1
|
Chen S, Ye J, Lin Y, Chen W, Huang S, Yang Q, Qian H, Gao S, Hua C. Crucial Roles of RSAD2/viperin in Immunomodulation, Mitochondrial Metabolism and Autoimmune Diseases. Inflammation 2025; 48:520-540. [PMID: 38909344 DOI: 10.1007/s10753-024-02076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/24/2024]
Abstract
Autoimmune diseases are typically characterized by aberrant activation of immune system that leads to excessive inflammatory reactions and tissue damage. Nevertheless, precise targeted and efficient therapies are limited. Thus, studies into novel therapeutic targets for the management of autoimmune diseases are urgently needed. Radical S-adenosyl methionine domain-containing 2 (RSAD2) is an interferon-stimulated gene (ISG) renowned for the antiviral properties of the protein it encodes, named viperin. An increasing number of studies have underscored the new roles of RSAD2/viperin in immunomodulation and mitochondrial metabolism. Previous studies have shown that there is a complex interplay between RSAD2/vipeirn and mitochondria and that binding of the iron-sulfur (Fe-S) cluster is necessary for the involvement of viperin in mitochondrial metabolism. Viperin influences the proliferation and development of immune cells as well as inflammation via different signaling pathways. However, the function of RSAD2/viperin varies in different studies and a comprehensive overview of this emerging theme is lacking. This review will describe the characteristics of RSAD2/viperin, decipher its function in immunometabolic processes, and clarify the crosstalk between RSAD2/viperin and mitochondria. Furthermore, we emphasize the crucial roles of RSAD2 in autoimmune diseases and its potential application value.
Collapse
Affiliation(s)
- Siyan Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Jiani Ye
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Yinfang Lin
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Wenxiu Chen
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Shenghao Huang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Qianru Yang
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Hengrong Qian
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Zhou X, Wu Y, Zhu Z, Lu C, Zhang C, Zeng L, Xie F, Zhang L, Zhou F. Mucosal immune response in biology, disease prevention and treatment. Signal Transduct Target Ther 2025; 10:7. [PMID: 39774607 PMCID: PMC11707400 DOI: 10.1038/s41392-024-02043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body. Despite its importance, our knowledge of mucosal immunity remains incomplete, necessitating further research. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the critical role of mucosal immunity in disease prevention and treatment. This systematic review focuses on the dynamic interactions between mucosa-associated lymphoid structures and related diseases. We delve into the basic structures and functions of these lymphoid tissues during disease processes and explore the intricate regulatory networks and mechanisms involved. Additionally, we summarize novel therapies and clinical research advances in the prevention of mucosal immunity-related diseases. The review also addresses the challenges in developing mucosal vaccines, which aim to induce specific immune responses while maintaining tolerance to non-pathogenic microbes. Innovative therapies, such as nanoparticle vaccines and inhalable antibodies, show promise in enhancing mucosal immunity and offer potential for improved disease prevention and treatment.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuchen Wu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chu Lu
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunwu Zhang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
3
|
Sanlorenzo M, Novoszel P, Vujic I, Gastaldi T, Hammer M, Fari O, De Sa Fernandes C, Landau AD, Göcen-Oguz BV, Holcmann M, Monshi B, Rappersberger K, Csiszar A, Sibilia M. Systemic IFN-I combined with topical TLR7/8 agonists promotes distant tumor suppression by c-Jun-dependent IL-12 expression in dendritic cells. NATURE CANCER 2025; 6:175-193. [PMID: 39849091 PMCID: PMC11779648 DOI: 10.1038/s43018-024-00889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/04/2024] [Indexed: 01/25/2025]
Abstract
Dendritic cell (DC) activation by pattern recognition receptors like Toll-like-receptors (TLRs) is crucial for cancer immunotherapies. Here, we demonstrate the effectiveness of the TLR7/8 agonist imiquimod (IMQ) in treating both local tumors and distant metastases. Administered orally, IMQ activates plasmacytoid DCs (pDCs) to produce systemic type I interferons (IFN-I) required for TLR7/8 upregulation in DCs and macrophages, sensitizing them to topical IMQ treatment, which is essential for therapeutic efficacy. The mechanism involves c-Jun/AP-1 mediating TLR7/8 signaling in IFN-I-primed DCs, upregulating the pDC-recruiting chemokine CCL2 and the anti-angiogenic cytokine interleukin-12, which suppresses VEGF-A production leading to tumor necrosis and regression. Combining topical and systemic IMQ or IFN-I generates a CD8+ T cell-dependent response at metastatic sites, reinforced by PD-1 blockade, leading to long-lasting memory. Analysis of cohorts of patients with melanoma demonstrates DC-specific TLR7/8 upregulation by IFN-I, supporting the translational potential of combining systemic IFN-I and topical IMQ to improve immunotherapy of topically accessible tumors.
Collapse
Affiliation(s)
- Martina Sanlorenzo
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Philipp Novoszel
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Igor Vujic
- Department of Dermatology, Klinik Landstrasse, Vienna, Austria
| | - Tommaso Gastaldi
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Martina Hammer
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Ourania Fari
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Cristiano De Sa Fernandes
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Alina D Landau
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Bilge V Göcen-Oguz
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Martin Holcmann
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Babak Monshi
- Department of Dermatology, Klinik Landstrasse, Vienna, Austria
| | | | - Agnes Csiszar
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Maria Sibilia
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria.
| |
Collapse
|
4
|
Dehhaghi M, Heydari M, Panahi HKS, Lewin SR, Heng B, Brew BJ, Guillemin GJ. The roles of the kynurenine pathway in COVID-19 neuropathogenesis. Infection 2024; 52:2043-2059. [PMID: 38802702 PMCID: PMC11499433 DOI: 10.1007/s15010-024-02293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the highly contagious respiratory disease Corona Virus Disease 2019 (COVID-19) that may lead to various neurological and psychological disorders that can be acute, lasting days to weeks or months and possibly longer. The latter is known as long-COVID or more recently post-acute sequelae of COVID (PASC). During acute COVID-19 infection, a strong inflammatory response, known as the cytokine storm, occurs in some patients. The levels of interferon-γ (IFN-γ), interferon-β (IFN-β), interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) are particularly increased. These cytokines are known to activate the enzyme indoleamine 2,3-dioxygenase 1 (IDO-1), catalysing the first step of tryptophan (Trp) catabolism through the kynurenine pathway (KP) leading to the production of several neurotoxic and immunosuppressive metabolites. There is already data showing elevation in KP metabolites both acutely and in PASC, especially regarding cognitive impairment. Thus, it is likely that KP involvement is significant in SARS-CoV-2 pathogenesis especially neurologically.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mostafa Heydari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Hamed Kazemi Shariat Panahi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Bruce J Brew
- Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia.
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia.
- Departments of Neurology and Immunology, St. Vincent's Hospital, Sydney, NSW, Australia.
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia.
| | - Gilles J Guillemin
- Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor University, Bogor, Indonesia
| |
Collapse
|
5
|
Hassan A, Simpson M, Jiwani R, Arrigo A, Nisarga P, Esan OA, Koget A. Blast and Bursts: Unveiling Splenic Rupture in Blastic Plasmacytoid Dendritic Cell Neoplasia. J Community Hosp Intern Med Perspect 2024; 14:96-100. [PMID: 39399205 PMCID: PMC11466324 DOI: 10.55729/2000-9666.1389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 10/15/2024] Open
Abstract
Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN) is a rare hematologic cancer, accounting for less than 1% of acute leukemias in the U.S. Diagnosis involves detecting markers like CD123, CD4, CD56, TCL1, and TCF4. Treatment typically involved acute leukemia therapies, but Tagraxofusp, a targeted therapy, was recently approved. Despite advancements, prognosis remains grim, with a median survival of around 1 year. Atraumatic splenic rupture (ASR) is a rare complication of this condition, with only five cases reported from 1994 to 2018. Here we present a case of BPDCN complicated by ASR. This case emphasizes the challenges of diagnosing and treating BPDCN, noting its rarity and absence of standard therapy. Tagraxofusp has shown promising results but presents safety concerns like capillary leak syndrome, particularly in elderly patients with comorbidities.
Collapse
Affiliation(s)
- Abdulahi Hassan
- Allegheny General Hospital, Department of Internal Medicine, Pittsburgh, PA,
USA
| | - Matthew Simpson
- Allegheny General Hospital, Department of Internal Medicine, Pittsburgh, PA,
USA
| | - Rahim Jiwani
- Allegheny General Hospital, Department of Hematology & Oncology, Pittsburgh, PA,
USA
| | - Abigail Arrigo
- Allegheny General Hospital, Department of Internal Medicine, Pittsburgh, PA,
USA
| | - Palgun Nisarga
- Allegheny General Hospital, Department of Pathology, Pittsburgh, PA,
USA
| | - Olukemi A. Esan
- Allegheny General Hospital, Department of Pathology, Pittsburgh, PA,
USA
| | - Anna Koget
- Allegheny General Hospital, Department of Hematology & Oncology, Pittsburgh, PA,
USA
| |
Collapse
|
6
|
Ngo C, Garrec C, Tomasello E, Dalod M. The role of plasmacytoid dendritic cells (pDCs) in immunity during viral infections and beyond. Cell Mol Immunol 2024; 21:1008-1035. [PMID: 38777879 PMCID: PMC11364676 DOI: 10.1038/s41423-024-01167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Type I and III interferons (IFNs) are essential for antiviral immunity and act through two different but complimentary pathways. First, IFNs activate intracellular antimicrobial programs by triggering the upregulation of a broad repertoire of viral restriction factors. Second, IFNs activate innate and adaptive immunity. Dysregulation of IFN production can lead to severe immune system dysfunction. It is thus crucial to identify and characterize the cellular sources of IFNs, their effects, and their regulation to promote their beneficial effects and limit their detrimental effects, which can depend on the nature of the infected or diseased tissues, as we will discuss. Plasmacytoid dendritic cells (pDCs) can produce large amounts of all IFN subtypes during viral infection. pDCs are resistant to infection by many different viruses, thus inhibiting the immune evasion mechanisms of viruses that target IFN production or their downstream responses. Therefore, pDCs are considered essential for the control of viral infections and the establishment of protective immunity. A thorough bibliographical survey showed that, in most viral infections, despite being major IFN producers, pDCs are actually dispensable for host resistance, which is achieved by multiple IFN sources depending on the tissue. Moreover, primary innate and adaptive antiviral immune responses are only transiently affected in the absence of pDCs. More surprisingly, pDCs and their IFNs can be detrimental in some viral infections or autoimmune diseases. This makes the conservation of pDCs during vertebrate evolution an enigma and thus raises outstanding questions about their role not only in viral infections but also in other diseases and under physiological conditions.
Collapse
Affiliation(s)
- Clémence Ngo
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Clémence Garrec
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Elena Tomasello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
7
|
Zhang Y, Ji S, Miao G, Du S, Wang H, Yang X, Li A, Lu Y, Wang X, Zhao X. The current role of dendritic cells in the progression and treatment of colorectal cancer. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0188. [PMID: 39177125 DOI: 10.20892/j.issn.2095-3941.2024.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related deaths worldwide. Dendritic cells (DCs) constitute a heterogeneous group of antigen-presenting cells that are important for initiating and regulating both innate and adaptive immune responses. As a crucial component of the immune system, DCs have a pivotal role in the pathogenesis and clinical treatment of CRC. DCs cross-present tumor-related antigens to activate T cells and trigger an antitumor immune response. However, the antitumor immune function of DCs is impaired and immune tolerance is promoted due to the presence of the tumor microenvironment. This review systematically elucidates the specific characteristics and functions of different DC subsets, as well as the role that DCs play in the immune response and tolerance within the CRC microenvironment. Moreover, how DCs contribute to the progression of CRC and potential therapies to enhance antitumor immunity on the basis of existing data are also discussed, which will provide new perspectives and approaches for immunotherapy in patients with CRC.
Collapse
Affiliation(s)
- Yuanci Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Songtao Ji
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Ge Miao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Shuya Du
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Haojia Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Xiaohua Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Department of Experimental Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ang Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Department of Gastroenterology, the 988th Hospital of PLA Joint Logistics Support Force, Zhengzhou 450042, China
| | - Yuanyuan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xin Wang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Xiaodi Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
8
|
Monti M, Ferrari G, Gazzurelli L, Bugatti M, Facchetti F, Vermi W. Plasmacytoid dendritic cells at the forefront of anti-cancer immunity: rewiring strategies for tumor microenvironment remodeling. J Exp Clin Cancer Res 2024; 43:196. [PMID: 39020402 PMCID: PMC11253500 DOI: 10.1186/s13046-024-03121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are multifaceted immune cells executing various innate immunological functions. Their first line of defence consists in type I interferons (I-IFN) production upon nucleic acids sensing through endosomal Toll-like receptor (TLR) 7- and 9-dependent signalling pathways. Type I IFNs are a class of proinflammatory cytokines that have context-dependent functions on cancer immunosurveillance and immunoediting. In the last few years, different studies have reported that pDCs are also able to sense cytosolic DNA through cGAS-STING (stimulator of interferon genes) pathway eliciting a potent I-IFN production independently of TLR7/9. Human pDCs are also endowed with direct effector functions via the upregulation of TRAIL and production of granzyme B, the latter modulated by cytokines abundant in cancer tissues. pDCs have been detected in a wide variety of human malignant neoplasms, including virus-associated cancers, recruited by chemotactic stimuli. Although the role of pDCs in cancer immune surveillance is still uncompletely understood, their spontaneous activation has been rarely documented; moreover, their presence in the tumor microenvironment (TME) has been associated with a tolerogenic phenotype induced by immunosuppressive cytokines or oncometabolites. Currently tested treatment options can lead to pDCs activation and disruption of the immunosuppressive TME, providing a relevant clinical benefit. On the contrary, the antibody-drug conjugates targeting BDCA-2 on immunosuppressive tumor-associated pDCs (TA-pDCs) could be proposed as novel immunomodulatory therapies to achieve disease control in patients with advance stage hematologic malignancies or solid tumors. This Review integrate recent evidence on the biology of pDCs and their pharmacological modulation, suggesting their relevant role at the forefront of cancer immunity.
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Giorgia Ferrari
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Luisa Gazzurelli
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Fabio Facchetti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
9
|
Gaertner F, Ishikawa-Ankerhold H, Stutte S, Fu W, Weitz J, Dueck A, Nelakuditi B, Fumagalli V, van den Heuvel D, Belz L, Sobirova G, Zhang Z, Titova A, Navarro AM, Pekayvaz K, Lorenz M, von Baumgarten L, Kranich J, Straub T, Popper B, Zheden V, Kaufmann WA, Guo C, Piontek G, von Stillfried S, Boor P, Colonna M, Clauß S, Schulz C, Brocker T, Walzog B, Scheiermann C, Aird WC, Nerlov C, Stark K, Petzold T, Engelhardt S, Sixt M, Hauschild R, Rudelius M, Oostendorp RAJ, Iannacone M, Heinig M, Massberg S. Plasmacytoid dendritic cells control homeostasis of megakaryopoiesis. Nature 2024; 631:645-653. [PMID: 38987596 PMCID: PMC11254756 DOI: 10.1038/s41586-024-07671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Platelet homeostasis is essential for vascular integrity and immune defence1,2. Although the process of platelet formation by fragmenting megakaryocytes (MKs; thrombopoiesis) has been extensively studied, the cellular and molecular mechanisms required to constantly replenish the pool of MKs by their progenitor cells (megakaryopoiesis) remains unclear3,4. Here we use intravital imaging to track the cellular dynamics of megakaryopoiesis over days. We identify plasmacytoid dendritic cells (pDCs) as homeostatic sensors that monitor the bone marrow for apoptotic MKs and deliver IFNα to the MK niche triggering local on-demand proliferation and maturation of MK progenitors. This pDC-dependent feedback loop is crucial for MK and platelet homeostasis at steady state and under stress. pDCs are best known for their ability to function as vigilant detectors of viral infection5. We show that virus-induced activation of pDCs interferes with their function as homeostatic sensors of megakaryopoiesis. Consequently, activation of pDCs by SARS-CoV-2 leads to excessive megakaryopoiesis. Together, we identify a pDC-dependent homeostatic circuit that involves innate immune sensing and demand-adapted release of inflammatory mediators to maintain homeostasis of the megakaryocytic lineage.
Collapse
Affiliation(s)
- Florian Gaertner
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany.
| | | | - Susanne Stutte
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- Institute for Immunology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Wenwen Fu
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Jutta Weitz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Anne Dueck
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany
| | - Bhavishya Nelakuditi
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- Institute of Computational Biology, Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Computer Science, TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Dynamics of Immune Responses, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Larissa Belz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Gulnoza Sobirova
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Zhe Zhang
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Anna Titova
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | | | - Kami Pekayvaz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| | - Michael Lorenz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurology, Ludwig-Maximilians-University School of Medicine, Munich, Germany
| | - Jan Kranich
- Institute for Immunology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Tobias Straub
- Biomedical Center, Bioinformatic Core facility, LMU Munich, Planegg-Martinsried, Germany
| | - Bastian Popper
- Biomedical Center, Core Facility Animal Models, LMU Munich, Planegg-Martinsried, Germany
| | - Vanessa Zheden
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Chenglong Guo
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Guido Piontek
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Marco Colonna
- Washington University, School of Medicine, St Louis, MO, USA
| | - Sebastian Clauß
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Christian Schulz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Brocker
- Institute for Immunology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Barbara Walzog
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christoph Scheiermann
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - William C Aird
- Department of Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Konstantin Stark
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| | - Tobias Petzold
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Campus Benjamin Franklin, Deutsches Herzzentrum der Charité (DHZC) University Hospital Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany
- Friede Springer - Centre of Cardiovascular Prevention @ Charité, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Engelhardt
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany
| | - Michael Sixt
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Martina Rudelius
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Robert A J Oostendorp
- Laboratory of Stem Cell Physiology, Department of Internal Medicine III-Hematology and Oncology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Dynamics of Immune Responses, Vita-Salute San Raffaele University, Milan, Italy
| | - Matthias Heinig
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Institute of Computational Biology, Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Computer Science, TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Steffen Massberg
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
10
|
Suvieri C, Mondanelli G, Orabona C, Pallotta MT, Panfili E, Rossini S, Volpi C, Belladonna ML. Sensing of an HIV-1-Derived Single-Stranded RNA-Oligonucleotide Induces Arginase 1-Mediated Tolerance. Cells 2024; 13:1088. [PMID: 38994942 PMCID: PMC11240372 DOI: 10.3390/cells13131088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Small synthetic oligodeoxynucleotides (ODNs) can mimic microbial nucleic acids by interacting with receptor systems and promoting immunostimulatory activities. Nevertheless, some ODNs can act differently on the plasmacytoid dendritic cell (pDC) subset, shaping their immunoregulatory properties and rendering them suitable immunotherapeutic tools in several clinical settings for treating overwhelming immune responses. We designed HIV-1-derived, DNA- and RNA-based oligonucleotides (gag, pol, and U5 regions) and assessed their activity in conferring a tolerogenic phenotype to pDCs in skin test experiments. RNA-but not DNA-oligonucleotides are capable of inducing tolerogenic features in pDCs. Interestingly, sensing the HIV-1-derived single-stranded RNA-gag oligonucleotide (RNA-gag) requires both TLR3 and TLR7 and the engagement of the TRIF adaptor molecule. Moreover, the induction of a suppressive phenotype in pDCs by RNA-gag is contingent upon the induction and activation of the immunosuppressive enzyme Arginase 1. Thus, our data suggest that sensing of the synthetic RNA-gag oligonucleotide in pDCs can induce a suppressive phenotype in pDCs, a property rendering RNA-gag a potential tool for therapeutic strategies in allergies and autoimmune diseases.
Collapse
|
11
|
Purde MT, Cupovic J, Palmowski YA, Makky A, Schmidt S, Rochwarger A, Hartmann F, Stemeseder F, Lercher A, Abdou MT, Bomze D, Besse L, Berner F, Tüting T, Hölzel M, Bergthaler A, Kochanek S, Ludewig B, Lauterbach H, Orlinger KK, Bald T, Schietinger A, Schürch CM, Ring SS, Flatz L. A replicating LCMV-based vaccine for the treatment of solid tumors. Mol Ther 2024; 32:426-439. [PMID: 38058126 PMCID: PMC10861942 DOI: 10.1016/j.ymthe.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/31/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Harnessing the immune system to eradicate tumors requires identification and targeting of tumor antigens, including tumor-specific neoantigens and tumor-associated self-antigens. Tumor-associated antigens are subject to existing immune tolerance, which must be overcome by immunotherapies. Despite many novel immunotherapies reaching clinical trials, inducing self-antigen-specific immune responses remains challenging. Here, we systematically investigate viral-vector-based cancer vaccines encoding a tumor-associated self-antigen (TRP2) for the treatment of established melanomas in preclinical mouse models, alone or in combination with adoptive T cell therapy. We reveal that, unlike foreign antigens, tumor-associated antigens require replication of lymphocytic choriomeningitis virus (LCMV)-based vectors to break tolerance and induce effective antigen-specific CD8+ T cell responses. Immunization with a replicating LCMV vector leads to complete tumor rejection when combined with adoptive TRP2-specific T cell transfer. Importantly, immunization with replicating vectors leads to extended antigen persistence in secondary lymphoid organs, resulting in efficient T cell priming, which renders previously "cold" tumors open to immune infiltration and reprograms the tumor microenvironment to "hot." Our findings have important implications for the design of next-generation immunotherapies targeting solid cancers utilizing viral vectors and adoptive cell transfer.
Collapse
Affiliation(s)
- Mette-Triin Purde
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Jovana Cupovic
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Yannick A Palmowski
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72076 Tübingen, Germany
| | - Ahmad Makky
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72076 Tübingen, Germany
| | | | - Alexander Rochwarger
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72076 Tübingen, Germany
| | - Fabienne Hartmann
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | | | - Alexander Lercher
- Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Marie-Therese Abdou
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - David Bomze
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Lenka Besse
- Laboratory of Experimental Oncology, Department of Oncology and Hematology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Fiamma Berner
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Thomas Tüting
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Andreas Bergthaler
- Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Stefan Kochanek
- Department of Gene Therapy, Ulm University, 89081 Ulm, Germany
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | | | | | - Tobias Bald
- QIMR Medical Research Institute, Herston, QLD 4006, Australia
| | | | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72076 Tübingen, Germany
| | - Sandra S Ring
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland; Department of Dermatology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland.
| |
Collapse
|
12
|
Monti M, Ferrari G, Grosso V, Missale F, Bugatti M, Cancila V, Zini S, Segala A, La Via L, Consoli F, Orlandi M, Valerio A, Tripodo C, Rossato M, Vermi W. Impaired activation of plasmacytoid dendritic cells via toll-like receptor 7/9 and STING is mediated by melanoma-derived immunosuppressive cytokines and metabolic drift. Front Immunol 2024; 14:1227648. [PMID: 38239354 PMCID: PMC10795195 DOI: 10.3389/fimmu.2023.1227648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Plasmacytoid dendritic cells (pDCs) infiltrate a large set of human cancers. Interferon alpha (IFN-α) produced by pDCs induces growth arrest and apoptosis in tumor cells and modulates innate and adaptive immune cells involved in anti-cancer immunity. Moreover, effector molecules exert tumor cell killing. However, the activation state and clinical relevance of pDCs infiltration in cancer is still largely controversial. In Primary Cutaneous Melanoma (PCM), pDCs density decreases over disease progression and collapses in metastatic melanoma (MM). Moreover, the residual circulating pDC compartment is defective in IFN-α production. Methods The activation of tumor-associated pDCs was evaluated by in silico and microscopic analysis. The expression of human myxovirus resistant protein 1 (MxA), as surrogate of IFN-α production, and proximity ligation assay (PLA) to test dsDNA-cGAS activation were performed on human melanoma biopsies. Moreover, IFN-α and CXCL10 production by in vitro stimulated (i.e. with R848, CpG-A, ADU-S100) pDCs exposed to melanoma cell lines supernatants (SN-mel) was tested by intracellular flow cytometry and ELISA. We also performed a bulk RNA-sequencing on SN-mel-exposed pDCs, resting or stimulated with R848. Glycolytic rate assay was performed on SN-mel-exposed pDCs using the Seahorse XFe24 Extracellular Flux Analyzer. Results Based on a set of microscopic, functional and in silico analyses, we demonstrated that the melanoma milieu directly impairs IFN-α and CXCL10 production by pDCs via TLR-7/9 and cGAS-STING signaling pathways. Melanoma-derived immunosuppressive cytokines and a metabolic drift represent relevant mechanisms enforcing pDC-mediated melanoma escape. Discussion These findings propose a new window of intervention for novel immunotherapy approaches to amplify the antitumor innate immune response in cutaneous melanoma (CM).
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giorgia Ferrari
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valentina Grosso
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Francesco Missale
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Department of Head & Neck Oncology & Surgery Otorhinolaryngology, Nederlands Kanker Instituut, Amsterdam, Netherlands
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Stefania Zini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Agnese Segala
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca La Via
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Consoli
- Oncology Unit, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili di Brescia, Brescia, Italy
| | - Matteo Orlandi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
13
|
Du X, Li M, Huan C, Lv G. Dendritic cells in liver transplantation immune response. Front Cell Dev Biol 2023; 11:1277743. [PMID: 37900282 PMCID: PMC10606587 DOI: 10.3389/fcell.2023.1277743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Dendritic cells (DCs) are the most powerful antigen presenting cells (APCs), they are considered one of the key regulatory factors in the liver immune system. There is currently much interest in modulating DC function to improve transplant immune response. In liver transplantation, DCs participate in both the promotion and inhibition of the alloreponse by adopting different phenotypes and function. Thus, in this review, we discussed the origin, maturation, migration and pathological effects of several DC subsets, including the conventional DC (cDC), plasmacytoid DC (pDC) and monocyte-derived DC (Mo-DC) in liver transplantation, and we summarized the roles of these DC subsets in liver transplant rejection and tolerance. In addition, we also outlined the latest progress in DC-based related treatment regimens. Overall, our discussion provides a beneficial resource for better understanding the biology of DCs and their manipulation to improve the immune adaptability of patients in transplant status.
Collapse
Affiliation(s)
- Xiaodong Du
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Chen Huan
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Ou F, Ferris ST, Kim S, Wu R, Anderson DA, Liu TT, Jo S, Chen MY, Gillanders WE, Murphy TL, Murphy KM. Enhanced in vitro type 1 conventional dendritic cell generation via the recruitment of hematopoietic stem cells and early progenitors by Kit ligand. Eur J Immunol 2023; 53:e2250201. [PMID: 37424050 PMCID: PMC11040600 DOI: 10.1002/eji.202250201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023]
Abstract
In vitro culture of bone marrow (BM) with Fms-like tyrosine kinase 3 ligand (Flt3L) is widely used to study development and function of type 1 conventional dendritic cells (cDC1). Hematopoietic stem cells (HSCs) and many progenitor populations that possess cDC1 potential in vivo do not express Flt3 and thus may not contribute to Flt3L-mediated cDC1 production in vitro. Here, we present a KitL/Flt3L protocol that recruits such HSCs and progenitors into the production of cDC1. Kit ligand (KitL) is used to expand HSCs and early progenitors lacking Flt3 expression into later stage where Flt3 is expressed. Following this initial KitL phase, a second Flt3L phase is used to support the final production of DCs. With this two-stage culture, we achieved approximately tenfold increased production of both cDC1 and cDC2 compared to Flt3L culture. cDC1 derived from this culture are similar to in vivo cDC1 in their dependence on IRF8, ability to produce IL-12, and induction of tumor regression in cDC1-deficient tumor-bearing mice. This KitL/Flt3L system for cDC1 production will be useful in further analysis of cDC1 that rely on in vitro generation from BM.
Collapse
Affiliation(s)
- Feiya Ou
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Stephen T. Ferris
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Sunkyung Kim
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Renee Wu
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - David A. Anderson
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Suin Jo
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Michael Y. Chen
- Department of Surgery, Washington University, St. Louis, MO, USA
| | - William E. Gillanders
- Department of Surgery, Washington University, St. Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, MO, USA
| | - Theresa L. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| |
Collapse
|
15
|
Bykov Y, Dawodu G, Javaheri A, Garcia-Sastre A, Cuadrado-Castano S. Immune responses elicited by ssRNA(-) oncolytic viruses in the host and in the tumor microenvironment. JOURNAL OF CANCER METASTASIS AND TREATMENT 2023; 9:10. [PMID: 37974615 PMCID: PMC10653360 DOI: 10.20517/2394-4722.2022.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Oncolytic viruses (OVs) are at the forefront of biologicals for cancer treatment. They represent a diverse landscape of naturally occurring viral strains and genetically modified viruses that, either as single agents or as part of combination therapies, are being evaluated in preclinical and clinical settings. As the field gains momentum, the research on OVs has been shifting efforts to expand our understanding of the complex interplay between the virus, the tumor and the immune system, with the aim of rationally designing more efficient therapeutic interventions. Nowadays, the potential of an OV platform is no longer defined exclusively by the targeted replication and cancer cell killing capacities of the virus, but by its contribution as an immunostimulator, triggering the transformation of the immunosuppressive tumor microenvironment (TME) into a place where innate and adaptive immunity players can efficiently engage and lead the development of tumor-specific long-term memory responses. Here we review the immune mechanisms and host responses induced by ssRNA(-) (negative-sense single-stranded RNA) viruses as OV platforms. We focus on two ssRNA(-) OV candidates: Newcastle disease virus (NDV), an avian paramyxovirus with one of the longest histories of utilization as an OV, and influenza A (IAV) virus, a well-characterized human pathogen with extraordinary immunostimulatory capacities that is steadily advancing as an OV candidate through the development of recombinant IAV attenuated platforms.
Collapse
Affiliation(s)
- Yonina Bykov
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gloria Dawodu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aryana Javaheri
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara Cuadrado-Castano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
16
|
Menezes dos Reis L, Berçot MR, Castelucci BG, Martins AJE, Castro G, Moraes-Vieira PM. Immunometabolic Signature during Respiratory Viral Infection: A Potential Target for Host-Directed Therapies. Viruses 2023; 15:v15020525. [PMID: 36851739 PMCID: PMC9965666 DOI: 10.3390/v15020525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
RNA viruses are known to induce a wide variety of respiratory tract illnesses, from simple colds to the latest coronavirus pandemic, causing effects on public health and the economy worldwide. Influenza virus (IV), parainfluenza virus (PIV), metapneumovirus (MPV), respiratory syncytial virus (RSV), rhinovirus (RhV), and coronavirus (CoV) are some of the most notable RNA viruses. Despite efforts, due to the high mutation rate, there are still no effective and scalable treatments that accompany the rapid emergence of new diseases associated with respiratory RNA viruses. Host-directed therapies have been applied to combat RNA virus infections by interfering with host cell factors that enhance the ability of immune cells to respond against those pathogens. The reprogramming of immune cell metabolism has recently emerged as a central mechanism in orchestrated immunity against respiratory viruses. Therefore, understanding the metabolic signature of immune cells during virus infection may be a promising tool for developing host-directed therapies. In this review, we revisit recent findings on the immunometabolic modulation in response to infection and discuss how these metabolic pathways may be used as targets for new therapies to combat illnesses caused by respiratory RNA viruses.
Collapse
Affiliation(s)
- Larissa Menezes dos Reis
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Marcelo Rodrigues Berçot
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Bianca Gazieri Castelucci
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Ana Julia Estumano Martins
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas 13083-970, SP, Brazil
| | - Gisele Castro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Pedro M. Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas 13083-872, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas 13083-872, SP, Brazil
- Correspondence:
| |
Collapse
|
17
|
Adams AM, Carpenter EL, Clifton GT, Vreeland TJ, Chick RC, O’Shea AE, McCarthy PM, Kemp Bohan PM, Hickerson AT, Valdera FA, Tiwari A, Hale DF, Hyngstrom JR, Berger AC, Jakub JW, Sussman JJ, Shaheen MF, Yu X, Wagner TE, Faries MB, Peoples GE. Divergent clinical outcomes in a phase 2B trial of the TLPLDC vaccine in preventing melanoma recurrence and the impact of dendritic cell collection methodology: a randomized clinical trial. Cancer Immunol Immunother 2023; 72:697-705. [PMID: 36045304 PMCID: PMC9433518 DOI: 10.1007/s00262-022-03272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/01/2022] [Indexed: 10/24/2022]
Abstract
BACKGROUND A randomized, double-blind, placebo-controlled phase 2b trial of the tumor lysate, particle-loaded, dendritic cell (TLPLDC) vaccine was conducted in patients with resected stage III/IV melanoma. Dendritic cells (DCs) were harvested with and without granulocyte-colony stimulating factor (G-CSF). This analysis investigates differences in clinical outcomes and RNA gene expression between DC harvest methods. METHODS The TLPLDC vaccine is created by loading autologous tumor lysate into yeast cell wall particles (YCWPs) and exposing them to phagocytosis by DCs. For DC harvest, patients had a direct blood draw or were pretreated with G-CSF before blood draw. Patients were randomized 2:1 to receive TLPLDC or placebo. Differences in disease-free survival (DFS) and overall survival (OS) were evaluated. RNA-seq analysis was performed on the total RNA of TLPLDC + G and TLPLDC vaccines to compare gene expression between groups. RESULTS 144 patients were randomized: 103 TLPLDC (47 TLPLDC/56 TLPLDC + G) and 41 placebo (19 placebo/22 placebo + G). Median follow-up was 27.0 months. Both 36-month DFS (55.8% vs. 24.4% vs. 30.0%, p = 0.010) and OS (94.2% vs. 69.8% vs. 70.9%, p = 0.024) were improved in TLPLDC compared to TLPLDC + G or placebo, respectively. When compared to TLPLDC + G vaccine, RNA-seq from TLPLDC vaccine showed upregulation of genes associated with DC maturation and downregulation of genes associated with DC suppression or immaturity. CONCLUSIONS Patients receiving TLPLDC vaccine without G-CSF had improved OS and DFS. Outcomes remained similar between patients receiving TLPLDC + G and placebo. Direct DC harvest without G-CSF had higher expression of genes linked to DC maturation, likely improving clinical efficacy.
Collapse
Affiliation(s)
- Alexandra M. Adams
- grid.416653.30000 0004 0450 5663Department of Surgery, Brooke Army Medical Center, San Antonio, TX USA
| | - Elizabeth L. Carpenter
- grid.416653.30000 0004 0450 5663Department of Surgery, Brooke Army Medical Center, San Antonio, TX USA
| | - Guy T. Clifton
- grid.416653.30000 0004 0450 5663Department of Surgery, Brooke Army Medical Center, San Antonio, TX USA
| | - Timothy J. Vreeland
- grid.416653.30000 0004 0450 5663Department of Surgery, Brooke Army Medical Center, San Antonio, TX USA
| | - Robert C. Chick
- grid.416653.30000 0004 0450 5663Department of Surgery, Brooke Army Medical Center, San Antonio, TX USA
| | - Anne E. O’Shea
- grid.416653.30000 0004 0450 5663Department of Surgery, Brooke Army Medical Center, San Antonio, TX USA
| | - Patrick M. McCarthy
- grid.416653.30000 0004 0450 5663Department of Surgery, Brooke Army Medical Center, San Antonio, TX USA
| | - Phillip M. Kemp Bohan
- grid.416653.30000 0004 0450 5663Department of Surgery, Brooke Army Medical Center, San Antonio, TX USA
| | - Annelies T. Hickerson
- grid.416653.30000 0004 0450 5663Department of Surgery, Brooke Army Medical Center, San Antonio, TX USA
| | - Franklin A. Valdera
- grid.416653.30000 0004 0450 5663Department of Surgery, Brooke Army Medical Center, San Antonio, TX USA
| | - Ankur Tiwari
- grid.267309.90000 0001 0629 5880Department of Surgery, University of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Diane F. Hale
- grid.416653.30000 0004 0450 5663Department of Surgery, Brooke Army Medical Center, San Antonio, TX USA
| | - John R. Hyngstrom
- grid.479969.c0000 0004 0422 3447Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| | - Adam C. Berger
- grid.516084.e0000 0004 0405 0718Department of Surgery, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ USA
| | - James W. Jakub
- grid.417467.70000 0004 0443 9942Department of Surgery, Mayo Clinic, Jacksonville, FL USA
| | - Jeffrey J. Sussman
- grid.24827.3b0000 0001 2179 9593Department of Surgery, University of Cincinnati, Cincinnati, OH USA
| | - Montaser F. Shaheen
- grid.134563.60000 0001 2168 186XDepartment of Medicine, University of Arizona, Tucson, AZ USA
| | - Xianzhong Yu
- grid.26090.3d0000 0001 0665 0280Department of Biological Sciences, Clemson University, Clemson, SC USA
| | | | - Mark B. Faries
- Department of Surgery, The Angeles Clinic, Santa Monica, CA USA
| | | |
Collapse
|
18
|
Stergioti EM, Manolakou T, Boumpas DT, Banos A. Antiviral Innate Immune Responses in Autoimmunity: Receptors, Pathways, and Therapeutic Targeting. Biomedicines 2022; 10:2820. [PMID: 36359340 PMCID: PMC9687478 DOI: 10.3390/biomedicines10112820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 09/28/2023] Open
Abstract
Innate immune receptors sense nucleic acids derived from viral pathogens or self-constituents and initiate an immune response, which involves, among other things, the secretion of cytokines including interferon (IFN) and the activation of IFN-stimulated genes (ISGs). This robust and well-coordinated immune response is mediated by the innate immune cells and is critical to preserving and restoring homeostasis. Like an antiviral response, during an autoimmune disease, aberrations of immune tolerance promote inflammatory responses to self-components, such as nucleic acids and immune complexes (ICs), leading to the secretion of cytokines, inflammation, and tissue damage. The aberrant immune response within the inflammatory milieu of the autoimmune diseases may lead to defective viral responses, predispose to autoimmunity, or precipitate a flare of an existing autoimmune disease. Herein, we review the literature on the crosstalk between innate antiviral immune responses and autoimmune responses and discuss the pitfalls and challenges regarding the therapeutic targeting of the mechanisms involved.
Collapse
Affiliation(s)
- Eirini Maria Stergioti
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Theodora Manolakou
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Dimitrios T. Boumpas
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece
| | - Aggelos Banos
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
| |
Collapse
|
19
|
Rajamanickam A, Kumar NP, Pandiaraj AN, Selvaraj N, Munisankar S, Renji RM, Venkatramani V, Murhekar M, Thangaraj JWV, Kumar MS, Kumar CPG, Bhatnagar T, Ponnaiah M, Sabarinathan R, Saravanakumar V, Babu S. Restoration of dendritic cell homeostasis and Type I/Type III interferon levels in convalescent COVID-19 individuals. BMC Immunol 2022; 23:51. [PMID: 36289478 PMCID: PMC9607715 DOI: 10.1186/s12865-022-00526-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Plasmacytoid and myeloid dendritic cells play a vital role in the protection against viral infections. In COVID-19, there is an impairment of dendritic cell (DC) function and interferon secretion which has been correlated with disease severity. Results In this study, we described the frequency of DC subsets and the plasma levels of Type I (IFNα, IFNβ) and Type III Interferons (IFNλ1), IFNλ2) and IFNλ3) in seven groups of COVID-19 individuals, classified based on days since RT-PCR confirmation of SARS-CoV2 infection. Our data shows that the frequencies of pDC and mDC increase from Days 15–30 to Days 61–90 and plateau thereafter. Similarly, the levels of IFNα, IFNβ, IFNλ1, IFNλ2 and IFNλ3 increase from Days 15–30 to Days 61–90 and plateau thereafter. COVID-19 patients with severe disease exhibit diminished frequencies of pDC and mDC and decreased levels of IFNα, IFNβ, IFNλ1, IFNλ2 and IFNλ3. Finally, the percentages of DC subsets positively correlated with the levels of Type I and Type III IFNs. Conclusion Thus, our study provides evidence of restoration of homeostatic levels in DC subset frequencies and circulating levels of Type I and Type III IFNs in convalescent COVID-19 individuals. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00526-z.
Collapse
Affiliation(s)
- Anuradha Rajamanickam
- grid.419685.7ICER-ICMR-NIRT-International Center for Excellence in Research, Chennai, Tamil Nadu India
| | - Nathella Pavan Kumar
- grid.417330.20000 0004 1767 6138Immunology-ICMR-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu India
| | - Arul Nancy Pandiaraj
- grid.419685.7ICER-ICMR-NIRT-International Center for Excellence in Research, Chennai, Tamil Nadu India
| | - Nandhini Selvaraj
- grid.419685.7ICER-ICMR-NIRT-International Center for Excellence in Research, Chennai, Tamil Nadu India
| | - Saravanan Munisankar
- grid.419685.7ICER-ICMR-NIRT-International Center for Excellence in Research, Chennai, Tamil Nadu India
| | - Rachel Mariam Renji
- grid.419685.7ICER-ICMR-NIRT-International Center for Excellence in Research, Chennai, Tamil Nadu India
| | | | - Manoj Murhekar
- grid.419587.60000 0004 1767 6269ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu India
| | | | - Muthusamy Santhosh Kumar
- grid.419587.60000 0004 1767 6269ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu India
| | | | - Tarun Bhatnagar
- grid.419587.60000 0004 1767 6269ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu India
| | - Manickam Ponnaiah
- grid.419587.60000 0004 1767 6269ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu India
| | - Ramasamy Sabarinathan
- grid.419587.60000 0004 1767 6269ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu India
| | - Velusamy Saravanakumar
- grid.419587.60000 0004 1767 6269ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu India
| | - Subash Babu
- grid.419685.7ICER-ICMR-NIRT-International Center for Excellence in Research, Chennai, Tamil Nadu India
| |
Collapse
|
20
|
Ji L, Xu S, Luo H, Zeng F. Insights from DOCK2 in cell function and pathophysiology. Front Mol Biosci 2022; 9:997659. [PMID: 36250020 PMCID: PMC9559381 DOI: 10.3389/fmolb.2022.997659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Dedicator of cytokinesis 2 (DOCK2) can activate the downstream small G protein Rac and regulate cytoskeletal reorganization. DOCK2 is essential for critical physiological processes such as migration, activation, proliferation, and effects of immune cells, including lymphocytes, neutrophils, macrophages, and dendritic cells. For example, DOCK2 is involved in the development and activation of T and B lymphocytes by affecting synapse formation and inhibiting the development of the Th2 lineage by downregulating IL-4Rα surface expression. Not only that, DOCK2 may be a molecular target for controlling cardiac transplant rejection and Alzheimer’s disease (AD). Patients with defects in the DOCK2 gene also exhibit a variety of impaired cellular functions, such as chemotactic responses of lymphocytes and reactive oxygen species (ROS) production by neutrophils. To date, DOCK2 has been shown to be involved in the development of various diseases, including AD, pneumonia, myocarditis, colitis, tumors, etc. DOCK2 plays different roles in these diseases and the degree of inflammatory response has a different impact on the progression of disease. In this paper, we present a review of recent advances in the function of DOCK2 in various immune cells and its role in various diseases.
Collapse
Affiliation(s)
- Lulin Ji
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
- *Correspondence: Fanwei Zeng, ; Haiqing Luo, ; Lulin Ji,
| | - Shuquan Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Haiqing Luo
- Organoid Research Center, Xiamen Broad Creation Biotechnology Co., Ltd., Xiamen, China
- Research and Development Center, Xiamen Mogengel Biotechnology Co., Ltd., Xiamen, China
- *Correspondence: Fanwei Zeng, ; Haiqing Luo, ; Lulin Ji,
| | - Fanwei Zeng
- Organoid Research Center, Xiamen Broad Creation Biotechnology Co., Ltd., Xiamen, China
- Research and Development Center, Xiamen Mogengel Biotechnology Co., Ltd., Xiamen, China
- *Correspondence: Fanwei Zeng, ; Haiqing Luo, ; Lulin Ji,
| |
Collapse
|
21
|
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating pandemic. Although most people infected with SARS-CoV-2 develop a mild to moderate disease with virus replication restricted mainly to the upper airways, some progress to having a life-threatening pneumonia. In this Review, we explore recent clinical and experimental advances regarding SARS-CoV-2 pathophysiology and discuss potential mechanisms behind SARS-CoV-2-associated acute respiratory distress syndrome (ARDS), specifically focusing on new insights obtained using novel technologies such as single-cell omics, organoid infection models and CRISPR screens. We describe how SARS-CoV-2 may infect the lower respiratory tract and cause alveolar damage as a result of dysfunctional immune responses. We discuss how this may lead to the induction of a 'leaky state' of both the epithelium and the endothelium, promoting inflammation and coagulation, while an influx of immune cells leads to overexuberant inflammatory responses and immunopathology. Finally, we highlight how these findings may aid the development of new therapeutic interventions against COVID-19.
Collapse
|
22
|
Bühler M, Runft S, Li D, Götting J, Detje CN, Nippold V, Stoff M, Beineke A, Schulz T, Kalinke U, Baumgärtner W, Gerhauser I. IFN-β Deficiency Results in Fatal or Demyelinating Disease in C57BL/6 Mice Infected With Theiler's Murine Encephalomyelitis Viruses. Front Immunol 2022; 13:786940. [PMID: 35222374 PMCID: PMC8864290 DOI: 10.3389/fimmu.2022.786940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Type I Interferons (IFN-I) are important inducers of the antiviral immune response and immune modulators. IFN-β is the most highly expressed IFN-I in the central nervous system (CNS). The infection of SJL mice with the BeAn or the DA strain of Theiler's murine encephalomyelitis virus (TMEV) results in a progressive demyelinating disease. C57BL/6 mice are usually resistant to TMEV-induced demyelination and eliminate these strains from the CNS within several weeks. Using C57BL/6 IFN-β knockout (IFN-β-/-) mice infected with TMEV, we evaluated the role of IFN-β in neuroinfection. Despite the resistance of C57BL/6 wild type (WT) mice to TMEV infection, DA-infected IFN-β-/- mice had to be killed at 7 to 8 days post infection (dpi) due to severe clinical disease. In contrast, BeAn-infected IFN-β-/- mice survived until 98 dpi. Nevertheless at 14 dpi, BeAn-infected IFN-β-/- mice showed a stronger encephalitis and astrogliosis, higher viral load as well as higher mRNA levels of Isg15, Eif2ak2 (PKR), Tnfa, Il1b, Il10, Il12 and Ifng in the cerebrum than BeAn-infected WT mice. Moreover, the majority of IFN-β-/- mice did not clear the virus from the CNS and developed mild demyelination in the spinal cord at 98 dpi, whereas virus and lesions were absent in the spinal cord of WT mice. Persistently infected IFN-β-/- mice also had higher Isg15, Eif2ak1, Tnfa, Il1a, Il1b and Ifng mRNA levels in the spinal cord at 98 dpi than their virus-negative counterparts indicating an activation of IFN-I signaling and ongoing inflammation. Most importantly, BeAn-infected NesCre+/- IFN-βfl/fl mice, which do not express IFN-β in neurons, astrocytes and oligodendrocytes, only developed mild brain lesions similar to WT mice. Consequently, IFN-β produced by neuroectodermal cells does not seem to play a critical role in the resistance of C57BL/6 mice against fatal and demyelinating disease induced by TMEV strains.
Collapse
Affiliation(s)
- Melanie Bühler
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sandra Runft
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Dandan Li
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jasper Götting
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Claudia N Detje
- Institute for Experimental Infection Research, Twincore, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Vanessa Nippold
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Melanie Stoff
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Andreas Beineke
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Thomas Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, Twincore, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | | | - Ingo Gerhauser
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
23
|
Gan X, Gu J, Ju Z, Lu L. Diverse Roles of Immune Cells in Transplant Rejection and Immune Tolerance. ENGINEERING 2022; 10:44-56. [DOI: 10.1016/j.eng.2021.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
24
|
Zhou J, Zhang X, Yu Q. Plasmacytoid dendritic cells promote the pathogenesis of Sjögren's syndrome. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166302. [PMID: 34780913 PMCID: PMC8714705 DOI: 10.1016/j.bbadis.2021.166302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/17/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) produce type I interferons (IFNs) and promote pathogenesis of multiple autoimmune diseases. Autoimmune Sjögren's syndrome (SS) primarily affects salivary and lacrimal glands, causing their inflammation, destruction and dysfunction. pDCs and type I IFN activity are elevated in salivary glands of SS patients, and this study seeks to elucidate the in vivo actions of pDCs in SS pathogenesis using the non-obese diabetic (NOD) mouse model. We confirmed the type I IFN-dependency of SS development in female NOD mice and elevation of pDC-type I IFN in their submandibular glands (SMGs). We administered a pDC-depleting anti-BST2/CD317 antibody to female NOD mice from 4 to 7 weeks of age at the early stage of SS, and assessed SS pathologies at age 10 weeks, the time of disease onset. Depletion of pDCs impeded the development of SMG inflammation and secretory dysfunction. It drastically reduced the amount of type I IFN mRNA and the number of total leukocytes, and T- and B lymphocytes in SMGs. Gene expression analyses showed that pDC depletion markedly diminished SMG expression of IL-7, BAFF, TNF-α, IFN-γ, CXCL9, CXCL11, CD40, CD40L, Lt-α, Lt-β and NOS2. Hence, pDCs critically contribute to the development and onset of SS-like salivary gland exocrinopathy.
Collapse
Affiliation(s)
- Jing Zhou
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine,188 Longwood Avenue, Boston, MA 02115, USA,Corresponding Authors: Address for correspondence and reprint requests: Jing Zhou, Ph.D., The Forsyth Institute, 245 First Street, Cambridge, MA 02142. , Qing Yu, M.D., Ph.D., The Forsyth Institute, 245 First Street, Cambridge, MA 02142,
| | - Xiaofeng Zhang
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.,Present address: Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, 450 Brookline Ave, Boston, MA 02215
| | - Qing Yu
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine,188 Longwood Avenue, Boston, MA 02115, USA,Corresponding Authors: Address for correspondence and reprint requests: Jing Zhou, Ph.D., The Forsyth Institute, 245 First Street, Cambridge, MA 02142. , Qing Yu, M.D., Ph.D., The Forsyth Institute, 245 First Street, Cambridge, MA 02142,
| |
Collapse
|
25
|
Peil J, Bock F, Kiefer F, Schmidt R, Heindl LM, Cursiefen C, Schlereth SL. New Therapeutic Approaches for Conjunctival Melanoma-What We Know So Far and Where Therapy Is Potentially Heading: Focus on Lymphatic Vessels and Dendritic Cells. Int J Mol Sci 2022; 23:1478. [PMID: 35163401 PMCID: PMC8835854 DOI: 10.3390/ijms23031478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
Conjunctival melanoma (CM) accounts for 5% of all ocular melanomas and arises from malignantly transformed melanocytes in the conjunctival epithelium. Current therapies using surgical excision in combination with chemo- or cryotherapy still have high rates for recurrences and metastatic disease. Lately, novel signal transduction-targeted and immune checkpoint inhibitors like cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors, programmed cell death protein-1 (PD-1) receptor inhibitors, BRAF- or MEK-inhibitors for systemic treatment of melanoma have improved the outcome even for unresectable cutaneous melanoma, improving patient survival dramatically. The use of these therapies is now also recommended for CM; however, the immunological background of CM is barely known, underlining the need for research to better understand the immunological basics when treating CM patients with immunomodulatory therapies. Immune checkpoint inhibitors activate tumor defense by interrupting inhibitory interactions between tumor cells and T lymphocytes at the so-called checkpoints. The tumor cells exploit these inhibitory targets on T-cells that are usually used by dendritic cells (DCs). DCs are antigen-presenting cells at the forefront of immune response induction. They contribute to immune tolerance and immune defense but in the case of tumor development, immune tolerance is often prevalent. Enhancing the immune response via DCs, interfering with the lymphatic pathways during immune cell migration and tumor development and specifically targeting tumor cells is a major therapeutic opportunity for many tumor entities including CM. This review summarizes the current knowledge on the function of lymphatic vessels in tumor growth and immune cell transport and continues to compare DC subsets in CM with related melanomas, such as cutaneous melanoma and mucosal melanoma.
Collapse
Affiliation(s)
- Jennifer Peil
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
| | - Felix Bock
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149 Münster, Germany;
| | - Rebecca Schmidt
- Department of Oral, Maxillofacial and Plastic Facial Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Ludwig M. Heindl
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Simona L. Schlereth
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
26
|
Fu J, Lehmann CHK, Wang X, Wahlbuhl M, Allabauer I, Wilde B, Amon L, Dolff S, Cesnjevar R, Kribben A, Woelfle J, Rascher W, Hoyer PF, Dudziak D, Witzke O, Hoerning A. CXCR4 blockade reduces the severity of murine heart allograft rejection by plasmacytoid dendritic cell-mediated immune regulation. Sci Rep 2021; 11:23815. [PMID: 34893663 PMCID: PMC8664946 DOI: 10.1038/s41598-021-03115-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Allograft-specific regulatory T cells (Treg cells) are crucial for long-term graft acceptance after transplantation. Although adoptive Treg cell transfer has been proposed, major challenges include graft-specificity and stability. Thus, there is an unmet need for the direct induction of graft-specific Treg cells. We hypothesized a synergism of the immunotolerogenic effects of rapamycin (mTOR inhibition) and plerixafor (CXCR4 antagonist) for Treg cell induction. Thus, we performed fully-mismatched heart transplantations and found combination treatment to result in prolonged allograft survival. Moreover, fibrosis and myocyte lesions were reduced. Although less CD3+ T cell infiltrated, higher Treg cell numbers were observed. Noteworthy, this was accompanied by a plerixafor-dependent plasmacytoid dendritic cells-(pDCs)-mobilization. Furthermore, in vivo pDC-depletion abrogated the plerixafor-mediated Treg cell number increase and reduced allograft survival. Our pharmacological approach allowed to increase Treg cell numbers due to pDC-mediated immune regulation. Therefore pDCs can be an attractive immunotherapeutic target in addition to plerixafor treatment.
Collapse
Affiliation(s)
- Jian Fu
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany.,The Emergency and Trauma Center, The First Affiliated Hospital of Hai Nan Medical University, Haikou, China
| | - Christian H K Lehmann
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Research Module II, Hartmannstr. 14, 91052, Erlangen, Germany. .,Medical Immunology Campus and German Centre for Immuntherapy (Deutsches Zentrum für Immuntherapie-DZI) Erlangen, FAU Erlangen-Nürnberg, 91054, Erlangen, Germany.
| | - Xinning Wang
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Mandy Wahlbuhl
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Ida Allabauer
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lukas Amon
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Research Module II, Hartmannstr. 14, 91052, Erlangen, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, Essen, Germany
| | - Robert Cesnjevar
- Department of Pediatric Cardiac Surgery, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany.,Department of Cardiac Surgery, Universitäts-Kinderspital Zürich, Zurich, Switzerland
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Joachim Woelfle
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Wolfgang Rascher
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Peter F Hoyer
- Department of Pediatrics II, Pediatric Nephrology, Gastroenterology, Endocrinology and Transplant Medicine, Children's Hospital Essen, University Duisburg-Essen, Duisburg, Germany
| | - Diana Dudziak
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Research Module II, Hartmannstr. 14, 91052, Erlangen, Germany.,Medical Immunology Campus and German Centre for Immuntherapy (Deutsches Zentrum für Immuntherapie-DZI) Erlangen, FAU Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, Essen, Germany
| | - André Hoerning
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany. .,Department of Pediatrics II, Pediatric Nephrology, Gastroenterology, Endocrinology and Transplant Medicine, Children's Hospital Essen, University Duisburg-Essen, Duisburg, Germany.
| |
Collapse
|
27
|
Delva JL, Van Waesberghe C, Klupp BG, Mettenleiter TC, Favoreel HW. Alphaherpesvirus-induced activation of plasmacytoid dendritic cells depends on the viral glycoprotein gD and is inhibited by non-infectious light particles. PLoS Pathog 2021; 17:e1010117. [PMID: 34843605 PMCID: PMC8659615 DOI: 10.1371/journal.ppat.1010117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/09/2021] [Accepted: 11/16/2021] [Indexed: 12/28/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC) are important innate immune cells during the onset of viral infections as they are specialized in the production of massive amounts of antiviral type I interferon (IFN). Alphaherpesviruses such as herpes simplex virus (HSV) or pseudorabies virus (PRV) are double stranded DNA viruses and potent stimulators of pDC. Detailed information on how PRV activates porcine pDC is lacking. Using PRV and porcine primary pDC, we report here that PRV virions, so-called heavy (H-)particles, trigger IFNα production by pDC, whereas light (L-) particles that lack viral DNA and capsid do not. Activation of pDC requires endosomal acidification and, importantly, depends on the PRV gD envelope glycoprotein and O-glycosylations. Intriguingly, both for PRV and HSV-1, we found that L-particles suppress H-particle-mediated activation of pDC, a process which again depends on viral gD. This is the first report describing that gD plays a critical role in alphaherpesvirus-induced pDC activation and that L-particles directly interfere with alphaherpesvirus-induced IFNα production by pDC.
Collapse
Affiliation(s)
- Jonas L Delva
- Department of Virology, Parasitology, Immunology-Faculty of Veterinary Medicine-Ghent University, Merelbeke, Belgium
| | - Cliff Van Waesberghe
- Department of Virology, Parasitology, Immunology-Faculty of Veterinary Medicine-Ghent University, Merelbeke, Belgium
| | - Barbara G Klupp
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Herman W Favoreel
- Department of Virology, Parasitology, Immunology-Faculty of Veterinary Medicine-Ghent University, Merelbeke, Belgium
| |
Collapse
|
28
|
Chen Y, Hu S, Shu Y, Qi Z, Zhang B, Kuang Y, Ma J, Cheng P. Antifibrotic Therapy Augments the Antitumor Effects of Vesicular Stomatitis Virus Via Reprogramming Tumor Microenvironment. Hum Gene Ther 2021; 33:237-249. [PMID: 34405694 DOI: 10.1089/hum.2021.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Solid tumors are characterized by abundant extracellular matrix originating from cancer-associated fibroblasts (CAFs). High collagen content can trigger the collapse of vascular system in the tumor and form physical barrier that eventually impedes the penetration of drug particles and cytotoxic immune cells. Moreover, CAFs is able to promote the enrichment of tumor-associated macrophages (TAMs) and differentiation of myeloid-derived suppressor cells (MDSCs) that work in concert to develop a highly immunosuppressive tumor microenvironment (TME). In this study, we investigated if halofuginone, an antifibrotic drug, can augment the therapeutic effects of oncolytic vesicular stomatitis virus (VSV). The results revealed that halofuginone significantly disrupts the collagen network in tumors and promotes the distribution of VSV and infiltration of CD8+ T cells (p < 0.0001). Combined treatment of VSV and halofuginone also modulates the immunosuppressive TME via deletion of TAM, MDSCs, and regulatory T cells (Tregs). Collectively, the combination therapy remarkably inhibits the tumor growth in multiple murine models and prolongs survival of mice. The results demonstrate the clinical potential of halofuginone in combination with oncolytic virus.
Collapse
Affiliation(s)
- Yanwei Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shichuan Hu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yongheng Shu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Zhongbing Qi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Bin Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yueting Kuang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jinhu Ma
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Ping Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
29
|
Asano T, Boisson B, Onodi F, Matuozzo D, Moncada-Velez M, Maglorius Renkilaraj MRL, Zhang P, Meertens L, Bolze A, Materna M, Korniotis S, Gervais A, Talouarn E, Bigio B, Seeleuthner Y, Bilguvar K, Zhang Y, Neehus AL, Ogishi M, Pelham SJ, Le Voyer T, Rosain J, Philippot Q, Soler-Palacín P, Colobran R, Martin-Nalda A, Rivière JG, Tandjaoui-Lambiotte Y, Chaïbi K, Shahrooei M, Darazam IA, Olyaei NA, Mansouri D, Hatipoğlu N, Palabiyik F, Ozcelik T, Novelli G, Novelli A, Casari G, Aiuti A, Carrera P, Bondesan S, Barzaghi F, Rovere-Querini P, Tresoldi C, Franco JL, Rojas J, Reyes LF, Bustos IG, Arias AA, Morelle G, Christèle K, Troya J, Planas-Serra L, Schlüter A, Gut M, Pujol A, Allende LM, Rodriguez-Gallego C, Flores C, Cabrera-Marante O, Pleguezuelo DE, de Diego RP, Keles S, Aytekin G, Akcan OM, Bryceson YT, Bergman P, Brodin P, Smole D, Smith CIE, Norlin AC, Campbell TM, Covill LE, Hammarström L, Pan-Hammarström Q, Abolhassani H, Mane S, Marr N, Ata M, Al Ali F, Khan T, Spaan AN, Dalgard CL, Bonfanti P, Biondi A, Tubiana S, Burdet C, Nussbaum R, Kahn-Kirby A, Snow AL, Bustamante J, Puel A, Boisson-Dupuis S, Zhang SY, Béziat V, Lifton RP, Bastard P, Notarangelo LD, Abel L, et alAsano T, Boisson B, Onodi F, Matuozzo D, Moncada-Velez M, Maglorius Renkilaraj MRL, Zhang P, Meertens L, Bolze A, Materna M, Korniotis S, Gervais A, Talouarn E, Bigio B, Seeleuthner Y, Bilguvar K, Zhang Y, Neehus AL, Ogishi M, Pelham SJ, Le Voyer T, Rosain J, Philippot Q, Soler-Palacín P, Colobran R, Martin-Nalda A, Rivière JG, Tandjaoui-Lambiotte Y, Chaïbi K, Shahrooei M, Darazam IA, Olyaei NA, Mansouri D, Hatipoğlu N, Palabiyik F, Ozcelik T, Novelli G, Novelli A, Casari G, Aiuti A, Carrera P, Bondesan S, Barzaghi F, Rovere-Querini P, Tresoldi C, Franco JL, Rojas J, Reyes LF, Bustos IG, Arias AA, Morelle G, Christèle K, Troya J, Planas-Serra L, Schlüter A, Gut M, Pujol A, Allende LM, Rodriguez-Gallego C, Flores C, Cabrera-Marante O, Pleguezuelo DE, de Diego RP, Keles S, Aytekin G, Akcan OM, Bryceson YT, Bergman P, Brodin P, Smole D, Smith CIE, Norlin AC, Campbell TM, Covill LE, Hammarström L, Pan-Hammarström Q, Abolhassani H, Mane S, Marr N, Ata M, Al Ali F, Khan T, Spaan AN, Dalgard CL, Bonfanti P, Biondi A, Tubiana S, Burdet C, Nussbaum R, Kahn-Kirby A, Snow AL, Bustamante J, Puel A, Boisson-Dupuis S, Zhang SY, Béziat V, Lifton RP, Bastard P, Notarangelo LD, Abel L, Su HC, Jouanguy E, Amara A, Soumelis V, Cobat A, Zhang Q, Casanova JL. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Sci Immunol 2021; 6:eabl4348. [PMID: 34413140 PMCID: PMC8532080 DOI: 10.1126/sciimmunol.abl4348] [Show More Authors] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/12/2021] [Indexed: 01/16/2023]
Abstract
Autosomal inborn errors of type I IFN immunity and autoantibodies against these cytokines underlie at least 10% of critical COVID-19 pneumonia cases. We report very rare, biochemically deleterious X-linked TLR7 variants in 16 unrelated male individuals aged 7 to 71 years (mean: 36.7 years) from a cohort of 1,202 male patients aged 0.5 to 99 years (mean: 52.9 years) with unexplained critical COVID-19 pneumonia. None of the 331 asymptomatically or mildly infected male individuals aged 1.3 to 102 years (mean: 38.7 years) tested carry such TLR7 variants (p = 3.5 × 10-5). The phenotypes of five hemizygous relatives of index cases infected with SARS-CoV-2 include asymptomatic or mild infection (n=2, 5 and 38 years), or moderate (n=1, 5 years), severe (n=1, 27 years), or critical (n=1, 29 years) pneumonia. Two boys (aged 7 and 12 years) from a cohort of 262 male patients with severe COVID-19 pneumonia (mean: 51.0 years) are hemizygous for a deleterious TLR7 variant. The cumulative allele frequency for deleterious TLR7 variants in the male general population is < 6.5x10-4 We also show that blood B cell lines and myeloid cell subsets from the patients do not respond to TLR7 stimulation, a phenotype rescued by wild-type TLR7 The patients' blood plasmacytoid dendritic cells (pDCs) produce low levels of type I IFNs in response to SARS-CoV-2. Overall, X-linked recessive TLR7 deficiency is a highly penetrant genetic etiology of critical COVID-19 pneumonia, in about 1.8% of male patients below the age of 60 years. Human TLR7 and pDCs are essential for protective type I IFN immunity against SARS-CoV-2 in the respiratory tract.
Collapse
Affiliation(s)
- Takaki Asano
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Fanny Onodi
- Laboratory of Genomes & Cell Biology of Disease, INSERM U944, CNRS UMR7212, University of Paris, Research Institute of Saint-Louis, Saint-Louis Hospital, Paris, France
| | - Daniela Matuozzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Marcela Moncada-Velez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Majistor Raj Luxman Maglorius Renkilaraj
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Laurent Meertens
- Laboratory of Genomes & Cell Biology of Disease, INSERM U944, CNRS UMR7212, University of Paris, Research Institute of Saint-Louis, Saint-Louis Hospital, Paris, France
| | | | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | | | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Estelle Talouarn
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Kaya Bilguvar
- Yale Center for Genome Analysis and Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Simon J Pelham
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Pere Soler-Palacín
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
| | - Roger Colobran
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
- Diagnostic Immunology Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Immunology Division, Genetics Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain
| | - Andrea Martin-Nalda
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
| | - Jacques G Rivière
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
| | - Yacine Tandjaoui-Lambiotte
- AP-HP, Avicenne Hospital, Intensive Care Unit, Bobigny, France
- INSERM U1272 Hypoxia & Lung, Bobigny, France
| | - Khalil Chaïbi
- Anesthesiology and Critical Care Medicine Department, APHP, Avicenne Hospital, Bobigny, France
- Common and Rare Kidney Diseases, Sorbonne University, INSERM UMR-S 1155, Paris, France
| | - Mohammad Shahrooei
- Specialized Immunology Laboratory of Dr. Shahrooei, Sina Medical Complex, Ahvaz, Iran
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | - Ilad Alavi Darazam
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasrin Alipour Olyaei
- Specialized Immunology Laboratory of Dr. Shahrooei, Sina Medical Complex, Ahvaz, Iran
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | - Davood Mansouri
- Department of Clinical Immunology and Infectious Diseases, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- The Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti, Iran
| | - Nevin Hatipoğlu
- Pediatric Infectious Diseases Unit, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Figen Palabiyik
- Pediatric Infectious Diseases Unit, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, University of Bilkent, Bilkent-Ankara, Turkey
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Rome, and Neuromed Institute, IRCCS, Pozzilli (IS), Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Giorgio Casari
- Vita-Salute San Raffaele University, Milan, Italy
- Clinical Genomics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- Vita-Salute San Raffaele University, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) and Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Clinical Genomics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simone Bondesan
- Clinical Genomics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) and Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia Rovere-Querini
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Tresoldi
- Molecular Hematology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Jose Luis Franco
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Julian Rojas
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
| | | | | | - Andres Augusto Arias
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
- School of Microbiology, University of Antioquia UdeA, Medellín, Colombia
| | - Guillaume Morelle
- Department of General Pediatrics, Hôpital Bicêtre, AP-HP, University of Paris Saclay, Le Kremlin-Bicêtre, France
| | - Kyheng Christèle
- Department of General Pediatrics, Hôpital Bicêtre, AP-HP, University of Paris Saclay, Le Kremlin-Bicêtre, France
| | - Jesús Troya
- Department of Internal Medicine, Infanta Leonor University Hospital, Madrid, Spain
| | - Laura Planas-Serra
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 4, 08028, Barcelona, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Luis M Allende
- Immunology Department, University Hospital 12 de Octubre, Research Institute Hospital 12 de Octubre (I+12), Madrid, Spain
- Complutense University, Madrid, Spain
| | - Carlos Rodriguez-Gallego
- Department of Immunology, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Department of Clinical Sciences, University of Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Carlos Flores
- Genomics Division, Institute of Technology and Renewable Energies (ITER), Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Health Institute of Carlos III, Madrid, Spain
- Research Unit, University Hospital of N.S. de Candelaria, Santa Cruz de Tenerife, Spain
- Institute of Biomedical technologies (ITB), University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Oscar Cabrera-Marante
- Immunology Department, University Hospital 12 de Octubre, Research Institute Hospital 12 de Octubre (I+12), Madrid, Spain
| | - Daniel E Pleguezuelo
- Immunology Department, University Hospital 12 de Octubre, Research Institute Hospital 12 de Octubre (I+12), Madrid, Spain
| | - Rebeca Pérez de Diego
- Institute of Biomedical Research of IdiPAZ, University Hospital "La Paz", Madrid, Spain
| | - Sevgi Keles
- Necmettin Erbakan University, Meram Medical Faculty, Division of Pediatric Allergy and Immunology, Konya, Turkey
| | - Gokhan Aytekin
- Konya City Hospital, Division of Allergy and Immunology, Konya, Turkey
| | - Ozge Metin Akcan
- Necmettin Erbakan University, Meram Medical Faculty, Division of Pediatric Allergy and Immunology, Konya, Turkey
| | - Yenan T Bryceson
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Stockholm, Sweden
- The Immunodeficiency Unit, Infectious Disease Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Petter Brodin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institute, Solna, Sweden
| | - Daniel Smole
- Central Hospital-Anesthesia and Intensive Care Unit, Karlstad, Sweden
| | - C I Edvard Smith
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institute, Stockholm, Sweden
- The Immunodeficiency Unit, Infectious Disease Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Anna-Carin Norlin
- The Immunodeficiency Unit, Infectious Disease Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Tessa M Campbell
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Laura E Covill
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Lennart Hammarström
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | | | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nico Marr
- Department of Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Manar Ata
- Department of Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Fatima Al Ali
- Department of Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Taushif Khan
- Department of Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Paolo Bonfanti
- Department of Infectious Diseases, San Gerardo Hospital-University of Milano-Bicocca, Monza, Italy
| | - Andrea Biondi
- Pediatric Department and Centro Tettamanti-European Reference Network PaedCan, EuroBloodNet, MetabERN-University of Milano-Bicocca-Fondazione MBBM- Ospedale San Gerardo, Monza, Italy
| | - Sarah Tubiana
- Centre d'Investigation Clinique, INSERM CIC 1425, Paris, France
- Hôpital Bichat Claude Bernard, APHP, Paris, France
| | - Charles Burdet
- Centre d'Investigation Clinique, INSERM CIC 1425, Paris, France
- Université de Paris, IAME, INSERM UMR 1137, Paris, France
| | | | | | - Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France, EU
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Richard P Lifton
- Yale Center for Genome Analysis and Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Laboratory of Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Ali Amara
- Laboratory of Genomes & Cell Biology of Disease, INSERM U944, CNRS UMR7212, University of Paris, Research Institute of Saint-Louis, Saint-Louis Hospital, Paris, France
| | - Vassili Soumelis
- University of Paris, INSERM U976, F-75006 Paris, France
- APHP, Hôpital Saint-Louis, Department of Immunology-Histocompatibility, 75010 Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
30
|
Dendritic cell deficiencies persist seven months after SARS-CoV-2 infection. Cell Mol Immunol 2021; 18:2128-2139. [PMID: 34290398 PMCID: PMC8294321 DOI: 10.1038/s41423-021-00728-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 infection induces an exacerbated inflammation driven by innate immunity components. Dendritic cells (DCs) play a key role in the defense against viral infections, for instance plasmacytoid DCs (pDCs), have the capacity to produce vast amounts of interferon-alpha (IFN-α). In COVID-19 there is a deficit in DC numbers and IFN-α production, which has been associated with disease severity. In this work, we described that in addition to the DC deficiency, several DC activation and homing markers were altered in acute COVID-19 patients, which were associated with multiple inflammatory markers. Remarkably, previously hospitalized and nonhospitalized patients remained with decreased numbers of CD1c+ myeloid DCs and pDCs seven months after SARS-CoV-2 infection. Moreover, the expression of DC markers such as CD86 and CD4 were only restored in previously nonhospitalized patients, while no restoration of integrin β7 and indoleamine 2,3-dyoxigenase (IDO) levels were observed. These findings contribute to a better understanding of the immunological sequelae of COVID-19.
Collapse
|
31
|
Spiridonov IN, Asaulenko ZP, Krivolapov YA. [Analysis of the phenotypic heterogeneity of CD123-positive cells in Kikuchi-Fujimoto disease using a sequential immunoperoxidase labeling and erasing method]. Arkh Patol 2021; 83:36-44. [PMID: 34278759 DOI: 10.17116/patol20218304136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Kikuchi-Fujimoto disease (KFD) is a rare disease that is clinically manifested mainly by fever and lymphadenopathy. KFD was originally believed to occur primarily in East Asia women, this disease was subsequently described in all ethnic groups worldwide. The important differential diagnostic feature of KFD is the detection of CD123-expressing plasmocytoid dendritic cells (PDCs) in the tissue of the affected lymph node. The standard immunohistochemical staining method has sufficient sensitivity and specificity to detect CD123, but it gives no way of judging the possible phenotypic heterogeneity of cells with CD123 expression. OBJECTIVE To identify the phenotypic heterogeneity of CD123-expressing cells in the affected lymph nodes in patients with KFD by a sequential immunoperoxidase labeling and erasing (SIMPLE) method. MATERIAL AND METHODS Excision biopsies of lymph nodes were examined in 3 patients with KFD. After an immunohistochemical reaction using a single antibody, the tissue specimen was digitized with a Pannoramic 250 Flash III scanner (3DHISTECH, Hungary), then the cover glass was removed from the section, the specimen was hydrated and placed in a specialized buffer. Then the following primary antibody was applied to the washed tissue specimen and further immunohistochemical reaction and scanning were performed. As a result, each tissue specimen was sequentially stained in reactions with 4 antibodies. The microphotographs of specimens stained in a reaction with anti-CD123 antibody showed positive cells for their identification in the Pannoramic Viewer program (3DHISTECH, Hungary) on the remaining microphotographs displaying the expression of the other 3 markers. The selected fields of view were exported to a JPG format. RESULTS Assessing the co-expression of the antigens CD123, MNDA, CD68, and TCL1A detected 4 CD123+ cell subpopulations: No. 1. CD68+/ MNDA+/ TCL1A+; No. 2. CD68+/ MNDA+/ TCL1A-; No. 3. CD68+/ MNDA-/ TCL1A+; No. 4. CD68-/ MNDA-/ TCL1A+. CONCLUSION SIMPLE has shown the phenotypic heterogeneity of CD123-positive cells (some of them may be PDCs) and could identify 4 immunophenotypically distinct subpopulations in the affected lymph nodes in patients with KFD. Further investigations are needed to define the role of subpopulations in the pathogenesis of KFD and other diseases.
Collapse
Affiliation(s)
- I N Spiridonov
- I.I. Mechnikov North-Western State Medical University of the Ministry of Health of Russia, St. Petersburg, Russia
| | - Z P Asaulenko
- I.I. Mechnikov North-Western State Medical University of the Ministry of Health of Russia, St. Petersburg, Russia.,Saint Petersburg City Hospital Forty, St. Petersburg, Russia
| | - Yu A Krivolapov
- I.I. Mechnikov North-Western State Medical University of the Ministry of Health of Russia, St. Petersburg, Russia
| |
Collapse
|
32
|
Ross RL, Corinaldesi C, Migneco G, Carr IM, Antanaviciute A, Wasson CW, Carriero A, Distler JHW, Holmes S, El-Sherbiny YM, McKimmie CS, Del Galdo F. Targeting human plasmacytoid dendritic cells through BDCA2 prevents skin inflammation and fibrosis in a novel xenotransplant mouse model of scleroderma. Ann Rheum Dis 2021; 80:920-929. [PMID: 33542104 PMCID: PMC8237203 DOI: 10.1136/annrheumdis-2020-218439] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Plasmacytoid dendritic cells (pDC) have been implicated in the pathogenesis of autoimmune diseases, such as scleroderma (SSc). However, this has been derived from indirect evidence using ex vivo human samples or mouse pDC in vivo. We have developed human-specific pDC models to directly identify their role in inflammation and fibrosis, as well as attenuation of pDC function with BDCA2-targeting to determine its therapeutic application. METHODS RNAseq of human pDC with TLR9 agonist ODN2216 and humanised monoclonal BDCA2 antibody, CBS004. Organotypic skin rafts consisting of fibroblasts and keratinocytes were stimulated with supernatant from TLR9-stimulated pDC and with CBS004. Human pDC were xenotransplanted into Nonobese diabetic/severe combined immunodeficiency (NOD SCID) mice treated with Aldara (inflammatory model), or bleomycin (fibrotic model) with CBS004 or human IgG control. Skin punch biopsies were used to assess gene and protein expression. RESULTS RNAseq shows TLR9-induced activation of human pDC goes beyond type I interferon (IFN) secretion, which is functionally inactivated by BDCA2-targeting. Consistent with these findings, we show that BDCA2-targeting of pDC can completely suppress in vitro skin IFN-induced response. Most importantly, xenotransplantation of human pDC significantly increased in vivo skin IFN-induced response to TLR agonist and strongly enhanced fibrotic and immune response to bleomycin compared with controls. In these contexts, BDCA2-targeting suppressed human pDC-specific pathological responses. CONCLUSIONS Our data indicate that human pDC play a key role in inflammation and immune-driven skin fibrosis, which can be effectively blocked by BDCA2-targeting, providing direct evidence supporting the development of attenuation of pDC function as a therapeutic application for SSc.
Collapse
Affiliation(s)
- Rebecca L Ross
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Scleroderma Programme, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds, UK
| | - Clarissa Corinaldesi
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Gemma Migneco
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Ian M Carr
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Agne Antanaviciute
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Christopher W Wasson
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Scleroderma Programme, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds, UK
| | - Antonio Carriero
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Rheumatology Department of Lucania, Rheumatology Institute of Lucania (IReL), Potenza, Italy
| | - Jörg H W Distler
- Department of Internal Medicine III, University of Erlangen, Erlangen, Germany
| | | | - Yasser M El-Sherbiny
- Department of Biosciences, Nottingham Trent University, Nottingham, Nottinghamshire, UK
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Clive S McKimmie
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Virus Host Interactions Team, Section of Infection and Immunity, University of Leeds Faculty of Medicine and Health, Leeds, UK
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Scleroderma Programme, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds, UK
| |
Collapse
|
33
|
Vitali C, Minniti A, Pignataro F, Maglione W, Del Papa N. Management of Sjögren's Syndrome: Present Issues and Future Perspectives. Front Med (Lausanne) 2021; 8:676885. [PMID: 34164418 PMCID: PMC8215198 DOI: 10.3389/fmed.2021.676885] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
In view of the new possibilities for the treatment of primary Sjögren's syndrome (pSS) given by the availability of new biotechnological agents targeting the various molecular and cellular actors of the pathological process of the disease, classification criteria aimed at selecting patients to be enrolled in therapeutic trials, and validated outcome measures to be used as response criteria to these new therapies, have been developed and validated in the last decades. Unfortunately, the therapeutic trials so far completed with these new treatments have yielded unsatisfactory or only partially positive results. The main issues that have been evoked to justify the poor results of the new therapeutic attempts are: (i) the extreme variability of the disease phenotypes of the patients enrolled in the trials, which are dependent on different underlying patterns of biological mechanisms, (ii) the fact that the disease has a long indolent course, and that most of the enrolled patients might already have irreversible clinical features. The advances in the research of new disease biomarkers that can better distinguish the different clinical phenotypes of patients and diagnose the disease in an earlier phase are also discussed.
Collapse
Affiliation(s)
- Claudio Vitali
- Rheumatology Outpatient Clinics, "Mater Domini" Humanitas Hospital, Castellanza, Italy
| | | | | | - Wanda Maglione
- Department of Rheumatology, ASST G. Pini-CTO, Milan, Italy
| | | |
Collapse
|
34
|
Nakano R, Yoshida O, Kimura S, Nakao T, Yokota S, Ono Y, Minervini MI, Geller DA, Thomson AW. Donor plasmacytoid dendritic cells modulate effector and regulatory T cell responses in mouse spontaneous liver transplant tolerance. Am J Transplant 2021; 21:2040-2055. [PMID: 33247989 PMCID: PMC8628164 DOI: 10.1111/ajt.16412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/22/2020] [Accepted: 11/17/2020] [Indexed: 01/25/2023]
Abstract
We assessed the role of donor liver non-conventional plasmacytoid dendritic cells (pDCs) in spontaneous liver transplant tolerance in a fully MHC-mismatched (C57BL/6 (H2b ) to C3H (H2k )) mouse model. Compared with spleen pDCs, liver pDCs expressed higher levels of DNAX-activating protein of 12 kDa and its co-receptor, triggering receptor expressed by myeloid cells 2, and higher ratios of programed death ligand-1 (PD-L1):costimulatory CD80/CD86 in the steady state and after Toll-like receptor 9 ligation. Moreover, liver pDCs potently suppressed allogeneic CD4+ and CD8+ T cell proliferative responses. Survival of pDC-depleted livers was much poorer (median survival time: 25 days) than that of either untreated donor livers or pDC-depleted syngeneic donor livers that survived indefinitely. Numbers of forkhead box p3 (FoxP3)+ regulatory T cells in grafts and mesenteric lymph nodes of mice given pDC-depleted allogeneic livers were reduced significantly compared with those in recipients of untreated livers. Graft-infiltrating CD8+ T cells with an exhausted phenotype (programed cell death protein 1+ , T cell immunoglobulin and mucin domain-containing protein 3+ ) were also reduced in recipients of pDC-depleted livers. PD1-PD-L1 pathway blockade reversed the reduction in exhausted T cells. These novel observations link immunoregulatory functions of liver interstitial pDCs, alloreactive T cell exhaustion, and spontaneous liver transplant tolerance.
Collapse
Affiliation(s)
- Ryosuke Nakano
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Osamu Yoshida
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Shoko Kimura
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Toshimasa Nakao
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Shinichiro Yokota
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Surgery, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Yoshihiro Ono
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Marta I. Minervini
- Department of Pathology, Division of Transplantation Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David A. Geller
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Liver Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Angus W. Thomson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
35
|
Activation of plasmacytoid dendritic cells promotes AML-cell fratricide. Oncotarget 2021; 12:878-890. [PMID: 33953842 PMCID: PMC8092344 DOI: 10.18632/oncotarget.27949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by the proliferation of immature myeloid blasts and a suppressed immune state. Interferons have been previously shown to aid in the clearance of AML cells. Type I interferons are produced primarily by plasmacytoid dendritic cells (pDCs). However, these cells exist in a quiescent state in AML. Because pDCs express TLR 7–9, we hypothesized that the TLR7/8 agonist R848 would be able to reprogram them toward a more active, IFN-producing phenotype. Consistent with this notion, we found that R848-treated pDCs from patients produced significantly elevated levels of IFNβ. In addition, they showed increased expression of the immune-stimulatory receptor CD40. We next tested whether IFNβ would influence antibody-mediated fratricide among AML cells, as our recent work showed that AML cells could undergo cell-to cell killing in the presence of the CD38 antibody daratumumab. We found that IFNβ treatment led to a significant, IRF9-dependent increase in CD38 expression and a subsequent increase in daratumumab-mediated cytotoxicity and decreased colony formation. These findings suggest that the tolerogenic phenotype of pDCs in AML can be reversed, and also demonstrate a possible means of enhancing endogenous Type I IFN production that would promote daratumumab-mediated clearance of AML cells.
Collapse
|
36
|
Topical Adoptive Transfer of Plasmacytoid Dendritic Cells for Corneal Wound Healing. Methods Mol Biol 2021. [PMID: 32808268 DOI: 10.1007/978-1-0716-0845-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Plasmacytoid dendritic cells (pDCs) are crucial for corneal homeostasis through secretion of various anti-angiogenic molecules and growth factors. Due to its avascular nature, only a limited number of adoptively transferred cells home to the cornea, when administered systemically. In addition, local adoptive transfer of cells poses several challenges and the clinical application of commonly used techniques is limited. Herein, we detail a novel approach for local adoptive transfer of pDCs to the cornea for the treatment of corneal wounds. This approach utilizes a commonly used fibrin sealant as a means of transferring previously isolated cells locally on the cornea. The technique is simple, reproducible, and is accompanied with successful transfer and integration of a substantial number of the cells to the cornea. Application of this approach to transfer pDCs promotes corneal wound healing. Furthermore, this technique can be applied for adoptive transfer of any cell of interest to the cornea.
Collapse
|
37
|
Yang ZJ, Wang BY, Wang TT, Wang FF, Guo YX, Hua RX, Shang HW, Lu X, Xu JD. Functions of Dendritic Cells and Its Association with Intestinal Diseases. Cells 2021; 10:cells10030583. [PMID: 33800865 PMCID: PMC7999753 DOI: 10.3390/cells10030583] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs), including conventional DCs (cDCs) and plasmacytoid DCs (pDCs), serve as the sentinel cells of the immune system and are responsible for presenting antigen information. Moreover, the role of DCs derived from monocytes (moDCs) in the development of inflammation has been emphasized. Several studies have shown that the function of DCs can be influenced by gut microbes including gut bacteria and viruses. Abnormal changes/reactions in intestinal DCs are potentially associated with diseases such as inflammatory bowel disease (IBD) and intestinal tumors, allowing DCs to be a new target for the treatment of these diseases. In this review, we summarized the physiological functions of DCs in the intestinal micro-environment, their regulatory relationship with intestinal microorganisms and their regulatory mechanism in intestinal diseases.
Collapse
Affiliation(s)
- Ze-Jun Yang
- Clinical Medicine of “5 + 3” Program, Capital Medical University, Beijing 100069, China; (Z.-J.Y.); (F.-F.W.); (R.-X.H.)
| | - Bo-Ya Wang
- Undergraduate Student of 2018 Eight Years Program of Clinical Medicine, Peking University Health Science Center, Beijing 100081, China;
| | - Tian-Tian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China;
| | - Fei-Fei Wang
- Clinical Medicine of “5 + 3” Program, Capital Medical University, Beijing 100069, China; (Z.-J.Y.); (F.-F.W.); (R.-X.H.)
| | - Yue-Xin Guo
- Oral Medicine of “5 + 3” Program, Capital Medical University, Beijing 100069, China;
| | - Rong-Xuan Hua
- Clinical Medicine of “5 + 3” Program, Capital Medical University, Beijing 100069, China; (Z.-J.Y.); (F.-F.W.); (R.-X.H.)
| | - Hong-Wei Shang
- Morphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (H.-W.S.); (X.L.)
| | - Xin Lu
- Morphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (H.-W.S.); (X.L.)
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China;
- Correspondence:
| |
Collapse
|
38
|
Influenza infection as a trigger for systemic lupus erythematosus flares resulting in hospitalization. Sci Rep 2021; 11:4630. [PMID: 33633288 PMCID: PMC7907068 DOI: 10.1038/s41598-021-84153-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
In patients with systemic lupus erythematosus (SLE), there are concerns that infections may increase the risk of flares. We evaluated the association between influenza infection and SLE flares resulting in hospitalization. SLE flares resulting in hospitalization and influenza cases were ascertained from the Korean national healthcare insurance database (2014-2018). We used a self-controlled case series design. We defined the risk interval as the first 7 days after the influenza index date and the control interval was defined as all other times during the observation period of each year. We estimated the incidence rates of SLE flares resulting in hospitalization during the risk interval and control interval and compared them using a Poisson regression model. We identified 1624 influenza infections among the 1455 patients with SLE. Among those, there were 98 flares in 79 patients with SLE. The incidence ratio (IR) for flares during the risk interval as compared with the control interval was 25.75 (95% confidence interval 17.63-37.59). This significantly increased the IRs for flares during the risk interval in both women (IR 27.65) and men (IR 15.30), all age groups (IR 17.00-37.84), with and without immunosuppressive agent (IR 24.29 and 28.45, respectively), and with and without prior respiratory diseases (IR 21.86 and 26.82, respectively). We found significant association between influenza infection and SLE flares resulting in hospitalization. Influenza infection has to be considered as a risk factor for flares in all SLE patients regardless of age, sex, medications, and comorbidities.
Collapse
|
39
|
Plasmacytoid Dendritic Cells Mediate Control of Ross River Virus Infection via a Type I Interferon-Dependent, MAVS-Independent Mechanism. J Virol 2021; 95:JVI.01538-20. [PMID: 33361425 DOI: 10.1128/jvi.01538-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/15/2020] [Indexed: 11/20/2022] Open
Abstract
Ross River virus (RRV) is a mosquito-borne alphavirus that causes epidemics of debilitating musculoskeletal disease. To define the innate immune mechanisms that mediate control of RRV infection, we studied a RRV strain encoding 6 nonsynonymous mutations in nsP1 (RRV-T48-nsP16M) that is attenuated in wild-type (WT) mice and Rag1 -/- mice, which are unable to mount adaptive immune responses, but not in mice that lack the capacity to respond to type I interferon (IFN) (Ifnar1 -/- mice). Utilizing this attenuated strain, our prior studies revealed that mitochondrial antiviral signaling (MAVS)-dependent production of type I IFN by Ly6Chi monocytes is critical for control of acute RRV infection. Here, we infected Mavs -/- mice with either WT RRV or RRV-T48-nsP16M to elucidate MAVS-independent protective mechanisms. Mavs -/- mice infected with WT RRV developed severe disease and succumbed to infection, whereas those infected with RRV-T48-nsP16M exhibited minimal disease signs. Mavs -/- mice infected with RRV-T48-nsP16M had higher levels of systemic type I IFN than Mavs -/- mice infected with WT virus, and treatment of Mavs -/- mice infected with the attenuated nsP1 mutant virus with an IFNAR1-blocking antibody resulted in a lethal infection. In vitro, type I IFN expression was induced in plasmacytoid dendritic cells (pDCs) cocultured with RRV-infected cells in a MAVS-independent manner, and depletion of pDCs in Mavs -/- mice resulted in increased viral burdens in joint and muscle tissues, suggesting that pDCs are a source of the protective IFN in Mavs -/- mice. These data suggest that pDC production of type I IFN through a MAVS-independent pathway contributes to control of RRV infection.IMPORTANCE Arthritogenic alphaviruses, including Ross River virus (RRV), are human pathogens that cause debilitating acute and chronic musculoskeletal disease and are a significant public health burden. Using an attenuated RRV with enhanced susceptibility to host innate immune responses has revealed key cellular and molecular mechanisms that can mediate control of attenuated RRV infection and that are evaded by more virulent RRV strains. In this study, we found that pDCs contribute to the protective type I interferon response during RRV infection through a mechanism that is independent of the mitochondrial antiviral signaling (MAVS) adaptor protein. These findings highlight a key innate immune mechanism that contributes to control of alphavirus infections.
Collapse
|
40
|
Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, Sautès-Fridman C, Ma Y, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2021; 1:1323-1343. [PMID: 23243596 PMCID: PMC3518505 DOI: 10.4161/onci.22009] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Solid tumors are constituted of a variety of cellular components, including bona fide malignant cells as well as endothelial, structural and immune cells. On one hand, the tumor stroma exerts major pro-tumorigenic and immunosuppressive functions, reflecting the capacity of cancer cells to shape the microenvironment to satisfy their own metabolic and immunological needs. On the other hand, there is a component of tumor-infiltrating leucocytes (TILs) that has been specifically recruited in the attempt to control tumor growth. Along with the recognition of the critical role played by the immune system in oncogenesis, tumor progression and response to therapy, increasing attention has been attracted by the potential prognostic and/or predictive role of the immune infiltrate in this setting. Data from large clinical studies demonstrate indeed that a robust infiltration of neoplastic lesions by specific immune cell populations, including (but not limited to) CD8+ cytotoxic T lymphocytes, Th1 and Th17 CD4+ T cells, natural killer cells, dendritic cells, and M1 macrophages constitutes an independent prognostic indicator in several types of cancer. Conversely, high levels of intratumoral CD4+CD25+FOXP3+ regulatory T cells, Th2 CD4+ T cells, myeloid-derived suppressor cells, M2 macrophages and neutrophils have frequently been associated with dismal prognosis. So far, only a few studies have addressed the true predictive potential of TILs in cancer patients, generally comforting the notion that—at least in some clinical settings—the immune infiltrate can reliably predict if a specific patient will respond to therapy or not. In this Trial Watch, we will summarize the results of clinical trials that have evaluated/are evaluating the prognostic and predictive value of the immune infiltrate in the context of solid malignancies.
Collapse
Affiliation(s)
- Laura Senovilla
- Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Orsay, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Alamri A, Fisk D, Upreti D, Kung SKP. A Missing Link: Engagements of Dendritic Cells in the Pathogenesis of SARS-CoV-2 Infections. Int J Mol Sci 2021; 22:1118. [PMID: 33498725 PMCID: PMC7865603 DOI: 10.3390/ijms22031118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DC) connect the innate and adaptive arms of the immune system and carry out numerous roles that are significant in the context of viral disease. Their functions include the control of inflammatory responses, the promotion of tolerance, cross-presentation, immune cell recruitment and the production of antiviral cytokines. Based primarily on the available literature that characterizes the behaviour of many DC subsets during Severe acute respiratory syndrome (SARS) and coronavirus disease 2019 (COVID-19), we speculated possible mechanisms through which DC could contribute to COVID-19 immune responses, such as dissemination of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to lymph nodes, mounting dysfunctional inteferon responses and T cell immunity in patients. We highlighted gaps of knowledge in our understanding of DC in COVID-19 pathogenesis and discussed current pre-clinical development of therapies for COVID-19.
Collapse
Affiliation(s)
- Abdulaziz Alamri
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E OT5, Canada; (A.A.); (D.F.)
| | - Derek Fisk
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E OT5, Canada; (A.A.); (D.F.)
| | - Deepak Upreti
- Surgery, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada;
| | - Sam K. P. Kung
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E OT5, Canada; (A.A.); (D.F.)
| |
Collapse
|
42
|
The Involvement of Innate and Adaptive Immunity in the Initiation and Perpetuation of Sjögren's Syndrome. Int J Mol Sci 2021; 22:ijms22020658. [PMID: 33440862 PMCID: PMC7826728 DOI: 10.3390/ijms22020658] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/01/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Sjogren’s syndrome (SS) is a chronic autoimmune disease characterized by the infiltration of exocrine glands including salivary and lachrymal glands responsible for the classical dry eyes and mouth symptoms (sicca syndrome). The spectrum of disease manifestations stretches beyond the classical sicca syndrome with systemic manifestations including arthritis, interstitial lung involvement, and neurological involvement. The pathophysiology underlying SS is not well deciphered, but several converging lines of evidence have supported the conjuncture of different factors interplaying together to foster the initiation and perpetuation of the disease. The innate and adaptive immune system play a cardinal role in this process. In this review, we discuss the inherent parts played by both the innate and adaptive immune system in the pathogenesis of SS.
Collapse
|
43
|
Hu ZQ, Zhou ZJ, Luo CB, Xin HY, Li J, Yu SY, Zhou SL. Peritumoral plasmacytoid dendritic cells predict a poor prognosis for intrahepatic cholangiocarcinoma after curative resection. Cancer Cell Int 2020; 20:582. [PMID: 33292317 PMCID: PMC7716503 DOI: 10.1186/s12935-020-01676-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Plasmacytoid dendritic cells (pDCs) are present in various primary and metastatic human neoplasms; however, their clinical significance in intrahepatic cholangiocarcinoma is not clear. METHODS To evaluate pDCs' distributions in and around tumors as well as their potential function and predictive value for prognosis in patients undergoing curative resection, we performed immunohistochemistry to examine the expression of pDC marker BDCA2, and CD3, CD4, CD8 and Foxp3 in intratumoral and peritumoral tissues from 359 patients with intrahepatic cholangiocarcinoma and compared with prognostic and clinicopathologic factors. RESULTS Results showed that patients with high numbers of BDCA2+ pDCs in peritumoral tissues were more likely to have elevated levels of carbohydrate antigen 19-9 and gamma-glutamyl transferase, larger and more tumors, advanced tumor-node-metastasis staging, more vascular/bile duct invasion, and lymphatic metastasis in association with greater chance of recurrence and shorter overall survival. Peritumoral tissues with larger numbers of pDCs also showed increased Foxp3+ regulatory T cell infiltration, both of which were found to be independent factors for predicting time to recurrence and overall survival. By contrast, patient outcomes were not associated with the presence of intratumoral pDCs. CONCLUSIONS Peritumoral pDC infiltration may indicate an immune tolerogenic peritumor microenvironment and can be used to predict a poor prognosis for patients undergoing curative resection for intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Zhi-Qiang Hu
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
| | - Zheng-Jun Zhou
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
| | - Chu-Bin Luo
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
| | - Hao-Yang Xin
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
| | - Jia Li
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
| | - Song-Yang Yu
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China
| | - Shao-Lai Zhou
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
44
|
Srivastava A, Makarenkova HP. Innate Immunity and Biological Therapies for the Treatment of Sjögren's Syndrome. Int J Mol Sci 2020; 21:E9172. [PMID: 33271951 PMCID: PMC7730146 DOI: 10.3390/ijms21239172] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Sjögren's syndrome (SS) is a systemic autoimmune disorder affecting approximately 3% of the population in the United States. This disease has a female predilection and affects exocrine glands, including lacrimal and salivary glands. Dry eyes and dry mouths are the most common symptoms due to the loss of salivary and lacrimal gland function. Symptoms become more severe in secondary SS, where SS is present along with other autoimmune diseases like systemic lupus erythematosus, systemic sclerosis, or rheumatoid arthritis. It is known that aberrant activation of immune cells plays an important role in disease progression, however, the mechanism for these pathological changes in the immune system remains largely unknown. This review highlights the role of different immune cells in disease development, therapeutic treatments, and future strategies that are available to target various immune cells to cure the disease.
Collapse
Affiliation(s)
| | - Helen P. Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA;
| |
Collapse
|
45
|
Eixarch H, Calvo-Barreiro L, Costa C, Reverter-Vives G, Castillo M, Gil V, Del Río JA, Montalban X, Espejo C. Inhibition of the BMP Signaling Pathway Ameliorated Established Clinical Symptoms of Experimental Autoimmune Encephalomyelitis. Neurotherapeutics 2020; 17:1988-2003. [PMID: 32681355 PMCID: PMC7851289 DOI: 10.1007/s13311-020-00885-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are secreted growth factors that belong to the transforming growth factor beta superfamily. BMPs have been implicated in physiological processes, but they are also involved in many pathological conditions. Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system (CNS); however, its etiology remains elusive. Some evidence points to BMPs as important players in the pathogenesis of inflammatory and autoimmune disorders. In the present work, we studied the expression of BMP2, BMP4, BMP5, BMP6, BMP7, BMP type II receptor, and noggin in the immune system during different phases of experimental autoimmune encephalomyelitis (EAE). Major changes in the expression of BMPs took place in the initial phases of EAE. Indeed, those changes mainly affected BMP6 (whose expression was abrogated), BMP2, and BMP7 (whose expression was increased). In addition, we showed that in vivo inhibition of the BMP signaling pathway with small molecules ameliorated the already established clinical symptoms of EAE, as well as the CNS histopathological features. At the immune level, we observed an expansion of plasmacytoid dendritic cells (pDCs) in mice treated with small molecules that inhibit the BMP signaling pathway. pDCs could play an important role in promoting the expansion of antigen-specific regulatory T cells. Altogether, our data suggest a role for BMPs in early immune events that take place in myelin oligodendrocyte glycoprotein (MOG)-induced EAE. In addition, the clinical outcome of the disease was improved when the BMP signaling pathway was inhibited in mice that presented established EAE symptoms.
Collapse
Affiliation(s)
- Herena Eixarch
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
| | - Laura Calvo-Barreiro
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
| | - Carme Costa
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
| | - Gemma Reverter-Vives
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
| | - Mireia Castillo
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
| | - Vanessa Gil
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
- Division of Neurology, St Michael's Hospital, University of Toronto, Toronto, Canada
| | - Carmen Espejo
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain.
| |
Collapse
|
46
|
Rodrigues PF, Tussiwand R. Novel concepts in plasmacytoid dendritic cell (pDC) development and differentiation. Mol Immunol 2020; 126:25-30. [PMID: 32739721 DOI: 10.1016/j.molimm.2020.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/29/2020] [Accepted: 07/02/2020] [Indexed: 01/08/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) are an immune subset specialized in the production of Type I Interferons (IFNs). They are characterized by co-expression of myeloid and lymphoid markers. Their developmental origin has been studied since their discovery and the identification of a myeloid progenitor capable of generating all dendritic cell (DC) subsets, including pDCs, led to their classification within the myeloid compartment. However, recent findings challenge this hypothesis and provide evidence for a lymphoid origin for the majority of pDCs 46-48. In this review we discuss and present the original myeloid and the newer lymphoid developmental trajectories of pDCs.
Collapse
Affiliation(s)
| | - Roxane Tussiwand
- Department of Biomedicine, University of Basel, 4058, Basel, Switzerland; Laboratory of Immune Regulation, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
47
|
Guo Y, Kasahara S, Jhingran A, Tosini NL, Zhai B, Aufiero MA, Mills KA, Gjonbalaj M, Espinosa V, Rivera A, Luster AD, Hohl TM. During Aspergillus Infection, Monocyte-Derived DCs, Neutrophils, and Plasmacytoid DCs Enhance Innate Immune Defense through CXCR3-Dependent Crosstalk. Cell Host Microbe 2020; 28:104-116.e4. [PMID: 32485165 PMCID: PMC7263227 DOI: 10.1016/j.chom.2020.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 01/19/2023]
Abstract
Aspergillus fumigatus, a ubiquitous mold, is a common cause of invasive aspergillosis (IA) in immunocompromised patients. Host defense against IA relies on lung-infiltrating neutrophils and monocyte-derived dendritic cells (Mo-DCs). Here, we demonstrate that plasmacytoid dendritic cells (pDCs), which are prototypically antiviral cells, participate in innate immune crosstalk underlying mucosal antifungal immunity. Aspergillus-infected murine Mo-DCs and neutrophils recruited pDCs to the lung by releasing the CXCR3 ligands, CXCL9 and CXCL10, in a Dectin-1 and Card9- and type I and III interferon signaling-dependent manner, respectively. During aspergillosis, circulating pDCs entered the lung in response to CXCR3-dependent signals. Via targeted pDC ablation, we found that pDCs were essential for host defense in the presence of normal neutrophil and Mo-DC numbers. Although interactions between pDC and fungal cells were not detected, pDCs regulated neutrophil NADPH oxidase activity and conidial killing. Thus, pDCs act as positive feedback amplifiers of neutrophil effector activity against inhaled mold conidia.
Collapse
Affiliation(s)
- Yahui Guo
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shinji Kasahara
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anupam Jhingran
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas L. Tosini
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bing Zhai
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mariano A. Aufiero
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kathleen A.M. Mills
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, New York, NY, USA
| | - Mergim Gjonbalaj
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vanessa Espinosa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences (RBHS), Newark, NJ, USA
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences (RBHS), Newark, NJ, USA,Department of Pediatrics, New Jersey Medical School, Rutgers Biomedical and Health Sciences (RBHS), Newark, NJ, USA
| | - Andrew D. Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias M. Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, New York, NY, USA,Corresponding author
| |
Collapse
|
48
|
Rizzo C, Grasso G, Destro Castaniti GM, Ciccia F, Guggino G. Primary Sjogren Syndrome: Focus on Innate Immune Cells and Inflammation. Vaccines (Basel) 2020; 8:vaccines8020272. [PMID: 32503132 PMCID: PMC7349953 DOI: 10.3390/vaccines8020272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Primary Sjogren Syndrome (pSS) is a complex, multifactorial rheumatic disease that mainly targets salivary and lacrimal glands, inducing epithelitis. The cause behind the autoimmunity outbreak in pSS is still elusive; however, it seems related to an aberrant reaction to exogenous triggers such as viruses, combined with individual genetic pre-disposition. For a long time, autoantibodies were considered as the hallmarks of this disease; however, more recently the complex interplay between innate and adaptive immunity as well as the consequent inflammatory process have emerged as the main mechanisms of pSS pathogenesis. The present review will focus on innate cells and on the principal mechanisms of inflammation connected. In the first part, an overview of innate cells involved in pSS pathogenesis is provided, stressing in particular the role of Innate Lymphoid Cells (ILCs). Subsequently we have highlighted the main inflammatory pathways, including intra- and extra-cellular players. A better knowledge of such processes could determine the detection of new therapeutic targets that are a major need for pSS.
Collapse
Affiliation(s)
- Chiara Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (C.R.); (G.G.); (G.M.D.C.)
| | - Giulia Grasso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (C.R.); (G.G.); (G.M.D.C.)
| | - Giulia Maria Destro Castaniti
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (C.R.); (G.G.); (G.M.D.C.)
| | - Francesco Ciccia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy;
| | - Giuliana Guggino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (C.R.); (G.G.); (G.M.D.C.)
- Correspondence: ; Tel.: +39-091-6552260
| |
Collapse
|
49
|
Liu CH, Chou CT, Chen CH, Chen CH, Yang SY, Ko YA, Wu YT, Wang CC, Liu FC, Yue CT, Hung SC, Tzeng IS, Tsai WC, Lin KI. Aberrant distribution and function of plasmacytoid dendritic cells in patients with ankylosing spondylitis are associated with unfolded protein response. Kaohsiung J Med Sci 2020; 36:441-449. [PMID: 31961055 DOI: 10.1002/kjm2.12184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/31/2019] [Indexed: 01/02/2023] Open
Abstract
Although human leucocyte antigen (HLA)-B27 is strongly associated with ankylosing spondylitis (AS), the association of unfolded protein response (UPR) induced by HLA-B27 misfolding in AS remains controversial. Since dendritic cells (DCs) are crucial in induction of AS in HLA-B27-transgenic rats, and plasmacytoid DCs (pDCs) belong to one type of DCs, we here aim to study the relevance of pDCs and UPR in AS. Peripheral pDCs were isolated from 27 HLA-B27(+) AS patients and 37 controls. The bone marrow (BM) and synovium of inflamed hips from AS patients and controls were obtained. We found a significantly higher frequency of pDCs in the peripheral blood, BM, or inflamed synovium of hips, which is associated with the enhanced expression of pDC trafficking molecules, CCR6 and CCL20 in the synovium of AS patients. Functional analysis further revealed that several inflammatory cytokines, including TNFα, IL-6, and IL-23, secreted by pDCs were significantly increased in AS patients as compared with those in controls. Remarkably, protein kinase RNA-like endoplasmic reticulum kinase (PERK) pathway in UPR was up-regulated in pDCs of AS patients. Notably, PERK inhibitor treatment significantly inhibited the enhanced cytokine production by pDCs of AS patients. Further, the extent of PERK activation was significantly associated with the increased disease severity of AS patients. Our data uncover the aberrant distribution and function of pDCs in AS patients. The up-regulated PERK pathway in UPR of pDCs not only contributes to enhanced cytokine production of pDCs, but also is associated with increased disease activity of AS patients.
Collapse
Affiliation(s)
- Chin-Hsiu Liu
- Division of Allergy, Immunology and Rheumatology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- PhD Program in Translational Medicine, Kaohsiung Medical University and Academia Sinica, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chung-Tei Chou
- Division of Allergy Immunology and Rheumatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chen-Hung Chen
- Division of Allergy, Immunology and Rheumatology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chun-Hsiung Chen
- Division of Allergy, Immunology and Rheumatology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shii-Yi Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-An Ko
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Ting Wu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Chien Wang
- Department of Orthopedics, Tri-Service General Hospital, Taipei, Taiwan
| | - Feng-Cheng Liu
- Division of Allergy Immunology and Rheumatology, Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Chung-Tai Yue
- Department of Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Shih-Chieh Hung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Integrative Stem Cell Center, Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan
- Institute of New Drug Development, New Drug Development Center, China Medical University, Taichung, Taiwan
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Wen-Chan Tsai
- Division of Allergy, Immunology, and Rheumatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
50
|
Hua X, Hu G, Hu Q, Chang Y, Hu Y, Gao L, Chen X, Yang PC, Zhang Y, Li M, Song J. Single-Cell RNA Sequencing to Dissect the Immunological Network of Autoimmune Myocarditis. Circulation 2020; 142:384-400. [PMID: 32431172 DOI: 10.1161/circulationaha.119.043545] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Myocarditis can develop into dilated cardiomyopathy, which may require heart transplantation. The immunological network of myocarditis phases remains unknown. This study aimed to investigate the immunological network during the transition from myocarditis to cardiomyopathy and to identify the genes contributing to the inflammatory response to myocarditis. METHODS Mice were treated with myosin heavy chain-α peptides to generate an experimental autoimmune myocarditis (EAM) model. We performed single-cell RNA sequencing analysis of Cd45+ cells extracted from mouse hearts during different EAM phases, including normal control, acute inflammatory, subacute inflammatory, and myopathy phases. Human heart tissues were collected from the surgically removed hearts of patients who had undergone heart transplantation. RESULTS We identified 26 cell subtypes among 34 665 cells. Macrophages constituted the main immune cell population at all disease phases (>60%), and an inflammation-associated macrophage cluster was identified in which the expression of Hif1a-regulated genes was upregulated. The neutrophil population was increased after the induction of EAM, and neutrophils then released Il-1 to participate in the EAM process. T cells were observed at the highest percentage at the subacute inflammatory phase. T-helper 17 cells, in which the expression of Hif1a-regulated genes was upregulated, constituted the main T-cell population detected at the acute inflammatory phase, whereas regulatory T cells were the main T-cell population detected at the subacute inflammatory phase, and γδ T cells releasing Il-17 were the main T-cell population observed at the myopathy phase. Moreover, the Hif1a expression level correlated with the extent of inflammation. In addition, PX-478 could alleviate the inflammatory responses of the different EAM phases. Last, HIF1A was expressed at higher levels in patients with acute autoimmune myocarditis than in patients with dilated cardiomyopathy and healthy control subjects. CONCLUSIONS We present here a comprehensive single-cell landscape of the cardiac immune cells in different EAM phases. In addition, we elucidate the contribution of Hif1a to the inflammatory response through the regulation of immune cell activity, particularly of macrophage cluster 2 and T-helper 17 cells. Moreover, an Hif1a inhibitor alleviated inflammatory cell infiltration of the EAM model and may serve as a potential therapeutic target in the clinic.
Collapse
Affiliation(s)
- Xiumeng Hua
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.H., Y.C., Y.H., X.C., J.S.)
| | - Gang Hu
- School of Statistics and Data Science, Key Laboratory for Medical Data Analysis and Statistical Research of Tianjin, Nankai University, China (G.H.)
| | - Qingtao Hu
- National Institute of Biological Sciences, Beijing, China (Q.H., Y.H., L.G., Y.Z.)
| | - Yuan Chang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.H., Y.C., Y.H., X.C., J.S.).,Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (Y.C.)
| | - Yiqing Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.H., Y.C., Y.H., X.C., J.S.).,National Institute of Biological Sciences, Beijing, China (Q.H., Y.H., L.G., Y.Z.)
| | - Linlin Gao
- National Institute of Biological Sciences, Beijing, China (Q.H., Y.H., L.G., Y.Z.)
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.H., Y.C., Y.H., X.C., J.S.)
| | - Ping-Chang Yang
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Guangzhou, China (P.-C.Y.)
| | - Yu Zhang
- National Institute of Biological Sciences, Beijing, China (Q.H., Y.H., L.G., Y.Z.).,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China (Y.Z.)
| | - Mingyao Li
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (M.L.)
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.H., Y.C., Y.H., X.C., J.S.)
| |
Collapse
|