1
|
Lopez-Agudelo JC, Goh FJ, Tchabashvili S, Huang YS, Huang CY, Lee KT, Wang YC, Wu Y, Chang HX, Kuo CH, Lai EM, Wu CH. Rhizobium rhizogenes A4-derived strains mediate hyper-efficient transient gene expression in Nicotiana benthamiana and other solanaceous plants. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40203188 DOI: 10.1111/pbi.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/06/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025]
Abstract
Agroinfiltration, a method utilizing agrobacteria to transfer DNA into plant cells, is widely used for transient gene expression in plants. Besides the commonly used Agrobacterium strains, Rhizobium rhizogenes can also introduce foreign DNA into host plants for gene expression. While many R. rhizogenes strains have been known for inducing hairy root symptoms, their use for transient expression has not been fully explored. Here, we showed that R. rhizogenes A4 outperformed all other tested agrobacterial strains in agroinfiltration experiments on leaves of Nicotiana benthamiana and other solanaceous plants. By conducting an agroinfiltration screening in N. benthamiana leaves using various agrobacterial strains carrying the RUBY reporter gene cassette, we discovered that A4 mediates the strongest and fastest transient expression. Utilizing the genomic information, we developed a collection of disarmed and modified strains derived from A4. By performing vacuum infiltration assays, we demonstrated that these A4-derived strains efficiently transiently transform 6-week-old N. benthamiana leaves, showing less sensitivity to the age of plants compared to the laboratory strain GV3101. Furthermore, we performed agroinfiltration using AS109, an A4-derived disarmed strain, on the leaves of tomato, pepper, and eggplant. Remarkably, AS109 mediated transient gene expression on tested solanaceous plants more effectively than all the tested commonly used agrobacterial strains. This discovery paves the way for establishing R. rhizogenes A4-derived strains as a new option for enhancing transient expression in N. benthamiana and facilitating the functional study of plant genes in other solanaceous species.
Collapse
Affiliation(s)
- Juan Carlos Lopez-Agudelo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Foong-Jing Goh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Sopio Tchabashvili
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Seng Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ching-Yi Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Chieh Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Hao-Xun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
2
|
Zhai T, Guo Y, Yang M, Zhang X, Lin Y, Cai D, Lan S, Tang M, Ma W, Wang S, Chen Y, Lai Z, Lin Y. The bZIP20 transcription factor enhances thermotolerance in Dimocarpus longan by maintaining ROS homeostasis and involving the MeJA pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109869. [PMID: 40209333 DOI: 10.1016/j.plaphy.2025.109869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/22/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
The basic-leucine zipper (bZIP) transcription factor (TF), which is abundant and highly conserved in eukaryotes, mainly participates in plant growth, development and adverse stress processes. However, the regulatory mechanisms of bZIP TFs under heat stress in Dimocarpus longan remain unclear. In this study, we reported a nuclear-localized bZIP TF, DlbZIP20, which was confirmed to be a positive regulator of thermotolerance in D. longan. It was identified as a strong interplay with hormone signalling pathways and oxidoreductase-related families. The transient overexpression DlbZIP20 could improve the thermotolerance of D. longan embryogenic callus (EC) and reduce the damage of cells under heat stress. Overexpression of DlbZIP20 in hairy roots significantly promoted roots elongation and photosystem II (PS II) responses in leaves, and significantly increased SOD and POD activities, promoted H2O2 scavenging, improved thermotolerance of D. longan by maintaining ROS homeostasis under heat stress. In addition, overexpression of DlbZIP20 increased endogenous MeJA content under heat stress. MeJA hormone synthesis genes DlMYC2 and DlCOI1 were up-regulated and DlJAZ3 was down-regulated in expression. This signalling pathway may play a role in the regulation of thermotolerance in D. longan. These results will provide a new insight into the molecular function of bZIP20 TF in response to heat stress in D. longan.
Collapse
Affiliation(s)
- Tingkai Zhai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yueru Guo
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengmeng Yang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xueying Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yiyao Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Danfeng Cai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuoxian Lan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengjie Tang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wentao Ma
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuangjie Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Li L, van de Kaa Y, van der Krabben L, Pierik R, Kajala K. Effect of Low Red-to-Far-Red Light on Stem Elongation and Pith Cell Development in Dicots. PLANT DIRECT 2025; 9:e70072. [PMID: 40242792 PMCID: PMC11999800 DOI: 10.1002/pld3.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/06/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
In dense canopies, light becomes a limiting factor for plant growth. Many plants respond to neighbor cues by growing taller to improve light capture, a phenomenon known as the shade avoidance syndrome (SAS). The major neighbor detection is via enrichment of far-red (FR) light that leads to a low red:far-red light ratio (R:FR), suppressing phytochrome activity. In tomato, low R:FR induces elongation of the internodes, but study into the role of different cell types in this response has remained limited. We characterized changes in cellular anatomy of the tomato internode in response to low R:FR and its accompanying changes in gene expression. We observed changes to the pith traits, including increases in pith layer number, pith cell diameter, and longitudinal cell length. We profiled the transcriptome in the entire internodes and in the hand-dissected pith in the central cylinder of the internode in response to low R:FR treatment and identified transcription factors (TFs) of interest that were upregulated in the central cylinder, mostly GATA, TCP, and bZIPs. We then characterized FR responses in eight dicotyledonous species. Significant pith elongation was observed in species that exhibited a strong internode elongation response. The FR-responsive expression of homologs of target GATA, TCP, and bZIP TFs in the central cylinder was conserved within the Solanaceae family. Overall, we discovered central cylinder gene expression patterns in SAS that are distinct from those of the entire internode, suggesting that some responses are unique and likely specific to vascular cell types such as pith. These patterns were conserved with close relatives of tomato but not in other dicot families we sampled, indicating that different molecular mechanisms drive FR responses in different dicots.
Collapse
Affiliation(s)
- Linge Li
- Experimental & Computational Plant DevelopmentInstitute of Environmental Biology, Utrecht UniversityUtrechtThe Netherlands
- Current Affiliation: Dalian Yuanyi Technology Co., LtdDalianLiaoningChina
| | - Yorrit van de Kaa
- Experimental & Computational Plant DevelopmentInstitute of Environmental Biology, Utrecht UniversityUtrechtThe Netherlands
| | - Lotte van der Krabben
- Experimental & Computational Plant DevelopmentInstitute of Environmental Biology, Utrecht UniversityUtrechtThe Netherlands
| | - Ronald Pierik
- Experimental & Computational Plant DevelopmentInstitute of Environmental Biology, Utrecht UniversityUtrechtThe Netherlands
- Current Affiliation: Laboratory of Molecular BiologyWageningen University & ResearchWageningenThe Netherlands
| | - Kaisa Kajala
- Experimental & Computational Plant DevelopmentInstitute of Environmental Biology, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
4
|
Goralogia GS, Willig C, Strauss SH. Engineering Agrobacterium for improved plant transformation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70015. [PMID: 40051182 PMCID: PMC11885899 DOI: 10.1111/tpj.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 03/10/2025]
Abstract
Outside of a few model systems and selected taxa, the insertion of transgenes and regeneration of modified plants are difficult or impossible. This is a major bottleneck both for biotechnology and scientific research with many important species. Agrobacterium-mediated transformation (AMT) remains the most common approach to insert DNA into plant cells, and is also an important means to stimulate regeneration of organized tissues. However, the strains and transformation methods available today have been largely unchanged since the 1990s. New sources of Agrobacterium germplasm and associated genomic information are available for hundreds of wild strains in public repositories, providing new opportunities for research. Many of these strains contain novel gene variants or arrangements of genes in their T-DNA, potentially providing new tools for strain enhancement. There are also several new techniques for Agrobacterium modification, including base editing, CRISPR-associated transposases, and tailored recombineering, that make the process of domesticating wild strains more precise and efficient. We review the novel germplasm, genomic resources, and new methods available, which together should lead to a renaissance in Agrobacterium research and the generation of many new domesticated strains capable of promoting plant transformation and/or regeneration in diverse plant species.
Collapse
Affiliation(s)
- Greg S. Goralogia
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregon97331USA
| | - Chris Willig
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregon97331USA
| | - Steven H. Strauss
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregon97331USA
| |
Collapse
|
5
|
Kaul R, Thangaraj A, Sharda S, Kaul T. Optimization of tissue culture and Cas9 transgene expression in tomato: A step towards CRISPR/Cas9-based genetic improvement. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112324. [PMID: 39612948 DOI: 10.1016/j.plantsci.2024.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Tomato (Solanum lycopersicum L.) is an essential source of antioxidants and a prime candidate for bioengineering experiments. Many studies have aimed to improve tomatoes using CRISPR/Cas9 technology; however, the success rate is limited due to the lack of efficient regeneration and genetic modification techniques. Here, we report an efficient regeneration and transformation procedure focused on developing efficient Cas9 gene transgenic tomato plants using the Agrobacterium tumefaciens strain LBA4404 harbouring pCRISPR/Cas9TK2-NIC binary vector. We optimized the concentrations and combinations of growth hormones to promote direct shoot and root regeneration via hypocotyl explants. We found that MS medium 2.0 mg/l Zeatin (Zn) + 1.5 mg/l Indole -3- acetic acid (IAA) + 0.3 mg/l Benzyl amino purine (BAP) was preeminent for shoot regeneration medium, and 0.5 mg/l BAP+ 0.1 mg/l IAA was appropriate for root regeneration. Cas9 transgenes in the tomato genome of putative tomato plants were validated using various methods, including polymerase chain reaction (PCR), and confirmed via Southern blotting. The developed protocol showed improved regeneration and transformation efficiencies in tomatoes of 88 % and 54 %, respectively. In this study, we successfully established a gene delivery platform for tomatoes using the CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Rashmi Kaul
- Nutritional Improvement of Crops Group, Plant Biology and Biotechnology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India; Centre for Cellular & Molecular Biology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Arulprakash Thangaraj
- Nutritional Improvement of Crops Group, Plant Biology and Biotechnology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India; Centre for Cellular & Molecular Biology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Shivani Sharda
- Centre for Cellular & Molecular Biology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Tanushri Kaul
- Nutritional Improvement of Crops Group, Plant Biology and Biotechnology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.
| |
Collapse
|
6
|
Li L, Li X, Gao X, Liao W, Guo H, He C, Lu J, Ye X, Sun W, Liu C, Fan Y, Bai X, Wu Q. Global investigation into the CqCYP76AD and CqDODA families in Chenopodium quinoa: Identification, evolutionary history, and their functional roles in betalain biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109569. [PMID: 39892247 DOI: 10.1016/j.plaphy.2025.109569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Betalains are water-soluble pigments mainly distributed in the core Caryophyllales plants. Betalains provide plant with striking colors to attract pollinators and are beneficial to human health due to the strong antioxidant activity. To date, many studies regarding to betalain biosynthesis have been exerted in sugar beet (Beta vulgaris) and four-O-clock (Mirabilis jalapa), however, the key regulators in betalain pigmentation of quinoa (Chenopodium quinoa) remain to be elucidated. CYP76AD and DODA genes encode core enzymes converting L-DOPA to cyclo-DOPA and betalamic acid, respectively, in betalain biosynthesis. In this study, 44 CqCYP76AD (5 α-clade, 6 β-clade and 33 γ-clade homologs) and 18 CqDODA (10 α-clade, 2 β-clade and 6 γ-clade homologs) members were identified in quinoa genome. Expression analysis and cis-element analysis indicated that light and ABA are involved in the regulation of CqCYP76AD and CqDODA. We found application of exogenous ABA and darkness repressed the betalain production in quinoa seedlings. Tandem duplication is the major driving force for CqCYP76AD and CqDODA family expansion. Evolutionary history analysis on the duplication events of quinoa and its close relatives, sugar beet, C. pallidicaule, C. suecicum and C. formosanum, identified the quinoa-specific tandem duplications CqCYP76AD-α2/-α3, CqDODA-α1/-α6 in Chr04, and CqCYP76AD-α1/-α4/-α5, CqDODA-α3/-α4/-α5 in Chr03, which are absent in sugar beet. The close co-location of the CqCYP76AD-α-CqDODA-α gene clusters suggests they are putative enhanced regulatory units for betalain biosynthesis in quinoa, similar to the operon BvCYP76AD1-BvDODA1 in sugar beet. The functions of α-, β- and γ-clade CqCYP76ADs and CqDODAs were investigated by transient expression system in tobacco leaves and hairy root transformation in quinoa. The results indicated that CqCYP76AD-α1, CqCYP76AD-β3, CqDODA-α1, CqDODA-α3 and CqDODA-α5 are the important positive regulators for betalain accumulation in quinoa. Correlation between pigment contents and expression levels at different developmental stages indicates their roles in pigmentation of leaf, stem and spike tissues of in betalain-enriched quinoa. Overall, this study performed genome-wide identification and functional characterization of the important functional enzymes of CqCYP76ADs and CqDODAs for betalain biosynthesis in quinoa, which will deep our understanding of the mechanisms of betalain pigmentation in quinoa.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Xiao'an Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Xiaoli Gao
- Research Institute of Agricultural Sciences, Tibet Academy of Agricultural and Animal Husbandry Science, 850032, Lhasa, Tibet, China
| | - Wenhua Liao
- Research Institute of Agricultural Sciences, Tibet Academy of Agricultural and Animal Husbandry Science, 850032, Lhasa, Tibet, China
| | - Huihui Guo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Cailin He
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Jing Lu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Wenjun Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Xue Bai
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
De Ryck J, Jonckheere V, De Paepe B, De Keyser A, Peeters N, Van Vaerenbergh J, Debode J, Van Damme P, Goormachtig S. Exploring the Tomato Root Protein Network Exploited by Core Type 3 Effectors from the Ralstonia solanacearum Species Complex. J Proteome Res 2025; 24:696-709. [PMID: 39786355 DOI: 10.1021/acs.jproteome.4c00757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Proteomics has become a powerful approach for the identification and characterization of type III effectors (T3Es). Members of the Ralstonia solanacearum species complex (RSSC) deploy T3Es to manipulate host cells and to promote root infection of, among others, a wide range of solanaceous plants such as tomato, potato, and tobacco. Here, we used TurboID-mediated proximity labeling (PL) in tomato hairy root cultures to explore the proxeomes of the core RSSC T3Es RipU, RipD, and RipB. The RipU proxeome was enriched for multiple protein kinases, suggesting a potential impact on the two branches of the plant immune surveillance system, being the membrane-localized PAMP-triggered immunity (PTI) and the RIN4-dependent effector-triggered immunity (ETI) complexes. In agreement, a transcriptomics analysis in tomato revealed the potential involvement of RipU in modulating reactive oxygen species (ROS) signaling. The proxeome of RipB was putatively enriched for mitochondrial and chloroplast proteins and that of RipD for proteins potentially involved in the endomembrane system. Together, our results demonstrate that TurboID-PL in tomato hairy roots represents a promising tool to study Ralstonia T3E targets and functioning and that it can unravel potential host processes that can be hijacked by the bacterial pathogen.
Collapse
Affiliation(s)
- Joren De Ryck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Veronique Jonckheere
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Brigitte De Paepe
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Nemo Peeters
- Laboratoire des Interactions Plantes Microorganismes Environnement (LIPME), INRAE, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Johan Van Vaerenbergh
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Jane Debode
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
8
|
Roychowdhury R, Das SP, Das S, Biswas S, Patel MK, Kumar A, Sarker U, Choudhary SP, Das R, Yogendra K, Gangurde SS. Advancing vegetable genetics with gene editing: a pathway to food security and nutritional resilience in climate-shifted environments. Funct Integr Genomics 2025; 25:31. [PMID: 39891757 DOI: 10.1007/s10142-025-01533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/03/2025]
Abstract
As global populations grow and climate change increasingly disrupts agricultural systems, ensuring food security and nutritional resilience has become a critical challenge. In addition to grains and legumes, vegetables are very important for both human and animals because they contain vitamins, minerals, and fibre. Enhancing the ability of vegetables to withstand climate change threats is essential; however, traditional breeding methods face challenges due to the complexity of the genomic clonal multiplication process. In the postgenomic era, gene editing (GE) has emerged as a powerful tool for improving vegetables. GE can help to increase traits such as abiotic stress tolerance, herbicide tolerance, and disease resistance; improve agricultural productivity; and improve nutritional content and shelf-life by fine-tuning key genes. GE technologies such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR-Cas9) have revolutionized vegetable breeding by enabling specific gene modifications in the genome. This review highlights recent advances in CRISPR-mediated editing across various vegetable species, highlighting successful modifications that increase their resilience to climatic stressors. Additionally, it explores the potential of GE to address malnutrition by increasing the nutrient content of vegetable crops, thereby contributing to public health and food system sustainability. Additionally, it addresses the implementation of GE-guided breeding strategies in agriculture, considering regulatory, ethical, and public acceptance issues. Enhancing vegetable genetics via GE may provide a reliable and nutritious food supply for an expanding global population under more unpredictable environmental circumstances.
Collapse
Affiliation(s)
- Rajib Roychowdhury
- Agricultural Research Organization (ARO), The Volcani Institute, Rishon Lezion, 7505101, Israel.
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, Telangana, India.
| | - Soumya Prakash Das
- School of Life Sciences, Seacom Skills University, Bolpur, 731236, West Bengal, India
| | - Siddhartha Das
- Department of Plant Pathology, MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, 761211, Odisha, India
| | - Sabarni Biswas
- Department of Botany, Sonarpur Mahavidyalaya, Rajpur, Kolkata, 700149, West Bengal, India
| | - Manish Kumar Patel
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Madrid, Spain
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Sikander Pal Choudhary
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu, 180006, India
| | - Ranjan Das
- Department of Crop Physiology, College of Agriculture, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Kalenahalli Yogendra
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, Telangana, India
| | - Sunil S Gangurde
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, Telangana, India.
| |
Collapse
|
9
|
Manzano C, Morimoto KW, Shaar-Moshe L, Mason GA, Cantó-Pastor A, Gouran M, De Bellis D, Ursache R, Kajala K, Sinha N, Bailey-Serres J, Geldner N, Del Pozo JC, Brady SM. Regulation and function of a polarly localized lignin barrier in the exodermis. NATURE PLANTS 2025; 11:118-130. [PMID: 39623209 PMCID: PMC11757151 DOI: 10.1038/s41477-024-01864-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/28/2024] [Indexed: 01/25/2025]
Abstract
Multicellular organisms control environmental interactions through specialized barriers in specific cell types. A conserved barrier in plant roots is the endodermal Casparian strip (CS), a ring-like structure made of polymerized lignin that seals the endodermal apoplastic space. Most angiosperms have another root cell type, the exodermis, that is reported to form a barrier. Our understanding of exodermal developmental and molecular regulation and function is limited as this cell type is absent from Arabidopsis thaliana. We demonstrate that in tomato (Solanum lycopersicum), the exodermis does not form a CS. Instead, it forms a polar lignin cap (PLC) with equivalent barrier function to the endodermal CS but distinct genetic control. Repression of the exodermal PLC in inner cortical layers is conferred by the SlSCZ and SlEXO1 transcription factors, and these two factors genetically interact to control its polar deposition. Several target genes that act downstream of SlSCZ and SlEXO1 in the exodermis are identified. Although the exodermis and endodermis produce barriers that restrict mineral ion uptake, the exodermal PLC is unable to fully compensate for the lack of a CS. The presence of distinct lignin structures acting as apoplastic barriers has exciting implications for a root's response to abiotic and biotic stimuli.
Collapse
Affiliation(s)
- Concepcion Manzano
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA.
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, Madrid, Spain.
| | - Kevin W Morimoto
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA
| | - Lidor Shaar-Moshe
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, Institute of Evolution, University of Haifa, Haifa, Israel
| | - G Alex Mason
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA
| | - Alex Cantó-Pastor
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA
| | - Mona Gouran
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA
| | - Damien De Bellis
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Robertas Ursache
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Kaisa Kajala
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA
- Experimental and Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| | - Neelima Sinha
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, USA
| | | | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - J Carlos Del Pozo
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, Madrid, Spain
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA.
- Howard Hughes Medical Institute, University of California Davis, Davis, CA, USA.
| |
Collapse
|
10
|
Royan S, Shirzadian-Khorramabad R, Zibaee A, Bagherieh-Najjar MB, Nazarian-Firouzabadi F. Expression of a novel NaD1 recombinant antimicrobial peptide enhances antifungal and insecticidal activities. Sci Rep 2024; 14:23235. [PMID: 39369025 PMCID: PMC11455875 DOI: 10.1038/s41598-024-73710-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024] Open
Abstract
This study aimed to increase the antifungal and insecticidal activities of NaD1, as an antimicrobial peptides (AMP), by improving its interaction with the fungal cell wall and chitin monomeric units in insect midguts. Hence, the chitin-binding domains (CBDs) of wheat germ agglutinin protein (WGA) were fused to either N- or C-terminus of NaD1 generating transgenic Nicotiana tabacum hairy roots (HRs). Molecular assessments confirmed the integration of NaD1 transgenes, their transcription and production of recombinant peptides in the HR lines. Total protein of (CBD)4-NaD1 and NaD1-(CBD)4 transgenic lines inhibited the growth of Pyricularia oryzae mycelium, suggesting that fusion of CBD to NaD1 can increase NaD1 half-life, leading to higher affinity toward cell wall chitin. Furthermore, feeding the third-instar larvae of Chilo suppressalis with both (CBD)4-NaD1 and NaD1-(CBD)4 extracts exhibited a higher mortality rate. Both NaD1-CBDs caused a significant decrease in trypsin (TRY) and chymotrypsin (CTR) activities in the larvae, while enhancing the activity of antioxidant enzymes CAT, POD, APX, and SOD. Therefore, feeding the larvae by total extract of NaD1-(CBD)4 and (CBD)4-NaD1 HR lines probably increased affinity to midgut chitin in C. suppressalis, enhancing insecticidal activities. Overall, the results indicate that recombinant peptides are effective in enhancing fungal and insect resistance.
Collapse
Affiliation(s)
- Sara Royan
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Reza Shirzadian-Khorramabad
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
| | - Arash Zibaee
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | - Farhad Nazarian-Firouzabadi
- Production Engineering and Plant Genetic Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| |
Collapse
|
11
|
Alabed D, Tibebu R, Ariyaratne M, Shao M, Milner MJ, Thomson JG. Novel Agrobacterium fabrum str. 1D1416 for Citrus Transformation. Microorganisms 2024; 12:1999. [PMID: 39458308 PMCID: PMC11509345 DOI: 10.3390/microorganisms12101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Citrus is one of the world's most important and widely produced fruit crops, with over a 100 million metric tons harvested from nearly 10 million hectares in 2023. Challenges in crop maintenance, production, and fruit quality necessitate developing new traits through Agrobacterium-mediated genetic transformation. While a few Agrobacterium strains (EHA105, GV3101, LBA4404) are known to transform citrus, many wild strains remain untested. We screened forty-one wild-type Agrobacterium strains isolated from various woody species and identified five capable of DNA transfer into citrus cells. Strain 1D1416 demonstrated the highest transient transformation frequency in Carrizo epicotyl explants (88%), outperforming the control EHA105 (84%) with comparable shoot regeneration rates (32% and 42%, respectively). Notably, 1D1416 exhibited no overgrowth and had the lowest necrosis and mortality rates in transformed tissues. It efficiently transferred the DsRed gene and induced galls in mature tissues of Mexican lime (70%), lemon (48%), Washington navel orange (25%), and clementine (6%). Genome sequencing of 1D1416 allowed for the disarming of the native T-DNA and addition of GAANTRY technology. This novel strain, combined with an optimized transformation procedure, make it a valuable tool for advancing citrus transformation.
Collapse
Affiliation(s)
| | | | | | | | | | - James G. Thomson
- USDA-ARS Crop Improvement and Genetics, Western Regional Research Center, Albany, CA 94710, USA; (D.A.); (R.T.); (M.A.); (M.S.); (M.J.M.)
| |
Collapse
|
12
|
Lowry GV, Giraldo JP, Steinmetz NF, Avellan A, Demirer GS, Ristroph KD, Wang GJ, Hendren CO, Alabi CA, Caparco A, da Silva W, González-Gamboa I, Grieger KD, Jeon SJ, Khodakovskaya MV, Kohay H, Kumar V, Muthuramalingam R, Poffenbarger H, Santra S, Tilton RD, White JC. Towards realizing nano-enabled precision delivery in plants. NATURE NANOTECHNOLOGY 2024; 19:1255-1269. [PMID: 38844663 DOI: 10.1038/s41565-024-01667-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/27/2024] [Indexed: 09/18/2024]
Abstract
Nanocarriers (NCs) that can precisely deliver active agents, nutrients and genetic materials into plants will make crop agriculture more resilient to climate change and sustainable. As a research field, nano-agriculture is still developing, with significant scientific and societal barriers to overcome. In this Review, we argue that lessons can be learned from mammalian nanomedicine. In particular, it may be possible to enhance efficiency and efficacy by improving our understanding of how NC properties affect their interactions with plant surfaces and biomolecules, and their ability to carry and deliver cargo to specific locations. New tools are required to rapidly assess NC-plant interactions and to explore and verify the range of viable targeting approaches in plants. Elucidating these interactions can lead to the creation of computer-generated in silico models (digital twins) to predict the impact of different NC and plant properties, biological responses, and environmental conditions on the efficiency and efficacy of nanotechnology approaches. Finally, we highlight the need for nano-agriculture researchers and social scientists to converge in order to develop sustainable, safe and socially acceptable NCs.
Collapse
Affiliation(s)
- Gregory V Lowry
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Juan Pablo Giraldo
- Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA.
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, San Diego, CA, USA
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Department of Radiology, University of California San Diego, San Diego, CA, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, San Diego, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, San Diego, CA, USA
- Center for Engineering in Cancer, Institute of Engineering in Medicine, University of California San Diego, San Diego, CA, USA
- Moores Cancer Center, University of California, University of California San Diego, San Diego, CA, USA
- Institute for Materials Discovery and Design, University of California San Diego, San Diego, CA, USA
| | | | - Gozde S Demirer
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kurt D Ristroph
- Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Gerald J Wang
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Christine O Hendren
- Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA
| | | | - Adam Caparco
- Department of NanoEngineering, University of California San Diego, San Diego, CA, USA
| | | | | | - Khara D Grieger
- Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Su-Ji Jeon
- Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | | | - Hagay Kohay
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Vivek Kumar
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | | | - Swadeshmukul Santra
- Department of Chemistry and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Robert D Tilton
- Chemical Engineering and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jason C White
- The Connecticut Agricultural Research Station, New Haven, CT, USA
| |
Collapse
|
13
|
Li X, Mu Y, Hua M, Wang J, Zhang X. Integrated phenotypic, transcriptomics and metabolomics: growth status and metabolite accumulation pattern of medicinal materials at different harvest periods of Astragalus Membranaceus Mongholicus. BMC PLANT BIOLOGY 2024; 24:358. [PMID: 38698337 PMCID: PMC11067282 DOI: 10.1186/s12870-024-05030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Astragalus membranaceus var. mongholicus (Astragalus), acknowledged as a pivotal "One Root of Medicine and Food", boasts dual applications in both culinary and medicinal domains. The growth and metabolite accumulation of medicinal roots during the harvest period is intricately regulated by a transcriptional regulatory network. One key challenge is to accurately pinpoint the harvest date during the transition from conventional yield content of medicinal materials to high and to identify the core regulators governing such a critical transition. To solve this problem, we performed a correlation analysis of phenotypic, transcriptome, and metabolome dynamics during the harvesting of Astragalus roots. RESULTS First, our analysis identified stage-specific expression patterns for a significant proportion of the Astragalus root genes and unraveled the chronology of events that happen at the early and later stages of root harvest. Then, the results showed that different root developmental stages can be depicted by co-expressed genes of Astragalus. Moreover, we identified the key components and transcriptional regulation processes that determine root development during harvest. Furthermore, through correlating phenotypes, transcriptomes, and metabolomes at different harvesting periods, period D (Nov.6) was identified as the critical period of yield and flavonoid content increase, which is consistent with morphological and metabolic changes. In particular, we identified a flavonoid biosynthesis metabolite, isoliquiritigenin, as a core regulator of the synthesis of associated secondary metabolites in Astragalus. Further analyses and experiments showed that HMGCR, 4CL, CHS, and SQLE, along with its associated differentially expressed genes, induced conversion of metabolism processes, including the biosynthesis of isoflavones and triterpenoid saponins substances, thus leading to the transition to higher medicinal materials yield and active ingredient content. CONCLUSIONS The findings of this work will clarify the differences in the biosynthetic mechanism of astragaloside IV and calycosin 7-O-β-D-glucopyranoside accumulation between the four harvesting periods, which will guide the harvesting and production of Astragalus.
Collapse
Affiliation(s)
- Xiaojie Li
- Engineering Research Center for the Seed Breeding of Chinese and Mongolian Medicinal Materials in Inner Mongolia, Hohhot, 010010, Inner Mongolia, China
- Key Laboratory of Grassland Resources, College of Grassland, Resource and Environmental Science, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, 010021, P.R. of China
| | - Yingtong Mu
- Engineering Research Center for the Seed Breeding of Chinese and Mongolian Medicinal Materials in Inner Mongolia, Hohhot, 010010, Inner Mongolia, China
- Key Laboratory of Grassland Resources, College of Grassland, Resource and Environmental Science, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, 010021, P.R. of China
| | - Mei Hua
- Engineering Research Center for the Seed Breeding of Chinese and Mongolian Medicinal Materials in Inner Mongolia, Hohhot, 010010, Inner Mongolia, China
- Key Laboratory of Grassland Resources, College of Grassland, Resource and Environmental Science, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, 010021, P.R. of China
| | - Junjie Wang
- Engineering Research Center for the Seed Breeding of Chinese and Mongolian Medicinal Materials in Inner Mongolia, Hohhot, 010010, Inner Mongolia, China.
- Key Laboratory of Grassland Resources, College of Grassland, Resource and Environmental Science, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, 010021, P.R. of China.
| | - Xiaoming Zhang
- Engineering Research Center for the Seed Breeding of Chinese and Mongolian Medicinal Materials in Inner Mongolia, Hohhot, 010010, Inner Mongolia, China.
- Key Laboratory of Grassland Resources, College of Grassland, Resource and Environmental Science, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, 010021, P.R. of China.
| |
Collapse
|
14
|
Aparicio Chacón MV, Hernández Luelmo S, Devlieghere V, Robichez L, Leroy T, Stuer N, De Keyser A, Ceulemans E, Goossens A, Goormachtig S, Van Dingenen J. Exploring the potential role of four Rhizophagus irregularis nuclear effectors: opportunities and technical limitations. FRONTIERS IN PLANT SCIENCE 2024; 15:1384496. [PMID: 38736443 PMCID: PMC11085264 DOI: 10.3389/fpls.2024.1384496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate symbionts that interact with the roots of most land plants. The genome of the AMF model species Rhizophagus irregularis contains hundreds of predicted small effector proteins that are secreted extracellularly but also into the plant cells to suppress plant immunity and modify plant physiology to establish a niche for growth. Here, we investigated the role of four nuclear-localized putative effectors, i.e., GLOIN707, GLOIN781, GLOIN261, and RiSP749, in mycorrhization and plant growth. We initially intended to execute the functional studies in Solanum lycopersicum, a host plant of economic interest not previously used for AMF effector biology, but extended our studies to the model host Medicago truncatula as well as the non-host Arabidopsis thaliana because of the technical advantages of working with these models. Furthermore, for three effectors, the implementation of reverse genetic tools, yeast two-hybrid screening and whole-genome transcriptome analysis revealed potential host plant nuclear targets and the downstream triggered transcriptional responses. We identified and validated a host protein interactors participating in mycorrhization in the host.S. lycopersicum and demonstrated by transcriptomics the effectors possible involvement in different molecular processes, i.e., the regulation of DNA replication, methylglyoxal detoxification, and RNA splicing. We conclude that R. irregularis nuclear-localized effector proteins may act on different pathways to modulate symbiosis and plant physiology and discuss the pros and cons of the tools used.
Collapse
Affiliation(s)
- María Victoria Aparicio Chacón
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Sofía Hernández Luelmo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Viktor Devlieghere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Louis Robichez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Toon Leroy
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Naomi Stuer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Evi Ceulemans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| |
Collapse
|
15
|
Wang H, Irigoyen S, Liu J, Ramasamy M, Padilla C, Bedre R, Yang C, Thapa SP, Mulgaonkar N, Ancona V, He P, Coaker G, Fernando S, Mandadi KK. Inhibition of a conserved bacterial dual-specificity phosphatase confers plant tolerance to Candidatus Liberibacter spp. iScience 2024; 27:109232. [PMID: 38425843 PMCID: PMC10904284 DOI: 10.1016/j.isci.2024.109232] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/08/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
"Candidatus Liberibacter spp." are insect-vectored, fastidious, and vascular-limited phytopathogens. They are the presumptive causal agents of potato zebra chip, tomato vein clearing, and the devastating citrus greening disease worldwide. There is an urgent need to develop new strategies to control them. In this study, we characterized a dual-specificity serine/tyrosine phosphatase (STP) that is well conserved among thirty-three geographically diverse "Candidatus Liberibacter spp." and strains that infect multiple Solanaceaea and citrus spp. The STP is expressed in infected plant tissues, localized at the plant cytosol and plasma membrane, and interferes with plant cell death responses. We employed an in silico target-based molecular modeling and ligand screen to identify two small molecules with high binding affinity to STP. Efficacy studies demonstrated that the two molecules can inhibit "Candidatus Liberibacter spp." but not unrelated pathogens and confer plant disease tolerance. The inhibitors and strategies are promising means to control "Candidatus Liberibacter spp."
Collapse
Affiliation(s)
- Haoqi Wang
- Biological and Agricultural Engineering Department, Texas A&M University, College Station, TX, USA
| | - Sonia Irigoyen
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E. Highway 83, Weslaco TX 78596, USA
| | - Jiaxing Liu
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E. Highway 83, Weslaco TX 78596, USA
| | - Manikandan Ramasamy
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E. Highway 83, Weslaco TX 78596, USA
| | - Carmen Padilla
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E. Highway 83, Weslaco TX 78596, USA
| | - Renesh Bedre
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E. Highway 83, Weslaco TX 78596, USA
| | - Chuanyu Yang
- Department of Agriculture, Agribusiness, and Environmental Sciences, Texas A&M University-Kingsville, Citrus Center, Weslaco, TX, USA
| | - Shree P. Thapa
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Nirmitee Mulgaonkar
- Biological and Agricultural Engineering Department, Texas A&M University, College Station, TX, USA
| | - Veronica Ancona
- Department of Agriculture, Agribusiness, and Environmental Sciences, Texas A&M University-Kingsville, Citrus Center, Weslaco, TX, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, USA
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Sandun Fernando
- Biological and Agricultural Engineering Department, Texas A&M University, College Station, TX, USA
| | - Kranthi K. Mandadi
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E. Highway 83, Weslaco TX 78596, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, USA
- Institute for Advancing Health Through Agriculture, Texas A&M AgriLife, College Station, TX, USA
| |
Collapse
|
16
|
Larriba E, Yaroshko O, Pérez-Pérez JM. Recent Advances in Tomato Gene Editing. Int J Mol Sci 2024; 25:2606. [PMID: 38473859 PMCID: PMC10932025 DOI: 10.3390/ijms25052606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The use of gene-editing tools, such as zinc finger nucleases, TALEN, and CRISPR/Cas, allows for the modification of physiological, morphological, and other characteristics in a wide range of crops to mitigate the negative effects of stress caused by anthropogenic climate change or biotic stresses. Importantly, these tools have the potential to improve crop resilience and increase yields in response to challenging environmental conditions. This review provides an overview of gene-editing techniques used in plants, focusing on the cultivated tomatoes. Several dozen genes that have been successfully edited with the CRISPR/Cas system were selected for inclusion to illustrate the possibilities of this technology in improving fruit yield and quality, tolerance to pathogens, or responses to drought and soil salinity, among other factors. Examples are also given of how the domestication of wild species can be accelerated using CRISPR/Cas to generate new crops that are better adapted to the new climatic situation or suited to use in indoor agriculture.
Collapse
Affiliation(s)
- Eduardo Larriba
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain;
| | | | | |
Collapse
|
17
|
Ragland CJ, Shih KY, Dinneny JR. Choreographing root architecture and rhizosphere interactions through synthetic biology. Nat Commun 2024; 15:1370. [PMID: 38355570 PMCID: PMC10866969 DOI: 10.1038/s41467-024-45272-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Climate change is driving extreme changes to the environment, posing substantial threats to global food security and bioenergy. Given the direct role of plant roots in mediating plant-environment interactions, engineering the form and function of root systems and their associated microbiota may mitigate these effects. Synthetic genetic circuits have enabled sophisticated control of gene expression in microbial systems for years and a surge of advances has heralded the extension of this approach to multicellular plant species. Targeting these tools to affect root structure, exudation, and microbe activity on root surfaces provide multiple strategies for the advancement of climate-ready crops.
Collapse
Affiliation(s)
- Carin J Ragland
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Kevin Y Shih
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
18
|
Kumar V, Majee A, Patwal P, Sairem B, Sane AP, Sane VA. A GARP transcription factor SlGCC positively regulates lateral root development in tomato via auxin-ethylene interplay. PLANTA 2024; 259:55. [PMID: 38300324 DOI: 10.1007/s00425-023-04325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024]
Abstract
MAIN CONCLUSION SlGCC, a GARP transcription factor, functions as a root-related transcriptional repressor. SlGCC synchronizes auxin and ethylene signaling involving SlPIN3 and SlIAA3 as intermediate targets sketching a molecular map for lateral root development in tomato. The root system is crucial for growth and development of plants as it performs basic functions such as providing mechanical support, nutrients and water uptake, pathogen resistance and responds to various stresses. SlGCC, a GARP family transcription factor (TF), exhibited predominant expression in age-dependent (initial to mature stages) tomato root. SlGCC is a transcriptional repressor and is regulated at a transcriptional and translational level by auxin and ethylene. Auxin and ethylene mediated SlGCC protein stability is governed via proteasome degradation pathway during lateral root (LR) growth development. SlGCC over-expressor (OE) and under-expressed (UE) tomato transgenic lines demonstrate its role in LR development. This study is an attempt to unravel the vital role of SlGCC in regulating tomato LR architecture.
Collapse
Affiliation(s)
- Vinod Kumar
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Adity Majee
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pooja Patwal
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Babythoihoi Sairem
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aniruddha P Sane
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vidhu A Sane
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
19
|
Cantó-Pastor A, Kajala K, Shaar-Moshe L, Manzano C, Timilsena P, De Bellis D, Gray S, Holbein J, Yang H, Mohammad S, Nirmal N, Suresh K, Ursache R, Mason GA, Gouran M, West DA, Borowsky AT, Shackel KA, Sinha N, Bailey-Serres J, Geldner N, Li S, Franke RB, Brady SM. A suberized exodermis is required for tomato drought tolerance. NATURE PLANTS 2024; 10:118-130. [PMID: 38168610 PMCID: PMC10808073 DOI: 10.1038/s41477-023-01567-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/23/2023] [Indexed: 01/05/2024]
Abstract
Plant roots integrate environmental signals with development using exquisite spatiotemporal control. This is apparent in the deposition of suberin, an apoplastic diffusion barrier, which regulates flow of water, solutes and gases, and is environmentally plastic. Suberin is considered a hallmark of endodermal differentiation but is absent in the tomato endodermis. Instead, suberin is present in the exodermis, a cell type that is absent in the model organism Arabidopsis thaliana. Here we demonstrate that the suberin regulatory network has the same parts driving suberin production in the tomato exodermis and the Arabidopsis endodermis. Despite this co-option of network components, the network has undergone rewiring to drive distinct spatial expression and with distinct contributions of specific genes. Functional genetic analyses of the tomato MYB92 transcription factor and ASFT enzyme demonstrate the importance of exodermal suberin for a plant water-deficit response and that the exodermal barrier serves an equivalent function to that of the endodermis and can act in its place.
Collapse
Affiliation(s)
- Alex Cantó-Pastor
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Kaisa Kajala
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| | - Lidor Shaar-Moshe
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Concepción Manzano
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Prakash Timilsena
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Damien De Bellis
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Sharon Gray
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Julia Holbein
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - He Yang
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Sana Mohammad
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Niba Nirmal
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Kiran Suresh
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Robertas Ursache
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - G Alex Mason
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Mona Gouran
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Donnelly A West
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Alexander T Borowsky
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Kenneth A Shackel
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Neelima Sinha
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Rochus Benni Franke
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
20
|
Bi M, Wang Z, Cheng K, Cui Y, He Y, Ma J, Qi M. Construction of transcription factor mutagenesis population in tomato using a pooled CRISPR/Cas9 plasmid library. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108094. [PMID: 37995578 DOI: 10.1016/j.plaphy.2023.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023]
Abstract
Adequate mutant materials are the prerequisite for conducting gene function research or screening novel functional genes in plants. The strategy of constructing a large-scale mutant population using the pooled CRISPR/Cas9-sgRNA library has been implemented in several crops. However, the effective application of this CRISPR/Cas9 large-scale screening strategy to tomato remains to be attempted. Here, we identified 990 transcription factors in the tomato genome, designed and synthesized a CRISPR/Cas9 plasmid library containing 4379 sgRNAs. Using this pooled library, 487 T0 positive plants were obtained, among which 92 plants harbored a single sgRNA sequence, targeting 65 different transcription factors, with a mutation rate of 23%. In the T0 mutant population, the occurrence of homozygous and biallelic mutations was observed at higher frequencies. Additionally, the utilization of a small-scale CRISPR/Cas9 library targeting 30 transcription factors could enhance the efficacy of single sgRNA recognition in positive plants, increasing it from 19% to 42%. Phenotypic characterization of several mutants identified from the mutant population demonstrated the utility of our CRISPR/Cas9 mutant library. Taken together, our study offers insights into the implementation and optimization of CRISPR/Cas9-mediated large-scale knockout library in tomato.
Collapse
Affiliation(s)
- Mengxi Bi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Zhijun Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Keyan Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Yiqing Cui
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
| | - Yi He
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
| | - Jian Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China.
| |
Collapse
|
21
|
You Y, Jiang Z. The eINTACT method for studying nuclear changes in host plant cells targeted by bacterial effectors in native infection contexts. Nat Protoc 2023; 18:3173-3193. [PMID: 37697105 DOI: 10.1038/s41596-023-00879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/23/2023] [Indexed: 09/13/2023]
Abstract
Type-III effector proteins are major virulence determinants that most gram-negative bacteria inject into host cells to manipulate cellular processes for infection. Because effector-targeted cells are embedded and underrepresented in infected plant tissues, it is technically challenging to isolate them for focused studies of effector-induced cellular changes. This protocol describes a novel technique, effector-inducible isolation of nuclei tagged in specific cell types (eINTACT), for isolating biotin-labeled nuclei from Arabidopsis plant cells that have received Xanthomonas bacterial effectors by using streptavidin-coated magnetic beads. This protocol is an extension of the existing Nature Protocols Protocol of the INTACT method for the affinity-based purification of nuclei of specific cell types in the context of developmental biology. In a phytopathology scenario, our protocol addresses how to obtain eINTACT transgenic lines and compatible bacterial mutants, verify the eINTACT system and purify nuclei of bacterial effector-recipient cells from infected tissues. Differential analyses of purified nuclei from plants infected by bacteria expressing the effector of interest and those from plants infected by effector-deletion bacterial mutants will reveal the effector-dependent nuclear changes in targeted host cells. Provided that the eINTACT system is available, the infection experiment takes 5 d, and the procedures, from collecting bacteria-infected leaves to obtaining nuclei of effector-targeted cells, can be completed in 4 h. eINTACT is a unique method for isolating high-quality nuclei from bacterial effector-targeted host cells in native infection contexts. This method is adaptable to study the functions of type-III effectors from numerous gram-negative bacteria in host plants that are amenable to transformation.
Collapse
Affiliation(s)
- Yuan You
- Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany.
- Department of General Genetics, Center for Plant Molecular Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany.
| | - Zhihao Jiang
- Department of Plant Biochemistry, Center for Plant Molecular Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Wang M, Qin YY, Wei NN, Xue HY, Dai WS. Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation in citrus seeds and its application in gene functional analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1293374. [PMID: 38023879 PMCID: PMC10644275 DOI: 10.3389/fpls.2023.1293374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Highly efficient genetic transformation technology is beneficial for plant gene functional research and molecular improvement breeding. However, the most commonly used Agrobacterium tumefaciens-mediated genetic transformation technology is time-consuming and recalcitrant for some woody plants such as citrus, hampering the high-throughput functional analysis of citrus genes. Thus, we dedicated to develop a rapid, simple, and highly efficient hairy root transformation system induced by Agrobacterium rhizogenes to analyze citrus gene function. In this report, a rapid, universal, and highly efficient hairy root transformation system in citrus seeds was described. Only 15 days were required for the entire workflow and the system was applicable for various citrus genotypes, with a maximum transformation frequency of 96.1%. After optimization, the transformation frequency of Citrus sinensis, which shows the lowest transformation frequency of 52.3% among four citrus genotypes initially, was increased to 71.4% successfully. To test the applicability of the hairy roots transformation system for gene functional analysis of citrus genes, we evaluated the subcellular localization, gene overexpression and gene editing in transformed hairy roots. Compared with the traditional transient transformation system performed in tobacco leaves, the transgenic citrus hairy roots displayed a more clear and specific subcellular fluorescence localization. Transcript levels of genes were significantly increased in overexpressing transgenic citrus hairy roots as compared with wild-type (WT). Additionally, hairy root transformation system in citrus seeds was successful in obtaining transformants with knocked out targets, indicating that the Agrobacterium rhizogenes-mediated transformation enables the CRISPR/Cas9-mediated gene editing. In summary, we established a highly efficient genetic transformation technology with non-tissue-culture in citrus that can be used for functional analysis such as protein subcellular localization, gene overexpression and gene editing. Since the material used for genetic transformation are roots protruding out of citrus seeds, the process of planting seedlings prior to transformation of conventional tissue culture or non-tissue-culture was eliminated, and the experimental time was greatly reduced. We anticipate that this genetic transformation technology will be a valuable tool for routine research of citrus genes in the future.
Collapse
Affiliation(s)
| | | | | | | | - Wen-Shan Dai
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
23
|
Liu Y, Ma D, Constabel CP. CRISPR/Cas9 Disruption of MYB134 and MYB115 in Transgenic Poplar Leads to Differential Reduction of Proanthocyanidin Synthesis in Roots and Leaves. PLANT & CELL PHYSIOLOGY 2023; 64:1189-1203. [PMID: 37522631 DOI: 10.1093/pcp/pcad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023]
Abstract
Proanthocyanidins (PAs) are common specialized metabolites and particularly abundant in trees and woody plants. In poplar (Populus spp.), PA biosynthesis is stress-induced and regulated by two previously studied transcription factors MYB115 and MYB134. To determine the relative contribution of these regulators to PA biosynthesis, we created single- and double-knockout (KO) mutants for both genes in transgenic poplars using CRISPR/Cas9. Knocking out either MYB134 or MYB115 showed reduced PA accumulation and downregulated flavonoid genes in leaves, but MYB134 disruption had the greatest impact and reduced PAs to 30% of controls. In roots, by contrast, only the MYB134/MYB115 double-KOs showed a significant change in PA concentration. The loss of PAs paralleled the lower expression of PA biosynthesis genes and concentrations of flavan-3-ol PA precursors catechin and epicatechin. Interestingly, salicinoids were also affected in double-KOs, with distinct patterns in roots and shoots. We conclude that the regulatory pathways for PA biosynthesis differ in poplar leaves and roots. The residual PA content in the double-KO plants indicates that other transcription factors must also be involved in control of the PA pathway.
Collapse
Affiliation(s)
- Yalin Liu
- Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P5C3, Canada
| | - Dawei Ma
- Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P5C3, Canada
| | - C Peter Constabel
- Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P5C3, Canada
| |
Collapse
|
24
|
Yan H, Ma D, Yi P, Sun G, Chen X, Yi Y, Huang X. Highly efficient Agrobacterium rhizogenes-mediated transformation for functional analysis in woodland strawberry. PLANT METHODS 2023; 19:99. [PMID: 37742022 PMCID: PMC10517450 DOI: 10.1186/s13007-023-01078-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND The diploid woodland strawberry (Fragaria vesca) is an excellent model plant for investigating economically significant traits and several genetic resources within the Rosaceae family. Agrobacterium rhizogenes-mediated hairy root transformation is an alternative for exploring gene functions, especially the genes specifically expressed in roots. However, the hairy root transformation has not been established in strawberry. RESULTS Here, we described an efficient and rapid hairy root transgenic system for strawberry using A. rhizogenes. Strain of A. rhizogenes MSU440 or C58C1 was the most suitable for hairy root transformation. The transformation efficiency was highest when tissues contained hypocotyls as explants. The optimal procedure involves A. rhizogenes at an optical density (OD600) of 0.7 for 10 min and co-cultivation duration for four days, achieving a transgenic efficiency of up to 71.43%. An auxin responsive promoter DR5ver2 carrying an enhanced green fluorescent protein (eGFP) marker was transformed by A. rhizogenes MSU440, thereby generating transgenic hairy roots capable of high eGFP expression in root tip and meristem of strawberry where auxin accumulated. Finally, this system was applied for functional analysis using jGCaMP7c, which could sense calcium signals. A significant upsurge in eGFP expression in the transgenic hairy roots was displayed after adding calcium chloride. The results suggested that this approach was feasible for studying specific promoters and could be a tool to analyze gene functions in the roots of strawberries. CONCLUSION We established a rapid and efficient hairy root transformation in strawberry by optimizing parameters, which was adequate for promoter analysis and functional characterization of candidate genes in strawberry and other rosaceous plants.
Collapse
Affiliation(s)
- Huiqing Yan
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China
| | - Dandan Ma
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, 550001, China
- Key Laboratory of State Forestry Administration on Bioaffiliationersity Conservation in Mountainous Karst Area of Southwestern China, Guizhou Normal University, Guiyang, 550001, China
| | - Peipei Yi
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, 550001, China
- Key Laboratory of State Forestry Administration on Bioaffiliationersity Conservation in Mountainous Karst Area of Southwestern China, Guizhou Normal University, Guiyang, 550001, China
| | - Guilian Sun
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, 550001, China
- Key Laboratory of State Forestry Administration on Bioaffiliationersity Conservation in Mountainous Karst Area of Southwestern China, Guizhou Normal University, Guiyang, 550001, China
| | - Xingyan Chen
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China
| | - Yin Yi
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, 550001, China
- Key Laboratory of State Forestry Administration on Bioaffiliationersity Conservation in Mountainous Karst Area of Southwestern China, Guizhou Normal University, Guiyang, 550001, China
| | - Xiaolong Huang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China.
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, 550001, China.
- Key Laboratory of State Forestry Administration on Bioaffiliationersity Conservation in Mountainous Karst Area of Southwestern China, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
25
|
Biswas D, Chakraborty A, Mukherjee S, Ghosh B. Hairy root culture: a potent method for improved secondary metabolite production of Solanaceous plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1197555. [PMID: 37731987 PMCID: PMC10507345 DOI: 10.3389/fpls.2023.1197555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/13/2023] [Indexed: 09/22/2023]
Abstract
Secondary metabolites synthesized by the Solanaceous plants are of major therapeutic and pharmaceutical importance, many of which are commonly obtained from the roots of these plants. 'Hairy roots', mirroring the same phytochemical pattern of the corresponding root of the parent plant with higher growth rate and productivity, are therefore extensively studied as an effective alternative for the in vitro production of these metabolites. Hairy roots are the transformed roots, generated from the infection site of the wounded plants with Agrobacterium rhizogenes. With their fast growth, being free from pathogen and herbicide contamination, genetic stability, and autotrophic nature for plant hormones, hairy roots are considered as useful bioproduction systems for specialized metabolites. Lately, several elicitation methods have been employed to enhance the accumulation of these compounds in the hairy root cultures for both small and large-scale production. Nevertheless, in the latter case, the cultivation of hairy roots in bioreactors should still be optimized. Hairy roots can also be utilized for metabolic engineering of the regulatory genes in the metabolic pathways leading to enhanced production of metabolites. The present study summarizes the updated and modern biotechnological aspects for enhanced production of secondary metabolites in the hairy root cultures of the plants of Solanaceae and their respective importance.
Collapse
Affiliation(s)
- Diptesh Biswas
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Avijit Chakraborty
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Swapna Mukherjee
- Department of Microbiology, Dinabandhu Andrews College, Kolkata, India
| | - Biswajit Ghosh
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| |
Collapse
|
26
|
Ramasamy M, Dominguez MM, Irigoyen S, Padilla CS, Mandadi KK. Rhizobium rhizogenes-mediated hairy root induction and plant regeneration for bioengineering citrus. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1728-1730. [PMID: 37314751 PMCID: PMC10440979 DOI: 10.1111/pbi.14096] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/05/2023] [Accepted: 05/28/2023] [Indexed: 06/15/2023]
Affiliation(s)
| | | | - Sonia Irigoyen
- Texas A&M AgriLife Research & Extension CenterWeslacoTXUSA
| | | | - Kranthi K. Mandadi
- Texas A&M AgriLife Research & Extension CenterWeslacoTXUSA
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTXUSA
- Institute for Advancing Health Through AgricultureTexas A&M AgriLifeCollege StationTXUSA
| |
Collapse
|
27
|
Bagal D, Chowdhary AA, Mehrotra S, Mishra S, Rathore S, Srivastava V. Metabolic engineering in hairy roots: An outlook on production of plant secondary metabolites. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107847. [PMID: 37352695 DOI: 10.1016/j.plaphy.2023.107847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Plants are one of the vital sources of secondary metabolites. These secondary metabolites have diverse roles in human welfare, including therapeutic implication. Nevertheless, secondary metabolite yields obtained through the exploitation of natural plant populations is insufficient to meet the commercial demand due to their accumulation in low volumes. Besides, in-planta synthesis of these important metabolites is directly linked with the age and growing conditions of the plant. Such limitations have paved the way for the exploration of alternative production methodologies. Hairy root cultures, induced after the interaction of plants with Rhizobium rhizogenes (Agrobacterium rhizogenes), are a practical solution for producing valuable secondary metabolite at low cost and without the influence of seasonal, geographic or climatic variations. Hairy root cultures also offer the opportunity to get combined with other yield enhancements strategies (precursor feeding, elicitation and metabolic engineering) to further stimulate and/or enhance their production potential. Applications of metabolic engineering in exploiting hairy root cultures attracted the interest of several research groups as a means of yield enhancement. Currently, several engineering approaches like overexpression and silencing of pathway genes, and transcription factor overexpression are used to boost metabolite production, along with the contextual success of genome editing. This review attempts to cover metabolic engineering in hairy roots for the production of secondary metabolites, with a primary emphasis on alkaloids, and discusses prospects for taking this research forward to meet desired production demands.
Collapse
Affiliation(s)
- Diksha Bagal
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir (UT), India
| | - Aksar Ali Chowdhary
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir (UT), India
| | - Shakti Mehrotra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, 226020, India.
| | - Sonal Mishra
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir (UT), India.
| | - Sonica Rathore
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir (UT), India
| | - Vikas Srivastava
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir (UT), India.
| |
Collapse
|
28
|
Ali A, Zafar MM, Farooq Z, Ahmed SR, Ijaz A, Anwar Z, Abbas H, Tariq MS, Tariq H, Mustafa M, Bajwa MH, Shaukat F, Razzaq A, Maozhi R. Breakthrough in CRISPR/Cas system: Current and future directions and challenges. Biotechnol J 2023; 18:e2200642. [PMID: 37166088 DOI: 10.1002/biot.202200642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Targeted genome editing (GE) technology has brought a significant revolution in fictional genomic research and given hope to plant scientists to develop desirable varieties. This technology involves inducing site-specific DNA perturbations that can be repaired through DNA repair pathways. GE products currently include CRISPR-associated nuclease DNA breaks, prime editors generated DNA flaps, single nucleotide-modifications, transposases, and recombinases. The discovery of double-strand breaks, site-specific nucleases (SSNs), and repair mechanisms paved the way for targeted GE, and the first-generation GE tools, ZFNs and TALENs, were successfully utilized in plant GE. However, CRISPR-Cas has now become the preferred tool for GE due to its speed, reliability, and cost-effectiveness. Plant functional genomics has benefited significantly from the widespread use of CRISPR technology for advancements and developments. This review highlights the progress made in CRISPR technology, including multiplex editing, base editing (BE), and prime editing (PE), as well as the challenges and potential delivery mechanisms.
Collapse
Affiliation(s)
- Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | | | - Zunaira Farooq
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Huma Abbas
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sayyam Tariq
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Hala Tariq
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mahwish Mustafa
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | | | - Fiza Shaukat
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Razzaq
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ren Maozhi
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of, Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu, China
| |
Collapse
|
29
|
Naeem M, Zhao W, Ahmad N, Zhao L. Beyond green and red: unlocking the genetic orchestration of tomato fruit color and pigmentation. Funct Integr Genomics 2023; 23:243. [PMID: 37453947 DOI: 10.1007/s10142-023-01162-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Fruit color is a genetic trait and a key factor for consumer acceptability and is therefore receiving increasing importance in several breeding programs. Plant pigments offer plants with a variety of colored organs that attract animals for pollination, favoring seed dispersers and conservation of species. The pigments inside plant cells not only play a light-harvesting role but also provide protection against light damage and exhibit nutritional and ecological value for health and visual pleasure in humans. Tomato (Solanum lycopersicum) is a leading vegetable crop; its fruit color formation is associated with the accumulation of several natural pigments, which include carotenoids in the pericarp, flavonoids in the peel, as well as the breakdown of chlorophyll during fruit ripening. To improve tomato fruit quality, several techniques, such as genetic engineering and genome editing, have been used to alter fruit color and regulate the accumulation of secondary metabolites in related pathways. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)-based systems have been extensively used for genome editing in many crops, including tomatoes, and promising results have been achieved using modified CRISPR systems, including CAS9 (CRISPR/CRISPR-associated-protein) and CRISPR/Cas12a systems. These advanced tools in biotechnology and whole genome sequencing of various tomato species will certainly advance the breeding of tomato fruit color with a high degree of precision. Here, we attempt to summarize the current advancement and effective application of genetic engineering techniques that provide further flexibility for fruit color formation. Furthermore, we have also discussed the challenges and opportunities of genetic engineering and genome editing to improve tomato fruit color.
Collapse
Affiliation(s)
- Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Weihua Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
30
|
Kennedy JP, Wood K, Pitino M, Mandadi K, Igwe DO, Shatters RG, Widmer TL, Niedz R, Heck M. A Perspective on Current Therapeutic Molecule Screening Methods Against ' Candidatus Liberibacter asiaticus', the Presumed Causative Agent of Citrus Huanglongbing. PHYTOPATHOLOGY 2023; 113:1171-1179. [PMID: 36750555 DOI: 10.1094/phyto-12-22-0455-per] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Huanglongbing (HLB), referred to as citrus greening disease, is a bacterial disease impacting citrus production worldwide and is fatal to young trees and mature trees of certain varieties. In some areas, the disease is devastating the citrus industry. A successful solution to HLB will be measured in economics: citrus growers need treatments that improve tree health, fruit production, and most importantly, economic yield. The profitability of citrus groves is the ultimate metric that truly matters when searching for solutions to HLB. Scientific approaches used in the laboratory, greenhouse, or field trials are critical to the discovery of those solutions and to estimate the likelihood of success of a treatment aimed at commercialization. Researchers and the citrus industry use a number of proxy evaluations of potential HLB solutions; understanding the strengths and limitations of each assay, as well as how best to compare different assays, is critical for decision-making to advance therapies into field trials and commercialization. This perspective aims to help the reader compare and understand the limitations of different proxy evaluation systems based on the treatment and evaluation under consideration. The researcher must determine the suitability of one or more of these metrics to identify treatments and predict the usefulness of these treatments in having an eventual impact on citrus production and HLB mitigation. As therapies advance to field trials in the next few years, a reevaluation of these metrics will be useful to guide future research efforts on strategies to mitigate HLB and vascular bacterial pathogens in other perennial crops.
Collapse
Affiliation(s)
- John Paul Kennedy
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Fort Pierce, FL 34945
| | | | | | - Kranthi Mandadi
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX 78596
- Texas A&M AgriLife Institute for Advancing Health Through Agriculture, Texas A&M AgriLife, College Station, TX 77843
| | - David O Igwe
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Robert G Shatters
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Fort Pierce, FL 34945
| | - Timothy L Widmer
- U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705
| | - Randall Niedz
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Fort Pierce, FL 34945
| | - Michelle Heck
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
- Emerging Pests and Pathogens Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853
| |
Collapse
|
31
|
Zhang X, Li S, Li X, Song M, Ma S, Tian Y, Gao L. Peat-based hairy root transformation using Rhizobium rhizogenes as a rapid and efficient tool for easily exploring potential genes related to root-knot nematode parasitism and host response. PLANT METHODS 2023; 19:22. [PMID: 36871001 PMCID: PMC9985853 DOI: 10.1186/s13007-023-01003-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Root-knot nematodes (RKNs) pose a worldwide threat to agriculture of many crops including cucumber. Genetic transformation (GT) has emerged as a powerful tool for exploration of plant-RKN interactions and genetic improvement of RKN resistance. However, it is usually difficult to achieve a highly efficient and stable GT protocol for most crops due to the complexity of this process. RESULTS Here we firstly applied the hairy root transformation system in exploring root-RKN interactions in cucumber plants and developed a rapid and efficient tool transformation using Rhizobium rhizogenes strain K599. A solid-medium-based hypocotyl-cutting infection (SHI) method, a rockwool-based hypocotyl-cutting infection (RHI) method, and a peat-based cotyledon-node injection (PCI) method was evaluated for their ability to induce transgenic roots in cucumber plants. The PCI method generally outperformed the SHI and RHI methods for stimulating more transgenic roots and evaluating the phenotype of roots during nematode parasitism. Using the PCI method, we generated the CRISPR/Cas9-mediated malate synthase (MS) gene (involved in biotic stress responses) knockout plant and the LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16, a potential host susceptibility gene for RKN) promoter-driven GUS expressing plant. Knockout of MS in hairy roots resulted in effective resistance against RKNs, while nematode infection induced a strong expression of LBD16-driven GUS in root galls. This is the first report of a direct link between these genes and RKN performance in cucumber. CONCLUSION Taken together, the present study demonstrates that the PCI method allows fast, easy and efficient in vivo studies of potential genes related to root-knot nematode parasitism and host response.
Collapse
Affiliation(s)
- Xu Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Shihui Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Xin Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Mengyuan Song
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Yongqiang Tian
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China.
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
32
|
Wang L, Wang W, Miao Y, Peters M, Schultze-Kraft R, Liu G, Chen Z. Development of transgenic composite Stylosanthes plants to study root growth regulated by a β-expansin gene, SgEXPB1, under phosphorus deficiency. PLANT CELL REPORTS 2023; 42:575-585. [PMID: 36624204 DOI: 10.1007/s00299-023-02978-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
A highly efficient transformation procedure to generate transgenic Stylosanthes roots was established. SgEXPB1 is involved in Stylosanthes root growth under phosphorus deficiency. Stylo (Stylosanthes spp.) is an important forage legume widely applied in agricultural systems in the tropics. Due to the recalcitrance of stylo genetic transformation, functional characterization of candidate genes involved in stylo root growth is limited. This study established an efficient procedure for Agrobacterium rhizogenes-mediated transformation for generating transgenic composite plants of S. guianensis cultivar 'Reyan No. 5'. Results showed that composite stylo plants with transgenic hairy roots were efficiently generated by A. rhizogenes strains K599 and Arqual, infecting the residual hypocotyl at 1.0 cm of length below the cotyledon leaves of 9-d-old seedlings, leading to a high transformation efficiency of > 95% based on histochemical β-glucuronidase (GUS) staining. Notably, 100% of GUS staining-positive hairy roots can be achieved per composite stylo plant. Subsequently, SgEXPB1, a β-expansin gene up-regulated by phosphorus (P) deficiency in stylo roots, was successfully overexpressed in hairy roots. Analysis of hairy roots showed that root growth and P concentration in the transgenic composite plants were increased by SgEXPB1 overexpression under low-P treatment. Taken together, a highly efficient A. rhizogenes-mediated transformation procedure for generating composite stylo plants was established to study the function of SgEXPB1, revealing that this gene is involved in stylo root growth during P deficiency.
Collapse
Affiliation(s)
- Linjie Wang
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- College of Tropical Crops, Hainan University, Haikou, 570110, China
| | - Wenqiang Wang
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Ye Miao
- College of Tropical Crops, Hainan University, Haikou, 570110, China
| | - Michael Peters
- Alliance of Bioversity International and International Center for Tropical Agriculture, Cali, 763537, Colombia
| | - Rainer Schultze-Kraft
- Alliance of Bioversity International and International Center for Tropical Agriculture, Cali, 763537, Colombia
| | - Guodao Liu
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Zhijian Chen
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
33
|
Shaar-Moshe L, Brady SM. SHORT-ROOT and SCARECROW homologs regulate patterning of diverse cell types within and between species. THE NEW PHYTOLOGIST 2023; 237:1542-1549. [PMID: 36457304 DOI: 10.1111/nph.18654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
The roles of SHORT-ROOT (SHR) and SCARECROW (SCR) in ground tissue patterning and differentiation have been well established in the root of Arabidopsis thaliana. Recently, work in additional organs and species revealed the extensive functional diversification of these genes, including regulation of cortical divisions essential for nodule organogenesis in legume roots, bundle sheath specification in the Arabidopsis leaf, patterning of inner leaf cell layers in maize, and stomatal development in rice. The co-option of distinct functions and cell types is attributed to different mechanisms, including paralog retention, spatiotemporal changes in gene expression, and novel protein functions. Elaborating our knowledge of the SHR-SCR module further unravels the developmental regulation that controls diverse forms and functions within and between species.
Collapse
Affiliation(s)
- Lidor Shaar-Moshe
- Department of Plant Biology, University of California, Davis, Davis, CA, 95616, USA
- Genome Center, University of California, Davis, Davis, CA, 95616, USA
| | - Siobhan M Brady
- Department of Plant Biology, University of California, Davis, Davis, CA, 95616, USA
- Genome Center, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
34
|
Kong Q, Li J, Wang S, Feng X, Shou H. Combination of Hairy Root and Whole-Plant Transformation Protocols to Achieve Efficient CRISPR/Cas9 Genome Editing in Soybean. PLANTS (BASEL, SWITZERLAND) 2023; 12:1017. [PMID: 36903878 PMCID: PMC10005656 DOI: 10.3390/plants12051017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The new gene-editing technology CRISPR/Cas system has been widely used for genome engineering in various organisms. Since the CRISPR/Cas gene-editing system has a certain possibility of low efficiency and the whole plant transformation of soybean is time-consuming and laborious, it is important to evaluate the editing efficiency of designed CRISPR constructs before the stable whole plant transformation process starts. Here, we provide a modified protocol for generating transgenic hairy soybean roots to assess the efficiency of guide RNA (gRNA) sequences of the CRISPR/Cas constructs within 14 days. The cost- and space-effective protocol was first tested in transgenic soybean harboring the GUS reporter gene for the efficiency of different gRNA sequences. Targeted DNA mutations were detected in 71.43-97.62% of the transgenic hairy roots analyzed as evident by GUS staining and DNA sequencing of the target region. Among the four designed gene-editing sites, the highest editing efficiency occurred at the 3' terminal of the GUS gene. In addition to the reporter gene, the protocol was tested for the gene-editing of 26 soybean genes. Among the gRNAs selected for stable transformation, the editing efficiency of hairy root transformation and stable transformation ranged from 5% to 88.8% and 2.7% to 80%, respectively. The editing efficiencies of stable transformation were positively correlated with those of hairy root transformation with a Pearson correlation coefficient (r) of 0.83. Our results demonstrated that soybean hairy root transformation could rapidly assess the efficiency of designed gRNA sequences on genome editing. This method can not only be directly applied to the functional study of root-specific genes, but more importantly, it can be applied to the pre-screening of gRNA in CRISPR/Cas gene editing.
Collapse
Affiliation(s)
- Qihui Kong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Lab, Hangzhou 310012, China
| | - Jie Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shoudong Wang
- Zhejiang Lab, Hangzhou 310012, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xianzhong Feng
- Zhejiang Lab, Hangzhou 310012, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Lab, Hangzhou 310012, China
| |
Collapse
|
35
|
Tiwari JK, Singh AK, Behera TK. CRISPR/Cas genome editing in tomato improvement: Advances and applications. FRONTIERS IN PLANT SCIENCE 2023; 14:1121209. [PMID: 36909403 PMCID: PMC9995852 DOI: 10.3389/fpls.2023.1121209] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/02/2023] [Indexed: 06/12/2023]
Abstract
The narrow genetic base of tomato poses serious challenges in breeding. Hence, with the advent of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein9 (CRISPR/Cas9) genome editing, fast and efficient breeding has become possible in tomato breeding. Many traits have been edited and functionally characterized using CRISPR/Cas9 in tomato such as plant architecture and flower characters (e.g. leaf, stem, flower, male sterility, fruit, parthenocarpy), fruit ripening, quality and nutrition (e.g., lycopene, carotenoid, GABA, TSS, anthocyanin, shelf-life), disease resistance (e.g. TYLCV, powdery mildew, late blight), abiotic stress tolerance (e.g. heat, drought, salinity), C-N metabolism, and herbicide resistance. CRISPR/Cas9 has been proven in introgression of de novo domestication of elite traits from wild relatives to the cultivated tomato and vice versa. Innovations in CRISPR/Cas allow the use of online tools for single guide RNA design and multiplexing, cloning (e.g. Golden Gate cloning, GoldenBraid, and BioBrick technology), robust CRISPR/Cas constructs, efficient transformation protocols such as Agrobacterium, and DNA-free protoplast method for Cas9-gRNAs ribonucleoproteins (RNPs) complex, Cas9 variants like PAM-free Cas12a, and Cas9-NG/XNG-Cas9, homologous recombination (HR)-based gene knock-in (HKI) by geminivirus replicon, and base/prime editing (Target-AID technology). This mini-review highlights the current research advances in CRISPR/Cas for fast and efficient breeding of tomato.
Collapse
Affiliation(s)
- Jagesh Kumar Tiwari
- Division of Vegetable Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Anand Kumar Singh
- Division of Horticulture, Indian Council of Agricultural Research, Krishi Anusandhan Bhawan - II, Pusa, New Delhi, India
| | - Tusar Kanti Behera
- Division of Vegetable Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| |
Collapse
|
36
|
Casas-Mollano JA, Zinselmeier M, Sychla A, Smanski MJ. Efficient gene activation in plants by the MoonTag programmable transcriptional activator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528671. [PMID: 36824723 PMCID: PMC9948947 DOI: 10.1101/2023.02.15.528671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
CRISPR/Cas-based transcriptional activators have been developed to induce gene expression in eukaryotic and prokaryotic organisms. The main advantages of CRISPR-Cas based systems is that they can achieve high levels of transcriptional activation and are very easy to program via pairing between the guide RNA and the DNA target strand. SunTag is a second-generation system that activates transcription by recruiting multiple copies of an activation domain (AD) to its target promoters. SunTag is a strong activator; however, in some species it is difficult to stably express. To overcome this problem, we designed MoonTag, a new activator that worked on the same basic principle as SunTag, but whose components are better tolerated when stably expressed in transgenic plants. We demonstrate that MoonTag is capable of inducing high levels of transcription in all plants tested. In Setaria, MoonTag is capable of inducing high levels of transcription of reporter genes as well as of endogenous genes. More important, MoonTag components are expressed in transgenic plants to high levels without any deleterious effects. MoonTag is also able to efficiently activate genes in eudicotyledonous species such as Arabidopsis and tomato. Finally, we show that MoonTag activation is functional across a range of temperatures, which is promising for potential field applications.
Collapse
Affiliation(s)
- J Armando Casas-Mollano
- Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN 55108
| | - Matthew Zinselmeier
- Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN 55108
- Department of Genetics, Cellular, and Developmental Biology, University of Minnesota, Saint Paul, MN 55108
| | - Adam Sychla
- Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN 55108
| | - Michael J Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN 55108
| |
Collapse
|
37
|
De Ryck J, Van Damme P, Goormachtig S. From prediction to function: Current practices and challenges towards the functional characterization of type III effectors. Front Microbiol 2023; 14:1113442. [PMID: 36846751 PMCID: PMC9945535 DOI: 10.3389/fmicb.2023.1113442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
The type III secretion system (T3SS) is a well-studied pathogenicity determinant of many bacteria through which effectors (T3Es) are translocated into the host cell, where they exercise a wide range of functions to deceive the host cell's immunity and to establish a niche. Here we look at the different approaches that are used to functionally characterize a T3E. Such approaches include host localization studies, virulence screenings, biochemical activity assays, and large-scale omics, such as transcriptomics, interactomics, and metabolomics, among others. By means of the phytopathogenic Ralstonia solanacearum species complex (RSSC) as a case study, the current advances of these methods will be explored, alongside the progress made in understanding effector biology. Data obtained by such complementary methods provide crucial information to comprehend the entire function of the effectome and will eventually lead to a better understanding of the phytopathogen, opening opportunities to tackle it.
Collapse
Affiliation(s)
- Joren De Ryck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
38
|
Su C, Zhang G, Rodriguez-Franco M, Hinnenberg R, Wietschorke J, Liang P, Yang W, Uhler L, Li X, Ott T. Transcellular progression of infection threads in Medicago truncatula roots is associated with locally confined cell wall modifications. Curr Biol 2023; 33:533-542.e5. [PMID: 36657449 PMCID: PMC9937034 DOI: 10.1016/j.cub.2022.12.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/18/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
The root nodule symbiosis with its global impact on nitrogen fertilization of soils is characterized by an intracellular colonization of legume roots by rhizobia. Although the symbionts are initially taken up by morphologically adapted root hairs, rhizobia persistently progress within a membrane-confined infection thread through several root cortical and later nodular cell layers. Throughout this transcellular passaging, rhizobia have to repeatedly pass host plasma membranes and cell walls. Here, we investigated this essential process and describe the concerted action of one of the symbiosis-specific pectin methyl esterases (SyPME1) and the nodulation pectate lyase (NPL) at the infection thread and transcellular passage sites. Their coordinated function mediates spatially confined pectin alterations in the cell-cell interface that result in the establishment of an apoplastic compartment where bacteria are temporarily released into and taken up from the subjacent cell. This process allows successful intracellular progression of infection threads through the entire root cortical tissue.
Collapse
Affiliation(s)
- Chao Su
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
| | - Guofeng Zhang
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | | | - Rosula Hinnenberg
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Jenny Wietschorke
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Pengbo Liang
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; State Key Laboratory of Plant Physiology and Biochemistry, MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Wei Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Hongshan District, Wuhan 430070, Hubei, P.R. China
| | - Leonard Uhler
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Xia Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Hongshan District, Wuhan 430070, Hubei, P.R. China
| | - Thomas Ott
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
39
|
Zhang Y, Ma L, Su P, Huang L, Gao W. Cytochrome P450s in plant terpenoid biosynthesis: discovery, characterization and metabolic engineering. Crit Rev Biotechnol 2023; 43:1-21. [PMID: 34865579 DOI: 10.1080/07388551.2021.2003292] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As the largest family of natural products, terpenoids play valuable roles in medicine, agriculture, cosmetics and food. However, the traditional methods that rely on direct extraction from the original plants not only produce low yields, but also result in waste of resources, and are not applicable at all to endangered species. Modern heterologous biosynthesis is considered a promising, efficient, and sustainable production method, but it relies on the premise of a complete analysis of the biosynthetic pathway of terpenoids, especially the functionalization processes involving downstream cytochrome P450s. In this review, we systematically introduce the biotech approaches used to discover and characterize plant terpenoid-related P450s in recent years. In addition, we propose corresponding metabolic engineering approaches to increase the effective expression of P450 and improve the yield of terpenoids, and also elaborate on metabolic engineering strategies and examples of heterologous biosynthesis of terpenoids in Saccharomyces cerevisiae and plant hosts. Finally, we provide perspectives for the biotech approaches to be developed for future research on terpenoid-related P450.
Collapse
Affiliation(s)
- Yifeng Zhang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lin Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ping Su
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, USA
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Gao
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
40
|
Ma Z, Ma L, Zhou J. Applications of CRISPR/Cas genome editing in economically important fruit crops: recent advances and future directions. MOLECULAR HORTICULTURE 2023; 3:1. [PMID: 37789479 PMCID: PMC10515014 DOI: 10.1186/s43897-023-00049-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/10/2023] [Indexed: 10/05/2023]
Abstract
Fruit crops, consist of climacteric and non-climacteric fruits, are the major sources of nutrients and fiber for human diet. Since 2013, CRISPR/Cas (Clustered Regularly Interspersed Short Palindromic Repeats and CRISPR-Associated Protein) genome editing system has been widely employed in different plants, leading to unprecedented progress in the genetic improvement of many agronomically important fruit crops. Here, we summarize latest advancements in CRISPR/Cas genome editing of fruit crops, including efforts to decipher the mechanisms behind plant development and plant immunity, We also highlight the potential challenges and improvements in the application of genome editing tools to fruit crops, including optimizing the expression of CRISPR/Cas cassette, improving the delivery efficiency of CRISPR/Cas reagents, increasing the specificity of genome editing, and optimizing the transformation and regeneration system. In addition, we propose the perspectives on the application of genome editing in crop breeding especially in fruit crops and highlight the potential challenges. It is worth noting that efforts to manipulate fruit crops with genome editing systems are urgently needed for fruit crops breeding and demonstration.
Collapse
Affiliation(s)
- Zhimin Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Lijing Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Junhui Zhou
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China.
| |
Collapse
|
41
|
Rhizogenic Agrobacterium protein RolB interacts with the TOPLESS repressor proteins to reprogram plant immunity and development. Proc Natl Acad Sci U S A 2023; 120:e2210300120. [PMID: 36634142 PMCID: PMC9934019 DOI: 10.1073/pnas.2210300120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rhizogenic Agrobacterium strains comprise biotrophic pathogens that cause hairy root disease (HRD) on hydroponically grown Solanaceae and Cucurbitaceae crops, besides being widely explored agents for the creation of hairy root cultures for the sustainable production of plant-specialized metabolites. Hairy root formation is mediated through the expression of genes encoded on the T-DNA of the root-inducing (Ri) plasmid, of which several, including root oncogenic locus B (rolB), play a major role in hairy root development. Despite decades of research, the exact molecular function of the proteins encoded by the rol genes remains enigmatic. Here, by means of TurboID-mediated proximity labeling in tomato (Solanum lycopersicum) hairy roots, we identified the repressor proteins TOPLESS (TPL) and Novel Interactor of JAZ (NINJA) as direct interactors of RolB. Although these interactions allow RolB to act as a transcriptional repressor, our data hint at another in planta function of the RolB oncoprotein. Hence, by a series of plant bioassays, transcriptomic and DNA-binding site enrichment analyses, we conclude that RolB can mitigate the TPL functioning so that it leads to a specific and partial reprogramming of phytohormone signaling, immunity, growth, and developmental processes. Our data support a model in which RolB manipulates host transcription, at least in part, through interaction with TPL, to facilitate hairy root development. Thereby, we provide important mechanistic insights into this renowned oncoprotein in HRD.
Collapse
|
42
|
Madina MH, Santhanam P, Asselin Y, Jaswal R, Bélanger RR. Progress and Challenges in Elucidating the Functional Role of Effectors in the Soybean- Phytophthora sojae Interaction. J Fungi (Basel) 2022; 9:12. [PMID: 36675833 PMCID: PMC9866111 DOI: 10.3390/jof9010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Phytophthora sojae, the agent responsible for stem and root rot, is one of the most damaging plant pathogens of soybean. To establish a compatible-interaction, P. sojae secretes a wide array of effector proteins into the host cell. These effectors have been shown to act either in the apoplastic area or the cytoplasm of the cell to manipulate the host cellular processes in favor of the development of the pathogen. Deciphering effector-plant interactions is important for understanding the role of P. sojae effectors in disease progression and developing approaches to prevent infection. Here, we review the subcellular localization, the host proteins, and the processes associated with P. sojae effectors. We also discuss the emerging topic of effectors in the context of effector-resistance genes interaction, as well as model systems and recent developments in resources and techniques that may provide a better understanding of the soybean-P. sojae interaction.
Collapse
|
43
|
Wang Y, Zafar N, Ali Q, Manghwar H, Wang G, Yu L, Ding X, Ding F, Hong N, Wang G, Jin S. CRISPR/Cas Genome Editing Technologies for Plant Improvement against Biotic and Abiotic Stresses: Advances, Limitations, and Future Perspectives. Cells 2022; 11:3928. [PMID: 36497186 PMCID: PMC9736268 DOI: 10.3390/cells11233928] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Crossbreeding, mutation breeding, and traditional transgenic breeding take much time to improve desirable characters/traits. CRISPR/Cas-mediated genome editing (GE) is a game-changing tool that can create variation in desired traits, such as biotic and abiotic resistance, increase quality and yield in less time with easy applications, high efficiency, and low cost in producing the targeted edits for rapid improvement of crop plants. Plant pathogens and the severe environment cause considerable crop losses worldwide. GE approaches have emerged and opened new doors for breeding multiple-resistance crop varieties. Here, we have summarized recent advances in CRISPR/Cas-mediated GE for resistance against biotic and abiotic stresses in a crop molecular breeding program that includes the modification and improvement of genes response to biotic stresses induced by fungus, virus, and bacterial pathogens. We also discussed in depth the application of CRISPR/Cas for abiotic stresses (herbicide, drought, heat, and cold) in plants. In addition, we discussed the limitations and future challenges faced by breeders using GE tools for crop improvement and suggested directions for future improvements in GE for agricultural applications, providing novel ideas to create super cultivars with broad resistance to biotic and abiotic stress.
Collapse
Affiliation(s)
- Yaxin Wang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Naeem Zafar
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qurban Ali
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hakim Manghwar
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanying Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Yu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Ding
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Ding
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ni Hong
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoping Wang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
44
|
Ul Haq SI, Zheng D, Feng N, Jiang X, Qiao F, He JS, Qiu QS. Progresses of CRISPR/Cas9 genome editing in forage crops. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153860. [PMID: 36371870 DOI: 10.1016/j.jplph.2022.153860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mediated-genome editing has evolved into a powerful tool that is widely used in plant species to induce editing in the genome for analyzing gene function and crop improvement. CRISPR/Cas9 is an RNA-guided genome editing tool consisting of a Cas9 nuclease and a single-guide RNA (sgRNA). The CRISPR/Cas9 system enables more accurate and efficient genome editing in crops. In this review, we summarized the advances of the CRISPR/Cas9 technology in plant genome editing and its applications in forage crops. We described briefly about the development of CRISPR/Cas9 technology in plant genome editing. We assessed the progress of CRISPR/Cas9-mediated targeted-mutagenesis in various forage crops, including alfalfa, Medicago truncatula, Hordeum vulgare, Sorghum bicolor, Setaria italica and Panicum virgatum. The potentials and challenges of CRISPR/Cas9 in forage breeding were discussed.
Collapse
Affiliation(s)
- Syed Inzimam Ul Haq
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Xingyu Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Feng Qiao
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810016, China
| | - Jin-Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China; Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810016, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| |
Collapse
|
45
|
Swinnen G, De Meyer M, Pollier J, Molina-Hidalgo FJ, Ceulemans E, Venegas-Molina J, De Milde L, Fernández-Calvo P, Ron M, Pauwels L, Goossens A. The basic helix-loop-helix transcription factors MYC1 and MYC2 have a dual role in the regulation of constitutive and stress-inducible specialized metabolism in tomato. THE NEW PHYTOLOGIST 2022; 236:911-928. [PMID: 35838067 DOI: 10.1111/nph.18379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Plants produce specialized metabolites to protect themselves from biotic enemies. Members of the Solanaceae family accumulate phenylpropanoid-polyamine conjugates (PPCs) in response to attackers while also maintaining a chemical barrier of steroidal glycoalkaloids (SGAs). Across the plant kingdom, biosynthesis of such defense compounds is promoted by jasmonate signaling in which clade IIIe basic helix-loop-helix (bHLH) transcription factors play a central role. By characterizing hairy root mutants obtained through Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated protein 9 (CRISPR-Cas9) genome editing, we show that the tomato clade IIIe bHLH transcription factors, MYC1 and MYC2, redundantly control jasmonate-inducible PPC and SGA production, and are also essential for constitutive SGA biosynthesis. Double myc1 myc2 loss-of-function tomato hairy roots displayed suppressed constitutive expression of SGA biosynthesis genes, and severely reduced levels of the main tomato SGAs α-tomatine and dehydrotomatine. In contrast, basal expression of genes involved in PPC biosynthesis was not affected. CRISPR-Cas9(VQR) genome editing of a specific cis-regulatory element, targeted by MYC1/2, in the promoter of a SGA precursor biosynthesis gene led to decreased constitutive expression of this gene, but did not affect its jasmonate inducibility. Our results demonstrate that clade IIIe bHLH transcriptional regulators have evolved under the control of distinct regulatory cues to specifically steer constitutive and stress-inducible specialized metabolism.
Collapse
Affiliation(s)
- Gwen Swinnen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Margaux De Meyer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- VIB Metabolomics Core, 9052, Ghent, Belgium
| | - Francisco Javier Molina-Hidalgo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Evi Ceulemans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Jhon Venegas-Molina
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Liesbeth De Milde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Patricia Fernández-Calvo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Mily Ron
- Department of Plant Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| |
Collapse
|
46
|
Huang P, Lu M, Li X, Sun H, Cheng Z, Miao Y, Fu Y, Zhang X. An Efficient Agrobacterium rhizogenes-Mediated Hairy Root Transformation Method in a Soybean Root Biology Study. Int J Mol Sci 2022; 23:ijms232012261. [PMID: 36293115 PMCID: PMC9603872 DOI: 10.3390/ijms232012261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The stable genetic transformation of soybean is time-consuming and inefficient. As a simple and practical alternative method, hairy root transformation mediated by Agrobacterium rhizogenes is widely applied in studying root-specific processes, nodulation, biochemical and molecular functions of genes of interest, gene editing efficiency of CRISPR/Cas9, and biological reactors and producers. Therefore, many laboratories have developed unique protocols to obtain hairy roots in composite plants composed of transgenic roots and wild-type shoots. However, these protocols still suffer from the shortcomings of low efficiency and time, space, and cost consumption. To address this issue, we developed a new protocol efficient regeneration and transformation of hairy roots (eR&T) in soybean, by integrating and optimizing the main current methods to achieve high efficiency in both hairy root regeneration and transformation within a shorter period and using less space. By this eR&T method, we obtained 100% regeneration of hairy roots for all explants, with an average 63.7% of transformation frequency, which promoted the simultaneous and comparative analysis of the function of several genes. The eR&T was experimentally verified Promoter:GUS reporters, protein subcellular localization, and CRISPR/Cas9 gene editing experiments. Employing this approach, we identified several novel potential regulators of nodulation, and nucleoporins of the Nup107-160 sub-complex, which showed development-dependent and tissue-dependent expression patterns, indicating their important roles in nodulation in soybean. Thus, the new eR&T method is an efficient and economical approach for investigating not only root and nodule biology, but also gene function.
Collapse
Affiliation(s)
- Penghui Huang
- Moa Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingyang Lu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Xiangbei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Huiyu Sun
- Moa Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyuan Cheng
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yuchen Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yongfu Fu
- Moa Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.F.); (X.Z.)
| | - Xiaomei Zhang
- Moa Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.F.); (X.Z.)
| |
Collapse
|
47
|
Morey KJ, Peebles CAM. Hairy roots: An untapped potential for production of plant products. FRONTIERS IN PLANT SCIENCE 2022; 13:937095. [PMID: 35991443 PMCID: PMC9389236 DOI: 10.3389/fpls.2022.937095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
While plants are an abundant source of valuable natural products, it is often challenging to produce those products for commercial application. Often organic synthesis is too expensive for a viable commercial product and the biosynthetic pathways are often so complex that transferring them to a microorganism is not trivial or feasible. For plants not suited to agricultural production of natural products, hairy root cultures offer an attractive option for a production platform which offers genetic and biochemical stability, fast growth, and a hormone free culture media. Advances in metabolic engineering and synthetic biology tools to engineer hairy roots along with bioreactor technology is to a point where commercial application of the technology will soon be realized. We discuss different applications of hairy roots. We also use a case study of the advancements in understanding of the terpenoid indole alkaloid pathway in Catharanthus roseus hairy roots to illustrate the advancements and challenges in pathway discovery and in pathway engineering.
Collapse
|
48
|
Bulbul Ahmed M, Humayan Kabir A. Understanding of the various aspects of gene regulatory networks related to crop improvement. Gene 2022; 833:146556. [PMID: 35609798 DOI: 10.1016/j.gene.2022.146556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/14/2022] [Accepted: 05/06/2022] [Indexed: 12/30/2022]
Abstract
The hierarchical relationship between transcription factors, associated proteins, and their target genes is defined by a gene regulatory network (GRN). GRNs allow us to understand how the genotype and environment of a plant are incorporated to control the downstream physiological responses. During plant growth or environmental acclimatization, GRNs are diverse and can be differently regulated across tissue types and organs. An overview of recent advances in the development of GRN that speed up basic and applied plant research is given here. Furthermore, the overview of genome and transcriptome involving GRN research along with the exciting advancement and application are discussed. In addition, different approaches to GRN predictions were elucidated. In this review, we also describe the role of GRN in crop improvement, crop plant manipulation, stress responses, speed breeding and identifying genetic variations/locus. Finally, the challenges and prospects of GRN in plant biology are discussed.
Collapse
Affiliation(s)
- Md Bulbul Ahmed
- Plant Science Department, McGill University, 21111 lakeshore Road, Ste. Anne de Bellevue H9X3V9, Quebec, Canada; Institut de Recherche en Biologie Végétale (IRBV), University of Montreal, Montréal, Québec H1X 2B2, Canada.
| | | |
Collapse
|
49
|
You J, Li D, Yang L, Dossou SSK, Zhou R, Zhang Y, Wang L. CRISPR/Cas9-Mediated Efficient Targeted Mutagenesis in Sesame ( Sesamum indicum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:935825. [PMID: 35898225 PMCID: PMC9309882 DOI: 10.3389/fpls.2022.935825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has been widely utilized for targeted genome modification in a wide range of species. It is a powerful genome editing technology, providing significant benefits for gene functional research and molecular breeding. However, to date, no study has applied this genome editing tool to sesame (Sesamum indicum L.), one of the most ancient and important oil crops used widely in diverse industries such as food and medicine. Herein, the CRISPR/Cas9 system along with hairy root transformation was used to induce targeted mutagenesis in sesame. Two single guide RNAs (sgRNAs) were designed to target two sesame cytochrome P450 genes (CYP81Q1 and CYP92B14), which are the key biosynthetic gene of sesamin and sesamolin, respectively. Sequencing data illustrated the expected InDel mutations at the target sites, with 90.63 and 93.33% mutation frequency in CYP81Q1 and CYP92B14, respectively. The most common editing event was single nucleotide deletion and insertion. Sequencing of potential off-target sites of CYP92B14-sgRNA showed no off-target events in cases of three mismatches. High-performance liquid chromatography analysis showed that sesamin and sesamolin biosynthesis was effectively disrupted in the mutated hairy roots, confirming the crucial role of CYP81Q1 and CYP92B14 in sesame lignan biosynthesis. These results demonstrated that targeted mutagenesis was efficiently created by the CRISPR/Cas9 system, and CRISPR/Cas9 coupled with hairy root transformation is an effective tool for assessing gene functions in sesame.
Collapse
|
50
|
Dinkeloo K, Pelly Z, McDowell JM, Pilot G. A split green fluorescent protein system to enhance spatial and temporal sensitivity of translating ribosome affinity purification. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:304-315. [PMID: 35436375 PMCID: PMC9544980 DOI: 10.1111/tpj.15779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Translating ribosome affinity purification (TRAP) utilizes transgenic plants expressing a ribosomal protein fused to a tag for affinity co-purification of ribosomes and the mRNAs that they are translating. This population of actively translated mRNAs (translatome) can be interrogated by quantitative PCR or RNA sequencing. Condition- or cell-specific promoters can be utilized to isolate the translatome of specific cell types, at different growth stages and/or in response to environmental variables. While advantageous for revealing differential expression, this approach may not provide sufficient sensitivity when activity of the condition/cell-specific promoter is weak, when ribosome turnover is low in the cells of interest, or when the targeted cells are ephemeral. In these situations, expressing tagged ribosomes under the control of these specific promoters may not yield sufficient polysomes for downstream analysis. Here, we describe a new TRAP system that employs two transgenes: One is constitutively expressed and encodes a ribosomal protein fused to one fragment of a split green fluorescent protein (GFP); the second is controlled by a stimulus-specific promoter and encodes the second GFP fragment fused to an affinity purification tag. In cells where both transgenes are active, the purification tag is attached to ribosomes by bi-molecular folding and assembly of the split GFP fragments. This approach provides increased sensitivity and better temporal resolution because it labels pre-existing ribosomes and does not depend on rapid ribosome turnover. We describe the optimization and key parameters of this system, and then apply it to a plant-pathogen interaction in which spatial and temporal resolution are difficult to achieve with current technologies.
Collapse
Affiliation(s)
- Kasia Dinkeloo
- School of Plant and Environmental Sciences, Virginia TechBlacksburgVirginia24061USA
| | - Zoe Pelly
- School of Plant and Environmental Sciences, Virginia TechBlacksburgVirginia24061USA
| | - John M. McDowell
- School of Plant and Environmental Sciences, Virginia TechBlacksburgVirginia24061USA
| | - Guillaume Pilot
- School of Plant and Environmental Sciences, Virginia TechBlacksburgVirginia24061USA
| |
Collapse
|