1
|
Mostafa M, Disouky A, Lazarov O. Therapeutic modulation of neurogenesis to improve hippocampal plasticity and cognition in aging and Alzheimer's disease. Neurotherapeutics 2025; 22:e00580. [PMID: 40180804 DOI: 10.1016/j.neurot.2025.e00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
Alzheimer's disease is characterized by progressive memory loss and cognitive decline. The hippocampal formation is the most vulnerable brain area in Alzheimer's disease. Neurons in layer II of the entorhinal cortex and the CA1 region of the hippocampus are lost at early stages of the disease. A unique feature of the hippocampus is the formation of new neurons that incorporate in the dentate gyrus of the hippocampus. New neurons form synapses with neurons in layer II of the entorhinal cortex and with the CA3 region. Immature and new neurons are characterized by high level of plasticity. They play important roles in learning and memory. Hippocampal neurogenesis is impaired early in mouse models of Alzheimer's disease and in human patients. In fact, neurogenesis is compromised in mild cognitive impairment (MCI), suggesting that rescuing neurogenesis may restore hippocampal plasticity and attenuate neuronal vulnerability and memory loss. This review will discuss the current understanding of therapies that target neurogenesis or modulate it, for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Mostafa Mostafa
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ahmed Disouky
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
2
|
López-Hidalgo R, Ballestín R, Lorenzo L, Sánchez-Martí S, Blasco-Ibáñez JM, Crespo C, Nacher J, Varea E. Early chronic fasudil treatment rescues hippocampal alterations in the Ts65Dn model for down syndrome. Neurochem Int 2024; 174:105679. [PMID: 38309665 DOI: 10.1016/j.neuint.2024.105679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Down syndrome (DS) is the most common genetic disorder associated with intellectual disability. To study this syndrome, several mouse models have been developed. Among the most common is the Ts65Dn model, which mimics most of the alterations observed in DS. Ts65Dn mice, as humans with DS, show defects in the structure, density, and distribution of dendritic spines in the cerebral cortex and hippocampus. Fasudil is a potent inhibitor of the RhoA kinase pathway, which is involved in the formation and stabilization of dendritic spines. Our study analysed the effect of early chronic fasudil treatment on the alterations observed in the hippocampus of the Ts65Dn model. We observed that treating Ts65Dn mice with fasudil induced an increase in neural plasticity in the hippocampus: there was an increment in the expression of PSA-NCAM and BDNF, in the dendritic branching and spine density of granule neurons, as well as in cell proliferation and neurogenesis in the subgranular zone. Finally, the treatment reduced the unbalance between excitation and inhibition present in this model. Overall, early chronic treatment with fasudil increases cell plasticity and eliminates differences with euploid animals.
Collapse
Affiliation(s)
- Rosa López-Hidalgo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Raúl Ballestín
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Lorena Lorenzo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Sandra Sánchez-Martí
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - José Miguel Blasco-Ibáñez
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Carlos Crespo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain; CIBERSAM, Spanish National Network for Research in Mental Health, Madrid, Spain; Institute of research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain
| | - Emilio Varea
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain.
| |
Collapse
|
3
|
de Leeuw M, Verhoeve SI, van der Wee NJA, van Hemert AM, Vreugdenhil E, Coomans CP. The role of the circadian system in the etiology of depression. Neurosci Biobehav Rev 2023; 153:105383. [PMID: 37678570 DOI: 10.1016/j.neubiorev.2023.105383] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/19/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Circadian rhythms have evolved in almost all organisms enabling them to anticipate alternating changes in the environment. As a consequence, the circadian clock controls a broad range of bodily functions including appetite, sleep, activity and cortisol levels. The circadian clock synchronizes itself to the external world mainly by environmental light cues and can be disturbed by a variety of factors, including shift-work, jet-lag, stress, ageing and artificial light at night. Interestingly, mood has also been shown to follow a diurnal rhythm. Moreover, circadian disruption has been associated with various mood disorders and patients suffering from depression have irregular biological rhythms in sleep, appetite, activity and cortisol levels suggesting that circadian rhythmicity is crucially involved in the etiology and pathophysiology of depression. The aim of the present review is to give an overview and discuss recent findings in both humans and rodents linking a disturbed circadian rhythm to depression. Understanding the relation between a disturbed circadian rhythm and the etiology of depression may lead to novel therapeutic and preventative strategies.
Collapse
Affiliation(s)
- Max de Leeuw
- Department of Psychiatry, Leiden University Medical Center, Postal Zone B1-P, P.O. Box 9600, Leiden 2300 RC, the Netherlands; Mental Health Care Rivierduinen, Bipolar Disorder Outpatient Clinic, PO Box 405, Leiden 2300 AK, the Netherlands.
| | - Sanne I Verhoeve
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, Leiden 2300 RC, the Netherlands
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Postal Zone B1-P, P.O. Box 9600, Leiden 2300 RC, the Netherlands
| | - Albert M van Hemert
- Department of Psychiatry, Leiden University Medical Center, Postal Zone B1-P, P.O. Box 9600, Leiden 2300 RC, the Netherlands
| | - Erno Vreugdenhil
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, Leiden 2300 RC, the Netherlands
| | - Claudia P Coomans
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, Leiden 2300 RC, the Netherlands
| |
Collapse
|
4
|
Biojone C, C Casarotto P, Cannarozzo C, Fred SM, Herrera-Rodríguez R, Lesnikova A, Voipio M, Castrén E. nNOS-induced tyrosine nitration of TRKB impairs BDNF signaling and restrains neuronal plasticity. Prog Neurobiol 2023; 222:102413. [PMID: 36682419 DOI: 10.1016/j.pneurobio.2023.102413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/01/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Nitric oxide (NO) has been long recognized as an important modulator of neural plasticity, but characterization of the molecular mechanisms involved - specially the guanylyl cyclase-independent ones - has been challenging. There is evidence that NO could modify BDNF-TRKB signaling, a key mediator of neuronal plasticity. However, the mechanism underlying the interplay of NO and TRKB remains unclear. Here we show that NO induces nitration of the tyrosine 816 in the TRKB receptor in vivo and in vitro, and that post-translational modification inhibits TRKB phosphorylation and binding of phospholipase Cγ1 (PLCγ1) to this same tyrosine residue. Additionally, nitration triggers clathrin-dependent endocytosis of TRKB through the adaptor protein AP-2 and ubiquitination, thereby increasing translocation of TRKB away from the neuronal surface and directing it towards lysosomal degradation. Accordingly, inhibition of nitric oxide increases TRKB phosphorylation and TRKB-dependent neurite branching in neuronal cultures. In vivo, chronic inhibition of neuronal nitric oxide synthase (nNOS) dramatically reduced TRKB nitration and facilitated TRKB signaling in the visual cortex, and promoted a shift in ocular dominance upon monocular deprivation - an indicator of increased plasticity. Altogether, our data describe and characterize a new molecular brake on plasticity, namely nitration of TRKB receptors.
Collapse
Affiliation(s)
- Caroline Biojone
- Neuroscience Center, HiLife, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; Aarhus University, Department of Biomedicine, Faculty of Health, and Translational Neuropsychiatry Unit, Department of Clinical Medicine.
| | - Plinio C Casarotto
- Neuroscience Center, HiLife, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Cecilia Cannarozzo
- Neuroscience Center, HiLife, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Senem Merve Fred
- Neuroscience Center, HiLife, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | | | - Angelina Lesnikova
- Neuroscience Center, HiLife, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Mikko Voipio
- Neuroscience Center, HiLife, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Eero Castrén
- Neuroscience Center, HiLife, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.
| |
Collapse
|
5
|
Sánchez-Huerta K, Saldaña-Salinas RD, Bustamante-Nieves PE, Jiménez A, Corzo-Cruz A, Martínez-Vargas M, Guevara-Guzmán R, Velasco I, Estudillo E. Sucrose Consumption during Late Adolescence Impairs Adult Neurogenesis of the Ventral Dentate Gyrus without Inducing an Anxiety-like Behavior. Int J Mol Sci 2022; 23:ijms232214176. [PMID: 36430654 PMCID: PMC9695980 DOI: 10.3390/ijms232214176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Sucrose consumption impairs behavioral and cognitive functions that correlate with decreased neurogenesis in animal models. When consumed during early adolescence, this disaccharide promotes anxious and depressive behaviors, along with a reduction in the generation of new neurons in the dentate gyrus of the hippocampus. Data concerning sucrose consumption during late adolescence are lacking, and the effect of sucrose intake on the ventral dentate gyrus of the hippocampus (which modulates anxiety and depression) remains elusive. Here, we tested whether sucrose intake during late adolescence causes anxiety or impaired neurogenesis in the ventral dentate gyrus. Rats did not display anxiety-like behaviors neither at the light−dark box test nor at the open field exploration. However, there was a significant increase in proliferative cells in the subgranular zone of the ventral dentate gyrus in rats exposed to sucrose (p < 0.05). This increased proliferation corresponded to neural stem cells (Radial Type 1 cells) in the group exposed to sucrose until adulthood but was not present in rats exposed to sucrose only during late adolescence. Remarkably, the phosphorylation of ERK1/2 kinases was increased in the hippocampi of rats exposed to sucrose only during late adolescence, suggesting that the increased proliferation in this group could be mediated by the MAPK pathway. On the other hand, although no differences were found in the number of immature granular neurons, we observed more immature granular neurons with impaired dendritic orientation in both groups exposed to sucrose. Finally, GAD65/67 and BCL2 levels did not change between groups, suggesting an unaltered hippocampal GABAergic system and similar apoptosis, respectively. This information provides the first piece of evidence of how sucrose intake, starting in late adolescence, impacts ventral dentate gyrus neurogenesis and contributes to a better understanding of the effects of this carbohydrate on the brain at postnatal stages.
Collapse
Affiliation(s)
- Karla Sánchez-Huerta
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Insurgentes Sur 3700, Letra C, Coyoacán, Ciudad de México 04530, Mexico
- Correspondence: (K.S.-H.); (E.E.); Tel.: +52-5510840900 (ext. 1441) (K.S.-H.); +52-5556063822 (ext. 2120) (E.E.)
| | - Rosaura Debbie Saldaña-Salinas
- Laboratorio de Fisiología, Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya 202, Lomas de Sotelo, Miguel Hidalgo, Ciudad de México 11200, Mexico
| | - Pablo Edson Bustamante-Nieves
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, Tlalpan, Ciudad de México 14269, Mexico
| | - Adriana Jiménez
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
| | - Alejandro Corzo-Cruz
- Laboratorio de Fisiología, Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya 202, Lomas de Sotelo, Miguel Hidalgo, Ciudad de México 11200, Mexico
- Laboratorio Traslacional, Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya 202, Lomas de Sotelo, Miguel Hidalgo, Ciudad de México 11200, Mexico
| | - Marina Martínez-Vargas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Iván Velasco
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, Tlalpan, Ciudad de México 14269, Mexico
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, Tlalpan, Ciudad de México 14269, Mexico
- Correspondence: (K.S.-H.); (E.E.); Tel.: +52-5510840900 (ext. 1441) (K.S.-H.); +52-5556063822 (ext. 2120) (E.E.)
| |
Collapse
|
6
|
Noorjahan N, Cattini PA. Neurogenesis in the Maternal Rodent Brain: Impacts of Gestation-Related Hormonal Regulation, Stress, and Obesity. Neuroendocrinology 2022; 112:702-722. [PMID: 34510034 DOI: 10.1159/000519415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
In order to maintain maternal behavior, it is important that the maternal rodent brain promotes neurogenesis. Maternal neurogenesis is altered by the dynamic shifts in reproductive hormone levels during pregnancy. Thus, lifestyle events such as gestational stress and obesity that can affect hormone production will affect neuroendocrine control of maternal neurogenesis. However, there is a lack of information about the regulation of maternal neurogenesis by placental hormones, which are key components of the reproductive hormonal profile during pregnancy. There is also little known about how maternal neurogenesis can be affected by health concerns such as gestational stress and obesity, and its relationship to peripartum mental health disorders. This review summarizes the changing levels of neurogenesis in mice and rats during gestation and postpartum as well as regulation of neurogenesis by pregnancy-related hormones. The influence of neurogenesis on maternal behavior is also discussed while bringing attention to the effect of health-related concerns during gestation, such as stress and obesity on neuroendocrine control of maternal neurogenesis. In doing so, this review identifies the gaps in the literature and specifically emphasizes the importance of further research on maternal brain physiology to address them.
Collapse
Affiliation(s)
- Noshin Noorjahan
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter A Cattini
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
7
|
Navarrete-Yañez V, Garate-Carrillo A, Ayala M, Rodriguez-Castañeda A, Mendoza-Lorenzo P, Ceballos G, Ordoñez-Razo R, Dugar S, Schreiner G, Villarreal F, Ramirez-Sanchez I. Stimulatory effects of (-)-epicatechin and its enantiomer (+)-epicatechin on mouse frontal cortex neurogenesis markers and short-term memory: proof of concept. Food Funct 2021; 12:3504-3515. [PMID: 33900336 DOI: 10.1039/d0fo03084h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Consumption of (-)-epicatechin (Epi), a cacao flavanol improves cognition. The aim was to compare the effects of (-)-Epi or its stereoisomer (+)-Epi on mouse frontal cortex-dependent short-term working memory and modulators of neurogenesis. Three-month-old male mice (n = 7 per group) were provided by gavage either water (vehicle; Veh), (-)-Epi, at 1 mg kg-1 or (+)-Epi at 0.1 mg per kg of body weight for 15 days. After treatment, spontaneous alternation was evaluated by Y-maze. Brain frontal cortex was isolated for nitrate/nitrite measurements, Western blotting for nerve growth factor (NGF), microtubule associated protein 2 (MAP2), endothelial and neuronal nitric oxide synthase (eNOS and nNOS) and immunohistochemistry for neuronal specific protein (NeuN), doublecortin (DCX), capillary (CD31) and neurofilaments (NF200). Results demonstrate the stimulatory capacity of (-)-Epi and (+)-Epi on markers of neuronal proliferation as per increases in immunoreactive cells for NeuN (74 and 120% respectively), DCX (70 and 124%) as well as in NGF (34.4, 63.6%) and MAP2 (41.8, 63.8%). Capillary density yielded significant increases with (-)-Epi (∼80%) vs. (+)-Epi (∼160%). CD31 protein levels increased with (-)-Epi (∼70%) and (+)-Epi (∼140%). Effects correlated with nitrate/nitrite stimulation by (-)-Epi and (+)-Epi (110.2, 246.5%) and enhanced eNOS phosphorylation (Ser1177) with (-)-Epi and (+)-Epi (21.4, 41.2%) while nNOS phosphorylation only increased with (+)-Epi (18%). Neurofilament staining was increased in (-)-Epi by 135.6 and 84% with (+)-Epi. NF200 increased with (-)-Epi (116%) vs. (+)-Epi (84.5%). Frontal cortex-dependent short-term spatial working improved with (-)-Epi and (+)-Epi (15, 13%). In conclusion, results suggest that both enantiomers, but more effectively (+)-Epi, upregulate neurogenesis markers likely through stimulation of capillary formation and NO triggering, improvements in memory.
Collapse
Affiliation(s)
- Viridiana Navarrete-Yañez
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico D.F., Mexico.
| | - Alejandra Garate-Carrillo
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico D.F., Mexico. and School of Medicine, University of California, San Diego, California, USA
| | - Marcos Ayala
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico D.F., Mexico.
| | - Antonio Rodriguez-Castañeda
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico D.F., Mexico.
| | - Patricia Mendoza-Lorenzo
- Division Academica de Ciencias Basicas, Unidad Chontalpa, Universidad Juarez, Autonoma de Tabasco, Tabasco, Mexico
| | - Guillermo Ceballos
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico D.F., Mexico.
| | - Rosa Ordoñez-Razo
- Unidad de Investigación en Genética Humana, Hospital de Pediatría, Centro Médico SXXI, Instituto Mexicano del Seguro Social, Mexico D.F., Mexico
| | | | | | - Francisco Villarreal
- School of Medicine, University of California, San Diego, California, USA and VA San Diego Health Care System, San Diego, California, USA
| | - Israel Ramirez-Sanchez
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico D.F., Mexico.
| |
Collapse
|
8
|
Ruby CL, Major RJ, Hinrichsen RD. Regulation of tissue regeneration by the circadian clock. Eur J Neurosci 2021; 53:3576-3597. [PMID: 33893679 DOI: 10.1111/ejn.15244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022]
Abstract
Circadian rhythms are regulated by a highly conserved transcriptional/translational feedback loop that maintains approximately 24-hr periodicity from cellular to organismal levels. Much research effort is being devoted to understanding how the outputs of the master clock affect peripheral oscillators, and in turn, numerous biological processes. Recent studies have revealed roles for circadian timing in the regulation of numerous cellular behaviours in support of complex tissue regeneration. One such role involves the interaction between the circadian clockwork and the cell cycle. The molecular mechanisms that control the cell cycle create a system of regulation that allows for high fidelity DNA synthesis, mitosis and apoptosis. In recent years, it has become clear that clock gene products are required for proper DNA synthesis and cell cycle progression, and conversely, elements of the cell cycle cascade feedback to influence molecular circadian timing mechanisms. It is through this crosstalk that the circadian system orchestrates stem cell proliferation, niche exit and control of the signalling pathways that govern differentiation and self-renewal. In this review, we discuss the evidence for circadian control of tissue homeostasis and repair and suggest new avenues for research.
Collapse
Affiliation(s)
- Christina L Ruby
- Department of Biology, Indiana University of Pennsylvania, Indiana, PA, USA
| | - Robert J Major
- Department of Biology, Indiana University of Pennsylvania, Indiana, PA, USA
| | | |
Collapse
|
9
|
Ahmed MA, Kamel EO. Involvement of H 2 S, NO and BDNF-TrkB signalling pathway in the protective effects of simvastatin against pentylenetetrazole-induced kindling and cognitive impairments in mice. Basic Clin Pharmacol Toxicol 2020; 127:461-476. [PMID: 32562563 DOI: 10.1111/bcpt.13457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022]
Abstract
Cognitive dysfunction was observed in pentylenetetrazole (PTZ)-kindled mice. The potential effectiveness of simvastatin (SIM) on PTZ-induced kindling and cognitive impairments in mice was evaluated. The influence of SIM on hydrogen sulphide (H2 S), nitric oxide (NO), reactive aldehydes and brain-derived neurotrophic factor/tyrosine receptor kinase B (BDNF-TrkB) signalling was also investigated. Kindling and cognitive impairments in mice were induced by 12 ip injections of PTZ (35 mg/kg) once every alternate day. The levels of reactive aldehydes and nitrite were increased while H2 S was decreased in PTZ-treated mice. These results were accompanied by a reduction in the gene expression of aldehyde dehydrogenase 2, cystathionine β-synthase, BDNF and TrkB. In PTZ-kindled mice, a rise in brain inducible nitric oxide synthase protein expression associated with histopathological changes was observed. SIM administration (1, 5 and 10 mg/kg, daily orally) along with alternate day of PTZ (35 mg/kg) resulted in a decrease in PTZ-induced kindling with a dose-dependent improvement in cognitive function. SIM (10 mg/kg) prevented, to variable extent, the disturbances associated with PTZ-kindled mice with cortical, cerebellar and hippocampal structural improvement. These results suggested that SIM triggers multiple mechanisms that improve cognitive function in PTZ-kindled mice through modulation of oxidative stress, H2 S, NO and BDNF-TrkB signalling pathway.
Collapse
Affiliation(s)
- Marwa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Esam O Kamel
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Al-Azhar University, Assiut Branch, Assiut, Egypt
| |
Collapse
|
10
|
Dar NJ, Glazner GW. Deciphering the neuroprotective and neurogenic potential of soluble amyloid precursor protein alpha (sAPPα). Cell Mol Life Sci 2020; 77:2315-2330. [PMID: 31960113 PMCID: PMC11105086 DOI: 10.1007/s00018-019-03404-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022]
Abstract
Amyloid precursor protein (APP) is a transmembrane protein expressed largely within the central nervous system. Upon cleavage, it does not produce the toxic amyloid peptide (Aβ) only, which is involved in neurodegenerative progressions but via a non-amyloidogenic pathway it is metabolized to produce a soluble fragment (sAPPα) through α-secretase. While a lot of studies are focusing on the role played by APP in the pathogenesis of Alzheimer's disease, sAPPα is reported to have numerous neuroprotective effects and it is being suggested as a candidate with possible therapeutic potential against Alzheimer's disease. However, the mechanisms through which sAPPα precisely works remain elusive. We have presented a comprehensive review of how sAPPα is regulating the neuroprotective effects in different biological models. Moreover, we have focused on the role of sAPPα during different developmental stages of the brain, neurogenic microenvironment in the brain and how this metabolite of APP is regulating the neurogenesis which is regarded as a compelling approach to ameliorate the impaired learning and memory deficits in dementia and diseases like Alzheimer's disease. sAPPα exerts beneficial physiological, biochemical and behavioral effects mitigating the detrimental effects of neurotoxic compounds. It has shown to increase the proliferation rate of numerous cell types and promised the synaptogenesis, neurite outgrowth, cell survival and cell adhesion. Taken together, we believe that further studies are warranted to investigate the exact mechanism of action so that sAPPα could be developed as a novel therapeutic target against neuronal deficits.
Collapse
Affiliation(s)
- Nawab John Dar
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
- St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, R2H 2A6, Canada
| | - Gordon W Glazner
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
- St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
11
|
Leal-Galicia P, Romo-Parra H, Rodríguez-Serrano LM, Buenrostro-Jáuregui M. Regulation of adult hippocampal neurogenesis exerted by sexual, cognitive and physical activity: An update. J Chem Neuroanat 2019; 101:101667. [PMID: 31421204 DOI: 10.1016/j.jchemneu.2019.101667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/29/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022]
Abstract
In 1962, Joseph Altman described that the brain generates neurons after the postnatal period, and this continues throughout your life (Altman, 1962). This was a breakthrough in the neuroscience field because before this the accepted paradigm was that the brain only generated neurons during the embryonal development. This discovery has been controversial ever since, especially since one of the areas of the brain with neurogenic properties is the hippocampus, which is the area involved in memory storage and neurodegenerative processes. The adult hippocampal neurogenesis modulates in response to different environmental factors. In this article, we review how exercise and cognitive and sexual activity can regulate the generation of new neurons in the hippocampal in an adult brain and the impact of these new neurons in the brain circuitry.
Collapse
Affiliation(s)
- P Leal-Galicia
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, México.
| | - H Romo-Parra
- Facultad de Psicología, Universidad Anáhuac, Mexico City, Mexico
| | - L M Rodríguez-Serrano
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, México
| | - M Buenrostro-Jáuregui
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, México.
| |
Collapse
|
12
|
Nitric oxide signalling and antidepressant action revisited. Cell Tissue Res 2019; 377:45-58. [PMID: 30649612 DOI: 10.1007/s00441-018-02987-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
Abstract
Studies about the pathogenesis of mood disorders have consistently shown that multiple factors, including genetic and environmental, play a crucial role on their development and neurobiology. Multiple pathological theories have been proposed, of which several ultimately affects or is a consequence of dysfunction in brain neuroplasticity and homeostatic mechanisms. However, current clinical available pharmacological intervention, which is predominantly monoamine-based, suffers from a partial and lacking response even after weeks of continuous treatment. These issues raise the need for better understanding of aetiologies and brain abnormalities in depression, as well as developing novel treatment strategies. Nitric oxide (NO) is a gaseous unconventional neurotransmitter, which regulates and governs several important physiological functions in the central nervous system, including processes, which can be associated with the development of mood disorders. This review will present general aspects of the NO system in depression, highlighting potential targets that may be utilized and further explored as novel therapeutic targets in the future pharmacotherapy of depression. In particular, the review will link the importance of neuroplasticity mechanisms governed by NO to a possible molecular basis for the antidepressant effects.
Collapse
|
13
|
Lan Y, Huang Z, Jiang Y, Zhou X, Zhang J, Zhang D, Wang B, Hou G. Strength exercise weakens aerobic exercise-induced cognitive improvements in rats. PLoS One 2018; 13:e0205562. [PMID: 30304037 PMCID: PMC6179267 DOI: 10.1371/journal.pone.0205562] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 09/27/2018] [Indexed: 11/21/2022] Open
Abstract
Aerobic exercise improves cognitive function and adult hippocampal neurogenesis. However, the effects of aerobic exercise combined with strength exercise on cognitive function and adult hippocampal neurogenesis are still unknown. In this study, we established exercise paradigms in rats to mimic aerobic exercise combined with low- and high-intensity strength exercise. We found that aerobic exercise improved spatial learning and memory as well as adult hippocampal neurogenesis, whereas strength exercise suppressed aerobic exercise-induced cognitive improvements and adult hippocampal neurogenesis in an intensity-dependent manner. Furthermore, the levels of β-hydroxybutyrate (β-HB) and its downstream effector brain-derived neurotrophic factor (BDNF) were increased in the aerobic exercise group, and strength exercise impaired the aerobic exercise-induced increases in β-HB and BDNF mRNA levels. Taken together, these results demonstrated that strength exercise weakened aerobic exercise-induced cognitive improvements and adult hippocampal neurogenesis in rats.
Collapse
Affiliation(s)
- Yongsheng Lan
- College of Physical Education, Changchun Normal University, Changchun, Jilin, China
| | - Zhaoyuan Huang
- College of Physical Education, Changchun Normal University, Changchun, Jilin, China
| | - Yanjie Jiang
- College of Physical Education, Changchun Normal University, Changchun, Jilin, China
| | - Xuehua Zhou
- College of Physical Education, Changchun Normal University, Changchun, Jilin, China
| | - Jingyu Zhang
- College of Physical Education, Changchun Normal University, Changchun, Jilin, China
| | - Dianyu Zhang
- College of Physical Education, Changchun Normal University, Changchun, Jilin, China
| | - Bo Wang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guangqing Hou
- College of Physical Education, Changchun Normal University, Changchun, Jilin, China
| |
Collapse
|
14
|
Repeated treatment with nitric oxide synthase inhibitor attenuates learned helplessness development in rats and increases hippocampal BDNF expression. Acta Neuropsychiatr 2018; 30:127-136. [PMID: 29151391 DOI: 10.1017/neu.2017.28] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Nitric oxide synthase (NOS) inhibitors induce antidepressant-like effects in animal models sensitive to acute drug treatment such as the forced swimming test. However, it is not yet clear if repeated treatment with these drugs is required to induce antidepressant-like effects in preclinical models. OBJECTIVE The aim of this study was to test the effect induced by acute or repeated (7 days) treatment with 7-nitroindazole (7-NI), a preferential inhibitor of neuronal NOS, in rats submitted to the learned helplessness (LH) model. In addition, we aimed at investigating if 7-NI treatment would increase brain-derived neurotrophic factor (BDNF) protein levels in the hippocampus, similarly to the effect of prototype antidepressants. METHODS Animals were submitted to a pre-test (PT) session with inescapable footshocks or habituation (no shocks) to the experimental shuttle box. Six days later they were exposed to a test with escapable footshocks. Independent groups received acute (a single injection after PT or before test) or repeated (once a day for 7 days) treatment with vehicle or 7-NI (30 mg/kg). RESULTS Repeated, but not acute, treatment with 7-NI attenuated LH development. The effect was similar to repeated imipramine treatment. Moreover, in an independent experimental group, only repeated treatment with 7-NI and imipramine increased BDNF protein levels in the hippocampus. CONCLUSION The results suggest the nitrergic system could be a target for the treatment of depressive-like conditions. They also indicate that, similar to the positive control imipramine, the antidepressant-like effects of NOS inhibition could involve an increase in hippocampal BDNF levels.
Collapse
|
15
|
Shohayeb B, Diab M, Ahmed M, Ng DCH. Factors that influence adult neurogenesis as potential therapy. Transl Neurodegener 2018; 7:4. [PMID: 29484176 PMCID: PMC5822640 DOI: 10.1186/s40035-018-0109-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/16/2018] [Indexed: 12/21/2022] Open
Abstract
Adult neurogenesis involves persistent proliferative neuroprogenitor populations that reside within distinct regions of the brain. This phenomenon was first described over 50 years ago and it is now firmly established that new neurons are continually generated in distinct regions of the adult brain. The potential of enhancing the neurogenic process lies in improved brain cognition and neuronal plasticity particularly in the context of neuronal injury and neurodegenerative disorders. In addition, adult neurogenesis might also play a role in mood and affective disorders. The factors that regulate adult neurogenesis have been broadly studied. However, the underlying molecular mechanisms of regulating neurogenesis are still not fully defined. In this review, we will provide critical analysis of our current understanding of the factors and molecular mechanisms that determine neurogenesis. We will further discuss pre-clinical and clinical studies that have investigated the potential of modulating neurogenesis as therapeutic intervention in neurodegeneration.
Collapse
Affiliation(s)
- Belal Shohayeb
- 1School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, QLD 4067 Australia
| | - Mohamed Diab
- 2Faculty of Pharmacy, Pharos University in Alexandria, P.O. Box Sidi Gaber, Alexandria, 21311 Egypt
| | - Mazen Ahmed
- 2Faculty of Pharmacy, Pharos University in Alexandria, P.O. Box Sidi Gaber, Alexandria, 21311 Egypt
| | - Dominic Chi Hiung Ng
- 1School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, QLD 4067 Australia
| |
Collapse
|
16
|
Gheorghe A, Qiu W, Galea LAM. Hormonal Regulation of Hippocampal Neurogenesis: Implications for Depression and Exercise. Curr Top Behav Neurosci 2018; 43:379-421. [PMID: 30414016 DOI: 10.1007/7854_2018_62] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adult hippocampal neurogenesis exists in all mammalian species, including humans, and although there has been considerable research investigating the function and regulation of neurogenesis, there remain many open questions surrounding the complexity of this phenomenon. This stems partially from the fact that neurogenesis is a multistage process that involves proliferation, differentiation, migration, survival, and eventual integration of new cells into the existing hippocampal circuitry, each of which can be independently influenced. The function of adult neurogenesis in the hippocampus is related to stress regulation, behavioral efficacy of antidepressants, long-term spatial memory, forgetting, and pattern separation. Steroid hormones influence the regulation of hippocampal neurogenesis, stress regulation, and cognition and differently in males and females. In this chapter, we will briefly tap into the complex network of steroid hormone modulation of neurogenesis in the hippocampus with specific emphasis on stress, testosterone, and estrogen. We examine the possible role of neurogenesis in the etiology of depression and influencing treatment by examining the influence of both pharmacological (selective serotonin reuptake inhibitors, tricyclic antidepressants) treatments and non-pharmacological (exercise) remedies.
Collapse
Affiliation(s)
- Ana Gheorghe
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Wansu Qiu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada. .,Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada. .,Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
17
|
Kent BA, Mistlberger RE. Sleep and hippocampal neurogenesis: Implications for Alzheimer's disease. Front Neuroendocrinol 2017; 45:35-52. [PMID: 28249715 DOI: 10.1016/j.yfrne.2017.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/23/2017] [Accepted: 02/24/2017] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and currently there are no effective disease-modifying treatments available. Hallmark symptoms of AD include impaired hippocampus-dependent episodic memory and disrupted sleep and circadian rhythms. The pathways connecting these symptoms are of particular interest because it is well established that sleep and circadian disruption can impair hippocampus-dependent learning and memory. In rodents, these procedures also markedly suppress adult hippocampal neurogenesis, a form of brain plasticity that is believed to play an important role in pattern separation, and thus episodic memory. A causal role for sleep disruptions in AD pathophysiology is suggested by evidence for sleep-dependent glymphatic clearance of metabolic waste products from the brain. This review explores a complementary hypothesis that sleep and circadian disruptions in AD contribute to cognitive decline by activating neuroendocrine and neuroinflammatory signaling pathways that suppress hippocampal neurogenesis. Evidence for this hypothesis underscores the promise of sleep, circadian rhythms, and neurogenesis as therapeutic targets for remediation of memory impairment in AD.
Collapse
Affiliation(s)
- Brianne A Kent
- Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
18
|
The Roles of Exercise and Yoga in Ameliorating Depression as a Risk Factor for Cognitive Decline. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4612953. [PMID: 28044084 PMCID: PMC5156813 DOI: 10.1155/2016/4612953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/25/2016] [Indexed: 11/17/2022]
Abstract
Currently, there are no effective pharmaceutical treatments to reduce cognitive decline or prevent dementia. At the same time, the global population is aging, and rates of dementia and mild cognitive impairment (MCI) are on the rise. As such, there is an increasing interest in complementary and alternative interventions to treat or reduce the risk of cognitive decline. Depression is one potentially modifiable risk factor for cognitive decline and dementia. Notably, exercise and yoga are two interventions known to both reduce symptoms of depression and improve cognitive function. The current review discusses the efficacy of exercise and yoga to ameliorate depression and thereby reduce the risk of cognitive decline and potentially prevent dementia. Potential mechanisms of change, treatment implications, and future directions are discussed.
Collapse
|
19
|
Banoujaafar H, Monnier A, Pernet N, Quirié A, Garnier P, Prigent-Tessier A, Marie C. Brain BDNF levels are dependent on cerebrovascular endothelium-derived nitric oxide. Eur J Neurosci 2016; 44:2226-35. [PMID: 27306299 DOI: 10.1111/ejn.13301] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 11/29/2022]
Abstract
Scientific evidence continues to demonstrate a link between endothelial function and cognition. Besides, several studies have identified a complex interplay between nitric oxide (NO) and brain-derived neurotrophic factor (BDNF), a neurotrophin largely involved in cognition. Therefore, this study investigated the link between cerebral endothelium-derived NO and BDNF signaling. For this purpose, levels of BDNF and the phosphorylated form of endothelial NO synthase at serine 1177 (p-eNOS) were simultaneously measured in the cortex and hippocampus of rats subjected to either bilateral common carotid occlusion (n = 6), physical exercise (n = 6) or a combination of both (n = 6) as experimental approaches to modulate flow-induced NO production by the cerebrovasculature. Tropomyosin-related kinase type B (TrkB) receptors and its phosphorylated form at tyrosine 816 (p-TrkB) were also measured. Moreover, we investigated BDNF synthesis in brain slices exposed to the NO donor glyceryl trinitrate. Our results showed increased p-eNOS and BDNF levels after exercise and decreased levels after vascular occlusion as compared to corresponding controls, with a positive correlation between changes in p-eNOS and BDNF (r = 0.679). Exercise after vascular occlusion did not change levels of these proteins. Gyceryl trinitrate increased proBDNF and BDNF levels in brain slices, thus suggesting a possible causal relationship between NO and BDNF. Moreover, vascular occlusion, like exercise, resulted in increased TrkB and p-TrkB levels, whereas no change was observed with the combination of both. These results suggest that brain BDNF signaling may be dependent on cerebral endothelium-derived NO production.
Collapse
Affiliation(s)
- Hayat Banoujaafar
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France
| | - Alice Monnier
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France.,Department of Rehabilitation, University Hospital, Dijon, France
| | - Nicolas Pernet
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France
| | - Aurore Quirié
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France
| | - Philippe Garnier
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France.,IUT de Dijon, Département de Génie Biologique, Université de Bourgogne, Dijon, France
| | - Anne Prigent-Tessier
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France
| | - Christine Marie
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France
| |
Collapse
|
20
|
Schulkin J. Evolutionary Basis of Human Running and Its Impact on Neural Function. Front Syst Neurosci 2016; 10:59. [PMID: 27462208 PMCID: PMC4939291 DOI: 10.3389/fnsys.2016.00059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/23/2016] [Indexed: 12/02/2022] Open
Abstract
Running is not unique to humans, but it is seemingly a basic human capacity. This article addresses the evolutionary origins of humans running long distances, the basic physical capability of running, and the neurogenesis of aerobic fitness. This article more specifically speaks to the conditions that set the stage for the act of running, and then looks at brain expression, and longer-term consequences of running within a context of specific morphological features and diverse information molecules that participate in our capacity for running and sport. While causal factors are not known, we do know that physiological factors are involved in running and underlie neural function. Multiple themes about running are discussed in this article, including neurogenesis, neural plasticity, and memory enhancement. Aerobic exercise increases anterior hippocampus size. This expansion is linked to the improvement of memory, which reflects the improvement of learning as a function of running activity in animal studies. Higher fitness is associated with greater expansion, not only of the hippocampus, but of several other brain regions.
Collapse
Affiliation(s)
- Jay Schulkin
- Department of Neuroscience, Georgetown UniversityWashington, DC, USA
| |
Collapse
|
21
|
Herbert J, Lucassen PJ. Depression as a risk factor for Alzheimer's disease: Genes, steroids, cytokines and neurogenesis - What do we need to know? Front Neuroendocrinol 2016; 41:153-71. [PMID: 26746105 DOI: 10.1016/j.yfrne.2015.12.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 01/18/2023]
Abstract
Depression (MDD) is prodromal to, and a component of, Alzheimer's disease (AD): it may also be a trigger for incipient AD. MDD is not a unitary disorder, so there may be particular subtypes of early life MDD that pose independent high risks for later AD, though the identification of these subtypes is problematical. There may either be a common pathological event underlying both MDD and AD, or MDD may sensitize the brain to a second event ('hit') that precipitates AD. MDD may also accelerate brain ageing, including altered DNA methylation, increased cortisol but decreasing DHEA and thus the risk for AD. So far, genes predicting AD (e.g. APOEε4) are not risk factors for MDD, and those implicated in MDD (e.g. SLC6A4) are not risks for AD, so a common genetic predisposition looks unlikely. There is as yet no strong indication that an epigenetic event occurs during some forms of MDD that predisposes to later AD, though the evidence is limited. Glucocorticoids (GCs) are disturbed in some cases of MDD and in AD. GCs have marked degenerative actions on the hippocampus, a site of early β-amyloid deposition, and rare genetic variants of GC-regulating enzymes (e.g. 11β-HSD) predispose to AD. GCs also inhibit hippocampal neurogenesis and plasticity, and thus episodic memory, a core symptom of AD. Disordered GCs in MDD may inhibit neurogenesis, but the contribution of diminished neurogenesis to the onset or progression of AD is still debated. GCs and cytokines also reduce BDNF, implicated in both MDD and AD and hippocampal neurogenesis, reinforcing the notion that those cases of MDD with disordered GCs may be a risk for AD. Cytokines, including IL1β, IL6 and TNFα, are increased in the blood in some cases of MDD. They also reduce hippocampal neurogenesis, and increased cytokines are a known risk for later AD. Inflammatory changes occur in both MDD and AD (e.g. raised CRP, TNFα). Both cytokines and GCs can have pro-inflammatory actions in the brain. Inflammation (e.g. microglial activation) may be a common link, but this has not been systematically investigated. We lack substantial, rigorous and comprehensive follow-up studies to better identify possible subtypes of MDD that may represent a major predictor for later AD. This would enable specific interventions during critical episodes of these subtypes of MDD that should reduce this substantial risk.
Collapse
Affiliation(s)
- Joe Herbert
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, UK.
| | - Paul J Lucassen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| |
Collapse
|
22
|
Muneer A. The Neurobiology of Bipolar Disorder: An Integrated Approach. Chonnam Med J 2016; 52:18-37. [PMID: 26865997 PMCID: PMC4742607 DOI: 10.4068/cmj.2016.52.1.18] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 11/26/2015] [Accepted: 11/30/2015] [Indexed: 12/27/2022] Open
Abstract
Bipolar disorder is a heterogeneous condition with myriad clinical manifestations and many comorbidities leading to severe disabilities in the biopsychosocial realm. The objective of this review article was to underline recent advances in knowledge regarding the neurobiology of bipolar disorder. A further aim was to draw attention to new therapeutic targets in the treatment of bipolar disorder. To accomplish these goals, an electronic search was undertaken of the PubMed database in August 2015 of literature published during the last 10 years on the pathophysiology of bipolar disorder. A wide-ranging evaluation of the existing work was done with search terms such as "mood disorders and biology," "bipolar disorder and HPA axis," "bipolar disorder and cytokines," "mood disorders and circadian rhythm," "bipolar disorder and oxidative stress," etc. This endeavor showed that bipolar disorder is a diverse condition sharing neurobiological mechanisms with major depressive disorder and psychotic spectrum disorders. There is convincing evidence of crosstalk between different biological systems that act in a deleterious manner causing expression of the disease in genetically predisposed individuals. Inflammatory mediators act in concert with oxidative stress to dysregulate hormonal, metabolic, and circadian homeostasis in precipitating and perpetuating the illness. Stress, whether biologically or psychologically mediated, is responsible for the initiation and progression of the diathesis. Bipolar spectrum disorders have a strong genetic component; severe life stresses acting through various paths cause the illness phenotype.
Collapse
Affiliation(s)
- Ather Muneer
- Department of Psychiatry, Islamic International Medical College, Riphah International University, Rawalpindi, Pakistan
| |
Collapse
|
23
|
Zhang G, Chen L, Yang L, Hua X, Zhou B, Miao Z, Li J, Hu H, Namaka M, Kong J, Xu X. Combined use of spatial restraint stress and middle cerebral artery occlusion is a novel model of post-stroke depression in mice. Sci Rep 2015; 5:16751. [PMID: 26572587 PMCID: PMC4648085 DOI: 10.1038/srep16751] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/19/2015] [Indexed: 12/22/2022] Open
Abstract
Post stroke depression (PSD) is one of the most common complications of ischemic stroke. At present, the underlying mechanisms are unclear, largely because there are no reliable, valid and reproducible animal models of PSD. Here we report a novel animal model of PSD that displays consistent and reliable clinical features of hemiplegic stroke. The animal model encompasses a combination of the middle cerebral artery occlusion (MCAO) and spatial restraint stress. We found that a 60-minute MCAO followed by spatial restraint stress for 2 h daily for 2 to 4 weeks from the fourth day after MCAO induced PSD-like depressive phenotypes in mice. Importantly, the mice showed exacerbated deficits of neurological functions and decreased body weights, which were accompanied with reduced levels of brain derived neurotrophic factor and neurotransmitters including serotonin and dopamine. In addition, we identified increased levels of serum cortisol in our PSD mice. Finally, we found that mice with PSD were responsive to the tri-cyclic antidepressant imipramine as evidenced by their attenuated depressive behaviors, increased body weights, recovered brain serotonin levels, and decreased serum cortisol levels. This mouse model replicates multiple features of human post-stroke depression and thus provides a new model for the investigation of PSD.
Collapse
Affiliation(s)
- Gaocai Zhang
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China.,Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Li Chen
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China
| | - Lingli Yang
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China
| | - Xiaodong Hua
- Department of Biochemistry, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Beiqun Zhou
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China.,Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Jizhen Li
- Department of Neurology, Suzhou Kowloon Hospital, 118 Wansheng Street, Suzhou City, China
| | - Hua Hu
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China
| | - Michael Namaka
- College of Pharmacy and Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xingshun Xu
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China.,Institute of Neuroscience, Soochow University, Suzhou City, China
| |
Collapse
|
24
|
Littlefield AM, Setti SE, Priester C, Kohman RA. Voluntary exercise attenuates LPS-induced reductions in neurogenesis and increases microglia expression of a proneurogenic phenotype in aged mice. J Neuroinflammation 2015. [PMID: 26224094 PMCID: PMC4518639 DOI: 10.1186/s12974-015-0362-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Microglia can acquire various phenotypes of activation that mediate their inflammatory and neuroprotective effects. Aging causes microglia to become partially activated towards an inflammatory phenotype. As a result, aged animals display a prolonged neuroinflammatory response following an immune challenge. Currently unknown is whether this persistent neuroinflammation leads to greater reductions in hippocampal neurogenesis. Exercise has been shown to alter microglia activation in aged animals, but the nature of these changes has yet to be fully elucidated. The present study assessed whether aged mice show enhanced reductions in hippocampal neurogenesis following an acute immune challenge with lipopolysaccharide (LPS). Further, we assessed whether voluntary wheel running protects against the effects of LPS. Methods Adult (4 months) and aged (22 months) male C57BL6/J mice were individually housed with or without a running wheel for a total of 9 weeks. After 5 weeks, mice received a single intraperitoneal LPS or saline injection in combination with four daily injections of bromodeoxyuridine (BrdU) to label dividing cells. Tissue was collected 4 weeks later and immunohistochemistry was conducted to measure new cell survival, new neuron numbers, and microglia activation. Results Data show that LPS reduced the number of new neurons in aged, but not adult, mice. These LPS-induced reductions in neurogenesis in the aged mice were prevented by wheel running. Further, exercise increased the proportion of microglia co-labeled with brain-derived neurotrophic factor (BDNF) in the aged. Conclusions Collectively, findings indicate that voluntary wheel running may promote a neuroprotective microglia phenotype and protect against inflammation-induced reductions in hippocampal neurogenesis in the aged brain.
Collapse
Affiliation(s)
- Alyssa M Littlefield
- Department of Psychology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403-5612, USA.
| | - Sharay E Setti
- Department of Psychology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403-5612, USA.
| | - Carolina Priester
- Department of Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403-5612, USA.
| | - Rachel A Kohman
- Department of Psychology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403-5612, USA.
| |
Collapse
|
25
|
Long term consequences on spatial learning-memory of low-calorie diet during adolescence in female rats; hippocampal and prefrontal cortex BDNF level, expression of NeuN and cell proliferation in dentate gyrus. Brain Res 2015; 1618:194-204. [PMID: 26072462 DOI: 10.1016/j.brainres.2015.05.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/22/2015] [Accepted: 05/29/2015] [Indexed: 12/12/2022]
Abstract
Calorie restriction (CR) is argued to positively affect general health, longevity and normally occurring age-related reduction of cognition. Obesity during adolescence may adversely affect cognition in adulthood but, to date effects of CR have not been investigated. We hypothesized that feeding with as low as 15% low-calorie diet (LCD) during adolescence would increase hippocampal and prefrontal BDNF (Brain-derived neurotrophic factor) levels, proliferative cells and neuron numbers in dentate gyrus (DG), thus positively affecting spatial memory in adulthood. Spatial learning-memory function was improved in adult female Sprague-Dawley rats fed with LCD during adolescence. PCNA (Proliferating cell nuclear antigen-cell proliferation marker) expressing cells and NeuN (Neuronal nuclear antigen-neuron marker) expressing cells in hippocampus DG which are critically involved in memory were increased. Hippocampus and prefrontal cortex BDNF levels were increased while serum glucose levels and level of lipid peroxidation indicator malondialdehyde in serum and hippocampus were reduced. Our unique results suggest that improved cognition in adult rats with LCD feeding during adolescence may result from the increase of neurogenesis and BDNF. These findings reveal the importance of nutrition in adolescence for cognitive function in adulthood. Our results may be useful for further studies aiming to treat age-related cognitive impairments.
Collapse
|
26
|
Leliavski A, Dumbell R, Ott V, Oster H. Adrenal Clocks and the Role of Adrenal Hormones in the Regulation of Circadian Physiology. J Biol Rhythms 2014; 30:20-34. [DOI: 10.1177/0748730414553971] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The mammalian circadian timing system consists of a master pacemaker in the suprachiasmatic nucleus (SCN) and subordinate clocks that disseminate time information to various central and peripheral tissues. While the function of the SCN in circadian rhythm regulation has been extensively studied, we still have limited understanding of how peripheral tissue clock function contributes to the regulation of physiological processes. The adrenal gland plays a special role in this context as adrenal hormones show strong circadian secretion rhythms affecting downstream physiological processes. At the same time, they have been shown to affect clock gene expression in various other tissues, thus mediating systemic entrainment to external zeitgebers and promoting internal circadian alignment. In this review, we discuss the function of circadian clocks in the adrenal gland, how they are reset by the SCN and may further relay time-of-day information to other tissues. Focusing on glucocorticoids, we conclude by outlining the impact of adrenal rhythm disruption on neuropsychiatric, metabolic, immune, and malignant disorders.
Collapse
Affiliation(s)
- Alexei Leliavski
- Chronophysiology Group, Medical Department, University of Lübeck, Germany
| | - Rebecca Dumbell
- Chronophysiology Group, Medical Department, University of Lübeck, Germany
| | - Volker Ott
- Institute of Neuroendocrinology, University of Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department, University of Lübeck, Germany
| |
Collapse
|
27
|
Yang L, Chao J, Kook YH, Gao Y, Yao H, Buch SJ. Involvement of miR-9/MCPIP1 axis in PDGF-BB-mediated neurogenesis in neuronal progenitor cells. Cell Death Dis 2013; 4:e960. [PMID: 24336080 PMCID: PMC3877557 DOI: 10.1038/cddis.2013.486] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 12/27/2022]
Abstract
Highly conserved microRNA-9 (miR-9) has a critical role in various cellular processes including neurogenesis. However, its regulation by neurotropins that are known to mediate neurogenesis remains poorly defined. In this study, we identify platelet-derived growth factor-BB (PDGF-BB)-mediated upregulation of miR-9, which in turn downregulates its target gene monocyte chemotactic protein-induced protein 1 (MCPIP1), as a key player in modulating proliferation, neuronal differentiation as well as migration of neuronal progenitor cells (NPCs). Results indicate that miR-9-mediated NPC proliferation and neuronal differentiation involves signaling via the nuclear factor-kappa B (NF-κB) and cAMP response element-binding protein (CREB) pathways, and that NPC migration involves CREB but not the NF-κB signaling. These findings thus suggest that miR-9-mediated downregulation of MCPIP1 acts as a molecular switch regulation of neurogenesis.
Collapse
Affiliation(s)
- L Yang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - J Chao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Y H Kook
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Y Gao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - H Yao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - S J Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| |
Collapse
|
28
|
Nam SM, Choi JH, Yoo DY, Kim W, Jung HY, Kim JW, Kang SY, Park J, Kim DW, Kim WJ, Yoon YS, Hwang IK. Valeriana officinalis extract and its main component, valerenic acid, ameliorate D-galactose-induced reductions in memory, cell proliferation, and neuroblast differentiation by reducing corticosterone levels and lipid peroxidation. Exp Gerontol 2013; 48:1369-77. [PMID: 24055511 DOI: 10.1016/j.exger.2013.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 01/08/2023]
Abstract
Valeriana officinalis is used in herbal medicine of many cultures as mild sedatives and tranquilizers. In this study, we investigated the effects of extract from valerian root extracts and its major component, valerenic acid on memory function, cell proliferation, neuroblast differentiation, serum corticosterone, and lipid peroxidation in adult and aged mice. For the aging model, D-galactose (100 mg/kg) was administered subcutaneously to 6-week-old male mice for 10 weeks. At 13 weeks of age, valerian root extracts (100 mg/kg) or valerenic acid (340 μg/kg) was administered orally to control and D-galactose-treated mice for 3 weeks. The dosage of valerenic acid (340 μg/kg), which is the active ingredient of valerian root extract, was determined by the content of valerenic acid in valerian root extract (3.401±0.066 mg/g) measured by HPLC. The administration of valerian root extract and valerenic acid significantly improved the preferential exploration of new objects in novel object recognition test and the escape latency, swimming speeds, platform crossings, and spatial preference for the target quadrant in Morris water maze test compared to the D-galactose-treated mice. Cell proliferation and neuroblast differentiation were significantly decreased, while serum corticosterone level and lipid peroxidation in hippocampus were significantly increased in the D-galactose-treated group compared to that in the control group. The administration of valerian root extract significantly ameliorated these changes in the dentate gyrus of both control and D-galactose-treated groups. In addition, valerenic acid also mitigated the D-galactose-induced reduction of these changes. These results indicate that valerian root extract and valerenic acid enhance cognitive function, promote cell proliferation and neuroblast differentiation, and reduce serum corticosterone and lipid peroxidation in aged mice.
Collapse
Affiliation(s)
- Sung Min Nam
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
McClung CA. How might circadian rhythms control mood? Let me count the ways.. Biol Psychiatry 2013; 74:242-9. [PMID: 23558300 PMCID: PMC3725187 DOI: 10.1016/j.biopsych.2013.02.019] [Citation(s) in RCA: 342] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/06/2013] [Accepted: 02/25/2013] [Indexed: 12/28/2022]
Abstract
Mood disorders are serious diseases that affect a large portion of the population. There have been many hypotheses put forth over the years to explain the development of major depression, bipolar disorder, and other mood disorders. These hypotheses include disruptions in monoamine transmission, hypothalamus-pituitary-adrenal axis function, immune function, neurogenesis, mitochondrial dysfunction, and neuropeptide signaling (to name a few). Nearly all people suffering from mood disorders have significant disruptions in circadian rhythms and the sleep/wake cycle. In fact, altered sleep patterns are one of the major diagnostic criteria for these disorders. Moreover, environmental disruptions to circadian rhythms, including shift work, travel across time zones, and irregular social schedules, tend to precipitate or exacerbate mood-related episodes. Recent studies have found that molecular clocks are found throughout the brain and body where they participate in the regulation of most physiological processes, including those thought to be involved in mood regulation. This review will summarize recent data that implicate the circadian system as a vital regulator of a variety of systems that are thought to play a role in the development of mood disorders.
Collapse
Affiliation(s)
- Colleen A McClung
- Department of Psychiatry and Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
30
|
The α crystallin domain of small heat shock protein b8 (Hspb8) acts as survival and differentiation factor in adult hippocampal neurogenesis. J Neurosci 2013; 33:5785-96. [PMID: 23536091 DOI: 10.1523/jneurosci.6452-11.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adult hippocampal neurogenesis is to a large degree controlled at the level of cell survival, and a number of potential mediators of this effect have been postulated. Here, we investigated the small heat shock protein Hspb8, which, because of its pleiotropic prosurvival effects in other systems, was considered a particularly promising candidate factor. Hspb8 is, for example, found in plaques of Alzheimer disease but exerts neuroprotective effects. We found that expression of Hspb8 increased during differentiation in vitro and was particularly associated with later stages (48-96 h) of differentiation. Gain-of-function and loss-of-function experiments supported the hypothesis that Hspb8 regulates cell survival of new neurons in vitro. In the dentate gyrus of adult mice in vivo, lentiviral overexpression of Hspb8 doubled the surviving cells and concomitantly promoted differentiation and net neurogenesis without affecting precursor cell proliferation. We also discovered that the truncated form of the crystallin domain of Hspb8 was sufficient to affect cell survival and neuronal differentiation in vitro and in vivo. Precursor cell experiments in vitro revealed that Hspb8 increases the phosphorylation of Akt and suggested that the prosurvival effect can be produced by a cell-autonomous mechanism. Analysis of hippocampal Hspb8 expression in mice of 69 strains of the recombinant inbred set BXD revealed that Hspb8 is a cis-acting gene whose expression was associated with clusters of transcript enriched in genes linked to growth factor signaling and apoptosis. Our results strongly suggest that Hspb8 and its α-crystallin domain might act as pleiotropic prosurvival factor in the adult hippocampus.
Collapse
|
31
|
Abstract
It has been suggested that long-term modifications of synaptic transmission constitute the foundation of the processes by which information is stored in the central nervous system. A group of proteins called neurotrophins are considered powerful molecular mediators in central synaptic plasticity. Among these, brain-derived neurotrophic factor (BDNF) as well as neurotrophin-3 (NT-3) have emerged as having key roles in the neurobiological mechanisms related to learning and memory. In this chapter, we review the studies that have represented a significant step forward in understanding the role played by BDNF and NT-3 in long-term synaptic plasticity. The effects of BDNF and NT-3 on synaptic plasticity can be of a permissive nature, establishing the conditions under which plastic changes can take place, or it may be instructive, directly modifying the communication and morphology of synapses. The actions carried out by BDNF include its capacity to contribute to the stabilization and maturation of already-existing synapses, as well as to generate new synaptic contacts. One important finding that highlights the participation of these neurotrophins in synaptic plasticity is the observation that adding BDNF or NT-3 gives rise to drastic long-term increases in synaptic transmission, similar to the long-term potentiation in the hippocampus and neocortex of mammals. Because neurotrophins modulate both the electrical properties and the structural organization of the synapse, these proteins have been considered important biological markers of learning and memory processes.
Collapse
Affiliation(s)
- Andrea Gómez-Palacio-Schjetnan
- División de Investigación y Estudios de Posgrado, Facultad de Psicologia, Universidad Nacional Autónoma de México, 04510, México, D.F., Mexico
| | | |
Collapse
|
32
|
Kazanis I. Neurogenesis in the adult mammalian brain: how much do we need, how much do we have? Curr Top Behav Neurosci 2013; 15:3-29. [PMID: 22976273 DOI: 10.1007/7854_2012_227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The last two decades cytogenic processes (both neurogenic and gliogenic) driven by neural stem cells surviving within the adult mammalian brain have been extensively investigated. It is now well established that within at least two cytogenic niches, the subependymal zone of the lateral ventricles and the subgranular zone in the dentate gyrus, new neurons are born everyday with a fraction of them being finally incorporated into established neuronal networks in the olfactory bulb and the hippocampus, respectively. But how significant is adult neurogenesis in the context of the mature brain and what are the possibilities that these niches can contribute significantly in tissue repair after degenerative insults, or in the restoration of normal hippocampal function in the context of mental and cognitive disorders? Here, we summarise the available data on the normal behaviour of adult neural stem cells in the young and the aged brain and on their response to degeneration. Focus will be given, whenever possible, to numbers: how many stem cells survive in the adult brain, how many cells they can generate and at what ratios do they produce neurons and glia?
Collapse
Affiliation(s)
- Ilias Kazanis
- MRC Cambridge Centre for Stem cell Biology and Regenerative Medicine and Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, Cambridge, UK,
| |
Collapse
|
33
|
Herbert J, Ban M, Brown GW, Harris TO, Ogilvie A, Uher R, Craig TKJ. Interaction between the BDNF gene Val/66/Met polymorphism and morning cortisol levels as a predictor of depression in adult women. Br J Psychiatry 2012; 201:313-9. [PMID: 22844024 PMCID: PMC3461447 DOI: 10.1192/bjp.bp.111.107037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Common genetic variants, such as the brain-derived neurotrophic factor (BDNF) Val/66/Met polymorphism (rs6265), are known to interact with environmental factors such as early adversity to increase the risk of subsequent major depression. Much less is known about how they interact with individual differences in cortisol, although these also represent a risk for major depression. AIMS To determine whether this BDNF variant moderated the risk represented by higher levels of morning salivary cortisol in adult women. METHOD We recruited 279 premenopausal women who were at high risk of major depressive disorder because of either negative self-evaluation, unsupportive core relationship or chronic subclinical symptoms of depression or anxiety. Morning salivary cortisol was measured daily for up to 10 days at entry. Participants were followed up for about 12 months by telephone calls at 3-4 monthly intervals. Major depression and severe life events were assessed through interviews at baseline and follow-up; DNA was obtained from the saliva. RESULTS There were 53 onsets (19%) of depressive episodes during follow-up. There was a significant U-shaped relationship between adjusted morning cortisol levels at baseline and the probability of depression onset during follow-up. In total, 51% experienced at least one severe life event/difficulty, and this strongly predicted subsequent onsets of depressive episodes. The BDNF Val/66/Met genotype was not directly associated with onsets of depression or with cortisol levels, but there was significant interaction between Val/66/Met and cortisol: the association between baseline cortisol and depression was limited to those with the Val/66/Val variant. There was no interaction between life events and either this BDNF polymorphism or cortisol levels. CONCLUSIONS Morning salivary cortisol interacts with the BDNF Val/66/Met polymorphism in predicting new depressive episodes. This paper adds to the evidence that single gene polymorphisms interact with endogenous factors to predict depression.
Collapse
|
34
|
Wu YC, Hill RA, Klug M, van den Buuse M. Sex-specific and region-specific changes in BDNF–TrkB signalling in the hippocampus of 5-HT1A receptor and BDNF single and double mutant mice. Brain Res 2012; 1452:10-7. [DOI: 10.1016/j.brainres.2012.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/20/2012] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
|
35
|
Advances in Relationship Between Brain-derived Neurotrophic Factor and Depressive Disorder*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Hwang IK, Yoo KY, Yoo DY, Choi JW, Lee CH, Choi JH, Yoon YS, Won MH. Time-course of changes in phosphorylated CREB in neuroblasts and BDNF in the mouse dentate gyrus at early postnatal stages. Cell Mol Neurobiol 2011; 31:669-74. [PMID: 21607831 PMCID: PMC11498361 DOI: 10.1007/s10571-011-9686-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 03/21/2011] [Indexed: 12/19/2022]
Abstract
Cyclic AMP (cAMP) response element-binding protein (CREB) is involved in memory, learning, and synaptic transmission. In this study, we observed changes of phosphorylated CREB (pCREB) immunoreactivity and its protein levels as well as brain-derived neurotrophic factor (BDNF) levels in the hippocampal dentate gyrus at postnatal (P) 1, 7, 14, and 21 in mice. In addition, we also investigated pCREB expression in doublecortin (DCX, a marker for neuronal progenitors) immunoreactive neuroblasts at P21. pCREB immunoreaction at P1 was detected in most of cells in the dentate gyrus, thereafter pCREB immunoreactivity was decreased in all the layers of the dentate gyrus with time, however, strong pCREB immunoreactivity was shown in cells confined to the subgranular zone of the dentate gyrus at P21. In this group, many pCREB immunoreactive cells were co-localized with DCX immunoreactive neuroblasts. In addition, pCREB protein levels were decreased with age, showing that their levels were very low at P21, while BDNF protein levels were increased with age. These results suggest that pCREB may play important roles in functional maturity of granule cells in mice.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742 South Korea
| | - Ki-Yeon Yoo
- Department of Oral Anatomy, College of Dentistry, Gangneung-Wonju National University, Gangneung, 210-702 South Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742 South Korea
| | - Ji Won Choi
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742 South Korea
| | - Choong Hyun Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Seoul National University, Seoul, 151-742 South Korea
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742 South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| |
Collapse
|
37
|
Liu JX, Pinnock SB, Herbert J. Novel control by the CA3 region of the hippocampus on neurogenesis in the dentate gyrus of the adult rat. PLoS One 2011; 6:e17562. [PMID: 21464973 PMCID: PMC3060811 DOI: 10.1371/journal.pone.0017562] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 02/03/2011] [Indexed: 12/31/2022] Open
Abstract
The dentate gyrus is a site of continued neurogenesis in the adult brain. The CA3 region of the hippocampus is the major projection area from the dentate gyrus. CA3 sends reciprocal projections back to the dentate gyrus. Does this imply that CA3 exerts some control over neurogenesis? We studied the effects of lesions of CA3 on neurogenesis in the dentate gyrus, and on the ability of fluoxetine to stimulate mitotic activity in the progenitor cells. Unilateral ibotenic-acid generated lesions were made in CA3. Four days later there was no change on the number of either BrdU or Ki67-positive progenitor cells in the dentate gyrus. However, after 15 or 28 days, there was a marked reduction in surviving BrdU-labelled cells on the lesioned side (but no change in Ki-67+ cells). pCREB or Wnt3a did not co-localise with Ki-67 but with NeuN, a marker of mature neurons. Lesions had no effect on the basal expression of either pCREB or Wnt3a. Subcutaneous fluoxetine (10 mg/kg/day) for 14 days increased the number of Ki67+ cells as expected on the control (non-lesioned) side but not on that with a CA3 lesion. Nevertheless, the expected increase in BDNF, pCREB and Wnt3a still occurred on the lesioned side following fluoxetine treatment. Fluoxetine has been reported to decrease the number of “mature” calbindin-positive cells in the dentate gyrus; we found this still occurred on the side of a CA3 lesion. We then showed that the expression GAP-43 was reduced in the dentate gyrus on the lesioned side, confirming the existence of a synaptic connection between CA3 and the dentate gyrus. These results show that CA3 has a hitherto unsuspected role in regulating neurogenesis in the dentate gyrus of the adult rat.
Collapse
Affiliation(s)
- Jian Xin Liu
- Institute of Neurobiology, School of Medicine of Xi'an Jiaotong University, Xi'an, P.R.China
| | - Scarlett B. Pinnock
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Joe Herbert
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Effects of Melissa officinalis L. (Lemon Balm) Extract on Neurogenesis Associated with Serum Corticosterone and GABA in the Mouse Dentate Gyrus. Neurochem Res 2010; 36:250-7. [DOI: 10.1007/s11064-010-0312-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2010] [Indexed: 12/23/2022]
|
39
|
Goodyer IM, Croudace T, Dudbridge F, Ban M, Herbert J. Polymorphisms in BDNF (Val66Met) and 5-HTTLPR, morning cortisol and subsequent depression in at-risk adolescents. Br J Psychiatry 2010; 197:365-71. [PMID: 21037213 PMCID: PMC2966502 DOI: 10.1192/bjp.bp.110.077750] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND There is increasing evidence for genetic effects on the hypothalamic-pituitary axis system. More than one gene is likely to moderate corticoid-mediated activity. AIMS To investigate whether the brain-derived neurotrophic factor (BDNF) polymorphism (rs6265, Val66Met) is associated with morning waking salivary cortisol and moderates the corticoid-mediated risk for subsequent depressive episode onset independently of the known effects of 5-HTTLPR (the serotonin transporter gene promoter). METHOD High-risk adolescents (n = 401) were genotyped for Val66Met BDNF and 5-HTTLPR. Salivary samples were obtained on four consecutive school days within 1 h of waking. There were 365 (91%) remaining participants reassessed at 12 months for episodes of psychiatric disorder in the follow-up period. Of these, 357 (89%) had complete data for multivariate modelling. RESULTS There were 41 (11.2%) individuals who reported a new episode of clinical depression over the follow-up period. Increased risk for subsequent depression was found in carriers of the Val66Val genotype in BDNF with higher morning waking cortisol. This remained present when the known interaction between carriers of a short allele of 5-HTTLPR with higher morning salivary cortisol was taken into account. CONCLUSIONS Both BDNF and 5-HTTLPR genes show evidence of modifying the risk of a subsequent new depressive episode associated with elevated morning salivary cortisol. In adolescents morning salivary cortisol levels may constitute a biomarker for some forms of unipolar depression.
Collapse
|
40
|
Pinnock SB, Blake AM, Platt NJ, Herbert J. The roles of BDNF, pCREB and Wnt3a in the latent period preceding activation of progenitor cell mitosis in the adult dentate gyrus by fluoxetine. PLoS One 2010; 5:e13652. [PMID: 21048974 PMCID: PMC2965105 DOI: 10.1371/journal.pone.0013652] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 10/04/2010] [Indexed: 02/04/2023] Open
Abstract
The formation of new neurons continues into adult life in the dentate gyrus of the rat hippocampus, as in many other species. Neurogenesis itself turns out to be highly labile, and is regulated by a number of factors. One of these is the serotoninergic system: treatment with drugs (such as the SSRI fluoxetine) markedly stimulates mitosis in the progenitor cells of the dentate gyrus. But this process has one remarkable feature: it takes at least 14 days of continuous treatment to be effective. This is despite the fact that the pharmacological action of fluoxetine occurs within an hour or so of first administration. This paper explores the role of BDNF in this process, using the effect of a Trk antagonist (K252a) on the labelling of progenitor cells with the mitosis marker Ki67 and the associated expression of pCREB and Wnt3a. These experiments show that (i) Fluoxetine increased Ki67 counts, as well as pCREB and Wnt3a expression in the dentate gyrus. The action of fluoxetine on the progenitor cells and on pCREB (but not Wnt3a) depends upon Trk receptor activation, since it was prevented by icv infusion of K252a. (ii) These receptors are required for both the first 7 days of fluoxetine action, during which no apparent change in progenitor mitosis occurs, as well as the second 7 days. Increased pCREB was always associated with progenitor cell mitosis, but Wnt3a expression may be necessary but not sufficient for increased progenitor cell proliferation. These results shed new light on the action of fluoxetine on neurogenesis in the adult dentate gyrus, and have both clinical and experimental interest.
Collapse
Affiliation(s)
- Scarlett B Pinnock
- Department of Physiology, Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
41
|
Sportiche N, Suntsova N, Methippara M, Bashir T, Mitrani B, Szymusiak R, McGinty D. Sustained sleep fragmentation results in delayed changes in hippocampal-dependent cognitive function associated with reduced dentate gyrus neurogenesis. Neuroscience 2010; 170:247-58. [PMID: 20600652 DOI: 10.1016/j.neuroscience.2010.06.038] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/02/2010] [Accepted: 06/16/2010] [Indexed: 11/26/2022]
Abstract
Sleep fragmentation (SF) is prevalent in human sleep-related disorders. In rats, sustained SF has a potent suppressive effect on adult hippocampal dentate gyrus (DG) neurogenesis. Adult-generated DG neurons progressively mature over several weeks, and participate in certain hippocampal-dependent cognitive functions. We predicted that suppression of neurogenesis by sustained SF would affect hippocampal-dependent cognitive functions in the time window when new neurons would reach functional maturity. Sprague-Dawley rats were surgically-prepared with electroencephalogram (EEG) and electromyogram (EMG) electrodes for sleep state detection. We induced sleep-dependent SF for 12 days, and compared SF animals to yoked sleep fragmentation controls (SFC), treadmill controls (TC) and cage controls (CC). Rats were injected with bromodeoxyuridine on treatment days 4 and 5. Rats were returned to home cages for 14 days. Cognitive performance was assessed in a Barnes maze with 5 days at a constant escape position followed by 2 days at a rotated position. After Barnes maze testing rats were perfused and DG sections were immunolabeled for BrdU and neuronal nuclear antigen (NeuN), a marker of mature neurons.SF reduced BrdU-labeled cell counts by 32% compared to SFC and TC groups. SF reduced sleep epoch duration, but amounts of rapid eye movement (REM) sleep did not differ between SF and SFC rats, and non-rapid eye movement (NREM) was reduced only transiently. In the Barnes maze, SF rats exhibited a progressive decrease in escape time, but were slower than controls. SF animals used different search strategies. The use of a random, non-spatial search strategy was significantly elevated in SF compared to the SFC, TC and CC groups. The use of random search strategies was negatively correlated with NREM sleep bout length during SF. Sustained sleep fragmentation reduced DG neurogenesis and induced use of a non-spatial search strategy, which could be seen 2 weeks after terminating the SF treatment. The reduction in neurogenesis induced by sleep fragmentation is likely to underlie the delayed changes in cognitive function.
Collapse
Affiliation(s)
- N Sportiche
- Department of Psychology, UCLA, 405 Hilgard, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Fuss J, Ben Abdallah NMB, Vogt MA, Touma C, Pacifici PG, Palme R, Witzemann V, Hellweg R, Gass P. Voluntary exercise induces anxiety-like behavior in adult C57BL/6J mice correlating with hippocampal neurogenesis. Hippocampus 2010; 20:364-76. [PMID: 19452518 DOI: 10.1002/hipo.20634] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Several studies investigated the effect of physical exercise on emotional behaviors in rodents; resulting findings however remain controversial. Despite the accepted notion that voluntary exercise alters behavior in the same manners as antidepressant drugs, several studies reported opposite or no effects at all. In an attempt to evaluate the effect of physical exercise on emotional behaviors and brain plasticity, we individually housed C57BL/6J male mice in cages equipped with a running wheel. Three weeks after continuous voluntary running we assessed their anxiety- and depression-like behaviors. Tests included openfield, dark-light-box, elevated O-maze, learned helplessness, and forced swim test. We measured corticosterone metabolite levels in feces collected over a 24-h period and brain-derived neurotrophic factor (BDNF) in several brain regions. Furthermore, cell proliferation and adult hippocampal neurogenesis were assessed using Ki67 and Doublecortin. Voluntary wheel running induced increased anxiety in the openfield, elevated O-maze, and dark-light-box and higher levels of excreted corticosterone metabolites. We did not observe any antidepressant effect of running despite a significant increase of hippocampal neurogenesis and BDNF. These data are thus far the first to indicate that the effect of physical exercise in mice may be ambiguous. On one hand, the running-induced increase of neurogenesis and BDNF seems to be irrelevant in tests for depression-like behavior, at least in the present model where running activity exceeded previous reports. On the other hand, exercising mice display a more anxious phenotype and are exposed to higher levels of stress hormones such as corticosterone. Intriguingly, numbers of differentiating neurons correlate significantly with anxiety parameters in the openfield and dark-light-box. We therefore conclude that adult hippocampal neurogenesis is a crucial player in the genesis of anxiety.
Collapse
Affiliation(s)
- Johannes Fuss
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim (ZI), Mannheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Goddard AW, Ball SG, Martinez J, Robinson MJ, Yang CR, Russell JM, Shekhar A. Current perspectives of the roles of the central norepinephrine system in anxiety and depression. Depress Anxiety 2010; 27:339-50. [PMID: 19960531 DOI: 10.1002/da.20642] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Norepinephrine (NE) is a major monoamine neurotransmitter that has widespread effects across multiple brain areas to regulate arousal and stress responses. The underlying function of the NE cortical system is to balance vigilance/scanning behavior with focused attention on novel environmental stimuli and the state of arousal. The central NE system is involved intrinsically with the stress response system, and dysregulation within the NE system has been implicated in the pathogenesis of anxiety and depressive disorders. Central NE activity paradoxically has either anxiogenic or anxiolytic effects, depending on whether the time course of the stress is acute or chronic, whether the stress is predictable or unpredictable, and which underlying brain regions are affected. Under conditions of chronic stress, NE system activity dysregulation of the hypothalamic-pituitary-adrenal system may turn a homeostatic stress response into a pathological stress response. Data suggest that the NE interplay with the serotonin system may exert neurobiological normalization of the pathophysiological state of anxious depression. Accordingly, pharmacological interventions targeting the NE system can result in anxiolytic, rather than anxiogenic, outcomes when used to treat patients with anxiety and depression.
Collapse
Affiliation(s)
- Andrew W Goddard
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
BDNF Improves the Efficacy ERG Amplitude Maintenance by Transplantation of Retinal Stem Cells in RCS Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 664:375-84. [DOI: 10.1007/978-1-4419-1399-9_43] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Ikenouchi-Sugita A, Toyohira Y, Yoshimura R, Ueno S, Tsutsui M, Nakamura J, Yanagihara N. Opposite effects of milnacipran, a serotonin norepinephrine reuptake inhibitor, on the levels of nitric oxide and brain-derived neurotrophic factor in mouse brain cortex. Naunyn Schmiedebergs Arch Pharmacol 2009; 380:479-86. [PMID: 19894036 DOI: 10.1007/s00210-009-0467-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 10/14/2009] [Indexed: 01/15/2023]
Abstract
There is a growing body of evidence demonstrating that changes in the brain levels of nitric oxide (NO) and brain-derived neurotrophic factor (BDNF) are implicated in the pathogenesis of major depression. We report here the effects of subchronic treatment of mice with milnacipran, a serotonin norepinephrine reuptake inhibitor, on the levels of NO and BDNF in mice. In vivo administration of milnacipran (10 mg/kg) for 14 days caused a significant decrease in nitrate and nitrite concentrations in the cerebral cortex and hippocampus, but not in the midbrain. Milnacipran (10 mg/kg, 14 days) also decreased the activity of NO synthase in the cerebral cortex. On the other hand, milnacipran (10 mg/kg, 14 days) increased the levels of BDNF protein and mRNA in the cerebral cortex. These findings suggest that milnacipran has opposite effects on the levels of NO and BDNF in the brain cortex, namely, downregulation of NO and upregulation of BDNF.
Collapse
Affiliation(s)
- Atsuko Ikenouchi-Sugita
- Department of Psychiatry, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Yuan H, Long H, Liu J, Qu L, Chen J, Mou X. Effects of infrasound on hippocampus-dependent learning and memory in rats and some underlying mechanisms. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 28:243-247. [PMID: 21784010 DOI: 10.1016/j.etap.2009.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 04/07/2009] [Accepted: 04/15/2009] [Indexed: 05/31/2023]
Abstract
To investigate the effect of infrasound on the hippocampus-dependent spatial learning and memory as well as its underlying mechanisms, we measured the changes of cognitive abilities, brain-derived neurotrophic factor (BDNF)-tyrosine kinase receptor B (TrkB) signal transduction pathway and neurogenesis in the hippocampus of rats. The results showed that rats exposed to infrasound of 16 Hz at 130 dB for 14 days exhibited longer escape latency from day 2 and shortened time staying in the quadrant P in Morris water maze (MWM). It was found that mRNA and protein expression levels of hippocampal BDNF and TrkB were significantly decreased in real-time PCR and Western blot, and the number of BrdU-labeled cells in hippocampus was also reduced when compared to control. These results provided novel evidences that the infrasound of a certain exposure parameter can impair hippocampus-dependent learning and memory, in which the downregulation of the neuronal plasticity-related BDNF-TrkB signal pathway and less neurogenesis in hippocampus might be involved.
Collapse
Affiliation(s)
- Hua Yuan
- Department of Rehabilitation and Physiotherapy, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, PR China
| | | | | | | | | | | |
Collapse
|
47
|
Unsain N, Montroull LE, Mascó DH. Brain-derived neurotrophic factor facilitates TrkB down-regulation and neuronal injury after status epilepticus in the rat hippocampus. J Neurochem 2009; 111:428-40. [PMID: 19686240 DOI: 10.1111/j.1471-4159.2009.06342.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is involved in many aspects of neuronal biology and hippocampal physiology. Status epilepticus (SE) is a condition in which prolonged seizures lead to neuronal degeneration. SE-induced in rodents serves as a model of Temporal Lobe Epilepsy with hippocampal sclerosis, the most frequent epilepsy in humans. We have recently described a strong correlation between TrkB decrease and p75ntr increase with neuronal degeneration (Neuroscience 154:978, 2008). In this report, we report that local, acute intra-hippocampal infusion of function-blocking antibodies against BDNF prevented both early TrkB down-regulation and neuronal degeneration after SE. Conversely, the infusion of recombinant human BDNF protein after SE greatly increased neuronal degeneration. The inhibition of BDNF mRNA translation by the infusion of antisense oligonucleotides induced a rapid decrease of BDNF protein levels, and a delayed increase. If seizures were induced at the time endogenous BDNF was decreased, SE-induced neuronal damage was prevented. On the other hand, if seizures were induced at the time endogenous BDNF was increased, SE-induced neuronal damage was exacerbated. These results indicate that under a pathological condition BDNF exacerbates neuronal injury.
Collapse
Affiliation(s)
- Nicolás Unsain
- Facultad de Ciencias Exactas, Físicas y Naturales, Laboratorio de Neurobiología, Centro de Biología Celular y Molecular, Cátedra de Biología Celular, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | |
Collapse
|
48
|
Abstract
New neurons continue to be produced in adult mammals, including humans, predominantly in the anterior subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus. This update focuses on the emerging concept that adult CNS neurogenesis can be regulated by targeting neurotransmitter receptors, which, in turn, drive expression of crucial neurotrophic and growth factors. Such an approach might enable the development of pharmacological treatments that harness the endogenous potential of the CNS to replace lost cells in neurological disorders such as stroke and Alzheimer's and Huntington's diseases. This review samples in vivo studies in adult mammals from 2006 to mid-2008. It also provides some considerations for navigating toward translation to human disorders. Among them are the formidable problems of scaling up production of new neurons within the two "niches" of the brain and delivering sufficient numbers to distant degenerating regions for cell replacement. However, an expedition can only succeed if started.
Collapse
Affiliation(s)
- Theo Hagg
- Kentucky Spinal Cord Injury Research Center, Departments of Neurological Surgery and of Pharmacology and Toxicology, University of Louisville, Kentucky, USA.
| |
Collapse
|
49
|
Wang YT, Tan QR, Sun LL, Cao J, Dou KF, Xia B, Wang W. Possible therapeutic effect of a Traditional Chinese Medicine, Sinisan, on chronic restraint stress related disorders. Neurosci Lett 2008; 449:215-9. [PMID: 19007859 DOI: 10.1016/j.neulet.2008.10.100] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 10/29/2008] [Accepted: 10/30/2008] [Indexed: 01/04/2023]
Abstract
According to Traditional Chinese Medicine (TCM), the liver is the origin or most associated with stress related disorders such as depression. Sinisan, a TCM prescription, has been used as a hepatic protectant. We examined whether Sinisan exerts therapeutic effects in an experimental animal model: the chronic restraint stress (CRS) model. Sinisan was administered in the animal's drinking water at a concentration of 100mg/kg for 21 days (7 days pre-CRS and 14 days during the CRS). Spatial learning and memory were measured 24h after the CRS procedures using the Morris Water Maze (MWM). Aggressive behavior and body weight were determined as well. The Sinisan treatment decreased aggressive behaviors and reversed CRS-induced impairment of spatial learning and memory as well as decreased rate of growth. In conclusion, our results suggest that Sinisan does exert measurable therapeutic effects in an experimental chronic stress model.
Collapse
Affiliation(s)
- Yu-Tong Wang
- Department of Psychosomatics, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Pinnock SB, Lazic SE, Wong HT, Wong IHW, Herbert J. Synergistic effects of dehydroepiandrosterone and fluoxetine on proliferation of progenitor cells in the dentate gyrus of the adult male rat. Neuroscience 2008; 158:1644-51. [PMID: 19068226 DOI: 10.1016/j.neuroscience.2008.10.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 10/06/2008] [Accepted: 10/15/2008] [Indexed: 11/24/2022]
Abstract
The 5-HT re-uptake inhibitor (SSRI) fluoxetine and the adrenal hormone dehydroepiandrosterone (DHEA) both increase the proliferation of progenitor cells in the adult hippocampus and also have antidepressant activity. This paper explores the combined ability of fluoxetine and DHEA to affect this process in the dentate gyrus of adult rats. We show that DHEA can render an otherwise ineffective dose of fluoxetine (2.5 mg/kg) able to increase progenitor cell proliferation to the same extent as doses four times higher (10 mg/kg). This synergistic action does not appear to be mediated by alterations in brain-derived neurotrophic factor (BDNF) gene expression; or by TrkB, mineralocorticoid, glucocorticoid, or 5-HT (5HT1A) receptor expression in the dentate gyrus; or by altered levels of plasma corticosterone. In a second experiment, the synergism between DHEA and fluoxetine was replicated. Furthermore, flattening the diurnal rhythm of plasma corticosterone by implanting additional corticosterone pellets s.c. prevented the effect of fluoxetine on progenitor cell division. This was not overcome by simultaneous treatment with DHEA, despite the latter's reported anti-glucocorticoid actions. The cellular mechanism for the potentiating action of DHEA on the pro- proliferative effects of fluoxetine in the adult hippocampus remains to be revealed. Since altered neurogenesis has been linked to the onset or recovery from depression, one consequence of these results is to suggest DHEA as a useful adjunct therapy for depression.
Collapse
Affiliation(s)
- S B Pinnock
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | | | | | | | | |
Collapse
|