recycling and degradation in terms of cellular roles and cargoes; (3) review plant selective autophagy and its physiological significance; (4) focus on two decision-making mechanisms: regulation of recycling versus degradation of PM proteins and coordination between autophagy and vacuolar degradation; and (5) identify future challenges.
Collapse
Affiliation(s)
- Cecilia Rodriguez-Furlan
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, California 92506
| | - Elena A Minina
- Uppsala Bio Center, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Glenn R Hicks
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, California 92506
- Uppsala Bio Center, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| |
Collapse
|
26
|
Zeng Y, Li B, Lin Y, Jiang L. The interplay between endomembranes and autophagy in plants. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:14-22. [PMID: 31344498 DOI: 10.1016/j.pbi.2019.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 06/10/2023]
Abstract
Autophagosomes are unique double-membrane organelles that enclose a portion of intracellular components for lysosome/vacuole delivery to maintain cellular homeostasis in eukaryotic cells. Genetic screening has revealed the requirement of autophagy-related proteins for autophagosome formation, although the origin of the autophagosome membrane remains elusive. The endomembrane system is a series of membranous organelles maintained by dynamic membrane flow between various compartments. In plants, there is accumulating evidence pointing to a link between autophagy and the endomembrane system, in particular between the endoplasmic reticulum and autophagosome. Here, we highlight and discuss about recent findings on plant autophagosome formation. We also look into the functional roles of endomembrane machineries in regard to the autophagy pathway in plants.
Collapse
Affiliation(s)
- Yonglun Zeng
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Baiying Li
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Youshun Lin
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong; The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
27
|
Konda AK, Sabale PR, Soren KR, Subramaniam SP, Singh P, Rathod S, Chaturvedi SK, Singh NP. Systems Biology Approaches Reveal a Multi-stress Responsive WRKY Transcription Factor and Stress Associated Gene Co-expression Networks in Chickpea. Curr Bioinform 2019. [DOI: 10.2174/1574893614666190204152500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Chickpea is a nutritional rich premier pulse crop but its production encounters
setbacks due to various stresses and understanding of molecular mechanisms can be ascribed foremost importance.
Objective:
The investigation was carried out to identify the differentially expressed WRKY TFs in chickpea
in response to herbicide stress and decipher their interacting partners.
Methods:
For this purpose, transcriptome wide identification of WRKY TFs in chickpea was done. Behavior
of the differentially expressed TFs was compared between other stress conditions. Orthology based cofunctional
gene networks were derived from Arabidopsis. Gene ontology and functional enrichment analysis
was performed using Blast2GO and STRING software. Gene Coexpression Network (GCN) was constructed
in chickpea using publicly available transcriptome data. Expression pattern of the identified gene
network was studied in chickpea-Fusarium interactions.
Results:
A unique WRKY TF (Ca_08086) was found to be significantly (q value = 0.02) upregulated not
only under herbicide stress but also in other stresses. Co-functional network of 14 genes, namely
Ca_08086, Ca_19657, Ca_01317, Ca_20172, Ca_12226, Ca_15326, Ca_04218, Ca_07256, Ca_14620,
Ca_12474, Ca_11595, Ca_15291, Ca_11762 and Ca_03543 were identified. GCN revealed 95 hub genes
based on the significant probability scores. Functional annotation indicated role in callose deposition and
response to chitin. Interestingly, contrasting expression pattern of the 14 network genes was observed in
wilt resistant and susceptible chickpea genotypes, infected with Fusarium.
Conclusion:
This is the first report of identification of a multi-stress responsive WRKY TF and its associated
GCN in chickpea.
Collapse
Affiliation(s)
| | | | - Khela R. Soren
- ICAR-Indian Institute of Pulses Research, Kanpur, 208024, India
| | | | - Pallavi Singh
- ICAR-Indian Institute of Pulses Research, Kanpur, 208024, India
| | - Santosh Rathod
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi- 110012, India
| | | | | |
Collapse
|
28
|
Ge C, Gao C, Chen Q, Jiang L, Zhao Y. ESCRT-dependent vacuolar sorting and degradation of the auxin biosynthetic enzyme YUC1 flavin monooxygenase. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:968-973. [PMID: 30565393 PMCID: PMC6588437 DOI: 10.1111/jipb.12760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/13/2018] [Indexed: 05/24/2023]
Abstract
YUC flavin monooxygenases catalyze the rate-limiting step of auxin biosynthesis. Here we report the vacuolar targeting and degradation of GFP-YUC1. GFP-YUC1 fusion expressed in Arabidopsis protoplasts or transgenic plants was primarily localized in vacuoles. Surprisingly, we established that GFP-YUC1, a soluble protein, was sorted to vacuoles through the ESCRT pathway, which has long been recognized for sorting and targeting integral membrane proteins. We further show that GFP-YUC1 was ubiquitinated and in this form GFP-YUC1 was targeted for degradation, a process that was also stimulated by elevated auxin levels. Our findings revealed a molecular mechanism of GFP-YUC1 degradation and demonstrate that the ESCRT pathway can recognize both soluble and integral membrane proteins as cargoes.
Collapse
Affiliation(s)
- Chennan Ge
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Caiji Gao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qingguo Chen
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Liwen Jiang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
29
|
Zhao Q, Shen J, Gao C, Cui Y, Wang Y, Cui J, Cheng L, Cao W, Zhu Y, Huang S, Zhou Q, Leong CK, Leung KP, Chen X, Jiang L. RST1 Is a FREE1 Suppressor That Negatively Regulates Vacuolar Trafficking in Arabidopsis. THE PLANT CELL 2019; 31:2152-2168. [PMID: 31221737 PMCID: PMC6751125 DOI: 10.1105/tpc.19.00003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/18/2019] [Accepted: 06/17/2019] [Indexed: 05/23/2023]
Abstract
FYVE domain protein required for endosomal sorting1 (FREE1), a plant-specific endosomal sorting complex required for transport-I component, is essential for the biogenesis of multivesicular bodies (MVBs), vacuolar degradation of membrane protein, cargo vacuolar sorting, autophagic degradation, and vacuole biogenesis in Arabidopsis (Arabidopsis thaliana). Here, we report the characterization of RESURRECTION1 (RST1) as a suppressor of free1 that, when mutated as a null mutant, restores the normal MVB and vacuole formation of a FREE1-RNAi knockdown line and consequently allows survival. RST1 encodes an evolutionarily conserved multicellular organism-specific protein, which contains two Domain of Unknown Function 3730 domains, showing no similarity to known proteins, and predominantly localizes in the cytosol. The depletion of FREE1 causes substantial accumulation of RST1, and transgenic Arabidopsis plants overexpressing RST1 display retarded seedling growth with dilated MVBs, and inhibition of endocytosed FM4-64 dye to the tonoplast, suggesting that RST1 has a negative role in vacuolar transport. Consistently, enhanced endocytic degradation of membrane vacuolar cargoes occurs in the rst1 mutant. Further transcriptomic comparison of rst1 with free1 revealed a negative association between gene expression profiles, demonstrating that FREE1 and RST1 have antagonistic functions. Thus, RST1 is a negative regulator controlling membrane protein homeostasis and FREE1-mediated functions in plants.
Collapse
Affiliation(s)
- Qiong Zhao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou 510631, China
| | - Yong Cui
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yongyi Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jie Cui
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Lixin Cheng
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medicine College of Ji’nan University, Shenzhen 518020, China
| | - Wenhan Cao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ying Zhu
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Shuxian Huang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qianzi Zhou
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Cheuk Ka Leong
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - King Pong Leung
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
30
|
Luo H, Pandey MK, Khan AW, Guo J, Wu B, Cai Y, Huang L, Zhou X, Chen Y, Chen W, Liu N, Lei Y, Liao B, Varshney RK, Jiang H. Discovery of genomic regions and candidate genes controlling shelling percentage using QTL-seq approach in cultivated peanut (Arachis hypogaea L.). PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1248-1260. [PMID: 30549165 PMCID: PMC6576108 DOI: 10.1111/pbi.13050] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 05/12/2023]
Abstract
Cultivated peanut (Arachis hypogaea L.) is an important grain legume providing high-quality cooking oil, rich proteins and other nutrients. Shelling percentage (SP) is the 2nd most important agronomic trait after pod yield and this trait significantly affects the economic value of peanut in the market. Deployment of diagnostic markers through genomics-assisted breeding (GAB) can accelerate the process of developing improved varieties with enhanced SP. In this context, we deployed the QTL-seq approach to identify genomic regions and candidate genes controlling SP in a recombinant inbred line population (Yuanza 9102 × Xuzhou 68-4). Four libraries (two parents and two extreme bulks) were constructed and sequenced, generating 456.89-790.32 million reads and achieving 91.85%-93.18% genome coverage and 14.04-21.37 mean read depth. Comprehensive analysis of two sets of data (Yuanza 9102/two bulks and Xuzhou 68-4/two bulks) using the QTL-seq pipeline resulted in discovery of two overlapped genomic regions (2.75 Mb on A09 and 1.1 Mb on B02). Nine candidate genes affected by 10 SNPs with non-synonymous effects or in UTRs were identified in these regions for SP. Cost-effective KASP (Kompetitive Allele-Specific PCR) markers were developed for one SNP from A09 and three SNPs from B02 chromosome. Genotyping of the mapping population with these newly developed KASP markers confirmed the major control and stable expressions of these genomic regions across five environments. The identified candidate genomic regions and genes for SP further provide opportunity for gene cloning and deployment of diagnostic markers in molecular breeding for achieving high SP in improved varieties.
Collapse
Affiliation(s)
- Huaiyong Luo
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| | - Manish K. Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Aamir W. Khan
- Center of Excellence in Genomics & Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Jianbin Guo
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| | - Bei Wu
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| | - Yan Cai
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| | - Li Huang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| | - Xiaojing Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| | - Weigang Chen
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| | - Nian Liu
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| |
Collapse
|
31
|
Xie Q, Chen A, Zhang Y, Yuan M, Xie W, Zhang C, Zheng W, Wang Z, Li G, Zhou J. Component Interaction of ESCRT Complexes Is Essential for Endocytosis-Dependent Growth, Reproduction, DON Production and Full Virulence in Fusarium graminearum. Front Microbiol 2019; 10:180. [PMID: 30809208 PMCID: PMC6379464 DOI: 10.3389/fmicb.2019.00180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/23/2019] [Indexed: 01/18/2023] Open
Abstract
Multivesicular bodies (MVBs) are critical intermediates in the trafficking of ubiquitinated endocytosed surface proteins to the lysosome/vacuole for destruction. Recognizing and packaging ubiquitin modified cargoes to the MVB pathway require ESCRT (Endosomal sorting complexes required for transport) machinery, which consists of four core subcomplexes, ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III. Fusarium graminearum is an important plant pathogen that causes head blight of major cereal crops. Our previous results showed that ESCRT-0 is essential for fungal development and pathogenicity in Fusarium graminearum. We then, in this study, systemically studied the protein-protein interactions within F. graminearum ESCRT-I, -II or -III complex, as well as between ESCRT-0 and ESCRT-I, ESCRT-I and ESCRT-II, and ESCRT-II and ESCRT-III complexes and found that loss of any ESCRT component resulted in abnormal function in endocytosis. In addition, ESCRT deletion mutants displayed severe defects in growth, deoxynivalenol (DON) production, virulence, sexual, and asexual reproduction. Importantly genetic complementation with corresponding ESCRT genes fully rescued all these defective phenotypes, indicating the essential role of ESCRT machinery in fungal development and plant infection in F. graminearum. Taken together, the protein-protein interactome and biological functions of the ESCRT machinery is first profoundly characterized in F. graminearum, providing a foundation for further exploration of ESCRT machinery in filamentous fungi.
Collapse
Affiliation(s)
- Qiurong Xie
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ahai Chen
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunzhi Zhang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyue Yuan
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Xie
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chengkang Zhang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhui Zheng
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jie Zhou
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
32
|
Shen J, Zhao Q, Wang X, Gao C, Zhu Y, Zeng Y, Jiang L. A plant Bro1 domain protein BRAF regulates multivesicular body biogenesis and membrane protein homeostasis. Nat Commun 2018; 9:3784. [PMID: 30224707 PMCID: PMC6141507 DOI: 10.1038/s41467-018-05913-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Plant development, defense, and many physiological processes rely on the endosomal sorting complex required for transport (ESCRT) machinery to control the homeostasis of membrane proteins by selective vacuolar degradation. Although ESCRT core components are conserved among higher eukaryotes, the regulators that control the function of the ESCRT machinery remain elusive. We recently identified a plant-specific ESCRT component, FREE1, that is essential for multivesicular body/prevacuolar compartment (MVB/PVC) biogenesis and vacuolar sorting of membrane proteins. Here we identify a plant-specific Bro1-domain protein BRAF, which regulates FREE1 recruitment to the MVB/PVC membrane by competitively binding to the ESCRT-I component Vps23. Altogether, we have successfully identified a role for BRAF, whose function as a unique evolutionary ESCRT regulator in orchestrating intraluminal vesicle formation in MVB/PVCs and the sorting of membrane proteins for degradation in plants makes it an important regulatory mechanism underlying the ESCRT machinery in higher eukaryotes.
Collapse
Affiliation(s)
- Jinbo Shen
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Linan, Hangzhou, 311300, China.
| | - Qiong Zhao
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiangfeng Wang
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Caiji Gao
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, 510631, China
| | - Ying Zhu
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China.
| |
Collapse
|
33
|
Cui Y, He Y, Cao W, Gao J, Jiang L. The Multivesicular Body and Autophagosome Pathways in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1837. [PMID: 30619408 PMCID: PMC6299029 DOI: 10.3389/fpls.2018.01837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/27/2018] [Indexed: 05/03/2023]
Abstract
In eukaryotic cells, the endomembrane system consists of multiple membrane-bound organelles, which play essential roles in the precise transportation of various cargo proteins. In plant cells, vacuoles are regarded as the terminus of catabolic pathways whereas the selection and transport of vacuolar cargoes are mainly mediated by two types of organelles, multivesicular bodies (MVBs) also termed prevacuolar compartments (PVCs) and autophagosomes. MVBs are single-membrane bound organelles with intraluminal vesicles and mediate the transport between the trans-Golgi network (TGN) and vacuoles, while autophagosomes are double-membrane bound organelles, which mediate cargo delivery to the vacuole for degradation and recycling during autophagy. Great progress has been achieved recently in identification and characterization of the conserved and plant-unique regulators involved in the MVB and autophagosome pathways. In this review, we present an update on the current knowledge of these key regulators and pay special attention to their conserved protein domains. In addition, we discuss the possible interplay between the MVB and autophagosome pathways in regulating vacuolar degradation in plants.
Collapse
Affiliation(s)
- Yong Cui
- Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- *Correspondence: Yong Cui, Liwen Jiang,
| | - Yilin He
- Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wenhan Cao
- Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jiayang Gao
- Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Liwen Jiang
- Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- *Correspondence: Yong Cui, Liwen Jiang,
| |
Collapse
|
34
|
Isono E, Kalinowska K. ESCRT-dependent degradation of ubiquitylated plasma membrane proteins in plants. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:49-55. [PMID: 28753460 DOI: 10.1016/j.pbi.2017.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 05/20/2023]
Abstract
To control the abundance of plasma membrane receptors and transporters is crucial for proper perception and response to extracellular signals from surrounding cells and the environment. Posttranslational modification of plasma membrane proteins, especially ubiquitin conjugation or ubiquitylation, is key for the determination of stability for many transmembrane proteins localized on the cell surface. The targeted degradation is ensured by a complex network of proteins among which the endosomal sorting complex required for transport (ESCRT) plays a central role. This review focuses on progresses made in recent years on the understanding of the function of the ESCRT machinery in the degradation of ubiquitylated plasma membrane proteins in plants.
Collapse
Affiliation(s)
- Erika Isono
- Department of Plant Sciences, School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 8, 85456 Freising, Germany; Department of Biology, University of Konstanz, Universtitätsstrasse 10, 78464 Konstanz, Germany.
| | - Kamila Kalinowska
- Department of Plant Sciences, School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 8, 85456 Freising, Germany
| |
Collapse
|
35
|
Gao C, Zhuang X, Shen J, Jiang L. Plant ESCRT Complexes: Moving Beyond Endosomal Sorting. TRENDS IN PLANT SCIENCE 2017; 22:986-998. [PMID: 28867368 DOI: 10.1016/j.tplants.2017.08.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/01/2017] [Accepted: 08/09/2017] [Indexed: 05/19/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is an ancient system that deforms membrane and severs membrane necks from the inside. Extensive evidence has accumulated to demonstrate the conserved functions of plant ESCRTs in multivesicular body (MVB) biogenesis and MVB-mediated membrane protein sorting. In addition, recent exciting findings have uncovered unique plant ESCRT components and point to emerging roles for plant ESCRTs in non-endosomal sorting events such as autophagy, cytokinesis, and viral replication. Plant-specific processes, such as abscisic acid (ABA) signaling and chloroplast turnover, provide further evidence for divergences in the functions of plant ESCRTs during evolution. We summarize the multiple roles and current working models for plant ESCRT machinery and speculate on future ESCRT studies in the plant field.
Collapse
Affiliation(s)
- Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou 510631, China; These authors contributed equally to this work
| | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong (CUHK), Shatin, New Territories, Hong Kong, China; These authors contributed equally to this work
| | - Jinbo Shen
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong (CUHK), Shatin, New Territories, Hong Kong, China; These authors contributed equally to this work
| | - Liwen Jiang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong (CUHK), Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
36
|
Horner DS, Pasini ME, Beltrame M, Mastrodonato V, Morelli E, Vaccari T. ESCRT genes and regulation of developmental signaling. Semin Cell Dev Biol 2017; 74:29-39. [PMID: 28847745 DOI: 10.1016/j.semcdb.2017.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/06/2017] [Accepted: 08/18/2017] [Indexed: 11/30/2022]
Abstract
ESCRT (Endosomal Sorting Complex Required for Transport) proteins have been shown to control an increasing number of membrane-associated processes. Some of these, and prominently regulation of receptor trafficking, profoundly shape signal transduction. Evidence in fungi, plants and multiple animal models support the emerging concept that ESCRTs are main actors in coordination of signaling with the changes in cells and tissues occurring during development and homeostasis. Consistent with their pleiotropic function, ESCRTs are regulated in multiple ways to tailor signaling to developmental and homeostatic needs. ESCRT activity is crucial to correct execution of developmental programs, especially at key transitions, allowing eukaryotes to thrive and preventing appearance of congenital defects.
Collapse
Affiliation(s)
- David S Horner
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Maria E Pasini
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Monica Beltrame
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Valeria Mastrodonato
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Elena Morelli
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy; IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy.
| |
Collapse
|
37
|
Konopka-Postupolska D, Clark G. Annexins as Overlooked Regulators of Membrane Trafficking in Plant Cells. Int J Mol Sci 2017; 18:E863. [PMID: 28422051 PMCID: PMC5412444 DOI: 10.3390/ijms18040863] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022] Open
Abstract
Annexins are an evolutionary conserved superfamily of proteins able to bind membrane phospholipids in a calcium-dependent manner. Their physiological roles are still being intensively examined and it seems that, despite their general structural similarity, individual proteins are specialized toward specific functions. However, due to their general ability to coordinate membranes in a calcium-sensitive fashion they are thought to participate in membrane flow. In this review, we present a summary of the current understanding of cellular transport in plant cells and consider the possible roles of annexins in different stages of vesicular transport.
Collapse
Affiliation(s)
- Dorota Konopka-Postupolska
- Plant Biochemistry Department, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Greg Clark
- Molecular, Cell, and Developmental Biology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
38
|
Steffens A, Jakoby M, Hülskamp M. Physical, Functional and Genetic Interactions between the BEACH Domain Protein SPIRRIG and LIP5 and SKD1 and Its Role in Endosomal Trafficking to the Vacuole in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1969. [PMID: 29209342 PMCID: PMC5701936 DOI: 10.3389/fpls.2017.01969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/01/2017] [Indexed: 05/19/2023]
Abstract
Beige and Chediak Higashi (BEACH) domain-containing proteins (BDCPs) are facilitators of membrane-dependent cellular processes in eukaryotes. Mutations in BDCPs cause malfunctions of endosomal compartments in various cell types. Recently, the molecular analysis of the BDCP homolog gene SPIRRIG (SPI) has revealed a molecular function in P-bodies and the regulation of RNA stability. We therefore aimed to analyze, whether SPI has also a role in membrane-dependent processes. In this study, we show that SPI physically interacts with endosomal sorting complex required for transport associated ATPase Suppressor of K+-transport growth defect1 (SKD1) and its positive regulator, LYST Interacting Protein 5 (LIP5) and report genetic interactions between SPI and SKD1 and LIP5. We further show that the endosomal transport route of soluble proteins to the lytic vacuole is disturbed in spi lip5 double mutants but not in the single mutants. These vacuolar transport defects were suppressed by additional expression of SKD1. Our results indicate that the BEACH domain protein SPI has in addition to a role in P-bodies a function in endosomal transport routes.
Collapse
|
39
|
Wang HJ, Hsu YW, Guo CL, Jane WN, Wang H, Jiang L, Jauh GY. VPS36-Dependent Multivesicular Bodies Are Critical for Plasmamembrane Protein Turnover and Vacuolar Biogenesis. PLANT PHYSIOLOGY 2017; 173:566-581. [PMID: 27879389 PMCID: PMC5210736 DOI: 10.1104/pp.16.01356] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/19/2016] [Indexed: 05/18/2023]
Abstract
Most eukaryotic cells target ubiquitinated plasma membrane (PM) proteins for vacuolar degradation in response to environmental and developmental cues. This process involves endosomal sorting complexes required for transport (ESCRT). However, little is known about the cellular mechanisms of ESCRTs in plants. Here, we studied the function of one ESCRT-II component, VPS36, which shows ubiquitin-binding activity and may form a putative ESCRT-II with VPS22 and VPS25 in Arabidopsis (Arabidopsis thaliana). Recessive mutation of the ubiquitously expressed VPS36 causes multiple defects, including delayed embryogenesis, defective root elongation, and limited expansion of cotyledons, and these effects can be complemented by its genomic DNA. Abnormal intracellular compartments containing several membrane transporters, including members of the PIN-FORMEDs, AUXIN RESISTANT 1, and PIP1 families, were found in vps36-1 plants. Employing a genetic approach to cross vps36-1/+ with transgenic plants harboring various fluorescent protein-tagged organelle markers, as well as fluorescent probe and ultrastructural approaches, revealed PM proteins in microsomal fractions from vps36-1 seedlings and demonstrated that VPS36 is critical for forming multivesicular bodies and vacuolar biogenesis for protein degradation. Our study shows that functional VPS36 is essential for a proper endosomal sorting pathway and for vacuolar biogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Huei-Jing Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan (H.-J.W., Y.-W.H., C.-L.G., W.-N.J., G.-Y.J.)
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., L.J.)
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei, Taiwan (G.-Y.J.); and
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan (G.Y.J.)
| | - Ya-Wen Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan (H.-J.W., Y.-W.H., C.-L.G., W.-N.J., G.-Y.J.)
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., L.J.)
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei, Taiwan (G.-Y.J.); and
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan (G.Y.J.)
| | - Cian-Ling Guo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan (H.-J.W., Y.-W.H., C.-L.G., W.-N.J., G.-Y.J.)
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., L.J.)
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei, Taiwan (G.-Y.J.); and
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan (G.Y.J.)
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan (H.-J.W., Y.-W.H., C.-L.G., W.-N.J., G.-Y.J.)
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., L.J.)
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei, Taiwan (G.-Y.J.); and
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan (G.Y.J.)
| | - Hao Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan (H.-J.W., Y.-W.H., C.-L.G., W.-N.J., G.-Y.J.)
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., L.J.)
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei, Taiwan (G.-Y.J.); and
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan (G.Y.J.)
| | - Liwen Jiang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan (H.-J.W., Y.-W.H., C.-L.G., W.-N.J., G.-Y.J.)
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., L.J.)
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei, Taiwan (G.-Y.J.); and
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan (G.Y.J.)
| | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan (H.-J.W., Y.-W.H., C.-L.G., W.-N.J., G.-Y.J.);
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., L.J.);
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei, Taiwan (G.-Y.J.); and
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan (G.Y.J.)
| |
Collapse
|
40
|
Chu YJ, Chen X, Xue HW. Ins(1,4,5)P 3 Suppresses Protein Degradation in Plant Vacuoles by Regulating SNX-Mediated Protein Sorting. MOLECULAR PLANT 2016; 9:1440-1443. [PMID: 27477682 DOI: 10.1016/j.molp.2016.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/10/2016] [Accepted: 07/22/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Yu-Jia Chu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Xu Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
41
|
Yang H, Liu J, Lin J, Deng L, Fan S, Guo Y, Sun F, Hua W. Overexpression of CHMP7 from rapeseed and Arabidopsis causes dwarfism and premature senescence in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2016; 204:16-26. [PMID: 27497741 DOI: 10.1016/j.jplph.2016.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
Endosomal sorting complexes required for transport (ESCRT) are well known in mammalians and yeast and plays an essential role in the formation of multi-vesicular bodies. Accumulating evidence has shown that ESCRT proteins contribute to proper plant development. CHMP7 (charged multi-vesicular body protein 7) is an ESCRT-III-related protein and functions in the endosomal sorting pathway in humans. However, its function in plants has not been explored in detail. In this study, we isolate the putative homolog of CHMP7 from rapeseed, BnCHMP7, which contains eight exons and encodes a protein consisting of 423 amino acid residues. Compared with the wild-type, overexpression of BnCHMP7 in Arabidopsis disturbs plant growth and decreases seed yield. Moreover, the transgenic plants also display early leaf senescence and hypersensitivity to dark treatment due to defects in autophagic degradation. Further study showed that BnCHMP7 is highly expressed in leaves and that YFP-BnCHMP7 is predominantly localized in endosome. Compared with human CHMP7, we found that BnCHMP7 not only interacts with ESCRT-III subunits SNF7.2 (CHMP4B), but also with VPS2.2 and CHMP1B. As expected, microarray analysis revealed that the expression of ESCRT transport genes is significantly affected. Additionally, the expression of some genes that are involved in senescence, protein synthesis and protein degradation is also altered in BnCHMP7-overexpressing plants. Taken together, BnCHMP7 encodes an endosome-localized protein, which causes dwarfism and leaf senescence as an ESCRT-III-related component.
Collapse
Affiliation(s)
- Hongli Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China
| | - Jing Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China
| | - Jiulu Lin
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China
| | - Linbin Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China
| | - Shihang Fan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China
| | - Yan Guo
- College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Fengming Sun
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China
| | - Wei Hua
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China.
| |
Collapse
|
42
|
Zhu X, Yin J, Liang S, Liang R, Zhou X, Chen Z, Zhao W, Wang J, Li W, He M, Yuan C, Miyamoto K, Ma B, Wang J, Qin P, Chen W, Wang Y, Wang W, Wu X, Yamane H, Zhu L, Li S, Chen X. The Multivesicular Bodies (MVBs)-Localized AAA ATPase LRD6-6 Inhibits Immunity and Cell Death Likely through Regulating MVBs-Mediated Vesicular Trafficking in Rice. PLoS Genet 2016; 12:e1006311. [PMID: 27618555 PMCID: PMC5019419 DOI: 10.1371/journal.pgen.1006311] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 08/19/2016] [Indexed: 02/07/2023] Open
Abstract
Previous studies have shown that multivesicular bodies (MVBs)/endosomes-mediated vesicular trafficking may play key roles in plant immunity and cell death. However, the molecular regulation is poorly understood in rice. Here we report the identification and characterization of a MVBs-localized AAA ATPase LRD6-6 in rice. Disruption of LRD6-6 leads to enhanced immunity and cell death in rice. The ATPase activity and homo-dimerization of LRD6-6 is essential for its regulation on plant immunity and cell death. An ATPase inactive mutation (LRD6-6E315Q) leads to dominant-negative inhibition in plants. The LRD6-6 protein co-localizes with the MVBs marker protein RabF1/ARA6 and interacts with ESCRT-III components OsSNF7 and OsVPS2. Further analysis reveals that LRD6-6 is required for MVBs-mediated vesicular trafficking and inhibits the biosynthesis of antimicrobial compounds. Collectively, our study shows that the AAA ATPase LRD6-6 inhibits plant immunity and cell death most likely through modulating MVBs-mediated vesicular trafficking in rice. Plants have evolved sophistical immunity system in fighting against pathogenic micro-organisms including bacteria, fungi and oomycetes. Upon perception of pathogens, the immune system activates rapid cell death, characterized as a form of hypersensitive response typically in and around the infection sites to restrict pathogen invasion and prevent disease development. Recent studies have suggested that MVBs-mediated vesicular trafficking might play key roles in plant immunity and cell death. However, the molecular regulation is poorly known. By using the lesion resembling disease (lrd) mutant, lrd6-6, which exhibits autoimmunity and spontaneous cell death, we characterized LRD6-6 as a MVBs-localized AAA ATPase. We found that the ATPase LRD6-6 was required for MVBs-mediated vesicular trafficking and inhibited the biosynthesis of antimicrobial compounds for immune response in rice. Both the ATPase activity and homo-dimerization of LRD6-6 were essential for its inhibition on immunity and cell death. The catalytically inactive ATPase, LRD6-6E315Q, played dominant-negative effect on inhibition of immunity in plants. In addition, the LRD6-6 protein co-localized with the MVBs-spread marker protein RabF1/ARA6 and also interacted with ESCRT-III components OsSNF7 and OsVPS2. In summary, our study has shown that the AAA ATPase LRD6-6 inhibits plant immunity and cell death most likely through modulating MVBs-mediated vesicular trafficking in rice.
Collapse
Affiliation(s)
- Xiaobo Zhu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Junjie Yin
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Sihui Liang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Ruihong Liang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Xiaogang Zhou
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Zhixiong Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Wen Zhao
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Weitao Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Min He
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Can Yuan
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Koji Miyamoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Bingtian Ma
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Jichun Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Peng Qin
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Weilan Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Yuping Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Wenming Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Xianjun Wu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Hisakazu Yamane
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shigui Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Xuewei Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
43
|
Yoshinari A, Fujimoto M, Ueda T, Inada N, Naito S, Takano J. DRP1-Dependent Endocytosis is Essential for Polar Localization and Boron-Induced Degradation of the Borate Transporter BOR1 in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2016; 57:1985-2000. [PMID: 27449211 DOI: 10.1093/pcp/pcw121] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/30/2016] [Indexed: 05/20/2023]
Abstract
Boron (B) is essential for plants but toxic in excess. The borate efflux transporter BOR1 is expressed in various root cells and localized to the inner/stele-side domain of the plasma membrane (PM) under low-B conditions. BOR1 is rapidly degraded through endocytosis upon sufficient B supply. The polar localization and degradation of BOR1 are considered important for efficient B translocation and avoidance of B toxicity, respectively. In this study, we first analyzed the subcellular localization of BOR1 in roots, cotyledons and hypocotyls, and revealed a polar localization in various cell types. We also found that the inner polarity of BOR1 is established after completion of cytokinesis in the root meristem. Moreover, variable-angle epifluorescence microscopy visualized BOR1-green fluorescent protein (GFP) as particles in the PM with significant lateral movements but in restricted areas. Importantly, a portion of BOR1-GFP particles co-localized with DYNAMIN-RELATED PROTEIN 1A (DRP1A), which is involved in scission of the clathrin-coated vesicles, and they disappeared together from the PM. To examine the contribution of DRP1A-mediated endocytosis to BOR1 localization and degradation, we developed an inducible expression system of the DRP1A K47A variant. The DRP1A variant prolonged the residence time of clathrin on the PM and inhibited endocytosis of membrane lipids. The dominant-negative DRP1A blocked endocytosis of BOR1 and disturbed its polar localization and B-induced degradation. Our results provided insight into the endocytic mechanisms that modulate the subcellular localization and abundance of a mineral transporter for nutrient homeostasis in plant cells.
Collapse
Affiliation(s)
- Akira Yoshinari
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, 599-8531 Japan Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, 060-8589 Japan
| | - Masaru Fujimoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Takashi Ueda
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Japan Japan Science and Technology Agency (JST), PRESTO, Honcho 4-1-8, Kawaguchi, 332-0012 Japan
| | - Noriko Inada
- Graduate School of Biological Sciences, Nara Institute of Sciences and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192 Japan
| | - Satoshi Naito
- Research Faculty of Agriculture, Hokkaido University, Kita-10, Nishi-7, Kita-ku, Sapporo, 060-0810 Japan
| | - Junpei Takano
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, 599-8531 Japan
| |
Collapse
|
44
|
Klinger CM, Ramirez-Macias I, Herman EK, Turkewitz AP, Field MC, Dacks JB. Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology. Mol Biochem Parasitol 2016; 209:88-103. [PMID: 27444378 PMCID: PMC5140719 DOI: 10.1016/j.molbiopara.2016.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
Abstract
With advances in DNA sequencing technology, it is increasingly common and tractable to informatically look for genes of interest in the genomic databases of parasitic organisms and infer cellular states. Assignment of a putative gene function based on homology to functionally characterized genes in other organisms, though powerful, relies on the implicit assumption of functional homology, i.e. that orthology indicates conserved function. Eukaryotes reveal a dazzling array of cellular features and structural organization, suggesting a concomitant diversity in their underlying molecular machinery. Significantly, examples of novel functions for pre-existing or new paralogues are not uncommon. Do these examples undermine the basic assumption of functional homology, especially in parasitic protists, which are often highly derived? Here we examine the extent to which functional homology exists between organisms spanning the eukaryotic lineage. By comparing membrane trafficking proteins between parasitic protists and traditional model organisms, where direct functional evidence is available, we find that function is indeed largely conserved between orthologues, albeit with significant adaptation arising from the unique biological features within each lineage.
Collapse
Affiliation(s)
- Christen M Klinger
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Emily K Herman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
45
|
Cui Y, Shen J, Gao C, Zhuang X, Wang J, Jiang L. Biogenesis of Plant Prevacuolar Multivesicular Bodies. MOLECULAR PLANT 2016; 9:774-86. [PMID: 26836198 DOI: 10.1016/j.molp.2016.01.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/04/2016] [Accepted: 01/26/2016] [Indexed: 05/20/2023]
Abstract
Plant prevacuolar compartments (PVCs), or multivesicular bodies (MVBs), are single membrane-bound organelles that play important roles in mediating protein trafficking to vacuoles in the secretory pathway. PVC/MVB also serves as a late endosome in the endocytic pathway in plants. Since the plant PVC was identified as an MVB more than 10 years ago, great progress has been made toward the understanding of PVC/MVB function and biogenesis in plants. In this review, we first summarize previous research into the identification and characterization of plant PVCs/MVBs, and then highlight recent advances on the mechanisms underlying intraluminal vesicle formation and maturation of plant PVCs/MVBs. In addition, we discuss the possible crosstalk that appears to occur between PVCs/MVBs and autophagosomes during autophagy in plants. Finally, we list some open questions and present future perspectives in this field.
Collapse
Affiliation(s)
- Yong Cui
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jinbo Shen
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Caiji Gao
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiaohong Zhuang
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Junqi Wang
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology, South University of Science and Technology of China, Shenzhen 518055, China
| | - Liwen Jiang
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| |
Collapse
|
46
|
Shen J, Gao C, Zhao Q, Lin Y, Wang X, Zhuang X, Jiang L. AtBRO1 Functions in ESCRT-I Complex to Regulate Multivesicular Body Protein Sorting. MOLECULAR PLANT 2016; 9:760-763. [PMID: 26902184 DOI: 10.1016/j.molp.2016.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/27/2016] [Accepted: 02/15/2016] [Indexed: 05/20/2023]
Affiliation(s)
- Jinbo Shen
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Caiji Gao
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qiong Zhao
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Youshun Lin
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiangfeng Wang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiaohong Zhuang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| |
Collapse
|
47
|
Buono RA, Paez-Valencia J, Miller ND, Goodman K, Spitzer C, Spalding EP, Otegui MS. Role of SKD1 Regulators LIP5 and IST1-LIKE1 in Endosomal Sorting and Plant Development. PLANT PHYSIOLOGY 2016; 171:251-64. [PMID: 26983994 PMCID: PMC4854716 DOI: 10.1104/pp.16.00240] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/15/2016] [Indexed: 05/19/2023]
Abstract
SKD1 is a core component of the mechanism that degrades plasma membrane proteins via the Endosomal Sorting Complex Required for Transport (ESCRT) pathway. Its ATPase activity and endosomal recruitment are regulated by the ESCRT components LIP5 and IST1. How LIP5 and IST1 affect ESCRT-mediated endosomal trafficking and development in plants is not known. Here we use Arabidopsis mutants to demonstrate that LIP5 controls the constitutive degradation of plasma membrane proteins and the formation of endosomal intraluminal vesicles. Although lip5 mutants were able to polarize the auxin efflux facilitators PIN2 and PIN3, both proteins were mis-sorted to the tonoplast in lip5 root cells. In addition, lip5 root cells over-accumulated PIN2 at the plasma membrane. Consistently with the trafficking defects of PIN proteins, the lip5 roots showed abnormal gravitropism with an enhanced response within the first 4 h after gravistimulation. LIP5 physically interacts with IST1-LIKE1 (ISTL1), a protein predicted to be the Arabidopsis homolog of yeast IST1. However, we found that Arabidopsis contains 12 genes coding for predicted IST1-domain containing proteins (ISTL1-12). Within the ISTL1-6 group, ISTL1 showed the strongest interaction with LIP5, SKD1, and the ESCRT-III-related proteins CHMP1A in yeast two hybrid assays. Through the analysis of single and double mutants, we found that the synthetic interaction of LIP5 with ISTL1, but not with ISTL2, 3, or 6, is essential for normal plant growth, repression of spontaneous cell death, and post-embryonic lethality.
Collapse
Affiliation(s)
- Rafael Andrade Buono
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Julio Paez-Valencia
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Nathan D Miller
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Kaija Goodman
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Christoph Spitzer
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Edgar P Spalding
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Marisa S Otegui
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
48
|
Paez Valencia J, Goodman K, Otegui MS. Endocytosis and Endosomal Trafficking in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:309-35. [PMID: 27128466 DOI: 10.1146/annurev-arplant-043015-112242] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Endocytosis and endosomal trafficking are essential processes in cells that control the dynamics and turnover of plasma membrane proteins, such as receptors, transporters, and cell wall biosynthetic enzymes. Plasma membrane proteins (cargo) are internalized by endocytosis through clathrin-dependent or clathrin-independent mechanism and delivered to early endosomes. From the endosomes, cargo proteins are recycled back to the plasma membrane via different pathways, which rely on small GTPases and the retromer complex. Proteins that are targeted for degradation through ubiquitination are sorted into endosomal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery for degradation in the vacuole. Endocytic and endosomal trafficking regulates many cellular, developmental, and physiological processes, including cellular polarization, hormone transport, metal ion homeostasis, cytokinesis, pathogen responses, and development. In this review, we discuss the mechanisms that mediate the recognition and sorting of endocytic and endosomal cargos, the vesiculation processes that mediate their trafficking, and their connection to cellular and physiological responses in plants.
Collapse
Affiliation(s)
- Julio Paez Valencia
- Department of Botany
- R.M. Bock Laboratories of Cell and Molecular Biology, and
| | - Kaija Goodman
- Department of Botany
- R.M. Bock Laboratories of Cell and Molecular Biology, and
| | - Marisa S Otegui
- Department of Botany
- R.M. Bock Laboratories of Cell and Molecular Biology, and
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706; , ,
| |
Collapse
|
49
|
Cui Y, Gao C, Zhao Q, Jiang L. Using Fluorescent Protein Fusions to Study Protein Subcellular Localization and Dynamics in Plant Cells. Methods Mol Biol 2016; 1474:113-23. [PMID: 27515077 DOI: 10.1007/978-1-4939-6352-2_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Studies of protein subcellular localization and dynamics are helpful in understanding the cellular functions of proteins in an organism. In the past decade, the use of green fluorescent protein (GFP) as a fusion tag has dramatically extended our knowledge in this field. Transient expression and stable transformation of GFP-tagged proteins have been wildly used to study protein localization in vivo in different systems. Although GFP-based tags provide a fast and convenient way to characterize protein properties in living cells, several reports have demonstrated that GFP fusions might not accurately reflect the localization of the native protein as GFP tags may alter the protein properties. To facilitate proper usage of GFP tags in plant cell biology study, we describe detailed protocols to identify possible inhibitory effects of fluorescent tags on protein subcellular localization and to determine if a fluorescently tagged protein is localized to the correct subcellular compartment. Using Arabidopsis Endomembrane protein 12 (EMP12) as an example, we first show the possible inhibitory effect of GFP tags on proper protein localization and then describe the immunofluorescence labeling method to verify the correct localization of GFP fusion proteins. Next, a method is presented using the ImageJ program with the Pearson-Spearman correlation (PSC) colocalization plug-in for statistical quantification of colocalization ratios of two fluorophores. Finally we provide a detailed method for protein dynamics studies using spinning disk confocal microscopy in Arabidopsis cells.
Collapse
Affiliation(s)
- Yong Cui
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Caiji Gao
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qiong Zhao
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China.
| |
Collapse
|
50
|
Hilscher J, Kapusi E, Stoger E, Ibl V. Cell layer-specific distribution of transiently expressed barley ESCRT-III component HvVPS60 in developing barley endosperm. PROTOPLASMA 2016; 253:137-53. [PMID: 25796522 PMCID: PMC4712231 DOI: 10.1007/s00709-015-0798-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/09/2015] [Indexed: 05/29/2023]
Abstract
The significance of the endosomal sorting complexes required for transport (ESCRT)-III in cereal endosperm has been shown by the identification of the recessive mutant supernumerary aleurone layer1 (SAL1) in maize. ESCRT-III is indispensable in the final membrane fission step during biogenesis of multivesicular bodies (MVBs), responsible for protein sorting to vacuoles and to the cell surface. Here, we annotated barley ESCRT-III members in the (model) crop Hordeum vulgare and show that all identified members are expressed in developing barley endosperm. We used fluorescently tagged core ESCRT-III members HvSNF7a/CHMP4 and HvVPS24/CHMP3 and the associated ESCRT-III component HvVPS60a/CHMP5 for transient localization studies in barley endosperm. In vivo confocal microscopic analyses show that the localization of recombinantly expressed HvSNF7a, HvVPS24 and HvVPS60a differs within barley endosperm. Whereas HvSNF7a induces large agglomerations, HvVPS24 shows mainly cytosolic localization in aleurone and subaleurone. In contrast, HvVPS60a localizes strongly at the plasma membrane in aleurone. In subaleurone, HvVPS60a was found to a lesser extent at the plasma membrane and at vacuolar membranes. These results indicate that the steady-state association of ESCRT-III may be influenced by cell layer-specific protein deposition or trafficking and remodelling of the endomembrane system in endosperm. We show that sorting of an artificially mono-ubiquitinated Arabidopsis plasma membrane protein is inhibited by HvVPS60a in aleurone. The involvement of HvVPS60a in different cell layer-specific trafficking pathways, reflected by localization of HvVPS60a at the plasma membrane in aleurone and at the PSV membrane in subaleurone, is discussed.
Collapse
Affiliation(s)
- Julia Hilscher
- Department of Applied Genetics and Cell Biology, Division of Molecular Cell Biology and Glycobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Eszter Kapusi
- Department of Applied Genetics and Cell Biology, Division of Molecular Cell Biology and Glycobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, Division of Molecular Cell Biology and Glycobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Verena Ibl
- Department of Applied Genetics and Cell Biology, Division of Molecular Cell Biology and Glycobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|