1
|
Gao Q, Shi X, Liu Y, Han Y, Yuan Z, Zhang D, Zhang H, Weng Q. 1,25(OH)₂D₃ regulates androgen synthesis via transcriptional control of steroidogenic enzymes and LHR in the scented glands of muskrats (Ondatra zibethicus). Free Radic Biol Med 2025; 229:82-95. [PMID: 39827922 DOI: 10.1016/j.freeradbiomed.2025.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Photoperiodic changes induce seasonal variations in vitamin D3 levels, which can affect reproductive function. The muskrat, a seasonal breeder, possesses a pair of scented glands that secrete musky substances to attract mates. The scented glands can also synthesize androgens, which regulate their function through autocrine or paracrine signaling. This study aimed to investigate whether active vitamin D3 was synthesized locally and to explore how seasonal changes affected the specific mechanisms of androgen synthesis in the scented glands. The scented glands showed significant seasonal changes in morphology and histology. Transcriptomic analysis revealed that differentially expressed genes were enriched in pathways related to sex steroid hormone synthesis and calcium signaling. Quantitative analyses using qPCR and Western blotting demonstrated significant seasonal variations in the expressions of vitamin D3 receptors (VDR) and key synthetic and metabolic enzymes. Seasonal fluctuations in 1,25(OH)₂D₃ levels were positively correlated with the expressions of steroidogenic enzymes and androgen concentrations in the scented glands. Additionally, 1,25(OH)₂D₃ enhanced the expressions of steroidogenic enzymes in cultured primary cells. ChIP-seq analysis revealed that VD/VDR directly regulated the transcription of Cyp11a1, Cyp17a1, and Lhr by binding to their promoter regions. Furthermore, elevated androgen levels were observed when hCG was combined with 1 nM 1,25(OH)₂D₃. This study suggests that the scented glands can produce 1,25(OH)₂D₃ in autocrine or paracrine forms, with levels varying seasonally. VD/VDR enhanced androgen synthesis through a dual mechanism: (1) directly up-regulating the transcription of Cyp11a1 and Cyp17a1 to increase steroidogenic enzyme levels, and (2) indirectly promoting the expressions of steroidogenic enzymes by modulating Lhr transcription.
Collapse
Affiliation(s)
- Qingjing Gao
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinjing Shi
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuning Liu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yingying Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhengrong Yuan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
2
|
Zhou R, Zhu Z, Dong M, Wang Z, Huang L, Wang S, Zhang X, Liu F. Nonlinear correlation between serum vitamin D levels and the incidence of endometrial polyps in infertile women. Hum Reprod 2024; 39:2685-2692. [PMID: 39470411 DOI: 10.1093/humrep/deae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/18/2024] [Indexed: 10/30/2024] Open
Abstract
STUDY QUESTION Are serum vitamin D levels associated with the incidence of endometrial polyps (EPs) in infertile patients? SUMMARY ANSWER Serum 25(OH)D levels were nonlinearly correlated with the incidence of EPs in infertile women. WHAT IS KNOWN ALREADY EPs are a common condition that may affect the receptivity of the endometrium in women of reproductive age. Vitamin D regulates cell proliferation and differentiation, apoptosis, angiogenesis, anti-inflammation, and immunomodulation, in addition to its well-known functions in balancing calcium and phosphorus. Previous studies have shown that vitamin D concentrations are associated with reproductive outcomes, and that low vitamin D levels are associated with the incidence of colorectal polyps and nasal polyps. There is little evidence regarding the relationship between EPs and serum vitamin D levels. STUDY DESIGN, SIZE, DURATION We conducted a cross-sectional study using data from Guangdong Women and Children Hospital from January 2019 to October 2023, enrolling 3107 patients. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 3107 infertile patients who underwent hysteroscopy were included in this study; 642 patients had endometrial polyps and 2465 had a normal uterine cavity. Hysteroscopy findings included risk of EPs, polyp size, percentage of multiple polyps, and incidence of chronic endometritis (CE). Serum vitamin D were assessed by measuring total 25(OH)D using chemiluminescence. According to international guideline recommendations for vitamin D deficiency, patients were divided into two groups: the <50 nmol/l group and the ≥50 nmol/l group. Univariable and multivariable logistic regression models, stratified analyses, and smooth curve fitting were used to examine the relationship between serum 25(OH)D levels and risk of EPs. MAIN RESULTS AND THE ROLE OF CHANCE Of all patients, 23.8% (740/3107) were vitamin D deficient (<50 nmol/l). The incidence of EPs was significantly higher in the 25(OH)D < 50 nmol/l group than in the ≥50 nmol/l group (24.9% vs 19.3%; P = 0.001). However, there were no differences in polyp size, proportion of multiple polyps, and presence of CE between the two groups. After controlling for confounders, 25(OH)D ≥ 50 nmol/l (compared with <50 nmol/l) was negatively associated with risk of EPs (adjusted OR, 0.733; 95% CI, 0.598-0.898). Other variables that had an impact on polyp incidence included BMI, type of infertility, CA125, and CD138-positive plasma cells. In addition, a linear regression model between age and serum 25(OH)D levels showed a positive linear association. Subgroup analyses were performed for different age groups, and the risk of EPs was significantly higher in the 25(OH)D < 50 nmol/l group than in the ≥50 nmol/l group, both in the younger subgroup (23.8% vs 19.1%) and in the older subgroup (28.0% vs 19.9%). The smooth curve fitting model showed a nonlinear correlation between 25(OH)D levels and risk of EPs (nonlinear P-value = 0.020), with an optimal threshold of 51.8 nmol/l for 25(OH)D levels. Moreover, subgroup smooth curve fitting models showed a nonlinear correlation between 25(OH)D levels and polyp risk in patients aged <35 years (nonlinear P-value = 0.010), whereas a linear correlation between 25(OH)D levels and polyp risk was found in patients aged ≥35 years (nonlinear P-value = 0.682). LIMITATIONS, REASONS FOR CAUTION Caution should be exercised in interpreting our findings as this is a correlational study and causality cannot be inferred from our results. In addition, because of strict inclusion and exclusion criteria, our results may not be generalizable to unselected populations, including premenopausal women or women of other races. WIDER IMPLICATIONS OF THE FINDINGS This study demonstrated for the first time that vitamin D deficiency is an independent risk factor for the incidence of EPs in infertile patients. Identifying modifiable risk factors (e.g. vitamin D deficiency) can help in the development of new strategies for treating polyps or to protect against polyp development. Further clinical intervention trials and laboratory studies are needed to evaluate the effect of vitamin D on the development of EPs and to elucidate the mechanisms. STUDY FUNDING/COMPETING INTEREST(S) The study was funded by the National Natural Science Foundation of China (82101718) and Natural Science Foundation of Guangdong Province, China (2022A1515010776). No competing interest was involved in this study. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Ruiqiong Zhou
- Center for Reproductive Medicine, Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Zhenghong Zhu
- Center for Reproductive Medicine, Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Mei Dong
- Center for Reproductive Medicine, Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Zhaoyi Wang
- Center for Reproductive Medicine, Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Li Huang
- Center for Reproductive Medicine, Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Songlu Wang
- Center for Reproductive Medicine, Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Xiqian Zhang
- Center for Reproductive Medicine, Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| | - Fenghua Liu
- Center for Reproductive Medicine, Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| |
Collapse
|
3
|
Kim TK, Slominski RM, Pyza E, Kleszczynski K, Tuckey RC, Reiter RJ, Holick MF, Slominski AT. Evolutionary formation of melatonin and vitamin D in early life forms: insects take centre stage. Biol Rev Camb Philos Soc 2024; 99:1772-1790. [PMID: 38686544 PMCID: PMC11368659 DOI: 10.1111/brv.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Melatonin, a product of tryptophan metabolism via serotonin, is a molecule with an indole backbone that is widely produced by bacteria, unicellular eukaryotic organisms, plants, fungi and all animal taxa. Aside from its role in the regulation of circadian rhythms, it has diverse biological actions including regulation of cytoprotective responses and other functions crucial for survival across different species. The latter properties are also shared by its metabolites including kynuric products generated by reactive oxygen species or phototransfomation induced by ultraviolet radiation. Vitamins D and related photoproducts originate from phototransformation of ∆5,7 sterols, of which 7-dehydrocholesterol and ergosterol are examples. Their ∆5,7 bonds in the B ring absorb solar ultraviolet radiation [290-315 nm, ultraviolet B (UVB) radiation] resulting in B ring opening to produce previtamin D, also referred to as a secosteroid. Once formed, previtamin D can either undergo thermal-induced isomerization to vitamin D or absorb UVB radiation to be transformed into photoproducts including lumisterol and tachysterol. Vitamin D, as well as the previtamin D photoproducts lumisterol and tachysterol, are hydroxylated by cyochrome P450 (CYP) enzymes to produce biologically active hydroxyderivatives. The best known of these is 1,25-dihydroxyvitamin D (1,25(OH)2D) for which the major function in vertebrates is regulation of calcium and phosphorus metabolism. Herein we review data on melatonin production and metabolism and discuss their functions in insects. We discuss production of previtamin D and vitamin D, and their photoproducts in fungi, plants and insects, as well as mechanisms for their enzymatic activation and suggest possible biological functions for them in these groups of organisms. For the detection of these secosteroids and their precursors and photoderivatives, as well as melatonin metabolites, we focus on honey produced by bees and on body extracts of Drosophila melanogaster. Common biological functions for melatonin derivatives and secosteroids such as cytoprotective and photoprotective actions in insects are discussed. We provide hypotheses for the photoproduction of other secosteroids and of kynuric metabolites of melatonin, based on the known photobiology of ∆5,7 sterols and of the indole ring, respectively. We also offer possible mechanisms of actions for these unique molecules and summarise differences and similarities of melatoninergic and secosteroidogenic pathways in diverse organisms including insects.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Radomir M Slominski
- Department of Genetics, Genomics, Bioinformatics and Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, Kraków, 30-387, Poland
| | - Konrad Kleszczynski
- Department of Dermatology, Münster, Von-Esmarch-Str. 58, Münster, 48161, Germany
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, 78229, USA
| | | | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- VA Medical Center, Birmingham, AL, 35294, USA
| |
Collapse
|
4
|
Eliason O, Malitsky S, Panizel I, Feldmesser E, Porat Z, Sperfeld M, Segev E. The photo-protective role of vitamin D in the microalga Emiliania huxleyi. iScience 2024; 27:109884. [PMID: 38799580 PMCID: PMC11126961 DOI: 10.1016/j.isci.2024.109884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
An essential interaction between sunlight and eukaryotes involves vitamin D production through exposure to ultraviolet (UV) radiation. While extensively studied in vertebrates, the role of vitamin D in non-animal eukaryotes like microalgae remains unclear. Here, we investigate the potential involvement of vitamin D in the UV-triggered response of Emiliania huxleyi, a microalga inhabiting shallow ocean depths that are exposed to UV. Our results show that E. huxleyi produces vitamin D2 and D3 in response to UV. We further demonstrate that E. huxleyi responds to external administration of vitamin D at the transcriptional level, regulating protective mechanisms that are also responsive to UV. Our data reveal that vitamin D addition enhances algal photosynthetic performance while reducing harmful reactive oxygen species buildup. This study contributes to understanding the function of vitamin D in E. huxleyi and its role in non-animal eukaryotes, as well as its potential importance in marine ecosystems.
Collapse
Affiliation(s)
- Or Eliason
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Irina Panizel
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ester Feldmesser
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ziv Porat
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Martin Sperfeld
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Einat Segev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
5
|
Slominski RM, Kim TK, Janjetovic Z, Brożyna AA, Podgorska E, Dixon KM, Mason RS, Tuckey RC, Sharma R, Crossman DK, Elmets C, Raman C, Jetten AM, Indra AK, Slominski AT. Malignant Melanoma: An Overview, New Perspectives, and Vitamin D Signaling. Cancers (Basel) 2024; 16:2262. [PMID: 38927967 PMCID: PMC11201527 DOI: 10.3390/cancers16122262] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Melanoma, originating through malignant transformation of melanin-producing melanocytes, is a formidable malignancy, characterized by local invasiveness, recurrence, early metastasis, resistance to therapy, and a high mortality rate. This review discusses etiologic and risk factors for melanoma, diagnostic and prognostic tools, including recent advances in molecular biology, omics, and bioinformatics, and provides an overview of its therapy. Since the incidence of melanoma is rising and mortality remains unacceptably high, we discuss its inherent properties, including melanogenesis, that make this disease resilient to treatment and propose to use AI to solve the above complex and multidimensional problems. We provide an overview on vitamin D and its anticancerogenic properties, and report recent advances in this field that can provide solutions for the prevention and/or therapy of melanoma. Experimental papers and clinicopathological studies on the role of vitamin D status and signaling pathways initiated by its active metabolites in melanoma prognosis and therapy are reviewed. We conclude that vitamin D signaling, defined by specific nuclear receptors and selective activation by specific vitamin D hydroxyderivatives, can provide a benefit for new or existing therapeutic approaches. We propose to target vitamin D signaling with the use of computational biology and AI tools to provide a solution to the melanoma problem.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Department of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Tae-Kang Kim
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Zorica Janjetovic
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Ewa Podgorska
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Katie M. Dixon
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Rebecca S. Mason
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Robert C. Tuckey
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia;
| | - Rahul Sharma
- Department of Biomedical Informatics and Data Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - David K. Crossman
- Department of Genetics and Bioinformatics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Craig Elmets
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Chander Raman
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anton M. Jetten
- Cell Biology Section, NIEHS—National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrzej T. Slominski
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, Veteran Administration Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
6
|
Nygaard RH, Lauritzen ES, Sikjær T, Højskov CS, Rejnmark L, Møller HJ. Unmeasurable low vitamin D levels caused by a novel, homozygote loss-of-function variant in the group-specific component gene. Eur J Endocrinol 2024; 190:K53-K56. [PMID: 38788201 DOI: 10.1093/ejendo/lvae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/12/2024] [Accepted: 05/23/2024] [Indexed: 05/26/2024]
Abstract
A 29-year-old female, born to consanguineous parents, was found with unmeasurable levels of vitamin D (<10 nmol/L) after routine biochemical screening during her first pregnancy. She did not respond to either oral or intramuscular vitamin D supplementation and was an otherwise healthy young woman, with no signs of rickets, osteomalacia, osteoporosis, or secondary hyperparathyroidism. Western blot analysis revealed total lack of vitamin D binding protein, and next generation sequencing confirmed a novel, pathogenic homozygote loss-of-function mutation in exon 13 of the group-specific component gene, that encodes the poly A tail for vitamin D binding protein. She was therefore diagnosed with hereditary DBP deficiency, and vitamin D supplementation was diminished to life-long regular vitamin D supplementation (25 μg per day). This case is extremely interesting, as it expands our knowledge of vitamin D physiology and supports the free hormone hypothesis, given that the patient was asymptomatic despite no measurable levels of vitamin D.
Collapse
Affiliation(s)
- Rie Harboe Nygaard
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Esben Stistrup Lauritzen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Internal Medicine, Horsens Regional Hospital, 8700 Horsens, Denmark
| | - Tanja Sikjær
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Internal Medicine, Horsens Regional Hospital, 8700 Horsens, Denmark
| | | | - Lars Rejnmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| |
Collapse
|
7
|
Grzesiak M, Herian M, Kamińska K, Ajersch P. Insight into vitamin D 3 action within the ovary-Basic and clinical aspects. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:99-130. [PMID: 39059995 DOI: 10.1016/bs.apcsb.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Vitamin D3 is a fat-soluble secosteroid predominantly synthesized in the skin or delivered with a diet. Nevertheless, recently it is considered more as a hormone than a vitamin due to its pleiotropic function within the organism ensured by widely distributed vitamin D receptors and metabolic enzymes. Besides the main role in calcium and phosphorus homeostasis, vitamin D3 was shown to regulate many cellular and metabolic processes in normal and cancerous tissues within the immune system, the cardiovascular system, the respiratory system and the endocrine system. The ovary is an important extraskeletal tissue of vitamin D3 action and local metabolism, indicating its role in the regulation of ovarian functions upon physiological and pathological conditions. This chapter reviews firstly the updated information about vitamin D3 metabolism and triggered intracellular pathways. Furthermore, the basic information about ovarian physiology and several aspects of vitamin D3 effects within the ovary are presented. Finally, the special attention is paid into possible mechanism of vitamin D3 action within ovarian pathologies such as premature ovarian failure, polycystic ovary syndrome, and ovarian cancer, considering its clinical application as alternative therapy.
Collapse
Affiliation(s)
- Małgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| | | | - Kinga Kamińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Paula Ajersch
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
8
|
Tang J, Zhao S, Shi H, Li X, Ran L, Cao J, He Y. Effects on peripheral and central nervous system of key inflammatory intercellular signalling peptides and proteins in psoriasis. Exp Dermatol 2024; 33:e15104. [PMID: 38794817 DOI: 10.1111/exd.15104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Psoriasis is a chronic systemic inflammatory cutaneous disease. Where the immune system plays an important role in its pathogenesis, with key inflammatory intercellular signalling peptides and proteins including IL-17 and IL-23. The psychoneurological system also figures prominently in development of psoriasis. There is a high prevalence of comorbidity between psoriasis and mental health disorders such as depression, anxiety and mania. Patients with psoriasis often suffer from pathological pain in the lesions, and their neurological accidents could improve the lesions in innervated areas. The immune system and the psychoneurological system interact closely in the pathogenesis of psoriasis. Patients with psoriasis exhibit abnormal levels of neuropeptides both in circulating and localized lesion, acting as immunomodulators involved in the inflammatory response. Moreover, receptors for inflammatory factors are expressed in both peripheral and central nervous systems (CNSs), suggesting that nervous system can receive and be influenced by signals from immune system. Key inflammatory intercellular signalling peptides and proteins in psoriasis, such as IL-17 and IL-23, can be involved in sensory signalling and may affect synaptic plasticity and the blood-brain barrier of CNS through the circulation. This review provides an overview of the multiple effects on the peripheral and CNS under conditions of systemic inflammation in psoriasis, providing a framework and inspiration for in-depth studies of neuroimmunomodulation in psoriasis.
Collapse
Affiliation(s)
- Jue Tang
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Siqi Zhao
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Huijuan Shi
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xuan Li
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Liwei Ran
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiali Cao
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yanling He
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Branch in Beijing Chaoyang Hospital, Beijing, China
| |
Collapse
|
9
|
Slominski RM, Chen JY, Raman C, Slominski AT. Photo-neuro-immuno-endocrinology: How the ultraviolet radiation regulates the body, brain, and immune system. Proc Natl Acad Sci U S A 2024; 121:e2308374121. [PMID: 38489380 PMCID: PMC10998607 DOI: 10.1073/pnas.2308374121] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Ultraviolet radiation (UVR) is primarily recognized for its detrimental effects such as cancerogenesis, skin aging, eye damage, and autoimmune disorders. With exception of ultraviolet B (UVB) requirement in the production of vitamin D3, the positive role of UVR in modulation of homeostasis is underappreciated. Skin exposure to UVR triggers local responses secondary to the induction of chemical, hormonal, immune, and neural signals that are defined by the chromophores and extent of UVR penetration into skin compartments. These responses are not random and are coordinated by the cutaneous neuro-immuno-endocrine system, which counteracts the action of external stressors and accommodates local homeostasis to the changing environment. The UVR induces electrical, chemical, and biological signals to be sent to the brain, endocrine and immune systems, as well as other central organs, which in concert regulate body homeostasis. To achieve its central homeostatic goal, the UVR-induced signals are precisely computed locally with transmission through nerves or humoral signals release into the circulation to activate and/or modulate coordinating central centers or organs. Such modulatory effects will be dependent on UVA and UVB wavelengths. This leads to immunosuppression, the activation of brain and endocrine coordinating centers, and the modification of different organ functions. Therefore, it is imperative to understand the underlying mechanisms of UVR electromagnetic energy penetration deep into the body, with its impact on the brain and internal organs. Photo-neuro-immuno-endocrinology can offer novel therapeutic approaches in addiction and mood disorders; autoimmune, neurodegenerative, and chronic pain-generating disorders; or pathologies involving endocrine, cardiovascular, gastrointestinal, or reproductive systems.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Departments of Genetics, the University of Alabama at Birmingham, Birmingham, AL35294
| | - Jake Y. Chen
- Department of Biomedical Informatics and Data Science, the University of Alabama at Birmingham, Birmingham, AL35294
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL35294
| | - Chander Raman
- Department of Dermatology, the University of Alabama at Birmingham, Birmingham, AL35294
| | - Andrzej T. Slominski
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL35294
- Department of Dermatology, the University of Alabama at Birmingham, Birmingham, AL35294
- Veteran Administration Medical Center, Birmingham, AL35294
| |
Collapse
|
10
|
Janjetovic Z, Qayyum S, Reddy SB, Podgorska E, Scott SG, Szpotan J, Mobley AA, Li W, Boda VK, Ravichandran S, Tuckey RC, Jetten AM, Slominski AT. Novel Vitamin D3 Hydroxymetabolites Require Involvement of the Vitamin D Receptor or Retinoic Acid-Related Orphan Receptors for Their Antifibrogenic Activities in Human Fibroblasts. Cells 2024; 13:239. [PMID: 38334631 PMCID: PMC10854953 DOI: 10.3390/cells13030239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
We investigated multiple signaling pathways activated by CYP11A1-derived vitamin D3 hydroxymetabolites in human skin fibroblasts by assessing the actions of these molecules on their cognate receptors and by investigating the role of CYP27B1 in their biological activities. The actions of 20(OH)D3, 20,23(OH)2D3, 1,20(OH)2D3 and 1,20,23(OH)3D3 were compared to those of classical 1,25(OH)2D3. This was undertaken using wild type (WT) fibroblasts, as well as cells with VDR, RORs, or CYP27B1 genes knocked down with siRNA. Vitamin D3 hydroxymetabolites had an inhibitory effect on the proliferation of WT cells, but this effect was abrogated in cells with silenced VDR or RORs. The collagen expression by WT cells was reduced upon secosteroid treatment. This effect was reversed in cells where VDR or RORs were knocked down where the inhibition of collagen production and the expression of anti-fibrotic genes in response to the hydroxymetabolites was abrogated, along with ablation of their anti-inflammatory action. The knockdown of CYP27B1 did not change the effect of either 20(OH)D3 or 20,23(OH)2D3, indicating that their actions are independent of 1α-hydroxylation. In conclusion, the expression of the VDR and/or RORα/γ receptors in fibroblasts is necessary for the inhibition of both the proliferation and fibrogenic activity of hydroxymetabolites of vitamin D3, while CYP27B1 is not required.
Collapse
Affiliation(s)
- Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Shariq Qayyum
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
- Brigham’s Women’s Hospital, Harvard University, Boston, MA 02115, USA
| | - Sivani B. Reddy
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Ewa Podgorska
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - S. Gates Scott
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Justyna Szpotan
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Alisa A. Mobley
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Wei Li
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (W.L.); (V.K.B.)
| | - Vijay K. Boda
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (W.L.); (V.K.B.)
| | - Senthilkumar Ravichandran
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Robert C. Tuckey
- School of Molecular Science, The University of Western Australia, Perth 6009, Australia;
| | - Anton M. Jetten
- Cell Biology Section, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
- Cancer Chemoprevention Program, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- VA Medical Center, Birmingham, AL 35294, USA
| |
Collapse
|
11
|
Huang HY, Lin TW, Hong ZX, Lim LM. Vitamin D and Diabetic Kidney Disease. Int J Mol Sci 2023; 24:ijms24043751. [PMID: 36835159 PMCID: PMC9960850 DOI: 10.3390/ijms24043751] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Vitamin D is a hormone involved in many physiological processes. Its active form, 1,25(OH)2D3, modulates serum calcium-phosphate homeostasis and skeletal homeostasis. A growing body of evidence has demonstrated the renoprotective effects of vitamin D. Vitamin D modulates endothelial function, is associated with podocyte preservation, regulates the renin-angiotensin-aldosterone system, and has anti-inflammatory effects. Diabetic kidney disease (DKD) is a leading cause of end-stage kidney disease worldwide. There are numerous studies supporting vitamin D as a renoprotector, potentially delaying the onset of DKD. This review summarizes the findings of current research on vitamin D and its role in DKD.
Collapse
Affiliation(s)
- Ho-Yin Huang
- Department of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ting-Wei Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Zi-Xuan Hong
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Lee-Moay Lim
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101-7351; Fax: +886-7-3228721
| |
Collapse
|
12
|
Gezen-Ak D, Dursun E. Vitamin D, a Secosteroid Hormone and Its Multifunctional Receptor, Vitamin D Receptor, in Alzheimer's Type Neurodegeneration. J Alzheimers Dis 2023; 95:1273-1299. [PMID: 37661883 DOI: 10.3233/jad-230214] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Vitamin D is a secosteroid hormone exerting neurosteroid-like properties. Its well-known nuclear hormone receptor, and recently proposed as a mitochondrial transcription factor, vitamin D receptor, acts for its primary functions. The second receptor is an endoplasmic reticulum protein, protein disulfide isomerase A3 (PDIA3), suggested to act as a rapid response. Vitamin D has effects on various systems, particularly through calcium metabolism. Among them, the nervous system has an important place in the context of our subject. Recent studies have shown that vitamin D and its receptors have numerous effects on the nervous system. Neurodegeneration is a long-term process. Throughout a human life span, so is vitamin D deficiency. Our previous studies and others have suggested that the out-come of long-term vitamin D deficiency (hypovitaminosis D or inefficient utilization of vitamin D), may lead neurons to be vulnerable to aging and neurodegeneration. We suggest that keeping vitamin D levels at adequate levels at all stages of life, considering new approaches such as agonists that can activate vitamin D receptors, and utilizing other derivatives produced in the synthesis process with UVB are crucial when considering vitamin D-based intervention studies. Given most aspects of vitamin D, this review outlines how vitamin D and its receptors work and are involved in neurodegeneration, emphasizing Alzheimer's disease.
Collapse
Affiliation(s)
- Duygu Gezen-Ak
- Department of Neuroscience, Brain and Neurodegenerative Disorders Research Laboratories, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Erdinc Dursun
- Department of Neuroscience, Brain and Neurodegenerative Disorders Research Laboratories, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
13
|
Eknoyan G, Moe SM. Renal osteodystrophy: A historical review of its origins and conceptual evolution. Bone Rep 2022; 17:101641. [PMID: 36466709 PMCID: PMC9713281 DOI: 10.1016/j.bonr.2022.101641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Long considered an inert supporting framework, bone studies went neglected until the 17th century when they began as descriptive microscopic studies of structure which over time progressed into that of chemistry and physiology. It was in the mid-19th century that studies evolved into an inquisitive discipline which matured into the experimental investigation of bone in health and disease in the 20th century, and ultimately that of molecular studies now deciphering the genetic language of bone biology. These fundamental studies were catalyzed by increasing clinical interest in bone disease. The first bone disease to be identified was rickets in 1645. Its subsequent connection to albuminuric patients reported in 1883 later became renal osteodystrophy in 1942, launching studies that elucidated the functions of vitamin D and parathyroid hormone and their role in the altered calcium and phosphate metabolism of the disease. Studies in osteoporosis and renal osteodystrophy have driven most recent progress benefitting from technological advances in imaging and the precision of evaluating bone turnover, mineralization, and volume. This review exposes the progress of bone biology from a passive support structure to a dynamically regulated organ with vital homeostatic functions whose understanding has undergone more revisions and paradigm shifts than that of any other organ.
Collapse
Affiliation(s)
- Garabed Eknoyan
- The Selzman Institute of Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sharon M. Moe
- Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
14
|
Grzesiak M, Tchurzyk M, Socha M, Sechman A, Hrabia A. An Overview of the Current Known and Unknown Roles of Vitamin D 3 in the Female Reproductive System: Lessons from Farm Animals, Birds, and Fish. Int J Mol Sci 2022; 23:ijms232214137. [PMID: 36430615 PMCID: PMC9693557 DOI: 10.3390/ijms232214137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Recent studies have clearly shown that vitamin D3 is a crucial regulator of the female reproductive process in humans and animals. Knowledge of the expression of vitamin D3 receptors and related molecules in the female reproductive organs such as ovaries, uterus, oviduct, or placenta under physiological and pathological conditions highlights its contribution to the proper function of the reproductive system in females. Furthermore, vitamin D3 deficiency leads to serious reproductive disturbances and pathologies including ovarian cysts. Although the influence of vitamin D3 on the reproductive processes of humans and rodents has been extensively described, the association between vitamin D3 and female reproductive function in farm animals, birds, and fish has rarely been summarized. In this review, we provide an overview of the role of vitamin D3 in the reproductive system of those animals, with special attention paid to the expression of vitamin D3 receptors and its metabolic molecules. This updated information could be essential for better understanding animal physiology and overcoming the incidence of infertility, which is crucial for optimizing reproductive outcomes in female livestock.
Collapse
Affiliation(s)
- Malgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
- Correspondence: ; Tel.: +48-12-664-5025
| | - Marcelina Tchurzyk
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| | - Magdalena Socha
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland
| | - Andrzej Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland
| | - Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland
| |
Collapse
|
15
|
Novel CYP11A1-Derived Vitamin D and Lumisterol Biometabolites for the Management of COVID-19. Nutrients 2022; 14:nu14224779. [PMID: 36432468 PMCID: PMC9698837 DOI: 10.3390/nu14224779] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin D deficiency is associated with a higher risk of SARS-CoV-2 infection and poor outcomes of the COVID-19 disease. However, a satisfactory mechanism explaining the vitamin D protective effects is missing. Based on the anti-inflammatory and anti-oxidative properties of classical and novel (CYP11A1-derived) vitamin D and lumisterol hydroxymetabolites, we have proposed that they would attenuate the self-amplifying damage in lungs and other organs through mechanisms initiated by interactions with corresponding nuclear receptors. These include the VDR mediated inhibition of NFκβ, inverse agonism on RORγ and the inhibition of ROS through activation of NRF2-dependent pathways. In addition, the non-receptor mediated actions of vitamin D and related lumisterol hydroxymetabolites would include interactions with the active sites of SARS-CoV-2 transcription machinery enzymes (Mpro;main protease and RdRp;RNA dependent RNA polymerase). Furthermore, these metabolites could interfere with the binding of SARS-CoV-2 RBD with ACE2 by interacting with ACE2 and TMPRSS2. These interactions can cause the conformational and dynamical motion changes in TMPRSS2, which would affect TMPRSS2 to prime SARS-CoV-2 spike proteins. Therefore, novel, CYP11A1-derived, active forms of vitamin D and lumisterol can restrain COVID-19 through both nuclear receptor-dependent and independent mechanisms, which identify them as excellent candidates for antiviral drug research and for the educated use of their precursors as nutrients or supplements in the prevention and attenuation of the COVID-19 disease.
Collapse
|
16
|
Han A, Park Y, Lee YK, Park SY, Park CY. Position Statement: Vitamin D Intake to Prevent Osteoporosis and Fracture in Adults. J Bone Metab 2022; 29:205-215. [PMID: 36529863 PMCID: PMC9760769 DOI: 10.11005/jbm.2022.29.4.205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022] Open
Abstract
Adequate vitamin D status is essential for bone health. New randomized controlled trials investigating the effect of vitamin D supplementation on bone health have recently been published. This position statement updates and expands on the previous 2015 position statement of the Korean Society for Bone and Mineral Research on the adequate vitamin D status for healthy older adults (age ≥ 70 years) and those at high risk of osteoporosis and fracture (adults on osteoporosis medications) to maintain serum 25-hydroxy-vitamin D (25[OH]D) levels ≥ 20 ng/mL but < 50 ng/mL. A serum 25(OH)D level of 30 ng/mL may be beneficial for those on anti-resorptives. Vitamin D can be obtained from ultraviolet light exposure and diet. To reach the target vitamin D status through intake, adults must consume at least 400 IU/day to reach 20 ng/mL and 800 to 1,000 IU/day to reach 30 ng/mL. Foods familiar to the Korean diet that are high in vitamin D content or consumed frequently enough to positively impact vitamin D status are introduced in addition to the amount required to help reach one's target vitamin D status.
Collapse
Affiliation(s)
- Anna Han
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju,
Korea,K-Food Research Center, Jeonbuk National University, Jeonju,
Korea
| | - Yongsoon Park
- Department of Food and Nutrition, College of Human Ecology, Hanyang University, Seoul,
Korea
| | - Young-Kyun Lee
- Department of Orthopaedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam,
Korea
| | - So Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyung Hee University Hospital, Seoul,
Korea
| | - Clara Yongjoo Park
- Department of Food and Nutrition, Chonnam National University, Gwangju,
Korea
| |
Collapse
|
17
|
Chen X, An Z, Wei L, Zhang J, Li J, Wang Z, Gao C, Wei D. Vitamin D 3 Metabolic Enzymes in Plateau Zokor ( Myospalax baileyi) and Plateau Pika ( Ochotona curzoniae): Expression and Response to Hypoxia. Animals (Basel) 2022; 12:ani12182371. [PMID: 36139230 PMCID: PMC9495108 DOI: 10.3390/ani12182371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin D3 (D3) is produced endogenously from 7-dehydrocholesterol by irradiation and is an important secosteroid for the absorption of calcium and phosphate. Lithocholic acid (LCA) increases intestinal paracellular calcium absorption in a vitamin D receptor-dependent manner in vitamin D-deficient rats. The plateau zokor (Myospalax baileyi), a strictly subterranean species, and plateau pika are endemic to the Qinghai-Tibet Plateau. To verify whether the zokors were deficient in D3 and reveal the effects of hypoxia on D3 metabolism in the zokors and pikas, we measured the levels of 25(OH)D3, calcium, and LCA, and quantified the expression levels of D3 metabolism-related genes. The results showed an undetectable serum level of 25(OH)D3 and a significantly higher concentration of LCA in the serum of plateau zokor, but its calcium concentration was within the normal range compared with that of plateau pika and Sprague-Dawley rats. With increasing altitude, the serum 25(OH)D3 levels in plateau pika decreased significantly, and the mRNA and protein levels of CYP2R1 (in the liver) and CYP27B1 (in the kidney) in plateau pika decreased significantly. Our results indicate that plateau zokors were deficient in D3 and abundant in LCA, which might be a substitution of D3 in the zokor. Furthermore, hypoxia suppresses the metabolism of D3 by down-regulating the expression of CYP2R1 and CYP27B1 in plateau pika.
Collapse
Affiliation(s)
- Xiaoqi Chen
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Zhifang An
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Linna Wei
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Jiayu Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Jimei Li
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Zhijie Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Conghui Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Dengbang Wei
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Correspondence: ; Tel.: +86-971-531-0695
| |
Collapse
|
18
|
Targeting Nuclear Receptors in Lung Cancer—Novel Therapeutic Prospects. Pharmaceuticals (Basel) 2022; 15:ph15050624. [PMID: 35631448 PMCID: PMC9145966 DOI: 10.3390/ph15050624] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
Lung cancer, the second most commonly diagnosed cancer, is the major cause of fatalities worldwide for both men and women, with an estimated 2.2 million new incidences and 1.8 million deaths, according to GLOBOCAN 2020. Although various risk factors for lung cancer pathogenesis have been reported, controlling smoking alone has a significant value as a preventive measure. In spite of decades of extensive research, mechanistic cues and targets need to be profoundly explored to develop potential diagnostics, treatments, and reliable therapies for this disease. Nuclear receptors (NRs) function as transcription factors that control diverse biological processes such as cell growth, differentiation, development, and metabolism. The aberrant expression of NRs has been involved in a variety of disorders, including cancer. Deregulation of distinct NRs in lung cancer has been associated with numerous events, including mutations, epigenetic modifications, and different signaling cascades. Substantial efforts have been made to develop several small molecules as agonists or antagonists directed to target specific NRs for inhibiting tumor cell growth, migration, and invasion and inducing apoptosis in lung cancer, which makes NRs promising candidates for reliable lung cancer therapeutics. The current work focuses on the importance of various NRs in the development and progression of lung cancer and highlights the different small molecules (e.g., agonist or antagonist) that influence NR expression, with the goal of establishing them as viable therapeutics to combat lung cancer.
Collapse
|
19
|
Brzeminski P, Fabisiak A, Slominski RM, Kim TK, Janjetovic Z, Podgorska E, Song Y, Saleem M, Reddy SB, Qayyum S, Song Y, Tuckey RC, Atigadda V, Jetten AM, Sicinski RR, Raman C, Slominski AT. Chemical synthesis, biological activities and action on nuclear receptors of 20S(OH)D3, 20S,25(OH)2D3, 20S,23S(OH)2D3 and 20S,23R(OH)2D3. Bioorg Chem 2022; 121:105660. [PMID: 35168121 PMCID: PMC8923993 DOI: 10.1016/j.bioorg.2022.105660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/06/2022] [Accepted: 02/05/2022] [Indexed: 12/14/2022]
Abstract
New and more efficient routes of chemical synthesis of vitamin D3 (D3) hydroxy (OH) metabolites, including 20S(OH)D3, 20S,23S(OH)2D3 and 20S,25(OH)2D3, that are endogenously produced in the human body by CYP11A1, and of 20S,23R(OH)2D3 were established. The biological evaluation showed that these compounds exhibited similar properties to each other regarding inhibition of cell proliferation and induction of cell differentiation but with subtle and quantitative differences. They showed both overlapping and differential effects on T-cell immune activity. They also showed similar interactions with nuclear receptors with all secosteroids activating vitamin D, liver X, retinoic acid orphan and aryl hydrocarbon receptors in functional assays and also as indicated by molecular modeling. They functioned as substrates for CYP27B1 with enzymatic activity being the highest towards 20S,25(OH)2D3 and the lowest towards 20S(OH)D3. In conclusion, defining new routes for large scale synthesis of endogenously produced D3-hydroxy derivatives by pathways initiated by CYP11A1 opens an exciting era to analyze their common and differential activities in vivo, particularly on the immune system and inflammatory diseases.
Collapse
|
20
|
Rozmus D, Płomiński J, Augustyn K, Cieślińska A. rs7041 and rs4588 Polymorphisms in Vitamin D Binding Protein Gene (VDBP) and the Risk of Diseases. Int J Mol Sci 2022; 23:ijms23020933. [PMID: 35055118 PMCID: PMC8779119 DOI: 10.3390/ijms23020933] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 02/01/2023] Open
Abstract
The purpose of the study was to investigate the role of vitamin D binding protein (VDBP, DBP) and its polymorphism in the vitamin D pathway and human health. This narrative review shows the latest literature on the most popular diseases that have previously been linked to VDBP. Vitamin D plays a crucial role in human metabolism, controlling phosphorus and calcium homeostasis. Vitamin D binding protein bonds vitamin D and its metabolites and transports them to target tissues. The most common polymorphisms in the VDBP gene are rs4588 and rs7041, which are located in exon 11 in domain III of the VDBP gene. rs4588 and rs7041 may be correlated with differences not only in vitamin D status in serum but also with vitamin D metabolites. This review supports the role of single nucleotide polymorphisms (SNPs) in the VDBP gene and presents the latest data showing correlations between VDBP variants with important human diseases such as obesity, diabetes mellitus, tuberculosis, chronic obstructive pulmonary disease, and others. In this review, we aim to systematize the knowledge regarding the occurrence of diseases and their relationship with vitamin D deficiencies, which may be caused by polymorphisms in the VDBP gene. Further research is required on the possible influence of SNPs, modifications in the structure of the binding protein, and their influence on the organism. It is also important to mention that most studies do not have a specific time of year to measure accurate vitamin D metabolite levels, which can be misleading in conclusions due to the seasonal nature of vitamin D.
Collapse
Affiliation(s)
- Dominika Rozmus
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
- Correspondence:
| | - Janusz Płomiński
- Clinical Department of Trauma-Orthopedic Surgery and Spine Surgery of the Provincial Specialist Hospital in Olsztyn, 10-561 Olsztyn, Poland;
- Department and Clinic of Orthopaedics and Traumatology, Collegium Medicum, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Klaudia Augustyn
- Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland;
| | - Anna Cieślińska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| |
Collapse
|
21
|
Bocheva G, Slominski RM, Slominski AT. The Impact of Vitamin D on Skin Aging. Int J Mol Sci 2021; 22:ijms22169097. [PMID: 34445803 PMCID: PMC8396468 DOI: 10.3390/ijms22169097] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022] Open
Abstract
The active metabolites of vitamin D3 (D3) and lumisterol (L3) exert a variety of antiaging and photoprotective effects on the skin. These are achieved through immunomodulation and include anti-inflammatory actions, regulation of keratinocytes proliferation, and differentiation programs to build the epidermal barrier necessary for maintaining skin homeostasis. In addition, they induce antioxidative responses, inhibit DNA damage and induce DNA repair mechanisms to attenuate premature skin aging and cancerogenesis. The mechanism of action would involve interaction with multiple nuclear receptors including VDR, AhR, LXR, reverse agonism on RORα and -γ, and nongenomic actions through 1,25D3-MARRS receptor and interaction with the nongenomic binding site of the VDR. Therefore, active forms of vitamin D3 including its canonical (1,25(OH)2D3) and noncanonical (CYP11A1-intitated) D3 derivatives as well as L3 derivatives are promising agents for the prevention, attenuation, or treatment of premature skin aging. They could be administrated orally and/or topically. Other forms of parenteral application of vitamin D3 precursor should be considered to avoid its predominant metabolism to 25(OH)D3 that is not recognized by CYP11A1 enzyme. The efficacy of topically applied vitamin D3 and L3 derivatives needs further clinical evaluation in future trials.
Collapse
Affiliation(s)
- Georgeta Bocheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria
- Correspondence: (G.B.); (A.T.S.)
| | - Radomir M. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran Administration Medical Center, Birmingham, AL 35294, USA
- Correspondence: (G.B.); (A.T.S.)
| |
Collapse
|
22
|
Ali II, Shah I, Marzouk S, Karam SM, Al Menhali A. Vitamin D Is Necessary for Murine Gastric Epithelial Homeostasis. BIOLOGY 2021; 10:705. [PMID: 34439938 PMCID: PMC8389223 DOI: 10.3390/biology10080705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Unlike other organs, the importance of VD in a normal stomach is unknown. This study focuses on understanding the physiological role of vitamin D in gastric epithelial homeostasis. C57BL/6J mice were divided into three groups that were either fed a standard diet and kept in normal light/dark cycles (SDL), fed a standard diet but kept in the dark (SDD) or fed a vitamin D-deficient diet and kept in the dark (VDD). After 3 months, sera were collected to measure vitamin D levels by LC-MS/MS, gastric tissues were collected for immunohistochemical and gene expression analyses and gastric contents were collected to measure acid levels. The VDD group showed a significant decrease in the acid-secreting parietal cell-specific genes Atp4a and Atp4b when compared with the controls. This reduction was associated with an increased expression of an antral gastrin hormone. VDD gastric tissues also showed a high proliferation rate compared with SDL and SDD using an anti-BrdU antibody. This study indicates the requirement for normal vitamin D levels for proper parietal cell functions.
Collapse
Affiliation(s)
- Ifrah Ismail Ali
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Iltaf Shah
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (I.S.); (S.M.)
| | - Sayed Marzouk
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (I.S.); (S.M.)
| | - Sherif M. Karam
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Asma Al Menhali
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| |
Collapse
|
23
|
Knocking out the Vitamin D Receptor Enhances Malignancy and Decreases Responsiveness to Vitamin D3 Hydroxyderivatives in Human Melanoma Cells. Cancers (Basel) 2021; 13:cancers13133111. [PMID: 34206371 PMCID: PMC8269360 DOI: 10.3390/cancers13133111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Active forms of vitamin D3, including 1,25(OH)2D3, 20(OH)D3 and 1,20(OH)2D3, inhibited cell proliferation, migration rate and the ability to form colonies and spheroids in the wild-type melanoma cell line, while cells with the vitamin D receptor (VDR) silenced showed an increased but not complete resistance to their action. Furthermore, silencing of the VDR in melanoma cells enhanced their proliferation as well as spheroid and colony formation and increased their migration rate. Previous clinicopathological studies have shown an inverse correlation between VDR expression, melanoma progression and poor outcome of the disease. Thus, the expression of VDR is not only necessary for the inhibition of melanoma growth by active forms of vitamin D, but the VDR can also function as a melanoma tumor suppressor gene. Abstract Vitamin D3 is not only involved in calcium and phosphate metabolism in humans, but it can also affect proliferation and differentiation of normal and cancer cells, including melanoma. The mechanism of the anti-cancer action of vitamin D3 is not fully understood. The nuclear vitamin D receptor (VDR) is crucial for the phenotypic effects of vitamin D hydroxyderivatives. VDR expression shows an inverse correlation with melanoma progression and poor outcome of the disease. In this study we knocked out the VDR in a human melanoma cell line using CRISPR methodology. This enhanced the proliferation of melanoma cells grown in monolayer culture, spheroids or colonies and their migration. Activated forms of vitamin D, including classical 1,25(OH)2D3, 20(OH)D3 and 1,20(OH)2D3, inhibited cell proliferation, migration rate and the ability to form colonies and spheroids in the wild-type melanoma cell line, while VDR KO cells showed a degree of resistance to their action. These results indicate that expression of VDR is important for the inhibition of melanoma growth induced by activated forms of vitamin D. In conclusion, based on our previous clinicopathological analyses and the current study, we suggest that the VDR can function as a melanoma tumor suppressor gene.
Collapse
|
24
|
Slominski RM, Raman C, Elmets C, Jetten AM, Slominski AT, Tuckey RC. The significance of CYP11A1 expression in skin physiology and pathology. Mol Cell Endocrinol 2021; 530:111238. [PMID: 33716049 PMCID: PMC8205265 DOI: 10.1016/j.mce.2021.111238] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022]
Abstract
CYP11A1, a member of the cytochrome P450 family, plays several key roles in the human body. It catalyzes the first and rate-limiting step in steroidogenesis, converting cholesterol to pregnenolone. Aside from the classical steroidogenic tissues such as the adrenals, gonads and placenta, CYP11A1 has also been found in the brain, gastrointestinal tract, immune systems, and finally the skin. CYP11A1 activity in the skin is regulated predominately by StAR protein and hence cholesterol levels in the mitochondria. However, UVB, UVC, CRH, ACTH, cAMP, and cytokines IL-1, IL-6 and TNFα can also regulate its expression and activity. Indeed, CYP11A1 plays several critical roles in the skin through its initiation of local steroidogenesis and specific metabolism of vitamin D, lumisterol, and 7-dehydrocholesterol. Products of these pathways regulate the protective barrier and skin immune functions in a context-dependent fashion through interactions with a number of receptors. Disturbances in CYP11A1 activity can lead to skin pathology.
Collapse
Affiliation(s)
- R M Slominski
- Department of Medicine, Division of Rheumatology, USA; Department of Dermatology, USA
| | - C Raman
- Department of Medicine, Division of Rheumatology, USA; Department of Dermatology, USA
| | - C Elmets
- Department of Dermatology, USA; Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, USA
| | - A M Jetten
- Cell Biology Section, Immunity, Inflammation, Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - A T Slominski
- Department of Dermatology, USA; VA Medical Center, Birmingham, AL, USA.
| | - R C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
25
|
Loginova M, Mishchenko T, Savyuk M, Guseva S, Gavrish M, Krivonosov M, Ivanchenko M, Fedotova J, Vedunova M. Double-Edged Sword of Vitamin D3 Effects on Primary Neuronal Cultures in Hypoxic States. Int J Mol Sci 2021; 22:5417. [PMID: 34063823 PMCID: PMC8196622 DOI: 10.3390/ijms22115417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 01/23/2023] Open
Abstract
The use of vitamin D3 along with traditional therapy opens up new prospects for increasing the adaptive capacity of nerve cells to the effects of a wide range of stress factors, including hypoxia-ischemic processes. However, questions about prophylactic and therapeutic doses of vitamin D3 remain controversial. The purpose of our study was to analyze the effects of vitamin D3 at different concentrations on morpho-functional characteristics of neuron-glial networks in hypoxia modeling in vitro. We showed that a single administration of vitamin D3 at a high concentration (1 µM) in a normal state has no significant effect on the cell viability of primary neuronal cultures; however, it has a pronounced modulatory effect on the functional calcium activity of neuron-glial networks and causes destruction of the network response. Under hypoxia, the use of vitamin D3 (1 µM) leads to total cell death of primary neuronal cultures and complete negation of functional neural network activity. In contrast, application of lower concentrations of vitamin D3 (0.01 µM and 0.1 µM) caused a pronounced dose-dependent neuroprotective effect during the studied post-hypoxic period. While the use of vitamin D3 at a concentration of 0.1 µM maintained cell viability, preventive administration of 0.01 µM not only partially preserved the morphological integrity of primary neuronal cells but also maintained the functional structure and activity of neuron-glial networks in cultures. Possible molecular mechanisms of neuroprotective action of vitamin D3 can be associated with the increased expression level of transcription factor HIF-1α and maintaining the relationship between the levels of BDNF and TrkB expression in cells of primary neuronal cultures.
Collapse
Affiliation(s)
- Maria Loginova
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.L.); (T.M.); (M.S.); (S.G.); (M.G.); (J.F.)
| | - Tatiana Mishchenko
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.L.); (T.M.); (M.S.); (S.G.); (M.G.); (J.F.)
| | - Maria Savyuk
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.L.); (T.M.); (M.S.); (S.G.); (M.G.); (J.F.)
| | - Svetlana Guseva
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.L.); (T.M.); (M.S.); (S.G.); (M.G.); (J.F.)
| | - Maria Gavrish
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.L.); (T.M.); (M.S.); (S.G.); (M.G.); (J.F.)
| | - Mikhail Krivonosov
- Department of Applied Mathematics, Institute of Information Technologies, Mathematics and Mechanics (ITMM), Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.K.); (M.I.)
| | - Mikhail Ivanchenko
- Department of Applied Mathematics, Institute of Information Technologies, Mathematics and Mechanics (ITMM), Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.K.); (M.I.)
| | - Julia Fedotova
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.L.); (T.M.); (M.S.); (S.G.); (M.G.); (J.F.)
- Laboratory of Neuroendocrinology, I.P. Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Emb. Makarova, 199034 St. Petersburg, Russia
| | - Maria Vedunova
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.L.); (T.M.); (M.S.); (S.G.); (M.G.); (J.F.)
| |
Collapse
|
26
|
Dominguez LJ, Farruggia M, Veronese N, Barbagallo M. Vitamin D Sources, Metabolism, and Deficiency: Available Compounds and Guidelines for Its Treatment. Metabolites 2021; 11:255. [PMID: 33924215 PMCID: PMC8074587 DOI: 10.3390/metabo11040255] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Studies on vitamin/hormone D deficiency have received a vast amount of attention in recent years, particularly concerning recommendations, guidelines, and treatments. Moreover, vitamin D's role as a hormone has been confirmed in various enzymatic, metabolic, physiological, and pathophysiological processes related to many organs and systems in the human body. This growing interest is mostly due to the evidence that modest-to-severe vitamin D deficiency is widely prevalent around the world. There is broad agreement that optimal vitamin D status is necessary for bones, muscles, and one's general health, as well as for the efficacy of antiresorptive and anabolic bone-forming treatments. Food supplementation with vitamin D, or the use of vitamin D supplements, are current strategies to improve vitamin D levels and treat deficiency. This article reviews consolidated and emerging concepts about vitamin D/hormone D metabolism, food sources, deficiency, as well as the different vitamin D supplements available, and current recommendations on the proper use of these compounds.
Collapse
Affiliation(s)
- Ligia J. Dominguez
- Geriatric Unit, Department of Medicine, University of Palermo, Via del Vespro 141, 90127 Palermo, Italy; (M.F.); (N.V.); (M.B.)
| | | | | | | |
Collapse
|
27
|
Slominski AT, Kim TK, Qayyum S, Song Y, Janjetovic Z, Oak ASW, Slominski RM, Raman C, Stefan J, Mier-Aguilar CA, Atigadda V, Crossman DK, Golub A, Bilokin Y, Tang EKY, Chen JY, Tuckey RC, Jetten AM, Song Y. Vitamin D and lumisterol derivatives can act on liver X receptors (LXRs). Sci Rep 2021; 11:8002. [PMID: 33850196 PMCID: PMC8044163 DOI: 10.1038/s41598-021-87061-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
The interactions of derivatives of lumisterol (L3) and vitamin D3 (D3) with liver X receptors (LXRs) were investigated. Molecular docking using crystal structures of the ligand binding domains (LBDs) of LXRα and β revealed high docking scores for L3 and D3 hydroxymetabolites, similar to those of the natural ligands, predicting good binding to the receptor. RNA sequencing of murine dermal fibroblasts stimulated with D3-hydroxyderivatives revealed LXR as the second nuclear receptor pathway for several D3-hydroxyderivatives, including 1,25(OH)2D3. This was validated by their induction of genes downstream of LXR. L3 and D3-derivatives activated an LXR-response element (LXRE)-driven reporter in CHO cells and human keratinocytes, and by enhanced expression of LXR target genes. L3 and D3 derivatives showed high affinity binding to the LBD of the LXRα and β in LanthaScreen TR-FRET LXRα and β coactivator assays. The majority of metabolites functioned as LXRα/β agonists; however, 1,20,25(OH)3D3, 1,25(OH)2D3, 1,20(OH)2D3 and 25(OH)D3 acted as inverse agonists of LXRα, but as agonists of LXRβ. Molecular dynamics simulations for the selected compounds, including 1,25(OH)2D3, 1,20(OH)2D3, 25(OH)D3, 20(OH)D3, 20(OH)L3 and 20,22(OH)2L3, showed different but overlapping interactions with LXRs. Identification of D3 and L3 derivatives as ligands for LXRs suggests a new mechanism of action for these compounds.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA.
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35249, USA.
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL, 35249, USA.
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Shariq Qayyum
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Yuwei Song
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Allen S W Oak
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Radomir M Slominski
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Joanna Stefan
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
- Department of Oncology, Nicolaus Copernicus University Medical College, Romanowskiej str. 2, 85-796, Bydgoszcz, Poland
| | - Carlos A Mier-Aguilar
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Venkatram Atigadda
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35249, USA
| | - David K Crossman
- Department of Genetics, Genomics Core Facility, University of Alabama at Birmingham, Birmingham, AL, 35249, USA
| | | | | | - Edith K Y Tang
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jake Y Chen
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, 35249, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Anton M Jetten
- Cell Biology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Yuhua Song
- Department of Biomedical Engineering, University of Alabama at Birmingham, Shelby 803, Birmingham, AL, 35249, USA.
| |
Collapse
|
28
|
Harinarayan CV, Akhila H, Shanthisree E. Modern India and Dietary Calcium Deficiency-Half a Century Nutrition Data-Retrospect-Introspect and the Road Ahead. Front Endocrinol (Lausanne) 2021; 12:583654. [PMID: 33889131 PMCID: PMC8056136 DOI: 10.3389/fendo.2021.583654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/28/2021] [Indexed: 01/05/2023] Open
Abstract
Calcium and vitamin D are inseparable nutrients required for bone health. In the past half a century, the dietary calcium intake of rural, tribal, and urban India has declined. Though India is the largest producer of milk and cereals, the major source of calcium in India is through non-dairy products. The highest intake of cereals and lowest intake of milk & milk products was observed in rural and tribal subjects whereas, the intake of cereals, milk & milk products were similar in both urban and metropolitan subjects. One of the reasons for lower calcium intake was the proportion of calcium derived from dairy sources. Over the past half a century, the average 30-day consumption of cereals in the rural and urban population has declined by 30%. The Per Capita Cereal Consumption (PCCC)has declined despite sustained raise in Monthly Per capita Consumption Expenditure (MPCE) in both rural and urban households. The cereal consumption was the highest in the lowest income group, despite spending smaller portion of their income, as cereals were supplied through public distribution system (PDS). About 85% of the Indian population are vitamin D deficient despite abundant sunlight. Dietary calcium deficiency can cause secondary vitamin D deficiency. Though India as a nation is the largest producer of milk, there is profound shortage of calcium intake in the diet with all negative consequences on bone health. There is a decline in dietary calcium in the background of upward revision of RDI/RDA. There is a gap in the production-consumption-supply chain with respect to dietary calcium. To achieve a strong bone health across India, it is imperative to have population based strategies addressing different segments including supplementing dietary/supplemental calcium in ICDS, mid-day-meals scheme, public distribution system, educational strategies. Other measures like mass food fortification, biofortification, bioaddition, leveraging digital technologies, investments from corporate sector are some measures which can address this problem. India is a vast country with diverse social, cultural and dietary habits. No single measure can address this problem and requires a multi-pronged strategic approach to tackle the dietary calcium deficiency to achieve strong bone health while solving the problem of nutritional deficiency.
Collapse
Affiliation(s)
- Chittari Venkata Harinarayan
- Institute of Endocrinology, Diabetes, Thyroid and Osteoporosis Disorders, Sakra World Hospitals, Bangalore, India
- Department of Medicine & Endocrinology, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences University, Chennai, India
| | - Harinarayan Akhila
- IT Industry—Digital Transformation, Information Services Group (ISG), Bangalore, India
| | - Edara Shanthisree
- Institute of Endocrinology, Diabetes, Thyroid and Osteoporosis Disorders, Sakra World Hospitals, Bangalore, India
| |
Collapse
|
29
|
Lin MY, Lim LM, Tsai SP, Jian FX, Hwang SJ, Lin YH, Chiu YW. Low dose ultraviolet B irradiation at 308 nm with light-emitting diode device effectively increases serum levels of 25(OH)D. Sci Rep 2021; 11:2583. [PMID: 33510382 PMCID: PMC7844009 DOI: 10.1038/s41598-021-82216-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/15/2021] [Indexed: 11/24/2022] Open
Abstract
This animal study aimed to elucidate the relationship of low-dose, narrow-band UVB at 308 nm with vitamin D synthesis. C57BL/6 female mice, at 3 weeks-of-age, were randomly divided into the following six groups (n = 6 at each time point of vitamin D measurement), which were: (1) normal diet without UVB irradiation; (2) VDd diet without UVB irradiation; and (3)-(6) VDd diet with 308 nm-UVB irradiation of 12.5, 25, 50, and 100 μω/cm2, respectively. All of the groups needing UVB irradiation received an exposure of 10 min per day, five days per week, and a duration of 3-5 weeks. The mice recovering from severe VDd (plasma total 25-hydroxyvitamin D level increasing from approximately 3 to over 30 ng/mL) only occurred in groups with a UVB irradiation dosage of either 50 or 100 μω/cm2. The optimal, estimated dosage for mice to recover from severe VDd was 355 mJ/cm2 within 3 weeks. Low-dose, narrow-band UVB irradiation at 308 nm is effective in improving VDd in mice. The results obtained, in addition to the especially small side effects of the above UVB irradiation formula, could be further translated to treating VDd-related disorders.
Collapse
Affiliation(s)
- Ming-Yen Lin
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, TzYou 1st Rd., Sanmin District, Kaohsiung City, 80708, Taiwan
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Lee Moay Lim
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, TzYou 1st Rd., Sanmin District, Kaohsiung City, 80708, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Siao-Ping Tsai
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, TzYou 1st Rd., Sanmin District, Kaohsiung City, 80708, Taiwan
| | - Feng-Xuan Jian
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, TzYou 1st Rd., Sanmin District, Kaohsiung City, 80708, Taiwan
| | - Shang-Jyh Hwang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, TzYou 1st Rd., Sanmin District, Kaohsiung City, 80708, Taiwan
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Yu-Hsuan Lin
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, 300, Taiwan.
| | - Yi-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, TzYou 1st Rd., Sanmin District, Kaohsiung City, 80708, Taiwan.
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
30
|
Hydroxylumisterols, Photoproducts of Pre-Vitamin D3, Protect Human Keratinocytes against UVB-Induced Damage. Int J Mol Sci 2020; 21:ijms21249374. [PMID: 33317048 PMCID: PMC7763359 DOI: 10.3390/ijms21249374] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022] Open
Abstract
Lumisterol (L3) is a stereoisomer of 7-dehydrocholesterol and is produced through the photochemical transformation of 7-dehydrocholesteol induced by high doses of UVB. L3 is enzymatically hydroxylated by CYP11A1, producing 20(OH)L3, 22(OH)L3, 20,22(OH)2L3, and 24(OH)L3. Hydroxylumisterols function as reverse agonists of the retinoic acid-related orphan receptors α and γ (RORα/γ) and can interact with the non-genomic binding site of the vitamin D receptor (VDR). These intracellular receptors are mediators of photoprotection and anti-inflammatory activity. In this study, we show that L3-hydroxyderivatives significantly increase the expression of VDR at the mRNA and protein levels in keratinocytes, both non-irradiated and after UVB irradiation. L3-hydroxyderivatives also altered mRNA and protein levels for RORα/γ in non-irradiated cells, while the expression was significantly decreased in UVB-irradiated cells. In UVB-irradiated keratinocytes, L3-hydroxyderivatives inhibited nuclear translocation of NFκB p65 by enhancing levels of IκBα in the cytosol. This anti-inflammatory activity mediated by L3-hydroxyderivatives through suppression of NFκB signaling resulted in the inhibition of the expression of UVB-induced inflammatory cytokines, including IL-17, IFN-γ, and TNF-α. The L3-hydroxyderivatives promoted differentiation of UVB-irradiated keratinocytes as determined from upregulation of the expression at the mRNA of involucrin (IVL), filaggrine (FLG), and keratin 14 (KRT14), downregulation of transglutaminase 1 (TGM1), keratins including KRT1, and KRT10, and stimulation of ILV expression at the protein level. We conclude that CYP11A1-derived hydroxylumisterols are promising photoprotective agents capable of suppressing UVB-induced inflammatory responses and restoring epidermal function through targeting the VDR and RORs.
Collapse
|
31
|
Wagner CL, Hollis BW. Early-Life Effects of Vitamin D: A Focus on Pregnancy and Lactation. ANNALS OF NUTRITION AND METABOLISM 2020; 76 Suppl 2:16-28. [PMID: 33232956 DOI: 10.1159/000508422] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 11/19/2022]
Abstract
Vitamin D is an endocrine regulator of calcium and bone metabolism. Yet, its effects include other systems, such as innate and adaptive immunity. Unique to pregnancy, circulating 1,25-dihydroxyvitamin D (1,25[OH]2D) increases early on to concentrations that are 2-3 times prepregnant values. At no other time during the lifecycle is the conversion of 25-hydroxyvitamin D (25[OH]D) to 1,25(OH)2D directly related and optimized at ≥100 nmol/L. Vitamin D deficiency appears to affect pregnancy outcomes, yet randomized controlled trials of vitamin D supplementation achieve mixed results depending on when supplementation is initiated during pregnancy, the dose and dosing interval, and the degree of deficiency at the onset of pregnancy. Analysis of trials on an intention-to-treat basis as opposed to the use of 25(OH)D as the intermediary biomarker of vitamin D metabolism yields differing results, with treatment effects often noted only in the most deficient women. Immediately after delivery, maternal circulating 1,25(OH)2D concentrations return to prepregnancy baseline, at a time when a breastfeeding woman has increased demands of calcium, beyond what was needed during the last trimester of pregnancy, making one question why 1,25(OH)2D increases so significantly during pregnancy. Is it to serve as an immune modulator? The vitamin D content of mother's milk is directly related to maternal vitamin D status, and if a woman was deficient during pregnancy, her milk will be deficient unless she is taking higher doses of vitamin D. Because of this relative "deficiency," there is a recommendation that all breastfed infants receive 400 IU vitamin D3/day starting a few days after birth. The alternative - maternal supplementation with 6,400 IU vitamin D3/day, effective in safely raising maternal circulating vitamin D, that of her breast milk, and effective in achieving sufficiency in her recipient breastfeeding infant - remains a viable option. Additional research is needed to understand vitamin D's influence on pregnancy health and the effect of maternal supplementation on breast milk's immune signaling.
Collapse
Affiliation(s)
- Carol L Wagner
- Division of Neonatology, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA,
| | - Bruce W Hollis
- Division of Neonatology, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
32
|
CELEP G, DURMAZ Z. Predicting vitamin D deficiency through parathormone in the children of a small city located in the warm climate belt of northern hemisphere. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2020. [DOI: 10.32322/jhsm.766043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
33
|
MLL1 Inhibition and Vitamin D Signaling Cooperate to Facilitate the Expanded Pluripotency State. Cell Rep 2020; 29:2659-2671.e6. [PMID: 31775036 PMCID: PMC9119704 DOI: 10.1016/j.celrep.2019.10.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 05/17/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022] Open
Abstract
Dynamic establishment of histone modifications in early development coincides with programed cell fate restriction and loss of totipotency beyond the early blastocyst stage. Causal function of histone-modifying enzymes in this process remains to be defined. Here we show that inhibiting histone methyltransferase MLL1 reprograms naive embryonic stem cells (ESCs) to expanded pluripotent stem cells (EPSCs), with differentiation potential toward both embryonic and extraembryonic lineages in vitro and in vivo. MLL1 inhibition or deletion upregulates gene signatures of early blastomere development. The function of MLL1 in restricting induction of EPSCs is mediated partly by Gc, which regulates cellular response to vitamin D signaling. Combined treatment of MLL1 inhibitor and 1α,25-dihydroxyvitamin D3 (1,25-(OH)2D3) cooperatively enhanced functionality of EPSCs, triggering an extended 2C-like state in vitro and robust totipotent-like property in vivo. Our study sheds light on interplay between epigenetics and vitamin D pathway in cell fate determination.
Collapse
|
34
|
Riccardi C, Perrone L, Napolitano F, Sampaolo S, Melone MAB. Understanding the Biological Activities of Vitamin D in Type 1 Neurofibromatosis: New Insights into Disease Pathogenesis and Therapeutic Design. Cancers (Basel) 2020; 12:E2965. [PMID: 33066259 PMCID: PMC7602022 DOI: 10.3390/cancers12102965] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/18/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin D is a fat-soluble steroid hormone playing a pivotal role in calcium and phosphate homeostasis as well as in bone health. Vitamin D levels are not exclusively dependent on food intake. Indeed, the endogenous production-occurring in the skin and dependent on sun exposure-contributes to the majority amount of vitamin D present in the body. Since vitamin D receptors (VDRs) are ubiquitous and drive the expression of hundreds of genes, the interest in vitamin D has tremendously grown and its role in different diseases has been extensively studied. Several investigations indicated that vitamin D action extends far beyond bone health and calcium metabolism, showing broad effects on a variety of critical illnesses, including cancer, infections, cardiovascular and autoimmune diseases. Epidemiological studies indicated that low circulating vitamin D levels inversely correlate with cutaneous manifestations and bone abnormalities, clinical hallmarks of neurofibromatosis type 1 (NF1). NF1 is an autosomal dominant tumour predisposition syndrome causing significant pain and morbidity, for which limited treatment options are available. In this context, vitamin D or its analogues have been used to treat both skin and bone lesions in NF1 patients, alone or combined with other therapeutic agents. Here we provide an overview of vitamin D, its characteristic nutritional properties relevant for health benefits and its role in NF1 disorder. We focus on preclinical and clinical studies that demonstrated the clinical correlation between vitamin D status and NF1 disease, thus providing important insights into disease pathogenesis and new opportunities for targeted therapy.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy;
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Lorena Perrone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Filomena Napolitano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, BioLife Building (015-00), 1900 North 12th Street, Philadelphia, PA 19122-6078, USA
| |
Collapse
|
35
|
Vitamin D Supplementation Does Not Impact Resting Metabolic Rate, Body Composition and Strength in Vitamin D Sufficient Physically Active Adults. Nutrients 2020; 12:nu12103111. [PMID: 33053823 PMCID: PMC7601703 DOI: 10.3390/nu12103111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/30/2022] Open
Abstract
Supplementation with the most efficient form of Vitamin D (VitD3) results in improvements in energy metabolism, muscle mass and strength in VitD deficient individuals. Whether similar outcomes occur in VitD sufficient individuals' remains to be elucidated. The aim of this study is to determine the effect of VitD3 supplementation on resting metabolic rate (RMR), body composition and strength in VitD sufficient physically active young adults. Participants completed pre-supplementation testing before being matched for sunlight exposure and randomly allocated in a counterbalanced manner to the VitD3 or placebo group. Following 12 weeks of 50 IU/kg body-mass VitD3 supplementation, participants repeated the pre-supplementation testing. Thirty-one adults completed the study (19 females and 12 males; mean ± standard deviation (SD); age = 26.6 ± 4.9 years; BMI = 24.2 ± 4.1 kg·m2). The VitD group increased serum total 25(OH)D by 30 nmol/L while the placebo group decreased total serum concentration by 21 nmol/L, reaching 123 (51) and 53 (42.2) nmol/L, respectively. There were no significant changes in muscle strength or power, resting metabolic rate and body composition over the 12-week period. Physically active young adults that are VitD sufficient have demonstrated that no additional physiological effects of achieving supraphysiological serum total 25(OH)D concentrations after VitD3 supplementation.
Collapse
|
36
|
Flegr J, Sýkorová K, Fiala V, Hlaváčová J, Bičíková M, Máčová L, Kaňková Š. Increased 25(OH)D3 level in redheaded people: Could redheadedness be an adaptation to temperate climate? Exp Dermatol 2020; 29:598-609. [DOI: 10.1111/exd.14119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jaroslav Flegr
- Department of Philosophy and History of Sciences Faculty of Science Charles University Prague Czech Republic
| | - Kateřina Sýkorová
- Department of Philosophy and History of Sciences Faculty of Science Charles University Prague Czech Republic
| | - Vojtěch Fiala
- Department of Philosophy and History of Sciences Faculty of Science Charles University Prague Czech Republic
| | - Jana Hlaváčová
- Department of Philosophy and History of Sciences Faculty of Science Charles University Prague Czech Republic
| | | | | | - Šárka Kaňková
- Department of Philosophy and History of Sciences Faculty of Science Charles University Prague Czech Republic
| |
Collapse
|
37
|
Kim TK, Atigadda V, Brzeminski P, Fabisiak A, Tang EKY, Tuckey RC, Slominski AT. Detection of 7-Dehydrocholesterol and Vitamin D3 Derivatives in Honey. Molecules 2020; 25:E2583. [PMID: 32498437 PMCID: PMC7321140 DOI: 10.3390/molecules25112583] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022] Open
Abstract
20(S)-Hydroxyvitamin D3 (20(OH)D3) is an endogenous metabolite produced by the action of CYP11A1 on the side chain of vitamin D3 (D3). 20(OH)D3 can be further hydroxylated by CYP11A1, CYP27A1, CYP24A1 and/or CYP27B1 to several hydroxyderivatives. CYP11A1 also hydroxylates D3 to 22-monohydroxyvitamin D3 (22(OH)D3), which is detectable in the epidermis. 20-Hydroxy-7-dehydrocholesterol (20(OH)-7DHC) has been detected in the human epidermis and can be phototransformed into 20(OH)D3 following the absorption of ultraviolet B (UVB) energy by the B-ring. 20(OH)D3 and its hydroxyderivatives have anti-inflammatory, pro-differentiation and anti-proliferative effects, comparable to 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Since cytochromes P450 with 20- or 25-hydroxylase activity are found in insects participating in ecdysone synthesis from 7-dehydrocholesterol (7DHC), we tested whether D3-hydroxyderivatives are present in honey, implying their production in bees. Honey was collected during summer in the Birmingham area of Alabama or purchased commercially and extracted and analyzed using LC-MS. We detected a clear peak of m/z = 423.324 [M + Na]+ for 20(OH)D3 corresponding to a concentration in honey of 256 ng/g. We also detected peaks of m/z = 383.331 [M + H - H2O]+ for 20(OH)-7DHC and 25(OH)D3 with retention times corresponding to the standards. We further detected species with m/z = 407.329 [M + Na]+ corresponding to the RT of 7DHC, D3 and lumisterol3 (L3). Similarly, peaks with m/z = 399.326 [M + H - H2O]+ were detected at the RT of 1,25(OH)2D3 and 1,20-dihydroxyvitamin D3 (1,20(OH)2D3). Species corresponding to 20-monohydroxylumisterol3 (20(OH)L3), 22-monohydroxyvitamin D3 (22(OH)D3), 20,23-dihydroxyvitamin D3 (20,23(OH)2D3), 20,24/25/26-dihydroxyvitamin D3 (20,24/25/26(OH)2D3) and 1,20,23/24/25/26-trihydroxyvitamin D3 (1,20,23/24/25/26(OH)3D3) were not detectable above the background. In conclusion, the presence of 7DHC and D3 and of species corresponding to 20(OH)-7DHC, 20(OH)D3, 1,20(OH)2D3, 25(OH)D3 and 1,25(OH)2D3 in honey implies their production in bees, although the precise biochemistry and photochemistry of these processes remain to be defined.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (V.A.); (P.B.); (A.F.)
- VA Medical Center, Birmingham, Birmingham, AL 35294, USA
| | - Venkatram Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (V.A.); (P.B.); (A.F.)
| | - Pawel Brzeminski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (V.A.); (P.B.); (A.F.)
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Adrian Fabisiak
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (V.A.); (P.B.); (A.F.)
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Edith K. Y. Tang
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; (E.K.Y.T.); (R.C.T.)
| | - Robert C. Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; (E.K.Y.T.); (R.C.T.)
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (V.A.); (P.B.); (A.F.)
- VA Medical Center, Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
38
|
Slominski AT, Chaiprasongsuk A, Janjetovic Z, Kim TK, Stefan J, Slominski RM, Hanumanthu VS, Raman C, Qayyum S, Song Y, Song Y, Panich U, Crossman DK, Athar M, Holick MF, Jetten AM, Zmijewski MA, Zmijewski J, Tuckey RC. Photoprotective Properties of Vitamin D and Lumisterol Hydroxyderivatives. Cell Biochem Biophys 2020; 78:165-180. [PMID: 32441029 PMCID: PMC7347247 DOI: 10.1007/s12013-020-00913-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
We have previously described new pathways of vitamin D3 activation by CYP11A1 to produce a variety of metabolites including 20(OH)D3 and 20,23(OH)2D3. These can be further hydroxylated by CYP27B1 to produce their C1α-hydroxyderivatives. CYP11A1 similarly initiates the metabolism of lumisterol (L3) through sequential hydroxylation of the side chain to produce 20(OH)L3, 22(OH)L3, 20,22(OH)2L3 and 24(OH)L3. CYP11A1 also acts on 7-dehydrocholesterol (7DHC) producing 22(OH)7DHC, 20,22(OH)27DHC and 7-dehydropregnenolone (7DHP) which can be converted to the D3 and L3 configurations following exposure to UVB. These CYP11A1-derived compounds are produced in vivo and are biologically active displaying anti-proliferative, anti-inflammatory, anti-cancer and pro-differentiation properties. Since the protective role of the classical form of vitamin D3 (1,25(OH)2D3) against UVB-induced damage is recognized, we recently tested whether novel CYP11A1-derived D3- and L3-hydroxyderivatives protect against UVB-induced damage in epidermal human keratinocytes and melanocytes. We found that along with 1,25(OH)2D3, CYP11A1-derived D3-hydroxyderivatives and L3 and its hydroxyderivatives exert photoprotective effects. These included induction of intracellular free radical scavenging and attenuation and repair of DNA damage. The protection of human keratinocytes against DNA damage included the activation of the NRF2-regulated antioxidant response, p53-phosphorylation and its translocation to the nucleus, and DNA repair induction. These data indicate that novel derivatives of vitamin D3 and lumisterol are promising photoprotective agents. However, detailed mechanisms of action, and the involvement of specific nuclear receptors, other vitamin D binding proteins or mitochondria, remain to be established.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA.
- Veteran Administration Medical Center, Birmingham, Al, USA.
| | - Anyamanee Chaiprasongsuk
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Joanna Stefan
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Radomir M Slominski
- Department of Medicine and Microbiology, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, USA
| | - Vidya Sagar Hanumanthu
- Department of Medicine and Microbiology, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, USA
| | - Chander Raman
- Department of Medicine and Microbiology, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, USA
| | - Shariq Qayyum
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Yuwei Song
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Yuhua Song
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA
| | | | - Anton M Jetten
- Cell Biology Section, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | | | - Jaroslaw Zmijewski
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
39
|
Piotrowska A, Wierzbicka J, Kwiatkowska K, Chodyński M, Kutner A, Żmijewski MA. Antiproliferative activity of side-chain truncated vitamin D analogs (PRI-1203 and PRI-1204) against human malignant melanoma cell lines. Eur J Pharmacol 2020; 881:173170. [PMID: 32445704 DOI: 10.1016/j.ejphar.2020.173170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 12/29/2022]
Abstract
Vitamin D compounds are versatile molecules widely considered as promising agents in cancer prevention and treatment, including melanoma. Previously we investigated series of double point modified vitamin D2 analogs as well as non-calcemic 20S-hydroxyvitamin D3 and 21-hydroxypregnacalciferol as to their anti-melanoma activity. Surprisingly, short side-chain vitamin D analogs were found to be biologically active compounds. Thus, here we tested novel derivatives of pregnacalciferol with an additional hydroxyl at the end of the truncated side chain, PRI-1203 and PRI-1204, as to their potency against human melanoma A375 and RPMI7951 cell lines. Tested compounds are geometric isomers, with 19-methylene positioned in PRI-1203 like in a calcitriol molecule, but reversed in the PRI-1204 analog to the (5E,7E) geometry (5,6-trans). We noticed a decrease in cells viability exerted by PRI-1203. The antiproliferative effect of PRI-1204 was very low, emphasizing the importance of the natural 19-methylene geometry in the PRI-1203. PRI-1203 was also effective in inhibition of A375 melanoma cells migration. PRI-1203, but not PRI-1204, increased the percentage of A375 and RPMI7951 melanoma cells in the G0/G1 phase of cell cycle, possibly in a p21 and p27 independent manner. Both, analogs have very low effect on the level of CYP24A1 mRNA, in comparison to active form of vitamin D - 1.25(OH)2D3. In addition, both tested compounds failed to elicit VDR translocation to the nucleus. Thus, it could be postulated that side chain shortening strongly affects binding of analogs to VDR and activation of genomic responses, however do not impair their antiproliferative activities.
Collapse
Affiliation(s)
- Anna Piotrowska
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 1a Debinki, Gdańsk, 80-211, Poland.
| | - Justyna Wierzbicka
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 1a Debinki, Gdańsk, 80-211, Poland.
| | - Kamila Kwiatkowska
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 1a Debinki, Gdańsk, 80-211, Poland
| | - Michał Chodyński
- Department of Chemistry, Pharmaceutical Research Institute, 8 Rydygiera, Warsaw, 01-793, Poland.
| | - Andrzej Kutner
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Stefana Banacha, Warsaw, 02-097, Poland.
| | - Michał A Żmijewski
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 1a Debinki, Gdańsk, 80-211, Poland.
| |
Collapse
|
40
|
Brożyna AA, Hoffman RM, Slominski AT. Relevance of Vitamin D in Melanoma Development, Progression and Therapy. Anticancer Res 2020; 40:473-489. [PMID: 31892603 PMCID: PMC6948187 DOI: 10.21873/anticanres.13976] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
Abstract
Melanoma is one of the most lethal types of skin cancer, with a poor prognosis once the disease enters metastasis. The efficacy of currently available treatment schemes for advanced melanomas is low, expensive, and burdened by significant side-effects. Therefore, there is a need to develop new treatment options. Skin cells are able to activate vitamin D via classical and non-classical pathways. Vitamin D derivatives have anticancer properties which promote differentiation and inhibit proliferation. The role of systemic vitamin D in patients with melanoma is unclear as epidemiological studies are not definitive. In contrast, experimental data have clearly shown that vitamin D and its derivatives have anti-melanoma properties. Furthermore, molecular and clinicopathological studies have demonstrated a correlation between defects in vitamin D signaling and progression of melanoma and disease outcome. Therefore, adequate vitamin D signaling can play a role in the treatment of melanoma.
Collapse
Affiliation(s)
- Anna A Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | | | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, U.S.A. .,Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, U.S.A.,VA Medical Center, Birmingham, AL, U.S.A
| |
Collapse
|
41
|
Slominski AT, Brożyna AA, Zmijewski MA, Janjetovic Z, Kim TK, Slominski RM, Tuckey RC, Mason RS, Jetten AM, Guroji P, Reichrath J, Elmets C, Athar M. The Role of Classical and Novel Forms of Vitamin D in the Pathogenesis and Progression of Nonmelanoma Skin Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:257-283. [PMID: 32918223 PMCID: PMC7490773 DOI: 10.1007/978-3-030-46227-7_13] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonmelanoma skin cancers including basal and squamous cell carcinomas (SCC and BCC) represent a significant clinical problem due to their relatively high incidence, imposing an economic burden to healthcare systems around the world. It is accepted that ultraviolet radiation (UVR: λ = 290-400 nm) plays a crucial role in the initiation and promotion of BCC and SCC with UVB (λ = 290-320 nm) having a central role in this process. On the other hand, UVB is required for vitamin D3 (D3) production in the skin, which supplies >90% of the body's requirement for this prohormone. Prolonged exposure to UVB can also generate tachysterol and lumisterol. Vitamin D3 itself and its canonical (1,25(OH)2D3) and noncanonical (CYP11A1-intitated) D3 hydroxyderivatives show photoprotective functions in the skin. These include regulation of keratinocyte proliferation and differentiation, induction of anti-oxidative responses, inhibition of DNA damage and induction of DNA repair mechanisms, and anti-inflammatory activities. Studies in animals have demonstrated that D3 hydroxyderivatives can attenuate UVB or chemically induced epidermal cancerogenesis and inhibit growth of SCC and BCC. Genomic and non-genomic mechanisms of action have been suggested. In addition, vitamin D3 itself inhibits hedgehog signaling pathways which have been implicated in many cancers. Silencing of the vitamin D receptor leads to increased propensity to develop UVB or chemically induced epidermal cancers. Other targets for vitamin D compounds include 1,25D3-MARRS, retinoic orphan receptors α and γ, aryl hydrocarbon receptor, and Wnt signaling. Most recently, photoprotective effects of lumisterol hydroxyderivatives have been identified. Clinical trials demonstrated a beneficial role of vitamin D compounds in the treatment of actinic keratosis. In summary, recent advances in vitamin D biology and pharmacology open new exciting opportunities in chemoprevention and treatment of skin cancers.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, USA.
- VA Medical Center, Birmingham, AL, USA.
| | - Anna A Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | | | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Radomir M Slominski
- Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Rebecca S Mason
- Physiology & Bosch Institute, School of Medical Sciences, Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - Anton M Jetten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Purushotham Guroji
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jörg Reichrath
- Center for Clinical and Experimental Photodermatology and Department of Dermatology, Saarland University Medical Center, Homburg, Germany
| | - Craig Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
42
|
Abstract
Sarcopenia, the age-dependent decline of muscle mass and performance, is a common condition among elderly population and is related to numerous adverse health outcomes. Due to the effect of sarcopenia on quality of life, disability, and mortality, a greater awareness is important in order to correctly recognize the condition both in community and geriatric settings. Research on sarcopenia prevention and treatment is growing quickly, but many questions are still unanswered. The core of the sarcopenia state includes quantitative and qualitative declines of skeletal muscle. These two aspects should therefore be considered when designing and examining preventive and therapeutic interventions. The role of vitamin D in skeletal muscle metabolism has been highlighted in recent years. The interest arises from the important findings of studies indicating multiple impacts of vitamin D on this tissue, which can be divided into genomic (direct impacts) and non-genomic impacts (indirect impacts). Another important dimension to be considered in the study of vitamin D and muscle fiber metabolism is associated with different expressions of the vitamin D receptor, which differs in muscle tissue, depending on age, gender, and pathology. Vitamin D inadequacy or deficiency is related to muscle fiber atrophy, elevated risk of chronic musculoskeletal pain, sarcopenia, and falls. This review describes the effect of vitamin D in skeletal muscle tissue function and metabolism and includes discussion of possible mechanisms in skeletal muscle.
Collapse
|
43
|
Romeu Montenegro K, Carlessi R, Cruzat V, Newsholme P. Effects of vitamin D on primary human skeletal muscle cell proliferation, differentiation, protein synthesis and bioenergetics. J Steroid Biochem Mol Biol 2019; 193:105423. [PMID: 31279004 DOI: 10.1016/j.jsbmb.2019.105423] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/14/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022]
Abstract
The active form of Vitamin D (1,25(OH)2D), has been suggested to have a regulatory role in skeletal muscle function and metabolism, however, the effects and mechanisms of vitamin D (VitD) action in this tissue remain to be fully established. In this study, we have used primary human skeletal muscle myoblast (HSMM) cells that display typical characteristics of human skeletal muscle function and protein levels, to investigate the effects of the active form of VitD on proliferation, differentiation, protein synthesis and bioenergetics. Myoblast cells were treated with 100 nM of VitD for 24 h, 48 h, 72 h and five days (cells were differentiated into myotubes) and then analyses were performed. We report that VitD inhibits myoblast proliferation and enhances differentiation by altering the expression of myogenic regulatory factors. In addition, we found that protein synthesis signaling improved in myotubes after VitD treatment in the presence of insulin. We also report an increase in oxygen consumption rate after 24 h of treatment in myoblasts and after 5 days of treatment in myotubes after VitD exposure. VitD significantly impacted HSMM myogenesis, as well as protein synthesis in the presence of insulin.
Collapse
Affiliation(s)
- Karina Romeu Montenegro
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, 6102, Australia
| | - Rodrigo Carlessi
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, 6102, Australia
| | - Vinicius Cruzat
- Faculty of Health, Torrens University Australia, Melbourne, Victoria, 3000, Australia.
| | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, 6102, Australia.
| |
Collapse
|
44
|
Markiewicz A, Brożyna AA, Podgórska E, Elas M, Urbańska K, Jetten AM, Slominski AT, Jóźwicki W, Orłowska-Heitzman J, Dyduch G, Romanowska-Dixon B. Vitamin D receptors (VDR), hydroxylases CYP27B1 and CYP24A1 and retinoid-related orphan receptors (ROR) level in human uveal tract and ocular melanoma with different melanization levels. Sci Rep 2019; 9:9142. [PMID: 31235702 PMCID: PMC6591242 DOI: 10.1038/s41598-019-45161-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/23/2019] [Indexed: 12/27/2022] Open
Abstract
In recent years, a significant number of studies have investigated the preventive role of vitamin D in a number of different neoplasms. In this study, we analyze various components of the vitamin D signaling pathways in the human uveal tract and uveal melanoma, including analysis of the expression of vitamin D receptors (VDR), the activating and inactivating hydroxylases, respectively, CYP27B1 and CYP24A1, and the retinoic acid-related orphan receptors (ROR) α (RORα) and γ (RORγ) in these tissues. We further analyzed the expression of VDR, CYP27B1, CYP24A1, and ROR in relation to melanin levels, clinical stage and prognosis. Our study indicated that the uveal melanoma melanin level inversely correlated with VDR expression. We further showed that vitamin D is metabolized in uveal melanoma. This is significant because until now there has been no paper published, that would describe presence of VDR, hydroxylases CYP27B1 and CYP24A1, and RORα and RORγ in the human uveal tract and uveal melanomas. The outcomes of our research can contribute to the development of new diagnostic and therapeutic methods in uveal tract disorders, especially in uveal melanoma. The presented associations between vitamin D signaling elements and uveal melanoma in comparison to uveal tract encourage future clinical research with larger patients' population.
Collapse
Affiliation(s)
- Anna Markiewicz
- Department of Ophthalmology and Ocular Oncology, Medical College, Jagiellonian University in Kraków, 31-501, Kraków, Poland.
| | - Anna A Brożyna
- Department of Human Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, 87-100, Toruń, Poland
| | - Ewa Podgórska
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 31-007, Kraków, Poland
| | - Martyna Elas
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 31-007, Kraków, Poland
| | - Krystyna Urbańska
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 31-007, Kraków, Poland
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- VA Medical Center, Birmingham, AL, 35294, USA
| | - Wojciech Jóźwicki
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
- Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, 85-796, Bydgoszcz, Poland
| | - Jolanta Orłowska-Heitzman
- Clinical and Experimental Pathomorphology, Jagiellonian University, Medical College, 31-531, Kraków, Poland
| | - Grzegorz Dyduch
- Clinical and Experimental Pathomorphology, Jagiellonian University, Medical College, 31-531, Kraków, Poland
| | - Bożena Romanowska-Dixon
- Department of Ophthalmology and Ocular Oncology, Medical College, Jagiellonian University in Kraków, 31-501, Kraków, Poland
| |
Collapse
|
45
|
Abstract
Vitamin D receptor expression and associated function have been reported in various muscle models, including C2C12, L6 cell lines and primary human skeletal muscle cells. It is believed that 1,25-hydroxyvitamin D3 (1,25(OH)2D3), the active form of vitamin D, has a direct regulatory role in skeletal muscle function, where it participates in myogenesis, cell proliferation, differentiation, regulation of protein synthesis and mitochondrial metabolism through activation of various cellular signalling cascades, including the mitogen-activated protein kinase pathway(s). It has also been suggested that 1,25(OH)2D3 and its associated receptor have genomic targets, resulting in regulation of gene expression, as well as non-genomic functions that can alter cellular behaviour through binding and modification of targets not directly associated with transcriptional regulation. The molecular mechanisms of vitamin D signalling, however, have not been fully clarified. Vitamin D inadequacy or deficiency is associated with muscle fibre atrophy, increased risk of chronic musculoskeletal pain, sarcopenia and associated falls, and may also decrease RMR. The main purpose of the present review is to describe the molecular role of vitamin D in skeletal muscle tissue function and metabolism, specifically in relation to proliferation, differentiation and protein synthesis processes. In addition, the present review also includes discussion of possible genomic and non-genomic pathways of vitamin D action.
Collapse
|
46
|
Neuroendocrine Aspects of Skin Aging. Int J Mol Sci 2019; 20:ijms20112798. [PMID: 31181682 PMCID: PMC6600459 DOI: 10.3390/ijms20112798] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022] Open
Abstract
Skin aging is accompanied by a gradual loss of function, physiological integrity and the ability to cope with internal and external stressors. This is secondary to a combination of complex biological processes influenced by constitutive and environmental factors or by local and systemic pathologies. Skin aging and its phenotypic presentation are dependent on constitutive (genetic) and systemic factors. It can be accelerated by environmental stressors, such as ultraviolet radiation, pollutants and microbial insults. The skin’s functions and its abilities to cope with external stressors are regulated by the cutaneous neuroendocrine systems encompassing the regulated and coordinated production of neuropeptides, neurohormones, neurotransmitters and hormones, including steroids and secosteroids. These will induce/stimulate downstream signaling through activation of corresponding receptors. These pathways and corresponding coordinated responses to the stressors decay with age or undergo pathological malfunctions. This affects the overall skin phenotype and epidermal, dermal, hypodermal and adnexal functions. We propose that skin aging can be attenuated or its phenotypic presentation reversed by the topical use of selected factors with local neurohormonal activities targeting specific receptors or enzymes. Some of our favorite factors include melatonin and its metabolites, noncalcemic secosteroids and lumisterol derivatives, because of their low toxicity and their desirable local phenotypic effects.
Collapse
|
47
|
Mokhtar WA, Fawzy A, Allam RM, Amer RM, Hamed MS. Maternal vitamin D level and vitamin D receptor gene polymorphism as a risk factor for congenital heart diseases in offspring; An Egyptian case-control study. Genes Dis 2019; 6:193-200. [PMID: 31194013 PMCID: PMC6545446 DOI: 10.1016/j.gendis.2018.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/15/2018] [Indexed: 01/12/2023] Open
Abstract
Vitamin D & vitamin D receptor (VDR) signaling play a very crucial role in early embryonic heart development. We construct this case-control study to investigate the association between maternal serum vitamin D level & VDR gene Fok1 polymorphism and risk of congenital heart defects (CHD) in offspring. Fifty mothers who had term neonates with CHD were considered as cases. Fifty age-comparable healthy mothers who had neonates without CHD were contemplated as controls. Maternal serum 25 hydroxyvitamin D [25(OH) D] level was tested using ELISA. Maternal VDR gene Fok1 polymorphism was analyzed using PCR-based RFLP-assay. There was a significant decrease in maternal vitamin D level (P = 0.002) and a significant increase in vitamin D deficient status (P = 0.007) among cases when compared to controls. VDR gene Fok1 genotypes distribution frequency were in accordance with Hardy Weinberg equilibrium (HW) among controls. A significant increase in VDR gene Fok1 F/f & f/f genotypes and f allele were observed in cases compared to controls with estimated odds ratio (95% confidence interval) & P-value of 3 (1-8) & P = 0.006, 11 (1-97) & P = 0.01 and 3 (2-6) & P = 0.001 respectively. There was a significant decrease in maternal vitamin D level in neonates with cyanotic CHD (P = 0.000) compared to those with a cyanotic CHD while there was no significant difference in VDR Fok1 genotype (P = 0.18) & allele (P = 0.05) distribution between two groups. We concluded that maternal vitamin D deficiency and VDR gene Fok1 F/f, f/f genotype and f allele were associated with increased risk of CHD in offspring.
Collapse
Affiliation(s)
- Wesam A Mokhtar
- Pediatric Department, Faculty of Medicine, Zagazig University, Egypt
| | - Amal Fawzy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Egypt
| | - Reem M Allam
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Egypt
| | - Rania M Amer
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Egypt
| | - Mona S Hamed
- Public Health and Community Medicine, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
48
|
Fan W, Peng Y, Liang Z, Yang Y, Zhang J. A negative feedback loop of H19/miR‐675/EGR1 is involved in diabetic nephropathy by downregulating the expression of the vitamin D receptor. J Cell Physiol 2019; 234:17505-17513. [PMID: 30815865 DOI: 10.1002/jcp.28373] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 01/08/2023]
Affiliation(s)
- WenXing Fan
- Department of Nephrology the First Affiliated Hospital of Kunming Medical University Kunming Yunnan China
- Yunnan Key Laboratory of Laboratory Medicine, the First Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| | - YunZhu Peng
- Department of Cardiology the First Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| | - Zhang Liang
- Department of Science and Technology Kunming Medical University Kunming Yunnan China
| | - YueNa Yang
- Teaching Quality Monitoring and Assessment Center, Kunming Medical University Kunming Yunnan China
| | - Jing Zhang
- Department of Nephrology the First Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| |
Collapse
|
49
|
Tuckey RC, Cheng CYS, Slominski AT. The serum vitamin D metabolome: What we know and what is still to discover. J Steroid Biochem Mol Biol 2019; 186:4-21. [PMID: 30205156 PMCID: PMC6342654 DOI: 10.1016/j.jsbmb.2018.09.003] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023]
Abstract
Vitamin D, referring to the two forms, D2 from the diet and D3 primarily derived from phototransformation in the skin, is a prohormone important in human health. The most hormonally active form, 1α,25-dihydroxyvitamin D (1α,25(OH)2D), formed from vitamin D via 25-hydroxyvitamin D (25(OH)D), is not only important for regulating calcium metabolism, but has many pleiotropic effects including regulation of the immune system and has anti-cancer properties. The major circulating form of vitamin D is 25(OH)D and both D2 and D3 forms are routinely measured by LC/MS/MS to assess vitamin D status, due to their relatively long half-lives and much higher concentrations compared to 1α,25(OH)2D. Inactivation of both 25(OH)D and 1α,25(OH)2D is catalyzed by CYP24A1 and 25-hydroxyvitamin D3 3-epimerase. Initial products from these enzymes acting on 25(OH)D3 are 24R,25(OH)2D3 and 3-epi-25(OH)D3, respectively, and both of these can also be measured routinely in some clinical laboratories to further document vitamin D status. With advances in LC/MS/MS and its increased availability, and with the help of studies with recombinant vitamin D-metabolizing enzymes, many other vitamin D metabolites have now been detected and in some cases quantitated, in human serum. CYP11A1 which catalyzes the first step in steroidogenesis, has been found to also act on vitamins D3 and D2 hydroxylating both at C20, but with some secondary metabolites produced by subsequent hydroxylations at other positions on the side chain. The major vitamin D3 metabolite, 20S-hydroxyvitamin D3 (20S(OH)D3), shows biological activity, often similar to 1α,25(OH)2D3 but without calcemic effects. Using standards produced enzymatically by purified CYP11A1 and characterized by NMR, many of these new metabolites have been detected in human serum, with semi-quantitative measurement of 20S(OH)D3 indicating it is present at comparable concentrations to 24R,25(OH)2D3 and 3-epi-25(OH)D3. Recently, vitamin D-related hydroxylumisterols derived from lumisterol3, a previtamin D3 photoproduct, have also been measured in human serum and displayed biological activity in initial in vitro studies. With the current extensive knowledge on the reactions and pathways of metabolism of vitamin D, especially those catalyzed by CYP24A1, CYP27A1, CYP27B1, CYP3A4 and CYP11A1, it is likely that many other of the resulting hydroxyvitamin D metabolites will be measured in human serum in the future, some contributing to a more detailed understanding of vitamin D status in health and disease.
Collapse
Affiliation(s)
- Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Chloe Y S Cheng
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, AL, 35294, USA; Comprehensive Cancer Center Cancer Chemoprevention Program, University of Alabama at Birmingham, AL, 35294, USA; VA Medical Center, Birmingham, AL, 35294, USA
| |
Collapse
|
50
|
Slominski AT, Kim TK, Janjetovic Z, Brożyna AA, Żmijewski MA, Xu H, Sutter TR, Tuckey RC, Jetten AM, Crossman DK. Differential and Overlapping Effects of 20,23(OH)₂D3 and 1,25(OH)₂D3 on Gene Expression in Human Epidermal Keratinocytes: Identification of AhR as an Alternative Receptor for 20,23(OH)₂D3. Int J Mol Sci 2018; 19:ijms19103072. [PMID: 30297679 PMCID: PMC6213311 DOI: 10.3390/ijms19103072] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
A novel pathway of vitamin D activation by CYP11A has previously been elucidated. To define the mechanism of action of its major dihydroxy-products, we tested the divergence and overlap between the gene expression profiles of human epidermal keratinocytes treated with either CYP11A1-derived 20,23(OH)2D3 or classical 1,25(OH)2D3. Both secosteroids have significant chemical similarity with the only differences being the positions of the hydroxyl groups. mRNA was isolated and examined by microarray analysis using Illumina’s HumanWG-6 chip/arrays and subsequent bioinformatics analyses. Marked differences in the up- and downregulated genes were observed between 1,25(OH)2D3- and 20,23(OH)2D3-treated cells. Hierarchical clustering identified both distinct, opposite and common (overlapping) gene expression patterns. CYP24A1 was a common gene strongly activated by both compounds, a finding confirmed by qPCR. Ingenuity pathway analysis identified VDR/RXR signaling as the top canonical pathway induced by 1,25(OH)2D3. In contrast, the top canonical pathway induced by 20,23(OH)2D3 was AhR, with VDR/RXR being the second nuclear receptor signaling pathway identified. QPCR analyses validated the former finding by revealing that 20,23(OH)2D3 stimulated CYP1A1 and CYP1B1 gene expression, effects located downstream of AhR. Similar stimulation was observed with 20(OH)D3, the precursor to 20,23(OH)2D3, as well as with its downstream metabolite, 17,20,23(OH)3D3. Using a Human AhR Reporter Assay System we showed marked activation of AhR activity by 20,23(OH)2D3, with weaker stimulation by 20(OH)D3. Finally, molecular modeling using an AhR LBD model predicted vitamin D3 hydroxyderivatives to be good ligands for this receptor. Thus, our microarray, qPCR, functional studies and molecular modeling indicate that AhR is the major receptor target for 20,23(OH)2D3, opening an exciting area of investigation on the interaction of different vitamin D3-hydroxyderivatives with AhR and the subsequent downstream activation of signal transduction pathways in a cell-type-dependent manner.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- Veteran Administration Medical Center, Birmingham, AL 35294, USA.
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Anna A Brożyna
- Department of Medical Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 87-100 Toruń, Poland.
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland.
| | - Michal A Żmijewski
- Department of Histology, Medical University of Gdańsk, 80-211 Gdańsk, Poland.
| | - Hui Xu
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Thomas R Sutter
- Feinstone Center for Genomic Research, University of Memphis, Memphis, TN 38152 USA.
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Anton M Jetten
- Immunity, Inflammation, and Disease Laboratory/Cell Biology Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| | - David K Crossman
- Howell and Elizabeth Heflin Center for Human Genetics, Genomic Core Facility, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|