1
|
Scheuring D, Hillmer S, Schumacher K. In memoriam: David G. Robinson. PROTOPLASMA 2025:10.1007/s00709-025-02059-9. [PMID: 40195162 DOI: 10.1007/s00709-025-02059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/23/2025] [Indexed: 04/09/2025]
Abstract
We are deeply saddened to report that David Gordon Robinson passed away on Tuesday, 5 November 2024. He has left behind his wife and three children. Without doubt, David was one of Europe's leading plant cell biologists and electron microscopists, best known for his research on intracellular trafficking and cellular organization. He is leaving a legacy of groundbreaking research and influence in the field. In this obituary, we want to recapitulate the most important stages from the impressive career of a truly unique character.
Collapse
Affiliation(s)
- David Scheuring
- Plant Pathology, University of Kaiserslautern-Landau, Kaiserslautern, Germany.
| | - Stefan Hillmer
- Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Karin Schumacher
- Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
2
|
Pang L, Huang Y, He Y, Jiang D, Li R. The adaptor protein AP-3β disassembles heat-induced stress granules via 19S regulatory particle in Arabidopsis. Nat Commun 2025; 16:2039. [PMID: 40016204 PMCID: PMC11868639 DOI: 10.1038/s41467-025-57306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
To survive under adverse conditions, plants form stress granules (SGs) to temporally store mRNA and halt translation as a primary response. Dysregulation in SG disassembly can have detrimental effects on plant survival after stress release, yet the underlying mechanism remains poorly understood. Using Arabidopsis as a model system, we demonstrate that the β subunit of adaptor protein (AP) -3 complex (AP-3β) interacts with the SG core RNA-binding proteins Tudor staphylococcal nuclease 1/2 (TSN1/2) both in vitro and in vivo. We also show that AP-3β is rapidly recruited to SGs upon heat induction and plays a key role in disassembling SGs during stress recovery. Genetic evidences support that AP-3β serves as an adaptor to recruit the 19S regulatory particle (RP) of the proteasome to SGs. Notably, the 19S RP promotes SG disassembly through RP-associated deubiquitylation, independent of its proteolytic activity. This deubiquitylation process of SG components is crucial for translation reinitiation and growth recovery after heat release. Our findings uncover a previously unexplored role of the 19S RP in regulating SG disassembly and highlights the importance of endomembrane proteins in supporting RNA granule dynamics in plants.
Collapse
Affiliation(s)
- Lei Pang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuanzhi Huang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yilin He
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dong Jiang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ruixi Li
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Chung KK, Zhao Z, Law KC, Ma J, Chiang CH, Leung KH, Shrestha R, Wu Y, Li C, Lee KM, Feng L, Li X, Wong KB, Xu SL, Gao C, Zhuang X. Biomolecular condensation of ERC1 recruits ATG8 and NBR1 to drive autophagosome formation for plant heat tolerance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611939. [PMID: 39314317 PMCID: PMC11419021 DOI: 10.1101/2024.09.09.611939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Macroautophagy (hereafter autophagy) is essential for cells to respond to nutrient stress by delivering cytosolic contents to vacuoles for degradation via the formation of a multi-layer vesicle named autophagosome. A set of autophagy-related (ATG) regulators are recruited to the phagophore assembly site for the initiation of phagophore, as well as its expansion and closure and subsequent delivery into the vacuole. However, it remains elusive that how the phagophore assembly is regulated under different stress conditions. Here, we described an unknown Arabidopsis (Arabidopsis thaliana) cytosolic ATG8-interaction protein family (ERC1/2), that binds ATG8 and NBR1 to promote autophagy. ERC1 proteins translocate to the phagophore membrane and develop into classical ring-like autophagosomes upon autophagic induction. However, ERC1 proteins form large droplets together with ATG8e proteins when in the absence of ATG8 lipidation activity. We described the property of these structures as phase-separated membraneless condensates by solving the in vivo organization with spatial and temporal resolution. Moreover, ERC1 condensates elicits a strong recruitment of the autophagic receptor NBR1. Loss of ERC1 suppressed NBR1 turnover and attenuated plant tolerance to heat stress condition. This work provides novel insights into the mechanical principle of phagophore initiation via an unreported ERC1-mediated biomolecular condensation for heat tolerance in Arabidopsis .
Collapse
|
4
|
Xu W, Peng X, Li Y, Zeng X, Yan W, Wang C, Wang CR, Chen S, Xu C, Tang X. OsSNDP4, a Sec14-nodulin Domain Protein, is Required for Pollen Development in Rice. RICE (NEW YORK, N.Y.) 2024; 17:54. [PMID: 39207611 PMCID: PMC11362464 DOI: 10.1186/s12284-024-00730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Pollen is encased in a robust wall that shields the male gametophyte from various stresses and aids in pollination. The pollen wall consists of gametophyte-derived intine and sporophyte-derived exine. The exine is mainly composed of sporopollenin, which is biopolymers of aliphatic lipids and phenolics. The process of exine formation has been the subject of extensive research, yet the underlying molecular mechanisms remain elusive. In this study, we identified a rice mutant of the OsSNDP4 gene that is impaired in pollen development. We demonstrated that OsSNDP4, a putative Sec14-nodulin domain protein, exhibits a preference for binding to phosphatidylinositol (3)-phosphate [PI(3)P], a lipid primarily found in endosomal and vacuolar membranes. The OsSNDP4 protein was detected in association with the endoplasmic reticulum (ER), vacuolar membranes, and the nucleus. OsSNDP4 expression was detected in all tested organs but was notably higher in anthers during exine development. Loss of OsSNDP4 function led to abnormal vacuole dynamics, inhibition in Ubisch body development, and premature degradation of cellular contents and organelles in the tapetal cells. Microspores from the ossndp4 mutant plant displayed abnormal exine formation, abnormal vacuole enlargement, and ultimately, pollen abortion. RNA-seq assay revealed that genes involved in the biosynthesis of fatty acid and secondary metabolites, the biosynthesis of lipid polymers, and exosome formation were enriched among the down-regulated genes in the mutant anthers, which correlated with the morphological defects observed in the mutant anthers. Base on these findings, we propose that OsSNDP4 regulates pollen development by binding to PI(3)P and influencing the dynamics of membrane systems. The involvement of membrane systems in the regulation of sporopollenin biosynthesis, Ubisch body formation, and exine formation provides a novel mechanism regulating pollen wall development.
Collapse
Affiliation(s)
- Weitao Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoqun Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xinhuang Zeng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Changjian Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Cheng Rui Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shunquan Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China.
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China.
| |
Collapse
|
5
|
Otulak-Kozieł K, Kozieł E, Treder K, Rusin P. Homogalacturonan Pectins Tuned as an Effect of Susceptible rbohD, Col-0-Reactions, and Resistance rbohF-, rbohD/F-Reactions to TuMV. Int J Mol Sci 2024; 25:5256. [PMID: 38791293 PMCID: PMC11120978 DOI: 10.3390/ijms25105256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The plant cell wall is an actively reorganized network during plant growth and triggered immunity in response to biotic stress. While the molecular mechanisms managing perception, recognition, and signal transduction in response to pathogens are well studied in the context of damaging intruders, the current understanding of plant cell wall rebuilding and active defense strategies in response to plant virus infections remains poorly characterized. Pectins can act as major elements of the primary cell wall and are dynamic compounds in response to pathogens. Homogalacturonans (HGs), a main component of pectins, have been postulated as defensive molecules in plant-pathogen interactions and linked to resistance responses. This research focused on examining the regulation of selected pectin metabolism components in susceptible (rbohD-, Col-0-TuMV) and resistance (rbohF-, rbohD/F-TuMV) reactions. Regardless of the interaction type, ultrastructural results indicated dynamic cell wall rebuilding. In the susceptible reaction promoted by RbohF, there was upregulation of AtPME3 (pectin methylesterase) but not AtPME17, confirmed by induction of PME3 protein deposition. Moreover, the highest PME activity along with a decrease in cell wall methylesters compared to resistance interactions in rbohD-TuMV were noticed. Consequently, the susceptible reaction of rbohD and Col-0 to TuMV was characterized by a significant domination of low/non-methylesterificated HGs. In contrast, cell wall changes during the resistance response of rbohF and rbohD/F to TuMV were associated with dynamic induction of AtPMEI2, AtPMEI3, AtGAUT1, and AtGAUT7 genes, confirmed by significant induction of PMEI2, PMEI3, and GAUT1 protein deposition. In both resistance reactions, a dynamic decrease in PME activity was documented, which was most intense in rbohD/F-TuMV. This decrease was accompanied by an increase in cell wall methylesters, indicating that the domination of highly methylesterificated HGs was associated with cell wall rebuilding in rbohF and rbohD/F defense responses to TuMV. These findings suggest that selected PME with PMEI enzymes have a diverse impact on the demethylesterification of HGs and metabolism as a result of rboh-TuMV interactions, and are important factors in regulating cell wall changes depending on the type of interaction, especially in resistance responses. Therefore, PMEI2 and PMEI3 could potentially be important signaling resistance factors in the rboh-TuMV pathosystem.
Collapse
Affiliation(s)
- Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- Plant Breeding and Acclimatization Institute—National Research Institute in Radzików, Bonin Division, Department of Potato Protection and Seed Science at Bonin, Bonin Str. 3, 76-009 Bonin, Poland;
| | - Krzysztof Treder
- Plant Breeding and Acclimatization Institute—National Research Institute in Radzików, Bonin Division, Department of Potato Protection and Seed Science at Bonin, Bonin Str. 3, 76-009 Bonin, Poland;
| | - Piotr Rusin
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| |
Collapse
|
6
|
Zhuang X, Li R, Jiang L. A century journey of organelles research in the plant endomembrane system. THE PLANT CELL 2024; 36:1312-1333. [PMID: 38226685 PMCID: PMC11062446 DOI: 10.1093/plcell/koae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/14/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
We are entering an exciting century in the study of the plant organelles in the endomembrane system. Over the past century, especially within the past 50 years, tremendous advancements have been made in the complex plant cell to generate a much clearer and informative picture of plant organelles, including the molecular/morphological features, dynamic/spatial behavior, and physiological functions. Importantly, all these discoveries and achievements in the identification and characterization of organelles in the endomembrane system would not have been possible without: (1) the innovations and timely applications of various state-of-art cell biology tools and technologies for organelle biology research; (2) the continuous efforts in developing and characterizing new organelle markers by the plant biology community; and (3) the landmark studies on the identification and characterization of the elusive organelles. While molecular aspects and results for individual organelles have been extensively reviewed, the development of the techniques for organelle research in plant cell biology is less appreciated. As one of the ASPB Centennial Reviews on "organelle biology," here we aim to take a journey across a century of organelle biology research in plants by highlighting the important tools (or landmark technologies) and key scientists that contributed to visualize organelles. We then highlight the landmark studies leading to the identification and characterization of individual organelles in the plant endomembrane systems.
Collapse
Affiliation(s)
- Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ruixi Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
7
|
Azizi F, Kazemipour-Khabbazi S, Raimondo S, Dalirfardouei R. Molecular mechanisms and therapeutic application of extracellular vesicles from plants. Mol Biol Rep 2024; 51:425. [PMID: 38492036 DOI: 10.1007/s11033-024-09379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
Small extracellular vesicles (sEVs) isolated from animal sources are among the most investigated types of cell-free therapeutic tools to cure different diseases. sEVs have been isolated from a variety of sources, ranging from prokaryotes to animals and plants. Human-derived sEVs have many uses in pre- and clinical studies in medicine and drug delivery, while plant-derived EVs, also known as plant-derived nanovesicles (PDNVs), have not been widely investigated until the second decade of the 21st century. For the past five years, there has been a rapid rise in the use of plant EVs as a therapeutic tool due to the ease of massive production with high efficacy and yield of preparation. Plant EVs contain various active biomolecules such as proteins, regulatory RNAs, and secondary metabolites and play a key role in inter-kingdom communications. Many studies have already investigated the potential application of plant EVs in preventing and treating cancer, inflammation, infectious diseases, and tissue regeneration with no sign of toxicity and are therefore considered safe. However, due to a lack of universal markers, the properties of plant EVs have not been extensively studied. Concerns regarding the safety and therapeutic function of plant EVs derived from genetically modified plants have been raised. In this paper, we review the physiological role of EVs in plants. Moreover, we focus on molecular and cellular mechanisms involved in the therapeutic effects of plant EVs on various human diseases. We also provide detailed information on the methodological aspects of plant EV isolation and analysis, which could pave the way for future clinical translation.
Collapse
Affiliation(s)
- Fatemeh Azizi
- Department of Medical Biotechnology, School of Science and Novel Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Salva Kazemipour-Khabbazi
- Department of English Language and Persian Literature, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Stefania Raimondo
- Department of BioMedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Biology and Genetic section, University of Palermo, Palermo, 90133, Italy
| | - Razieh Dalirfardouei
- Department of Medical Biotechnology, School of Science and Novel Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
8
|
Du X, Weng X, Lyu B, Zhao L, Wang H. Localized calcium transients in phragmoplast regulate cytokinesis of tobacco BY-2 cells. PLANT CELL REPORTS 2024; 43:97. [PMID: 38488911 DOI: 10.1007/s00299-024-03181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
KEY MESSAGE Plants exhibit a unique pattern of cytosolic Ca2+ dynamics to correlate with microtubules to regulate cytokinesis, which significantly differs from those observed in animal and yeast cells. Calcium (Ca2+) transients mediated signaling is known to be essential in cytokinesis across eukaryotic cells. However, the detailed spatiotemporal dynamics of Ca2+ during plant cytokinesis remain largely unexplored. In this study, we employed GCaMP5, a genetically encoded Ca2+ sensor, to investigate cytokinetic Ca2+ transients during cytokinesis in Nicotiana tabacum Bright Yellow-2 (BY-2) cells. We validated the effectiveness of GCaMP5 to capture fluctuations in intracellular free Ca2+ in transgenic BY-2 cells. Our results reveal that Ca2+ dynamics during BY-2 cell cytokinesis are distinctly different from those observed in embryonic and yeast cells. It is characterized by an initial significant Ca2+ spike within the phragmoplast region. This spike is followed by a decrease in Ca2+ concentration at the onset of cytokinesis in phragmoplast, which then remains elevated in comparison to the cytosolic Ca2+ until the completion of cell plate formation. At the end of cytokinesis, Ca2+ becomes uniformly distributed in the cytosol. This pattern contrasts with the typical dual waves of Ca2+ spikes observed during cytokinesis in animal embryonic cells and fission yeasts. Furthermore, applications of pharmaceutical inhibitors for either Ca2+ or microtubules revealed a close correlation between Ca2+ transients and microtubule organization in the regulation of cytokinesis. Collectively, our findings highlight the unique dynamics and crucial role of Ca2+ transients during plant cell cytokinesis, and provides new insights into plant cell division mechanisms.
Collapse
Affiliation(s)
- Xiaojuan Du
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xun Weng
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Binyang Lyu
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lifeng Zhao
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hao Wang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Yang L, Jiang L. The seven rice vacuolar sorting receptors localize to prevacuolar compartments. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154137. [PMID: 37984048 DOI: 10.1016/j.jplph.2023.154137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Vacuolar sorting is critically important in plants as it regulates the mobilization of proteins and plays a major role in important agricultural traits like yield and seed protein content. Vacuolar sorting receptors (VSRs) are integral membrane proteins that mediate protein trafficking from the Golgi apparatus to the vacuole via the intermediate membrane-bound prevacuolar compartment (PVC)/multivesicular body (MVB). VSR proteins, such as an 80 kD (BP-80) from pea, also serve as markers for PVC/MVB. Dissecting VSR-mediated protein trafficking pathways may provide ways to enhance agronomic traits and crop yield. Green fluorescence protein (GFP) fusions with the seven Arabidopsis (Arabidopsis thaliana) VSRs were previously shown to localize to PVCs in transgenic tobacco BY-2 cells. The Rice (Oryza sativa) genome contains seven VSRs (OsVSR1-7), but little is known about their subcellular localizations. Here we studied the subcellular localization of OsVSR1-7 b y using a reporter approach, in which GFP-OsVSR1-7 fusions containing the transmembrane domain (TMD) and cytoplasmic tail (CT) of individual OsVSR were expressed in the protoplasts of rice, transgenic tobacco BY-2 cells and transgenic rice plants. Immunofluorescent labelling studies and confocal laser scanning microscope observation demonstrated that the seven OsVSRs are localized to PVCs and form ring-like structures upon wortmannin treatment. Therefore, we have verified the subcellular localization of OsVSR1-7 in this study. The OsVSRs tagged with GFP can serve as PVCs/MVBs markers in rice for the future studies.
Collapse
Affiliation(s)
- Lei Yang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, 264025, China; School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| |
Collapse
|
10
|
Zhou C, Lin Q, Ren Y, Lan J, Miao R, Feng M, Wang X, Liu X, Zhang S, Pan T, Wang J, Luo S, Qian J, Luo W, Mou C, Nguyen T, Cheng Z, Zhang X, Lei C, Zhu S, Guo X, Wang J, Zhao Z, Liu S, Jiang L, Wan J. A CYP78As-small grain4-coat protein complex Ⅱ pathway promotes grain size in rice. THE PLANT CELL 2023; 35:4325-4346. [PMID: 37738653 PMCID: PMC10689148 DOI: 10.1093/plcell/koad239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/11/2023] [Accepted: 08/11/2023] [Indexed: 09/24/2023]
Abstract
CYP78A, a cytochrome P450 subfamily that includes rice (Oryza sativa L.) BIG GRAIN2 (BG2, CYP78A13) and Arabidopsis thaliana KLUH (KLU, CYP78A5), generate an unknown mobile growth signal (referred to as a CYP78A-derived signal) that increases grain (seed) size. However, the mechanism by which the CYP78A pathway increases grain size remains elusive. Here, we characterized a rice small grain mutant, small grain4 (smg4), with smaller grains than its wild type due to restricted cell expansion and cell proliferation in spikelet hulls. SMG4 encodes a multidrug and toxic compound extrusion (MATE) transporter. Loss of function of SMG4 causes smaller grains while overexpressing SMG4 results in larger grains. SMG4 is mainly localized to endoplasmic reticulum (ER) exit sites (ERESs) and partially localized to the ER and Golgi. Biochemically, SMG4 interacts with coat protein complex Ⅱ (COPⅡ) components (Sar1, Sec23, and Sec24) and CYP78As (BG2, GRAIN LENGTH 3.2 [GL3.2], and BG2-LIKE 1 [BG2L1]). Genetically, SMG4 acts, at least in part, in a common pathway with Sar1 and CYP78As to regulate grain size. In summary, our findings reveal a CYP78As-SMG4-COPⅡ regulatory pathway for grain size in rice, thus providing new insights into the molecular and genetic regulatory mechanism of grain size.
Collapse
Affiliation(s)
- Chunlei Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Lan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Rong Miao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Miao Feng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengzhong Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiachang Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Luo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinsheng Qian
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenfan Luo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changling Mou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Thanhliem Nguyen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhijun Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Zhu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhichao Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
11
|
Hirano T, Ebine K, Ueda T, Higaki T, Watanabe-Nakayama T, Konno H, Takigawa-Imamura H, Sato MH. The SYP123-VAMP727 SNARE complex delivers secondary cell wall components for root hair shank hardening in Arabidopsis. THE PLANT CELL 2023; 35:4347-4365. [PMID: 37713604 PMCID: PMC10689195 DOI: 10.1093/plcell/koad240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/17/2023]
Abstract
The extended tubular shape of root hairs is established by tip growth and concomitant hardening. Here, we demonstrate that a syntaxin of plants (SYP)123-vesicle-associated membrane protein (VAMP)727-dependent secretion system delivers secondary cell wall components for hardening the subapical zone and shank of Arabidopsis (Arabidopsis thaliana) root hairs. We found increased SYP123 localization at the plasma membrane (PM) of the subapical and shank zones compared with the tip region in elongating root hairs. Inhibition of phosphatidylinositol (PtdIns)(3,5)P2 production impaired SYP123 localization at the PM and SYP123-mediated root hair shank hardening. Moreover, root hair elongation in the syp123 mutant was insensitive to a PtdIns(3,5)P2 synthesis inhibitor. SYP123 interacts with both VAMP721 and VAMP727. syp123 and vamp727 mutants exhibited reduced shank cell wall stiffness due to impaired secondary cell wall component deposition. Based on these results, we conclude that SYP123 is involved in VAMP721-mediated conventional secretion for root hair elongation as well as in VAMP727-mediated secretory functions for the delivery of secondary cell wall components to maintain root hair tubular morphology.
Collapse
Affiliation(s)
- Tomoko Hirano
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, Sokendai, Okazaki, Aichi 444-8585, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, Sokendai, Okazaki, Aichi 444-8585, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kurokami, Kumamoto 860-8555, Japan
| | | | - Hiroki Konno
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | | | - Masa H Sato
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| |
Collapse
|
12
|
Zhu Y, Zhao Q, Cao W, Huang S, Ji C, Zhang W, Trujillo M, Shen J, Jiang L. The plant-unique protein DRIF1 coordinates with sorting nexin 1 to regulate membrane protein homeostasis. THE PLANT CELL 2023; 35:4217-4237. [PMID: 37647529 PMCID: PMC10689196 DOI: 10.1093/plcell/koad227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
Membrane protein homeostasis is fine-tuned by the cellular pathways for vacuolar degradation and recycling, which ultimately facilitate plant growth and cell-environment interactions. The endosomal sorting complex required for transport (ESCRT) machinery plays important roles in regulating intraluminal vesicle (ILV) formation and membrane protein sorting to vacuoles. We previously showed that the plant-specific ESCRT component FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING1 (FREE1) performs multiple functions in plants, although the underlying mechanisms remain elusive. In this study, we performed a suppressor screen of the FREE1-RNAi mutant and identified and characterized 2 suppressor of free1 (sof) mutants in Arabidopsis (Arabidopsis thaliana). These mutants, sof10 and sof641, result in a premature stop codon or a missense mutation in AT5G10370, respectively. This gene was named DEAH and RING domain-containing protein as FREE1 suppressor 1 (DRIF1). DRIF1 has a homologous gene, DRIF2, in the Arabidopsis genome with 95% identity to DRIF1. The embryos of drif1 drif2 mutants arrested at the globular stage and formed enlarged multivesicular bodies (MVBs) with an increased number of ILVs. DRIF1 is a membrane-associated protein that coordinates with retromer component sorting nexin 1 to regulate PIN-FORMED2 recycling to the plasma membrane. Altogether, our data demonstrate that DRIF1 is a unique retromer interactor that orchestrates FREE1-mediated ILV formation of MVBs and vacuolar sorting of membrane proteins for degradation in plants.
Collapse
Affiliation(s)
- Ying Zhu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Wenhan Cao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Shuxian Huang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Changyang Ji
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wenxin Zhang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Marco Trujillo
- RWTH Aachen University, Institute for Biology 3, Aachen 52074, Germany
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
13
|
Shao X, Xu H, Pimpl P. Nanobody-based VSR7 tracing shows clathrin-dependent TGN to Golgi recycling. Nat Commun 2023; 14:6926. [PMID: 37903761 PMCID: PMC10616157 DOI: 10.1038/s41467-023-42331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/06/2023] [Indexed: 11/01/2023] Open
Abstract
Receptor-mediated transport of soluble proteins is nature's key to empowering eukaryotic cells to access a plethora of macromolecules, either by direct accumulation or as products from resulting biochemical pathways. The transport efficiency of these mechanisms results from the receptor's capability to capture, transport, and release ligands on the one hand and the cycling ability that allows for performing multiple rounds of ligand transport on the other. However, the plant VACUOLAR SORTING RECEPTOR (VSR) protein family is diverse, and their ligand-specificity and bidirectional trafficking routes and transport mechanisms remain highly controversial. Here we employ nanobody-epitope interaction-based molecular tools to assess the function of the VSR 7 in vivo. We demonstrate the specificity of the VSR7 for sequence-specific vacuolar sorting signals, and we trace its anterograde transport and retrograde recycling route. VSR7 localizes at the cis-Golgi apparatus at steady state conditions and transports ligands downstream to release them in the trans-Golgi network/early endosome (TGN/EE) before undergoing clathrin-dependent recycling from the TGN/EE back to the cis-Golgi.
Collapse
Affiliation(s)
- Xiaoyu Shao
- Harbin Institute of Technology, Harbin, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Hao Xu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Peter Pimpl
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
14
|
Zeng Y, Liang Z, Liu Z, Li B, Cui Y, Gao C, Shen J, Wang X, Zhao Q, Zhuang X, Erdmann PS, Wong KB, Jiang L. Recent advances in plant endomembrane research and new microscopical techniques. THE NEW PHYTOLOGIST 2023; 240:41-60. [PMID: 37507353 DOI: 10.1111/nph.19134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
The endomembrane system consists of various membrane-bound organelles including the endoplasmic reticulum (ER), Golgi apparatus, trans-Golgi network (TGN), endosomes, and the lysosome/vacuole. Membrane trafficking between distinct compartments is mainly achieved by vesicular transport. As the endomembrane compartments and the machineries regulating the membrane trafficking are largely conserved across all eukaryotes, our current knowledge on organelle biogenesis and endomembrane trafficking in plants has mainly been shaped by corresponding studies in mammals and yeast. However, unique perspectives have emerged from plant cell biology research through the characterization of plant-specific regulators as well as the development and application of the state-of-the-art microscopical techniques. In this review, we summarize our current knowledge on the plant endomembrane system, with a focus on several distinct pathways: ER-to-Golgi transport, protein sorting at the TGN, endosomal sorting on multivesicular bodies, vacuolar trafficking/vacuole biogenesis, and the autophagy pathway. We also give an update on advanced imaging techniques for the plant cell biology research.
Collapse
Affiliation(s)
- Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zizhen Liang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zhiqi Liu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yong Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Philipp S Erdmann
- Human Technopole, Viale Rita Levi-Montalcini, 1, Milan, I-20157, Italy
| | - Kam-Bo Wong
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The CUHK Shenzhen Research Institute, Shenzhen, 518057, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
15
|
Hickey K, Nazarov T, Smertenko A. Organellomic gradients in the fourth dimension. PLANT PHYSIOLOGY 2023; 193:98-111. [PMID: 37243543 DOI: 10.1093/plphys/kiad310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
Organelles function as hubs of cellular metabolism and elements of cellular architecture. In addition to 3 spatial dimensions that describe the morphology and localization of each organelle, the time dimension describes complexity of the organelle life cycle, comprising formation, maturation, functioning, decay, and degradation. Thus, structurally identical organelles could be biochemically different. All organelles present in a biological system at a given moment of time constitute the organellome. The homeostasis of the organellome is maintained by complex feedback and feedforward interactions between cellular chemical reactions and by the energy demands. Synchronized changes of organelle structure, activity, and abundance in response to environmental cues generate the fourth dimension of plant polarity. Temporal variability of the organellome highlights the importance of organellomic parameters for understanding plant phenotypic plasticity and environmental resiliency. Organellomics involves experimental approaches for characterizing structural diversity and quantifying the abundance of organelles in individual cells, tissues, or organs. Expanding the arsenal of appropriate organellomics tools and determining parameters of the organellome complexity would complement existing -omics approaches in comprehending the phenomenon of plant polarity. To highlight the importance of the fourth dimension, this review provides examples of organellome plasticity during different developmental or environmental situations.
Collapse
Affiliation(s)
- Kathleen Hickey
- Institute of Biological Chemistry, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, 99164 WA, USA
| | - Taras Nazarov
- Institute of Biological Chemistry, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, 99164 WA, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, 99164 WA, USA
| |
Collapse
|
16
|
Zouhar J, Cao W, Shen J, Rojo E. Retrograde transport in plants: Circular economy in the endomembrane system. Eur J Cell Biol 2023; 102:151309. [PMID: 36933283 DOI: 10.1016/j.ejcb.2023.151309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/09/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
The study of endomembrane trafficking is crucial for understanding how cells and whole organisms function. Moreover, there is a special interest in investigating endomembrane trafficking in plants, given its role in transport and accumulation of seed storage proteins and in secretion of cell wall material, arguably the two most essential commodities obtained from crops. The mechanisms of anterograde transport in the biosynthetic and endocytic pathways of plants have been thoroughly discussed in recent reviews, but, comparatively, retrograde trafficking pathways have received less attention. Retrograde trafficking is essential to recover membranes, retrieve proteins that have escaped from their intended localization, maintain homeostasis in maturing compartments, and recycle trafficking machinery for its reuse in anterograde transport reactions. Here, we review the current understanding on retrograde trafficking pathways in the endomembrane system of plants, discussing their integration with anterograde transport routes, describing conserved and plant-specific retrieval mechanisms at play, highlighting contentious issues and identifying open questions for future research.
Collapse
Affiliation(s)
- Jan Zouhar
- Central European Institute of Technology, Mendel University in Brno, CZ-61300 Brno, Czech Republic.
| | - Wenhan Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300 Hangzhou, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300 Hangzhou, China.
| | - Enrique Rojo
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain.
| |
Collapse
|
17
|
In vitro reconstitution of COPII vesicles from Arabidopsis thaliana suspension-cultured cells. Nat Protoc 2023; 18:810-830. [PMID: 36599961 DOI: 10.1038/s41596-022-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/23/2022] [Indexed: 01/06/2023]
Abstract
Transport vesicles mediate protein traffic between endomembrane organelles in a highly selective and efficient manner. In vitro reconstitution systems have been widely used for studying mechanisms of vesicle formation, polar trafficking, and cargo specificity in mammals and yeast. However, this technique has not yet been applied to plants because of the large lytic vacuoles and rigid cell walls. Here, we describe an Arabidopsis-derived in vitro vesicle formation system to reconstitute, purify and characterize plant-derived coat protein complex II (COPII) vesicles. In this protocol, we provide a detailed method for the isolation of microsomes and cytosol from Arabidopsis thaliana suspension-cultured cells (7-8 h), in vitro COPII vesicle reconstitution and purification (4-5 h) and biochemical and microscopic analysis using specific antibodies against COPII cargo molecules for reconstitution efficiency evaluation (2 h). We also include detailed sample-preparation steps for analyzing vesicle morphology by cryogenic electron microscopy (1 h) and vesicle cargoes by quantitative proteomics (4 h). Routinely, the whole procedure takes ~18-20 h of operation time and enables plant researchers without specific expertise to achieve organelle purification or vesicle reconstitution for further characterization.
Collapse
|
18
|
Yan H, Zhuang M, Xu X, Li S, Yang M, Li N, Du X, Hu K, Peng X, Huang W, Wu H, Tse YC, Zhao L, Wang H. Autophagy and its mediated mitochondrial quality control maintain pollen tube growth and male fertility in Arabidopsis. Autophagy 2023; 19:768-783. [PMID: 35786359 PMCID: PMC9980518 DOI: 10.1080/15548627.2022.2095838] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Macroautophagy/autophagy, a major catabolic pathway in eukaryotes, participates in plant sexual reproduction including the processes of male gametogenesis and the self-incompatibility response. Rapid pollen tube growth is another essential reproductive process that is metabolically highly demanding to drive the vigorous cell growth for delivery of male gametes for fertilization in angiosperms. Whether and how autophagy operates to maintain the homeostasis of pollen tubes remains unknown. Here, we provide evidence that autophagy is elevated in growing pollen tubes and critically required during pollen tube growth and male fertility in Arabidopsis. We demonstrate that SH3P2, a critical non-ATG regulator of plant autophagy, colocalizes with representative ATG proteins during autophagosome biogenesis in growing pollen tubes. Downregulation of SH3P2 expression significantly disrupts Arabidopsis pollen germination and pollen tube growth. Further analysis of organelle dynamics reveals crosstalk between autophagosomes and prevacuolar compartments following the inhibition of phosphatidylinositol 3-kinase. In addition, time-lapse imaging and tracking of ATG8e-labeled autophagosomes and depolarized mitochondria demonstrate that they interact specifically via the ATG8-family interacting motif (AIM)-docking site to mediate mitophagy. Ultrastructural identification of mitophagosomes and two additional forms of autophagosomes imply that multiple types of autophagy are likely to function simultaneously within pollen tubes. Altogether, our results suggest that autophagy is functionally crucial for mediating mitochondrial quality control and canonical cytoplasm recycling during pollen tube growth.Abbreviations: AIM: ATG8-family interacting motif; ATG8: autophagy related 8; ATG5: autophagy related 5; ATG7: autophagy related 7; BTH: acibenzolar-S-methyl; DEX: dexamethasone; DNP: 2,4-dinitrophenol; GFP: green fluorescent protein; YFP: yellow fluorescent protein; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; PVC: prevacuolar compartment; SH3P2: SH3 domain-containing protein 2.
Collapse
Affiliation(s)
- He Yan
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Menglong Zhuang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Xiaoyu Xu
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Shanshan Li
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Mingkang Yang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou null China
| | - Nianle Li
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Xiaojuan Du
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Kangwei Hu
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Xiaomin Peng
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Wei Huang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou null China
| | - Hong Wu
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou null China
| | - Yu Chung Tse
- Core Research Facilities, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lifeng Zhao
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Hao Wang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| |
Collapse
|
19
|
Xie Y, Wang Y, Yu X, Lin Y, Zhu Y, Chen J, Xie H, Zhang Q, Wang L, Wei Y, Xiao Y, Cai Q, Zheng Y, Wang M, Xie H, Zhang J. SH3P2, an SH3 domain-containing protein that interacts with both Pib and AvrPib, suppresses effector-triggered, Pib-mediated immunity in rice. MOLECULAR PLANT 2022; 15:1931-1946. [PMID: 36321201 DOI: 10.1016/j.molp.2022.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/03/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Plants usually keep resistance (R) proteins in a static state under normal conditions to avoid autoimmunity and save energy for growth, but R proteins can be rapidly activated upon perceiving pathogen invasion. Pib, the first cloned blast disease R gene in rice, encoding a nucleotide-binding leucine-rich repeat (NLR) protein, mediates resistance to the blast fungal (Magnaporthe oryzae) isolates carrying the avirulence gene AvrPib. However, the molecular mechanisms about how Pib recognizes AvrPib and how it is inactivated and activated remain largely unclear. In this study, through map-based cloning and CRISPR-Cas9 gene editing, we proved that Pib contributes to the blast disease resistance of rice cultivar Yunyin (YY). Furthermore, an SH3 domain-containing protein, SH3P2, was found to associate with Pib mainly at clathrin-coated vesicles in rice cells, via direct binding with the coiled-coil (CC) domain of Pib. Interestingly, overexpression of SH3P2 in YY compromised Pib-mediated resistance to M. oryzae isolates carrying AvrPib and Pib-AvrPib recognition-induced cell death. SH3P2 competitively inhibits the self-association of the Pib CC domain in vitro, suggesting that binding of SH3P2 with Pib undermines its homodimerization. Moreover, SH3P2 can also interact with AvrPib and displays higher affinity to AvrPib than to Pib, which leads to dissociation of SH3P2 from Pib in the presence of AvrPib. Taken together, our results suggest that SH3P2 functions as a "protector" to keep Pib in a static state by direct interaction during normal growth but could be triggered off by the invasion of AvrPib-carrying M. oryzae isolates. Our study reveals a new mechanism about how an NLR protein is inactivated under normal conditions but is activated upon pathogen infection.
Collapse
Affiliation(s)
- Yunjie Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yupeng Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Xiangzhen Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yuelong Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yongsheng Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Jinwen Chen
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Hongguang Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Qingqing Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lanning Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yanjia Xiao
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yanmei Zheng
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Mo Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huaan Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China.
| | - Jianfu Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China.
| |
Collapse
|
20
|
Wang Y, Li J, Wang J, Han P, Miao S, Zheng X, Han M, Shen X, Li H, Wu M, Hong Y, Liu Y. Plant UVRAG interacts with ATG14 to regulate autophagosome maturation and geminivirus infection. THE NEW PHYTOLOGIST 2022; 236:1358-1374. [PMID: 35978547 DOI: 10.1111/nph.18437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Autophagy is an essential degradation pathway that assists eukaryote survival under multiple stress conditions. Autophagosomes engulfing cargoes accomplish degradation only when they have matured through fusing with lysosomes or vacuoles. However, the molecular machinery mediating autophagosome maturation in plants remains unknown. Using the combined approaches of mass spectrometry, biochemistry, reverse genetics and microscopy, we uncover that UVRAG, a subunit of the class III phosphatidylinositol 3-kinase complexes in Nicotiana benthamiana, plays an essential role in autophagsome maturation via ATG14-assisted recruitment to autophagosomes and by facilitating RAB7 activation. An interaction between N. benthamiana UVRAG and ATG14 was observed in vitro and in vivo, which strikingly differed from their mutually exclusive appearance in different PI3KC3 complexes in yeast and mammals. This interaction increased the localisation of UVRAG on autophagosomes and enabled the convergence of autophagic and late endosomal structures, where they contributed to fusions between these two types of organelles by recruiting the essential membrane fusion factors RAB7 GTPase and the homotypic fusion and protein sorting (HOPS) complex. In addition, we uncovered a joint contribution of ATG14 and UVRAG to geminiviral infection, beyond autophagy. Our study provides insights into the mechanisms of autophagosome maturation in plants and expands the understanding of organisations and roles of the PI3KC3 complexes.
Collapse
Affiliation(s)
- Yan Wang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Science, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Jinlin Li
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Science, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Jingran Wang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Science, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Ping Han
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Science, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Shulei Miao
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Science, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Xiyin Zheng
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Science, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Meng Han
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Science, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Xueqi Shen
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Science, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Huangai Li
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Science, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Ming Wu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Science, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Worcester-Hangzhou Joint Molecular Plant Health Laboratory, School of Science and the Environment, University of Worcester, WR2 6AJ, Worcester, UK
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Science, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| |
Collapse
|
21
|
Tan ZL, Li JF, Luo HM, Liu YY, Jin Y. Plant extracellular vesicles: A novel bioactive nanoparticle for tumor therapy. Front Pharmacol 2022; 13:1006299. [PMID: 36249740 PMCID: PMC9559701 DOI: 10.3389/fphar.2022.1006299] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Extracellular vesicles are tiny lipid bilayer-enclosed membrane particles, including apoptotic bodies, micro vesicles, and exosomes. Organisms of all life forms can secrete extracellular vesicles into their surrounding environment, which serve as important communication tools between cells and between cells and the environment, and participate in a variety of physiological processes. According to new evidence, plant extracellular vesicles play an important role in the regulation of transboundary molecules with interacting organisms. In addition to carrying signaling molecules (nucleic acids, proteins, metabolic wastes, etc.) to mediate cellular communication, plant cells External vesicles themselves can also function as functional molecules in the cellular microenvironment across cell boundaries. This review introduces the source and extraction of plant extracellular vesicles, and attempts to clarify its anti-tumor mechanism by summarizing the current research on plant extracellular vesicles for disease treatment. We speculate that the continued development of plant extracellular vesicle-based therapeutic and drug delivery platforms will benefit their clinical applications.
Collapse
Affiliation(s)
| | | | | | - Yang-Yang Liu
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
22
|
Jin T, An J, Xu H, Chen J, Pan L, Zhao R, Wang N, Gai J, Li Y. A soybean sodium/hydrogen exchanger GmNHX6 confers plant alkaline salt tolerance by regulating Na +/K + homeostasis. FRONTIERS IN PLANT SCIENCE 2022; 13:938635. [PMID: 36204047 PMCID: PMC9531905 DOI: 10.3389/fpls.2022.938635] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Alkaline soil has a high pH due to carbonate salts and usually causes more detrimental effects on crop growth than saline soil. Sodium hydrogen exchangers (NHXs) are pivotal regulators of cellular Na+/K+ and pH homeostasis, which is essential for salt tolerance; however, their role in alkaline salt tolerance is largely unknown. Therefore, in this study, we investigated the function of a soybean NHX gene, GmNHX6, in plant response to alkaline salt stress. GmNHX6 encodes a Golgi-localized sodium/hydrogen exchanger, and its transcript abundance is more upregulated in alkaline salt tolerant soybean variety in response to NaHCO3 stress. Ectopic expression of GmNHX6 in Arabidopsis enhanced alkaline salt tolerance by maintaining high K+ content and low Na+/K+ ratio. Overexpression of GmNHX6 also improved soybean tolerance to alkaline salt stress. A single nucleotide polymorphism in the promoter region of NHX6 is associated with the alkaline salt tolerance in soybean germplasm. A superior promoter of GmNHX6 was isolated from an alkaline salt tolerant soybean variety, which showed stronger activity than the promoter from an alkaline salt sensitive soybean variety in response to alkali stress, by luciferase transient expression assays. Our results suggested soybean NHX6 gene plays an important role in plant tolerance to alkaline salt stress.
Collapse
|
23
|
Hanano A, Perez-Matas E, Shaban M, Cusido RM, Murphy DJ. Characterization of lipid droplets from a Taxus media cell suspension and their potential involvement in trafficking and secretion of paclitaxel. PLANT CELL REPORTS 2022; 41:853-871. [PMID: 34984531 DOI: 10.1007/s00299-021-02823-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Our paper describes the potential roles of lipid droplets of Taxus media cell suspension in the biosynthesis and secretion of paclitaxel and, therefore, highlights their involvement in improving its production. Paclitaxel (PTX) is a highly potent anticancer drug that is mainly produced using Taxus sp. cell suspension cultures. The main purpose of the current study is to characterize cellular LDs from T. media cell suspension with a particular focus on the biological connection of their associated proteins, the caleosins (CLOs), with the biosynthesis and secretion of PTX. A pure LD fraction obtained from T. media cells and characterized in terms of their proteome. Interestingly, the cellular LD in T. media sequester the PTX. This was confirmed in vitro, where about 96% of PTX (C0PTX,aq [mg L-1]) in the aqueous solution was partitioned into the isolated LDs. Furthermore, silencing of CLO-encoding genes in the T. media cells led to a net decrease in the number and size of LDs. This coincided with a significant reduction in expression levels of TXS, DBAT and DBTNBT, key genes in the PTX biosynthesis pathway. Subsequently, the biosynthesis of PTX was declined in cell culture. In contrast, treatment of cells with 13-hydroperoxide C18:3, a substrate of the peroxygenase activity, induced the expression of CLOs, and, therefore, the accumulation of cellular LDs in the T. media cells cultures, thus increasing the PTX secretion. The accumulation of stable LDs is critically important for effective secretion of PTX. This is modulated by the expression of caleosins, a class of LD-associated proteins with a dual role conferring the structural stability of LDs as well as regulating lipidic bioactive metabolites via their enzymatic activity, thus enhancing the biosynthesis of PTX.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria.
| | - Edgar Perez-Matas
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII Sn., 08028, Barcelona, Spain
| | - Mouhnad Shaban
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| | - Rosa M Cusido
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII Sn., 08028, Barcelona, Spain
| | - Denis J Murphy
- Genomics and Computational Biology Group, University of South Wales, Pontypridd, Wales, UK
| |
Collapse
|
24
|
Sahab S, Taylor N. Studies on Pure Mlb ® (Multiple Left Border) Technology and Its Impact on Vector Backbone Integration in Transgenic Cassava. FRONTIERS IN PLANT SCIENCE 2022; 13:816323. [PMID: 35185986 PMCID: PMC8855067 DOI: 10.3389/fpls.2022.816323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Imperfect T-DNA processing is common during Agrobacterium-mediated transformation, which integrates vector backbone sequences into the plant genome. However, regulatory restrictions prevent such transgenic plants from being developed for commercial deployment. The binary vector pCAMBIA2300 was modified by incorporating multiple left border (Mlb®) repeats and was tested in BY2 cells, tobacco, and cassava plants to address this issue. PCR analyses confirmed a twofold increase in the vector backbone free events in the presence of triple left borders in all three systems tested. Vector backbone read-through past the LB was reduced significantly; however, the inclusion of Mlbs® did not effectively address the beyond right border read-through. Also, Mlbs® increased the frequency of single-copy and vector backbone free events (clean events) twice compared to a single LB construct. Here, we briefly narrate the strength and limitations of using Mlb® technology and reporter genes in reducing the vector backbone transfer in transgenic events.
Collapse
Affiliation(s)
- Sareena Sahab
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Nigel Taylor
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| |
Collapse
|
25
|
Yang L, Gao C, Jiang L. Leucine-rich repeat receptor-like protein kinase AtORPK1 promotes oxidative stress resistance in an AtORPK1-AtKAPP mediated module in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111147. [PMID: 35067310 DOI: 10.1016/j.plantsci.2021.111147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/20/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Signal perception and transduction by the cell surface receptors are essential for cell-cell communication and plant response to abiotic stress. In this work, a previously uncharacterized leucine-rich repeat receptor-like kinase (LRR-RLK), Oxidative-stress Related Protein Kinase 1 (AtORPK1), was isolated from Arabidopsis thaliana, and its biological function was investigated in protoplasts, BY-2 cells and transgenic Arabidopsis plants. AtORPK1 is ubiquitously expressed in various tissues and organs of Arabidopsis at different developmental stages. Loss-of-function of AtORPK1 reduced, whereas overexpression of AtORPK1 increased, the oxidative stress resistance and oxidative stress responsive gene expression in orpk1 mutant and AtORPK1 transgenic Arabidopsis. Sub-cellular localization analyses revealed that AtORPK1 is localized to plasma membrane and endosomes, and the specific localization was significantly affected by hydrogen peroxide (H2O2) treatment. Further GFP, CFP, YFP and RFP fusion protein co-localization and FRET analyses demonstrated that AtORPK1 interacted and co-localized with AtKAPP, a common downstream phosphatase, in the enlarged endosomes such as prevacuolar compartments. Our results indicate that AtORPK1 functions as a positive molecular link between the oxidative stress signaling and antioxidant stress in plants.
Collapse
Affiliation(s)
- Lei Yang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, 264025, PR China; School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, PR China.
| |
Collapse
|
26
|
Matsuoka Y, Yamada T, Maruyama N. Wheat α-gliadin and high-molecular-weight glutenin subunit accumulate in different storage compartments of transgenic soybean seed. Transgenic Res 2022; 31:43-58. [PMID: 34427836 DOI: 10.1007/s11248-021-00279-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
Wheat seed storage proteins (prolamins) are important for the grain quality because they provide a characteristic texture to wheat flour products. In wheat endosperm cells, prolamins are transported from the Endoplasmic reticulum to Protein storage vacuoles through two distinct pathways-a conventional pathway passing through the Golgi apparatus and an unconventional Golgi-bypassing pathway during which prolamins accumulate in the ER lumen, forming Protein bodies. Unfortunately, transport studies conducted previously achieved limited success because of the seed-specificity of the latter pathway and the multigene architecture of prolamins. To overcome this difficulty, we expressed either of the two families of wheat prolamins, namely α-gliadin or High-molecular-weight subunit of glutenin, in soybean seed, which naturally lacks prolamin-like proteins. SDS-PAGE analysis indicated the successful expression of recombinant wheat prolamins in transgenic soybean seeds. Their accumulation states were quite different-α-gliadin accumulated with partial fragmentation whereas the HMW-glutenin subunit formed disulfide-crosslinked polymers without fragmentation. Immunoelectron microscopy of seed sections revealed that α-gliadin was transported to PSVs whereas HMW-glutenin was deposited in novel ER-derived compartments distinct from PSVs. Observation of a developmental stage of seed cells showed the involvement of post-Golgi Prevacuolar compartments in the transport of α-gliadin. In a similar stage of cells, deposits of HMW-glutenin surrounded by membranes studded with ribosomes were observed confirming the accumulation of this prolamin as ER-derived PBs. Subcellular fractionation analysis supported the electron microscopy observations. Our results should help in better understanding of molecular events during the transport of prolamins in wheat.
Collapse
Affiliation(s)
- Yuki Matsuoka
- Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Tetsuya Yamada
- Graduate School of Agriculture, Hokkaido University, Kita9 Nishi9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Nobuyuki Maruyama
- Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
27
|
Yamaoka Y, Shin S, Lee Y, Ito M, Lee Y, Nishida I. Phosphatidylserine Is Required for the Normal Progression of Cell Plate Formation in Arabidopsis Root Meristems. PLANT & CELL PHYSIOLOGY 2021; 62:1396-1408. [PMID: 34115854 DOI: 10.1093/pcp/pcab086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Phosphatidylserine (PS) is involved in various cellular processes in yeast and animals. However, PS functions in plants remain unclear. In Arabidopsis, PS is relatively enriched in flower and root tissues, and the genetic disturbance of PS biosynthesis in phosphatidylserine synthase1 (PSS1)/ pss1 heterozygotes induces sporophytic and gametophytic defects during pollen maturation. This study functionally characterized PS in Arabidopsis roots and observed that pss1 seedlings exhibited a short-root phenotype by reducing the meristem size and cell elongation capacity. Confocal microscopy imaging analyses of PS with GFP-LactC2 and the endocytic activity with FM 4-64 revealed that although GFP-LactC2 (or PS) was localized in the plasma membrane and endocytic membranes, the lack of PS in pss1 roots did not affect the constitutive endocytosis. Instead, a fluorescence imaging analysis of the cytokinetic phases in the dividing zone of pss1-2 roots revealed a significant delay in telophase progression, requiring active cargo vesicle trafficking for cell plate formation. Confocal microscopy imaging analysis of transgenic GFP-LactC2 root cells with developing cell plates indicated that GFP-LactC2 was localized at the cell plate. Moreover, confocal microscopy images of transgenic pss1-2 and PSS1 roots expressing the cell plate-specific syntaxin construct ProKNOLLE:eGFP-KNOLLE showed abnormal cell plate development in pss1-2ProKNOLLE:eGFP-KNOLLE roots. These results suggested that PS is required for root cytokinesis, possibly because it helps mediate the cargo vesicular trafficking required for cell plate formation.
Collapse
Affiliation(s)
- Yasuyo Yamaoka
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-Ku, Saitama 338-8570, Japan
- Department of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Division of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Seungjun Shin
- Department of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Yuree Lee
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Masaki Ito
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Youngsook Lee
- Department of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Ikuo Nishida
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-Ku, Saitama 338-8570, Japan
| |
Collapse
|
28
|
Li S, Cerri M, Strazzer P, Li Y, Spelt C, Bliek M, Vandenbussche M, Martínez-Calvó E, Lai B, Reale L, Koes R, Quattrocchio FM. An ancient RAB5 governs the formation of additional vacuoles and cell shape in petunia petals. Cell Rep 2021; 36:109749. [PMID: 34592147 DOI: 10.1016/j.celrep.2021.109749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/11/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022] Open
Abstract
Homologous ("canonical") RAB5 proteins regulate endosomal trafficking to lysosomes in animals and to the central vacuole in plants. Epidermal petal cells contain small vacuoles (vacuolinos) that serve as intermediate stations for proteins on their way to the central vacuole. Here, we show that transcription factors required for vacuolino formation in petunia induce expression of RAB5a. RAB5a defines a previously unrecognized clade of canonical RAB5s that is evolutionarily and functionally distinct from ARA7-type RAB5s, which act in trafficking to the vacuole. Loss of RAB5a reduces cell height and abolishes vacuolino formation, which cannot be rescued by the ARA7 homologs, whereas constitutive RAB5a (over)expression alters the conical cell shape and promotes homotypic vacuolino fusion, resulting in oversized vacuolinos. These findings provide a rare example of how gene duplication and neofunctionalization increased the complexity of membrane trafficking during evolution and suggest a mechanism by which cells may form multiple vacuoles with distinct content and function.
Collapse
Affiliation(s)
- Shuangjiang Li
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Martina Cerri
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Pamela Strazzer
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Yanbang Li
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Cornelis Spelt
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Mattijs Bliek
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Michiel Vandenbussche
- Laboratoire Reproduction et Développement des Plantes (RDP), ENS de Lyon/CNRS/INRA/UCBL, 46 Allée d'Italie, 69364 Lyon, France
| | - Enric Martínez-Calvó
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Biao Lai
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Lara Reale
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Ronald Koes
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Francesca M Quattrocchio
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| |
Collapse
|
29
|
An in vitro vesicle formation assay reveals cargo clients and factors that mediate vesicular trafficking. Proc Natl Acad Sci U S A 2021; 118:2101287118. [PMID: 34433667 PMCID: PMC8536394 DOI: 10.1073/pnas.2101287118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein sorting in the secretory pathway is a fundamentally important cellular process, but the clients of a specific cargo sorting machinery remains largely underinvestigated. Here, utilizing a vesicle formation assay to profile proteins associated with vesicles, we identified cytosolic proteins that are associated with vesicle membranes in a GTP-dependent manner or that interact with GTP-bound Sar1A. We found that two of them, FAM84B and PRRC1, regulate anterograde trafficking. Moreover, we revealed specific clients of two export adaptors, SURF4 and ERGIC53. These analyses demonstrate that our approach is powerful to identify factors that regulate vesicular trafficking and to uncover clients of specific cargo receptors, providing a robust method to reveal insights into the secretory pathway. The fidelity of protein transport in the secretory pathway relies on the accurate sorting of proteins to their correct destinations. To deepen our understanding of the underlying molecular mechanisms, it is important to develop a robust approach to systematically reveal cargo proteins that depend on specific sorting machinery to be enriched into transport vesicles. Here, we used an in vitro assay that reconstitutes packaging of human cargo proteins into vesicles to quantify cargo capture. Quantitative mass spectrometry (MS) analyses of the isolated vesicles revealed cytosolic proteins that are associated with vesicle membranes in a GTP-dependent manner. We found that two of them, FAM84B (also known as LRAT domain containing 2 or LRATD2) and PRRC1, contain proline-rich domains and regulate anterograde trafficking. Further analyses revealed that PRRC1 is recruited to endoplasmic reticulum (ER) exit sites, interacts with the inner COPII coat, and its absence increases membrane association of COPII. In addition, we uncovered cargo proteins that depend on GTP hydrolysis to be captured into vesicles. Comparing control cells with cells depleted of the cargo receptors, SURF4 or ERGIC53, we revealed specific clients of each of these two export adaptors. Our results indicate that the vesicle formation assay in combination with quantitative MS analysis is a robust and powerful tool to uncover novel factors that mediate vesicular trafficking and to uncover cargo clients of specific cellular factors.
Collapse
|
30
|
Liu C, Zeng Y, Li H, Yang C, Shen W, Xu M, Xiao Z, Chen T, Li B, Cao W, Jiang L, Otegui MS, Gao C. A plant-unique ESCRT component, FYVE4, regulates multivesicular endosome biogenesis and plant growth. THE NEW PHYTOLOGIST 2021; 231:193-209. [PMID: 33772801 DOI: 10.1111/nph.17358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
During evolution, land plants generated unique proteins that participate in endosomal sorting and multivesicular endosome (MVE) biogenesis, many of them with specific phosphoinositide-binding capabilities. Nonetheless, the function of most plant phosphoinositide-binding proteins in endosomal trafficking remains elusive. Here, we analysed several Arabidopsis mutants lacking predicted phosphoinositide-binding proteins and first identified fyve4-1 as a mutant with a hypersensitive response to high-boron conditions and defects in degradative vacuolar sorting of membrane proteins such as the borate exporter BOR1-GFP. FYVE4 encodes a plant-unique, FYVE domain-containing protein that interacts with SNF7, a core component of ESCRT-III (Endosomal Sorting Complex Required for Transport III). FYVE4 affects the membrane association of the late-acting ESCRT components SNF7 and VPS4, and modulates the formation of intraluminal vesicles (ILVs) inside MVEs. The critical function of FYVE4 in the ESCRT pathway was further demonstrated by the strong genetic interactions with SNF7B and LIP5. Although the fyve4-1, snf7b and lip5 single mutants were viable, the fyve4-1 snf7b and fyve4-1 lip5 double mutants were seedling lethal, with strong defects in MVE biogenesis and vacuolar sorting of ubiquitinated membrane proteins. Taken together, we identified FYVE4 as a novel plant endosomal regulator, which functions in ESCRTing pathway to regulate MVE biogenesis.
Collapse
Affiliation(s)
- Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yonglun Zeng
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Min Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhidan Xiao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Tongsheng Chen
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Baiying Li
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wenhan Cao
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Marisa S Otegui
- Department of Botany, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
31
|
Zhang X, Li H, Lu H, Hwang I. The trafficking machinery of lytic and protein storage vacuoles: how much is shared and how much is distinct? JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3504-3512. [PMID: 33587748 DOI: 10.1093/jxb/erab067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/10/2021] [Indexed: 05/10/2023]
Abstract
Plant cells contain two types of vacuoles, the lytic vacuole (LV) and protein storage vacuole (PSV). LVs are present in vegetative cells, whereas PSVs are found in seed cells. The physiological functions of the two types of vacuole differ. Newly synthesized proteins must be transported to these vacuoles via protein trafficking through the endomembrane system for them to function. Recently, significant advances have been made in elucidating the molecular mechanisms of protein trafficking to these organelles. Despite these advances, the relationship between the trafficking mechanisms to the LV and PSV remains unclear. Some aspects of the trafficking mechanisms are common to both types of vacuole, but certain aspects are specific to trafficking to either the LV or PSV. In this review, we summarize recent findings on the components involved in protein trafficking to both the LV and PSV and compare them to examine the extent of overlap in the trafficking mechanisms. In addition, we discuss the interconnection between the LV and PSV provided by the protein trafficking machinery and the implications for the identity of these organelles.
Collapse
Affiliation(s)
- Xiuxiu Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hui Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Inhwan Hwang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Department of Life Sciences, Pohang University of Science and Technology, 37673 Pohang, South Korea
| |
Collapse
|
32
|
Cheng X, Bezanilla M. SABRE populates ER domains essential for cell plate maturation and cell expansion influencing cell and tissue patterning. eLife 2021; 10:65166. [PMID: 33687329 PMCID: PMC7987345 DOI: 10.7554/elife.65166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
SABRE, which is found throughout eukaryotes and was originally identified in plants, mediates cell expansion, division plane orientation, and planar polarity in plants. How and where SABRE mediates these processes remain open questions. We deleted SABRE in Physcomitrium patens, an excellent model for cell biology. SABRE null mutants were stunted, similar to phenotypes in seed plants. Additionally, polarized growing cells were delayed in cytokinesis, sometimes resulting in catastrophic failures. A functional SABRE fluorescent fusion protein localized to dynamic puncta on regions of the endoplasmic reticulum (ER) during interphase and at the cell plate during cell division. Without SABRE, cells accumulated ER aggregates and the ER abnormally buckled along the developing cell plate. Notably, callose deposition was delayed in ∆sabre, and in cells that failed to divide, abnormal callose accumulations formed at the cell plate. Our findings revealed a surprising and fundamental role for the ER in cell plate maturation.
Collapse
Affiliation(s)
- Xiaohang Cheng
- Department of Biological Sciences, Dartmouth College, Hanover, United States
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, United States
| |
Collapse
|
33
|
Zhang M, Hu S, Yi F, Gao Y, Zhu D, Wang Y, Cai Y, Hou D, Lin X, Shen J. Organelle Visualization With Multicolored Fluorescent Markers in Bamboo. FRONTIERS IN PLANT SCIENCE 2021; 12:658836. [PMID: 33936145 PMCID: PMC8081836 DOI: 10.3389/fpls.2021.658836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 05/03/2023]
Abstract
Bamboo is an important model plant to study the molecular mechanisms of rapid shoot growth and flowering once in a lifetime. However, bamboo research about protein functional characterization is largely lagged behind, mainly due to the lack of gene transformation platforms. In this study, a protoplast transient gene expression system in moso bamboo has been first established. Using this reliable and efficient system, we have generated a set of multicolored fluorescent markers based on the targeting sequences from endogenous proteins, which have been validated by their comparative localization with Arabidopsis organelle markers, in a combination with pharmaceutical treatments. Moreover, we further demonstrated the power of this multicolor marker set for rapid, combinatorial analysis of the subcellular localization of uncharacterized proteins, which may play potential functions in moso bamboo flowering and fast growth of shoots. Finally, this protoplast transient gene expression system has been elucidated for functional analysis in protein-protein interaction by fluorescence resonance energy transfer (FRET) and co-immunoprecipitation analysis. Taken together, in combination with the set of moso bamboo organelle markers, the protoplast transient gene expression system could be used for subcellular localization and functional study of unknown proteins in bamboo and will definitely promote rapid progress in diverse areas of research in bamboo plants.
Collapse
Affiliation(s)
- Mengdi Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Shuai Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Fang Yi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Yanli Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Dongmei Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Yizhu Wang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Yi Cai
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
34
|
Liu NJ, Wang N, Bao JJ, Zhu HX, Wang LJ, Chen XY. Lipidomic Analysis Reveals the Importance of GIPCs in Arabidopsis Leaf Extracellular Vesicles. MOLECULAR PLANT 2020; 13:1523-1532. [PMID: 32717349 DOI: 10.1016/j.molp.2020.07.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/20/2020] [Accepted: 07/22/2020] [Indexed: 05/09/2023]
Abstract
Plant extracellular vesicles (EVs) are membrane-enclosed nanoparticles that play diverse roles in plant development and response. Recently, impressive progress has been made in the isolation and identification of the proteins and RNAs carried in plant EVs; however, the analysis of EV lipid compositions remains rudimentary. Here, we performed lipidomic analysis of Arabidopsis rosette leaf EVs, revealing a high abundance of certain groups of lipids, in particular sphingolipids, in the EVs. Remarkably, the EV sphingolipids are composed of nearly pure glycosylinositolphosphoceramides (GIPCs), which are green lineage abundant and negatively charged. We further showed that the Arabidopsis TETRASPANIN 8 (TET8) knockout mutant has a lower amount of cellular GIPCs and secrets fewer EVs, companied with impaired reactive oxygen species (ROS) burst toward stresses. Exogenous application of GIPCs promoted the secretion of EVs and ROS burst in both the WT and tet8 mutant. The characteristic enrichment of sphingolipid GIPCs provides valuable insights into the biogenesis and function of plant EVs.
Collapse
Affiliation(s)
- Ning-Jing Liu
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Ning Wang
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China; Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jing-Jing Bao
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Hui-Xian Zhu
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling-Jian Wang
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Xiao-Ya Chen
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
35
|
Ji C, Zhou J, Guo R, Lin Y, Kung CH, Hu S, Ng WY, Zhuang X, Jiang L. AtNBR1 Is a Selective Autophagic Receptor for AtExo70E2 in Arabidopsis. PLANT PHYSIOLOGY 2020; 184:777-791. [PMID: 32759269 PMCID: PMC7536653 DOI: 10.1104/pp.20.00470] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/28/2020] [Indexed: 05/13/2023]
Abstract
Selective autophagy is a subcellular process whereby cytoplasmic materials are selectively sequestered into autophagosomes for subsequent delivery to the vacuole for degradation and recycling. Arabidopsis (Arabidopsis thaliana) NBR1 (next to BRCA1 gene 1 protein; AtNBR1) has been proposed to function as a selective autophagy receptor in plants, whereby AtNBR1 anchors the ubiquitinated targets to autophagosomes for degradation. However, the specific cargos of AtNBR1 remain elusive. We previously showed that Arabidopsis exocyst subunit EXO70 family protein E2 (AtExo70E2), a marker for exocyst-positive organelle (EXPO), colocalized with the autophagosome marker Arabidopsis autophagy-related protein8 (AtATG8) and was delivered to the vacuole for degradation upon autophagic induction. Here, through multiple analyses, we demonstrate that AtNBR1 is a selective receptor for AtExo70E2 during autophagy in Arabidopsis. First, two novel loss-of-function nbr1 CRISPR mutants (nbr1-c1 and nbr1-c2) showed an early-senescence phenotype under short-day growth conditions. Second, during autophagic induction, the vacuolar delivery of AtExo70E2 or EXPO was significantly reduced in nbr1 mutants compared to wild-type plants. Third, biochemical and recruitment assays demonstrated that AtNBR1 specifically interacted and recruited AtExo70E2 or its EXPO to AtATG8-positive autophagosomes in a ubiquitin-associated (UBA)-independent manner during autophagy. Taken together, our data indicate that AtNBR1 functions as a selective receptor in mediating vacuolar delivery of AtExo70E2 or EXPO in a UBA-independent manner in plant autophagy.
Collapse
Affiliation(s)
- Changyang Ji
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Jun Zhou
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, the Chinese University of Hong Kong, Hong Kong, China
- Ministry of Education of the People's Republic of China's Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Rongfang Guo
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, the Chinese University of Hong Kong, Hong Kong, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youshun Lin
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Hong Kung
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Shuai Hu
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Wing Yin Ng
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Liwen Jiang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, the Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
36
|
Wei Z, Chen Y, Zhang B, Ren Y, Qiu L. GmGPA3 is involved in post-Golgi trafficking of storage proteins and cell growth in soybean cotyledons. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110423. [PMID: 32234217 DOI: 10.1016/j.plantsci.2020.110423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 06/11/2023]
Abstract
As the major nutritional component in soybean seeds storage proteins are initially synthesized on the endoplasmic reticulum as precursors and subsequently delivered to protein storage vacuoles (PSVs) via the Golgi-mediated pathway where they are converted into mature subunits and accumulated. However, the molecular machinery required for storage protein trafficking in soybean remains largely unknown. In this study, we cloned the sole soybean homolog of OsGPA3 that encodes a plant-unique kelch-repeat regulator of post-Golgi vesicular traffic for rice storage protein sorting. A complementation test showed that GmGPA3 could rescue the rice gpa3 mutant. Biochemical assays verified that GmGPA3 physically interacts with GmRab5 and its guanine exchange factor (GEF) GmVPS9. Expression of GmGPA3 had no obvious effect on the GEF activity of GmVPS9 toward GmRab5a. Notably, knock-down of GmGPA3 disrupted the trafficking of mmRFP-CT10 (an artificial cargo destined for PSVs) in developing soybean cotyledons. We identified two putative GmGPA3 interacting partners (GmGMG3 and GmGMG11) by screening a yeast cDNA library. Overexpression of GmGPA3 or GmGMG3 caused shrunken cotyledon cells. Our overall results suggested that GmGPA3 plays an important role in cell growth and development, in addition to its conserved role in mediating storage protein trafficking in soybean cotyledons.
Collapse
Affiliation(s)
- Zhongyan Wei
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, PR China
| | - Yu Chen
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Yulong Ren
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Lijuan Qiu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
37
|
MTV proteins unveil ER- and microtubule-associated compartments in the plant vacuolar trafficking pathway. Proc Natl Acad Sci U S A 2020; 117:9884-9895. [PMID: 32321832 DOI: 10.1073/pnas.1919820117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The factors and mechanisms involved in vacuolar transport in plants, and in particular those directing vesicles to their target endomembrane compartment, remain largely unknown. To identify components of the vacuolar trafficking machinery, we searched for Arabidopsis modified transport to the vacuole (mtv) mutants that abnormally secrete the synthetic vacuolar cargo VAC2. We report here on the identification of 17 mtv mutations, corresponding to mutant alleles of MTV2/VSR4, MTV3/PTEN2A MTV7/EREL1, MTV8/ARFC1, MTV9/PUF2, MTV10/VPS3, MTV11/VPS15, MTV12/GRV2, MTV14/GFS10, MTV15/BET11, MTV16/VPS51, MTV17/VPS54, and MTV18/VSR1 Eight of the MTV proteins localize at the interface between the trans-Golgi network (TGN) and the multivesicular bodies (MVBs), supporting that the trafficking step between these compartments is essential for segregating vacuolar proteins from those destined for secretion. Importantly, the GARP tethering complex subunits MTV16/VPS51 and MTV17/VPS54 were found at endoplasmic reticulum (ER)- and microtubule-associated compartments (EMACs). Moreover, MTV16/VPS51 interacts with the motor domain of kinesins, suggesting that, in addition to tethering vesicles, the GARP complex may regulate the motors that transport them. Our findings unveil a previously uncharacterized compartment of the plant vacuolar trafficking pathway and support a role for microtubules and kinesins in GARP-dependent transport of soluble vacuolar cargo in plants.
Collapse
|
38
|
Hu S, Li Y, Shen J. A Diverse Membrane Interaction Network for Plant Multivesicular Bodies: Roles in Proteins Vacuolar Delivery and Unconventional Secretion. FRONTIERS IN PLANT SCIENCE 2020; 11:425. [PMID: 32425960 PMCID: PMC7203423 DOI: 10.3389/fpls.2020.00425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/24/2020] [Indexed: 05/15/2023]
Abstract
Vesicle trafficking between the membrane-bound organelles in plant cells plays crucial roles in the precise transportation of various materials, and thus supports cell proliferation and cellular polarization. Conventionally, plant prevacuolar compartments (PVCs), identified as multivesicular bodies (MVBs), play important roles in both the secretory pathway as intermediate compartments and the endocytic pathway as late endosomes. In recent years, the PVC/MVBs have been proposed to play important roles in both protein vacuolar delivery and unconventional secretion, but several important questions on the new regulators and environmental cues that coordinate the PVC/MVB-organelle membrane interactions and their biological significances remain. In this review, we first summarize the identity and nature of the plant PVC/MVBs, and then we present an update on our current understanding on the interaction of PVC/MVBs with other organelles in the plant endomembrane system with focus on the vacuole, autophagosome, and plasma membrane (PM) in plant development and stress responses. Finally, we raise some open questions and present future perspectives in the study of PVC/MVB-organelle interactions and associated biological functions.
Collapse
|
39
|
Stefano G, Brandizzi F. Analysis of Endoplasmic Reticulum-Endosome Association Using Live-Cell Imaging in Plant Cells. Methods Mol Biol 2020; 2177:23-33. [PMID: 32632802 DOI: 10.1007/978-1-0716-0767-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The endoplasmic reticulum (ER) is one of the most abundant endomembrane compartments and is in close association with most of the other organelles. In mammalian and yeast cells, the physiological roles and the molecular machineries underlying such association have only recently begun to emerge. In plant cells, recent live-cell confocal imaging and electron microscopy studies have established that endosomes are associated with the ER [1]. Here, we describe confocal imaging methods and software to analyze ER-endosome association in plant cells.
Collapse
Affiliation(s)
- Giovanni Stefano
- MSU-DOE Plant Research Lab, Plant Biology Department Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Plant Biology Department Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
40
|
Cui Y, Gao J, He Y, Jiang L. Plant extracellular vesicles. PROTOPLASMA 2020; 257:3-12. [PMID: 31468195 DOI: 10.1007/s00709-019-01435-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/19/2019] [Indexed: 05/20/2023]
Abstract
Exocytosis is a key mechanism for delivering materials into the extracellular space for cell function and communication. In plant cells, conventional protein secretion (CPS) is achieved via an ER (endoplasmic reticulum)-Golgi-TGN (trans-Golgi network)-PM (plasma membrane) pathway. Unconventional protein secretion (UPS) bypassing these secretory organelles is also in operation and can potentially lead to the formation of extracellular vesicles (EVs) in plant cells. Although multiple types of EVs have been identified and shown to play important roles in mediating intercellular communications in mammalian cells, there has been a long debate about the possible existence of EVs in plants because of the presence of the cell wall. However, increasing evidence suggests that plants also release EVs having various functions including unconventional protein secretion, RNA transport, and defense against pathogens. In this review, we present an update on the current knowledge about the nature, secretory mechanism, and function of various types of EVs in plants. The key regulators involved in EV secretion are also summarized and discussed. We pay special attention to the function of EVs in plant defense and symbiosis.
Collapse
Affiliation(s)
- Yong Cui
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Jiayang Gao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yilin He
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
41
|
Zeng Y, Li B, Lin Y, Jiang L. The interplay between endomembranes and autophagy in plants. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:14-22. [PMID: 31344498 DOI: 10.1016/j.pbi.2019.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 06/10/2023]
Abstract
Autophagosomes are unique double-membrane organelles that enclose a portion of intracellular components for lysosome/vacuole delivery to maintain cellular homeostasis in eukaryotic cells. Genetic screening has revealed the requirement of autophagy-related proteins for autophagosome formation, although the origin of the autophagosome membrane remains elusive. The endomembrane system is a series of membranous organelles maintained by dynamic membrane flow between various compartments. In plants, there is accumulating evidence pointing to a link between autophagy and the endomembrane system, in particular between the endoplasmic reticulum and autophagosome. Here, we highlight and discuss about recent findings on plant autophagosome formation. We also look into the functional roles of endomembrane machineries in regard to the autophagy pathway in plants.
Collapse
Affiliation(s)
- Yonglun Zeng
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Baiying Li
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Youshun Lin
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong; The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
42
|
Zhu D, Zhang M, Gao C, Shen J. Protein trafficking in plant cells: Tools and markers. SCIENCE CHINA-LIFE SCIENCES 2019; 63:343-363. [DOI: 10.1007/s11427-019-9598-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022]
|
43
|
Li B, Li Y, Liu F, Tan X, Rui Q, Tong Y, Qiao L, Gao R, Li G, Shi R, Li Y, Bao Y. Overexpressed Tomosyn Binds Syntaxins and Blocks Secretion during Pollen Development. PLANT PHYSIOLOGY 2019; 181:1114-1126. [PMID: 31530628 PMCID: PMC6836850 DOI: 10.1104/pp.19.00965] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/04/2019] [Indexed: 05/21/2023]
Abstract
SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) complex formation is necessary for intracellular membrane fusion and thus has a key role in processes such as secretion. However, little is known about the regulatory factors that bind to Qa-SNAREs, which are also known as syntaxins (SYPs) in plants. Here, we characterized Arabidopsis (Arabidopsis thaliana) Tomosyn protein (AtTMS) and demonstrated that it is a conserved regulator of SYPs in plants. AtTMS binds strongly via its R-SNARE motif-containing C terminus to the Qa domain of PM-resident, pollen-expressed SYP1s (SYP111, SYP124, SYP125, SYP131, and SYP132), which were narrowed down from 12 SYPs. AtTMS is highly expressed in pollen from the bicellular stage onwards, and overexpression of AtTMS under the control of the UBIQUITIN10, MSP1, or LAT52 promoter all resulted in defective pollen after the microspore stage in which secretion was inhibited, leading to the failure of intine deposition and cell plate formation during pollen mitosis I. In tobacco (Nicotiana benthamiana) leaf epidermal cells, overexpression of AtTMS inhibited the secretion of secreted GFP. The defects were rescued by mCherry-tagged SYP124, SYP125, SYP131, or SYP132. In vivo, SYP132 partially rescued the pMSP1:AtTMS phenotype. In addition, AtTMS, lacking a transmembrane domain, was recruited to the plasma membrane by SYP124, SYP125, SYP131, and SYP132 and competed with Vesicle-Associated Membrane Protein721/722 for binding to, for example, SYP132. Together, our results demonstrated that AtTMS might serve as a negative regulator of secretion, whereby active secretion might be fine-tuned during pollen development.
Collapse
Affiliation(s)
- Bingxuan Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanbin Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Feng Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaoyun Tan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qingchen Rui
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yueshan Tong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Lixin Qiao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Rongrong Gao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Ge Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Rui Shi
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yan Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yiqun Bao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
44
|
Zhao Q, Shen J, Gao C, Cui Y, Wang Y, Cui J, Cheng L, Cao W, Zhu Y, Huang S, Zhou Q, Leong CK, Leung KP, Chen X, Jiang L. RST1 Is a FREE1 Suppressor That Negatively Regulates Vacuolar Trafficking in Arabidopsis. THE PLANT CELL 2019; 31:2152-2168. [PMID: 31221737 PMCID: PMC6751125 DOI: 10.1105/tpc.19.00003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/18/2019] [Accepted: 06/17/2019] [Indexed: 05/23/2023]
Abstract
FYVE domain protein required for endosomal sorting1 (FREE1), a plant-specific endosomal sorting complex required for transport-I component, is essential for the biogenesis of multivesicular bodies (MVBs), vacuolar degradation of membrane protein, cargo vacuolar sorting, autophagic degradation, and vacuole biogenesis in Arabidopsis (Arabidopsis thaliana). Here, we report the characterization of RESURRECTION1 (RST1) as a suppressor of free1 that, when mutated as a null mutant, restores the normal MVB and vacuole formation of a FREE1-RNAi knockdown line and consequently allows survival. RST1 encodes an evolutionarily conserved multicellular organism-specific protein, which contains two Domain of Unknown Function 3730 domains, showing no similarity to known proteins, and predominantly localizes in the cytosol. The depletion of FREE1 causes substantial accumulation of RST1, and transgenic Arabidopsis plants overexpressing RST1 display retarded seedling growth with dilated MVBs, and inhibition of endocytosed FM4-64 dye to the tonoplast, suggesting that RST1 has a negative role in vacuolar transport. Consistently, enhanced endocytic degradation of membrane vacuolar cargoes occurs in the rst1 mutant. Further transcriptomic comparison of rst1 with free1 revealed a negative association between gene expression profiles, demonstrating that FREE1 and RST1 have antagonistic functions. Thus, RST1 is a negative regulator controlling membrane protein homeostasis and FREE1-mediated functions in plants.
Collapse
Affiliation(s)
- Qiong Zhao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou 510631, China
| | - Yong Cui
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yongyi Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jie Cui
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Lixin Cheng
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medicine College of Ji’nan University, Shenzhen 518020, China
| | - Wenhan Cao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ying Zhu
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Shuxian Huang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qianzi Zhou
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Cheuk Ka Leong
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - King Pong Leung
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
45
|
Gao J, Chaudhary A, Vaddepalli P, Nagel MK, Isono E, Schneitz K. The Arabidopsis receptor kinase STRUBBELIG undergoes clathrin-dependent endocytosis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3881-3894. [PMID: 31107531 PMCID: PMC6685663 DOI: 10.1093/jxb/erz190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/09/2019] [Indexed: 05/04/2023]
Abstract
Signaling mediated by cell surface receptor kinases is central to the coordination of growth patterns during organogenesis. Receptor kinase signaling is in part controlled through endocytosis and subcellular distribution of the respective receptor kinase. For the majority of plant cell surface receptors, the underlying trafficking mechanisms are not characterized. In Arabidopsis, tissue morphogenesis requires the atypical receptor kinase STRUBBELIG (SUB). Here, we studied the endocytic mechanism of SUB. Our data revealed that a functional SUB-enhanced green fluorescent protein (EGFP) fusion is ubiquitinated in vivo. We further showed that plasma membrane-bound SUB:EGFP becomes internalized in a clathrin-dependent fashion. We also found that SUB:EGFP associates with the trans-Golgi network and accumulates in multivesicular bodies and the vacuole. Co-immunoprecipitation experiments revealed that SUB:EGFP and clathrin are present within the same protein complex. Our genetic analysis showed that SUB and CLATHRIN HEAVY CHAIN (CHC) 2 regulate root hair patterning. By contrast, genetic reduction of CHC activity ameliorates the floral defects of sub mutants. Taken together, the data indicate that SUB undergoes clathrin-mediated endocytosis, that this process does not rely on stimulation of SUB signaling by an exogenous agent, and that SUB genetically interacts with clathrin-dependent pathways in a tissue-specific manner.
Collapse
Affiliation(s)
- Jin Gao
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Ajeet Chaudhary
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Prasad Vaddepalli
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- Present address: Laboratory of Biochemistry, Wageningen University, Wageningen, the Netherlands
| | - Marie-Kristin Nagel
- Department of Biology, Chair of Plant Physiology and Biochemistry, University of Konstanz, Konstanz, Germany
| | - Erika Isono
- Department of Biology, Chair of Plant Physiology and Biochemistry, University of Konstanz, Konstanz, Germany
| | - Kay Schneitz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- Correspondence:
| |
Collapse
|
46
|
Ma J, Wang Y, Ma X, Meng L, Jing R, Wang F, Wang S, Cheng Z, Zhang X, Jiang L, Wang J, Wang J, Zhao Z, Guo X, Lin Q, Wu F, Zhu S, Wu C, Ren Y, Lei C, Zhai H, Wan J. Disruption of gene SPL35, encoding a novel CUE domain-containing protein, leads to cell death and enhanced disease response in rice. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1679-1693. [PMID: 30771255 PMCID: PMC6662554 DOI: 10.1111/pbi.13093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 05/23/2023]
Abstract
Lesion mimic mutants that exhibit spontaneous hypersensitive response (HR)-like necrotic lesions are ideal experimental systems for elucidating molecular mechanisms involved in plant cell death and defence responses. Here we report identification of a rice lesion mimic mutant, spotted leaf 35 (spl35), and cloning of the causal gene by TAIL-PCR strategy. spl35 exhibited decreased chlorophyll content, higher accumulation of H2 O2 , up-regulated expression of defence-related marker genes, and enhanced resistance to both fungal and bacterial pathogens of rice. The SPL35 gene encodes a novel CUE (coupling of ubiquitin conjugation to ER degradation) domain-containing protein that is predominantly localized in cytosol, ER and unknown punctate compartment(s). SPL35 is constitutively expressed in all organs, and both overexpression and knockdown of SPL35 cause the lesion mimic phenotype. SPL35 directly interacts with the E2 protein OsUBC5a and the coatomer subunit delta proteins Delta-COP1 and Delta-COP2 through the CUE domain, and down-regulation of these interacting proteins also cause development of HR-like lesions resembling those in spl35 and activation of defence responses, indicating that SPL35 may be involved in the ubiquitination and vesicular trafficking pathways. Our findings provide insight into a role of SPL35 in regulating cell death and defence response in plants.
Collapse
Affiliation(s)
- Jian Ma
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Yongfei Wang
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene EngineeringNanjing Agricultural UniversityNanjingChina
| | - Xiaoding Ma
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Lingzhi Meng
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Ruonan Jing
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene EngineeringNanjing Agricultural UniversityNanjingChina
| | - Fan Wang
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene EngineeringNanjing Agricultural UniversityNanjingChina
| | - Shuai Wang
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Zhijun Cheng
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Xin Zhang
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Ling Jiang
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene EngineeringNanjing Agricultural UniversityNanjingChina
| | - Jiulin Wang
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Jie Wang
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Zhichao Zhao
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Xiuping Guo
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Qibing Lin
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Fuqing Wu
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Shanshan Zhu
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Chuanyin Wu
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Yulong Ren
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Cailin Lei
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Huqu Zhai
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Jianmin Wan
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene EngineeringNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
47
|
Genetic Suppressor Screen Using an Inducible FREE1-RNAi Line to Detect ESCRT Genetic Interactors in Arabidopsis thaliana. Methods Mol Biol 2019. [PMID: 31250309 DOI: 10.1007/978-1-4939-9492-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
FREE1 (FYVE domain protein required for endosomal sorting 1), a newly identified component of endosomal sorting complex required for transport I (ESCRT I), plays multiple roles in regulating protein trafficking and organelle biogenesis in Arabidopsis. Similar to other ESCRT components, FREE1 is essential for plant growth and development because free1 mutant is seedling lethal. To identify key components that genetically interact with FREE1, we performed forward genetic suppressor screening using a dexamethasone (DEX)-inducible FREE1-RNAi line. Here we describe the detailed protocol of identifying novel FREE1 regulators using an inducible FREE1-RNAi line for the genetic suppressor screen. This protocol represents a whole procedure for identifying ESCRT genetic interactors in Arabidopsis thaliana.
Collapse
|
48
|
Cui Y, Cao W, He Y, Zhao Q, Wakazaki M, Zhuang X, Gao J, Zeng Y, Gao C, Ding Y, Wong HY, Wong WS, Lam HK, Wang P, Ueda T, Rojas-Pierce M, Toyooka K, Kang BH, Jiang L. A whole-cell electron tomography model of vacuole biogenesis in Arabidopsis root cells. NATURE PLANTS 2019; 5:95-105. [PMID: 30559414 DOI: 10.1038/s41477-018-0328-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/14/2018] [Indexed: 05/20/2023]
Abstract
Plant vacuoles are dynamic organelles that play essential roles in regulating growth and development. Two distinct models of vacuole biogenesis have been proposed: separate vacuoles are formed by the fusion of endosomes, or the single interconnected vacuole is derived from the endoplasmic reticulum. These two models are based on studies of two-dimensional (2D) transmission electron microscopy and 3D confocal imaging, respectively. Here, we performed 3D electron tomography at nanometre resolution to illustrate vacuole biogenesis in Arabidopsis root cells. The whole-cell electron tomography analysis first identified unique small vacuoles (SVs; 400-1,000 nm in diameter) as nascent vacuoles in early developmental cortical cells. These SVs contained intraluminal vesicles and were mainly derived/matured from multivesicular body (MVB) fusion. The whole-cell vacuole models and statistical analysis on wild-type root cells of different vacuole developmental stages demonstrated that central vacuoles were derived from MVB-to-SV transition and subsequent fusions of SVs. Further electron tomography analysis on mutants defective in MVB formation/maturation or vacuole fusion demonstrated that central vacuole formation required functional MVBs and membrane fusion machineries.
Collapse
Affiliation(s)
- Yong Cui
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Wenhan Cao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yilin He
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qiong Zhao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jiayang Gao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Caiji Gao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu Ding
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Department of Food Science & Technology, School of Science and Technology, Jinan University, Guangzhou, China
| | - Hiu Yan Wong
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wing Shing Wong
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ham Karen Lam
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Pengfei Wang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
| | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | | | - Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
49
|
Tao K, Waletich JR, Wise H, Arredondo F, Tyler BM. Tethering of Multi-Vesicular Bodies and the Tonoplast to the Plasma Membrane in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:636. [PMID: 31396242 PMCID: PMC6662526 DOI: 10.3389/fpls.2019.00636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/26/2019] [Indexed: 05/05/2023]
Abstract
UNLABELLED Tethering of the plasma membrane (PM) and many organelles to the endoplasmic reticulum (ER) for communication and lipid exchange has been widely reported. However, despite growing interest in multi-vesicular bodies (MVBs) as possible sources of exosomes, tethering of MVBs to the PM has not been reported. Here we show that MVBs and the vacuolar membrane (tonoplast) could be tethered to the PM (PM-MVB/TP tethering) by artificial protein fusions or bimolecular fluorescence complementation (BiFC) complexes that contain a peripheral membrane protein that binds the PM and also a protein that binds MVBs or the tonoplast. PM-binding proteins capable of participating in PM-MVB/TP tethering included StRem1.3, BIK1, PBS1, CPK21, and the PtdIns(4)-binding proteins FAPP1 and Osh2. MVB/TP-binding proteins capable of participating in tethering included ARA6, ARA7, RHA1, RABG3f, and the PtdIns(3)P-binding proteins Vam7p and Hrs-2xFYVE. BiFC complexes or protein fusions capable of producing PM-MVB/TP tethering were visualized as large well-defined patches of fluorescence on the PM that could displace PM proteins such as AtFlotillin1 and also could displace cytoplasmic proteins such as soluble GFP. Furthermore, we identified paralogous ubiquitin E3 ligase proteins, SAUL1 (AtPUB44), and AtPUB43 that could produce PM-MVB/TP tethering. SAUL1 and AtPUB43 could produce tethering in uninfected tissue when paired with MVB-binding proteins or when their E3 ligase domain was deleted. When Nicotiana benthamiana leaf tissue was infected with Phytophthora capsici, full length SAUL1 and AtPUB43 localized in membrane patches consistent with PM-MVB/TP tethering. Our findings define new tools for studying PM-MVB/TP tethering and its possible role in plant defense. SIGNIFICANCE STATEMENT Although not previously observed, the tethering of multi-vesicular bodies to the plasma membrane is of interest due to the potential role of this process in producing exosomes in plants. Here we describe tools for observing and manipulating the tethering of multi-vesicular bodies and the tonoplast to the plant plasma membrane, and describe two plant proteins that may naturally regulate this process during infection.
Collapse
Affiliation(s)
- Kai Tao
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Justin R. Waletich
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Hua Wise
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Felipe Arredondo
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Brett M. Tyler
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
- *Correspondence: Brett M. Tyler
| |
Collapse
|
50
|
Cui Y, Cao W, He Y, Zhao Q, Wakazaki M, Zhuang X, Gao J, Zeng Y, Gao C, Ding Y, Wong HY, Wong WS, Lam HK, Wang P, Ueda T, Rojas-Pierce M, Toyooka K, Kang BH, Jiang L. A whole-cell electron tomography model of vacuole biogenesis in Arabidopsis root cells. NATURE PLANTS 2019; 5:95-105. [PMID: 30559414 DOI: 10.1038/s41477-018-0328-321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/14/2018] [Indexed: 05/28/2023]
Abstract
Plant vacuoles are dynamic organelles that play essential roles in regulating growth and development. Two distinct models of vacuole biogenesis have been proposed: separate vacuoles are formed by the fusion of endosomes, or the single interconnected vacuole is derived from the endoplasmic reticulum. These two models are based on studies of two-dimensional (2D) transmission electron microscopy and 3D confocal imaging, respectively. Here, we performed 3D electron tomography at nanometre resolution to illustrate vacuole biogenesis in Arabidopsis root cells. The whole-cell electron tomography analysis first identified unique small vacuoles (SVs; 400-1,000 nm in diameter) as nascent vacuoles in early developmental cortical cells. These SVs contained intraluminal vesicles and were mainly derived/matured from multivesicular body (MVB) fusion. The whole-cell vacuole models and statistical analysis on wild-type root cells of different vacuole developmental stages demonstrated that central vacuoles were derived from MVB-to-SV transition and subsequent fusions of SVs. Further electron tomography analysis on mutants defective in MVB formation/maturation or vacuole fusion demonstrated that central vacuole formation required functional MVBs and membrane fusion machineries.
Collapse
Affiliation(s)
- Yong Cui
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Wenhan Cao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yilin He
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qiong Zhao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jiayang Gao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Caiji Gao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu Ding
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Department of Food Science & Technology, School of Science and Technology, Jinan University, Guangzhou, China
| | - Hiu Yan Wong
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wing Shing Wong
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ham Karen Lam
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Pengfei Wang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
| | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | | | - Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|