1
|
Ozer EA, Keskin A, Berrak YH, Cankara F, Can F, Gursoy-Ozdemir Y, Keskin O, Gursoy A, Yapici-Eser H. Shared interactions of six neurotropic viruses with 38 human proteins: a computational and literature-based exploration of viral interactions and hijacking of human proteins in neuropsychiatric disorders. DISCOVER MENTAL HEALTH 2025; 5:18. [PMID: 39987419 PMCID: PMC11846830 DOI: 10.1007/s44192-025-00128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/09/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Viral infections may disrupt the structural and functional integrity of the nervous system, leading to acute conditions such as encephalitis, and neuropsychiatric conditions as mood disorders, schizophrenia, and neurodegenerative diseases. Investigating viral interactions of human proteins may reveal mechanisms underlying these effects and offer insights for therapeutic interventions. This study explores molecular interactions of virus and human proteins that may be related to neuropsychiatric disorders. METHODS Herpes Simplex Virus-1 (HSV-1), Cytomegalovirus (CMV), Epstein-Barr Virus (EBV), Influenza A virus (IAV) (H1N1, H5N1), and Human Immunodeficiency Virus (HIV1&2) were selected as key viruses. Protein structures for each virus were accessed from the Protein Data Bank and analyzed using the HMI-Pred web server to detect interface mimicry between viral and human proteins. The PANTHER classification system was used to categorize viral-human protein interactions based on function and cellular localization. RESULTS Energetically favorable viral-human protein interactions were identified for HSV-1 (467), CMV (514), EBV (495), H1N1 (3331), H5N1 (3533), and HIV 1&2 (62425). Besides immune and apoptosis-related pathways, key neurodegenerative pathways, including those associated with Parkinson's and Huntington's diseases, were frequently interacted. A total of 38 human proteins, including calmodulin 2, Ras-related botulinum toxin substrate 1 (Rac1), PDGF-β, and vimentin, were found to interact with all six viruses. CONCLUSION The study indicates a substantial number of energetically favorable interactions between human proteins and selected viral proteins, underscoring the complexity and breadth of viral strategies to hijack host cellular mechanisms. Further in vivo and in vitro validation is required to understand the implications of these interactions.
Collapse
Affiliation(s)
| | - Aleyna Keskin
- School of Medicine, Koç University, Istanbul, Turkey
| | | | - Fatma Cankara
- Graduate School of Sciences and Engineering, Computational Sciences and Engineering, Koç University, Istanbul, Turkey
| | - Fusun Can
- Department of Microbiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Yasemin Gursoy-Ozdemir
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, College of Engineering, Koç University, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Science and Engineering, College of Engineering, Koç University, Istanbul, Turkey.
| | - Hale Yapici-Eser
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
2
|
Shouman S, Hesham N, Salem TZ. Viruses and neurodegeneration: a growing concern. J Transl Med 2025; 23:46. [PMID: 39800721 PMCID: PMC11727702 DOI: 10.1186/s12967-024-06025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Neurodegenerative diseases (NDDs) cause a progressive loss of neurons. Since NDDs are multifactorial, the precise etiology varies on the basis of the type of disease and patient history. Cohort studies and case studies have demonstrated a potential link between viral infections and the onset or progression of NDDs. Recent findings concerning the mechanisms by which neuropathic infections occur have provided more insights into the importance of such connections. In this review, we aim to elaborate on the occurrence of the neuropathic effects of viruses from epidemiological, clinical, and biological perspectives while highlighting potential treatments and challenges. One of the key players in viral neuropathogenesis is neuroinflammation caused by the immune response to the virus; this can occur due to both neurotropic and nonneurotropic viruses. The COVID-19 pandemic has raised concerns about whether vaccines are essential for preventing viruses or whether vaccines may play a part in exacerbating or accelerating NDDs. By classifying viruses and the common NDDs associated with them and further delving into their cellular pathways, this review provides insights to advance the development of potential treatments and diagnostic methods.
Collapse
Affiliation(s)
- S Shouman
- Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - N Hesham
- Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
- Molecular Biology and Virology Laboratory (MBVL), Center for X-Ray Determination of the Structure of Matter (CXDS), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - T Z Salem
- Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt.
- Molecular Biology and Virology Laboratory (MBVL), Center for X-Ray Determination of the Structure of Matter (CXDS), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt.
| |
Collapse
|
3
|
Nakae R, Sekine T, Tagami T, Kodani E, Warnock G, Igarashi Y, Murai Y, Yokobori S. Rapidly progressive brain atrophy in ventilated patients: a retrospective descriptive study. Sci Rep 2024; 14:29729. [PMID: 39613839 DOI: 10.1038/s41598-024-81372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Abstract
The relationship between mechanical ventilation-induced brain volume changes and ICU-acquired weakness (ICU-AW) is not clear. We assessed brain volume change in ventilated patients and identified associations with changes in extremity muscle strength. Patients admitted to the ICU due to the need for ventilation, and who underwent at least two head CT scans during hospitalization, were included. We employed an automated segmentation method to measure brain volume, recording changes in volume from baseline. Cases with brain volume reduction > 0% were assigned to the "brain atrophy group" and those with ≤ 0% reduction to the "preserved brain volume group." Medical Research Council (MRC) scores as an indicator of ICU-AW at discharge were compared between groups. There were 84 eligible patients, 71 in the brain atrophy group and 13 in the preserved brain volume group. Analysis of the brain atrophy group showed a significant brain volume reduction of - 3.3% over a median of 30 days. The median MRC scores were significantly lower in the brain atrophy group than in the preserved brain volume group (36 vs. 48, difference [95% CI]: - 12 [- 19.5- - 7.1]). Many ICU patients on mechanical ventilation showed rapidly progressive brain atrophy, and most of these patients developed ICU-AW.
Collapse
Affiliation(s)
- Ryuta Nakae
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan.
| | - Tetsuro Sekine
- Department of Radiology, Nippon Medical School Musashi Kosugi Hospital, 1-396, Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa, 211-8533, Japan
| | - Takashi Tagami
- Department of Emergency and Critical Care Medicine, Nippon Medical School Musashi Kosugi Hospital, 1-396, Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa, 211-8533, Japan
| | - Eigo Kodani
- Department of Radiology, Nippon Medical School Musashi Kosugi Hospital, 1-396, Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa, 211-8533, Japan
| | - Geoffrey Warnock
- PMOD Technologies GmbH, Industriestrasse 26, 8117, Faellanden, Switzerland
| | - Yutaka Igarashi
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Yasuo Murai
- Department of Neurological Surgery, Nippon Medical School Hospital, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Shoji Yokobori
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| |
Collapse
|
4
|
Song X, Wang Y, Zou W, Wang Z, Cao W, Liang M, Li F, Zeng Q, Ren Z, Wang Y, Zheng K. Inhibition of mitophagy via the EIF2S1-ATF4-PRKN pathway contributes to viral encephalitis. J Adv Res 2024:S2090-1232(24)00326-6. [PMID: 39103048 DOI: 10.1016/j.jare.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION Mitophagy, a selective form of autophagy responsible for maintaining mitochondrial homeostasis, regulates the antiviral immune response and acts as viral replication platforms to facilitate infection with various viruses. However, its precise role in herpes simplex virus 1 (HSV-1) infection and herpes simplex encephalitis (HSE) remains largely unknown. OBJECTIVES We aimed to investigate the regulation of mitophagy by HSV-1 neurotropic infection and its role in viral encephalitis, and to identify small compounds that regulate mitophagy to affect HSV-1 infection. METHODS The antiviral effects of compounds were investigated by Western blot, RT-PCR and plaque assay. The changes of Parkin (PRKN)-mediated mitophagy and Nuclear Factor kappa B (NFKB)-mediated neuroinflammation were examined by TEM, RT-qPCR, Western blot and ELISA. The therapeutic effect of taurine or PRKN-overexpression was confirmed in the HSE mouse model by evaluating survival rate, eye damage, neurodegenerative symptoms, immunohistochemistry analysis and histopathology. RESULTS HSV-1 infection caused the accumulation of damaged mitochondria in neuronal cells and in the brain tissue of HSE mice. Early HSV-1 infection led to mitophagy activation, followed by inhibition in the later viral infection. The HSV-1 proteins ICP34.5 or US11 deregulated the EIF2S1-ATF4 axis to suppress PRKN/Parkin mRNA expression, thereby impeding PRKN-dependent mitophagy. Consequently, inhibition of mitophagy by specific inhibitor midiv-1 promoted HSV-1 infection, whereas mitophagy activation by PRKN overexpression or agonists (CCCP and rotenone) attenuated HSV-1 infection and reduced the NF-κB-mediated neuroinflammation. Moreover, PRKN-overexpressing mice showed enhanced resistance to HSV-1 infection and ameliorated HSE pathogenesis. Furthermore, taurine, a differentially regulated gut microbial metabolite upon HSV-1 infection, acted as a mitophagy activator that transcriptionally promotes PRKN expression to stimulate mitophagy and to limit HSV-1 infection both in vitro and in vivo. CONCLUSION These results reveal the protective function of mitophagy in HSE pathogenesis and highlight mitophagy activation as a potential antiviral therapeutic strategy for HSV-1-related diseases.
Collapse
Affiliation(s)
- Xiaowei Song
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China; Center for Mitochondrial Genetics and Health, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou 511400, China
| | - Yiliang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510440, China
| | - Weixiangmin Zou
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China
| | - Zexu Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China
| | - Wenyan Cao
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China
| | - Minting Liang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China
| | - Feng Li
- Infectious Diseases Institute, Guangzhou Eighth People's Hospital, Guangzhou 510440, China
| | - Qiongzhen Zeng
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou 510632, China.
| | - Kai Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
5
|
Kim B, Kim YS, Li W, Kwon EB, Chung HS, Go Y, Choi JG. Ginsenoside Rg5, a potent agonist of Nrf2, inhibits HSV-1 infection-induced neuroinflammation by inhibiting oxidative stress and NF-κB activation. J Ginseng Res 2024; 48:384-394. [PMID: 39036736 PMCID: PMC11258381 DOI: 10.1016/j.jgr.2024.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 07/23/2024] Open
Abstract
Background Herpes simplex virus type 1 (HSV-1), known to latently infect the host's trigeminal ganglion, can lead to severe herpes encephalitis or asymptomatic infection, potentially contributing to neurodegenerative diseases like Alzheimer's. The virus generates reactive oxygen species (ROS) that significantly impact viral replication and induce chronic inflammation through NF-κB activation. Nuclear factor E2-related factor 2 (Nrf2), an oxidative stress regulator, can prevent and treat HSV-1 infection by activating the passive defense response in the early stages of infection. Methods and results Our study investigated the antiviral effects of ginsenoside Rg5, an Nrf2 activator, on HSV-1 replication and several host cell signaling pathways. We found that HSV-1 infection inhibited Nrf2 activity in host cells, induced ROS/NF-κB signaling, and triggered inflammatory cytokines. However, treatment with ginsenoside Rg5 inhibited ROS/NF-κB signaling and reduced inflammatory cytokines through NRF2 induction. Interestingly, the Nrf2 inhibitor ML385 suppressed the expression of NAD(P)H quinone oxidoreductase 1(NQO1) and enhanced the expression of KEAP1 in HSV-1 infected cells. This led to the reversal of VP16 expression inhibition, a protein factor associated with HSV-1 infection, thereby promoting HSV-1 replication. Conclusion These findings suggest for the first time that ginsenoside Rg5 may serve as an antiviral against HSV-1 infection and could be a novel therapeutic agent for HSV-1-induced neuroinflammation.
Collapse
Affiliation(s)
- Buyun Kim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu, Republic of Korea
| | - Young Soo Kim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu, Republic of Korea
| | - Wei Li
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu, Republic of Korea
| | - Eun-Bin Kwon
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu, Republic of Korea
| | - Hwan-Suck Chung
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu, Republic of Korea
| | - Younghoon Go
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu, Republic of Korea
| | - Jang-Gi Choi
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu, Republic of Korea
| |
Collapse
|
6
|
Rani A, Patra P, Verma TP, Singh A, Jain AK, Jaiswal N, Narang S, Mittal N, Parmar HS, Jha HC. Deciphering the Association of Epstein-Barr Virus and Its Glycoprotein M Peptide with Neuropathologies in Mice. ACS Chem Neurosci 2024; 15:1254-1264. [PMID: 38436259 DOI: 10.1021/acschemneuro.4c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
The reactivation of ubiquitously present Epstein-Barr virus (EBV) is known to be involved with numerous diseases, including neurological ailments. A recent in vitro study from our group unveiled the association of EBV and its 12-amino acid peptide glycoprotein M146-157 (gM146-157) with neurodegenerative diseases, viz., Alzheimer's disease (AD) and multiple sclerosis. In this study, we have further validated this association at the in vivo level. The exposure of EBV/gM146-157 to mice causes a decline in the cognitive ability with a concomitant increase in anxiety-like symptoms through behavioral assays. Disorganization of hippocampal neurons, cell shrinkage, pyknosis, and apoptotic appendages were observed in the brains of infected mice. Inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were found to be elevated in infected mouse brain tissue samples, whereas TNF-α exhibited a decline in the serum of these mice. Further, the altered levels of nuclear factor-kappa B (NF-kB) and neurotensin receptor 2 affirmed neuroinflammation in infected mouse brain samples. Similarly, the risk factor of AD, apolipoprotein E4 (ApoE4), was also found to be elevated at the protein level in EBV/gM146-157 challenged mice. Furthermore, we also observed an increased level of myelin basic protein in the brain cortex. Altogether, our results suggested an integral connection of EBV and its gM146-157 peptide to the neuropathologies.
Collapse
Affiliation(s)
- Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Priyanka Patra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Tarun Prakash Verma
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Anamika Singh
- School of Biotechnology, Devi Ahilya University, Takshashila Campus, Khandwa Road, Indore, Madhya Pradesh 452001, India
| | - Ajay Kumar Jain
- Choithram Hospital and Research Centre, Indore, Madhya Pradesh 452014, India
| | - Neha Jaiswal
- Department of Pathology, Index Medical College and Hospital, Indore, Madhya Pradesh 452016, India
| | - Sanjeev Narang
- Department of Pathology, Index Medical College and Hospital, Indore, Madhya Pradesh 452016, India
| | - Nitish Mittal
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, Basel 4056, Switzerland
| | - Hamendra Singh Parmar
- School of Biotechnology, Devi Ahilya University, Takshashila Campus, Khandwa Road, Indore, Madhya Pradesh 452001, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
7
|
Ren F, Narita R, Rashidi AS, Fruhwürth S, Gao Z, Bak RO, Thomsen MK, Verjans GMGM, Reinert LS, Paludan SR. ER stress induces caspase-2-tBID-GSDME-dependent cell death in neurons lytically infected with herpes simplex virus type 2. EMBO J 2023; 42:e113118. [PMID: 37646198 PMCID: PMC10548179 DOI: 10.15252/embj.2022113118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023] Open
Abstract
Neurotropic viruses, including herpes simplex virus (HSV) types 1 and 2, have the capacity to infect neurons and can cause severe diseases. This is associated with neuronal cell death, which may contribute to morbidity or even mortality if the infection is not controlled. However, the mechanistic details of HSV-induced neuronal cell death remain enigmatic. Here, we report that lytic HSV-2 infection of human neuron-like SH-SY5Y cells and primary human and murine brain cells leads to cell death mediated by gasdermin E (GSDME). HSV-2-induced GSDME-mediated cell death occurs downstream of replication-induced endoplasmic reticulum stress driven by inositol-requiring kinase 1α (IRE1α), leading to activation of caspase-2, cleavage of the pro-apoptotic protein BH3-interacting domain death agonist (BID), and mitochondria-dependent activation of caspase-3. Finally, necrotic neurons released alarmins, which activated inflammatory responses in human iPSC-derived microglia. In conclusion, lytic HSV infection in neurons activates an ER stress-driven pathway to execute GSDME-mediated cell death and promote inflammation.
Collapse
Affiliation(s)
- Fanghui Ren
- Department of BiomedicineAarhus UniversityAarhus CDenmark
| | - Ryo Narita
- Department of BiomedicineAarhus UniversityAarhus CDenmark
| | - Ahmad S Rashidi
- Department of ViroscienceErasmus Medical CentreRotterdamThe Netherlands
| | - Stefanie Fruhwürth
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologySahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Zongliang Gao
- Department of BiomedicineAarhus UniversityAarhus CDenmark
| | - Rasmus O Bak
- Department of BiomedicineAarhus UniversityAarhus CDenmark
| | | | | | - Line S Reinert
- Department of BiomedicineAarhus UniversityAarhus CDenmark
| | - Søren R Paludan
- Department of BiomedicineAarhus UniversityAarhus CDenmark
- Department of Rheumatology and Inflammation Research, Institute of MedicineSahlgrenska Academy, University of GothenburgGothenburgSweden
| |
Collapse
|
8
|
Persistent inflammation and neuronal loss in the mouse brain induced by a modified form of attenuated herpes simplex virus type I. Virol Sin 2023; 38:108-118. [PMID: 36436797 PMCID: PMC10006190 DOI: 10.1016/j.virs.2022.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) is a widespread neurotropic virus that can reach the brain and cause a rare but acute herpes simplex encephalitis (HSE) with a high mortality rate. Most patients present with changes in neurological and behavioral status, and survivors suffer long-term neurological sequelae. To date, the pathogenesis leading to brain damage is still not well understood. HSV-1 induced encephalitis in the central nervous system (CNS) in animals are usually very diffuse and progressing rapidly, and mostly fatal, making the analysis difficult. Here, we established a mouse model of HSE via intracerebral inoculation of modified version of neural-attenuated strains of HSV-1 (deletion of ICP34.5 and inserting a strong promoter into the latency-associated transcript region), in which the LMR-αΔpA strain initiated moderate productive infection, leading to strong host immune and inflammatory response characterized by persistent microglia activation. This viral replication activity and prolonged inflammatory response activated signaling pathways in neuronal damage, amyloidosis, Alzheimer's disease, and neurodegeneration, eventually leading to neuronal loss and behavioral changes characterized by hypokinesia. Our study reveals detailed pathogenic processes and persistent inflammatory responses in the CNS and provides a controlled, mild and non-lethal HSE model for studying long-term neuronal injury and increased risk of neurodegenerative diseases due to HSV-1 infection.
Collapse
|
9
|
Duarte LF, Gatica S, Castillo A, Kalergis AM, Bueno SM, Riedel CA, González PA. Is there a role for herpes simplex virus type 1 in multiple sclerosis? Microbes Infect 2022; 25:105084. [PMID: 36586461 DOI: 10.1016/j.micinf.2022.105084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
Numerous studies relate the onset and severity of multiple sclerosis (MS) with viral infections. Herpes simplex virus type 1 (HSV-1), which is neurotropic and highly prevalent in the brain of healthy individuals, has been proposed to relate to MS. Here, we review and discuss the reported connections between HSV-1 and MS.
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile
| | - Sebastian Gatica
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile
| | - Almendra Castillo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile; Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
10
|
Ferrulli A, Senesi P, Terruzzi I, Luzi L. Eating Habits and Body Weight Changes Induced by Variation in Smell and Taste in Patients with Previous SARS-CoV-2 Infection. Nutrients 2022; 14:nu14235068. [PMID: 36501098 PMCID: PMC9738767 DOI: 10.3390/nu14235068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Olfactory and gustatory dysfunction are recognized as common symptoms in patients with COVID-19, with a prevalence ranging, respectively, between 41-61% and 38.2-49%. This review focused on relating the variations in dietary habits with the reduction/loss of smell and/or taste in patients who contracted the COVID-19 infection. Primarily, we reviewed the main pathological mechanisms involved in COVID 19-induced anosmia/dysosmia and ageusia/dysgeusia. Then, we explored and summarized the behavioural changes in food intake and body weight during the COVID-19 pandemic in relation to sensory impairment and the underlying mechanisms. Most studies on this topic argue that the altered chemosensory perception (taste and smell) mainly induces reduced appetite, leading to a faster fullness sensation during the consumption of a meal and, therefore, to a decrease in body weight. On the other hand, a reduced perception of the food's sensory properties may trigger compensatory responses that lead some individuals to increase food intake with a different effect on body weight. Regarding body weight, most studies evaluated malnutrition in patients hospitalized for COVID-19; more studies are warranted to investigate nutritional status specifically in non-hospitalized patients with olfactory and gustatory dysfunctions caused by COVID-19 infection.
Collapse
Affiliation(s)
- Anna Ferrulli
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- Correspondence: or ; Tel.: +39-02-8599-4572
| | - Pamela Senesi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Ileana Terruzzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Livio Luzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
11
|
Vasconcelos CCF, Hammerle MB, Sales DS, Rueda Lopes FC, Pinheiro PG, Gouvea EG, Alves MCDF, Pereira TV, Schmidt SL, Alvarenga RMP, Pires KL. Post-COVID-19 olfactory dysfunction: carbamazepine as a treatment option in a series of cases. J Neurovirol 2022; 28:312-318. [PMID: 35366736 PMCID: PMC8976535 DOI: 10.1007/s13365-022-01066-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/24/2022]
Abstract
Olfactory dysfunction is reported frequently in patients with coronavirus disease 2019. However, an effective treatment for this dysfunction is unknown. The present study evaluated carbamazepine as a treatment option for olfactory dysfunction based on its use in cases of neuralgia, especially of the V cranial nerve. The study included 10 patients with coronavirus disease with olfactory complaints who were part of a cohort of 172 coronavirus disease patients monitored for late neurological manifestations. Carbamazepine was administered for 11 weeks. The adverse effects reported were drowsiness (9/10) and dizziness (2/10); 9 of the 10 patients reported improved olfactory function after carbamazepine treatment. While the role of carbamazepine in the control of post-coronavirus disease olfactory dysfunction could not be confirmed in this study, the satisfactory response observed in most patients in this series suggests that further studies are warranted.
Collapse
Affiliation(s)
- Claudia Cristina Ferreira Vasconcelos
- Departamento de Neurologia, Hospital Universitário Gaffrée E Guinle/HUGG Programa de Pós Graduação Em Neurologia da Universidade Federal Do Estado Do Rio de Janeiro (UNIRIO), 775 Mariz e Barros St, Tijuca, Rio de Janeiro, RJ, 22.270-004, Brazil
| | - Mariana Beiral Hammerle
- Departamento de Neurologia, Hospital Universitário Gaffrée E Guinle/HUGG Programa de Pós Graduação Em Neurologia da Universidade Federal Do Estado Do Rio de Janeiro (UNIRIO), 775 Mariz e Barros St, Tijuca, Rio de Janeiro, RJ, 22.270-004, Brazil.
| | - Deborah Santos Sales
- Departamento de Neurologia, Hospital Universitário Gaffrée E Guinle/HUGG Programa de Pós Graduação Em Neurologia da Universidade Federal Do Estado Do Rio de Janeiro (UNIRIO), 775 Mariz e Barros St, Tijuca, Rio de Janeiro, RJ, 22.270-004, Brazil
| | - Fernanda Cristina Rueda Lopes
- Departamento de Radiologia, Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil
- Diagnósticos da América S/A (DASA), São Paulo, Brazil
| | - Patricia Gomes Pinheiro
- Departamento de Neurologia, Hospital Universitário Gaffrée E Guinle/HUGG Programa de Pós Graduação Em Neurologia da Universidade Federal Do Estado Do Rio de Janeiro (UNIRIO), 775 Mariz e Barros St, Tijuca, Rio de Janeiro, RJ, 22.270-004, Brazil
| | - Elisa Gutman Gouvea
- Departamento de Neurologia, Hospital Universitário Gaffrée E Guinle/HUGG Programa de Pós Graduação Em Neurologia da Universidade Federal Do Estado Do Rio de Janeiro (UNIRIO), 775 Mariz e Barros St, Tijuca, Rio de Janeiro, RJ, 22.270-004, Brazil
| | - Manuella Caroline Dutra Frazão Alves
- Departamento de Neurologia, Hospital Universitário Gaffrée E Guinle/HUGG Programa de Pós Graduação Em Neurologia da Universidade Federal Do Estado Do Rio de Janeiro (UNIRIO), 775 Mariz e Barros St, Tijuca, Rio de Janeiro, RJ, 22.270-004, Brazil
| | - Tayane Vasconcellos Pereira
- Departamento de Neurologia, Hospital Universitário Gaffrée E Guinle/HUGG Programa de Pós Graduação Em Neurologia da Universidade Federal Do Estado Do Rio de Janeiro (UNIRIO), 775 Mariz e Barros St, Tijuca, Rio de Janeiro, RJ, 22.270-004, Brazil
| | - Sergio Luis Schmidt
- Departamento de Neurologia, Hospital Universitário Gaffrée E Guinle/HUGG Programa de Pós Graduação Em Neurologia da Universidade Federal Do Estado Do Rio de Janeiro (UNIRIO), 775 Mariz e Barros St, Tijuca, Rio de Janeiro, RJ, 22.270-004, Brazil
| | - Regina Maria Papais Alvarenga
- Departamento de Neurologia, Hospital Universitário Gaffrée E Guinle/HUGG Programa de Pós Graduação Em Neurologia da Universidade Federal Do Estado Do Rio de Janeiro (UNIRIO), 775 Mariz e Barros St, Tijuca, Rio de Janeiro, RJ, 22.270-004, Brazil
| | - Karina Lebeis Pires
- Departamento de Neurologia, Hospital Universitário Gaffrée E Guinle/HUGG Programa de Pós Graduação Em Neurologia da Universidade Federal Do Estado Do Rio de Janeiro (UNIRIO), 775 Mariz e Barros St, Tijuca, Rio de Janeiro, RJ, 22.270-004, Brazil
| |
Collapse
|
12
|
O'Brien CA, Bennett FC, Bennett ML. Microglia in antiviral immunity of the brain and spinal cord. Semin Immunol 2022; 60:101650. [PMID: 36099864 PMCID: PMC9934594 DOI: 10.1016/j.smim.2022.101650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/17/2022] [Accepted: 08/30/2022] [Indexed: 01/15/2023]
Abstract
Viral infections of the central nervous system (CNS) are a significant cause of neurological impairment and mortality worldwide. As tissue resident macrophages, microglia are critical initial responders to CNS viral infection. Microglia seem to coordinate brain-wide antiviral responses of both brain resident cells and infiltrating immune cells. This review discusses how microglia may promote this antiviral response at a molecular level, from potential mechanisms of virus recognition to downstream cytokine responses and interaction with antiviral T cells. Recent advancements in genetic tools to specifically target microglia in vivo promise to further our understanding about the precise mechanistic role of microglia in CNS infection.
Collapse
Affiliation(s)
- Carleigh A O'Brien
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States.
| | - F Chris Bennett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Mariko L Bennett
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| |
Collapse
|
13
|
Mielcarska MB, Skowrońska K, Wyżewski Z, Toka FN. Disrupting Neurons and Glial Cells Oneness in the Brain-The Possible Causal Role of Herpes Simplex Virus Type 1 (HSV-1) in Alzheimer's Disease. Int J Mol Sci 2021; 23:ijms23010242. [PMID: 35008671 PMCID: PMC8745046 DOI: 10.3390/ijms23010242] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Current data strongly suggest herpes simplex virus type 1 (HSV-1) infection in the brain as a contributing factor to Alzheimer's disease (AD). The consequences of HSV-1 brain infection are multilateral, not only are neurons and glial cells damaged, but modifications also occur in their environment, preventing the transmission of signals and fulfillment of homeostatic and immune functions, which can greatly contribute to the development of disease. In this review, we discuss the pathological alterations in the central nervous system (CNS) cells that occur, following HSV-1 infection. We describe the changes in neurons, astrocytes, microglia, and oligodendrocytes related to the production of inflammatory factors, transition of glial cells into a reactive state, oxidative damage, Aβ secretion, tau hyperphosphorylation, apoptosis, and autophagy. Further, HSV-1 infection can affect processes observed during brain aging, and advanced age favors HSV-1 reactivation as well as the entry of the virus into the brain. The host activates pattern recognition receptors (PRRs) for an effective antiviral response during HSV-1 brain infection, which primarily engages type I interferons (IFNs). Future studies regarding the influence of innate immune deficits on AD development, as well as supporting the neuroprotective properties of glial cells, would reveal valuable information on how to harness cytotoxic inflammatory milieu to counter AD initiation and progression.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-59-36063
| | - Katarzyna Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Adolfa Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
| | - Felix Ngosa Toka
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland;
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre 42123, Saint Kitts and Nevis
| |
Collapse
|
14
|
Feige L, Zaeck LM, Sehl-Ewert J, Finke S, Bourhy H. Innate Immune Signaling and Role of Glial Cells in Herpes Simplex Virus- and Rabies Virus-Induced Encephalitis. Viruses 2021; 13:2364. [PMID: 34960633 PMCID: PMC8708193 DOI: 10.3390/v13122364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
The environment of the central nervous system (CNS) represents a double-edged sword in the context of viral infections. On the one hand, the infectious route for viral pathogens is restricted via neuroprotective barriers; on the other hand, viruses benefit from the immunologically quiescent neural environment after CNS entry. Both the herpes simplex virus (HSV) and the rabies virus (RABV) bypass the neuroprotective blood-brain barrier (BBB) and successfully enter the CNS parenchyma via nerve endings. Despite the differences in the molecular nature of both viruses, each virus uses retrograde transport along peripheral nerves to reach the human CNS. Once inside the CNS parenchyma, HSV infection results in severe acute inflammation, necrosis, and hemorrhaging, while RABV preserves the intact neuronal network by inhibiting apoptosis and limiting inflammation. During RABV neuroinvasion, surveilling glial cells fail to generate a sufficient type I interferon (IFN) response, enabling RABV to replicate undetected, ultimately leading to its fatal outcome. To date, we do not fully understand the molecular mechanisms underlying the activation or suppression of the host inflammatory responses of surveilling glial cells, which present important pathways shaping viral pathogenesis and clinical outcome in viral encephalitis. Here, we compare the innate immune responses of glial cells in RABV- and HSV-infected CNS, highlighting different viral strategies of neuroprotection or Neuroinflamm. in the context of viral encephalitis.
Collapse
Affiliation(s)
- Lena Feige
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 28 Rue Du Docteur Roux, 75015 Paris, France;
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (S.F.)
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (S.F.)
| | - Hervé Bourhy
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 28 Rue Du Docteur Roux, 75015 Paris, France;
| |
Collapse
|
15
|
Tsai MS, Wang LC, Tsai HY, Lin YJ, Wu HL, Tzeng SF, Hsu SM, Chen SH. Microglia Reduce Herpes Simplex Virus 1 Lethality of Mice with Decreased T Cell and Interferon Responses in Brains. Int J Mol Sci 2021; 22:ijms222212457. [PMID: 34830340 PMCID: PMC8624831 DOI: 10.3390/ijms222212457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) infects the majority of the human population and can induce encephalitis, which is the most common cause of sporadic, fatal encephalitis. An increase of microglia is detected in the brains of encephalitis patients. The issues regarding whether and how microglia protect the host and neurons from HSV-1 infection remain elusive. Using a murine infection model, we showed that HSV-1 infection on corneas increased the number of microglia to outnumber those of infiltrating leukocytes (macrophages, neutrophils, and T cells) and enhanced microglia activation in brains. HSV-1 antigens were detected in brain neurons, which were surrounded by microglia. Microglia depletion increased HSV-1 lethality of mice with elevated brain levels of viral loads, infected neurons, neuron loss, CD4 T cells, CD8 T cells, neutrophils, interferon (IFN)-β, and IFN-γ. In vitro studies demonstrated that microglia from infected mice reduced virus infectivity. Moreover, microglia induced IFN-β and the signaling pathway of signal transducer and activator of transcription (STAT) 1 to inhibit viral replication and damage of neurons. Our study reveals how microglia protect the host and neurons from HSV-1 infection.
Collapse
Affiliation(s)
- Meng-Shan Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (M.-S.T.); (H.-L.W.)
| | - Li-Chiu Wang
- School of Medicine, I-Shou University, Kaohsiung 824, Taiwan;
| | - Hsien-Yang Tsai
- Department of Ophthalmology, Tzu Chi Hospital, Taichung 427, Taiwan;
| | - Yu-Jheng Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hua-Lin Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (M.-S.T.); (H.-L.W.)
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Biological Science and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan;
| | - Sheng-Min Hsu
- Department of Ophthalmology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: (S.-M.H.); (S.-H.C.)
| | - Shun-Hua Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (M.-S.T.); (H.-L.W.)
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
- Correspondence: (S.-M.H.); (S.-H.C.)
| |
Collapse
|
16
|
Sehl-Ewert J, Schwaiger T, Schäfer A, Hölper JE, Klupp BG, Teifke JP, Blohm U, Mettenleiter TC. Clinical, neuropathological, and immunological short- and long-term feature of a mouse model mimicking human herpes virus encephalitis. Brain Pathol 2021; 32:e13031. [PMID: 34709694 PMCID: PMC9048517 DOI: 10.1111/bpa.13031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Herpes simplex encephalitis (HSE) is one of the most serious diseases of the nervous system in humans. However, its pathogenesis is still only poorly understood. Although several mouse models of predominantly herpes simplex virus 1 (HSV-1) infections mimic different crucial aspects of HSE, central questions remain unanswered. They comprise the specific temporofrontal tropism, viral spread within the central nervous system (CNS), as well as potential molecular and immunological barriers that drive virus into latency while only rarely resulting in severe HSE. We have recently proposed an alternative mouse model by using a pseudorabies virus (PrV) mutant that more faithfully represents the striking features of human HSE: temporofrontal meningoencephalitis with few severely, but generally only moderately to subclinically affected mice as well as characteristic behavioral abnormalities. Here, we characterized this animal model using 6- to 8-week-old female CD-1 mice in more detail. Long-term investigation over 6 months consistently revealed a biphasic course of infection accompanied by recurring clinical signs including behavioral alterations and mainly mild meningoencephalitis restricted to the temporal and frontal lobes. By histopathological and immunological analyses, we followed the kinetics and spatial distribution of inflammatory lesions as well as the underlying cytokine expression in the CNS over 21 days within the acute phase of infection. Affecting the temporal lobes, the inflammatory infiltrate was composed of lymphocytes and macrophages showing a predominantly lymphocytic shift 15 days after infection. A strong increase was observed in cytokines CXCL10, CCL2, CCL5, and CXCL1 recruiting inflammatory cells to the CNS. Unlike the majority of infected mice, strongly affected animals demonstrated extensive temporal lobe edema, which is typically present in severe human HSE cases. In summary, these results support the validity of our animal model for in-depth investigation of HSE pathogenesis.
Collapse
Affiliation(s)
- Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Theresa Schwaiger
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.,ViraTherapeutics GmbH, Rum, Austria
| | - Alexander Schäfer
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Julia E Hölper
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.,Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jens P Teifke
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
17
|
Yong SJ, Yong MH, Teoh SL, Soga T, Parhar I, Chew J, Lim WL. The Hippocampal Vulnerability to Herpes Simplex Virus Type I Infection: Relevance to Alzheimer's Disease and Memory Impairment. Front Cell Neurosci 2021; 15:695738. [PMID: 34483839 PMCID: PMC8414573 DOI: 10.3389/fncel.2021.695738] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) as a possible infectious etiology in Alzheimer’s disease (AD) has been proposed since the 1980s. The accumulating research thus far continues to support the association and a possible causal role of HSV-1 in the development of AD. HSV-1 has been shown to induce neuropathological and behavioral changes of AD, such as amyloid-beta accumulation, tau hyperphosphorylation, as well as memory and learning impairments in experimental settings. However, a neuroanatomical standpoint of HSV-1 tropism in the brain has not been emphasized in detail. In this review, we propose that the hippocampal vulnerability to HSV-1 infection plays a part in the development of AD and amnestic mild cognitive impairment (aMCI). Henceforth, this review draws on human studies to bridge HSV-1 to hippocampal-related brain disorders, namely AD and aMCI/MCI. Next, experimental models and clinical observations supporting the neurotropism or predilection of HSV-1 to infect the hippocampus are examined. Following this, factors and mechanisms predisposing the hippocampus to HSV-1 infection are discussed. In brief, the hippocampus has high levels of viral cellular receptors, neural stem or progenitor cells (NSCs/NPCs), glucocorticoid receptors (GRs) and amyloid precursor protein (APP) that support HSV-1 infectivity, as well as inadequate antiviral immunity against HSV-1. Currently, the established diseases HSV-1 causes are mucocutaneous lesions and encephalitis; however, this review revises that HSV-1 may also induce and/or contribute to hippocampal-related brain disorders, especially AD and aMCI/MCI.
Collapse
Affiliation(s)
- Shin Jie Yong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Min Hooi Yong
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia.,Aging Health and Well-being Research Centre, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Tomoko Soga
- Jeffrey Cheah School of Medicine and Health Sciences, Brain Research Institute Monash Sunway, Monash University Malaysia, Subang Jaya, Malaysia
| | - Ishwar Parhar
- Jeffrey Cheah School of Medicine and Health Sciences, Brain Research Institute Monash Sunway, Monash University Malaysia, Subang Jaya, Malaysia
| | - Jactty Chew
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia.,Aging Health and Well-being Research Centre, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| |
Collapse
|
18
|
Lee JC, Nallani R, Cass L, Bhalla V, Chiu AG, Villwock JA. A Systematic Review of the Neuropathologic Findings of Post-Viral Olfactory Dysfunction: Implications and Novel Insight for the COVID-19 Pandemic. Am J Rhinol Allergy 2021; 35:323-333. [PMID: 32915650 PMCID: PMC10404900 DOI: 10.1177/1945892420957853] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Post-viral olfactory dysfunction is a common cause of both short- and long-term smell alteration. The coronavirus pandemic further highlights the importance of post-viral olfactory dysfunction. Currently, a comprehensive review of the neural mechanism underpinning post-viral olfactory dysfunction is lacking. OBJECTIVES To synthesize the existing primary literature related to olfactory dysfunction secondary to viral infection, detail the underlying pathophysiological mechanisms, highlight relevance for the current COVID-19 pandemic, and identify high impact areas of future research. METHODS PubMed and Embase were searched to identify studies reporting primary scientific data on post-viral olfactory dysfunction. Results were supplemented by manual searches. Studies were categorized into animal and human studies for final analysis and summary. RESULTS A total of 38 animal studies and 7 human studies met inclusion criteria and were analyzed. There was significant variability in study design, experimental model, and outcome measured. Viral effects on the olfactory system varies significantly based on viral substrain but generally include damage or alteration in components of the olfactory epithelium and/or the olfactory bulb. CONCLUSIONS The mechanism of post-viral olfactory dysfunction is highly complex, virus-dependent, and involves a combination of insults at multiple levels of the olfactory pathway. This will have important implications for future diagnostic and therapeutic developments for patients infected with COVID-19.
Collapse
Affiliation(s)
- Jason C. Lee
- Department of Otolaryngology—Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas
| | - Rohit Nallani
- Department of Otolaryngology—Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas
| | - Lauren Cass
- Department of Otolaryngology—Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas
| | - Vidur Bhalla
- Saint Luke’s Hospital of Kansas City, Kansas City, Missouri
| | - Alexander G. Chiu
- Department of Otolaryngology—Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas
| | - Jennifer A. Villwock
- Department of Otolaryngology—Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas
| |
Collapse
|
19
|
Xia X, Wang Y, Zheng J. COVID-19 and Alzheimer's disease: how one crisis worsens the other. Transl Neurodegener 2021; 10:15. [PMID: 33941272 PMCID: PMC8090526 DOI: 10.1186/s40035-021-00237-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) has emerged as a key comorbidity of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The morbidity and mortality of COVID-19 are elevated in AD due to multiple pathological changes in AD patients such as the excessive expression of viral receptor angiotensin converting enzyme 2 and pro-inflammatory molecules, various AD complications including diabetes, lifestyle alterations in AD, and drug-drug interactions. Meanwhile, COVID-19 has also been reported to cause various neurologic symptoms including cognitive impairment that may ultimately result in AD, probably through the invasion of SARS-CoV-2 into the central nervous system, COVID-19-induced inflammation, long-term hospitalization and delirium, and post-COVID-19 syndrome. In addition, the COVID-19 crisis also worsens behavioral symptoms in uninfected AD patients and poses new challenges for AD prevention. In this review, we first introduce the symptoms and pathogenesis of COVID-19 and AD. Next, we provide a comprehensive discussion on the aggravating effects of AD on COVID-19 and the underlying mechanisms from molecular to social levels. We also highlight the influence of COVID-19 on cognitive function, and propose possible routes of viral invasion into the brain and potential mechanisms underlying the COVID-19-induced cognitive impairment. Last, we summarize the negative impacts of COVID-19 pandemic on uninfected AD patients and dementia prevention.
Collapse
Affiliation(s)
- Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, 200072, China.
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, China.
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, 200072, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, China
| | - Jialin Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, 200072, China.
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, China.
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA.
| |
Collapse
|
20
|
Fernández-Alarcón C, Meyer LE, McVoy MA, Lokensgard JR, Hu S, Benneyworth MA, Anderholm KM, Janus BC, Schleiss MR. Impairment in neurocognitive function following experimental neonatal guinea pig cytomegalovirus infection. Pediatr Res 2021; 89:838-845. [PMID: 32555536 PMCID: PMC8168912 DOI: 10.1038/s41390-020-1010-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cytomegalovirus (CMV) is a leading infectious cause of neurologic deficits, both in the settings of congenital and perinatal infection, but few animal models exist to study neurodevelopmental outcomes. This study examined the impact of neonatal guinea pig CMV (GPCMV) infection on spatial learning and memory in a Morris water maze (MWM) model. METHODS Newborn pups were challenged intraperitoneally (i.p.) with a pathogenic red fluorescent protein-tagged GPCMV, or sham inoculated. On days 15-19 post infection (p.i.), pups were tested in the MWM. Viral loads were measured in blood and tissue by quantitative PCR (qPCR), and brain samples collected at necropsy were examined by histology and immunohistochemistry. RESULTS Viremia (DNAemia) was detected at day 3 p.i. in 7/8 challenged animals. End-organ dissemination was observed, by qPCR, in the lung, liver, and spleen. CD4-positive (CD4+) and CD8-positive (CD8+) T cell infiltrates were present in brains of challenged animals, particularly in periventricular and hippocampal regions. Reactive gliosis and microglial nodules were observed. Statistically significant spatial learning and memory deficits were observed by MWM, particularly for total maze distance traveled (p < 0.0001). CONCLUSION Neonatal GPCMV infection in guinea pigs results in cognitive defects demonstrable by the MWM. This neonatal guinea pig challenge model can be exploited for studying antiviral interventions. IMPACT CMV impairs neonatal neurocognition and memory in the setting of postnatal infection. The MWM can be used to examine memory and learning in a guinea pig model of neonatal CMV infection. CD4+ and CD8+ T cells infiltrate the brain following neonatal CMV challenge. This article demonstrates that the MWM can be used to evaluate memory and learning after neonatal GPCMV challenge. The guinea pig can be used to examine central nervous system pathology caused by neonatal CMV infection and this attribute may facilitate the study of vaccines and antivirals.
Collapse
Affiliation(s)
| | - Lucy E Meyer
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - James R Lokensgard
- Department of Medicine, Neurovirology Laboratory, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Shuxian Hu
- Department of Medicine, Neurovirology Laboratory, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | - Kaitlyn M Anderholm
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Bradley C Janus
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mark R Schleiss
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
21
|
Zhang LN, Li MJ, Shang YH, Zhao FF, Huang HC, Lao FX. Independent and Correlated Role of Apolipoprotein E ɛ4 Genotype and Herpes Simplex Virus Type 1 in Alzheimer's Disease. J Alzheimers Dis 2020; 77:15-31. [PMID: 32804091 DOI: 10.3233/jad-200607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The ɛ4 allele of the Apolipoprotein E (APOE) gene in individuals infected by Herpes simplex virus type 1 (HSV-1) has been demonstrated to be a risk factor in Alzheimer's disease (AD). APOE-ɛ4 reduces the levels of neuronal cholesterol, interferes with the transportation of cholesterol, impairs repair of synapses, decreases the clearance of neurotoxic peptide amyloid-β (Aβ), and promotes the deposition of amyloid plaque, and eventually may cause development of AD. HSV-1 enters host cells and can infect the olfactory system, trigeminal ganglia, entorhinal cortex, and hippocampus, and may cause AD-like pathological changes. The lifecycle of HSV-1 goes through a long latent phase. HSV-1 induces neurotropic cytokine expression with pro-inflammatory action and inhibits antiviral cytokine production in AD. It should be noted that interferons display antiviral activity in HSV-1-infected AD patients. Reactivated HSV-1 is associated with infectious burden in cognitive decline and AD. Finally, HSV-1 DNA has been confirmed as present in human brains and is associated with APOEɛ4 in AD. HSV-1 and APOEɛ4 increase the risk of AD and relate to abnormal autophagy, higher concentrations of HSV-1 DNA in AD, and formation of Aβ plaques and neurofibrillary tangles.
Collapse
Affiliation(s)
- Li-Na Zhang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, P.R. China.,College of Biochemical Engineering, Beijing Union University, Beijing, P.R. China
| | - Meng-Jie Li
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, P.R. China.,College of Biochemical Engineering, Beijing Union University, Beijing, P.R. China
| | - Ying-Hui Shang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, P.R. China.,College of Biochemical Engineering, Beijing Union University, Beijing, P.R. China
| | - Fan-Fan Zhao
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, P.R. China.,College of Biochemical Engineering, Beijing Union University, Beijing, P.R. China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, P.R. China.,College of Biochemical Engineering, Beijing Union University, Beijing, P.R. China
| | - Feng-Xue Lao
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, P.R. China.,College of Biochemical Engineering, Beijing Union University, Beijing, P.R. China
| |
Collapse
|
22
|
Han AY, Mukdad L, Long JL, Lopez IA. Anosmia in COVID-19: Mechanisms and Significance. Chem Senses 2020; 45:bjaa040. [PMID: 32556089 PMCID: PMC7449368 DOI: 10.1093/chemse/bjaa040] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
The global pandemic of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 remains a challenge for prevention due to asymptomatic or paucisymptomatic patients. Anecdotal and preliminary evidence from multiple institutions shows that these patients present with a sudden onset of anosmia without rhinitis. We aim to review the pathophysiology of anosmia related to viral upper respiratory infections and the prognostic implications. Current evidence suggests that SARS-CoV-2-related anosmia may be a new viral syndrome specific to COVID-19 and can be mediated by intranasal inoculation of SARS-CoV-2 into the olfactory neural circuitry. The clinical course of neuroinvasion of SARS-CoV-2 is yet unclear, however an extended follow up of these patients to assess for neurological sequelae including encephalitis, cerebrovascular accidents and long-term neurodegenerative risk may be indicated.
Collapse
Affiliation(s)
- Albert Y Han
- Department of Head and Neck Surgery, University of California, Los Angeles, Rehabilitation Center 35–64, Los Angeles, CA, USA
| | - Laith Mukdad
- Department of Head and Neck Surgery, University of California, Los Angeles, Rehabilitation Center 35–64, Los Angeles, CA, USA
| | - Jennifer L Long
- Department of Head and Neck Surgery, University of California, Los Angeles, Rehabilitation Center 35–64, Los Angeles, CA, USA
- Greater Los Angeles VA Healthcare System, Los Angeles, CA, USA
| | - Ivan A Lopez
- Department of Head and Neck Surgery, University of California, Los Angeles, Rehabilitation Center 35–64, Los Angeles, CA, USA
| |
Collapse
|
23
|
Chauhan P, Lokensgard JR. Glial Cell Expression of PD-L1. Int J Mol Sci 2019; 20:ijms20071677. [PMID: 30987269 PMCID: PMC6479336 DOI: 10.3390/ijms20071677] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
The programmed death (PD)-1/PD-L1 pathway is a well-recognized negative immune checkpoint that results in functional inhibition of T-cells. Microglia, the brain-resident immune cells are vital for pathogen detection and initiation of neuroimmune responses. Moreover, microglial cells and astrocytes govern the activity of brain-infiltrating antiviral T-cells through upregulation of PD-L1 expression. While T-cell suppressive responses within brain are undoubtedly beneficial to the host, preventing cytotoxic damage to this vital organ, establishment of a prolonged anti-inflammatory milieu may simultaneously lead to deficiencies in viral clearance. An immune checkpoint blockade targeting the PD-1: PD-L1 (B7-H1; CD274) axis has revolutionized contemporary treatment for a variety of cancers. However, the therapeutic potential of PD1: PD-L1 blockade therapies targeting viral brain reservoirs remains to be determined. For these reasons, it is key to understand both the detrimental and protective functions of this signaling pathway within the brain. This review highlights how glial cells use PD-L1 expression to modulate T-cell effector function and limit detrimental bystander damage, while still retaining an effective defense of the brain.
Collapse
Affiliation(s)
- Priyanka Chauhan
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - James R Lokensgard
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
24
|
Duarte LF, Farías MA, Álvarez DM, Bueno SM, Riedel CA, González PA. Herpes Simplex Virus Type 1 Infection of the Central Nervous System: Insights Into Proposed Interrelationships With Neurodegenerative Disorders. Front Cell Neurosci 2019; 13:46. [PMID: 30863282 PMCID: PMC6399123 DOI: 10.3389/fncel.2019.00046] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is highly prevalent in humans and can reach the brain without evident clinical symptoms. Once in the central nervous system (CNS), the virus can either reside in a quiescent latent state in this tissue, or eventually actively lead to severe acute necrotizing encephalitis, which is characterized by exacerbated neuroinflammation and prolonged neuroimmune activation producing a life-threatening disease. Although HSV-1 encephalitis can be treated with antivirals that limit virus replication, neurological sequelae are common and the virus will nevertheless remain for life in the neural tissue. Importantly, there is accumulating evidence that suggests that HSV-1 infection of the brain both, in symptomatic and asymptomatic individuals could lead to neuronal damage and eventually, neurodegenerative disorders. Here, we review and discuss acute and chronic infection of particular brain regions by HSV-1 and how this may affect neuron and cognitive functions in the host. We review potential cellular and molecular mechanisms leading to neurodegeneration, such as protein aggregation, dysregulation of autophagy, oxidative cell damage and apoptosis, among others. Furthermore, we discuss the impact of HSV-1 infection on brain inflammation and its potential relationship with neurodegenerative diseases.
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Diana M Álvarez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Biología Celular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
25
|
Mechanisms of Blood-Brain Barrier Disruption in Herpes Simplex Encephalitis. J Neuroimmune Pharmacol 2018; 14:157-172. [PMID: 30456443 DOI: 10.1007/s11481-018-9821-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
Abstract
Herpes simplex encephalitis (HSE) is often caused by infection with herpes simplex virus 1 (HSV-1), a neurotropic double-stranded DNA virus. HSE infection always impacts the temporal and frontal lobes or limbic system, leading to edema, hemorrhage, and necrotic changes in the brain parenchyma. Additionally, patients often exhibit severe complications following antiviral treatment, including dementia and epilepsy. HSE is further associated with disruptions to the blood-brain barrier (BBB), which consists of microvascular endothelial cells, tight junctions, astrocytes, pericytes, and basement membranes. Following an HSV-1 infection, changes in BBB integrity and permeability can result in increased movement of viruses, immune cells, and/or cytokines into the brain parenchyma. This leads to an enhanced inflammatory response in the central nervous system and further damage to the brain. Thus, it is important to protect the BBB from pathogens to reduce brain damage from HSE. Here, we discuss HSE and the normal structure and function of the BBB. We also discuss growing evidence indicating an association between BBB breakdown and the pathogenesis of HSE, as well as future research directions and potential new therapeutic targets. Graphical Abstract During herpes simplex encephalitis, the functions and structures of each composition of BBB have been altered by different factors, thus the permeability and integrity of BBB have been broken. The review aim to explore the potential mechanisms and factors in the process, probe the next research targets and new therapeutic targets.
Collapse
|
26
|
Harris SA, Harris EA. Molecular Mechanisms for Herpes Simplex Virus Type 1 Pathogenesis in Alzheimer's Disease. Front Aging Neurosci 2018; 10:48. [PMID: 29559905 PMCID: PMC5845560 DOI: 10.3389/fnagi.2018.00048] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
This review focuses on research in the areas of epidemiology, neuropathology, molecular biology and genetics that implicates herpes simplex virus type 1 (HSV-1) as a causative agent in the pathogenesis of sporadic Alzheimer’s disease (AD). Molecular mechanisms whereby HSV-1 induces AD-related pathophysiology and pathology, including neuronal production and accumulation of amyloid beta (Aβ), hyperphosphorylation of tau proteins, dysregulation of calcium homeostasis, and impaired autophagy, are discussed. HSV-1 causes additional AD pathologies through mechanisms that promote neuroinflammation, oxidative stress, mitochondrial damage, synaptic dysfunction, and neuronal apoptosis. The AD susceptibility genes apolipoprotein E (APOE), phosphatidylinositol binding clathrin assembly protein (PICALM), complement receptor 1 (CR1) and clusterin (CLU) are involved in the HSV lifecycle. Polymorphisms in these genes may affect brain susceptibility to HSV-1 infection. APOE, for example, influences susceptibility to certain viral infections, HSV-1 viral load in the brain, and the innate immune response. The AD susceptibility gene cholesterol 25-hydroxylase (CH25H) is upregulated in the AD brain and is involved in the antiviral immune response. HSV-1 interacts with additional genes to affect cognition-related pathways and key enzymes involved in Aβ production, Aβ clearance, and hyperphosphorylation of tau proteins. Aβ itself functions as an antimicrobial peptide (AMP) against various pathogens including HSV-1. Evidence is presented supporting the hypothesis that Aβ is produced as an AMP in response to HSV-1 and other brain infections, leading to Aβ deposition and plaque formation in AD. Epidemiologic studies associating HSV-1 infection with AD and cognitive impairment are discussed. Studies are reviewed supporting subclinical chronic reactivation of latent HSV-1 in the brain as significant in the pathogenesis of AD. Finally, the rationale for and importance of clinical trials treating HSV-1-infected MCI and AD patients with antiviral medication is discussed.
Collapse
Affiliation(s)
- Steven A Harris
- St. Vincent Medical Group, Northside Internal Medicine, Indianapolis, IN, United States
| | - Elizabeth A Harris
- Department of Neurology, University of Chicago Medical Center, Chicago, IL, United States
| |
Collapse
|
27
|
Effects of Acyclovir and IVIG on Behavioral Outcomes after HSV1 CNS Infection. Behav Neurol 2017; 2017:5238402. [PMID: 29358844 PMCID: PMC5735307 DOI: 10.1155/2017/5238402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/06/2017] [Accepted: 09/16/2017] [Indexed: 12/27/2022] Open
Abstract
Herpes simplex virus 1 (HSV) encephalitis (HSE) has serious neurological complications, involving behavioral and cognitive impairments that cause significant morbidity and a reduced quality of life. We showed that HSE results from dysregulated central nervous system (CNS) inflammatory responses. We hypothesized that CNS inflammation is casually involved in behavioral abnormalities after HSE and that treatment with ACV and pooled human immunoglobulin (IVIG), an immunomodulatory drug, would improve outcomes compared to mice treated with phosphate buffered saline (PBS) or ACV alone. Anxiety levels were high in HSV-infected PBS and ACV-treated mice compared to mice treated with ACV + IVIG, consistent with reports implicating inflammation in anxiety induced by lipopolysaccharide (LPS) or stress. Female, but not male, PBS-treated mice were cognitively impaired, and unexpectedly, ACV was protective, while the inclusion of IVIG surprisingly antagonized ACV's beneficial effects. Distinct serum proteomic profiles were observed for male and female mice, and the antagonistic effects of ACV and IVIG on behavior were paralleled by similar changes in the serum proteome of ACV- and ACV + IVIG-treated mice. We conclude that inflammation and other factors mediate HSV-induced behavioral impairments and that the effects of ACV and IVIG on behavior involve novel mechanisms.
Collapse
|
28
|
Menendez CM, Carr DJJ. Defining nervous system susceptibility during acute and latent herpes simplex virus-1 infection. J Neuroimmunol 2017; 308:43-49. [PMID: 28302316 DOI: 10.1016/j.jneuroim.2017.02.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
Herpes simplex viruses are neurotropic human pathogens that infect and establish latency in peripheral sensory neurons of the host. Herpes Simplex Virus-1 (HSV-1) readily infects the facial mucosa that can result in the establishment of a latent infection in the sensory neurons of the trigeminal ganglia (TG). From latency, HSV-1 can reactivate and cause peripheral pathology following anterograde trafficking from sensory neurons. Under rare circumstances, HSV-1 can migrate into the central nervous system (CNS) and cause Herpes Simplex Encephalitis (HSE), a devastating disease of the CNS. It is unclear whether HSE is the result of viral reactivation within the TG, from direct primary infection of the olfactory mucosa, or from other infected CNS neurons. Areas of the brain that are susceptible to HSV-1 during acute infection are ill-defined. Furthermore, whether the CNS is a true reservoir of viral latency following clearance of virus during acute infection is unknown. In this context, this review will identify sites within the brain that are susceptible to acute infection and harbor latent virus. In addition, we will also address findings of HSV-1 lytic gene expression during latency and comment on the pathophysiological consequences HSV-1 infection may have on long-term neurologic performance in animal models and humans.
Collapse
Affiliation(s)
- Chandra M Menendez
- Department of Microbiology, Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Daniel J J Carr
- Department of Microbiology, Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. USA.
| |
Collapse
|
29
|
Kulkarni A, Ganesan P, O'Donnell LA. Interferon Gamma: Influence on Neural Stem Cell Function in Neurodegenerative and Neuroinflammatory Disease. Clin Med Insights Pathol 2016; 9:9-19. [PMID: 27774000 PMCID: PMC5065109 DOI: 10.4137/cpath.s40497] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 01/05/2023] Open
Abstract
Interferon-gamma (IFNγ), a pleiotropic cytokine, is expressed in diverse neurodegenerative and neuroinflammatory conditions. Its protective mechanisms are well documented during viral infections in the brain, where IFNγ mediates non-cytolytic viral control in infected neurons. However, IFNγ also plays both protective and pathological roles in other central nervous system (CNS) diseases. Of the many neural cells that respond to IFNγ, neural stem/progenitor cells (NSPCs), the only pluripotent cells in the developing and adult brain, are often altered during CNS insults. Recent studies highlight the complex effects of IFNγ on NSPC activity in neurodegenerative diseases. However, the mechanisms that mediate these effects, and the eventual outcomes for the host, are still being explored. Here, we review the effects of IFNγ on NSPC activity during different pathological insults. An improved understanding of the role of IFNγ would provide insight into the impact of immune responses on the progression and resolution of neurodegenerative diseases.
Collapse
Affiliation(s)
- Apurva Kulkarni
- Mylan School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Priya Ganesan
- Mylan School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Lauren A O'Donnell
- Mylan School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
30
|
White KA, Hutton SR, Weimer JM, Sheridan PA. Diet-induced obesity prolongs neuroinflammation and recruits CCR2(+) monocytes to the brain following herpes simplex virus (HSV)-1 latency in mice. Brain Behav Immun 2016; 57:68-78. [PMID: 27311830 PMCID: PMC5287935 DOI: 10.1016/j.bbi.2016.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/31/2016] [Accepted: 06/11/2016] [Indexed: 01/15/2023] Open
Abstract
Herpes simplex virus (HSV)-1 is a ubiquitous human infection, with increased prevalence in obese populations. Obesity has been linked to increased inflammation, susceptibility to infection, and higher rates of anxiety disorder and cognitive impairment. To determine how obesity alters neuroinflammation and behavior following infection, we infected weanling C57BL/6 or CCR2(RFP/+)/CX3CR1(GFP/+) mice with a very low dose of HSV-1. Following viral latency (14days post infection (d p.i.)), mice were randomly assigned to remain on the low fat (LF) diet or switched to a 45% high fat (HF) diet. Eight weeks post diet shift, latently infected mice on the HF diet (HSV-HF) had greater microglial activation and infiltration of inflammatory CCR2(+) monocytes in the hypothalamus and dentate gyrus, in comparison to both HSV-LF mice and uninfected mice on LF and HF diets. VCAM staining was present in hypothalamus and hippocampus of the HSV-HF mice in the areas of monocyte infiltration. Infiltrating monocytes also produced proinflammatory cytokines demonstrating that, along with activated microglia, monocytes contribute to sustained neuroinflammation in latently infected obese mice. Utilizing a light-dark preference test, we found that HSV-HF mice had increased anxiety-like behavior. In the marble-burying test, HF diet and HSV infection resulted in increased numbers of buried marbles. Together, these mice provide a useful, testable model to study the biobehavioral effects of obesity and latent HSV-1 infection in regards to anxiety and may provide a tool for studying diet intervention programs in the future.
Collapse
Affiliation(s)
| | - Scott R. Hutton
- University of North Carolina Neuroscience Center, Chapel Hill, NC
| | - Jill M. Weimer
- Children’s Health Research Center, Sanford Research, Sioux Falls, SD
| | - Patricia A. Sheridan
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, NC
| |
Collapse
|
31
|
Cekanaviciute E, Buckwalter MS. Astrocytes: Integrative Regulators of Neuroinflammation in Stroke and Other Neurological Diseases. Neurotherapeutics 2016; 13:685-701. [PMID: 27677607 PMCID: PMC5081110 DOI: 10.1007/s13311-016-0477-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Astrocytes regulate neuroinflammatory responses after stroke and in other neurological diseases. Although not all astrocytic responses reduce inflammation, their predominant function is to protect the brain by driving the system back to homeostasis after injury. They receive multidimensional signals within the central nervous system and between the brain and the systemic circulation. Processing this information allows astrocytes to regulate synapse formation and maintenance, cerebral blood flow, and blood-brain barrier integrity. Similarly, in response to stroke and other central nervous system disorders, astrocytes detect and integrate signals of neuronal damage and inflammation to regulate the neuroinflammatory response. Two direct regulatory mechanisms in the astrocyte arsenal are the ability to form both physical and molecular barriers that seal the injury site and localize the neuroinflammatory response. Astrocytes also indirectly regulate the inflammatory response by affecting neuronal health during the acute injury and axonal regrowth. This ability to regulate the location and degree of neuroinflammation after injury, combined with the long time course of neuroinflammation, makes astrocytic signaling pathways promising targets for therapies.
Collapse
Affiliation(s)
- Egle Cekanaviciute
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA, 94305, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA, 94305, USA.
- Department of Neurosurgery, Stanford Medical School, Stanford, CA, 94305, USA.
- Stanford Stroke Center, Stanford Medical School, Stanford, CA, 94305, USA.
| |
Collapse
|
32
|
Westman G, Studahl M, Ahlm C, Eriksson BM, Persson B, Rönnelid J, Schliamser S, Aurelius E. N-methyl-d-aspartate receptor autoimmunity affects cognitive performance in herpes simplex encephalitis. Clin Microbiol Infect 2016; 22:934-940. [PMID: 27497810 DOI: 10.1016/j.cmi.2016.07.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/26/2016] [Accepted: 07/26/2016] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To investigate the prevalence and temporal development of N-methyl-d-aspartate receptor (NMDAR) autoantibodies in relation to neurocognitive performance in patients with herpes simplex encephalitis (HSE). METHODS This prospective observational study enrolled a total of 49 HSE patients within a randomized controlled trial of valacyclovir. Cerebrospinal fluid and serum samples were drawn in the initial stage of disease, after 2 to 3 weeks and after 3 months. Anti-NMDAR IgG was detected with HEK293 cells transfected with plasmids encoding the NMDA NR1 type glutamate receptor. A batch of neurocognitive tests, including the Mattis Dementia Rating Scale (MDRS), Glasgow Coma Scale (GCS), Reaction Level Scale (RLS85), Mini-Mental State Examination (MMSE) and National Institutes of Health (NIH) stroke scale, was performed during 24 months' follow-up. RESULTS Anti-NMDAR IgG was detected in 12 of 49 participants. None were antibody positive in the initial stage of disease. In ten of 12 positive cases, specific antibodies were detectable only after 3 months. Notably, the development of NMDAR autoantibodies was associated with significantly impaired recovery of neurocognitive performance. After 24 months' follow-up, the median increase in MDRS total score was 1.5 vs. 10 points in antibody-positive and -negative participants (p=0.018). CONCLUSIONS Anti-NMDAR autoimmunity is a common complication to HSE that develops within 3 months after onset of disease. The association to impaired neurocognitive recovery could have therapeutical implications, as central nervous system autoimmunity is potentially responsive to immunotherapy.
Collapse
Affiliation(s)
- G Westman
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, Uppsala, Sweden.
| | - M Studahl
- Department of Infectious Diseases, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - C Ahlm
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, Umeå, Sweden
| | - B M Eriksson
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, Uppsala, Sweden
| | - B Persson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - J Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - S Schliamser
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - E Aurelius
- Unit of Infectious Diseases, Department of Medicine, Karolinska Institutet, Sweden
| |
Collapse
|
33
|
Zhou Y, Zeng YP, Zhou Q, Guan JX, Lu ZN. The effect of cyclin-dependent kinases inhibitor treatment on experimental herpes simplex encephalitis mice. Neurosci Lett 2016; 627:71-6. [DOI: 10.1016/j.neulet.2016.05.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
|
34
|
Otth C, Leyton L, Salamin M, Acuña-Hinrichsen F, Martin C, Concha MI. Herpes Simplex Virus Type 1 Neuronal Infection Elicits Cellular and Molecular Mechanisms of Neuroinflammation and Neurodegeneration in in vitro and in vivo Mice Models. J Alzheimers Dis 2016. [DOI: 10.3233/jad-160508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carola Otth
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Luis Leyton
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Marukel Salamin
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Francisca Acuña-Hinrichsen
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Martin
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Margarita I. Concha
- Instituto de Bioquimica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
35
|
Menendez CM, Jinkins JK, Carr DJJ. Resident T Cells Are Unable To Control Herpes Simplex Virus-1 Activity in the Brain Ependymal Region during Latency. THE JOURNAL OF IMMUNOLOGY 2016; 197:1262-75. [PMID: 27357149 DOI: 10.4049/jimmunol.1600207] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/07/2016] [Indexed: 02/05/2023]
Abstract
HSV type 1 (HSV-1) is one of the leading etiologies of sporadic viral encephalitis. Early antiviral intervention is crucial to the survival of herpes simplex encephalitis patients; however, many survivors suffer from long-term neurologic deficits. It is currently understood that HSV-1 establishes a latent infection within sensory peripheral neurons throughout the life of the host. However, the tissue residence of latent virus, other than in sensory neurons, and the potential pathogenic consequences of latency remain enigmatic. In the current study, we characterized the lytic and latent infection of HSV-1 in the CNS in comparison with the peripheral nervous system following ocular infection in mice. We used RT-PCR to detect latency-associated transcripts and HSV-1 lytic cycle genes within the brain stem, the ependyma (EP), containing the limbic and cortical areas, which also harbor neural progenitor cells, in comparison with the trigeminal ganglia. Unexpectedly, HSV-1 lytic genes, usually identified during acute infection, are uniquely expressed in the EP 60 d postinfection when animals are no longer suffering from encephalitis. An inflammatory response was also mounted in the EP by the maintenance of resident memory T cells. However, EP T cells were incapable of controlling HSV-1 infection ex vivo and secreted less IFN-γ, which correlated with expression of a variety of exhaustion-related inhibitory markers. Collectively, our data suggest that the persistent viral lytic gene expression during latency is the cause of the chronic inflammatory response leading to the exhaustion of the resident T cells in the EP.
Collapse
Affiliation(s)
- Chandra M Menendez
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Jeremy K Jinkins
- Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Daniel J J Carr
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
36
|
Infiltration Pattern of Blood Monocytes into the Central Nervous System during Experimental Herpes Simplex Virus Encephalitis. PLoS One 2015; 10:e0145773. [PMID: 26700486 PMCID: PMC4689369 DOI: 10.1371/journal.pone.0145773] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/08/2015] [Indexed: 12/14/2022] Open
Abstract
The kinetics and distribution of infiltrating blood monocytes into the central nervous system and their involvement in the cerebral immune response together with resident macrophages, namely microglia, were evaluated in experimental herpes simplex virus 1 (HSV-1) encephalitis (HSE). To distinguish microglia from blood monocyte-derived macrophages, chimeras were generated by conditioning C57BL/6 recipient mice with chemotherapy regimen followed by transplantation of bone morrow-derived cells that expressed the green fluorescent protein. Mice were infected intranasally with a sub-lethal dose of HSV-1 (1.2x106 plaque forming units). Brains were harvested prior to and on days 4, 6, 8 and 10 post-infection for flow cytometry and immunohistochemistry analysis. The amounts of neutrophils (P<0.05) and «Ly6Chi» inflammatory monocytes (P<0.001) significantly increased in the CNS compared to non-infected controls on day 6 post-infection, which corresponded to more severe clinical signs of HSE. Levels decreased on day 8 for both leukocytes subpopulations (P<0.05 for inflammatory monocytes compared to non-infected controls) to reach baseline levels on day 10 following infection. The percentage of «Ly6Clow» patrolling monocytes significantly increased (P<0.01) at a later time point (day 8), which correlated with the resolution phase of HSE. Histological analysis demonstrated that blood leukocytes colonized mostly the olfactory bulb and the brainstem, which corresponded to regions where HSV-1 particles were detected. Furthermore, infiltrating cells from the monocytic lineage could differentiate into activated local tissue macrophages that express the microglia marker, ionized calcium-binding adaptor molecule 1. The lack of albumin detection in the brain parenchyma of infected mice showed that the infiltration of blood leukocytes was not necessarily related to a breakdown of the blood-brain barrier but could be the result of a functional recruitment. Thus, our findings suggest that blood monocyte-derived macrophages infiltrate the central nervous system and may contribute, with resident microglia, to the innate immune response seen during experimental HSE.
Collapse
|
37
|
Lokensgard JR, Schachtele SJ, Mutnal MB, Sheng WS, Prasad S, Hu S. Chronic reactive gliosis following regulatory T cell depletion during acute MCMV encephalitis. Glia 2015; 63:1982-1996. [PMID: 26041050 DOI: 10.1002/glia.22868] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/12/2015] [Indexed: 12/21/2022]
Abstract
Long-term, persistent central nervous system inflammation is commonly seen following brain infection. Using a murine model of viral encephalitis (murine cytomegalovirus, MCMV) we have previously shown that post-encephalitic brains are maintained in an inflammatory state consisting of glial cell reactivity, retention of brain-infiltrating tissue-resident memory CD8+ T-cells, and long-term persistence of antibody-producing cells of the B-lineage. Here, we report that this neuroinflammation occurs concomitantly with accumulation and retention of immunosuppressive regulatory T-cells (Tregs), and is exacerbated following their ablation. However, the extent to which these Tregs function to control neuroimmune activation following MCMV encephalitis is unknown. In this study, we used Foxp3-diphtheria toxin receptor-GFP (Foxp3-DTR-GFP) transgenic mice, which upon administration of low-dose diphtheria toxin (DTx) results in the specific depletion of Tregs, to investigate their function. We found treatment with DTx during the acute phase of viral brain infection (0-4 dpi) resulted in depletion of Tregs from the brain, exacerbation of encephalitis (i.e., increased presence of CD4+ and CD8+ T-cells), and chronic reactive phenotypes of resident glial cells (i.e., elevated MHC Class II as well as PD-L1 levels, sustained microgliosis, and increased glial fibrillary acidic protein (GFAP) expression on astrocytes) versus untreated, infected animals. This chronic proinflammatory environment was associated with reduced cognitive performance in spatial learning and memory tasks (Barnes Maze) by convalescent animals. These data demonstrate that chronic glial cell activation, unremitting post-encephalitic neuroinflammation, and its associated long-term neurological sequelae in response to viral brain infection are modulated by the immunoregulatory properties of Tregs. GLIA 2015;63:1982-1996.
Collapse
Affiliation(s)
- James R Lokensgard
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Scott J Schachtele
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Manohar B Mutnal
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Wen S Sheng
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Sujata Prasad
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Shuxian Hu
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
38
|
Involvement of TLR2 and TLR9 in the anti-inflammatory effects of chlorogenic acid in HSV-1-infected microglia. Life Sci 2015; 127:12-8. [PMID: 25744394 DOI: 10.1016/j.lfs.2015.01.036] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 12/23/2022]
|
39
|
Kollias CM, Huneke RB, Wigdahl B, Jennings SR. Animal models of herpes simplex virus immunity and pathogenesis. J Neurovirol 2015; 21:8-23. [PMID: 25388226 DOI: 10.1007/s13365-014-0302-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022]
Abstract
Herpes simplex viruses are ubiquitous human pathogens represented by two distinct serotypes: herpes simplex virus (HSV) type 1 (HSV-1); and HSV type 2 (HSV-2). In the general population, adult seropositivity rates approach 90% for HSV-1 and 20-25% for HSV-2. These viruses cause significant morbidity, primarily as mucosal membrane lesions in the form of facial cold sores and genital ulcers, with much less common but more severe manifestations causing death from encephalitis. HSV infections in humans are difficult to study in many cases because many primary infections are asymptomatic. Moreover, the neurotropic properties of HSV make it much more difficult to study the immune mechanisms controlling reactivation of latent infection within the corresponding sensory ganglia and crossover into the central nervous system of infected humans. This is because samples from the nervous system can only be routinely obtained at the time of autopsy. Thus, animal models have been developed whose use has led to a better understanding of multiple aspects of HSV biology, molecular biology, pathogenesis, disease, and immunity. The course of HSV infection in a spectrum of animal models depends on important experimental parameters including animal species, age, and genotype; route of infection; and viral serotype, strain, and dose. This review summarizes the animal models most commonly used to study HSV pathogenesis and its establishment, maintenance, and reactivation from latency. It focuses particularly on the immune response to HSV during acute primary infection and the initial invasion of the ganglion with comparisons to the events governing maintenance of viral latency.
Collapse
MESH Headings
- Animals
- Central Nervous System/pathology
- Central Nervous System/virology
- Disease Models, Animal
- Encephalitis, Viral/pathology
- Encephalitis, Viral/virology
- Ganglia, Sensory/pathology
- Ganglia, Sensory/virology
- Guinea Pigs
- Herpes Genitalis/pathology
- Herpes Genitalis/virology
- Herpes Simplex/pathology
- Herpes Simplex/virology
- Herpesvirus 1, Human/pathogenicity
- Herpesvirus 1, Human/physiology
- Herpesvirus 2, Human/pathogenicity
- Herpesvirus 2, Human/physiology
- Humans
- Immunity, Innate
- Mice
- Rabbits
- Species Specificity
- Virus Activation
- Virus Latency
Collapse
Affiliation(s)
- Christina M Kollias
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, 19102, USA
| | | | | | | |
Collapse
|
40
|
Moreno-Treviño MG, Castillo-López J, Meester I. Moving away from amyloid Beta to move on in Alzheimer research. Front Aging Neurosci 2015; 7:2. [PMID: 25657623 PMCID: PMC4302983 DOI: 10.3389/fnagi.2015.00002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/05/2015] [Indexed: 12/25/2022] Open
Affiliation(s)
- María G Moreno-Treviño
- Department of Basic Sciences, Universidad de Monterrey , San Pedro Garza García , Mexico
| | - Jesús Castillo-López
- Department of Psychology, Health Division, Universidad de Monterrey , San Pedro Garza García , Mexico
| | - Irene Meester
- Department of Basic Sciences, Universidad de Monterrey , San Pedro Garza García , Mexico
| |
Collapse
|
41
|
Jennische E, Eriksson CE, Lange S, Trybala E, Bergström T. The anterior commissure is a pathway for contralateral spread of herpes simplex virus type 1 after olfactory tract infection. J Neurovirol 2015; 21:129-47. [PMID: 25604497 DOI: 10.1007/s13365-014-0312-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/22/2014] [Accepted: 12/26/2014] [Indexed: 01/04/2023]
Abstract
Herpes simplex encephalitis (HSE), targeting the limbic system, is the most common cause of viral encephalitis in the Western world. Two pathways for viral entry to the central nervous system (CNS) in HSE have been suggested: either via the trigeminal nerve or via the olfactory tract. This question remains unsettled, and studies of viral spread between the two brain hemispheres are scarce. Here, we investigated the olfactory infection as a model of infection and tropism of herpes simplex virus 1 (HSV-1), the causative agent of HSE, in the CNS of rats. Rats were instilled with HSV-1 in the right nostril and sacrificed 1-6 days post-infection, and tissues were analysed for viral spread using immunohistochemistry and quantitative PCR (qPCR). After nasal instillation, HSV-1 infected mitral cells of the olfactory bulb (OB) on the right side only, followed by limbic encephalitis. As a novel finding, the anterior commissure (AC) conveyed a rapid transmission of virus between the right and the left OB, acting as a shortcut also between the olfactory cortices. The neuronal cell population that conveyed the viral infection via the AC was positive for the water channel protein aquaporin 9 (AQP9) by immunohistochemistry. Quantification of AQP9 in cerebrospinal fluid samples of HSE patients showed increment as compared to controls. We conclude that the olfactory route and the AC are important for the spread of HSV-1 within the olfactory/limbic system of rats and furthermore, we suggest that AQP9 is involved in viral tropism and pathogenesis of HSE.
Collapse
Affiliation(s)
- Eva Jennische
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
42
|
Steel AJ, Eslick GD. Herpes Viruses Increase the Risk of Alzheimer's Disease: A Meta-Analysis. J Alzheimers Dis 2015; 47:351-364. [PMID: 26401558 DOI: 10.3233/jad-140822] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The role of infectious agents in the development of AD has long been debated, in particular, the herpesviridae family. We therefore conducted a meta-analysis to quantitatively assess all published data to establish whether there is an association. We identified studies that looked for the presence of viral DNA in the brain and/or antibody seropositivity in people with AD from four electronic databases. 35 studies met our inclusion criteria (AD cases = 1294; controls = 3059). There was an increased risk for AD when herpesviridae is present in the brain compared to controls [OR 1.38; 95% CI 1.14-1.66]. Sub-analysis showed that APOE ɛ4 and HSV1 together increased the risk of AD development [OR 2.71; 95% CI 1.08-6.80]. HSV1 together with the presence of the APOE ɛ4 allele increases the risk of developing AD.
Collapse
|
43
|
Activated CD8+ T lymphocytes inhibit neural stem/progenitor cell proliferation: role of interferon-gamma. PLoS One 2014; 9:e105219. [PMID: 25133679 PMCID: PMC4136865 DOI: 10.1371/journal.pone.0105219] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 07/21/2014] [Indexed: 12/03/2022] Open
Abstract
The ability of neural stem/progenitor cells (NSCs) to self-renew, migrate to damaged sites, and differentiate into neurons has renewed interest in using them in therapies for neurodegenerative disorders. Neurological diseases, including viral infections of the brain, are often accompanied by chronic inflammation, whose impact on NSC function remains unexplored. We have previously shown that chronic neuroinflammation, a hallmark of experimental herpes simplex encephalitis (HSE) in mice, is dominated by brain-infiltrating activated CD8 T-cells. In the present study, activated CD8 lymphocytes were found to suppress NSC proliferation profoundly. Luciferase positive (luc+) NSCs co-cultured with activated, MHC-matched, CD8+ lymphocytes (luc−) showed two- to five-fold lower luminescence than co-cultures with un-stimulated lymphocytes. On the other hand, similarly activated CD4+ lymphocytes did not suppress NSC growth. This differential lymphocyte effect on proliferation was confirmed by decreased BrdU uptake by NSC cultured with activated CD8 T-cells. Interestingly, neutralizing antibodies to interferon-gamma (IFN-γ) reversed the impact of CD8 lymphocytes on NSCs. Antibodies specific to the IFN-γ receptor-1 subunit complex abrogated the inhibitory effects of both CD8 lymphocytes and IFN-γ, indicating that the inhibitory effect of these cells was mediated by IFN-γ in a receptor-specific manner. In addition, activated CD8 lymphocytes decreased levels of nestin and Sox2 expression in NSCs while increasing GFAP expression, suggesting possible induction of an altered differentiation state. Furthermore, NSCs obtained from IFN-γ receptor-1 knock-out embryos were refractory to the inhibitory effects of activated CD8+ T lymphocytes on cell proliferation and Sox2 expression. Taken together, the studies presented here demonstrate a role for activated CD8 T-cells in regulating NSC function mediated through the production of IFN-γ. This cytokine may influence neuro-restorative processes and ultimately contribute to the long-term sequelae commonly seen following herpes encephalitis.
Collapse
|
44
|
Astragalus Polysaccharide Protects Astrocytes from Being Infected by HSV-1 through TLR3/NF-κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:285356. [PMID: 25057274 PMCID: PMC4098889 DOI: 10.1155/2014/285356] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 12/22/2022]
Abstract
Astragalus polysaccharide (APS) is the most immunoreactive substance in Astragalus. APS can regulate the body's immunity and is widely used in many immune related diseases. However, till now, there is little information about its contribution to the protection of astrocytes infected by virus. Toll-like receptor 3 (TLR3) is a key component of the innate immune system and has the ability to detect virus infection and trigger host defence responses. This study was undertaken to elucidate the protective effect of APS on herpes simplex virus (HSV-1) infected astrocytes and the underlying mechanisms. The results showed that APS protected the astrocytes from HSV-1 induced proliferation inhibition along with increasing expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) markedly. Moreover, APS significantly promoted the expression of Toll-like receptor 3 (TLR3) and the activation of nuclear factor-κB (NF-κB) in astrocytes. In addition, while astrocytes were pretreated with TLR3 antibody before adding HSV-1 and APS, the expression of TLR3, TNF-α, and IL-6 and the activation of NF-κB decreased sharply. These results indicate that APS can protect astrocytes by promoting immunological function provoked by HSV-1 through TLR3/NF-κB pathway.
Collapse
|
45
|
Schachtele SJ, Hu S, Sheng WS, Mutnal MB, Lokensgard JR. Glial cells suppress postencephalitic CD8+ T lymphocytes through PD-L1. Glia 2014; 62:1582-94. [PMID: 24890099 PMCID: PMC4141010 DOI: 10.1002/glia.22701] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/30/2014] [Accepted: 05/15/2014] [Indexed: 01/06/2023]
Abstract
Engagement of the programmed death (PD)−1 receptor on activated cells by its ligand (PD‐L1) is a mechanism for suppression of activated T‐lymphocytes. Microglia, the resident inflammatory cells of the brain, are important for pathogen detection and initiation of innate immunity, however, a novel role for these cells as immune regulators has also emerged. PD‐L1 on microglia has been shown to negatively regulate T‐cell activation in models of multiple sclerosis and acute viral encephalitis. In this study, we investigated the role of glial cell PD‐L1 in controlling encephalitogenic CD8+ T‐lymphocytes, which infiltrate the brain to manage viral infection, but remain to produce chronic neuroinflammation. Using a model of chronic neuroinflammation following murine cytomegalovirus (MCMV)‐induced encephalitis, we found that CD8+ T‐cells persisting within the brain expressed PD‐1. Conversely, activated microglia expressed PD‐L1. In vitro, primary murine microglia, which express low basal levels of PD‐L1, upregulated the co‐inhibitory ligand on IFN‐γ‐treatment. Blockade of the PD‐1: PD‐L1 pathway in microglial: CD8+ T‐cell co‐cultures increased T‐cell IFN‐γ and interleukin (IL)−2 production. We observed a similar phenomenon following blockade of this co‐inhibitory pathway in astrocyte: CD8+ T‐cell co‐cultures. Using ex vivo cultures of brain leukocytes, including microglia and CD8+ T‐cells, obtained from mice with MCMV‐induced chronic neuroinflammation, we found that neutralization of either PD‐1 or PD‐L1 increased IFN‐γ production from virus‐specific CD8+ T‐cells stimulated with MCMV IE1168–176 peptide. These data demonstrate that microglia and astrocytes control antiviral T‐cell responses and suggest a therapeutic potential of PD1: PD‐L1 modulation to manage the deleterious consequences of uncontrolled neuroinflammation. GLIA 2014;62:1582–1594 Microglia and astrocytes exert regulatory control over T‐cells during chronic neuroinflammation following viral brain infection. Post-encephalitic glial cells express PD‐L1 and suppress persistent CD8 T‐cells via the PD‐1: PD‐L1 inhibitory pathway.
Collapse
Affiliation(s)
- Scott J Schachtele
- Department of Medicine, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, McGuire Translational Research Facility, Minneapolis, Minnesota
| | | | | | | | | |
Collapse
|
46
|
Carter CJ. Susceptibility genes are enriched in those of the herpes simplex virus 1/host interactome in psychiatric and neurological disorders. Pathog Dis 2013; 69:240-61. [PMID: 23913659 DOI: 10.1111/2049-632x.12077] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 07/11/2013] [Accepted: 07/24/2013] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) can promote beta-amyloid deposition and tau phosphorylation, demyelination or cognitive deficits relevant to Alzheimer's disease or multiple sclerosis and to many neuropsychiatric disorders with which it has been implicated. A seroprevalence much higher than disease incidence has called into question any primary causal role. However, as also the case with risk-promoting polymorphisms (also present in control populations), any causal effects are likely to be conditional. During its life cycle, the virus binds to many proteins and modifies the expression of multiple genes creating a host/pathogen interactome involving 1347 host genes. This data set is heavily enriched in the susceptibility genes for multiple sclerosis (P = 1.3E-99) > Alzheimer's disease > schizophrenia > Parkinsonism > depression > bipolar disorder > childhood obesity > chronic fatigue > autism > and anorexia (P = 0.047) but not attention deficit hyperactivity disorder, a relationship maintained for genome-wide association study data sets in multiple sclerosis and Alzheimer's disease. Overlapping susceptibility gene/interactome data sets disrupt signalling networks relevant to each disease, suggesting that disease susceptibility genes may filter the attentions of the pathogen towards particular pathways and pathologies. In this way, the same pathogen could contribute to multiple diseases in a gene-dependent manner and condition the risk-promoting effects of the genes whose function it disrupts.
Collapse
|
47
|
Modulation of neural stem/progenitor cell proliferation during experimental Herpes Simplex encephalitis is mediated by differential FGF-2 expression in the adult brain. Neurobiol Dis 2013; 58:144-55. [PMID: 23748078 DOI: 10.1016/j.nbd.2013.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 05/07/2013] [Accepted: 05/22/2013] [Indexed: 11/20/2022] Open
Abstract
Neural stem cells (NSCs) respond to inflammatory cues induced during brain injury and are thought to be involved in recovery from brain damage. Little is known about NSC response during brain infections. The present study evaluated NSC proliferation during Herpes Simplex Virus-1 brain infection. Total numbers of nestin(+) NSCs increased significantly in infected brains at 6 days post infection (p.i.). However, by 15 days p.i. the nestin(+) population decreased significantly below levels observed in uninfected brains and remained depressed through 30 days p.i. This initial increase in NSC population occurred concurrently with increased brain cell proliferation, which peaked at 3 days p.i. On closer examination, we found that while actively proliferating Sox2(+) NSCs increased in number at 6 days p.i., proliferating DCX(+) neuroblasts contributed to the increased response at 3 days p.i. However, overall proliferation decreased steadily from 15 days p.i. to below control levels. To determine the mechanisms involved in altering NSC proliferation, neurotrophin and growth factor expression profiles were assessed. FGF-2 gene expression increased at 5 days p.i. and was robustly down-regulated at 15 days p.i. (>1000-fold), which was further confirmed by increased FGF-2 immunostaining around the lateral ventricles. Furthermore, supplementing infected animals with recombinant FGF-2, at 15 days p.i., significantly increased the number of proliferating brain cells. These findings demonstrate that the temporal changes in NSC proliferation are mediated through the regulation of FGF-2 and that the NSC niche may benefit from supplementation with FGF-2 during HSV-1 brain infection.
Collapse
|
48
|
Lema Tomé CM, Tyson T, Rey NL, Grathwohl S, Britschgi M, Brundin P. Inflammation and α-synuclein's prion-like behavior in Parkinson's disease--is there a link? Mol Neurobiol 2013; 47:561-74. [PMID: 22544647 PMCID: PMC3589652 DOI: 10.1007/s12035-012-8267-8] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/04/2012] [Indexed: 01/24/2023]
Abstract
Parkinson's disease patients exhibit progressive spreading of aggregated α-synuclein in the nervous system. This slow process follows a specific pattern in an inflamed tissue environment. Recent research suggests that prion-like mechanisms contribute to the propagation of α-synuclein pathology. Little is known about factors that might affect the prion-like behavior of misfolded α-synuclein. In this review, we suggest that neuroinflammation plays an important role. We discuss causes of inflammation in the olfactory bulb and gastrointestinal tract and how this may promote the initial misfolding and aggregation of α-synuclein, which might set in motion events that lead to Parkinson's disease neuropathology. We propose that neuroinflammation promotes the prion-like behavior of α-synuclein and that novel anti-inflammatory therapies targeting this mechanism could slow disease progression.
Collapse
Affiliation(s)
- Carla M. Lema Tomé
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, BMC B11, 221 84 Lund, Sweden
| | - Trevor Tyson
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, BMC B11, 221 84 Lund, Sweden
| | - Nolwen L. Rey
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, BMC B11, 221 84 Lund, Sweden
| | - Stefan Grathwohl
- F. Hoffmann-La Roche Ltd, pRED, Pharma Research & Early Development, DTA CNS, Grenzacherstrasse 124, Basel, 4070 Switzerland
| | - Markus Britschgi
- F. Hoffmann-La Roche Ltd, pRED, Pharma Research & Early Development, DTA CNS, Grenzacherstrasse 124, Basel, 4070 Switzerland
| | - Patrik Brundin
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, BMC B11, 221 84 Lund, Sweden
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503 USA
| |
Collapse
|
49
|
Ramakrishna C, Openshaw H, Cantin EM. The case for immunomodulatory approaches in treating HSV encephalitis. Future Virol 2013; 8:259-272. [PMID: 23956785 DOI: 10.2217/fvl.12.138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
HSV encephalitis (HSE) is the most prevalent sporadic viral encephalitis. Although safe and effective antiviral therapies and greatly improved noninvasive diagnostic procedures have significantly improved outcomes, mortality (~20%) and debilitating neurological sequelae in survivors remain unacceptably high. An encouraging new development is that the focus is now shifting away from the virus exclusively, to include consideration of the host immune response to infection in the pathology underlying development of HSE. In this article, the authors discuss results from recent studies in experimental mouse models, as well as clinical reports that demonstrate a role for exaggerated host inflammatory responses in the brain in the development of HSE that is motivating researchers and clinicians to consider new therapeutic approaches for treating HSE. The authors also discuss results from a few studies that have shown that immunomodulatory drugs can be highly protective against HSE, which supports a role for deleterious host inflammatory responses in HSE. The impressive outcomes of some immunomodulatory approaches in mouse models of HSE emphasize the urgent need for clinical trials to rigorously evaluate combination antiviral and immunomodulatory therapy in comparison with standard antiviral therapy for treatment of HSE, and support for such an initiative is gaining momentum.
Collapse
Affiliation(s)
- Chandran Ramakrishna
- Department of Virology, Beckman Research Institute of City of Hope; Duarte, CA 91010-3000, USA
| | | | | |
Collapse
|
50
|
Ball MJ, Lukiw WJ, Kammerman EM, Hill JM. Intracerebral propagation of Alzheimer's disease: strengthening evidence of a herpes simplex virus etiology. Alzheimers Dement 2013; 9:169-75. [PMID: 23159044 PMCID: PMC3578985 DOI: 10.1016/j.jalz.2012.07.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/30/2012] [Accepted: 07/15/2012] [Indexed: 01/12/2023]
Abstract
BACKGROUND A faulty human protein, abnormally phosphorylated tau, was recently publicized to spread "like a virus" from neuron to neuron in Alzheimer's patients' brains. For several decades, we have been amassing arguments showing that herpes simplex virus type 1 (HSV-1), not p-tau, propagates this interneuronal, transsynaptic pathologic cascade. METHODS We reiterate convincing data from our own (and other) laboratories, reviewing the first anatomic foothold neurofibrillary tangles gain in brainstem and/or entorhinal cortex; the chronic immunosurveillance cellularity of the trigeminal ganglia wherein HSV-1 awakens from latency to reactivate; the inabilities of p-tau protein's physical properties to promote it to jump synapses; the amino acid homology between human p-tau and VP22, a key target for phosphorylation by HSV serine/threonine-protein kinase UL13; and the exosomic secretion of HSV-1-infected cells' L-particles, attesting to the cell-to-cell passage of microRNAs of herpesviruses. RESULTS The now-maturing construct that reactivated HSV-1 best accounts for the intracerebral propagation of AD changes in the human brain should at last seem highly attractive. This hypothesis might even explain statins' apparent mechanism in some studies for lowering AD incidence. CONCLUSION Provided that funding agencies will quickly ignite a new realm of investigation, the rejuvenated enthusiasm for testing this optimistic construct holds incalculable potential for rapid, efficacious clinical application, through already available and relatively safe antiviral therapeutics.
Collapse
Affiliation(s)
- Melvyn J. Ball
- Depts. of Pathology & Neurology, Oregon Health & Science University, Portland
| | - Walter J. Lukiw
- Department of Ophthalmology and Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA.
| | | | - James M. Hill
- Louisiana State University Health Sciences Center, New Orleans, LA.
| |
Collapse
|