1
|
Liu M, Charek JG, Vicetti Miguel RD, Cherpes TL. Ephrin-Eph signaling: an important regulator of epithelial integrity and barrier function. Tissue Barriers 2025:2462855. [PMID: 39921660 DOI: 10.1080/21688370.2025.2462855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/20/2025] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
Eph receptor-interacting proteins (ephrin) ligands and their erythropoietin-producing human hepatocellular (Eph) receptors elicit bidirectional signals that regulate cell migration, angiogenesis, neuronal plasticity, and other developmental processes in the embryo. In adulthood, ephrin-Eph signaling regulates numerous homeostatic events, including epithelial cell proliferation and differentiation. Epithelial surfaces, including those of skin and vagina, are lined by layers of stratified squamous epithelium (SSE) that protect against mechanical stress and microbial pathogen invasion. Ephrin-Eph signaling is known to promote cutaneous epithelial barrier function by regulating the expression of specialized cell-cell adhesion junctions termed desmosomes, but the role of this signaling system in maintaining epithelial integrity and barrier function in the vagina is less explored. This review summarizes current understanding of ephrin-Eph signaling that regulates desmosome expression and barrier function in the skin and considers evidence that suggests ephrin-Eph signaling similarly regulates these processes in vaginal SSE.
Collapse
Affiliation(s)
- Mohan Liu
- Comparative Biomedical Sciences Graduate Program, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Joseph G Charek
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Rodolfo D Vicetti Miguel
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Thomas L Cherpes
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Egu DT, Schmitt T, Waschke J. Mechanisms Causing Acantholysis in Pemphigus-Lessons from Human Skin. Front Immunol 2022; 13:884067. [PMID: 35720332 PMCID: PMC9205406 DOI: 10.3389/fimmu.2022.884067] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune bullous skin disease caused primarily by autoantibodies (PV-IgG) against the desmosomal adhesion proteins desmoglein (Dsg)1 and Dsg3. PV patient lesions are characterized by flaccid blisters and ultrastructurally by defined hallmarks including a reduction in desmosome number and size, formation of split desmosomes, as well as uncoupling of keratin filaments from desmosomes. The pathophysiology underlying the disease is known to involve several intracellular signaling pathways downstream of PV-IgG binding. Here, we summarize our studies in which we used transmission electron microscopy to characterize the roles of signaling pathways in the pathogenic effects of PV-IgG on desmosome ultrastructure in a human ex vivo skin model. Blister scores revealed inhibition of p38MAPK, ERK and PLC/Ca2+ to be protective in human epidermis. In contrast, inhibition of Src and PKC, which were shown to be protective in cell cultures and murine models, was not effective for human skin explants. The ultrastructural analysis revealed that for preventing skin blistering at least desmosome number (as modulated by ERK) or keratin filament insertion (as modulated by PLC/Ca2+) need to be ameliorated. Other pathways such as p38MAPK regulate desmosome number, size, and keratin insertion indicating that they control desmosome assembly and disassembly on different levels. Taken together, studies in human skin delineate target mechanisms for the treatment of pemphigus patients. In addition, ultrastructural analysis supports defining the specific role of a given signaling molecule in desmosome turnover at ultrastructural level.
Collapse
|
3
|
Godsel LM, Roth-Carter QR, Koetsier JL, Tsoi LC, Huffine AL, Broussard JA, Fitz GN, Lloyd SM, Kweon J, Burks HE, Hegazy M, Amagai S, Harms PW, Xing X, Kirma J, Johnson JL, Urciuoli G, Doglio LT, Swindell WR, Awatramani R, Sprecher E, Bao X, Cohen-Barak E, Missero C, Gudjonsson JE, Green KJ. Translational implications of Th17-skewed inflammation due to genetic deficiency of a cadherin stress sensor. J Clin Invest 2022; 132:e144363. [PMID: 34905516 PMCID: PMC8803337 DOI: 10.1172/jci144363] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Desmoglein 1 (Dsg1) is a cadherin restricted to stratified tissues of terrestrial vertebrates, which serve as essential physical and immune barriers. Dsg1 loss-of-function mutations in humans result in skin lesions and multiple allergies, and isolated patient keratinocytes exhibit increased proallergic cytokine expression. However, the mechanism by which genetic deficiency of Dsg1 causes chronic inflammation is unknown. To determine the systemic response to Dsg1 loss, we deleted the 3 tandem Dsg1 genes in mice. Whole transcriptome analysis of embryonic Dsg1-/- skin showed a delay in expression of adhesion/differentiation/keratinization genes at E17.5, a subset of which recovered or increased by E18.5. Comparing epidermal transcriptomes from Dsg1-deficient mice and humans revealed a shared IL-17-skewed inflammatory signature. Although the impaired intercellular adhesion observed in Dsg1-/- mice resembles that resulting from anti-Dsg1 pemphigus foliaceus antibodies, pemphigus skin lesions exhibit a weaker IL-17 signature. Consistent with the clinical importance of these findings, treatment of 2 Dsg1-deficient patients with an IL-12/IL-23 antagonist originally developed for psoriasis resulted in improvement of skin lesions. Thus, beyond impairing the physical barrier, loss of Dsg1 function through gene mutation results in a psoriatic-like inflammatory signature before birth, and treatment with a targeted therapy significantly improved skin lesions in patients.
Collapse
Affiliation(s)
- Lisa M. Godsel
- Department of Pathology and
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | - Lam C. Tsoi
- Department of Dermatology
- Department of Computational Medicine & Bioinformatics, and
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Joshua A. Broussard
- Department of Pathology and
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | | | - Sarah M. Lloyd
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Junghun Kweon
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | | | | | | | - Paul W. Harms
- Department of Dermatology
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Jodi L. Johnson
- Department of Pathology and
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | | | - Lynn T. Doglio
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Rajeshwar Awatramani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Medical Center, Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Xiaomin Bao
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Eran Cohen-Barak
- Department of Dermatology, “Emek” Medical Center, Afula, Israel
- Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate, Naples, Italy
- Department of Biology, University of Naples, Naples, Italy
| | | | - Kathleen J. Green
- Department of Pathology and
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
4
|
Pitfalls in the Application of Dispase-Based Keratinocyte Dissociation Assay for In Vitro Analysis of Pemphigus Vulgaris. Vaccines (Basel) 2022; 10:vaccines10020208. [PMID: 35214667 PMCID: PMC8878461 DOI: 10.3390/vaccines10020208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Pemphigus vulgaris (PV) is a chronic, life-altering autoimmune disease due to the production of anti-desmoglein antibodies causing the loss of cell–cell adhesion in keratinocytes (acantholysis) and blister formation in both skin and mucous membranes. The dispase-based keratinocyte dissociation assay (DDA) is the method of choice to examine the pathogenic effect of antibodies and additional co-stimuli on cell adhesion in vitro. Despite its widespread use, there is a high variability of experimental conditions, leading to inconsistent results. In this paper, we identify and discuss pitfalls in the application of DDA, including generation of a monolayer with optimized density, appropriate culturing conditions to obtain said monolayer, application of mechanical stress in a standardized manner, and performing consistent data processing. Importantly, we describe a detailed protocol for a successful and reliable DDA and the respective ideal conditions for three different types of human keratinocytes: (1) primary keratinocytes, (2) the HaCaT spontaneously immortalized keratinocyte cell line, and (3) the recently characterized HaSKpw spontaneously immortalized keratinocyte cell line. Our study provides detailed protocols which guarantee intra- and inter-experimental comparability of DDA.
Collapse
|
5
|
To Stick or Not to Stick: Adhesions in Orofacial Clefts. BIOLOGY 2022; 11:biology11020153. [PMID: 35205020 PMCID: PMC8869391 DOI: 10.3390/biology11020153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
Morphogenesis requires a tight coordination between mechanical forces and biochemical signals to inform individual cellular behavior. For these developmental processes to happen correctly the organism requires precise spatial and temporal coordination of the adhesion, migration, growth, differentiation, and apoptosis of cells originating from the three key embryonic layers, namely the ectoderm, mesoderm, and endoderm. The cytoskeleton and its remodeling are essential to organize and amplify many of the signaling pathways required for proper morphogenesis. In particular, the interaction of the cell junctions with the cytoskeleton functions to amplify the behavior of individual cells into collective events that are critical for development. In this review we summarize the key morphogenic events that occur during the formation of the face and the palate, as well as the protein complexes required for cell-to-cell adhesions. We then integrate the current knowledge into a comprehensive review of how mutations in cell-to-cell adhesion genes lead to abnormal craniofacial development, with a particular focus on cleft lip with or without cleft palate.
Collapse
|
6
|
Sigmund AM, Steinert LS, Egu DT, Bayerbach FC, Waschke J, Vielmuth F. Dsg2 Upregulation as a Rescue Mechanism in Pemphigus. Front Immunol 2020; 11:581370. [PMID: 33193387 PMCID: PMC7655986 DOI: 10.3389/fimmu.2020.581370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
In pemphigus vulgaris (PV), autoantibodies directed against the desmosomal cadherin desmoglein (Dsg) 3 cause loss of intercellular adhesion. It is known that Dsg3 interactions are directly inhibited by autoantibody binding and that Dsg2 is upregulated in epidermis of PV patients. Here, we investigated whether heterophilic Dsg2-Dsg3 interactions occur and would modulate PV pathogenesis. Dsg2 was upregulated in PV patients’ biopsies and in a human ex vivo pemphigus skin model. Immunoprecipitation and cell-free atomic force microscopy (AFM) experiments demonstrated heterophilic Dsg2-Dsg3 interactions. Similarly, in Dsg3-deficient keratinocytes with severely disturbed intercellular adhesion Dsg2 was upregulated in the desmosome containing fraction. AFM revealed that Dsg2-Dsg3 heterophilic interactions showed binding frequency, strength, Ca2+-dependency and catch-bond behavior comparable to homophilic Dsg3-Dsg3 or homophilic Dsg2-Dsg2 interactions. However, heterophilic Dsg2-Dsg3 interactions had a longer lifetime compared to homophilic Dsg2-Dsg2 interactions and PV autoantibody-induced direct inhibition was significantly less pronounced for heterophilic Dsg2-Dsg3 interactions compared to homophilic Dsg3 interactions. In contrast, a monoclonal anti-Dsg2 inhibitory antibody reduced heterophilic Dsg2-Dsg3 and homophilic Dsg2-Dsg2 binding to the same degree and further impaired intercellular adhesion in Dsg3-deficient keratinocytes. Taken together, the data demonstrate that Dsg2 undergoes heterophilic interactions with Dsg3, which may attenuate autoantibody-induced loss of keratinocyte adhesion in pemphigus.
Collapse
Affiliation(s)
- Anna M Sigmund
- Department I, Faculty of Medicine, Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Letyfee S Steinert
- Department I, Faculty of Medicine, Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Desalegn T Egu
- Department I, Faculty of Medicine, Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Franziska C Bayerbach
- Department I, Faculty of Medicine, Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Jens Waschke
- Department I, Faculty of Medicine, Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Franziska Vielmuth
- Department I, Faculty of Medicine, Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
7
|
Abstract
Cadherin-based cell-cell junctions help metazoans form polarized sheets of cells, which are necessary for the development of organs and the compartmentalization of functions. The components of the protein complexes that generate cadherin-based junctions have ancient origins, with conserved elements shared between animals as diverse as sponges and vertebrates. In invertebrates, the formation and function of epithelial sheets depends on classical cadherin-containing adherens junctions, which link actin to the plasma membrane through α-, β- and p120 catenins. Vertebrates also have a new type of cadherin-based intercellular junction called the desmosome, which allowed for the creation of more complex and effective tissue barriers against environmental stress. While desmosomes have a molecular blueprint that is similar to that of adherens junctions, desmosomal cadherins - called desmogleins and desmocollins - link intermediate filaments (IFs) rather than actin to the plasma membrane through protein complexes comprising relatives of β-catenin (plakoglobin) and p120 catenin (plakophilins). In turn, desmosomal catenins interact with members of the IF-binding plakin family to create the desmosome-IF linking complex. In this Minireview, we discuss when and how desmosomal components evolved, and how their ability to anchor the highly elastic and tough IF cytoskeleton endowed vertebrates with robust tissues capable of not only resisting but also properly responding to environmental stress.
Collapse
Affiliation(s)
- Kathleen J Green
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| | - Quinn Roth-Carter
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Carien M Niessen
- Department of Dermatology, Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), Center for Molecule Medicine Cologne, University of Cologne, Cologne, Germany
| | - Scott A Nichols
- Department of Biological Sciences, 2101 E. Wesley Ave. SGM 203, University of Denver, CO 80210, USA.
| |
Collapse
|
8
|
Xie D, Bilgic-Temel A, Abu Alrub N, Murrell DF. Alopecia in Autoimmune Blistering Diseases: A Systematic Review of Pathogenesis and Clinical Features of Disease. Skin Appendage Disord 2019; 5:263-275. [PMID: 31559249 DOI: 10.1159/000496836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/10/2019] [Indexed: 11/19/2022] Open
Abstract
Background Autoimmune blistering diseases (AIBD) are characterised by the body's production of autoantibodies against structural proteins in the epidermis and/or the basement membrane on cutaneous and mucosal surfaces. Alopecia is a complication of AIBD that has generally been overlooked in patients with severe blistering diseases because it is regarded as a cosmetic issue. Yet recent research into quality of life tools has found that stigmatisation by appearance plays a significant role in blistering diseases. Aim To review the current literature detailing the pathogenesis and clinical presentations of alopecia in AIBD patients. Method We searched Medline, PubMed and EMBASE electronic databases up to September 2018, for empirical human and animal studies. Results Only 36 human studies including 223 patients (190 pemphigus, 25 pemphigoid, 5 epidermolysis bullosa acquisita, 2 dermatitis herpetiformis and 1 linear IgA disease) detailed demographic and clinical manifestations of alopecia. A range of hair evaluation methods was demonstrated to reach alopecia diagnosis. Furthermore, with no universal validated scoring system for alopecia severity, alopecia patterns have been summarised. Conclusion Previous randomised trials have not highlighted alopecia as an important outcome of AIBD, so epidemiological evaluation of the available literature has been helpful in summarising trends between existing studies and demonstrating inconsistencies.
Collapse
Affiliation(s)
- Danica Xie
- Department of Dermatology, St. George Hospital, Sydney, New South Wales, Australia.,Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Asli Bilgic-Temel
- Department of Dermatology, St. George Hospital, Sydney, New South Wales, Australia
| | - Nada Abu Alrub
- Department of Dermatology, St. George Hospital, Sydney, New South Wales, Australia
| | - Dédée F Murrell
- Department of Dermatology, St. George Hospital, Sydney, New South Wales, Australia.,Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
See SHC, Peternel S, Adams D, North JP. Distinguishing histopathologic features of acantholytic dermatoses and the pattern of acantholytic hypergranulosis. J Cutan Pathol 2018; 46:6-15. [DOI: 10.1111/cup.13356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Sharlene Helene C. See
- Department of Dermatology; University of California San Francisco; San Francisco California
- Department of Pathology; University of California San Francisco; San Francisco California
| | - Sandra Peternel
- Department of Dermatology; University of California San Francisco; San Francisco California
- Department of Pathology; University of California San Francisco; San Francisco California
- Department of Dermatovenereology, University of Rijeka, Faculty of Medicine; Rijeka Croatia
| | - Derrick Adams
- Lassen Medical Clinic, Dermatology division; Red Bluff California
| | - Jeffrey P. North
- Department of Dermatology; University of California San Francisco; San Francisco California
- Department of Pathology; University of California San Francisco; San Francisco California
| |
Collapse
|
10
|
Ungewiß H, Rötzer V, Meir M, Fey C, Diefenbacher M, Schlegel N, Waschke J. Dsg2 via Src-mediated transactivation shapes EGFR signaling towards cell adhesion. Cell Mol Life Sci 2018; 75:4251-4268. [PMID: 29980799 PMCID: PMC11105603 DOI: 10.1007/s00018-018-2869-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/19/2018] [Accepted: 07/03/2018] [Indexed: 12/31/2022]
Abstract
Rapidly renewing epithelial tissues such as the intestinal epithelium require precise tuning of intercellular adhesion and proliferation to preserve barrier integrity. Here, we provide evidence that desmoglein 2 (Dsg2), an adhesion molecule of desmosomes, controls cell adhesion and proliferation via epidermal growth factor receptor (EGFR) signaling. Dsg2 is required for EGFR localization at intercellular junctions as well as for Src-mediated EGFR activation. Src binds to EGFR and is required for localization of EGFR and Dsg2 to cell-cell contacts. EGFR is critical for cell adhesion and barrier recovery. In line with this, Dsg2-deficient enterocytes display impaired barrier properties and increased cell proliferation. Mechanistically, Dsg2 directly interacts with EGFR and undergoes heterotypic-binding events on the surface of living enterocytes via its extracellular domain as revealed by atomic force microscopy. Thus, our study reveals a new mechanism by which Dsg2 via Src shapes EGFR function towards cell adhesion.
Collapse
Affiliation(s)
- Hanna Ungewiß
- Department I, Institute of Anatomy and Cell Biology, Ludwig Maximilians University Munich, Pettenkoferstr. 11, 80336, Munich, Germany
| | - Vera Rötzer
- Department I, Institute of Anatomy and Cell Biology, Ludwig Maximilians University Munich, Pettenkoferstr. 11, 80336, Munich, Germany
| | - Michael Meir
- Department of General, Visceral, Vascular and Paediatric Surgery, Julius-Maximilians-Universität, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Christina Fey
- Department for Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070, Würzburg, Germany
| | - Markus Diefenbacher
- Department of Biochemistry and Molecular Biochemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Vascular and Paediatric Surgery, Julius-Maximilians-Universität, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Jens Waschke
- Department I, Institute of Anatomy and Cell Biology, Ludwig Maximilians University Munich, Pettenkoferstr. 11, 80336, Munich, Germany.
| |
Collapse
|
11
|
Bumiller-Bini V, Cipolla GA, de Almeida RC, Petzl-Erler ML, Augusto DG, Boldt ABW. Sparking Fire Under the Skin? Answers From the Association of Complement Genes With Pemphigus Foliaceus. Front Immunol 2018; 9:695. [PMID: 29686679 PMCID: PMC5900433 DOI: 10.3389/fimmu.2018.00695] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/21/2018] [Indexed: 11/13/2022] Open
Abstract
Skin blisters of pemphigus foliaceus (PF) present concomitant deposition of autoantibodies and components of the complement system (CS), whose gene polymorphisms are associated with susceptibility to different autoimmune diseases. To investigate these in PF, we evaluated 992 single-nucleotide polymorphisms (SNPs) of 44 CS genes, genotyped through microarray hybridization in 229 PF patients and 194 controls. After excluding SNPs with minor allele frequency <1%, out of Hardy-Weinberg equilibrium in controls or in strong linkage disequilibrium (r2 ≥ 0.8), 201 SNPs remained for logistic regression. Polymorphisms of 11 genes were associated with PF. MASP1 encodes a crucial serine protease of the lectin pathway (rs13094773: OR = 0.5, p = 0.0316; rs850309: OR = 0.23, p = 0.03; rs3864098: OR = 1.53, p = 0.0383; rs698104: OR = 1.52, p = 0.0424; rs72549154: OR = 0.55, p = 0.0453). C9 (rs187875: OR = 1.46, p = 0.0189; rs700218: OR = 0.12, p = 0.0471) and C8A (rs11206934: OR = 4.02, p = 0.0323) encode proteins of the membrane attack complex (MAC) and C5AR1 (rs10404456: OR = 1.43, p = 0.0155), a potent anaphylatoxin-receptor. Two encode complement regulators: MAC-blocking CD59 (rs1047581: OR = 0.62, p = 0.0152) and alternative pathway-blocking CFH (rs34388368: OR = 2.57, p = 0.0195). One encodes opsonin: C3 (rs4807895: OR = 2.52, p = 0.0239), whereas four encode receptors for C3 fragments: CR1 (haplotype with rs6656401: OR = 1.37, p = 0.0382), CR2 (rs2182911: OR = 0.23, p = 0.0263), ITGAM (CR3, rs12928810: OR = 0.66, p = 0.0435), and ITGAX (CR4, rs11574637: OR = 0.63, p = 0.0056). Associations reinforced former findings, regarding differential gene expression, serum levels, C3, and MAC deposition on lesions. Deregulation of previously barely noticed processes, e.g., the lectin and alternative pathways and opsonization-mediated phagocytosis, also modulate PF susceptibility. The results open new crucial avenues for understanding disease etiology and may improve PF treatment through additional therapeutic targets.
Collapse
Affiliation(s)
- Valéria Bumiller-Bini
- Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do Paraná, Curitiba, Brazil
| | - Gabriel Adelman Cipolla
- Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do Paraná, Curitiba, Brazil
| | - Rodrigo Coutinho de Almeida
- Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do Paraná, Curitiba, Brazil
| | - Maria Luiza Petzl-Erler
- Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do Paraná, Curitiba, Brazil
| | - Danillo Gardenal Augusto
- Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do Paraná, Curitiba, Brazil
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Angelica Beate Winter Boldt
- Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do Paraná, Curitiba, Brazil
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
12
|
Nekrasova O, Harmon RM, Broussard JA, Koetsier JL, Godsel LM, Fitz GN, Gardel ML, Green KJ. Desmosomal cadherin association with Tctex-1 and cortactin-Arp2/3 drives perijunctional actin polymerization to promote keratinocyte delamination. Nat Commun 2018; 9:1053. [PMID: 29535305 PMCID: PMC5849617 DOI: 10.1038/s41467-018-03414-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/09/2018] [Indexed: 12/22/2022] Open
Abstract
The epidermis is a multi-layered epithelium that serves as a barrier against water loss and environmental insults. Its morphogenesis occurs through a tightly regulated program of biochemical and architectural changes during which basal cells commit to differentiate and move towards the skin's surface. Here, we reveal an unexpected role for the vertebrate cadherin desmoglein 1 (Dsg1) in remodeling the actin cytoskeleton to promote the transit of basal cells into the suprabasal layer through a process of delamination, one mechanism of epidermal stratification. Actin remodeling requires the interaction of Dsg1 with the dynein light chain, Tctex-1 and the actin scaffolding protein, cortactin. We demonstrate that Tctex-1 ensures the correct membrane compartmentalization of Dsg1-containing desmosomes, allowing cortactin/Arp2/3-dependent perijunctional actin polymerization and decreasing tension at E-cadherin junctions to promote keratinocyte delamination. Moreover, Dsg1 is sufficient to enable simple epithelial cells to exit a monolayer to form a second layer, highlighting its morphogenetic potential.
Collapse
Affiliation(s)
- Oxana Nekrasova
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Robert M Harmon
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, 60637, IL, USA
| | - Joshua A Broussard
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Jennifer L Koetsier
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Lisa M Godsel
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Gillian N Fitz
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago, 60637, IL, USA
| | - Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA.
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA.
| |
Collapse
|
13
|
Desmoglein 2 promotes vasculogenic mimicry in melanoma and is associated with poor clinical outcome. Oncotarget 2018; 7:46492-46508. [PMID: 27340778 PMCID: PMC5216812 DOI: 10.18632/oncotarget.10216] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/03/2016] [Indexed: 12/12/2022] Open
Abstract
Tumors can develop a blood supply not only by promoting angiogenesis but also by forming vessel-like structures directly from tumor cells, known as vasculogenic mimicry (VM). Understanding mechanisms that regulate VM is important, as these might be exploitable to inhibit tumor progression. Here, we reveal the adhesion molecule desmoglein 2 (DSG2) as a novel mediator of VM in melanoma. Analysis of patient-derived melanoma cell lines and tumor tissues, and interrogation of The Cancer Genome Atlas (TCGA) data, revealed that DSG2 is frequently overexpressed in primary and metastatic melanomas compared to normal melanocytes. Notably, this overexpression was associated with poor clinical outcome. DSG2+ melanoma cells self-organized into tube-like structures on Matrigel, indicative of VM activity, which was inhibited by DSG2 knockdown or treatment with a DSG2-blocking peptide. Mechanistic studies revealed that DSG2 regulates adhesion and cell-cell interactions during tube formation, but does not control melanoma cell viability, proliferation or motility. Finally, analysis of patient tumors revealed a correlation between DSG2 expression, VM network density and expression of VM-associated genes. These studies identify DSG2 as a key regulator of VM activity in human melanoma and suggest this molecule might be therapeutically targeted to reduce tumor blood supply and metastatic spread.
Collapse
|
14
|
Overmiller AM, McGuinn KP, Roberts BJ, Cooper F, Brennan-Crispi DM, Deguchi T, Peltonen S, Wahl JK, Mahoney MG. c-Src/Cav1-dependent activation of the EGFR by Dsg2. Oncotarget 2018; 7:37536-37555. [PMID: 26918609 PMCID: PMC5122330 DOI: 10.18632/oncotarget.7675] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/25/2016] [Indexed: 12/31/2022] Open
Abstract
The desmosomal cadherin, desmoglein 2 (Dsg2), is deregulated in a variety of human cancers including those of the skin. When ectopically expressed in the epidermis of transgenic mice, Dsg2 activates multiple mitogenic signaling pathways and increases susceptibility to tumorigenesis. However, the molecular mechanism responsible for Dsg2-mediated cellular signaling is poorly understood. Here we show overexpression as well as co-localization of Dsg2 and EGFR in cutaneous SCCs in vivo. Using HaCaT keratinocytes, knockdown of Dsg2 decreases EGFR expression and abrogates the activation of EGFR, c-Src and Stat3, but not Erk1/2 or Akt, in response to EGF ligand stimulation. To determine whether Dsg2 mediates signaling through lipid microdomains, sucrose density fractionation illustrated that Dsg2 is recruited to and displaces Cav1, EGFR and c-Src from light density lipid raft fractions. STED imaging confirmed that the presence of Dsg2 disperses Cav1 from the cell-cell borders. Perturbation of lipid rafts with the cholesterol-chelating agent MβCD also shifts Cav1, c-Src and EGFR out of the rafts and activates signaling pathways. Functionally, overexpression of Dsg2 in human SCC A431 cells enhances EGFR activation and increases cell proliferation and migration through a c-Src and EGFR dependent manner. In summary, our data suggest that Dsg2 stimulates cell growth and migration by positively regulating EGFR level and signaling through a c-Src and Cav1-dependent mechanism using lipid rafts as signal modulatory platforms.
Collapse
Affiliation(s)
- Andrew M Overmiller
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kathleen P McGuinn
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Brett J Roberts
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Felicia Cooper
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Donna M Brennan-Crispi
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Takahiro Deguchi
- Laboratory of Biophysics, Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology, University of Turku and Turku Hospital, Turku, Finland
| | - James K Wahl
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Mỹ G Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
15
|
Desmoglein 2 regulates the intestinal epithelial barrier via p38 mitogen-activated protein kinase. Sci Rep 2017; 7:6329. [PMID: 28740231 PMCID: PMC5524837 DOI: 10.1038/s41598-017-06713-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/16/2017] [Indexed: 01/18/2023] Open
Abstract
Intestinal epithelial barrier properties are maintained by a junctional complex consisting of tight junctions (TJ), adherens junctions (AJ) and desmosomes. Desmoglein 2 (Dsg2), an adhesion molecule of desmosomes and the only Dsg isoform expressed in enterocytes, is required for epithelial barrier properties and may contribute to barrier defects in Crohn’s disease. Here, we identified extradesmosomal Dsg2 on the surface of polarized enterocytes by Triton extraction, confocal microscopy, SIM and STED. Atomic force microscopy (AFM) revealed Dsg2-specific binding events along the cell border on the surface of enterocytes with a mean unbinding force of around 30pN. Binding events were blocked by an inhibitory antibody targeting Dsg2 which under same conditions activated p38MAPK but did not reduce cell cohesion. In enterocytes deficient for Dsg2, p38MAPK activity was reduced and both barrier integrity and reformation were impaired. Dsc2 rescue did not restore p38MAPK activity indicating that Dsg2 is required. Accordingly, direct activation of p38MAPK in Dsg2-deficient cells enhanced barrier reformation demonstrating that Dsg2-mediated activation of p38MAPK is crucial for barrier function. Collectively, our data show that Dsg2, beside its adhesion function, regulates intestinal barrier function via p38MAPK signalling. This is in contrast to keratinocytes and points towards tissue-specific signalling functions of desmosomal cadherins.
Collapse
|
16
|
Zanetti F, Titz B, Sewer A, Lo Sasso G, Scotti E, Schlage WK, Mathis C, Leroy P, Majeed S, Torres LO, Keppler BR, Elamin A, Trivedi K, Guedj E, Martin F, Frentzel S, Ivanov NV, Peitsch MC, Hoeng J. Comparative systems toxicology analysis of cigarette smoke and aerosol from a candidate modified risk tobacco product in organotypic human gingival epithelial cultures: A 3-day repeated exposure study. Food Chem Toxicol 2017; 101:15-35. [PMID: 28025120 DOI: 10.1016/j.fct.2016.12.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/01/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022]
Abstract
Smoking is one of the major lifestyle-related risk factors for periodontal diseases. Modified risk tobacco products (MRTP) offer a promising alternative in the harm reduction strategy for adult smokers unable to quit. Using a systems toxicology approach, we investigated and compared the exposure effects of a reference cigarette (3R4F) and a heat-not-burn technology-based candidate MRTP, the Tobacco Heating System (THS) 2.2. Human gingival epithelial organotypic cultures were repeatedly exposed (3 days) for 28 min at two matching concentrations of cigarette smoke (CS) or THS2.2 aerosol. Results showed only minor histopathological alterations and minimal cytotoxicity upon THS2.2 aerosol exposure compared to CS (1% for THS2.2 aerosol vs. 30% for CS, at the high concentration). Among the 14 proinflammatory mediators analyzed, only 5 exhibited significant alterations with THS2.2 exposure compared with 11 upon CS exposure. Transcriptomic and metabolomic analysis indicated a general reduction of the impact in THS2.2 aerosol-exposed samples with respect to CS (∼79% lower biological impact for the high THS2.2 aerosol concentration compared to CS, and 13 metabolites significantly perturbed for THS2.2 vs. 181 for CS). This study indicates that exposure to THS2.2 aerosol had a lower impact on the pathophysiology of human gingival organotypic cultures than CS.
Collapse
Affiliation(s)
- Filippo Zanetti
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland.
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Alain Sewer
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Giuseppe Lo Sasso
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Elena Scotti
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Walter K Schlage
- Biology Consultant, Max-Baermann-Str. 21, 51429 Bergisch Gladbach, Germany
| | - Carole Mathis
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Patrice Leroy
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Shoaib Majeed
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Laura Ortega Torres
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | | | - Ashraf Elamin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Keyur Trivedi
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Stefan Frentzel
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
17
|
Zanetti F, Sewer A, Mathis C, Iskandar AR, Kostadinova R, Schlage WK, Leroy P, Majeed S, Guedj E, Trivedi K, Martin F, Elamin A, Merg C, Ivanov NV, Frentzel S, Peitsch MC, Hoeng J. Systems Toxicology Assessment of the Biological Impact of a Candidate Modified Risk Tobacco Product on Human Organotypic Oral Epithelial Cultures. Chem Res Toxicol 2016; 29:1252-69. [PMID: 27404394 DOI: 10.1021/acs.chemrestox.6b00174] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cigarette smoke (CS) has been reported to increase predisposition to oral cancer and is also recognized as a risk factor for many conditions including periodontal diseases, gingivitis, and other benign mucosal disorders. Smoking cessation remains the most effective approach for minimizing the risk of smoking-related diseases. However, reduction of harmful constituents by heating rather than combusting tobacco, without modifying the amount of nicotine, is a promising new paradigm in harm reduction. In this study, we compared effects of exposure to aerosol derived from a candidate modified risk tobacco product, the tobacco heating system (THS) 2.2, with those of CS generated from the 3R4F reference cigarette. Human organotypic oral epithelial tissue cultures (EpiOral, MatTek Corporation) were exposed for 28 min to 3R4F CS or THS2.2 aerosol, both diluted with air to comparable nicotine concentrations (0.32 or 0.51 mg nicotine/L aerosol/CS for 3R4F and 0.31 or 0.46 mg/L for THS2.2). We also tested one higher concentration (1.09 mg/L) of THS2.2. A systems toxicology approach was employed combining cellular assays (i.e., cytotoxicity and cytochrome P450 activity assays), comprehensive molecular investigations of the buccal epithelial transcriptome (mRNA and miRNA) by means of computational network biology, measurements of secreted proinflammatory markers, and histopathological analysis. We observed that the impact of 3R4F CS was greater than THS2.2 aerosol in terms of cytotoxicity, morphological tissue alterations, and secretion of inflammatory mediators. Analysis of the transcriptomic changes in the exposed oral cultures revealed significant perturbations in various network models such as apoptosis, necroptosis, senescence, xenobiotic metabolism, oxidative stress, and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) signaling. The stress responses following THS2.2 aerosol exposure were markedly decreased, and the exposed cultures recovered more completely compared with those exposed to 3R4F CS.
Collapse
Affiliation(s)
- Filippo Zanetti
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Alain Sewer
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Carole Mathis
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Anita R Iskandar
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Radina Kostadinova
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Walter K Schlage
- Biology Consultant , Max-Baermann-Str. 21, 51429 Bergisch Gladbach, Germany
| | - Patrice Leroy
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Shoaib Majeed
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Keyur Trivedi
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Florian Martin
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Ashraf Elamin
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Céline Merg
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Stefan Frentzel
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
18
|
Assessment of the role of direct immunofluorescence of the outer root sheath in the diagnosis of pemphigus patients. JOURNAL OF THE EGYPTIAN WOMEN’S DERMATOLOGIC SOCIETY 2016. [DOI: 10.1097/01.ewx.0000483141.15448.e4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Abstract
Desmosomes represent adhesive, spot-like intercellular junctions that in association with intermediate filaments mechanically link neighboring cells and stabilize tissue architecture. In addition to this structural function, desmosomes also act as signaling platforms involved in the regulation of cell proliferation, differentiation, migration, morphogenesis, and apoptosis. Thus, deregulation of desmosomal proteins has to be considered to contribute to tumorigenesis. Proteolytic fragmentation and downregulation of desmosomal cadherins and plaque proteins by transcriptional or epigenetic mechanisms were observed in different cancer entities suggesting a tumor-suppressive role. However, discrepant data in the literature indicate that context-dependent differences based on alternative intracellular, signal transduction lead to altered outcome. Here, modulation of Wnt/β-catenin signaling by plakoglobin or desmoplakin and of epidermal growth factor receptor signaling appears to be of special relevance. This review summarizes current evidence on how desmosomal proteins participate in carcinogenesis, and depicts the molecular mechanisms involved.
Collapse
Affiliation(s)
- Otmar Huber
- a Institute of Biochemistry II, Jena University Hospital, Friedrich-Schiller-University Jena , Nonnenplan 2-4, 07743 Jena , Germany.,b Center for Sepsis Control and Care, Jena University Hospital , Erlanger Allee 101, 07747 Jena , Germany
| | - Iver Petersen
- c Institute of Pathology, Jena University Hospital, Friedrich-Schiller-University Jena , Ziegelmühlenweg 1, 07743 Jena , Germany
| |
Collapse
|
20
|
Sokol E, Kramer D, Diercks GFH, Kuipers J, Jonkman MF, Pas HH, Giepmans BNG. Large-Scale Electron Microscopy Maps of Patient Skin and Mucosa Provide Insight into Pathogenesis of Blistering Diseases. J Invest Dermatol 2015; 135:1763-1770. [PMID: 25789704 DOI: 10.1038/jid.2015.109] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/23/2015] [Accepted: 02/03/2015] [Indexed: 12/24/2022]
Abstract
Large-scale electron microscopy ("nanotomy") allows straight forward ultrastructural examination of tissue, cells, organelles, and macromolecules in a single data set. Such data set equals thousands of conventional electron microscopy images and is freely accessible (www.nanotomy.org). The software allows zooming in and out of the image from total overview to nanometer scale resolution in a 'Google Earth' approach. We studied the life-threatening human autoimmune blistering disease pemphigus, using nanotomy. The pathomechanism of cell-cell separation (acantholysis) that underlies the blistering is poorly understood. Ultrastructural examination of pemphigus tissue revealed previously unreported findings: (i) the presence of double-membrane structures between cells in all pemphigus types; (ii) the absence of desmosomes around spontaneous blisters in pemphigus foliaceus (PF); (iii) lower level blistering in PF when force induced; and (iv) intercellular widening at non-acantholytic cell layers. Thus, nanotomy delivers open-source electron microscopic maps of patient tissue, which can be analyzed for additional anomalies from any computer by experts from different fields.
Collapse
Affiliation(s)
- Ena Sokol
- Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands; Department of Dermatology, Center for Blistering Diseases, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Duco Kramer
- Department of Dermatology, Center for Blistering Diseases, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Gilles F H Diercks
- Department of Dermatology, Center for Blistering Diseases, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Jeroen Kuipers
- Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel F Jonkman
- Department of Dermatology, Center for Blistering Diseases, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Hendri H Pas
- Department of Dermatology, Center for Blistering Diseases, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Ben N G Giepmans
- Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
21
|
Gupta A, Nitoiu D, Brennan-Crispi D, Addya S, Riobo NA, Kelsell DP, Mahoney MG. Cell cycle- and cancer-associated gene networks activated by Dsg2: evidence of cystatin A deregulation and a potential role in cell-cell adhesion. PLoS One 2015; 10:e0120091. [PMID: 25785582 PMCID: PMC4364902 DOI: 10.1371/journal.pone.0120091] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/02/2015] [Indexed: 01/06/2023] Open
Abstract
Cell-cell adhesion is paramount in providing and maintaining multicellular structure and signal transmission between cells. In the skin, disruption to desmosomal regulated intercellular connectivity may lead to disorders of keratinization and hyperproliferative disease including cancer. Recently we showed transgenic mice overexpressing desmoglein 2 (Dsg2) in the epidermis develop hyperplasia. Following microarray and gene network analysis, we demonstrate that Dsg2 caused a profound change in the transcriptome of keratinocytes in vivo and altered a number of genes important in epithelial dysplasia including: calcium-binding proteins (S100A8 and S100A9), members of the cyclin protein family, and the cysteine protease inhibitor cystatin A (CSTA). CSTA is deregulated in several skin cancers, including squamous cell carcinomas (SCC) and loss of function mutations lead to recessive skin fragility disorders. The microarray results were confirmed by qPCR, immunoblotting, and immunohistochemistry. CSTA was detected at high level throughout the newborn mouse epidermis but dramatically decreased with development and was detected predominantly in the differentiated layers. In human keratinocytes, knockdown of Dsg2 by siRNA or shRNA reduced CSTA expression. Furthermore, siRNA knockdown of CSTA resulted in cytoplasmic localization of Dsg2, perturbed cytokeratin 14 staining and reduced levels of desmoplakin in response to mechanical stretching. Both knockdown of either Dsg2 or CSTA induced loss of cell adhesion in a dispase-based assay and the effect was synergistic. Our findings here offer a novel pathway of CSTA regulation involving Dsg2 and a potential crosstalk between Dsg2 and CSTA that modulates cell adhesion. These results further support the recent human genetic findings that loss of function mutations in the CSTA gene result in skin fragility due to impaired cell-cell adhesion: autosomal-recessive exfoliative ichthyosis or acral peeling skin syndrome.
Collapse
Affiliation(s)
- Abhilasha Gupta
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Daniela Nitoiu
- Center for Cutaneous Research, Blizard Institute, Barts and the London School or Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Donna Brennan-Crispi
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Sankar Addya
- Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Natalia A. Riobo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - David P. Kelsell
- Center for Cutaneous Research, Blizard Institute, Barts and the London School or Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mỹ G. Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
22
|
Pietkiewicz P, Gornowicz-Porowska J, Bowszyc-Dmochowska M, Jagielska J, Helak-Łapaj C, Kaczmarek E, Dmochowski M. Discordant expression of desmoglein 2 and 3 at the mRNA and protein levels in nodular and superficial basal cell carcinoma revealed by immunohistochemistry and fluorescent in situ hybridization. Clin Exp Dermatol 2015; 39:628-35. [PMID: 24934917 DOI: 10.1111/ced.12355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Basal cell carcinoma (BCC) is the most common human cancer. It is thought that skewed expression of desmogleins (Dsgs) in BCC may promote tumourigenesis. AIM To comparatively examine expression of Dsg2/Dsg3, using fluorescent in situ hybridization (FISH) and immunohistochemistry (IHC) in BCC subtypes. METHODS In total, 84 frozen sections from patients with various clinical or histological subtypes of BCC were analyzed. Expressions of Dsg2/Dsg3 protein and Dsg2/Dsg3 mRNA were evaluated using IHC and FISH, respectively, in BCC nests and BCC-free epidermis, and then quantitatively measured. RESULTS There was loss of correlation between Dsg2 and Dsg3 (IHC) in nodular and superficial BCC (nBCC, sBCC), and significant correlation between Dsg2 and Dsg3 (FISH) in BCC, but not nBCC and sBCC. CONCLUSIONS Because more prominent aberrations of Dsg2/Dsg3 expression were seen at the protein than at the mRNA level in BCC, these comparative observations indicate greater importance of events at the proteome level than those at the genome level in tumour functional compartments. Different Dsg2/Dsg3 expression in sBCC and nBCC might corroborate the possibility that sBCC and nBCC are separate conditions. These results may contribute to better understanding of the biological behaviour of BCC.
Collapse
Affiliation(s)
- P Pietkiewicz
- Autoimmune Blistering Dermatoses Section, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
23
|
Peeling off the genetics of atopic dermatitis–like congenital disorders. J Allergy Clin Immunol 2014; 134:808-15. [DOI: 10.1016/j.jaci.2014.07.061] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/13/2014] [Accepted: 07/16/2014] [Indexed: 12/14/2022]
|
24
|
Koster MI, Dinella J, Chen J, O'Shea C, Koch PJ. Integrating animal models and in vitro tissue models to elucidate the role of desmosomal proteins in diseases. ACTA ACUST UNITED AC 2014; 21:55-63. [PMID: 24460201 DOI: 10.3109/15419061.2013.876015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Desmosomes are intercellular junctions that provide tissues with structural stability. These junctions might also act as signaling centers that transmit environmental clues to the cell, thereby affecting cell differentiation, migration, and proliferation. The importance of desmosomes is underscored by devastating skin and heart diseases caused by mutations in desmosomal genes. Recent observations suggest that abnormal desmosomal protein expression might indirectly contribute to skin disorders previously not linked to these proteins. For example, it has been postulated that reduced desmosomal protein expression occurs in patients affected by Ankyloblepharon-ectodermal defects-cleft lip/palate syndrome (AEC), a skin fragility disorder caused by mutations in the transcription factor TP63. Currently, it is not clear how these changes in desmosomal gene expression contribute to AEC. We will discuss new approaches that combine in vitro and in vivo models to elucidate the role of desmosomal gene deregulation in human skin diseases such as AEC.
Collapse
Affiliation(s)
- Maranke I Koster
- Department of Dermatology, University of Colorado School of Medicine and Charles C Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado School of Medicine , Aurora, CO , USA
| | | | | | | | | |
Collapse
|
25
|
Jiang K, Rankin CR, Nava P, Sumagin R, Kamekura R, Stowell SR, Feng M, Parkos CA, Nusrat A. Galectin-3 regulates desmoglein-2 and intestinal epithelial intercellular adhesion. J Biol Chem 2014; 289:10510-10517. [PMID: 24567334 DOI: 10.1074/jbc.m113.538538] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The desmosomal cadherins, desmogleins, and desmocollins mediate strong intercellular adhesion. Human intestinal epithelial cells express the desmoglein-2 isoform. A proteomic screen for Dsg2-associated proteins in intestinal epithelial cells identified a lectin referred to as galectin-3 (Gal3). Gal3 bound to N-linked β-galactosides in Dsg2 extracellular domain and co-sedimented with caveolin-1 in lipid rafts. Down-regulation of Gal3 protein or incubation with lactose, a galactose-containing disaccharide that competitively inhibits galectin binding to Dsg2, decreased intercellular adhesion in intestinal epithelial cells. In the absence of functional Gal3, Dsg2 protein was internalized from the plasma membrane and degraded in the proteasome. These results report a novel role of Gal3 in stabilizing a desmosomal cadherin and intercellular adhesion in intestinal epithelial cells.
Collapse
Affiliation(s)
- Kun Jiang
- Department of Pathology and Laboratory Medicine, Epithelial Pathobiology and Mucosal Inflammation Research Unit, Emory University, Atlanta, Georgia 30322
| | - Carl R Rankin
- Department of Pathology and Laboratory Medicine, Epithelial Pathobiology and Mucosal Inflammation Research Unit, Emory University, Atlanta, Georgia 30322
| | - Porfirio Nava
- Department of Pathology and Laboratory Medicine, Epithelial Pathobiology and Mucosal Inflammation Research Unit, Emory University, Atlanta, Georgia 30322; Department of Physiology, Biophysics and Neuroscience, CINVESTAV IPN., Av. IPN 2508, Col. San Pedro Zacatenco, 07360 Ciudad de México, Distrito Federal, México
| | - Ronen Sumagin
- Department of Pathology and Laboratory Medicine, Epithelial Pathobiology and Mucosal Inflammation Research Unit, Emory University, Atlanta, Georgia 30322
| | - Ryuta Kamekura
- Department of Pathology and Laboratory Medicine, Epithelial Pathobiology and Mucosal Inflammation Research Unit, Emory University, Atlanta, Georgia 30322
| | - Sean R Stowell
- Department of Pathology and Laboratory Medicine, Epithelial Pathobiology and Mucosal Inflammation Research Unit, Emory University, Atlanta, Georgia 30322
| | - Mingli Feng
- Department of Pathology and Laboratory Medicine, Epithelial Pathobiology and Mucosal Inflammation Research Unit, Emory University, Atlanta, Georgia 30322
| | - Charles A Parkos
- Department of Pathology and Laboratory Medicine, Epithelial Pathobiology and Mucosal Inflammation Research Unit, Emory University, Atlanta, Georgia 30322
| | - Asma Nusrat
- Department of Pathology and Laboratory Medicine, Epithelial Pathobiology and Mucosal Inflammation Research Unit, Emory University, Atlanta, Georgia 30322.
| |
Collapse
|
26
|
Waschke J, Spindler V. Desmosomes and Extradesmosomal Adhesive Signaling Contacts in Pemphigus. Med Res Rev 2014; 34:1127-45. [DOI: 10.1002/med.21310] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jens Waschke
- Institute of Anatomy and Cell Biology, Department I; Ludwig-Maximilians-Universität (LMU) Munich; Pettenkoferstrasse 11 D-80336 Munich Germany
| | - Volker Spindler
- Institute of Anatomy and Cell Biology, Department I; Ludwig-Maximilians-Universität (LMU) Munich; Pettenkoferstrasse 11 D-80336 Munich Germany
| |
Collapse
|
27
|
Abstract
Desmosomes anchor intermediate filaments at sites of cell contact established by the interaction of cadherins extending from opposing cells. The incorporation of cadherins, catenin adaptors, and cytoskeletal elements resembles the closely related adherens junction. However, the recruitment of intermediate filaments distinguishes desmosomes and imparts a unique function. By linking the load-bearing intermediate filaments of neighboring cells, desmosomes create mechanically contiguous cell sheets and, in so doing, confer structural integrity to the tissues they populate. This trait and a well-established role in human disease have long captured the attention of cell biologists, as evidenced by a publication record dating back to the mid-1860s. Likewise, emerging data implicating the desmosome in signaling events pertinent to organismal development, carcinogenesis, and genetic disorders will secure a prominent role for desmosomes in future biological and biomedical investigations.
Collapse
Affiliation(s)
- Robert M Harmon
- Department of Pathology, Northwestern University Feinberg, School of Medicine , Chicago, IL , USA
| | | |
Collapse
|
28
|
Nekrasova O, Green KJ. Desmosome assembly and dynamics. Trends Cell Biol 2013; 23:537-46. [PMID: 23891292 DOI: 10.1016/j.tcb.2013.06.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 01/06/2023]
Abstract
Desmosomes are intercellular junctions that anchor intermediate filaments (IFs) to the plasma membrane, forming a supracellular scaffold that provides mechanical resilience to tissues. This anchoring function is accomplished by specialized members of the cadherin family and associated cytoskeletal linking proteins, which together form a highly organized membrane core flanked by mirror-image cytoplasmic plaques. Due to the biochemical insolubility of desmosomes, the mechanisms that govern assembly of these components into a functional organelle remained elusive. Recently developed molecular reporters and live cell imaging approaches have provided powerful new tools to monitor this finely tuned process in real time. Here we discuss studies that are beginning to decipher the machinery and regulation governing desmosome assembly and homeostasis in situ and how these mechanisms are affected during disease pathogenesis.
Collapse
Affiliation(s)
- Oxana Nekrasova
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
29
|
Desmoglein 2 is less important than desmoglein 3 for keratinocyte cohesion. PLoS One 2013; 8:e53739. [PMID: 23326495 PMCID: PMC3543261 DOI: 10.1371/journal.pone.0053739] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/03/2012] [Indexed: 11/19/2022] Open
Abstract
Desmosomes provide intercellular adhesive strength required for integrity of epithelial and some non-epithelial tissues. Within the epidermis, the cadherin-type adhesion molecules desmoglein (Dsg) 1-4 and desmocollin (Dsc) 1-3 build the adhesive core of desmosomes. In keratinocytes, several isoforms of these proteins are co-expressed. However, the contribution of specific isoforms to overall cell cohesion is unclear. Therefore, in this study we investigated the roles of Dsg2 and Dsg3, the latter of which is known to be essential for keratinocyte adhesion based on its autoantibody-induced loss of function in the autoimmune blistering skin disease pemphigus vulgaris (PV). The pathogenic PV antibody AK23, targeting the Dsg3 adhesive domain, led to profound loss of cell cohesion in human keratinocytes as revealed by the dispase-based dissociation assays. In contrast, an antibody against Dsg2 had no effect on cell cohesion although the Dsg2 antibody was demonstrated to interfere with Dsg2 transinteraction by single molecule atomic force microscopy and was effective to reduce cell cohesion in intestinal epithelial Caco-2 cells which express Dsg2 as the only Dsg isoform. To substantiate these findings, siRNA-mediated silencing of Dsg2 or Dsg3 was performed in keratinocytes. In contrast to Dsg3-depleted cells, Dsg2 knockdown reduced cell cohesion only under conditions of increased shear. These experiments indicate that specific desmosomal cadherins contribute differently to keratinocyte cohesion and that Dsg2 compared to Dsg3 is less important in this context.
Collapse
|
30
|
Gualerzi A, Sciarabba M, Tartaglia G, Sforza C, Donetti E. Acute effects of cigarette smoke on three-dimensional cultures of normal human oral mucosa. Inhal Toxicol 2012; 24:382-9. [PMID: 22564096 DOI: 10.3109/08958378.2012.679367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Human oral mucosa is the combustion chamber of cigarette, but scanty evidence is available about the early smoke effects. OBJECTIVE The present work aimed at evaluating from a morphological point of view whole smoke early effects on epithelial intercellular adhesion and keratinocyte terminal differentiation in a three-dimensional model of human oral mucosa. MATERIALS AND METHODS Biopsies of keratinized oral mucosa of healthy nonsmoking women (n = 5) were collected. After culturing in a Transwell system, one fragment of each biopsy was exposed to the smoke of one single cigarette; the remnant represented the internal control. The distribution of epithelial differentiation markers (keratin-10, K10, and keratin-14, K14, for suprabasal and basal cells respectively), desmosomes (desmoglein-1, desmoglein-3), tight junctions (occludin), adherens junctions (E-cadherin, β-catenin), and apoptotic cells (p53, caspase 3) were evaluated by immunofluorescence. RESULTS Quantitative analysis of K14 immunolabeling revealed an overexpression in the suprabasal layers as early as 3 h after smoke exposure, without impairment of the epithelial junctional apparatus and apoptosis induction. DISCUSSION AND CONCLUSION These results suggested that the first significant response to cigarette smoke came from the basal and suprabasal layers of the human oral epithelium. The considered model maintained the three-dimensional arrangement of the human mucosa in the oral cavity and mimicked the inhalation/exhalation cycle during the exposure to cigarette smoke, offering a good possibility to extrapolate the reported observations to humans.
Collapse
Affiliation(s)
- Alice Gualerzi
- Dipartimento di Morfologia Umana e Scienze Biomediche - Città Studi, Italy
| | | | | | | | | |
Collapse
|
31
|
Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol 2011; 12:565-80. [PMID: 21860392 DOI: 10.1038/nrm3175] [Citation(s) in RCA: 346] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To provide a stable environmental barrier, the epidermis requires an integrated network of cytoskeletal elements and cellular junctions. Nevertheless, the epidermis ranks among the body's most dynamic tissues, continually regenerating itself and responding to cutaneous insults. As keratinocytes journey from the basal compartment towards the cornified layers, they completely reorganize their adhesive junctions and cytoskeleton. These architectural components are more than just rivets and scaffolds - they are active participants in epidermal morphogenesis that regulate epidermal polarization, signalling and barrier formation.
Collapse
|
32
|
The extent of desmoglein 3 depletion in pemphigus vulgaris is dependent on Ca(2+)-induced differentiation: a role in suprabasal epidermal skin splitting? THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1905-16. [PMID: 21864491 DOI: 10.1016/j.ajpath.2011.06.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 05/18/2011] [Accepted: 06/22/2011] [Indexed: 01/24/2023]
Abstract
Pemphigus vulgaris (PV) is an autoimmune disease of the skin and mucous membranes and is characterized by development of autoantibodies against the desmosomal cadherins desmoglein (Dsg) 3 and Dsg1 and formation of intraepidermal suprabasal blisters. Depletion of Dsg3 is a critical mechanism in PV pathogenesis. Because we did not detect reduced Dsg3 levels in keratinocytes cultured for longer periods under high-Ca(2+) conditions, we hypothesized that Dsg depletion depends on Ca(2+)-mediated keratinocyte differentiation. Our data indicate that depletion of Dsg3 occurs specifically in deep epidermal layers both in skin of patients with PV and in an organotypic raft model of human epidermis incubated using IgG fractions from patients with PV. In addition, Dsg3 depletion and loss of Dsg3 staining were prominent in cultured primary keratinocytes and in HaCaT cells incubated in high-Ca(2+) medium for 3 days, but were less pronounced in HaCaT cultures after 8 days. These effects were dependent on protein kinase C signaling because inhibition of protein kinase C blunted both Dsg3 depletion and loss of intercellular adhesion. Moreover, protein kinase C inhibition blocked suprabasal Dsg3 depletion in cultured human epidermis and blister formation in a neonatal mouse model. Considered together, our data indicate a contribution of Dsg depletion to PV pathogenesis dependent on Ca(2+)-induced differentiation. Furthermore, prominent depletion in basal epidermal layers may contribute to the suprabasal cleavage plane observed in PV.
Collapse
|
33
|
Abstract
Desmoglein-2 (Dsg2) is a desmosomal cadherin that is aberrantly expressed in human skin carcinomas. In addition to its well-known role in mediating intercellular desmosomal adhesion, Dsg2 regulates mitogenic signaling that may promote cancer development and progression. However, the mechanisms by which Dsg2 activates these signaling pathways and the relative contribution of its signaling and adhesion functions in tumor progression are poorly understood. In this study we show that Dsg2 associates with caveolin-1 (Cav-1), the major protein of specialized membrane microdomains called caveolae, which functions in both membrane protein turnover and intracellular signaling. Sequence analysis revealed that Dsg2 contains a putative Cav-1-binding motif. A permeable competing peptide resembling the Cav-1 scaffolding domain bound to Dsg2, disrupted normal Dsg2 staining and interfered with the integrity of epithelial sheets in vitro. Additionally, we observed that Dsg2 is proteolytically processed; resulting in a 95-kDa ectodomain shed product and a 65-kDa membrane-spanning fragment, the latter of which localizes to lipid rafts along with full-length Dsg2. Disruption of lipid rafts shifted Dsg2 to the non-raft fractions, leading to the accumulation of these proteins. Interestingly, Dsg2 proteolytic products are elevated in vivo in skin tumors from transgenic mice overexpressing Dsg2. Collectively, these data are consistent with the possibility that accumulation of truncated Dsg2 protein interferes with desmosome assembly and/or maintenance to disrupt cell-cell adhesion. Furthermore, the association of Dsg2 with Cav-1 may provide a mechanism for regulating mitogenic signaling and modulating the cell-surface presentation of an important adhesion molecule, both of which could contribute to malignant transformation and tumor progression.
Collapse
|
34
|
Kolegraff K, Nava P, Laur O, Parkos CA, Nusrat A. Characterization of full-length and proteolytic cleavage fragments of desmoglein-2 in native human colon and colonic epithelial cell lines. Cell Adh Migr 2011; 5:306-14. [PMID: 21715983 DOI: 10.4161/cam.5.4.16911] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The desmosomal cadherin desmoglein-2 (Dsg2) is a transmembrane cell adhesion protein that is widely expressed in epithelial and non-epithelial tissues, such as the intestine, epidermis, testis, and heart. Dsg2 has been shown to regulate numerous cellular processes, including proliferation and apoptosis, and we have previously reported that intracellular fragments of Dsg2 promote apoptosis in colonic epithelial cells. While several studies have shown that both the extracellular and intracellular domains of Dsg2 can be targeted by proteases, identification of these putative Dsg2 fragments in colonic epithelial cells has not been performed. Here, we report that the mouse monoclonal antibody (mAb) AH12.2 binds to the first extracellular domain of Dsg2. Using this antibody along with previously described mAb against the extracellular (6D8) and intracellular (DG3.10) domains of Dsg2, we characterize the expression and identify the cleavage fragments of Dsg2 in colonic epithelial cells. This study provides a detailed description of the extracellular and intracellular Dsg2 cleavage fragments that are generated in the simple epithelium of the colon and will guide future studies examining the relationship of these fragments to cellular fate and disease states.
Collapse
Affiliation(s)
- Keli Kolegraff
- Epithelial Pathobiology Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
35
|
Iyori K, Futagawa-Saito K, Hisatsune J, Yamamoto M, Sekiguchi M, Ide K, Son WG, Olivry T, Sugai M, Fukuyasu T, Iwasaki T, Nishifuji K. Staphylococcus pseudintermedius exfoliative toxin EXI selectively digests canine desmoglein 1 and causes subcorneal clefts in canine epidermis. Vet Dermatol 2011; 22:319-26. [PMID: 21410798 DOI: 10.1111/j.1365-3164.2011.00952.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Staphylococcal exfoliative toxins are known to digest desmoglein (Dsg) 1, a desmosomal cell-cell adhesion molecule, thus causing intraepidermal splitting in human bullous impetigo, staphylococcal scalded skin syndrome and swine exudative epidermitis. Recently, a novel exfoliative toxin gene (exi), whose sequence shares significant homology with previously identified exfoliative toxins, was isolated from Staphylococcus pseudintermedius. Little is known about the pathogenic involvement of this toxin in canine pustular diseases such as impetigo. The aim of this study was to determine whether EXI, the product of the exi gene, digests canine Dsg1 and causes intraepidermal splitting in canine skin. An exi gene was isolated from chromosomal DNA of an S. pseudintermedius strain obtained from a pustule of a dog with impetigo, and was used to produce a recombinant EXI by Escherichia coli expression. When purified recombinant EXI was injected intradermally into normal dogs, it caused the development of vesicles or erosions with superficial epidermal splitting. In addition, the EXI abolished immunofluorescence for Dsg1, but not for Dsg3, at the injection sites. Moreover, the EXI directly degraded baculovirus-secreted recombinant extracellular domains of canine Dsg1, but not that of canine Dsg3, in vitro. The EXI also degraded mouse Dsg1α and swine Dsg1, but not human Dsg1, mouse Dsg1β and Dsg1γ. Conversely, recombinant SIET, previously designated as S. intermedius exfoliative toxin, did not cause intraepidermal splitting or degradation of any Dsgs. These findings indicate that EXI has a proteolytic activity that digests canine Dsg1, and this characteristic might be involved in the pathogenesis of intraepidermal splitting in canine impetigo.
Collapse
Affiliation(s)
- Keita Iyori
- Laboratory of Veterinary Internal Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Desmoglein 3 and keratin 10 expressions are reduced by chronic exposure to cigarette smoke in human keratinised oral mucosa explants. Arch Oral Biol 2010; 55:815-23. [DOI: 10.1016/j.archoralbio.2010.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 07/01/2010] [Accepted: 07/04/2010] [Indexed: 01/22/2023]
|
37
|
Fujii M, Honma M, Iinuma S, Kaneta K, Komatsu S, Sato K, Takahashi H, Ishida-Yamamoto A, Iizuka H. Recalcitrant facial pemphigus vulgaris: correlation of skin lesions with the ratio of antidesmoglein antibodies 1 and 3. Clin Exp Dermatol 2010; 36:284-7. [PMID: 21418270 DOI: 10.1111/j.1365-2230.2010.03920.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pemphigus vulgaris (PV) is an autoimmune bullous disease characterized by autoantibodies against desmogleins. We report a case of recalcitrant PV, which progressed from the mucosal to the mucocutaneous type, with a corresponding increase in anti-desmoglein (Dsg)1 and decrease in anti-Dsg3 antibody titres. Thus, the clinical features seemed to correlate with the ratio of anti-Dsg1 and 3. The patient also had anti-Dsg4 antibodies, which might be related to the nonscarring diffuse hair loss and marked facial involvement she also had. The patient did not respond to treatment with systemic steroid, ciclosporin, azathioprine, cyclophosphamide or double filtration plasmapheresis, and eventually died from fulminant thrombotic thrombocytopenic purpura of unknown cause.
Collapse
Affiliation(s)
- M Fujii
- Department of Dermatology, Asahikawa Medical College, Asahikawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Removal of amino-terminal extracellular domains of desmoglein 1 by staphylococcal exfoliative toxin is sufficient to initiate epidermal blister formation. J Dermatol Sci 2010; 59:184-91. [DOI: 10.1016/j.jdermsci.2010.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/16/2010] [Accepted: 07/22/2010] [Indexed: 02/01/2023]
|
39
|
Superficial dsg2 expression limits epidermal blister formation mediated by pemphigus foliaceus antibodies and exfoliative toxins. Dermatol Res Pract 2010; 2010:410278. [PMID: 20631906 PMCID: PMC2902105 DOI: 10.1155/2010/410278] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/23/2010] [Accepted: 03/10/2010] [Indexed: 11/17/2022] Open
Abstract
Cell-cell adhesion mediated by desmosomes is crucial for maintaining proper epidermal structure and function, as evidenced by several severe and potentially fatal skin disorders involving impairment of desmosomal proteins. Pemphigus foliaceus (PF) and staphylococcal scalded skin syndrome (SSSS) are subcorneal blistering diseases resulting from loss of function of the desmosomal cadherin, desmoglein 1 (Dsg1). To further study the pathomechanism of these diseases and to assess the adhesive properties of Dsg2, we employed a recently established transgenic (Tg) mouse model expressing Dsg2 in the superficial epidermis. Neonatal Tg and wild type (WT) mice were injected with purified ETA or PF Ig. We showed that ectopic expression of Dsg2 reduced the extent of blister formation in response to both ETA and PF Ig. In response to PF Ig, we observed either a dramatic loss or a reorganization of Dsg1-alpha, Dsg1-beta, and, to a lesser extent, Dsg1-gamma, in WT mice. The Inv-Dsg2 Tg mice showed enhanced retention of Dsg1 at the cell-cell border. Collectively, our data support the role for Dsg2 in cell adhesion and suggest that ectopic superficial expression of Dsg2 can increase membrane preservation of Dsg1 and limit epidermal blister formation mediated by PF antibodies and exfoliative toxins.
Collapse
|
40
|
Mahoney MG, Sadowski S, Brennan D, Pikander P, Saukko P, Wahl J, Aho H, Heikinheimo K, Bruckner-Tuderman L, Fertala A, Peltonen J, Uitto J, Peltonen S. Compound heterozygous desmoplakin mutations result in a phenotype with a combination of myocardial, skin, hair, and enamel abnormalities. J Invest Dermatol 2009; 130:968-78. [PMID: 19924139 DOI: 10.1038/jid.2009.357] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Desmoplakin (DP) anchors the intermediate filament cytoskeleton to the desmosomal cadherins and thereby confers structural stability to tissues. In this study, we present a patient with extensive mucocutaneous blisters, epidermolytic palmoplantar keratoderma, nail dystrophy, enamel dysplasia, and sparse woolly hair. The patient died at the age of 14 years from undiagnosed cardiomyopathy. The skin showed hyperplasia and acantholysis in the mid- and lower epidermal layers, whereas the heart showed extensive fibrosis and fibrofatty replacement in both ventricles. Immunofluorescence microscopy showed a reduction in the C-terminal domain of DP in the skin and oral mucosa. Sequencing of the DP gene showed undescribed mutations in the maternal and paternal alleles. Both mutations affected exon 24 encoding the C-terminal domain. The paternal mutation, c.6310delA, leads to a premature stop codon. The maternal mutation, c.7964 C to A, results in a substitution of an aspartic acid for a conserved alanine residue at amino acid 2655 (A2655D). Structural modeling indicated that this mutation changes the electrostatic potential of the mutated region of DP, possibly altering functions that depend on intermolecular interactions. To conclude, we describe a combination of DP mutation phenotypes affecting the skin, heart, hair, and teeth. This patient case emphasizes the importance of heart examination of patients with desmosomal genodermatoses.
Collapse
Affiliation(s)
- My G Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Spindler V, Heupel WM, Efthymiadis A, Schmidt E, Eming R, Rankl C, Hinterdorfer P, Müller T, Drenckhahn D, Waschke J. Desmocollin 3-mediated binding is crucial for keratinocyte cohesion and is impaired in pemphigus. J Biol Chem 2009; 284:30556-64. [PMID: 19717567 DOI: 10.1074/jbc.m109.024810] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Desmocollin (Dsc) 1-3 and desmoglein (Dsg) 1-4, transmembrane proteins of the cadherin family, form the adhesive core of desmosomes. Here we provide evidence that Dsc3 homo- and heterophilic trans-interaction is crucial for epidermal integrity. Single molecule atomic force microscopy (AFM) revealed homophilic trans-interaction of Dsc3. Dsc3 displayed heterophilic interaction with Dsg1 but not with Dsg3. A monoclonal antibody targeted against the extracellular domain reduced homophilic and heterophilic binding as measured by AFM, caused intraepidermal blistering in a model of human skin, and a loss of intercellular adhesion in cultured keratinocytes. Because autoantibodies against Dsg1 are associated with skin blistering in pemphigus, we characterized the role of Dsc3 binding for pemphigus pathogenesis. In contrast to AFM experiments, laser tweezer trapping revealed that pemphigus autoantibodies reduced binding of Dsc3-coated beads to the keratinocyte cell surface. These data indicate that loss of heterophilic Dsc3/Dsg1 binding may contribute to pemphigus skin blistering.
Collapse
Affiliation(s)
- Volker Spindler
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Koellikerstrasse 6, D-97070 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Brennan D, Mahoney MG. Increased expression of Dsg2 in malignant skin carcinomas: A tissue-microarray based study. Cell Adh Migr 2009; 3:148-54. [PMID: 19458482 DOI: 10.4161/cam.3.2.7539] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Desmoglein 2 (Dsg2), a transmembrane cadherin of the desmosomal cell-cell adhesion structure, is downregulated with epithelial differentiation. We recently demonstrated that overexpression of Dsg2 in epidermal keratinocytes deregulates multiple signaling pathways associated with increased growth rate, anchorage-independent cell survival, and the development of skin tumors. While changes in Dsg2 expression have been observed in neoplastic lesions, the correlation of expression levels and localization of Dsg2 and the state of tumor development has not been fully established. Here we generated a highly sensitive Dsg2 antibody (Ab10) and characterized that antibody along with a previously developed Dsg2 specific antibody 10D2. Using these antibodies in immunostaining of tissue microarrays, we show a dramatic upregulation of Dsg2 expression in certain human epithelial malignancies including basal cell carcinomas (BCC; n = 12), squamous cell carcinomas (SCC; n = 57), carcinomas of sebaceous and sweat glands (n = 12), and adenocarcinomas (n = 3). Dsg2 expression was completely absent in malignant fibrosarcomas (n = 16) and melanomas (n = 15). While Dsg2 expression was consistently strong in BCC, it varied in SCC with a minor correlation between a decrease of Dsg2 expression and tumor differentiation. In summary, we have identified Dsg2 as a potential novel marker for epithelial-derived malignancies.
Collapse
Affiliation(s)
- Donna Brennan
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
43
|
Donetti E, Bedoni M, Capone P, Gualerzi A, Tartaglia G, Sforza C. Anin vitromodel of human oral explants to study early effects of radiation mucositis. Eur J Oral Sci 2009; 117:169-74. [DOI: 10.1111/j.1600-0722.2009.00614.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Szegedi A, Páyer E, Czifra G, Tóth BI, Schmidt E, Kovács L, Blumberg PM, Bíró T. Protein kinase C isoenzymes differentially regulate the differentiation-dependent expression of adhesion molecules in human epidermal keratinocytes. Exp Dermatol 2008; 18:122-9. [PMID: 18637128 DOI: 10.1111/j.1600-0625.2008.00771.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Epidermal expression of adhesion molecules such as desmogleins (Dsg) and cadherins is strongly affected by the differentiation status of keratinocytes. We have previously shown that certain protein kinase C (PKC) isoforms differentially alter the growth and differentiation of human epidermal HaCaT keratinocytes. In this paper, using recombinant overexpression and RNA interference, we define the specific roles of the different PKC isoenzymes in modulation of expression of adhesion molecules in HaCaT keratinocytes. The level of Dsg1, a marker of differentiating keratinocytes, was antagonistically regulated by two Ca-independent 'novel' nPKC isoforms; i.e. it increased by the differentiation-promoting nPKCdelta and decreased by the growth-promoting nPKCepsilon. The expression of Dsg3 (highly expressed in proliferating epidermal layers) was conversely regulated by these isoenzymes, and was also inhibited by the differentiation inducer Ca-dependent 'conventional' cPKCalpha. Finally, the expression of P-cadherin (a marker of proliferating keratinocytes) was regulated by all of the examined PKCs, also in an antagonistic manner (inhibited by cPKCalpha/nPKCdelta and stimulated by cPKCbeta/nPKCepsilon). Collectively, the presented results strongly argue for the marked, differential, and in some instances antagonistic roles of individual Ca-dependent and Ca-independent PKC isoforms in the regulation of expression of adhesion molecules of desmosomes and adherent junctions in human epidermal keratinocytes.
Collapse
Affiliation(s)
- Andrea Szegedi
- Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Desmosomes are patch-like intercellular adhering junctions ("maculae adherentes"), which, in concert with the related adherens junctions, provide the mechanical strength to intercellular adhesion. Therefore, it is not surprising that desmosomes are abundant in tissues subjected to significant mechanical stress such as stratified epithelia and myocardium. Desmosomal adhesion is based on the Ca(2+)-dependent, homo- and heterophilic transinteraction of cadherin-type adhesion molecules. Desmosomal cadherins are anchored to the intermediate filament cytoskeleton by adaptor proteins of the armadillo and plakin families. Desmosomes are dynamic structures subjected to regulation and are therefore targets of signalling pathways, which control their molecular composition and adhesive properties. Moreover, evidence is emerging that desmosomal components themselves take part in outside-in signalling under physiologic and pathologic conditions. Disturbed desmosomal adhesion contributes to the pathogenesis of a number of diseases such as pemphigus, which is caused by autoantibodies against desmosomal cadherins. Beside pemphigus, desmosome-associated diseases are caused by other mechanisms such as genetic defects or bacterial toxins. Because most of these diseases affect the skin, desmosomes are interesting not only for cell biologists who are inspired by their complex structure and molecular composition, but also for clinical physicians who are confronted with patients suffering from severe blistering skin diseases such as pemphigus. To develop disease-specific therapeutic approaches, more insights into the molecular composition and regulation of desmosomes are required.
Collapse
Affiliation(s)
- Jens Waschke
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr. 6, 97070, Würzburg, Germany.
| |
Collapse
|
46
|
Wilanowski T, Caddy J, Ting SB, Hislop NR, Cerruti L, Auden A, Zhao LL, Asquith S, Ellis S, Sinclair R, Cunningham JM, Jane SM. Perturbed desmosomal cadherin expression in grainy head-like 1-null mice. EMBO J 2008; 27:886-97. [PMID: 18288204 DOI: 10.1038/emboj.2008.24] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Accepted: 01/31/2008] [Indexed: 11/09/2022] Open
Abstract
In Drosophila, the grainy head (grh) gene plays a range of key developmental roles through the regulation of members of the cadherin gene family. We now report that mice lacking the grh homologue grainy head-like 1 (Grhl1) exhibit hair and skin phenotypes consistent with a reduction in expression of the genes encoding the desmosomal cadherin, desmoglein 1 (Dsg1). Grhl1-null mice show an initial delay in coat growth, and older mice exhibit hair loss as a result of poor anchoring of the hair shaft in the follicle. The mice also develop palmoplantar keratoderma, analogous to humans with DSG1 mutations. Sequence analysis, DNA binding, and chromatin immunoprecipitation experiments demonstrate that the human and mouse Dsg1 promoters are direct targets of GRHL1. Ultrastructural analysis reveals reduced numbers of abnormal desmosomes in the interfollicular epidermis. These findings establish GRHL1 as an important regulator of the Dsg1 genes in the context of hair anchorage and epidermal differentiation, and suggest that cadherin family genes are key targets of the grainy head-like genes across 700 million years of evolution.
Collapse
Affiliation(s)
- Tomasz Wilanowski
- Rotary Bone Marrow Research Laboratories, Melbourne Health Research Directorate, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nishifuji K, Sugai M, Amagai M. Staphylococcal exfoliative toxins: “Molecular scissors” of bacteria that attack the cutaneous defense barrier in mammals. J Dermatol Sci 2008; 49:21-31. [PMID: 17582744 DOI: 10.1016/j.jdermsci.2007.05.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 05/09/2007] [Accepted: 05/22/2007] [Indexed: 11/30/2022]
Abstract
Bullous impetigo and its generalized form, staphylococcal scalded-skin syndrome (SSSS), are highly contagious, blistering skin diseases caused by Staphylococcus aureus infection. Virulent strains of the bacteria produce exfoliative toxins (ETs) that cause the loss of keratinocyte cell-cell adhesion in the superficial epidermis. Recent studies have indicated that the three isoforms of ETs, i.e., ETA, ETB, and ETD, are glutamate-specific serine proteases that specifically and efficiently cleave a single peptide bond in the extracellular region of human and mouse desmoglein 1 (Dsg1), a desmosomal intercellular adhesion molecule. In addition, four isoforms of S. hyicus exfoliative toxin, ExhA, ExhB, ExhC, and ExhD, cleave swine Dsg1, resulting in skin exfoliation similar to that observed in pigs with exudative epidermitis. In this review, we describe recent advances in our knowledge of the mechanisms of action of staphylococcal exfoliative toxins, which act as "molecular scissors" to facilitate percutaneous bacterial invasion of mammalian skin by cleavage of keratinocyte cell-cell adhesion molecules. The species-specificity of staphylococcal exfoliative toxins to cleave Dsg1 in certain mammalian species is discussed.
Collapse
Affiliation(s)
- Koji Nishifuji
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | |
Collapse
|
48
|
Holthöfer B, Windoffer R, Troyanovsky S, Leube RE. Structure and function of desmosomes. ACTA ACUST UNITED AC 2007; 264:65-163. [PMID: 17964922 DOI: 10.1016/s0074-7696(07)64003-0] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Desmosomes are prominent adhesion sites that are tightly associated with the cytoplasmic intermediate filament cytoskeleton providing mechanical stability in epithelia and also in several nonepithelial tissues such as cardiac muscle and meninges. They are unique in terms of ultrastructural appearance and molecular composition with cell type-specific variations. The dynamic assembly properties of desmosomes are important prerequisites for the acquisition and maintenance of tissue homeostasis. Disturbance of this equilibrium therefore not only compromises mechanical resilience but also affects many other tissue functions as becomes evident in various experimental scenarios and multiple diseases.
Collapse
Affiliation(s)
- Bastian Holthöfer
- Department of Anatomy and Cell Biology, Johannes Gutenberg University, 55128 Mainz, Germany
| | | | | | | |
Collapse
|
49
|
Abstract
Desmosomes are highly specialized anchoring junctions that link intermediate filaments to sites of intercellular adhesion, thus facilitating the formation of a supracellular scaffolding that distributes mechanical forces throughout a tissue. These junctions are thus particularly important for maintaining the integrity of tissues that endure physical stress, such as the epidermis and myocardium. The importance of the classic mechanical functions of desmosomal constituents is underscored by pathologies reported in animal models and an ever-expanding list of human mutations that target both desmosomal cadherins and their associated cytoskeletal anchoring proteins. However, the notion that desmosomes are static structures that exist simply to glue cells together belies their susceptibility to remodeling in response to environmental cues and their important tissue-specific roles in cell behavior and signaling. Here, we review the molecular blueprint of the desmosome and models for assembling its protein components to form an adhesive interface and the desmosomal plaque. We also discuss emerging evidence of supra-adhesive roles for desmosomal proteins in regulating tissue morphogenesis and homeostasis. Finally, we highlight the dynamic nature of these adhesive organelles, examining mechanisms in health and disease for modulating adhesive strength and stability of desmosomes.
Collapse
Affiliation(s)
- Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
50
|
Spindler V, Drenckhahn D, Zillikens D, Waschke J. Pemphigus IgG causes skin splitting in the presence of both desmoglein 1 and desmoglein 3. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:906-16. [PMID: 17640963 PMCID: PMC1959479 DOI: 10.2353/ajpath.2007.070028] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
According to the desmoglein (Dsg) compensation concept, different epidermal cleavage planes observed in pemphigus vulgaris and pemphigus foliaceus have been proposed to be caused by different autoantibody profiles against the desmosomal proteins Dsg 1 and Dsg 3. According to this model, Dsg 1 autoantibodies would only lead to epidermal splitting in those epidermal layers in which no Dsg 3 is present to compensate for the functional loss of Dsg 1. We provide evidence that both pemphigus foliaceus-IgG containing Dsg 1- but not Dsg 3-specific antibodies and pemphigus vulgaris-IgG with antibodies to Dsg 1 and Dsg 3 were equally effective in causing epidermal splitting in human skin and keratinocyte dissociation in vitro. These effects were present where keratinocytes expressed both Dsg 1 and Dsg 3, demonstrating that Dsg 3 does not compensate for Dsg 1 inactivation. Rather, the cleavage plane in intact human skin caused by pemphigus autoantibodies was similar to the plane of keratinocyte dissociation in response to toxin B-mediated inactivation of Rho GTPases. Because we recently demonstrated that pemphigus-IgG causes epidermal splitting by inhibition of Rho A, we propose that Rho GTPase inactivation contributes to the mechanisms accounting for the cleavage plane in pemphigus skin splitting.
Collapse
Affiliation(s)
- Volker Spindler
- University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany
| | | | | | | |
Collapse
|