1
|
Yang D, He N, Huang F, Chen J, Yu M, Jin Y, Lin S, Li S. Importance of OsRac1 in Signalling of Pigm-1 Mediated Resistance to Rice Blast Disease. PLANTS (BASEL, SWITZERLAND) 2025; 14:217. [PMID: 39861570 PMCID: PMC11769553 DOI: 10.3390/plants14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
In rice, leucine-rich repeat nucleotide-binding site (NLR) proteins are pivotal immune receptors in combating Magnaporthe oryzae-triggered rice blast. However, the precise molecular mechanism underlying how NLR proteins regulate downstream signalling remains elusive due to the lack of knowledge regarding their direct downstream targets. The NLR protein Pigm-1 was cloned from Shuangkang 77009 in our laboratory. This study shows that the nucleotide-binding site (NBS) domain of Pigm-1 facilitates its binding to and activation of OsRac1 while the coiled-coil (CC) domain enables its binding to and activation of RAI1, ultimately inducing cell death. At the same time, after knocking out OsRac1 in the background of Shuangkang 77009 containing Pigm-1, two knockout lines showed susceptibility to rice blast. This study reveals OsRac1, a GTPase, as a signalling molecule involved in Pigm-1-mediated blast resistance, suggesting its potential as a common downstream effector of rice NLR proteins. Additionally, a transcriptional activator, RAI1, acts as an essential Pigm-1 interactor for blast resistance. Furthermore, a novel material 9311(Pigm-1) was prepared by using two-line restorer line 9311 as receptor and Shuangkang 77009 as donor with molecular marker-assisted technology, which improved blast resistance and yield. This research demonstrates that molecular marker-assisted selection technology enhances both resistance and yield in the crucial two-line restorer 9311(Pigm-1). This study offers crucial insights into how Pigm-1 protein activates downstream molecules and serves as a valuable reference for the molecular breeding of rice blast resistance genes, particularly Pigm-1.
Collapse
Affiliation(s)
- Dewei Yang
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; (N.H.); (F.H.); (M.Y.); (S.L.)
| | - Niqing He
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; (N.H.); (F.H.); (M.Y.); (S.L.)
| | - Fenghuang Huang
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; (N.H.); (F.H.); (M.Y.); (S.L.)
| | - Jialin Chen
- College of Agriculture and Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (Y.J.)
| | - Minxiang Yu
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; (N.H.); (F.H.); (M.Y.); (S.L.)
| | - Yidan Jin
- College of Agriculture and Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (Y.J.)
| | - Shaojun Lin
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; (N.H.); (F.H.); (M.Y.); (S.L.)
| | - Shengping Li
- College of Agriculture and Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (Y.J.)
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Bhattarai G, Rhein HS, Sreedasyam A, Lovell JT, Khanal S, Grimwood J, Schmutz J, Jenkins J, Chee PW, Pisani C, Randall J, Conner PJ. Transcriptome analysis under pecan scab infection reveals the molecular mechanisms of the defense response in pecans. PLoS One 2024; 19:e0313878. [PMID: 39570928 PMCID: PMC11581225 DOI: 10.1371/journal.pone.0313878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/03/2024] [Indexed: 11/24/2024] Open
Abstract
Pecan scab, caused by the fungal pathogen Venturia effusa, is the most devastating disease of pecan (Carya illinoinensis) in the southeastern United States. Resistance to this pathogen is determined by a complex interaction between host genetics and disease pathotype with even field-susceptible cultivars being resistant to most scab isolates. To understand the underlying molecular mechanisms of scab resistance in pecan, we performed a transcriptome analysis of the pecan cultivar, 'Desirable', in response to inoculation with a pathogenic and a non-pathogenic scab isolate at three different time points (24, 48, and 96 hrs. post-inoculation). Differential gene expression and gene ontology enrichment analyses showed contrasting gene expression patterns and pathway enrichment in response to the contrasting isolates with varying pathogenicity. The weighted gene co-expression network analysis of differentially expressed genes detected 11 gene modules. Among them, two modules had significant enrichment of genes involved with defense responses. These genes were particularly upregulated in the resistant reaction at the early stage of fungal infection (24 h) compared to the susceptible reaction. Hub genes in these modules were predominantly related to receptor-like protein kinase activity, signal reception, signal transduction, biosynthesis and transport of plant secondary metabolites, and oxidoreductase activity. Results of this study suggest that the early response of pathogen-related signal transduction and development of cellular barriers against the invading fungus are likely defense mechanisms employed by pecan cultivars against non-virulent scab isolates. The transcriptomic data generated here provide the foundation for identifying candidate resistance genes in pecan against V. effusa and for exploring the molecular mechanisms of disease resistance.
Collapse
Affiliation(s)
- Gaurab Bhattarai
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, Georgia, United States of America
| | - Hormat Shadgou Rhein
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - John T. Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Sameer Khanal
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, Georgia, United States of America
- Department of Crop and Soil Sciences, University of Georgia-Tifton Campus, Tifton, Georgia, United States of America
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Peng W. Chee
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, Georgia, United States of America
- Department of Crop and Soil Sciences, University of Georgia-Tifton Campus, Tifton, Georgia, United States of America
| | - Cristina Pisani
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Southeastern Fruit and Tree Nut Research Station, Byron, Georgia, United States of America
| | - Jennifer Randall
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Patrick J. Conner
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, Georgia, United States of America
- Department of Horticulture, University of Georgia-Tifton Campus, Tifton, Georgia, United States of America
| |
Collapse
|
3
|
Velásquez-Zapata V, Smith S, Surana P, Chapman AV, Jaiswal N, Helm M, Wise RP. Diverse epistatic effects in barley-powdery mildew interactions localize to host chromosome hotspots. iScience 2024; 27:111013. [PMID: 39445108 PMCID: PMC11497433 DOI: 10.1016/j.isci.2024.111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/27/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Barley Mildew locus a (Mla) encodes a multi-allelic series of nucleotide-binding leucine-rich repeat (NLR) receptors that specify recognition to diverse cereal diseases. We exploited time-course transcriptome dynamics of barley and derived immune mutants infected with the powdery mildew fungus, Blumeria hordei (Bh), to infer gene effects governed by Mla6 and two other loci significant to disease development, Blufensin1 (Bln1), and Required for Mla6 resistance3 (rar3 = Sgt1 ΔKL308-309 ). Interactions of Mla6 and Bln1 resulted in diverse epistatic effects on the Bh-induced barley transcriptome, differential immunity to Pseudomonas syringae expressing the effector protease AvrPphB, and reaction to Bh. From a total of 468 barley NLRs, 115 were grouped under different gene effect models; genes classified under these models localized to host chromosome hotspots. The corresponding Bh infection transcriptome was classified into nine co-expressed modules, linking differential expression with pathogen structures, signifying that disease is regulated by an inter-organismal network that diversifies the response.
Collapse
Affiliation(s)
- Valeria Velásquez-Zapata
- Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA 50011, USA
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Schuyler Smith
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Priyanka Surana
- Informatics Infrastructure Team, Tree of Life Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Antony V.E. Chapman
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, USA
- Phytoform Labs, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Namrata Jaiswal
- USDA-Agricultural Research Service, Crop Production and Pest Control Research Unit, West Lafayette, IN 47907, USA
| | - Matthew Helm
- USDA-Agricultural Research Service, Crop Production and Pest Control Research Unit, West Lafayette, IN 47907, USA
| | - Roger P. Wise
- Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA 50011, USA
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, USA
- USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| |
Collapse
|
4
|
Wang Z, Peng Z, Khan S, Qayyum A, Rehman A, Du X. Unveiling the power of MYB transcription factors: Master regulators of multi-stress responses and development in cotton. Int J Biol Macromol 2024; 276:133885. [PMID: 39019359 DOI: 10.1016/j.ijbiomac.2024.133885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Plants, being immobile, are subject to environmental stresses more than other creatures, necessitating highly effective stress tolerance systems. Transcription factors (TFs) play a crucial role in the adaptation mechanism as they can be activated by diverse signals and ultimately control the expression of stress-responsive genes. One of the most prominent plant TFs family is MYB (myeloblastosis), which is involved in secondary metabolites, developmental mechanisms, biological processes, cellular architecture, metabolic pathways, and stress responses. Extensive research has been conducted on the involvement of MYB TFs in crops, while their role in cotton remains largely unexplored. We also utilized genome-wide data to discover potential 440 MYB genes and investigated their plausible roles in abiotic and biotic stress conditions, as well as in different tissues across diverse transcriptome databases. This review primarily summarized the structure and classification of MYB TFs biotic and abiotic stress tolerance and their role in secondary metabolism in different crops, especially in cotton. However, it intends to identify gaps in current knowledge and emphasize the need for further research to enhance our understanding of MYB roles in plants.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China; Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Zhen Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China
| | - Sana Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China.
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China.
| |
Collapse
|
5
|
Chen C, Zhang Z, Lei YY, Chen WJ, Zhang ZH, Li XM, Dai HY. MdMYB44-like positively regulates salt and drought tolerance via the MdPYL8-MdPP2CA module in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:24-41. [PMID: 38102874 DOI: 10.1111/tpj.16584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/15/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023]
Abstract
Abscisic acid (ABA) is involved in salt and drought stress responses, but the underlying molecular mechanism remains unclear. Here, we demonstrated that the overexpression of MdMYB44-like, an R2R3-MYB transcription factor, significantly increases the salt and drought tolerance of transgenic apples and Arabidopsis. MdMYB44-like inhibits the transcription of MdPP2CA, which encodes a type 2C protein phosphatase that acts as a negative regulator in the ABA response, thereby enhancing ABA signaling-mediated salt and drought tolerance. Furthermore, we found that MdMYB44-like and MdPYL8, an ABA receptor, form a protein complex that further enhances the transcriptional inhibition of the MdPP2CA promoter by MdMYB44-like. Significantly, we discovered that MdPP2CA can interfere with the physical association between MdMYB44-like and MdPYL8 in the presence of ABA, partially blocking the inhibitory effect of the MdMYB44-like-MdPYL8 complex on the MdPP2CA promoter. Thus, MdMYB44-like, MdPYL8, and MdPP2CA form a regulatory loop that tightly modulates ABA signaling homeostasis under salt and drought stress. Our data reveal that MdMYB44-like precisely modulates ABA-mediated salt and drought tolerance in apples through the MdPYL8-MdPP2CA module.
Collapse
Affiliation(s)
- Cui Chen
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Zhen Zhang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Ying-Ying Lei
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Wen-Jun Chen
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Zhi-Hong Zhang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Xiao-Ming Li
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Hong-Yan Dai
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| |
Collapse
|
6
|
Xue P, Zhang L, Fan R, Li Y, Han X, Qi T, Zhao L, Yu D, Shen QH. HvMPK4 phosphorylates HvWRKY1 to enhance its suppression of barley immunity to powdery mildew fungus. J Genet Genomics 2024; 51:313-325. [PMID: 37225086 DOI: 10.1016/j.jgg.2023.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play important roles in disease resistance in model plant species. However, the functions of MAPK signaling pathways in crop disease resistance are largely unknown. Here we report the function of HvMKK1-HvMPK4-HvWRKY1 module in barley immune system. HvMPK4 is identified to play a negative role in barley immune response against Bgh, as virus-induced gene silencing of HvMPK4 results in enhanced disease resistance whilst stably overexpressing HvMPK4 leads to super-susceptibility to Bgh infection. Furthermore, the barley MAPK kinase HvMKK1 is found to specifically interact with HvMPK4, and the activated HvMKK1DD variant specifically phosphorylates HvMPK4 in vitro. Moreover, the transcription factor HvWRKY1 is identified to be a downstream target of HvMPK4 and phosphorylated by HvMPK4 in vitro in the presence of HvMKK1DD. Phosphorylation assay coupled with mutagenesis analyses identifies S122, T284, and S347 in HvWRKY1 as the major residues phosphorylated by HvMPK4. HvWRKY1 is phosphorylated in barley at the early stages of Bgh infection, which enhances its suppression on barley immunity likely due to enhanced DNA-binding and transcriptional repression activity. Our data suggest that the HvMKK1-HvMPK4 kinase pair acts upstream of HvWRKY1 to negatively regulate barley immunity against powdery mildew.
Collapse
Affiliation(s)
- Pengya Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Renchun Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyun Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Qi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lifang Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deshui Yu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Yu H, Wu X, Liang J, Han Z, Xiao Y, Du H, Liu Y, Guo J, Peng F. Genome-wide identification of nucleotide-binding domain leucine-rich repeat (NLR) genes and their association with green peach aphid (Myzus persicae) resistance in peach. BMC PLANT BIOLOGY 2023; 23:513. [PMID: 37880593 PMCID: PMC10598982 DOI: 10.1186/s12870-023-04474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023]
Abstract
Resistance genes (R genes) are a class of genes that are immune to a wide range of diseases and pests. In planta, NLR genes are essential components of the innate immune system. Currently, genes belonging to NLR family have been found in a number of plant species, but little is known in peach. Here, 286 NLR genes were identified on peach genome by using their homologous genes in Arabidopsis thaliana as queries. These 286 NLR genes contained at least one NBS domain and LRR domain. Phylogenetic and N-terminal domain analysis showed that these NLRs could be separated into four subfamilies (I-IV) and their promoters contained many cis-elements in response to defense and phytohormones. In addition, transcriptome analysis showed that 22 NLR genes were up-regulated after infected by Green Peach Aphid (GPA), and showed different expression patterns. This study clarified the NLR gene family and their potential functions in aphid resistance process. The candidate NLR genes might be useful in illustrating the mechanism of aphid resistance in peach.
Collapse
Affiliation(s)
- Haixiang Yu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xuelian Wu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jiahui Liang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ziying Han
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yuansong Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hao Du
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yihua Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong, 276000, China
| | - Jian Guo
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Futian Peng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
8
|
Shepherd S, Yuen ELH, Carella P, Bozkurt TO. The wheels of destruction: Plant NLR immune receptors are mobile and structurally dynamic disease resistance proteins. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102372. [PMID: 37172365 DOI: 10.1016/j.pbi.2023.102372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/23/2023] [Accepted: 04/04/2023] [Indexed: 05/14/2023]
Abstract
Nucleotide-binding leucine-rich repeat (NLR) proteins are intracellular immune receptors that restrict plant invasion by pathogens. Most NLRs operate in intricate networks to detect pathogen effectors in a robust and efficient manner. NLRs are not static sensors; rather, they exhibit remarkable mobility and structural plasticity during the innate immune response. Inactive NLRs localize to diverse subcellular compartments where they are poised to sense pathogen effectors. During pathogen attack, some NLRs relocate toward the plant-pathogen interface, possibly to ensure their timely activation. Activated NLRs reorganize into wheel-shaped oligomers, some of which then form plasma membrane pores that promote calcium influx and programmed cell death. The emerging paradigm is that this variable and dynamic nature underpins effective NLR-mediated immunity.
Collapse
Affiliation(s)
- Samuel Shepherd
- Department of Life Sciences, Imperial College, London, United Kingdom
| | | | | | - Tolga O Bozkurt
- Department of Life Sciences, Imperial College, London, United Kingdom.
| |
Collapse
|
9
|
Wu Q, Tong C, Chen Z, Huang S, Zhao X, Hong H, Li J, Feng M, Wang H, Xu M, Yan Y, Cui H, Shen D, Ai G, Xu Y, Li J, Zhang H, Huang C, Zhang Z, Dong S, Wang X, Zhu M, Dinesh-Kumar SP, Tao X. NLRs derepress MED10b- and MED7-mediated repression of jasmonate-dependent transcription to activate immunity. Proc Natl Acad Sci U S A 2023; 120:e2302226120. [PMID: 37399403 PMCID: PMC10334756 DOI: 10.1073/pnas.2302226120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/23/2023] [Indexed: 07/05/2023] Open
Abstract
Plant intracellular nucleotide-binding domain, leucine-rich repeat-containing receptors (NLRs) activate a robust immune response upon detection of pathogen effectors. How NLRs induce downstream immune defense genes remains poorly understood. The Mediator complex plays a central role in transducing signals from gene-specific transcription factors to the transcription machinery for gene transcription/activation. In this study, we demonstrate that MED10b and MED7 of the Mediator complex mediate jasmonate-dependent transcription repression, and coiled-coil NLRs (CNLs) in Solanaceae modulate MED10b/MED7 to activate immunity. Using the tomato CNL Sw-5b, which confers resistance to tospovirus, as a model, we found that the CC domain of Sw-5b directly interacts with MED10b. Knockout/down of MED10b and other subunits including MED7 of the middle module of Mediator activates plant defense against tospovirus. MED10b was found to directly interact with MED7, and MED7 directly interacts with JAZ proteins, which function as transcriptional repressors of jasmonic acid (JA) signaling. MED10b-MED7-JAZ together can strongly repress the expression of JA-responsive genes. The activated Sw-5b CC interferes with the interaction between MED10b and MED7, leading to the activation of JA-dependent defense signaling against tospovirus. Furthermore, we found that CC domains of various other CNLs including helper NLR NRCs from Solanaceae modulate MED10b/MED7 to activate defense against different pathogens. Together, our findings reveal that MED10b/MED7 serve as a previously unknown repressor of jasmonate-dependent transcription repression and are modulated by diverse CNLs in Solanaceae to activate the JA-specific defense pathways.
Collapse
Affiliation(s)
- Qian Wu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Cong Tong
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Zhengqiang Chen
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Shen Huang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Xiaohui Zhao
- Salinity Agriculture Research Laboratory, Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng224002, P. R. China
| | - Hao Hong
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Jia Li
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Mingfeng Feng
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Huiyuan Wang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
- Institute of Biotechnology, Zhejiang University, Hangzhou310058, P. R. China
| | - Min Xu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Yuling Yan
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Hongmin Cui
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Danyu Shen
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Gan Ai
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Yi Xu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Junming Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, P. R. China
| | - Hui Zhang
- Institute of Horticulture Science, Shanghai Academy of Agricultural Sciences, Shanghai201403, P. R. China
| | - Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming650021, P. R. China
| | - Zhongkai Zhang
- Yunnan Provincial Key Laboratory of Agri-Biotechnology, Institute of Biotechnology and Genetic Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan650223, P. R. China
| | - Suomeng Dong
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Xuan Wang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Min Zhu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Savithramma P. Dinesh-Kumar
- Department of Plant Biology and The Genome Center College of Biological Sciences, University of California, Davis, CA95616
| | - Xiaorong Tao
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| |
Collapse
|
10
|
Yu Y, Zhang S, Yu Y, Cui N, Yu G, Zhao H, Meng X, Fan H. The pivotal role of MYB transcription factors in plant disease resistance. PLANTA 2023; 258:16. [PMID: 37311886 DOI: 10.1007/s00425-023-04180-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
MAIN CONCLUSION MYB transcription factors are essential for diverse biology processes in plants. This review has focused on the potential molecular actions of MYB transcription factors in plant immunity. Plants possess a variety of molecules to defend against disease. Transcription factors (TFs) serve as gene connections in the regulatory networks controlling plant growth and defense against various stressors. As one of the largest TF families in plants, MYB TFs coordinate molecular players that modulate plant defense resistance. However, the molecular action of MYB TFs in plant disease resistance lacks a systematic analysis and summary. Here, we describe the structure and function of the MYB family in the plant immune response. Functional characterization revealed that MYB TFs often function either as positive or negative modulators towards different biotic stressors. Moreover, the MYB TF resistance mechanisms are diverse. The potential molecular actions of MYB TFs are being analyzed to uncover functions by controlling the expression of resistance genes, lignin/flavonoids/cuticular wax biosynthesis, polysaccharide signaling, hormone defense signaling, and the hypersensitivity response. MYB TFs have a variety of regulatory modes that fulfill pivotal roles in plant immunity. MYB TFs regulate the expression of multiple defense genes and are, therefore, important for increasing plant disease resistance and promoting agricultural production.
Collapse
Affiliation(s)
- Yongbo Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shuo Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Guangchao Yu
- College of Chemistry and Life Sciences, Anshan Normal University, Anshan, China
| | - Hongyan Zhao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China.
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
11
|
Liu Q, Zhang C, Fang H, Yi L, Li M. Indispensable Biomolecules for Plant Defense Against Pathogens: NBS-LRR and "nitrogen pool" Alkaloids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023:111752. [PMID: 37268110 DOI: 10.1016/j.plantsci.2023.111752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
In a complex natural environment, plants have evolved intricate and subtle defense response regulatory mechanisms for survival. Plant specific defenses, including the disease resistance protein nucleotide-binding site leucine-rich repeat (NBS-LRR) protein and metabolite derived alkaloids, are key components of these complex mechanisms. The NBS-LRR protein can specifically recognize the invasion of pathogenic microorganisms to trigger the immune response mechanism. Alkaloids, synthesized from amino acids or their derivatives, can also inhibit pathogens. This study reviews NBS-LRR protein activation, recognition, and downstream signal transduction in plant protection, as well as the synthetic signaling pathways and regulatory defense mechanisms associated with alkaloids. In addition, we clarify the basic regulation mechanism and summarize their current applications and the development of future applications in biotechnology for these plant defense molecules. Studies on the NBS-LRR protein and alkaloid plant disease resistance molecules may provide a theoretical foundation for the cultivation of disease resistant crops and the development of botanical pesticides.
Collapse
Affiliation(s)
- Qian Liu
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China; Baotou Medical College, Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Inner Mongolia Engineering Research Center of The Planting and Development of Astragalus membranaceus of the Geoherbs, Baotou, China
| | - Chunhong Zhang
- Baotou Medical College, Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Inner Mongolia Engineering Research Center of The Planting and Development of Astragalus membranaceus of the Geoherbs, Baotou, China
| | - Huiyong Fang
- Hebei University of Chinese Medicine, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.
| | - Letai Yi
- Inner Mongolia Medical University, Hohhot, China.
| | - Minhui Li
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China; Baotou Medical College, Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Inner Mongolia Engineering Research Center of The Planting and Development of Astragalus membranaceus of the Geoherbs, Baotou, China; Inner Mongolia Institute of Traditional Chinese and Mongolian Medicine, Hohhot, China.
| |
Collapse
|
12
|
Du J, Wang Q, Shi H, Zhou C, He J, Wang X. A prophage-encoded effector from "Candidatus Liberibacter asiaticus" targets ASCORBATE PEROXIDASE6 in citrus to facilitate bacterial infection. MOLECULAR PLANT PATHOLOGY 2023; 24:302-316. [PMID: 36692022 PMCID: PMC10013806 DOI: 10.1111/mpp.13296] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 05/21/2023]
Abstract
Citrus huanglongbing (HLB), associated with the unculturable phloem-limited bacterium "Candidatus Liberibacter asiaticus" (CLas), is the most devastating disease in the citrus industry worldwide. However, the pathogenicity of CLas remains poorly understood. In this study, we show that AGH17488, a secreted protein encoded by the prophage region of the CLas genome, suppresses plant immunity via targeting the host ASCORBATE PEROXIDASE6 (APX6) protein in Nicotiana benthamiana and Citrus sinensis. The transient expression of AGH17488 reduced the chloroplast localization of APX6 and its enzyme activity, inhibited the accumulation of reactive oxygen species (H2 O2 and O2 - ) and the lipid oxidation endproduct malondialdehyde in plants, and promoted the proliferation of Pseudomonas syringae pv. tomato DC3000 and Xanthomonas citri subsp. citri. This study reveals a novel mechanism underlying how CLas uses a prophage-encoded effector, AGH17488, to target a reactive oxygen species accumulation-related gene, APX6, in the host to facilitate its infection.
Collapse
Affiliation(s)
- Jiao Du
- National Citrus Engineering Research CenterCitrus Research Institute, Southwest UniversityChongqingChina
- Fruit Tree and Melon Information Research CenterZhengzhou Fruit Research Institute, Chinese Academy of Agricultural SciencesZhengzhouChina
| | - Qiying Wang
- National Citrus Engineering Research CenterCitrus Research Institute, Southwest UniversityChongqingChina
| | - Hongwei Shi
- National Citrus Engineering Research CenterCitrus Research Institute, Southwest UniversityChongqingChina
| | - Changyong Zhou
- National Citrus Engineering Research CenterCitrus Research Institute, Southwest UniversityChongqingChina
| | - Jun He
- National Citrus Engineering Research CenterCitrus Research Institute, Southwest UniversityChongqingChina
| | - Xuefeng Wang
- National Citrus Engineering Research CenterCitrus Research Institute, Southwest UniversityChongqingChina
| |
Collapse
|
13
|
Zhao JH, Huang YY, Wang H, Yang XM, Li Y, Pu M, Zhou SX, Zhang JW, Zhao ZX, Li GB, Hassan B, Hu XH, Chen X, Xiao S, Wu XJ, Fan J, Wang WM. Golovinomyces cichoracearum effector-associated nuclear localization of RPW8.2 amplifies its expression to boost immunity in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:367-382. [PMID: 36522832 DOI: 10.1111/nph.18682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Arabidopsis RESISTANCE TO POWDERY MILDEW 8.2 (RPW8.2) is specifically induced by the powdery mildew (PM) fungus (Golovinomyces cichoracearum) in the infected epidermal cells to activate immunity. However, the mechanism of RPW8.2-induction is not well understood. Here, we identify a G. cichoracearum effector that interacts with RPW8.2, named Gc-RPW8.2 interacting protein 1 (GcR8IP1), by a yeast two-hybrid screen of an Arabidopsis cDNA library. GcR8IP1 is physically associated with RPW8.2 with its REALLY INTERESTING NEW GENE finger domain that is essential and sufficient for the association. GcR8IP1 was secreted and translocated into the nucleus of host cell infected with PM. Association of GcR8IP1 with RPW8.2 led to an increase in RPW8.2 in the nucleus. In turn, the nucleus-localized RPW8.2 promoted the activity of the RPW8.2 promoter, resulting in transcriptional self-amplification of RPW8.2 to boost immunity at infection sites. Additionally, ectopic expression or host-induced gene silencing of GcR8IP1 supported its role as a virulence factor in PM. Altogether, our results reveal a mechanism of RPW8.2-dependent defense strengthening via altered partitioning of RPW8.2 and transcriptional self-amplification triggered by a PM fungal effector, which exemplifies an atypical form of effector-triggered immunity.
Collapse
Affiliation(s)
- Jing-Hao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Xue-Mei Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Shi-Xin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Beenish Hassan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Xiao-Hong Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, 20850, USA
| | - Xian-Jun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| |
Collapse
|
14
|
The MAPK-Alfin-like 7 module negatively regulates ROS scavenging genes to promote NLR-mediated immunity. Proc Natl Acad Sci U S A 2023; 120:e2214750120. [PMID: 36623197 PMCID: PMC9934166 DOI: 10.1073/pnas.2214750120] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Nucleotide-binding leucine-rich repeat (NLR) receptor-mediated immunity includes rapid production of reactive oxygen species (ROS) and transcriptional reprogramming, which is controlled by transcription factors (TFs). Although some TFs have been reported to participate in NLR-mediated immune response, most TFs are transcriptional activators, and whether and how transcriptional repressors regulate NLR-mediated plant defenses remains largely unknown. Here, we show that the Alfin-like 7 (AL7) interacts with N NLR and functions as a transcriptional repressor. Knockdown and knockout of AL7 compromise N NLR-mediated resistance against tobacco mosaic virus, whereas AL7 overexpression enhances defense, indicating a positive regulatory role for AL7 in immunity. AL7 binds to the promoters of ROS scavenging genes to inhibit their transcription during immune responses. Mitogen-activated protein kinases (MAPKs), salicylic acid-induced protein kinase (SIPK), and wound-induced protein kinase (WIPK) directly interact with and phosphorylate AL7, which impairs the AL7-N interaction and enhances its DNA binding activity, which promotes ROS accumulation and enables immune activation. In addition to N, AL7 is also required for the function of other Toll interleukin 1 receptor/nucleotide-binding/leucine-rich repeats (TNLs) including Roq1 and RRS1-R/RPS4. Our findings reveal a hitherto unknown MAPK-AL7 module that negatively regulates ROS scavenging genes to promote NLR-mediated immunity.
Collapse
|
15
|
Advances in Biological Control and Resistance Genes of Brassicaceae Clubroot Disease-The Study Case of China. Int J Mol Sci 2023; 24:ijms24010785. [PMID: 36614228 PMCID: PMC9821010 DOI: 10.3390/ijms24010785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023] Open
Abstract
Clubroot disease is a soil-borne disease caused by Plasmodiophora brassicae. It occurs in cruciferous crops exclusively, and causes serious damage to the economic value of cruciferous crops worldwide. Although different measures have been taken to prevent the spread of clubroot disease, the most fundamental and effective way is to explore and use disease-resistance genes to breed resistant varieties. However, the resistance level of plant hosts is influenced both by environment and pathogen race. In this work, we described clubroot disease in terms of discovery and current distribution, life cycle, and race identification systems; in particular, we summarized recent progress on clubroot control methods and breeding practices for resistant cultivars. With the knowledge of these identified resistance loci and R genes, we discussed feasible strategies for disease-resistance breeding in the future.
Collapse
|
16
|
Chen SH, Martino AM, Luo Z, Schwessinger B, Jones A, Tolessa T, Bragg JG, Tobias PA, Edwards RJ. A high-quality pseudo-phased genome for Melaleuca quinquenervia shows allelic diversity of NLR-type resistance genes. Gigascience 2022; 12:giad102. [PMID: 38096477 PMCID: PMC10720953 DOI: 10.1093/gigascience/giad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/11/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Melaleuca quinquenervia (broad-leaved paperbark) is a coastal wetland tree species that serves as a foundation species in eastern Australia, Indonesia, Papua New Guinea, and New Caledonia. While extensively cultivated for its ornamental value, it has also become invasive in regions like Florida, USA. Long-lived trees face diverse pest and pathogen pressures, and plant stress responses rely on immune receptors encoded by the nucleotide-binding leucine-rich repeat (NLR) gene family. However, the comprehensive annotation of NLR encoding genes has been challenging due to their clustering arrangement on chromosomes and highly repetitive domain structure; expansion of the NLR gene family is driven largely by tandem duplication. Additionally, the allelic diversity of the NLR gene family remains largely unexplored in outcrossing tree species, as many genomes are presented in their haploid, collapsed state. RESULTS We assembled a chromosome-level pseudo-phased genome for M. quinquenervia and described the allelic diversity of plant NLRs using the novel FindPlantNLRs pipeline. Analysis reveals variation in the number of NLR genes on each haplotype, distinct clustering patterns, and differences in the types and numbers of novel integrated domains. CONCLUSIONS The high-quality M. quinquenervia genome assembly establishes a new framework for functional and evolutionary studies of this significant tree species. Our findings suggest that maintaining allelic diversity within the NLR gene family is crucial for enabling responses to environmental stress, particularly in long-lived plants.
Collapse
Affiliation(s)
- Stephanie H Chen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington NSW 2052, Australia
- Research Centre for Ecosystem Resilience, Botanic Gardens of Sydney, Sydney NSW 2000, Australia
| | - Alyssa M Martino
- School of Life and Environmental Sciences, The University of Sydney, Camperdown NSW 2006, Australia
| | - Zhenyan Luo
- Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Benjamin Schwessinger
- Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Ashley Jones
- Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Tamene Tolessa
- Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
- School of Environment and Rural Science, University of New England, Armidale NSW 2351, Australia
| | - Jason G Bragg
- Research Centre for Ecosystem Resilience, Botanic Gardens of Sydney, Sydney NSW 2000, Australia
- School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington NSW 2052, Australia
| | - Peri A Tobias
- School of Life and Environmental Sciences, The University of Sydney, Camperdown NSW 2006, Australia
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington NSW 2052, Australia
- Minderoo OceanOmics Centre at UWA, UWA Oceans Institute, University of Western Australia, Crawley WA 6009, Australia
| |
Collapse
|
17
|
Lüdke D, Yan Q, Rohmann PFW, Wiermer M. NLR we there yet? Nucleocytoplasmic coordination of NLR-mediated immunity. THE NEW PHYTOLOGIST 2022; 236:24-42. [PMID: 35794845 DOI: 10.1111/nph.18359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Plant intracellular nucleotide-binding leucine-rich repeat immune receptors (NLRs) perceive the activity of pathogen-secreted effector molecules that, when undetected, promote colonisation of hosts. Signalling from activated NLRs converges with and potentiates downstream responses from activated pattern recognition receptors (PRRs) that sense microbial signatures at the cell surface. Efficient signalling of both receptor branches relies on the host cell nucleus as an integration point for transcriptional reprogramming, and on the macromolecular transport processes that mediate the communication between cytoplasm and nucleoplasm. Studies on nuclear pore complexes (NPCs), the nucleoporin proteins (NUPs) that compose NPCs, and nuclear transport machinery constituents that control nucleocytoplasmic transport, have revealed that they play important roles in regulating plant immune responses. Here, we discuss the contributions of nucleoporins and nuclear transport receptor (NTR)-mediated signal transduction in plant immunity with an emphasis on NLR immune signalling across the nuclear compartment boundary and within the nucleus. We also highlight and discuss cytoplasmic and nuclear functions of NLRs and their signalling partners and further consider the potential implications of NLR activation and resistosome formation in both cellular compartments for mediating plant pathogen resistance and programmed host cell death.
Collapse
Affiliation(s)
- Daniel Lüdke
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Qiqi Yan
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Philipp F W Rohmann
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
- Biochemistry of Plant-Microbe Interactions, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany
| |
Collapse
|
18
|
Sukarta OCA, Zheng Q, Slootweg EJ, Mekken M, Mendel M, Putker V, Bertran A, Brand A, Overmars H, Pomp R, Roosien J, Boeren S, Smant G, Goverse A. GLYCINE-RICH RNA-BINDING PROTEIN 7 potentiates effector-triggered immunity through an RNA recognition motif. PLANT PHYSIOLOGY 2022; 189:972-987. [PMID: 35218353 PMCID: PMC9157115 DOI: 10.1093/plphys/kiac081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The activity of intracellular plant nucleotide-binding leucine-rich repeat (NB-LRR) immune receptors is fine-tuned by interactions between the receptors and their partners. Identifying NB-LRR interacting proteins is therefore crucial to advance our understanding of how these receptors function. A co-immunoprecipitation/mass spectrometry screening was performed in Nicotiana benthamiana to identify host proteins associated with the resistance protein Gpa2, a CC-NB-LRR immune receptor conferring resistance against the potato cyst nematode Globodera pallida. A combination of biochemical, cellular, and functional assays was used to assess the role of a candidate interactor in defense. A N. benthamiana homolog of the GLYCINE-RICH RNA-BINDING PROTEIN7 (NbGRP7) protein was prioritized as a Gpa2-interacting protein for further investigations. NbGRP7 also associates in planta with the homologous Rx1 receptor, which confers immunity to Potato Virus X. We show that NbGRP7 positively regulates extreme resistance by Rx1 and cell death by Gpa2. Mutating the NbGRP7 RNA recognition motif (RRM) compromises its role in Rx1-mediated defense. Strikingly, ectopic NbGRP7 expression is likely to impact the steady-state levels of Rx1, which relies on an intact RRM. Our findings illustrate that NbGRP7 is a pro-immune component in effector-triggered immunity by regulating Gpa2/Rx1 function at a posttranscriptional level.
Collapse
Affiliation(s)
- Octavina C A Sukarta
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Qi Zheng
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Erik J Slootweg
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Mark Mekken
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Melanie Mendel
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Vera Putker
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - André Bertran
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Anouk Brand
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Hein Overmars
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Rikus Pomp
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jan Roosien
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
19
|
Velásquez-Zapata V, Elmore JM, Fuerst G, Wise RP. An interolog-based barley interactome as an integration framework for immune signaling. Genetics 2022; 221:iyac056. [PMID: 35435213 PMCID: PMC9157089 DOI: 10.1093/genetics/iyac056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
The barley MLA nucleotide-binding leucine-rich-repeat (NLR) receptor and its orthologs confer recognition specificity to many fungal diseases, including powdery mildew, stem-, and stripe rust. We used interolog inference to construct a barley protein interactome (Hordeum vulgare predicted interactome, HvInt) comprising 66,133 edges and 7,181 nodes, as a foundation to explore signaling networks associated with MLA. HvInt was compared with the experimentally validated Arabidopsis interactome of 11,253 proteins and 73,960 interactions, verifying that the 2 networks share scale-free properties, including a power-law distribution and small-world network. Then, by successive layering of defense-specific "omics" datasets, HvInt was customized to model cellular response to powdery mildew infection. Integration of HvInt with expression quantitative trait loci (eQTL) enabled us to infer disease modules and responses associated with fungal penetration and haustorial development. Next, using HvInt and infection-time-course RNA sequencing of immune signaling mutants, we assembled resistant and susceptible subnetworks. The resulting differentially coexpressed (resistant - susceptible) interactome is essential to barley immunity, facilitates the flow of signaling pathways and is linked to mildew resistance locus a (Mla) through trans eQTL associations. Lastly, we anchored HvInt with new and previously identified interactors of the MLA coiled coli + nucleotide-binding domains and extended these to additional MLA alleles, orthologs, and NLR outgroups to predict receptor localization and conservation of signaling response. These results link genomic, transcriptomic, and physical interactions during MLA-specified immunity.
Collapse
Affiliation(s)
- Valeria Velásquez-Zapata
- Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA 50011, USA
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA
| | - James Mitch Elmore
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA
- Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Ames, IA 50011, USA
| | - Gregory Fuerst
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA
- Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Ames, IA 50011, USA
| | - Roger P Wise
- Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA 50011, USA
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA
- Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Ames, IA 50011, USA
| |
Collapse
|
20
|
Chapman AVE, Elmore JM, McReynolds M, Walley JW, Wise RP. SGT1-Specific Domain Mutations Impair Interactions with the Barley MLA6 Immune Receptor in Association with Loss of NLR Protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:274-289. [PMID: 34889653 DOI: 10.1094/mpmi-08-21-0217-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Mla (Mildew resistance locus a) of barley (Hordeum vulgare L.) is an effective model for cereal immunity against fungal pathogens. Like many resistance proteins, variants of the MLA coiled-coil nucleotide-binding leucine-rich repeat (CC-NLR) receptor often require the HRS complex (HSP90, RAR1, and SGT1) to function. However, functional analysis of Sgt1 has been particularly difficult, as deletions are often lethal. Recently, we identified rar3 (required for Mla6 resistance 3), an in-frame Sgt1ΔKL308-309 mutation in the SGT1-specific domain, that alters resistance conferred by MLA but without lethality. Here, we use autoactive MLA6 and recombinant yeast-two-hybrid strains with stably integrated HvRar1 and HvHsp90 to determine that this mutation weakens but does not entirely disrupt the interaction between SGT1 and MLA. This causes a concomitant reduction in MLA6 protein accumulation below the apparent threshold required for effective resistance. The ΔKL308-309 deletion had a lesser effect on intramolecular interactions than alanine or arginine substitutions, and MLA variants that display diminished interactions with SGT1 appear to be disproportionately affected by the SGT1ΔKL308-309 mutation. We hypothesize that those dimeric plant CC-NLRs that appear unaffected by Sgt1 silencing are those with the strongest intermolecular interactions with it. Combining our data with recent work in CC-NLRs, we propose a cyclical model of the MLA-HRS resistosome interactions.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.
Collapse
Affiliation(s)
- Antony V E Chapman
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, U.S.A
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - J Mitch Elmore
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Maxwell McReynolds
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, U.S.A
- Interdepartmental Plant Biology, Iowa State University, Ames, IA 50011, U.S.A
| | - Justin W Walley
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, U.S.A
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, U.S.A
- Interdepartmental Plant Biology, Iowa State University, Ames, IA 50011, U.S.A
| | - Roger P Wise
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, U.S.A
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, U.S.A
- Corn Insects and Crop Genetics Research Unit, USDA-Agricultural Research Service, Ames, IA 50011, U.S.A
| |
Collapse
|
21
|
Yan T, Zhou Z, Wang R, Bao D, Li S, Li A, Yu R, Wuriyanghan H. A cluster of atypical resistance genes in soybean confers broad-spectrum antiviral activity. PLANT PHYSIOLOGY 2022; 188:1277-1293. [PMID: 34730802 PMCID: PMC8825445 DOI: 10.1093/plphys/kiab507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/02/2021] [Indexed: 06/12/2023]
Abstract
Soybean mosaic virus (SMV) is a severe soybean (Glycine max) pathogen. Here we characterize a soybean SMV resistance cluster (SRC) that comprises five resistance (R) genes. SRC1 encodes a Toll/interleukin-1 receptor and nucleotide-binding site (TIR-NBS [TN]) protein, SRC4 and SRC6 encode TIR proteins with a short EF-hand domain, while SRC7 and SRC8 encode TNX proteins with a noncanonical basic secretory protein (BSP) domain at their C-termini. We mainly studied SRC7, which contains a noncanonical BSP domain and gave full resistance to SMV. SRC7 possessed broad-spectrum antiviral activity toward several plant viruses including SMV, plum pox virus, potato virus Y, and tobacco mosaic virus. The TIR domain alone was both necessary and sufficient for SRC7 immune signaling, while the NBS domain enhanced its activity. Nuclear oligomerization via the interactions of both TIR and NBS domains was essential for SRC7 function. SRC7 expression was transcriptionally inducible by SMV infection and salicylic acid (SA) treatment, and SA was required for SRC7 triggered virus resistance. SRC7 expression was posttranscriptionally regulated by miR1510a and miR2109, and the SRC7-miR1510a/miR2109 regulatory network appeared to contribute to SMV-soybean interactions in both resistant and susceptible soybean cultivars. In summary, we report a soybean R gene cluster centered by SRC7 that is regulated at both transcriptional and posttranscriptional levels, possesses a yet uncharacterized BSP domain, and has broad-spectrum antiviral activities. The SRC cluster is special as it harbors several functional R genes encoding atypical TIR-NBS-LRR (TNL) type R proteins, highlighting its importance in SMV-soybean interaction and plant immunity.
Collapse
Affiliation(s)
- Ting Yan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Zikai Zhou
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ru Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Duran Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Shanshan Li
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Aoga Li
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ruonan Yu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| |
Collapse
|
22
|
A NAC Transcription Factor TuNAC69 Contributes to ANK-NLR-WRKY NLR-Mediated Stripe Rust Resistance in the Diploid Wheat Triticum urartu. Int J Mol Sci 2022; 23:ijms23010564. [PMID: 35008990 PMCID: PMC8745140 DOI: 10.3390/ijms23010564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 01/27/2023] Open
Abstract
Stripe rust is one of the most devastating diseases in wheat. Nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domain receptors (NLRs) recognize pathogenic effectors and trigger plant immunity. We previously identified a unique NLR protein YrU1 in the diploid wheat Triticum urartu, which contains an N-terminal ANK domain and a C-terminal WRKY domain and confers disease resistance to stripe rust fungus Puccinia striiformis f. sp. Tritici (Pst). However, how YrU1 functions in disease resistance is not clear. In this study, through the RNA-seq analysis, we found that the expression of a NAC member TuNAC69 was significantly up-regulated after inoculation with Pst in the presence of YrU1. TuNAC69 was mainly localized in the nucleus and showed transcriptional activation in yeast. Knockdown TuNAC69 in diploid wheat Triticum urartu PI428309 that contains YrU1 by virus-induced gene silencing reduced the resistance to stripe rust. In addition, overexpression of TuNAC69 in Arabidopsis enhanced the resistance to powdery mildew Golovinomyces cichoracearum. In summary, our study indicates that TuNAC69 participates in the immune response mediated by NLR protein YrU1, and likely plays an important role in disease resistance to other pathogens.
Collapse
|
23
|
He T, Ren Z, Muhae-Ud-Din G, Guo Q, Liu T, Chen W, Gao L. Transcriptomics Analysis of Wheat Tassel Response to Tilletia laevis Kühn, Which Causes Common Bunt of Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:823907. [PMID: 35273625 PMCID: PMC8902468 DOI: 10.3389/fpls.2022.823907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/10/2022] [Indexed: 05/20/2023]
Abstract
Tilletia laevis Kühn [synonym T. foetida (Wallr.) Liro] can lead to a wheat common bunt, which is one of the most serious diseases affecting kernels, a serious reduction in grain yield, and losses can reach up to 80% in favorable environments. To understand how wheat tassels respond to T. laevis, based on an RNA-Seq technology, we analyzed a host transcript accumulation on healthy wheat tassels and on tassels infected by the pathogen. Our results showed that 7,767 out of 15,658 genes were upregulated and 7,891 out of 15,658 genes were downregulated in wheat tassels. Subsequent gene ontology (GO) showed that differentially expressed genes (DEGs) are predominantly involved in biological processes, cellular components, and molecular functions. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that 20 pathways were expressed significantly during the infection of wheat with T. laevis, while biosynthesis of amino acids, carbon metabolism, and starch and sucrose metabolism pathways were more highly expressed. Our findings also demonstrated that genes involved in defense mechanisms and myeloblastosis (MYB) transcription factor families were mostly upregulated, and the RNA-seq results were validated by quantitative real-time polymerase chain reaction (qRT-PCR). This is the first report on transcriptomics analysis of wheat tassels in response to T. laevis, which will contribute to understanding the interaction of T. laevis and wheat, and may provide higher efficiency control strategies, including developing new methods to increase the resistance of wheat crops to T. laevis-caused wheat common bunt.
Collapse
Affiliation(s)
- Ting He
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai University, Xining, China
| | - Zhaoyu Ren
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ghulam Muhae-Ud-Din
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingyun Guo
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai University, Xining, China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Li Gao,
| |
Collapse
|
24
|
Mukhi N, Brown H, Gorenkin D, Ding P, Bentham AR, Stevenson CEM, Jones JDG, Banfield MJ. Perception of structurally distinct effectors by the integrated WRKY domain of a plant immune receptor. Proc Natl Acad Sci U S A 2021; 118:e2113996118. [PMID: 34880132 PMCID: PMC8685902 DOI: 10.1073/pnas.2113996118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 01/11/2023] Open
Abstract
Plants use intracellular nucleotide-binding domain (NBD) and leucine-rich repeat (LRR)-containing immune receptors (NLRs) to detect pathogen-derived effector proteins. The Arabidopsis NLR pair RRS1-R/RPS4 confers disease resistance to different bacterial pathogens by perceiving the structurally distinct effectors AvrRps4 from Pseudomonas syringae pv. pisi and PopP2 from Ralstonia solanacearum via an integrated WRKY domain in RRS1-R. How the WRKY domain of RRS1 (RRS1WRKY) perceives distinct classes of effector to initiate an immune response is unknown. Here, we report the crystal structure of the in planta processed C-terminal domain of AvrRps4 (AvrRps4C) in complex with RRS1WRKY Perception of AvrRps4C by RRS1WRKY is mediated by the β2-β3 segment of RRS1WRKY that binds an electronegative patch on the surface of AvrRps4C Structure-based mutations that disrupt AvrRps4C-RRS1WRKY interactions in vitro compromise RRS1/RPS4-dependent immune responses. We also show that AvrRps4C can associate with the WRKY domain of the related but distinct RRS1B/RPS4B NLR pair, and the DNA-binding domain of AtWRKY41, with similar binding affinities and how effector binding interferes with WRKY-W-box DNA interactions. This work demonstrates how integrated domains in plant NLRs can directly bind structurally distinct effectors to initiate immunity.
Collapse
Affiliation(s)
- Nitika Mukhi
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Hannah Brown
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, United Kingdom
| | - Danylo Gorenkin
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, United Kingdom
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, United Kingdom
| | - Adam R Bentham
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Clare E M Stevenson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, United Kingdom
| | - Mark J Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom;
| |
Collapse
|
25
|
Zhu X, Li X, He Q, Guo D, Liu C, Cao J, Wu Z, Kang Z, Wang X. TaMYB29: A Novel R2R3-MYB Transcription Factor Involved in Wheat Defense Against Stripe Rust. FRONTIERS IN PLANT SCIENCE 2021; 12:783388. [PMID: 34912363 PMCID: PMC8666710 DOI: 10.3389/fpls.2021.783388] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/04/2021] [Indexed: 06/03/2023]
Abstract
Members of the R2R3-MYB transcription factor superfamily have been implicated in plant development, improved disease resistance, and defense responses to several types of stresses. To study the function of TaMYB29 transcription factor-a member of the R2R3-MYB superfamily-in response to an avirulent race of stripe rust pathogen, Puccinia striiformis f. sp. tritici (Pst), we identified and cloned the TaMYB29 gene from wheat cultivar (cv.) AvS+Yr10 following infection with Pst. The TaMYB29 protein, comprising 261 amino acids, contains two highly conserved MYB domains. We first showed that TaMYB29 is a transcription factor, whose transcriptional levels are significantly induced by salicylic acid (SA), abscisic acid (ABA), jasmonic acid (JA), ethylene (ET), and Pst. The results showed that TaMYB29 is involved in the wheat response to stipe rust. The overexpression of the TaMYB29 gene resulted in the accumulation of reactive oxygen species (ROS) and pathogen-independent cell death in Nicotiana benthamiana leaves. The silencing of TaMYB29 gene in wheat cv. AvS+Yr10, containing the stripe rust resistance gene Yr10, promoted hyphae growth, significantly downregulated the expression of pathogenesis-related (PR) genes, and substantially reduced the wheat resistance to Pst compared with the non-silenced control. In addition, the accumulation of hydrogen peroxide (H2O2) significantly decreased, and the activity of catalase, an enzyme required for H2O2 scavenging, was elevated. Altogether, TaMYB29 positively regulates the defense response against stripe rust in wheat AvS+Yr10 by enhancing H2O2 accumulation, PR gene expression, and SA signaling pathway-induced cell death. These results provide new insights into the contribution of TaMYB29 to the defense response against rust pathogens in wheat.
Collapse
Affiliation(s)
- Xiaoxu Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Innovation and Experiment, Northwest A&F University, Yangling, China
| | - Qi He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Dongxiao Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Caiqi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Innovation and Experiment, Northwest A&F University, Yangling, China
| | - Junying Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Zhongyi Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiaojing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
26
|
Yuan H, Jin C, Pei H, Zhao L, Li X, Li J, Huang W, Fan R, Liu W, Shen QH. The Powdery Mildew Effector CSEP0027 Interacts With Barley Catalase to Regulate Host Immunity. FRONTIERS IN PLANT SCIENCE 2021; 12:733237. [PMID: 34567043 PMCID: PMC8458882 DOI: 10.3389/fpls.2021.733237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/19/2021] [Indexed: 06/01/2023]
Abstract
Powdery mildew is one of the most important fungal pathogen diseases. The genome of barley mildew fungus, Blumeria graminis f. sp. hordei (Bgh), encodes a large number of candidate secreted effector proteins (CSEPs). So far, the function and mechanism of most CSEPs remain largely unknown. Here, we identify a Bgh effector CSEP0027, a member of family 41, triggering cell death in Nicotiana benthamiana. CSEP0027 contains a functional signal peptide (SP), verified by yeast secretion assay. We show that CSEP0027 promotes Bgh virulence in barley infection using transient gene expression and host-induced gene silencing (HIGS). Barley catalase HvCAT1 is identified as a CSEP0027 interactor by yeast two-hybrid (Y2H) screening, and the interaction is verified in yeast, in vitro and in vivo. The coexpression of CSEP0027 and HvCAT1 in barley cells results in altered localization of HvCAT1 from the peroxisome to the nucleus. Barley stripe mosaic virus (BSMV)-silencing and transiently-induced gene silencing (TIGS) assays reveal that HvCAT1 is required for barley immunity against Bgh. We propose that CSEP0027 interacts with barley HvCAT1 to regulate the host immunity and likely reactive oxygen species (ROS) homeostasis to promote fungal virulence during barley infection.
Collapse
Affiliation(s)
- Hongbo Yuan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences (CAS), Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Cong Jin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences (CAS), Beijing, China
| | - Hongcui Pei
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences (CAS), Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lifang Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences (CAS), Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xue Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences (CAS), Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jiali Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences (CAS), Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Wanting Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences (CAS), Beijing, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Renchun Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences (CAS), Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAS), Beijing, China
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences (CAS), Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Chapman AVE, Hunt M, Surana P, Velásquez-Zapata V, Xu W, Fuerst G, Wise RP. Disruption of barley immunity to powdery mildew by an in-frame Lys-Leu deletion in the essential protein SGT1. Genetics 2021; 217:6043926. [PMID: 33724411 DOI: 10.1093/genetics/iyaa026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/04/2020] [Indexed: 01/22/2023] Open
Abstract
Barley (Hordeum vulgare L.) Mla (Mildew resistance locus a) and its nucleotide-binding, leucine-rich-repeat receptor (NLR) orthologs protect many cereal crops from diseases caused by fungal pathogens. However, large segments of the Mla pathway and its mechanisms remain unknown. To further characterize the molecular interactions required for NLR-based immunity, we used fast-neutron mutagenesis to screen for plants compromised in MLA-mediated response to the powdery mildew fungus, Blumeria graminis f. sp. hordei. One variant, m11526, contained a novel mutation, designated rar3 (required for Mla6 resistance3), that abolishes race-specific resistance conditioned by the Mla6, Mla7, and Mla12 alleles, but does not compromise immunity mediated by Mla1, Mla9, Mla10, and Mla13. This is analogous to, but unique from, the differential requirement of Mla alleles for the co-chaperone Rar1 (required for Mla12 resistance1). We used bulked-segregant-exome capture and fine mapping to delineate the causal mutation to an in-frame Lys-Leu deletion within the SGS domain of SGT1 (Suppressor of G-two allele of Skp1, Sgt1ΔKL308-309), the structural region that interacts with MLA proteins. In nature, mutations to Sgt1 usually cause lethal phenotypes, but here we pinpoint a unique modification that delineates its requirement for some disease resistances, while unaffecting others as well as normal cell processes. Moreover, the data indicate that the requirement of SGT1 for resistance signaling by NLRs can be delimited to single sites on the protein. Further study could distinguish the regions by which pathogen effectors and host proteins interact with SGT1, facilitating precise editing of effector incompatible variants.
Collapse
Affiliation(s)
- Antony V E Chapman
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, USA.,Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Matthew Hunt
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, USA.,Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Priyanka Surana
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA.,Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA 50011, USA
| | - Valeria Velásquez-Zapata
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA.,Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA 50011, USA
| | - Weihui Xu
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Greg Fuerst
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA.,Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Ames, IA 50011, USA
| | - Roger P Wise
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, USA.,Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA.,Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA 50011, USA.,Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Ames, IA 50011, USA
| |
Collapse
|
28
|
Karre S, Kim SB, Kim BS, Khangura RS, Sermons SM, Dilkes B, Johal G, Balint-Kurti P. Maize Plants Chimeric for an Autoactive Resistance Gene Display a Cell-Autonomous Hypersensitive Response but Non-Cell Autonomous Defense Signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:606-616. [PMID: 33507801 DOI: 10.1094/mpmi-04-20-0091-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The maize gene Rp1-D21 is a mutant form of the gene Rp1-D that confers resistance to common rust. Rp1-D21 triggers a spontaneous defense response that occurs in the absence of the pathogen and includes a programed cell death called the hypersensitive response (HR). Eleven plants heterozygous for Rp1-D21, in four different genetic backgrounds, were identified that had chimeric leaves with lesioned sectors showing HR abutting green nonlesioned sectors lacking HR. The Rp1-D21 sequence derived from each of the lesioned portions of leaves was unaltered from the expected sequence whereas the Rp1-D21 sequences from nine of the nonlesioned sectors displayed various mutations, and we were unable to amplify Rp1-D21 from the other two nonlesioned sectors. In every case, the borders between the sectors were sharp, with no transition zone, suggesting that HR and chlorosis associated with Rp1-D21 activity was cell autonomous. Expression of defense response marker genes was assessed in the lesioned and nonlesioned sectors as well as in near-isogenic plants lacking and carrying Rp1-D21. Defense gene expression was somewhat elevated in nonlesioned sectors abutting sectors carrying Rp1-D21 compared with near-isogenic plants lacking Rp1-D21. This suggests that, whereas the HR itself was cell autonomous, other aspects of the defense response initiated by Rp1-D21 were not.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Shailesh Karre
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| | - Saet-Byul Kim
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| | - Bong-Suk Kim
- Botany and Plant Pathology, Purdue University, West Lafayette, IN, U.S.A
| | - Rajdeep S Khangura
- Department of Biochemistry, Purdue University, West Lafayette, IN, U.S.A
| | - Shannon M Sermons
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
- Plant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| | - Brian Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, IN, U.S.A
| | - Guri Johal
- Botany and Plant Pathology, Purdue University, West Lafayette, IN, U.S.A
| | - Peter Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
- Plant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| |
Collapse
|
29
|
Nucleotide-Binding Leucine-Rich Repeat Genes CsRSF1 and CsRSF2 Are Positive Modulators in the Cucumis sativus Defense Response to Sphaerotheca fuliginea. Int J Mol Sci 2021; 22:ijms22083986. [PMID: 33924330 PMCID: PMC8069588 DOI: 10.3390/ijms22083986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022] Open
Abstract
Cucumber powdery mildew caused by Sphaerotheca fuliginea is a leaf disease that seriously affects cucumber's yield and quality. This study aimed to report two nucleotide-binding site-leucine-rich repeats (NBS-LRR) genes CsRSF1 and CsRSF2, which participated in regulating the resistance of cucumber to S. fuliginea. The subcellular localization showed that the CsRSF1 protein was localized in the nucleus, cytoplasm, and cell membrane, while the CsRSF2 protein was localized in the cell membrane and cytoplasm. In addition, the transcript levels of CsRSF1 and CsRSF2 were different between resistant and susceptible cultivars after treatment with exogenous substances, such as abscisic acid (ABA), methyl jasmonate (MeJA), salicylic acid (SA), ethephon (ETH), gibberellin (GA) and hydrogen peroxide (H2O2). The expression analysis showed that the transcript levels of CsRSF1 and CsRSF2 were correlated with plant defense response against S. fuliginea. Moreover, the silencing of CsRSF1 and CsRSF2 impaired host resistance to S. fuliginea, but CsRSF1 and CsRSF2 overexpression improved resistance to S. fuliginea in cucumber. These results showed that CsRSF1 and CsRSF2 genes positively contributed to the resistance of cucumber to S. fuliginea. At the same time, CsRSF1 and CsRSF2 genes could also regulate the expression of defense-related genes. The findings of this study might help enhance the resistance of cucumber to S. fuliginea.
Collapse
|
30
|
Ross BT, Zidack NK, Flenniken ML. Extreme Resistance to Viruses in Potato and Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:658981. [PMID: 33889169 PMCID: PMC8056081 DOI: 10.3389/fpls.2021.658981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 05/31/2023]
Abstract
Plant pathogens, including viruses, negatively impact global crop production. Plants have evolved complex immune responses to pathogens. These responses are often controlled by nucleotide-binding leucine-rich repeat proteins (NLRs), which recognize intracellular, pathogen-derived proteins. Genetic resistance to plant viruses is often phenotypically characterized by programmed cell death at or near the infection site; a reaction termed the hypersensitive response. Although visualization of the hypersensitive response is often used as a hallmark of resistance, the molecular mechanisms leading to the hypersensitive response and associated cell death vary. Plants with extreme resistance to viruses rarely exhibit symptoms and have little to no detectable virus replication or spread beyond the infection site. Both extreme resistance and the hypersensitive response can be activated by the same NLR genes. In many cases, genes that normally provide an extreme resistance phenotype can be stimulated to cause a hypersensitive response by experimentally increasing cellular levels of pathogen-derived elicitor protein(s). The molecular mechanisms of extreme resistance and its relationship to the hypersensitive response are largely uncharacterized. Studies on potato and soybean cultivars that are resistant to strains of Potato virus Y (PVY), Potato virus X (PVX), and Soybean mosaic virus (SMV) indicate that abscisic acid (ABA)-mediated signaling and NLR nuclear translocation are important for the extreme resistance response. Recent research also indicates that some of the same proteins are involved in both extreme resistance and the hypersensitive response. Herein, we review and synthesize published studies on extreme resistance in potato and soybean, and describe studies in additional species, including model plant species, to highlight future research avenues that may bridge the gaps in our knowledge of plant antiviral defense mechanisms.
Collapse
Affiliation(s)
- Brian T. Ross
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Nina K. Zidack
- Montana State Seed Potato Certification Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
- Montana State Seed Potato Certification Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
31
|
Velásquez-Zapata V, Elmore JM, Banerjee S, Dorman KS, Wise RP. Next-generation yeast-two-hybrid analysis with Y2H-SCORES identifies novel interactors of the MLA immune receptor. PLoS Comput Biol 2021; 17:e1008890. [PMID: 33798202 PMCID: PMC8046355 DOI: 10.1371/journal.pcbi.1008890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/14/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022] Open
Abstract
Protein-protein interaction networks are one of the most effective representations of cellular behavior. In order to build these models, high-throughput techniques are required. Next-generation interaction screening (NGIS) protocols that combine yeast two-hybrid (Y2H) with deep sequencing are promising approaches to generate interactome networks in any organism. However, challenges remain to mining reliable information from these screens and thus, limit its broader implementation. Here, we present a computational framework, designated Y2H-SCORES, for analyzing high-throughput Y2H screens. Y2H-SCORES considers key aspects of NGIS experimental design and important characteristics of the resulting data that distinguish it from RNA-seq expression datasets. Three quantitative ranking scores were implemented to identify interacting partners, comprising: 1) significant enrichment under selection for positive interactions, 2) degree of interaction specificity among multi-bait comparisons, and 3) selection of in-frame interactors. Using simulation and an empirical dataset, we provide a quantitative assessment to predict interacting partners under a wide range of experimental scenarios, facilitating independent confirmation by one-to-one bait-prey tests. Simulation of Y2H-NGIS enabled us to identify conditions that maximize detection of true interactors, which can be achieved with protocols such as prey library normalization, maintenance of larger culture volumes and replication of experimental treatments. Y2H-SCORES can be implemented in different yeast-based interaction screenings, with an equivalent or superior performance than existing methods. Proof-of-concept was demonstrated by discovery and validation of novel interactions between the barley nucleotide-binding leucine-rich repeat (NLR) immune receptor MLA6, and fourteen proteins, including those that function in signaling, transcriptional regulation, and intracellular trafficking.
Collapse
Affiliation(s)
- Valeria Velásquez-Zapata
- Program in Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, United States of America
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - J. Mitch Elmore
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, United States of America
- Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Ames, Iowa, United States of America
| | - Sagnik Banerjee
- Program in Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, United States of America
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Karin S. Dorman
- Program in Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, United States of America
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Roger P. Wise
- Program in Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, United States of America
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, United States of America
- Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Ames, Iowa, United States of America
| |
Collapse
|
32
|
Wang J, Han M, Liu Y. Diversity, structure and function of the coiled-coil domains of plant NLR immune receptors. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:283-296. [PMID: 33205883 DOI: 10.1111/jipb.13032] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Plant nucleotide-binding, leucine-rich repeat receptors (NLRs) perceive pathogen avirulence effectors and activate defense responses. Nucleotide-binding, leucine-rich repeat receptors are classified into coiled-coil (CC)-containing and Toll/interleukin-1 receptor (TIR)-containing NLRs. Recent advances suggest that NLR CC domains often function in signaling activation, especially for induction of cell death. In this review, we outline our current understanding of NLR CC domains, including their diversity/classification and structure, their roles in cell death induction, disease resistance, and interaction with other proteins. Furthermore, we provide possible directions for future work.
Collapse
Affiliation(s)
- Junzhu Wang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Meng Han
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| |
Collapse
|
33
|
Chakraborty J, Ghosh P. Advancement of research on plant NLRs evolution, biochemical activity, structural association, and engineering. PLANTA 2020; 252:101. [PMID: 33180185 DOI: 10.1007/s00425-020-03512-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
In this review, we have included evolution of plant intracellular immune receptors, oligomeric complex formation, enzymatic action, engineering, and mechanisms of immune inspection for appropriate defense outcomes. NLR (Nucleotide binding oligomerization domain containing leucine-rich repeat) proteins are the intracellular immune receptors that recognize pathogen-derived virulence factors to confer effector-triggered immunity (ETI). Activation of plant defense by the NLRs are often conveyed through N-terminal Toll-like/ IL-1 receptor (TIR) or non-TIR (coiled-coils or CC) domains. Homodimerization or self-association property of CC/ TIR domains of plant NLRs contribute to their auto-activity and induction of in planta ectopic cell death. High resolution crystal structures of Arabidopsis thaliana RPS4TIR, L6TIR, SNC1TIR, RPP1TIR and Muscadinia rotundifolia RPV1TIR showed that interaction is mediated through one or two distinct interfaces i.e., αA and αE helices comprise AE interface and αD and αE helices were found to form DE interface. By contrast, conserved helical regions were determined for CC domains of plant NLRs. Evolutionary history of NLRs diversification has shown that paired forms were originated from NLR singletons. Plant TIRs executed NAD+ hydrolysis activity for cell death promotion. Plant NLRs were found to form large oligomeric complexes as observed in animal inflammasomes. We have also discussed different protein engineering methods includes domain shuffling, and decoy modification that increase effector recognition spectrum of plant NLRs. In summary, our review highlights structural basis of perception of the virulence factors by NLRs or NLR pairs to design novel classes of plant immune receptors.
Collapse
Affiliation(s)
| | - Prithwi Ghosh
- Department of Botany, Narajole Raj College, Narajole, Paschim Medinipur, 721211, West Bengal, India
| |
Collapse
|
34
|
Deng Y, Ning Y, Yang DL, Zhai K, Wang GL, He Z. Molecular Basis of Disease Resistance and Perspectives on Breeding Strategies for Resistance Improvement in Crops. MOLECULAR PLANT 2020; 13:1402-1419. [PMID: 32979566 DOI: 10.1016/j.molp.2020.09.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/31/2020] [Accepted: 09/19/2020] [Indexed: 05/24/2023]
Abstract
Crop diseases are major factors responsible for substantial yield losses worldwide, which affects global food security. The use of resistance (R) genes is an effective and sustainable approach to controlling crop diseases. Here, we review recent advances on R gene studies in the major crops and related wild species. Current understanding of the molecular mechanisms underlying R gene activation and signaling, and susceptibility (S) gene-mediated resistance in crops are summarized and discussed. Furthermore, we propose some new strategies for R gene discovery, how to balance resistance and yield, and how to generate crops with broad-spectrum disease resistance. With the rapid development of new genome-editing technologies and the availability of increasing crop genome sequences, the goal of breeding next-generation crops with durable resistance to pathogens is achievable, and will be a key step toward increasing crop production in a sustainable way.
Collapse
Affiliation(s)
- Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Keran Zhai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA.
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
35
|
Wang Q, Li J, Lu L, He C, Li C. Novel Variation and Evolution of AvrPiz-t of Magnaporthe oryzae in Field Isolates. Front Genet 2020; 11:746. [PMID: 33005166 PMCID: PMC7484972 DOI: 10.3389/fgene.2020.00746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023] Open
Abstract
The product of the avirulence (Avr) gene of Magnaporthe oryzae can be detected by the product of the corresponding resistance (R) gene of rice and activates immunity to rice mediated by the R gene. The high degree of variability of M. oryzae isolates in pathogenicity makes the control of rice blast difficult. That resistance of the R gene in rice has been lost has been ascribed to the instability of the Avr gene in M. oryzae. Further study on the variation of the Avr genes in M. oryze field isolates may yield valuable information on the durable and effective deployment of R genes in rice production areas. AvrPiz-t and Piz-t are a pair of valuable genes in the Rice-Magnaporthe pathosystem. AvrPiz-t is detectable by Piz-t and determines the effectiveness of Piz-t. To effectively deploy the R gene Piz-t, the distribution, variation, and evolution of the corresponding Avr gene AvrPiz-t were found among 312 M. oryzae isolates collected from Yunnan rice production areas of China. PCR amplification and pathogenicity assays of AvrPiz-t showed that 202 isolates (64.7%) held AvrPiz-t alleles and were avirulent to IRBLzt-T (holding Piz-t). There were 42.3–83.3% avirulent isolates containing AvrPiz-t among seven regions in Yunnan Province. Meanwhile, 11 haplotypes of AvrPiz-t encoding three novel AvrPiz-t variants were identified among 100 isolates. A 198 bps insertion homologous to solo-LTR of the retrotransposon inago2 in the promoter region of AvrPiz-t in one isolate and a frameshift mutation of CDS in another isolate were identified among 100 isolates, and those two isolates had evolved to virulent from avirulent. Synonymous mutation and non-AUG-initiated N-terminal extensions keeps the AvrPiz-t gene avirulence function in M. oryzae field isolates in Yunnan. A haplotype network showed that H3 was an ancestral haplotype. Structure variance for absence (28.2%) or partial fragment loss (71.8%) of AvrPiz-t was found among 39 virulent isolates and may cause the AvrPiz-t avirulence function to be lost. Overall, AvrPiz-t evolved to virulent from avirulent forms via point mutation, retrotransposon, shift mutation, and structure variance under field conditions.
Collapse
Affiliation(s)
- Qun Wang
- Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jinbin Li
- Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Lin Lu
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Chengxing He
- Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Chengyun Li
- The Ministry of Education Key Laboratory for Agricultural Biodiversity and Pest Management, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
36
|
Han X, Zhang L, Zhao L, Xue P, Qi T, Zhang C, Yuan H, Zhou L, Wang D, Qiu J, Shen QH. SnRK1 Phosphorylates and Destabilizes WRKY3 to Enhance Barley Immunity to Powdery Mildew. PLANT COMMUNICATIONS 2020; 1:100083. [PMID: 33367247 PMCID: PMC7747994 DOI: 10.1016/j.xplc.2020.100083] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 05/19/2023]
Abstract
Plants recognize pathogens and activate immune responses, which usually involve massive transcriptional reprogramming. The evolutionarily conserved kinase, Sucrose non-fermenting-related kinase 1 (SnRK1), functions as a metabolic regulator that is essential for plant growth and stress responses. Here, we identify barley SnRK1 and a WRKY3 transcription factor by screening a cDNA library. SnRK1 interacts with WRKY3 in yeast, as confirmed by pull-down and luciferase complementation assays. Förster resonance energy transfer combined with noninvasive fluorescence lifetime imaging analysis indicates that the interaction occurs in the barley nucleus. Transient expression and virus-induced gene silencing analyses indicate that WRKY3 acts as a repressor of disease resistance to the Bgh fungus. Barley plants overexpressing WRKY3 have enhanced fungal microcolony formation and sporulation. Phosphorylation assays show that SnRK1 phosphorylates WRKY3 mainly at Ser83 and Ser112 to destabilize the repressor, and WRKY3 non-phosphorylation-null mutants at these two sites are more stable than the wild-type protein. SnRK1-overexpressing barley plants display enhanced disease resistance to Bgh. Transient expression of SnRK1 reduces fungal haustorium formation in barley cells, which probably requires SnRK1 nuclear localization and kinase activity. Together, these findings suggest that SnRK1 is directly involved in plant immunity through phosphorylation and destabilization of the WRKY3 repressor, revealing a new regulatory mechanism of immune derepression in plants.
Collapse
Affiliation(s)
- Xinyun Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
| | - Lifang Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengya Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Qi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
| | - Chunlei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbo Yuan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixun Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
| | - Daowen Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
| | - Jinlong Qiu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author
| |
Collapse
|
37
|
Sukarta OC, Townsend PD, Llewelyn A, Dixon CH, Slootweg EJ, Pålsson LO, Takken FL, Goverse A, Cann MJ. A DNA-Binding Bromodomain-Containing Protein Interacts with and Reduces Rx1-Mediated Immune Response to Potato Virus X. PLANT COMMUNICATIONS 2020; 1:100086. [PMID: 32715296 PMCID: PMC7371201 DOI: 10.1016/j.xplc.2020.100086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 06/01/2023]
Abstract
Plant NLR proteins enable the immune system to recognize and respond to pathogen attack. An early consequence of immune activation is transcriptional reprogramming. Some NLRs have been shown to act in the nucleus and interact with transcription factors. The Rx1 NLR protein of potato binds and distorts double-stranded DNA. However, the components of the chromatin-localized Rx1 complex are largely unknown. Here, we report a physical and functional interaction between Rx1 and NbDBCP, a bromodomain-containing chromatin-interacting protein. NbDBCP accumulates in the nucleoplasm and nucleolus, interacts with chromatin, and redistributes Rx1 to the nucleolus in a subpopulation of imaged cells. Rx1 overexpression reduces the interaction between NbDBCP and chromatin. NbDBCP is a negative regulator of Rx1-mediated immune responses to potato virus X (PVX), and this activity requires an intact bromodomain. Previously, Rx1 has been shown to regulate the DNA-binding activity of a Golden2-like transcription factor, NbGlk1. Rx1 and NbDBCP act synergistically to reduce NbGlk1 DNA binding, suggesting a mode of action for NbDBCP's inhibitory effect on immunity. This study provides new mechanistic insight into the mechanism by which a chromatin-localized NLR complex co-ordinates immune signaling after pathogen perception.
Collapse
Affiliation(s)
- Octavina C.A. Sukarta
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Philip D. Townsend
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
- Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK
| | - Alexander Llewelyn
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
- Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK
| | - Christopher H. Dixon
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
- Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK
| | - Erik J. Slootweg
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Lars-Olof Pålsson
- Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK
| | - Frank L.W. Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Martin J. Cann
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
- Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
38
|
Sun Y, Zhu YX, Balint-Kurti PJ, Wang GF. Fine-Tuning Immunity: Players and Regulators for Plant NLRs. TRENDS IN PLANT SCIENCE 2020; 25:695-713. [PMID: 32526174 DOI: 10.1016/j.tplants.2020.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 05/20/2023]
Abstract
Plants have evolved a sophisticated innate immune system to defend against pathogen infection, and intracellular nucleotide-binding, leucine-rich repeat (NLR or NB-LRR) immune receptors are one of the main components of this system. NLR activity is fine-tuned by intra- and intermolecular interactions. We survey what is known about the conservation and diversity of NLR-interacting proteins, and divide them into seven major categories. We discuss the molecular mechanisms by which NLR activities are regulated and how understanding this regulation has potential to facilitate the engineering of NLRs for crop improvement.
Collapse
Affiliation(s)
- Yang Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, PR China
| | - Yu-Xiu Zhu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, PR China
| | - Peter J Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA; US Department of Agriculture Agricultural Research Service, Plant Science Research Unit, Raleigh, NC 27695, USA
| | - Guan-Feng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
39
|
Pottinger SE, Bak A, Margets A, Helm M, Tang L, Casteel C, Innes RW. Optimizing the PBS1 Decoy System to Confer Resistance to Potyvirus Infection in Arabidopsis and Soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:932-944. [PMID: 32267815 DOI: 10.1094/mpmi-07-19-0190-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Arabidopsis resistance protein RPS5 is activated by proteolytic cleavage of the protein kinase PBS1 by the Pseudomonas syringae effector protease AvrPphB. We have previously shown that replacing seven amino acids at the cleavage site of PBS1 with a motif cleaved by the NIa protease of turnip mosaic virus (TuMV) enables RPS5 activation upon TuMV infection. However, this engineered resistance conferred a trailing necrosis phenotype indicative of a cell-death response too slow to contain the virus. We theorized this could result from a positional mismatch within the cell between PBS1TuMV, RPS5, and the NIa protease. To test this, we relocalized PBS1TuMV and RPS5 to cellular sites of NIa accumulation. These experiments revealed that relocation of RPS5 away from the plasma membrane compromised RPS5-dependent cell death in Nicotiana benthamiana, even though PBS1 was efficiently cleaved. As an alternative approach, we tested whether overexpression of plasma membrane-localized PBS1TuMV could enhance RPS5 activation by TuMV. Significantly, overexpressing the PBS1TuMV decoy protein conferred complete resistance to TuMV when delivered by either agrobacterium or by aphid transmission, showing that RPS5-mediated defense responses are effective against bacterial and viral pathogens. Lastly, we have now extended this PBS1 decoy approach to soybean by modifying a soybean PBS1 ortholog to be cleaved by the NIa protease of soybean mosaic virus (SMV). Transgenic overexpression of this soybean PBS1 decoy conferred immunity to SMV, demonstrating that we can use endogenous PBS1 proteins in crop plants to engineer economically relevant disease resistant traits.
Collapse
Affiliation(s)
- Sarah E Pottinger
- Indiana University, Department of Biology, Bloomington, IN 47405, U.S.A
| | - Aurelie Bak
- University of California, Department of Plant Pathology, Davis, CA 95616, U.S.A
| | - Alexandra Margets
- Indiana University, Department of Biology, Bloomington, IN 47405, U.S.A
| | - Matthew Helm
- Indiana University, Department of Biology, Bloomington, IN 47405, U.S.A
- United States Department of Agriculture, Agricultural Research Service, Crop Production and Pest Control Research Unit, West Lafayette, IN 47907, U.S.A
| | - Lucas Tang
- Indiana University, Department of Biology, Bloomington, IN 47405, U.S.A
| | - Clare Casteel
- University of California, Department of Plant Pathology, Davis, CA 95616, U.S.A
| | - Roger W Innes
- Indiana University, Department of Biology, Bloomington, IN 47405, U.S.A
| |
Collapse
|
40
|
Zhang Z, Tian C, Zhang Y, Li C, Li X, Yu Q, Wang S, Wang X, Chen X, Feng S. Transcriptomic and metabolomic analysis provides insights into anthocyanin and procyanidin accumulation in pear. BMC PLANT BIOLOGY 2020; 20:129. [PMID: 32220242 PMCID: PMC7099803 DOI: 10.1186/s12870-020-02344-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/17/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Pear is one of the most important fruit crops worldwide. Anthocyanins and procyanidins (PAs) are important secondary metabolites that affect the appearance and nutritive quality of pear. However, few studies have focused on the molecular mechanism underlying anthocyanin and PA accumulation in pear. RESULTS We conducted metabolome and transcriptome analyses to identify candidate genes involved in anthocyanin and PA accumulation in young fruits of the pear cultivar 'Clapp Favorite' (CF) and its red mutation cultivar 'Red Clapp Favorite' (RCF). Gene-metabolite correlation analyses revealed a 'core set' of 20 genes that were strongly correlated with 10 anthocyanin and seven PA metabolites. Of these, PcGSTF12 was confirmed to be involved in anthocyanin and PA accumulation by complementation of the tt19-7 Arabidopsis mutant. Interestingly, PcGSTF12 was found to be responsible for the accumulation of procyanidin A3, but not petunidin 3, 5-diglucoside, opposite to the function of AtGSTs in Arabidopsis. Transformation with PcGSTF12 greatly promoted or repressed genes involved in anthocyanin and PA biosynthesis, regulation, and transport. Electrophoretic mobility shift and luciferase reporter assays confirmed positive regulation of PcGSTF12 by PcMYB114. CONCLUSION These findings identify a core set of genes for anthocyanin and PA accumulation in pear. Of these, PcGSTF12, was confirmed to be involved in anthocyanin and PA accumulation. Our results also identified an important anthocyanin and PA regulation node comprising two core genes, PcGSTF12 and PcMYB114. These results provide novel insights into anthocyanin and PA accumulation in pear and represent a valuable data set to guide future functional studies and pear breeding.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
| | - Changping Tian
- Cherry Research Department, Yantai Agricultural Science and Technology Institute, No.26, West Gangcheng Street, Yan'tai, 265500, China
| | - Ya Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
| | - Chenzhiyu Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
| | - Xi Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
| | - Qiang Yu
- Cherry Research Department, Yantai Agricultural Science and Technology Institute, No.26, West Gangcheng Street, Yan'tai, 265500, China
| | - Shuo Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
| | - Xinyu Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
| | - Shouqian Feng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China.
- College of Horticulture Sciences, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China.
| |
Collapse
|
41
|
Chen X, Li C, Wang H, Guo Z. WRKY transcription factors: evolution, binding, and action. PHYTOPATHOLOGY RESEARCH 2019; 1:13. [PMID: 0 DOI: 10.1186/s42483-019-0022-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/28/2019] [Indexed: 05/25/2023]
|
42
|
Tariq R, Ji Z, Wang C, Tang Y, Zou L, Sun H, Chen G, Zhao K. RNA-Seq analysis of gene expression changes triggered by Xanthomonas oryzae pv. oryzae in a susceptible rice genotype. RICE (NEW YORK, N.Y.) 2019; 12:44. [PMID: 31236783 PMCID: PMC6591352 DOI: 10.1186/s12284-019-0301-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/24/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND Xanthomonas oryzae pv. oryzae (Xoo) is a destructive disease in most of the rice growing regions worldwide. Xoo injects the transcriptional activator-like (TAL) effector protein into the host cell to induce the susceptibility (S) gene(s) for spreading the disease. In the current study, a susceptible rice genotype, JG30, was inoculated with wild Xoo strain PXO99A and its mutant PH without any TAL effector, to retrieve the differentially expressed genes (DEGs) having a role in susceptibility. RESULTS RNA-Seq data analysis showed that 1143 genes were significantly differentially expressed (p-value ≤0.05) at 12, 24, 36 and 48 h post inoculation (hpi). Expression patterns, evaluated by quantitative real-time PCR (qRT-PCR), of randomly selected eight genes were similar to the RNA-Seq data. KEGG pathway classified the DEGs into photosynthesis and biosynthesis of phenylpropanoid pathway. Gene ontology (GO) analysis categorized the DEGs into the biological pathway, cellular component, and molecular function. We identified 43 differentially expressed transcription factors (TFs) belonging to different families. Also, clusters of the DEGs representing kinase and peroxidase responsive genes were retrieved. MapMan pathway analysis representing the expression pattern of genes expressed highly in biotic stress and metabolic pathways after PXO99A infection relative to PH. CONCLUSIONS DEGs were identified in susceptible rice genotype inoculated with PXO99A relative to mutant strain PH. The identified 1143 DEGs were predicted to be included in the different biological processes, signaling mechanism and metabolic pathways. The Jasmonic acid (JA) responsive genes were identified to be downregulated in PXO99A infected leaves. This study would be useful for the researchers to reveal the potential functions of genes involved in the rice susceptibility to PXO99A infection.
Collapse
Affiliation(s)
- Rezwan Tariq
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China
| | - Zhiyuan Ji
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Chunlian Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China
| | - Yongchao Tang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China
| | - Lifang Zou
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Hongda Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China
| | - Gongyou Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China.
| |
Collapse
|
43
|
Zhai K, Deng Y, Liang D, Tang J, Liu J, Yan B, Yin X, Lin H, Chen F, Yang D, Xie Z, Liu JY, Li Q, Zhang L, He Z. RRM Transcription Factors Interact with NLRs and Regulate Broad-Spectrum Blast Resistance in Rice. Mol Cell 2019; 74:996-1009.e7. [DOI: 10.1016/j.molcel.2019.03.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/30/2019] [Accepted: 03/11/2019] [Indexed: 01/01/2023]
|
44
|
Huang YY, Zhang LL, Ma XF, Zhao ZX, Zhao JH, Zhao JQ, Fan J, Li Y, He P, Xiao S, Wang WM. Multiple intramolecular trafficking signals in RESISTANCE TO POWDERY MILDEW 8.2 are engaged in activation of cell death and defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:55-70. [PMID: 30552775 DOI: 10.1111/tpj.14199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
The extrahaustorial membrane (EHM) is a host-derived interfacial membrane encasing the haustorium of powdery mildew fungi. Arabidopsis thaliana RESISTANCE TO POWDERY MILDEW 8.2 (RPW8.2) is specifically targeted to the EHM via two EHM-targeting signals. Here, we demonstrate that proper coordination between the trafficking forces engaged via the EHM-targeting signals and the nuclear localization signals (NLSs), as well as the nuclear export signals (NESs), in RPW8.2 is critical for the activation of cell death and defense. We show that in the absence of pathogens, RPW8.2 is partitioned between the cytoplasm and the nucleus, and turned over via both the 26S proteasome- and the vacuole-dependent pathways. Enhanced cytoplasmic localization of RPW8.2 by tagging it with a NES led to lethal cell death. By contrast, enhanced nuclear localization of RPW8.2 by adding an NLS to it resulted in resistance to powdery mildew. Whereas expression of the NES-containing C-terminal domain of RPW8.2 in the cytoplasm is sufficient to trigger cell death, no such cell death-inducing activity is found with RPW8.2 variants that contain the two EHM-targeting signals along with the NES-containing C-terminal domain. In addition, we present evidence for the involvement of a leaf senescence pathway in RPW8.2-mediated cell death and defense. Taken together, our data suggest that RPW8.2 is subject to adjustment by distinct and perhaps coordinated mechanisms for its localization and function via interaction with the multiple intramolecular trafficking signals, which should provide further insights into RPW8.2-activated, EHM-focused resistance against powdery mildew.
Collapse
Affiliation(s)
- Yan-Yan Huang
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling-Li Zhang
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xian-Feng Ma
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Biosciences and Biotechnology Research, Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20850, USA
| | - Zhi-Xue Zhao
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing-Hao Zhao
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ji-Qun Zhao
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Fan
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Li
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping He
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Shunyuan Xiao
- Institute of Biosciences and Biotechnology Research, Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20850, USA
| | - Wen-Ming Wang
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
45
|
Cobo N, Wanjugi H, Lagudah E, Dubcovsky J. A High-Resolution Map of Wheat QYr.ucw-1BL, an Adult Plant Stripe Rust Resistance Locus in the Same Chromosomal Region as Yr29. THE PLANT GENOME 2019; 12:180055. [PMID: 30951084 DOI: 10.3835/plantgenome2018.08.0055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The appearance of highly virulent and more aggressive races of f. sp. () during the last two decades has led to stripe rust epidemics worldwide and to the rapid erosion of effective resistance genes. In this study, we mapped an adult-plant resistance locus from the Argentinean wheat ( L.) cultivar Klein Chajá, which is effective against these new races. By using wheat exome capture data and a large population of 2480 segregating plants (4960 gametes), we mapped within a 0.24-cM region [332 kb in International Wheat Genome Sequencing Consortium (IWGSC) RefSeq version 1.0] on chromosome arm 1BL. This region overlaps with current maps of the adult-plant resistance gene , which has remained effective for more than 60 yr. An allelism test failed to find recombination between and and yielded similar resistance phenotypes for the two loci. These results, together with similar haplotypes in the candidate region, suggested that and might represent the same gene. However, we cannot rule out the possibility of tightly linked but different genes because most of the 13 genes in the candidate region are annotated with functions associated with disease resistance. To evaluate their potential as candidate genes, we characterized their polymorphisms between resistant and susceptible haplotypes. Finally, we used these polymorphisms to develop high-throughput markers to accelerate the deployment of these resistance loci in wheat breeding programs.
Collapse
|
46
|
Kapos P, Devendrakumar KT, Li X. Plant NLRs: From discovery to application. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:3-18. [PMID: 30709490 DOI: 10.1016/j.plantsci.2018.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 05/09/2023]
Abstract
Plants require a complex immune system to defend themselves against a wide range of pathogens which threaten their growth and development. The nucleotide-binding leucine-rich repeat proteins (NLRs) are immune sensors that recognize effectors delivered by pathogens. The first NLR was cloned more than twenty years ago. Since this initial discovery, NLRs have been described as key components of plant immunity responsible for pathogen recognition and triggering defense responses. They have now been described in most of the well-studied mulitcellular plant species, with most having large NLR repertoires. As research has progressed so has the understanding of how NLRs interact with their recognition substrates and how they in turn activate downstream signalling. It has also become apparent that NLR regulation occurs at the transcriptional, post-transcriptional, translational, and post-translational levels. Even before the first NLR was cloned, breeders were utilising such genes to increase crop performance. Increased understanding of the mechanistic details of the plant immune system enable the generation of plants resistant against devastating pathogens. This review aims to give an updated summary of the NLR field.
Collapse
Affiliation(s)
- Paul Kapos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
47
|
Sun Y, Fan M, He Y. Transcriptome Analysis of Watermelon Leaves Reveals Candidate Genes Responsive to Cucumber green mottle mosaic virus Infection. Int J Mol Sci 2019; 20:ijms20030610. [PMID: 30708960 PMCID: PMC6387395 DOI: 10.3390/ijms20030610] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 01/02/2023] Open
Abstract
Cucumber green mottle mosaic virus (CGMMV) is a member of the genus Tobamovirus, which cause diseases in cucurbits, especially watermelon. In watermelon, symptoms develop on the whole plant, including leaves, stems, peduncles, and fruit. To better understand the molecular mechanisms of watermelon early responses to CGMMV infection, a comparative transcriptome analysis of 24 h CGMMV-infected and mock-inoculated watermelon leaves was performed. A total of 1641 differently expressed genes (DEGs) were identified, with 886 DEGs upregulated and 755 DEGs downregulated after CGMMV infection. A functional analysis indicated that the DEGs were involved in photosynthesis, plant⁻pathogen interactions, secondary metabolism, and plant hormone signal transduction. In addition, a few transcription factor families, including WRKY, MYB, HLH, bZIP and NAC, were responsive to the CGMMV-induced stress. To confirm the high-throughput sequencing results, 15 DEGs were validated by qRT-PCR analysis. The results provide insights into the identification of candidate genes or pathways involved in the responses of watermelon leaves to CGMMV infection.
Collapse
Affiliation(s)
- Yuyan Sun
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Min Fan
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yanjun He
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
48
|
Liu J, Zhi P, Wang X, Fan Q, Chang C. Wheat WD40-repeat protein TaHOS15 functions in a histone deacetylase complex to fine-tune defense responses to Blumeria graminis f.sp. tritici. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:255-268. [PMID: 30204899 DOI: 10.1093/jxb/ery330] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/10/2018] [Indexed: 05/23/2023]
Abstract
Powdery mildew caused by Blumeria graminis f.sp. tritici (Bgt) seriously threatens the production of common wheat (Triticum aestivum). In eukaryotes, WD40-repeat (WDR) proteins usually participate in assembling protein complexes involved in a wide range of cellular processes, including defense responses. However, the potential function of WDR proteins in regulating crop resistance to biotrophic fungal pathogens, such as Bgt, remains unclear. In this study, we isolated TaHOS15, encoding a WDR protein, from the Bgt-susceptible wheat cultivar Jing411 and demonstrated that knockdown of TaHOS15 expression using virus- or transient-induced gene-silencing attenuated wheat susceptibility to Bgt. Biochemical and molecular-biological assays revealed that TaHOS15 interacts with TaHDA6, a wheat homolog of Arabidopsis histone deacetylase AtHDA6, to constitute a transcriptional repressor complex. We determined the role of TaHOS15, which might act as an adaptor protein recruiting TaHDA6 to the chromatin of wheat defense-related genes including TaPR1, TaPR2, TaPR5, and TaWRKY45, where they repress histone acetylation. Reduced TaHOS15 or TaHDA6 transcript levels led to decreased susceptibility to Bgt together with enhanced defense-related transcription under Bgt infection. Collectively, these results demonstrate that TaHOS15 functions in a histone deacetylase complex with TaHDA6 to fine-tune the defense response to Bgt in common wheat.
Collapse
Affiliation(s)
- Jiao Liu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Pengfei Zhi
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Xiaoyu Wang
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Qingxin Fan
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
49
|
Chen Z, Zhao W, Zhu X, Zou C, Yin J, Chern M, Zhou X, Ying H, Jiang X, Li Y, Liao H, Cheng M, Li W, He M, Wang J, Wang J, Ma B, Wang J, Li S, Zhu L, Chen X. Identification and characterization of rice blast resistance gene Pid4 by a combination of transcriptomic profiling and genome analysis. J Genet Genomics 2018; 45:663-672. [DOI: 10.1016/j.jgg.2018.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/11/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022]
|
50
|
Slootweg EJ, Spiridon LN, Martin EC, Tameling WIL, Townsend PD, Pomp R, Roosien J, Drawska O, Sukarta OCA, Schots A, Borst JW, Joosten MHAJ, Bakker J, Smant G, Cann MJ, Petrescu AJ, Goverse A. Distinct Roles of Non-Overlapping Surface Regions of the Coiled-Coil Domain in the Potato Immune Receptor Rx1. PLANT PHYSIOLOGY 2018; 178:1310-1331. [PMID: 30194238 PMCID: PMC6236623 DOI: 10.1104/pp.18.00603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/28/2018] [Indexed: 05/20/2023]
Abstract
The intracellular immune receptor Rx1 of potato (Solanum tuberosum), which confers effector-triggered immunity to Potato virus X, consists of a central nucleotide-binding domain (NB-ARC) flanked by a carboxyl-terminal leucine-rich repeat (LRR) domain and an amino-terminal coiled-coil (CC) domain. Rx1 activity is strictly regulated by interdomain interactions between the NB-ARC and LRR, but the contribution of the CC domain in regulating Rx1 activity or immune signaling is not fully understood. Therefore, we used a structure-informed approach to investigate the role of the CC domain in Rx1 functionality. Targeted mutagenesis of CC surface residues revealed separate regions required for the intramolecular and intermolecular interaction of the CC with the NB-ARC-LRR and the cofactor Ran GTPase-activating protein2 (RanGAP2), respectively. None of the mutant Rx1 proteins was constitutively active, indicating that the CC does not contribute to the autoinhibition of Rx1 activity. Instead, the CC domain acted as a modulator of downstream responses involved in effector-triggered immunity. Systematic disruption of the hydrophobic interface between the four helices of the CC enabled the uncoupling of cell death and disease resistance responses. Moreover, a strong dominant negative effect on Rx1-mediated resistance and cell death was observed upon coexpression of the CC alone with full-length Rx1 protein, which depended on the RanGAP2-binding surface of the CC. Surprisingly, coexpression of the N-terminal half of the CC enhanced Rx1-mediated resistance, which further indicated that the CC functions as a scaffold for downstream components involved in the modulation of disease resistance or cell death signaling.
Collapse
Affiliation(s)
- Erik J Slootweg
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | | | - Eliza C Martin
- Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania
| | - Wladimir I L Tameling
- Laboratory of Phytopathology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Philip D Townsend
- Department of Biosciences and Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
| | - Rikus Pomp
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Jan Roosien
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Olga Drawska
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Octavina C A Sukarta
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Arjen Schots
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Jan Willem Borst
- Laboratory of Biochemistry/Microspectroscopy Centre, Department of Agrotechnology and Food Sciences, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Jaap Bakker
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Martin J Cann
- Department of Biosciences and Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
| | | | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|