1
|
Watts LM, Sparkes PC, Dewhurst HF, Guilfoyle SE, Pollard AS, Komla-Ebri D, Butterfield NC, Williams GR, Bassett JHD. The GWAS candidate far upstream element binding protein 3 (FUBP3) is required for normal skeletal growth, and adult bone mass and strength in mice. Bone 2025; 195:117472. [PMID: 40139337 DOI: 10.1016/j.bone.2025.117472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Bone mineral density (BMD) and height are highly heritable traits for which hundreds of genetic loci have been linked through genome wide association studies (GWAS). FUBP3 is a DNA and RNA binding protein best characterised as a transcriptional regulator of c-Myc, but little is known about its role in vivo. Single nucleotide polymorphisms in FUBP3 at the 9q34.11 locus have been associated with BMD, fracture and height in multiple GWAS, but FUBP3 has no previously established role in the skeleton. We analysed Fubp3-deficient mice to determine the consequence of FUBP3 deficiency in vivo. Mice lacking Fubp3 had reduced survival to adulthood and impaired skeletal growth. Bone mass was decreased, most strikingly in the vertebrae, with altered trabecular micro-architecture. Fubp3 deficient bones were also weak. These data provide the first functional demonstration that Fubp3 is required for normal skeletal growth and development and maintenance of adult bone structure and strength, indicating that FUBP3 contributes to the GWAS association of 9q34.11 with variation in height, BMD and fracture.
Collapse
Affiliation(s)
- Laura M Watts
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Penny C Sparkes
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Hannah F Dewhurst
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Siobhan E Guilfoyle
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Andrea S Pollard
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Davide Komla-Ebri
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Natalie C Butterfield
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
2
|
Masui K, Onizuka H, Muragaki Y, Kawamata T, Kurata A, Komori T. Progression of long-term "untreated" oligodendroglioma cases: possible contribution of genomic instability. Brain Tumor Pathol 2025; 42:43-47. [PMID: 40009147 DOI: 10.1007/s10014-025-00497-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Affiliation(s)
- Kenta Masui
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan.
| | - Hiromi Onizuka
- Department of Pathology, Kyorin University, Tokyo, Japan
| | - Yoshihiro Muragaki
- Center for Advanced Medical Engineering Research and Development, Kobe University, Hyogo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Atsushi Kurata
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| |
Collapse
|
3
|
Kwok DW, Stevers NO, Etxeberria I, Nejo T, Colton Cove M, Chen LH, Jung J, Okada K, Lakshmanachetty S, Gallus M, Barpanda A, Hong C, Chan GKL, Liu J, Wu SH, Ramos E, Yamamichi A, Watchmaker PB, Ogino H, Saijo A, Du A, Grishanina NR, Woo J, Diaz A, Hervey-Jumper SL, Chang SM, Phillips JJ, Wiita AP, Klebanoff CA, Costello JF, Okada H. Tumour-wide RNA splicing aberrations generate actionable public neoantigens. Nature 2025; 639:463-473. [PMID: 39972144 PMCID: PMC11903331 DOI: 10.1038/s41586-024-08552-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/19/2024] [Indexed: 02/21/2025]
Abstract
T cell-based immunotherapies hold promise in treating cancer by leveraging the immune system's recognition of cancer-specific antigens1. However, their efficacy is limited in tumours with few somatic mutations and substantial intratumoural heterogeneity2-4. Here we introduce a previously uncharacterized class of tumour-wide public neoantigens originating from RNA splicing aberrations in diverse cancer types. We identified T cell receptor clones capable of recognizing and targeting neoantigens derived from aberrant splicing in GNAS and RPL22. In cases with multi-site biopsies, we detected the tumour-wide expression of the GNAS neojunction in glioma, mesothelioma, prostate cancer and liver cancer. These neoantigens are endogenously generated and presented by tumour cells under physiologic conditions and are sufficient to trigger cancer cell eradication by neoantigen-specific CD8+ T cells. Moreover, our study highlights a role for dysregulated splicing factor expression in specific cancer types, leading to recurrent patterns of neojunction upregulation. These findings establish a molecular basis for T cell-based immunotherapies addressing the challenges of intratumoural heterogeneity.
Collapse
Affiliation(s)
- Darwin W Kwok
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nicholas O Stevers
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Iñaki Etxeberria
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, New York, NY, USA
| | - Takahide Nejo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Maggie Colton Cove
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Lee H Chen
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jangham Jung
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Kaori Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | | | - Marco Gallus
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Abhilash Barpanda
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Gary K L Chan
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jerry Liu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Samuel H Wu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Emilio Ramos
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Akane Yamamichi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Payal B Watchmaker
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Hirokazu Ogino
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Atsuro Saijo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Aidan Du
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nadia R Grishanina
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - James Woo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron Diaz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Christopher A Klebanoff
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
4
|
Jiang Z, Huang H, Guo Y, Wang Z, Huang H, Yin W, Huang H, Wang L, Liu W, Jiang X, Ren C. Unveiling the Role of Protein Posttranslational Modifications in Glioma Prognosis. CNS Neurosci Ther 2025; 31:e70330. [PMID: 40090864 PMCID: PMC11911106 DOI: 10.1111/cns.70330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/18/2025] Open
Abstract
BACKGROUND Gliomas represent the most aggressive malignancies of the central nervous system, with posttranslational modifications (PTMs) emerging as critical regulators of oncogenic processes through dynamic protein functional modulation. Despite their established role in tumor biology, the systematic characterization of PTM-mediated molecular mechanisms driving glioma progression remains unexplored. This study aims to uncover the molecular mechanisms of glioma, with a focus on the role of PTMs. METHODS We analyzed the PTM pathway to classify glioma patients into distinct clusters. Comprehensive analyses compared intercluster differences in clinical outcomes, mutational landscapes, and immune microenvironment profiles. Differentially expressed genes (DEGs) were identified to construct a robust prognostic prediction model with machine learning approaches. Among the genes included in the model, TOM1L1 (Target of Myb1 Like 1 Membrane Trafficking Protein) was selected for in vitro experimental validation to assess its role in glioma progression. RESULTS PTMs were found to influence glioma prognosis significantly. Dysregulation in specific pathways, such as glutathionylation and citrullination, was correlated with more aggressive clinical features. The prognostic model, comprising DEGs such as TOM1L1, demonstrated high predictive accuracy (c-index = 0.867)-the scores derived from the model strongly correlated with glioma progression indicators. In vitro experiments revealed that TOM1L1 facilitates malignant progression by modulating PTM pathways, confirming its functional role in glioma. CONCLUSION Our study establishes the first comprehensive PTM atlas in gliomas, revealing subtype-specific modification patterns with clinical and therapeutic implications. TOM1L1 emerges as a promising prognostic biomarker and a potential therapeutic intervention target. Targeting PTM pathways may offer novel strategies for glioma treatment, enhancing patient outcomes.
Collapse
Affiliation(s)
- Zhipeng Jiang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Hanxue Huang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaP.R. China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of EducationCentral South UniversityChangshaP.R. China
| | - Youwei Guo
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Zihan Wang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Hailong Huang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Wen Yin
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Haoxuan Huang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Lei Wang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCentral South UniversityChangshaHunanP.R. China
| | - Weidong Liu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCentral South UniversityChangshaHunanP.R. China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Caiping Ren
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCentral South UniversityChangshaHunanP.R. China
| |
Collapse
|
5
|
Pearlman AH, Wang Y, Kalluri A, Parker M, Cohen JD, Dudley J, Rincon-Torroella J, Xia Y, Gensler R, Alfonzo Horwitz M, Theodore J, Dobbyn L, Popoli M, Ptak J, Silliman N, Judge K, Groves M, Jackson CM, Jackson EM, Jallo GI, Lim M, Luciano M, Mukherjee D, Naidoo J, Rozati S, Sterling CH, Weingart J, Koschmann C, Mansouri A, Glantz M, Kamson D, Schreck KC, Pardo CA, Holdhoff M, Paul S, Kinzler KW, Papadopoulos N, Vogelstein B, Douville C, Bettegowda C. Detection of human brain cancers using genomic and immune cell characterization of cerebrospinal fluid through CSF-BAM. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.12.02.24318303. [PMID: 39677487 PMCID: PMC11643193 DOI: 10.1101/2024.12.02.24318303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Patients who have radiographically detectable lesions in their brain or other symptoms compatible with brain tumors pose challenges for diagnosis. The only definitive way to diagnose such patients is through brain biopsy, an obviously invasive and dangerous procedure. Here we present a new workflow termed "CSF-BAM" that simultaneously identifies B cell or T cell receptor rearrangements, A neuploidy, and M utations using PCR-mediated amplification of both strands of the DNA from CSF samples. We first describe the details of the molecular genetic assessments and then establish thresholds for positivity using training sets of libraries from patients with or without cancer. We then applied CSF-BAM to an independent set of 206 DNA samples from patients with common, aggressive cancer types as well as other forms of brain cancers. Among the 126 samples from patients with the most common aggressive cancer types (high grade gliomas, medulloblastomas, or metastatic cancers to the brain), the sensitivity of detection was >81%. None of 33 CSF-BAM assays (100% specificity, 90% to 100% credible interval) were positive in CSF samples from patients without brain cancers. The sensitivity of CSF-BAM was considerably higher than that achieved with cytology. CSF-BAM provides an integrated multi-analyte approach to identify neoplasia in the central nervous system, provides information about the immune environment in patients with or without cancer, and has the potential to inform the subsequent management of such patients. Statement of significance There is a paucity of technologies beyond surgical biopsy that can accurately diagnose central nervous system neoplasms. We developed a novel, sensitive and highly specific assay that can detect brain cancers by comprehensively identifying somatic mutations, chromosomal copy number changes, and adaptive immunoreceptor repertoires from samples of cerebrospinal fluid.
Collapse
|
6
|
Weber-Levine C, Rakovec M, Jiang K, Kalluri A, Raj D, Parker M, Materi J, Sepehri S, Ferrés A, Schreck KC, Aldecoa I, Lucas CHG, Redmond KJ, Holdhoff M, Sair HI, Weingart JD, Brem H, González Sánchez J, Ye X, Bettegowda C, Rincon-Torroella J. Genomic Alterations in Molecularly Defined Oligodendrogliomas. Neurosurgery 2025; 96:328-337. [PMID: 39007559 DOI: 10.1227/neu.0000000000003078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/26/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Oligodendrogliomas are defined by IDH1/2 mutation and codeletion of chromosome arms 1p/19q. Although previous studies identified CIC , FUBP1 , and TERTp as frequently altered in oligodendrogliomas, the clinical relevance of these molecular signatures is unclear. Moreover, previous studies predominantly used research panels that are not readily available to providers and patients. Accordingly, we explore genomic alterations in molecularly defined oligodendrogliomas using clinically standardized next-generation sequencing (NGS) panels. METHODS A retrospective single-center study evaluated adults with pathologically confirmed IDH -mutant, 1p/19q-codeleted oligodendrogliomas diagnosed between 2005 and 2021. Genetic data from formalin-fixed, paraffin-embedded specimens were analyzed with the NGS Solid Tumor Panel at the Johns Hopkins Medical Laboratories, which tests more than 400 cancer-related genes. Kaplan-Meier plots and log-rank tests compared progression-free survival (PFS) and overall survival by variant status. χ 2 tests, t -tests, and Wilcoxon rank-sum tests were used to compare clinical characteristics between genomic variant status in the 10 most frequently altered genes. RESULTS Two hundred and seventy-seven patients with molecularly defined oligodendrogliomas were identified, of which 95 patients had available NGS reports. Ten genes had 9 or more patients with a genomic alteration, with CIC , FUBP1 , and TERTp being the most frequently altered genes (n = 60, 23, and 22, respectively). Kaplan-Meier curves showed that most genes were not associated with differences in PFS or overall survival. At earlier time points (PFS <100 months), CIC alterations conferred a reduction in PFS in patients ( P = .038). CONCLUSION Our study confirms the elevated frequency of CIC , FUBP1 , and TERTp alterations in molecularly defined oligodendrogliomas and suggests a potential relationship of CIC alteration to PFS at earlier time points. Understanding these genomic variants may inform prognosis or therapeutic recommendations as NGS becomes routine.
Collapse
Affiliation(s)
- Carly Weber-Levine
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Maureen Rakovec
- Department of Neurosurgery, University of Maryland Medical Center, Baltimore , Maryland , USA
| | - Kelly Jiang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Anita Kalluri
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Divyaansh Raj
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Megan Parker
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Joshua Materi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Sadra Sepehri
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Abel Ferrés
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona , Spain
| | - Karisa C Schreck
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Iban Aldecoa
- Department of Pathology, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, University of Barcelona, Barcelona , Spain
- Neurological Tissue Bank of the Biobank Hospital Clinic Barcelona-FCRB/IDIBAPS, Barcelona , Spain
| | - Calixto-Hope G Lucas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Matthias Holdhoff
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Haris I Sair
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
- The Malone Center for Engineering in Healthcare, Whiting School of Engineering, Johns Hopkins University, Baltimore , Maryland , USA
| | - Jon D Weingart
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Josep González Sánchez
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona , Spain
- Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona, Barcelona , Spain
| | - Xiaobu Ye
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Jordina Rincon-Torroella
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
- Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona, Barcelona , Spain
- Programa de Doctorat de Medicina i Recerca Translacional, Universitat de Barcelona, Barcelona , Spain
| |
Collapse
|
7
|
Nguyen AL, Facey COB, Boman BM. The Significance of Aldehyde Dehydrogenase 1 in Cancers. Int J Mol Sci 2024; 26:251. [PMID: 39796106 PMCID: PMC11720537 DOI: 10.3390/ijms26010251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
The goal of this paper is to discuss the role of ALDH isozymes in different cancers, review advances in ALDH1-targeting cancer therapies, and explore a mechanism that explains how ALDH expression becomes elevated during cancer development. ALDH is often overexpressed in cancer, and each isoform has a unique expression pattern and a distinct role in different cancers. The abnormal expression of ALDHs in different cancer types (breast, colorectal, lung, gastric, cervical, melanoma, prostate, and renal) is presented and correlated with patient prognosis. ALDH plays a significant role in various cellular functions, such as metabolism, oxidative stress response, detoxification, and cellular differentiation. Among the ALDH families, ALDH1 has gained considerable attention as a cancer stem cell (CSC) marker due to its significant role in the maintenance of stemness and the differentiation of stem cells (SCs), along with its involvement in tumorigenesis. A description of the cellular mechanisms and physiology of ALDH1 that underlies cancer development is provided. Moreover, current advances in ALDH1-targeting cancer therapies are discussed.
Collapse
Affiliation(s)
- Anh L. Nguyen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA;
| | - Caroline O. B. Facey
- Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA;
| | - Bruce M. Boman
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA;
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
8
|
de los Angeles Becerra Rodriguez M, Gonzalez Muñoz E, Moore T. Oligodendrocyte-specific expression of PSG8- AS1 suggests a role in myelination with prognostic value in oligodendroglioma. Noncoding RNA Res 2024; 9:1061-1068. [PMID: 39022681 PMCID: PMC11254506 DOI: 10.1016/j.ncrna.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/03/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
The segmentally duplicated Pregnancy-specific glycoprotein (PSG) locus on chromosome 19q13 may be one of the most rapidly evolving in the human genome. It comprises ten coding genes (PSG1-9, 11) and one predominantly non-coding gene (PSG10) that are expressed in the placenta and gut, in addition to several poorly characterized long non-coding RNAs. We report that long non-coding RNA PSG8-AS1 has an oligodendrocyte-specific expression pattern and is co-expressed with genes encoding key myelin constituents. PSG8-AS1 exhibits two peaks of expression during human brain development coinciding with the most active periods of oligodendrogenesis and myelination. PSG8-AS1 orthologs were found in the genomes of several primates but significant expression was found only in the human, suggesting a recent evolutionary origin of its proposed role in myelination. Additionally, because co-deletion of chromosomes 1p/19q is a genomic marker of oligodendroglioma, expression of PSG8-AS1 was examined in these tumors. PSG8-AS1 may be a promising diagnostic biomarker for glioma, with prognostic value in oligodendroglioma.
Collapse
Affiliation(s)
- Maria de los Angeles Becerra Rodriguez
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- SFI Centre for Research Training in Genomics Data Science, University College Cork, Cork, Ireland
| | - Elena Gonzalez Muñoz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590, Málaga, Spain
- Universidad de Malaga, Dpto. Biología Celular, Genética y Fisiología, 29071, Málaga, Spain
| | - Tom Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
van den Bent MJ, French PJ, Brat D, Tonn JC, Touat M, Ellingson BM, Young RJ, Pallud J, von Deimling A, Sahm F, Figarella Branger D, Huang RY, Weller M, Mellinghoff IK, Cloughsey TF, Huse JT, Aldape K, Reifenberger G, Youssef G, Karschnia P, Noushmehr H, Peters KB, Ducray F, Preusser M, Wen PY. The biological significance of tumor grade, age, enhancement, and extent of resection in IDH-mutant gliomas: How should they inform treatment decisions in the era of IDH inhibitors? Neuro Oncol 2024; 26:1805-1822. [PMID: 38912846 PMCID: PMC11449017 DOI: 10.1093/neuonc/noae107] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Indexed: 06/25/2024] Open
Abstract
The 2016 and 2021 World Health Organization 2021 Classification of central nervous system tumors have resulted in a major improvement in the classification of isocitrate dehydrogenase (IDH)-mutant gliomas. With more effective treatments many patients experience prolonged survival. However, treatment guidelines are often still based on information from historical series comprising both patients with IDH wild-type and IDH-mutant tumors. They provide recommendations for radiotherapy and chemotherapy for so-called high-risk patients, usually based on residual tumor after surgery and age over 40. More up-to-date studies give a better insight into clinical, radiological, and molecular factors associated with the outcome of patients with IDH-mutant glioma. These insights should be used today for risk stratification and for treatment decisions. In many patients with IDH-mutant grades 2 and 3 glioma, if carefully monitored postponing radiotherapy and chemotherapy is safe, and will not jeopardize the overall outcome of patients. With the INDIGO trial showing patient benefit from the IDH inhibitor vorasidenib, there is a sizable population in which it seems reasonable to try this class of agents before recommending radio-chemotherapy with its delayed adverse event profile affecting quality of survival. Ongoing trials should help to further identify the patients that are benefiting from this treatment.
Collapse
Affiliation(s)
| | - Pim J French
- Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Daniel Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Mehdi Touat
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, Paris Brain Institute, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Robert J Young
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer, New York, New York, USA
| | - Johan Pallud
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Université Paris Cité, Paris, France
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, France
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Medicine and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Medicine and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominique Figarella Branger
- DFB Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d’Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Weller
- Department of Neurology & Brain Tumor Center, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Ingo K Mellinghoff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tim F Cloughsey
- Department of Neurology, TC David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kenneth Aldape
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University and University Hospital Düsseldorf, and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Gilbert Youssef
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Philipp Karschnia
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
| | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Hospital+Michigan State University, Detroit, Michigan, USA
| | - Katherine B Peters
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| | - Francois Ducray
- Inserm U1052, CNRS UMR5286, Université Claude Bernard Lyon, Lyon, France
- Hospices Civils de Lyon, Service de neuro-oncologie, LabEx Dev2CAN, Centre de Recherche en Cancérologie de Lyon, France
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Zhang F, Xiong Q, Wang M, Cao X, Zhou C. FUBP1 in human cancer: Characteristics, functions, and potential applications. Transl Oncol 2024; 48:102066. [PMID: 39067088 PMCID: PMC11338137 DOI: 10.1016/j.tranon.2024.102066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Far upstream element-binding protein 1 (FUBP1) is a single-stranded nucleic acid-binding protein that binds to the Far Upstream Element (FUSE) sequence and is involved in important biological processes, including DNA transcription, RNA biogenesis, and translation. Recent studies have highlighted the significance of aberrant expression or mutations in FUBP1 in the development of various tumors, with FUBP1 overexpression often indicating oncogenic roles in different tumor types. However, it is worth noting that recent research has discovered its tumor-suppressive role in cancer, which is not yet fully understood and appears to be tissue- or context-dependent. This review summarizes the association between FUBP1 and diverse cancers and discusses the functions of FUBP1 in cancer. In addition, this review proposes potential clinical implications and outlines future research directions to pave the way for the development of targeted therapeutic strategies focusing on FUBP1.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Oncology, Shaanxi Provincial People's Hospital, No 256 Youyi West Road, Xi'an, 710068, Shaanxi, China
| | - Qunli Xiong
- Department of Abdominal Oncology, West China Hospital, Sichuan University, No 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Min Wang
- Department of Science and Education, Xi'an Children's Hospital Affiliated of Xi'an Jiaotong University, No 69 Xijuyuan lane, Xi'an, 710002, Shaanxi, China
| | - Ximing Cao
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, No 256 Youyi West Road, Xi'an, 710068, Shaanxi, China
| | - Congya Zhou
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, No 256 Youyi West Road, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
11
|
Meena D, Jha S. Autophagy in glioblastoma: A mechanistic perspective. Int J Cancer 2024; 155:605-617. [PMID: 38716809 DOI: 10.1002/ijc.34991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 06/20/2024]
Abstract
Glioblastoma (GBM) is one of the most lethal malignancies in humans. Even after surgical resection and aggressive radio- or chemotherapies, patients with GBM can survive for less than 14 months. Extreme inter-tumor and intra-tumor heterogeneity of GBM poses a challenge for resolving recalcitrant GBM pathophysiology. GBM tumor microenvironment (TME) exhibits diverse heterogeneity in cellular composition and processes contributing to tumor progression and therapeutic resistance. Autophagy is such a cellular process; that demonstrates a cell-specific and TME context-dependent role in GBM progression, leading to either the promotion or suppression of GBM progression. Autophagy can regulate GBM cell function directly via regulation of survival, migration, and invasion, or indirectly by affecting GBM TME composition such as immune cell population, tumor metabolism, and glioma stem cells. This review comprehensively investigates the role of autophagy in GBM pathophysiology.
Collapse
Affiliation(s)
- Durgesh Meena
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
12
|
Rudà R, Horbinski C, van den Bent M, Preusser M, Soffietti R. IDH inhibition in gliomas: from preclinical models to clinical trials. Nat Rev Neurol 2024; 20:395-407. [PMID: 38760442 DOI: 10.1038/s41582-024-00967-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Gliomas are the most common malignant primary brain tumours in adults and cannot usually be cured with standard cancer treatments. Gliomas show intratumoural and intertumoural heterogeneity at the histological and molecular levels, and they frequently contain mutations in the isocitrate dehydrogenase 1 (IDH1) or IDH2 gene. IDH-mutant adult-type diffuse gliomas are subdivided into grade 2, 3 or 4 IDH-mutant astrocytomas and grade 2 or 3 IDH-mutant, 1p19q-codeleted oligodendrogliomas. The product of the mutated IDH genes, D-2-hydroxyglutarate (D-2-HG), induces global DNA hypermethylation and interferes with immunity, leading to stimulation of tumour growth. Selective inhibitors of mutant IDH, such as ivosidenib and vorasidenib, have been shown to reduce D-2-HG levels and induce cellular differentiation in preclinical models and to induce MRI-detectable responses in early clinical trials. The phase III INDIGO trial has demonstrated superiority of vorasidenib, a brain-penetrant pan-mutant IDH inhibitor, over placebo in people with non-enhancing grade 2 IDH-mutant gliomas following surgery. In this Review, we describe the pathway of development of IDH inhibitors in IDH-mutant low-grade gliomas from preclinical models to clinical trials. We discuss the practice-changing implications of the INDIGO trial and consider new avenues of investigation in the field of IDH-mutant gliomas.
Collapse
Affiliation(s)
- Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin, Italy.
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Martin van den Bent
- Brain Tumour Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin, Italy
| |
Collapse
|
13
|
Gue R, Lakhani DA. The 2021 World Health Organization Central Nervous System Tumor Classification: The Spectrum of Diffuse Gliomas. Biomedicines 2024; 12:1349. [PMID: 38927556 PMCID: PMC11202067 DOI: 10.3390/biomedicines12061349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The 2021 edition of the World Health Organization (WHO) classification of central nervous system tumors introduces significant revisions across various tumor types. These updates, encompassing changes in diagnostic techniques, genomic integration, terminology, and grading, are crucial for radiologists, who play a critical role in interpreting brain tumor imaging. Such changes impact the diagnosis and management of nearly all central nervous system tumor categories, including the reclassification, addition, and removal of specific tumor entities. Given their pivotal role in patient care, radiologists must remain conversant with these revisions to effectively contribute to multidisciplinary tumor boards and collaborate with peers in neuro-oncology, neurosurgery, radiation oncology, and neuropathology. This knowledge is essential not only for accurate diagnosis and staging, but also for understanding the molecular and genetic underpinnings of tumors, which can influence treatment decisions and prognostication. This review, therefore, focuses on the most pertinent updates concerning the classification of adult diffuse gliomas, highlighting the aspects most relevant to radiological practice. Emphasis is placed on the implications of new genetic information on tumor behavior and imaging findings, providing necessary tools to stay abreast of advancements in the field. This comprehensive overview aims to enhance the radiologist's ability to integrate new WHO classification criteria into everyday practice, ultimately improving patient outcomes through informed and precise imaging assessments.
Collapse
Affiliation(s)
- Racine Gue
- Department of Neuroradiology, West Virginia University, Morgantown, WV 26506, USA
| | - Dhairya A. Lakhani
- Department of Neuroradiology, West Virginia University, Morgantown, WV 26506, USA
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
14
|
Galbraith K, Snuderl M. Molecular Pathology of Gliomas. Clin Lab Med 2024; 44:149-159. [PMID: 38821638 DOI: 10.1016/j.cll.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Gliomas are the most common adult and pediatric primary brain tumors. Molecular studies have identified features that can enhance diagnosis and provide biomarkers. IDH1/2 mutation with ATRX and TP53 mutations defines diffuse astrocytomas, whereas IDH1/2 mutations with 1p19q loss defines oligodendroglioma. Focal amplifications of receptor tyrosine kinase genes, TERT promoter mutation, and loss of chromosomes 10 and 13 with trisomy of chromosome 7 are characteristic features of glioblastoma and can be used for diagnosis. BRAF gene fusions and mutations in low-grade gliomas and histone H3 mutations in high-grade gliomas also can be used for diagnostics.
Collapse
Affiliation(s)
- Kristyn Galbraith
- Department of Pathology, NYU Langone Medical Center, 240 East 38th Street, 22nd Floor, New York, NY 10016, USA
| | - Matija Snuderl
- Department of Pathology, NYU Langone Medical Center, 240 East 38th Street, 22nd Floor, New York, NY 10016, USA.
| |
Collapse
|
15
|
Nikolova E, Laleva L, Milev M, Spiriev T, Stoyanov S, Ferdinandov D, Mitev V, Todorova A. miRNAs and related genetic biomarkers according to the WHO glioma classification: From diagnosis to future therapeutic targets. Noncoding RNA Res 2024; 9:141-152. [PMID: 38035044 PMCID: PMC10686814 DOI: 10.1016/j.ncrna.2023.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 12/02/2023] Open
Abstract
In the 2021 WHO classification of Tumors of the Central Nervous System, additional molecular characteristics have been included, defining the following adult-type diffuse glioma entities: Astrocytoma IDH-mutant, Oligodendroglioma IDH-mutant and 1p/19q-codeleted, and Glioblastoma IDH-wildtype. Despite advances in genetic analysis, precision oncology, and targeted therapy, malignant adult-type diffuse gliomas remain "hard-to-treat tumors", indicating an urgent need for better diagnostic and therapeutic strategies. In the last decades, miRNA analysis has been a hotspot for researching and developing diagnostic, prognostic, and predictive biomarkers for various disorders, including brain cancer. Scientific interest has recently been directed towards therapeutic applications of miRNAs, with encouraging results. Databases such as NCBI, PubMed, and Medline were searched for a selection of articles reporting the relationship between deregulated miRNAs and genetic aberrations used in the latest WHO CNS classification. The current review discussed the recommended molecular biomarkers and genetic aberrations based on the 2021 WHO classification in adult-type diffuse gliomas, along with associated deregulated miRNAs. Additionally, the study highlights miRNA-based treatment advancements in adults with gliomas.
Collapse
Affiliation(s)
- Emiliya Nikolova
- Department of Medical Chemistry and Biochemistry, Medical University – Sofia, Sofia, 1431, Bulgaria
- Independent Medico-Diagnostic Laboratory Genome Center Bulgaria, Sofia, 1612, Bulgaria
| | - Lili Laleva
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Milko Milev
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Toma Spiriev
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Stoycho Stoyanov
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Dilyan Ferdinandov
- Department of Neurosurgery, Medical University – Sofia, Sofia, 1431, Bulgaria
| | - Vanyo Mitev
- Department of Medical Chemistry and Biochemistry, Medical University – Sofia, Sofia, 1431, Bulgaria
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University – Sofia, Sofia, 1431, Bulgaria
- Independent Medico-Diagnostic Laboratory Genome Center Bulgaria, Sofia, 1612, Bulgaria
| |
Collapse
|
16
|
Shirai Y, Ueno T, Kojima S, Ikeuchi H, Kitada R, Koyama T, Takahashi F, Takahashi K, Ichimura K, Yoshida A, Sugino H, Mano H, Narita Y, Takahashi M, Kohsaka S. The development of a custom RNA-sequencing panel for the identification of predictive and diagnostic biomarkers in glioma. J Neurooncol 2024; 167:75-88. [PMID: 38363490 PMCID: PMC10978676 DOI: 10.1007/s11060-024-04563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE Various molecular profiles are needed to classify malignant brain tumors, including gliomas, based on the latest classification criteria of the World Health Organization, and their poor prognosis necessitates new therapeutic targets. The Todai OncoPanel 2 RNA Panel (TOP2-RNA) is a custom-target RNA-sequencing (RNA-seq) using the junction capture method to maximize the sensitivity of detecting 455 fusion gene transcripts and analyze the expression profiles of 1,390 genes. This study aimed to classify gliomas and identify their molecular targets using TOP2-RNA. METHODS A total of 124 frozen samples of malignant gliomas were subjected to TOP2-RNA for classification based on their molecular profiles and the identification of molecular targets. RESULTS Among 55 glioblastoma cases, gene fusions were detected in 11 cases (20%), including novel MET fusions. Seven tyrosine kinase genes were found to be overexpressed in 15 cases (27.3%). In contrast to isocitrate dehydrogenase (IDH) wild-type glioblastoma, IDH-mutant tumors, including astrocytomas and oligodendrogliomas, barely harbor fusion genes or gene overexpression. Of the 34 overexpressed tyrosine kinase genes, MDM2 and CDK4 in glioblastoma, 22 copy number amplifications (64.7%) were observed. When comparing astrocytomas and oligodendrogliomas in gene set enrichment analysis, the gene sets related to 1p36 and 19q were highly enriched in astrocytomas, suggesting that regional genomic DNA copy number alterations can be evaluated by gene expression analysis. CONCLUSIONS TOP2-RNA is a highly sensitive assay for detecting fusion genes, exon skipping, and aberrant gene expression. Alterations in targetable driver genes were identified in more than 50% of glioblastoma. Molecular profiling by TOP2-RNA provides ample predictive, prognostic, and diagnostic biomarkers that may not be identified by conventional assays and, therefore, is expected to increase treatment options for individual patients with glioma.
Collapse
Affiliation(s)
- Yukina Shirai
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hiroshi Ikeuchi
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of General Thoracic Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Rina Kitada
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hirokazu Sugino
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
17
|
Otsuji R, Fujioka Y, Hata N, Kuga D, Hatae R, Sangatsuda Y, Nakamizo A, Mizoguchi M, Yoshimoto K. Liquid Biopsy for Glioma Using Cell-Free DNA in Cerebrospinal Fluid. Cancers (Basel) 2024; 16:1009. [PMID: 38473369 PMCID: PMC10930790 DOI: 10.3390/cancers16051009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Glioma is one of the most common primary central nervous system (CNS) tumors, and its molecular diagnosis is crucial. However, surgical resection or biopsy is risky when the tumor is located deep in the brain or brainstem. In such cases, a minimally invasive approach to liquid biopsy is beneficial. Cell-free DNA (cfDNA), which directly reflects tumor-specific genetic changes, has attracted attention as a target for liquid biopsy, and blood-based cfDNA monitoring has been demonstrated for other extra-cranial cancers. However, it is still challenging to fully detect CNS tumors derived from cfDNA in the blood, including gliomas, because of the unique structure of the blood-brain barrier. Alternatively, cerebrospinal fluid (CSF) is an ideal source of cfDNA and is expected to contribute significantly to the liquid biopsy of gliomas. Several successful studies have been conducted to detect tumor-specific genetic alterations in cfDNA from CSF using digital PCR and/or next-generation sequencing. This review summarizes the current status of CSF-based cfDNA-targeted liquid biopsy for gliomas. It highlights how the approaches differ from liquid biopsies of other extra-cranial cancers and discusses the current issues and prospects.
Collapse
Affiliation(s)
- Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Oita University Faculty of Medicine, Yufu 879-5593, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Neurosurgery, National Hospital Organization Kyushu Medical Center, Clinical Research Institute, Fukuoka 810-8563, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
18
|
Trivedi R, Bhat KP. Liquid biopsy: creating opportunities in brain space. Br J Cancer 2023; 129:1727-1746. [PMID: 37752289 PMCID: PMC10667495 DOI: 10.1038/s41416-023-02446-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
In recent years, liquid biopsy has emerged as an alternative method to diagnose and monitor tumors. Compared to classical tissue biopsy procedures, liquid biopsy facilitates the repetitive collection of diverse cellular and acellular analytes from various biofluids in a non/minimally invasive manner. This strategy is of greater significance for high-grade brain malignancies such as glioblastoma as the quantity and accessibility of tumors are limited, and there are collateral risks of compromised life quality coupled with surgical interventions. Currently, blood and cerebrospinal fluid (CSF) are the most common biofluids used to collect circulating cells and biomolecules of tumor origin. These liquid biopsy analytes have created opportunities for real-time investigations of distinct genetic, epigenetic, transcriptomics, proteomics, and metabolomics alterations associated with brain tumors. This review describes different classes of liquid biopsy biomarkers present in the biofluids of brain tumor patients. Moreover, an overview of the liquid biopsy applications, challenges, recent technological advances, and clinical trials in the brain have also been provided.
Collapse
Affiliation(s)
- Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Krishna P Bhat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
19
|
Kwok DW, Stevers NO, Nejo T, Chen LH, Etxeberria I, Jung J, Okada K, Cove MC, Lakshmanachetty S, Gallus M, Barpanda A, Hong C, Chan GKL, Wu SH, Ramos E, Yamamichi A, Liu J, Watchmaker P, Ogino H, Saijo A, Du A, Grishanina N, Woo J, Diaz A, Chang SM, Phillips JJ, Wiita AP, Klebanoff CA, Costello JF, Okada H. Tumor-wide RNA splicing aberrations generate immunogenic public neoantigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563178. [PMID: 37904942 PMCID: PMC10614978 DOI: 10.1101/2023.10.19.563178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
T-cell-mediated immunotherapies are limited by the extent to which cancer-specific antigens are homogenously expressed throughout a tumor. We reasoned that recurrent splicing aberrations in cancer represent a potential source of tumor-wide and public neoantigens, and to test this possibility, we developed a novel pipeline for identifying neojunctions expressed uniformly within a tumor across diverse cancer types. Our analyses revealed multiple neojunctions that recur across patients and either exhibited intratumor heterogeneity or, in some cases, were tumor-wide. We identified CD8+ T-cell clones specific for neoantigens derived from tumor-wide and conserved neojunctions in GNAS and RPL22 , respectively. TCR-engineered CD8 + T-cells targeting these mutations conferred neoantigen-specific tumor cell eradication. Furthermore, we revealed that cancer-specific dysregulation in splicing factor expression leads to recurrent neojunction expression. Together, these data reveal that a subset of neojunctions are both intratumorally conserved and public, providing the molecular basis for novel T-cell-based immunotherapies that address intratumoral heterogeneity.
Collapse
|
20
|
Cowell LM, King M, West H, Broadsmith M, Genever P, Pownall ME, Isaacs HV. Regulation of gene expression downstream of a novel Fgf/Erk pathway during Xenopus development. PLoS One 2023; 18:e0286040. [PMID: 37856433 PMCID: PMC10586617 DOI: 10.1371/journal.pone.0286040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/08/2023] [Indexed: 10/21/2023] Open
Abstract
Activation of Map kinase/Erk signalling downstream of fibroblast growth factor (Fgf) tyrosine kinase receptors regulates gene expression required for mesoderm induction and patterning of the anteroposterior axis during Xenopus development. We have proposed that a subset of Fgf target genes are activated in the embyo in response to inhibition of a transcriptional repressor. Here we investigate the hypothesis that Cic (Capicua), which was originally identified as a transcriptional repressor negatively regulated by receptor tyrosine kinase/Erk signalling in Drosophila, is involved in regulating Fgf target gene expression in Xenopus. We characterise Xenopus Cic and show that it is widely expressed in the embryo. Fgf overexpression or ectodermal wounding, both of which potently activate Erk, reduce Cic protein levels in embryonic cells. In keeping with our hypothesis, we show that Cic knockdown and Fgf overexpression have overlapping effects on embryo development and gene expression. Transcriptomic analysis identifies a cohort of genes that are up-regulated by Fgf overexpression and Cic knockdown. We investigate two of these genes as putative targets of the proposed Fgf/Erk/Cic axis: fos and rasl11b, which encode a leucine zipper transcription factor and a ras family GTPase, respectively. We identify Cic consensus binding sites in a highly conserved region of intron 1 in the fos gene and Cic sites in the upstream regions of several other Fgf/Cic co-regulated genes, including rasl11b. We show that expression of fos and rasl11b is blocked in the early mesoderm when Fgf and Erk signalling is inhibited. In addition, we show that fos and rasl11b expression is associated with the Fgf independent activation of Erk at the site of ectodermal wounding. Our data support a role for a Fgf/Erk/Cic axis in regulating a subset of Fgf target genes during gastrulation and is suggestive that Erk signalling is involved in regulating Cic target genes at the site of ectodermal wounding.
Collapse
Affiliation(s)
- Laura M. Cowell
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Michael King
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Helena West
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Matthew Broadsmith
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Paul Genever
- Department of Biology, University of York, Heslington, York, United Kingdom
| | | | - Harry V. Isaacs
- Department of Biology, University of York, Heslington, York, United Kingdom
| |
Collapse
|
21
|
Liu G, Bu C, Guo G, Zhang Z, Sheng Z, Deng K, Wu S, Xu S, Bu Y, Gao Y, Wang M, Liu G, Kong L, Li T, Li M, Bu X. Genomic alterations of oligodendrogliomas at distant recurrence. Cancer Med 2023; 12:17171-17183. [PMID: 37533228 PMCID: PMC10501240 DOI: 10.1002/cam4.6327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Oligodendroglioma is known for its relatively better prognosis and responsiveness to radiotherapy and chemotherapy. However, little is known about the evolution of genetic changes as oligodendroglioma progresses. METHODS In this study, we evaluated gene evolution invivo during tumor progression based on deep whole-genome sequencing data (ctDNA). We analyzed longitudinal genomic data from six patients during tumor evolution, of which five patients developed distant recurrence. RESULTS Whole-exome sequencing demonstrated that the rate of shared mutations between the primary and recurrent samples was relatively low. In two cases, even well-known major driver mutations in CIC and FUBP1 that were detected in primary tumors were not detected in the relapse samples. Among these cases, two patients had a conversion from the IDH mutation in the originating state to the IDH1 wild state during the process of gene evolution under chemotherapy treatment, indicating that the cell phenotype and genetic characteristics of oligodendroglioma may change during tumor evolution. Two patients received long-term temozolomide (TMZ) treatment before the operation, and we found that recurrence tumors harbored mutations in the PI3K/AKT and Sonic hedgehog (SHh) signaling pathways. Hypermutation occurred with mutations in MMR genes in one patient, contributing to the rapid progression of the tumor. CONCLUSION Oligodendroglioma displayed great spatial and temporal heterogeneity during tumor evolution. The PI3K/AKT and SHh signaling pathways may play an important role in promoting treatment resistance and distant relapse during oligodendroglioma evolution. In addition, there was a tendency to increase the degree of tumor malignancy during evolution. Distant recurrence may be a later event duringoligodendroglioma progression. CLINICALTRIALS gov, Identifier: NCT05512325.
Collapse
Affiliation(s)
- Guanzheng Liu
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Chaojie Bu
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Guangzhong Guo
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Zhiyue Zhang
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Zhiyuan Sheng
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Kaiyuan Deng
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Shuang Wu
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Sensen Xu
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Yage Bu
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Yushuai Gao
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Meiyun Wang
- Department of RadiologyHenan Provincial People's HospitalZhengzhouChina
| | - Gang Liu
- Department of Center for Clinical Single Cell Biomedicine, Department of Oncology, Clinical Research Center, Henan Provincial People's HospitalZhengzhou University People's HospitalZhengzhouChina
| | - Lingfei Kong
- Department of PathologyHenan Provincial People's HospitalZhengzhouChina
| | - Tianxiao Li
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Ming Li
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Xingyao Bu
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| |
Collapse
|
22
|
Schafer C, Young D, Singh H, Jayakrishnan R, Banerjee S, Song Y, Dobi A, Petrovics G, Srivastava S, Srivastava S, Sesterhenn IA, Chesnut GT, Tan SH. Development and characterization of an ETV1 rabbit monoclonal antibody for the immunohistochemical detection of ETV1 expression in cancer tissue specimens. J Immunol Methods 2023; 518:113493. [PMID: 37196930 PMCID: PMC10802095 DOI: 10.1016/j.jim.2023.113493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Aberrant ETV1 overexpression arising from gene rearrangements or mutations occur frequently in prostate cancer, round cell sarcomas, gastrointestinal stromal tumors, gliomas, and other malignancies. The absence of specific monoclonal antibodies (mAb) has limited its detection and our understanding of its oncogenic function. METHODS An ETV1 specific rabbit mAb (29E4) was raised using an immunogenic peptide. Key residues essential for its binding were probed by ELISA and its binding kinetics were measured by surface plasmon resonance imaging (SPRi). Its selective binding to ETV1 was assessed by immunoblots and immunofluorescence assays (IFA), and by both single and double-immuno-histochemistry (IHC) assays on prostate cancer tissue specimens. RESULTS Immunoblot results showed that the mAb is highly specific and lacked cross-reactivity with other ETS factors. A minimal epitope with two phenylalanine residues at its core was found to be required for effective mAb binding. SPRi measurements revealed an equilibrium dissociation constant in the picomolar range, confirming its high affinity. ETV1 (+) tumors were detected in prostate cancer tissue microarray cases evaluated. IHC staining of whole-mounted sections revealed glands with a mosaic staining pattern of cells that are partly ETV1 (+) and interspersed with ETV1 (-) cells. Duplex IHC, using ETV1 and ERG mAbs, detected collision tumors containing glands with distinct ETV1 (+) and ERG (+) cells. CONCLUSIONS The selective detection of ETV1 by the 29E4 mAb in immunoblots, IFA, and IHC assays using human prostate tissue specimens reveals a potential utility for the diagnosis, the prognosis of prostate adenocarcinoma and other cancers, and the stratification of patients for treatment by ETV1 inhibitors.
Collapse
Affiliation(s)
- Cara Schafer
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Denise Young
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Harpreet Singh
- Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Rahul Jayakrishnan
- Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Sreedatta Banerjee
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Yingjie Song
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | | | - Gregory T Chesnut
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Urology Service, Walter Reed National Military Medical Center, Bethesda, MD, 20852, USA
| | - Shyh-Han Tan
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA.
| |
Collapse
|
23
|
Sgammeglia N, Widmer YF, Kaldun JC, Fritsch C, Bruggmann R, Sprecher SG. Memory phase-specific genes in the Mushroom Bodies identified using CrebB-target DamID. PLoS Genet 2023; 19:e1010802. [PMID: 37307281 DOI: 10.1371/journal.pgen.1010802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/29/2023] [Indexed: 06/14/2023] Open
Abstract
The formation of long-term memories requires changes in the transcriptional program and de novo protein synthesis. One of the critical regulators for long-term memory (LTM) formation and maintenance is the transcription factor CREB. Genetic studies have dissected the requirement of CREB activity within memory circuits, however less is known about the genetic mechanisms acting downstream of CREB and how they may contribute defining LTM phases. To better understand the downstream mechanisms, we here used a targeted DamID approach (TaDa). We generated a CREB-Dam fusion protein using the fruit fly Drosophila melanogaster as model. Expressing CREB-Dam in the mushroom bodies (MBs), a brain center implicated in olfactory memory formation, we identified genes that are differentially expressed between paired and unpaired appetitive training paradigm. Of those genes we selected candidates for an RNAi screen in which we identified genes causing increased or decreased LTM.
Collapse
Affiliation(s)
- Noemi Sgammeglia
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Yves F Widmer
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jenifer C Kaldun
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Cornelia Fritsch
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
24
|
Darabi S, Xiu J, Samec T, Kesari S, Carrillo J, Aulakh S, Walsh KM, Sengupta S, Sumrall A, Spetzler D, Glantz M, Demeure MJ. Capicua (CIC) mutations in gliomas in association with MAPK activation for exposing a potential therapeutic target. Med Oncol 2023; 40:197. [PMID: 37291277 DOI: 10.1007/s12032-023-02071-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Gliomas are the most prevalent neurological cancer in the USA and care modalities are not able to effectively combat these aggressive malignancies. Identifying new, more effective treatments require a deep understanding of the complex genetic variations and relevant pathway associations behind these cancers. Drawing connections between gene mutations with a responsive genetic target can help drive therapy selections to enhance patient survival. We have performed extensive molecular profiling of the Capicua gene (CIC), a tumor and transcriptional suppressor gene, and its mutation prevalence in reference to MAPK activation within clinical glioma tissue. CIC mutations occur far more frequently in oligodendroglioma (52.1%) than in low-grade astrocytoma or glioblastoma. CIC-associated mutations were observed across all glioma subtypes, and MAPK-associated mutations were most prevalent in CIC wild-type tissue regardless of the glioma subtype. MAPK activation, however, was enhanced in CIC-mutated oligodendroglioma. The totality of our observations reported supports the use of CIC as a relevant genetic marker for MAPK activation. Identification of CIC mutations, or lack thereof, can assist in selecting, implementing, and developing MEK/MAPK-inhibitory trials to improve patient outcomes potentially.
Collapse
Affiliation(s)
- Sourat Darabi
- Hoag Family Cancer Institute, Newport Beach, CA, USA
| | | | | | - Santosh Kesari
- Hoag Family Cancer Institute, Newport Beach, CA, USA
- Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Jose Carrillo
- Hoag Family Cancer Institute, Newport Beach, CA, USA
- Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | | | - Kyle M Walsh
- Duke University School of Medicine, Durham, NC, USA
| | - Soma Sengupta
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | | - Michael J Demeure
- Hoag Family Cancer Institute, Newport Beach, CA, USA
- Translational Genomics Research Institute, Phoenix, AZ, USA
| |
Collapse
|
25
|
Martin KC, Ma C, Yip S. From Theory to Practice: Implementing the WHO 2021 Classification of Adult Diffuse Gliomas in Neuropathology Diagnosis. Brain Sci 2023; 13:brainsci13050817. [PMID: 37239289 DOI: 10.3390/brainsci13050817] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Diffuse gliomas are the most common type of primary central nervous system (CNS) neoplasm to affect the adult population. The diagnosis of adult diffuse gliomas is dependent upon the integration of morphological features of the tumour with its underlying molecular alterations, and the integrative diagnosis has become of increased importance in the fifth edition of the WHO classification of CNS neoplasms (WHO CNS5). The three major diagnostic entities of adult diffuse gliomas are as follows: (1) astrocytoma, IDH-mutant; (2) oligodendroglioma, IDH-mutant and 1p/19q-codeleted; and (3) glioblastoma, IDH-wildtype. The aim of this review is to summarize the pathophysiology, pathology, molecular characteristics, and major diagnostic updates encountered in WHO CNS5 of adult diffuse gliomas. Finally, the application of implementing the necessary molecular tests for diagnostic workup of these entities in the pathology laboratory setting is discussed.
Collapse
Affiliation(s)
- Karina Chornenka Martin
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Crystal Ma
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
26
|
Takemon Y, LeBlanc VG, Song J, Chan SY, Lee SD, Trinh DL, Ahmad ST, Brothers WR, Corbett RD, Gagliardi A, Moradian A, Cairncross JG, Yip S, Aparicio SAJR, Chan JA, Hughes CS, Morin GB, Gorski SM, Chittaranjan S, Marra MA. Multi-Omic Analysis of CIC's Functional Networks Reveals Novel Interaction Partners and a Potential Role in Mitotic Fidelity. Cancers (Basel) 2023; 15:2805. [PMID: 37345142 PMCID: PMC10216487 DOI: 10.3390/cancers15102805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
CIC encodes a transcriptional repressor and MAPK signalling effector that is inactivated by loss-of-function mutations in several cancer types, consistent with a role as a tumour suppressor. Here, we used bioinformatic, genomic, and proteomic approaches to investigate CIC's interaction networks. We observed both previously identified and novel candidate interactions between CIC and SWI/SNF complex members, as well as novel interactions between CIC and cell cycle regulators and RNA processing factors. We found that CIC loss is associated with an increased frequency of mitotic defects in human cell lines and an in vivo mouse model and with dysregulated expression of mitotic regulators. We also observed aberrant splicing in CIC-deficient cell lines, predominantly at 3' and 5' untranslated regions of genes, including genes involved in MAPK signalling, DNA repair, and cell cycle regulation. Our study thus characterises the complexity of CIC's functional network and describes the effect of its loss on cell cycle regulation, mitotic integrity, and transcriptional splicing, thereby expanding our understanding of CIC's potential roles in cancer. In addition, our work exemplifies how multi-omic, network-based analyses can be used to uncover novel insights into the interconnected functions of pleiotropic genes/proteins across cellular contexts.
Collapse
Affiliation(s)
- Yuka Takemon
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada;
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Véronique G. LeBlanc
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Jungeun Song
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Susanna Y. Chan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Stephen Dongsoo Lee
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Diane L. Trinh
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Shiekh Tanveer Ahmad
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - William R. Brothers
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Richard D. Corbett
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Alessia Gagliardi
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Annie Moradian
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - J. Gregory Cairncross
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Stephen Yip
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.Y.); (S.A.J.R.A.); (C.S.H.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Samuel A. J. R. Aparicio
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.Y.); (S.A.J.R.A.); (C.S.H.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Jennifer A. Chan
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Christopher S. Hughes
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.Y.); (S.A.J.R.A.); (C.S.H.)
| | - Gregg B. Morin
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Suganthi Chittaranjan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| |
Collapse
|
27
|
Juratli TA, Jungk C, Miller JJ. Journal of Neuro Oncology: Diagnostic and therapeutic implications of IDH mutations in gliomas following the 2021 World Health Organization classification of CNS tumors. J Neurooncol 2023; 162:457-459. [PMID: 37212938 PMCID: PMC10227136 DOI: 10.1007/s11060-023-04317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/23/2023]
Affiliation(s)
- Tareq A Juratli
- Faculty of Medicine and University Hospital Carl Gustav Carus of Technische Universität Dresden, Department of Neurosurgery, Division of Neuro-Oncology, 01307, Dresden, Germany.
- Translational Neuro-Oncology Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.
| | - Christine Jungk
- Department of Neurosurgery, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Julie J Miller
- Translational Neuro-Oncology Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
28
|
Maimaiti A, Liu Y, Abulaiti A, Wang X, Feng Z, Wang J, Mijiti M, Turhon M, Alimu N, Wang Y, Liang W, Jiang L, Pei Y. Genomic Profiling of Lower-Grade Gliomas Subtype with Distinct Molecular and Clinicopathologic Characteristics via Altered DNA-Damage Repair Features. J Mol Neurosci 2023; 73:269-286. [PMID: 37067735 DOI: 10.1007/s12031-023-02116-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/30/2023] [Indexed: 04/18/2023]
Abstract
Lower WHO grade II and III gliomas (LGGs) exhibit significant genetic and transcriptional heterogeneity, and the heterogeneity of DNA damage repair (DDR) and its relationship to tumor biology, transcriptome, and tumor microenvironment (TME) remains poorly understood. In this study, we conducted multi-omics data integration to investigate DDR alterations in LGG. Based on clinical parameters and molecular characteristics, LGG patients were categorized into distinct DDR subtypes, namely, DDR-activated and DDR-suppressed subtypes. We compared gene mutation, immune spectrum, and immune cell infiltration between the two subtypes. DDR scores were generated to classify LGG patients based on DDR subtype features, and the results were validated using a multi-layer data cohort. We found that DDR activation was associated with poorer overall survival and that clinicopathological features of advanced age and higher grade were more common in the DDR-activated subtype. DDR-suppressed subtypes exhibited more frequent mutations in IDH1. In addition, we observed significant upregulation of activated immune cells in the DDR-activated subgroup, which suggests that immune cell infiltration significantly influences tumor progression and immunotherapeutic responses. Furthermore, we constructed a DDR signature for LGG using six DDR genes, which allowed for the division of patients into low- and high-risk groups. Quantitative real-time PCR results showed that CDK1, CDK2, TYMS, SMC4, and WEE1 were significantly upregulated in LGG samples compared to normal brain tissue samples. Overall, our study sheds light on DDR heterogeneity in LGG and provides insight into the molecular pathways of DDR involved in LGG development.
Collapse
Affiliation(s)
- Aierpati Maimaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Yanwen Liu
- Department of Medical Laboratory, Xinjiang Production and Construction Corps Hospital, 830002, Urumqi, Xinjiang, China
| | - Aimitaji Abulaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Xixian Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Zhaohai Feng
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Jiaming Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Maimaitili Mijiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Mirzat Turhon
- Department of Neurointerventional Surgery, Beijing Neurosurgical Institute, Capital Medical University, 100070, Beijing, China
- Department of Neurointerventional Surgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
| | - Nilipaer Alimu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Yongxin Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Wenbao Liang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Xinjiang Medical University, No. 116, Huanghe Road, Shaibak District, 830000, Urumqi, Xinjiang, China.
| | - Lei Jiang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China.
| | - Yinan Pei
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China.
| |
Collapse
|
29
|
Park JW. Metabolic Rewiring in Adult-Type Diffuse Gliomas. Int J Mol Sci 2023; 24:ijms24087348. [PMID: 37108511 PMCID: PMC10138713 DOI: 10.3390/ijms24087348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Multiple metabolic pathways are utilized to maintain cellular homeostasis. Given the evidence that altered cell metabolism significantly contributes to glioma biology, the current research efforts aim to improve our understanding of metabolic rewiring between glioma's complex genotype and tissue context. In addition, extensive molecular profiling has revealed activated oncogenes and inactivated tumor suppressors that directly or indirectly impact the cellular metabolism that is associated with the pathogenesis of gliomas. The mutation status of isocitrate dehydrogenases (IDHs) is one of the most important prognostic factors in adult-type diffuse gliomas. This review presents an overview of the metabolic alterations in IDH-mutant gliomas and IDH-wildtype glioblastoma (GBM). A particular focus is placed on targeting metabolic vulnerabilities to identify new therapeutic strategies for glioma.
Collapse
Affiliation(s)
- Jong-Whi Park
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| |
Collapse
|
30
|
Sievers P, Sill M, Schrimpf D, Abdullaev Z, Donson AM, Lake JA, Friedel D, Scheie D, Tynninen O, Rauramaa T, Vepsäläinen KL, Samuel D, Chapman R, Grundy RG, Pajtler KW, Tauziède-Espariat A, Métais A, Varlet P, Snuderl M, Jacques TS, Aldape K, Reuss DE, Korshunov A, Wick W, Pfister SM, von Deimling A, Sahm F, Jones DTW. Pediatric-type high-grade neuroepithelial tumors with CIC gene fusion share a common DNA methylation signature. NPJ Precis Oncol 2023; 7:30. [PMID: 36964296 PMCID: PMC10039012 DOI: 10.1038/s41698-023-00372-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/10/2023] [Indexed: 03/26/2023] Open
Abstract
Pediatric neoplasms in the central nervous system (CNS) show extensive clinical and molecular heterogeneity and are fundamentally different from those occurring in adults. Molecular genetic testing contributes to accurate diagnosis and enables an optimal clinical management of affected children. Here, we investigated a rare, molecularly distinct type of pediatric high-grade neuroepithelial tumor (n = 18), that was identified through unsupervised visualization of genome-wide DNA methylation array data, together with copy number profiling, targeted next-generation DNA sequencing, and RNA transcriptome sequencing. DNA and/or RNA sequencing revealed recurrent fusions involving the capicua transcriptional repressor (CIC) gene in 10/10 tumor samples analyzed, with the most common fusion being CIC::LEUTX (n = 9). In addition, a CIC::NUTM1 fusion was detected in one of the tumors. Apart from the detected fusion events, no additional oncogenic alteration was identified in these tumors. The histopathological review demonstrated a morphologically heterogeneous group of high-grade neuroepithelial tumors with positive immunostaining for markers of glial differentiation in combination with weak and focal expression of synaptophysin, CD56 and CD99. All tumors were located in the supratentorial compartment, occurred during childhood (median age 8.5 years) and typically showed early relapses. In summary, we expand the spectrum of pediatric-type tumors of the CNS by reporting a previously uncharacterized group of rare high-grade neuroepithelial tumors that share a common DNA methylation signature and recurrent gene fusions involving the transcriptional repressor CIC. Downstream functional consequences of the fusion protein CIC::LEUTX and potential therapeutic implications need to be further investigated.
Collapse
Affiliation(s)
- Philipp Sievers
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew M Donson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica A Lake
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Dennis Friedel
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Scheie
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Olli Tynninen
- Department of Pathology, HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Rauramaa
- Department of Pathology, Kuopio University Hospital, University of Kuopio, Kuopio, Finland
- Unit of Pathology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kaisa L Vepsäläinen
- Department of Pediatrics, Kuopio University Hospital, University of Kuopio, Kuopio, Finland
| | - David Samuel
- Department of Hematology/Oncology, Valley Children's Hospital, Madera, CA, USA
| | - Rebecca Chapman
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | - Richard G Grundy
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | - Arnault Tauziède-Espariat
- Department of Neuropathology, GHU Paris-Psychiatry and Neuroscience, Sainte-Anne Hospital, Paris, France
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, IMA-BRAIN, Paris, France
| | - Alice Métais
- Department of Neuropathology, GHU Paris-Psychiatry and Neuroscience, Sainte-Anne Hospital, Paris, France
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, IMA-BRAIN, Paris, France
| | - Pascale Varlet
- Department of Neuropathology, GHU Paris-Psychiatry and Neuroscience, Sainte-Anne Hospital, Paris, France
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, IMA-BRAIN, Paris, France
| | - Matija Snuderl
- Department of Pathology, NYU Langone Medical Center, New York, NY, USA
| | - Thomas S Jacques
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David E Reuss
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
31
|
He Y, Zhang X, Zhang S, Zhang Y, Xie B, Huang M, Zhang J, Shen L, Long W, Liu Q. Prognostic RNA-editing signature predicts immune functions and therapy responses in gliomas. Front Genet 2023; 14:1120354. [PMID: 36845382 PMCID: PMC9945230 DOI: 10.3389/fgene.2023.1120354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Background: RNA-editing refers to post-transcriptional transcript alterations that lead to the formation of protein isoforms and the progression of various tumors. However, little is known about its roles in gliomas. Aim: The aim of this study is to identify prognosis-related RNA-editing sites (PREs) in glioma, and to explore their specific effects on glioma and potential mechanisms of action. Methods: Glioma genomic and clinical data were obtained from TCGA database and SYNAPSE platform. The PREs was identified with regression analyses and the corresponding prognostic model was evaluated with survival analysis and receiver operating characteristic curve. Functional enrichment of differentially expressed genes between risk groups was performed to explore action mechanisms. The CIBERSORT, ssGSEA, gene set variation analysis, and ESTIMATE algorithms were employed to assess the association between PREs risk score and variations of tumor microenvironment, immune cell infiltration, immune checkpoints, and immune responses. The maftools and pRRophetic packages were used to evaluate tumor mutation burden and predict drug sensitivity. Results: A total of thirty-five RNA-editing sites were identified as prognosis-related in glioma. Functional enrichment implied variation of immune-related pathways between groups. Notably, glioma samples with higher PREs risk score exhibited higher immune score, lower tumor purity, increased infiltration of macrophage and regulatory T cells, suppressed NK cell activation, elevated immune function score, upregulated immune checkpoint gene expression, and higher tumor mutation burden, all of which implied worse response to immune therapy. Finally, high-risk glioma samples are more sensitive to Z-LLNle-CHO and temozolomide, while the low-risk ones respond better to Lisitinib. Conclusion: We identified a PREs signature of thirty-five RNA editing sites and calculated their corresponding risk coefficients. Higher total signature risk score indicates worse prognosis and worse immune response and lower sensitivity to immune therapy. The novel PREs signature could help risk stratification, immunotherapy response prediction, individualized treatment strategy-making for glioma patients, and development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Yi He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xingshu Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Sen Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhang
- Department of Neurosurgery, People’s Hospital of Dengzhou, Dengzhou, Henan, China
| | - Bo Xie
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Meng Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,Guangdong Cardiovascular Institute, Guangzhou, China
| | - Junjie Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lili Shen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenyong Long
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Wenyong Long, ; Qing Liu,
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Wenyong Long, ; Qing Liu,
| |
Collapse
|
32
|
Dasgupta P, Balasubramanyian V, de Groot JF, Majd NK. Preclinical Models of Low-Grade Gliomas. Cancers (Basel) 2023; 15:cancers15030596. [PMID: 36765553 PMCID: PMC9913857 DOI: 10.3390/cancers15030596] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Diffuse infiltrating low-grade glioma (LGG) is classified as WHO grade 2 astrocytoma with isocitrate dehydrogenase (IDH) mutation and oligodendroglioma with IDH1 mutation and 1p/19q codeletion. Despite their better prognosis compared with glioblastoma, LGGs invariably recur, leading to disability and premature death. There is an unmet need to discover new therapeutics for LGG, which necessitates preclinical models that closely resemble the human disease. Basic scientific efforts in the field of neuro-oncology are mostly focused on high-grade glioma, due to the ease of maintaining rapidly growing cell cultures and highly reproducible murine tumors. Development of preclinical models of LGG, on the other hand, has been difficult due to the slow-growing nature of these tumors as well as challenges involved in recapitulating the widespread genomic and epigenomic effects of IDH mutation. The most recent WHO classification of CNS tumors emphasizes the importance of the role of IDH mutation in the classification of gliomas, yet there are relatively few IDH-mutant preclinical models available. Here, we review the in vitro and in vivo preclinical models of LGG and discuss the mechanistic challenges involved in generating such models and potential strategies to overcome these hurdles.
Collapse
Affiliation(s)
- Pushan Dasgupta
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | | | - John F. de Groot
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94143, USA
- Correspondence: (J.F.d.G.); (N.K.M.)
| | - Nazanin K. Majd
- Department of Neuro-Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (J.F.d.G.); (N.K.M.)
| |
Collapse
|
33
|
Park JW, Kilic O, Deo M, Jimenez-Cowell K, Demirdizen E, Kim H, Turcan Ş. CIC reduces xCT/SLC7A11 expression and glutamate release in glioma. Acta Neuropathol Commun 2023; 11:13. [PMID: 36647117 PMCID: PMC9843885 DOI: 10.1186/s40478-023-01507-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Capicua (CIC) is an important downstream molecule of RTK/RAS/MAPK pathway. The regulatory mechanism of CIC underlying tumorigenesis in oligodendroglioma, where CIC is frequently mutated, has yet to be fully elucidated. Using patient-derived glioma lines, RNA-sequencing and bioinformatic analysis of publicly available databases, we investigated how CIC loss- or gain-of-function regulates its downstream targets, cell proliferation and glutamate release. Our results indicate an increased frequency of CIC truncating mutations in oligodendroglioma during progression. In vitro, CIC modulation had a modest effect on cell proliferation in glioma lines, and no significant changes in the expression of ETV1, ETV4 and ETV5. Transcriptional repression of known CIC targets was observed in gliomas expressing non-phosphorylatable CIC variant on Ser173 which was unable to interact with 14-3-3. These data outline a mechanism by which the repressor function of CIC is inhibited by 14-3-3 in gliomas. Using transcriptional profiling, we found that genes related to glutamate release were upregulated because of CIC depletion. In addition, loss of CIC leads to increased extracellular glutamate. Consistent with this, CIC restoration in an oligodendroglioma line reduced the levels of extracellular glutamate, neuronal toxicity and xCT/SLC7A11 expression. Our findings may provide a molecular basis for the prevention of glioma-associated seizures.
Collapse
Affiliation(s)
- Jong-Whi Park
- grid.5253.10000 0001 0328 4908Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, 69120 Heidelberg, Germany ,grid.256155.00000 0004 0647 2973Department of Life Sciences, Gachon University, Incheon, 21999 South Korea
| | - Omer Kilic
- grid.5253.10000 0001 0328 4908Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, 69120 Heidelberg, Germany
| | - Minh Deo
- grid.5253.10000 0001 0328 4908Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, 69120 Heidelberg, Germany
| | - Kevin Jimenez-Cowell
- grid.5253.10000 0001 0328 4908Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, 69120 Heidelberg, Germany
| | - Engin Demirdizen
- grid.5253.10000 0001 0328 4908Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, 69120 Heidelberg, Germany
| | - Hyunggee Kim
- grid.222754.40000 0001 0840 2678Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 South Korea
| | - Şevin Turcan
- grid.5253.10000 0001 0328 4908Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, 69120 Heidelberg, Germany
| |
Collapse
|
34
|
Miller JJ, Gonzalez Castro LN, McBrayer S, Weller M, Cloughesy T, Portnow J, Andronesi O, Barnholtz-Sloan JS, Baumert BG, Berger MS, Bi WL, Bindra R, Cahill DP, Chang SM, Costello JF, Horbinski C, Huang RY, Jenkins RB, Ligon KL, Mellinghoff IK, Nabors LB, Platten M, Reardon DA, Shi DD, Schiff D, Wick W, Yan H, von Deimling A, van den Bent M, Kaelin WG, Wen PY. Isocitrate dehydrogenase (IDH) mutant gliomas: A Society for Neuro-Oncology (SNO) consensus review on diagnosis, management, and future directions. Neuro Oncol 2023; 25:4-25. [PMID: 36239925 PMCID: PMC9825337 DOI: 10.1093/neuonc/noac207] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Isocitrate dehydrogenase (IDH) mutant gliomas are the most common adult, malignant primary brain tumors diagnosed in patients younger than 50, constituting an important cause of morbidity and mortality. In recent years, there has been significant progress in understanding the molecular pathogenesis and biology of these tumors, sparking multiple efforts to improve their diagnosis and treatment. In this consensus review from the Society for Neuro-Oncology (SNO), the current diagnosis and management of IDH-mutant gliomas will be discussed. In addition, novel therapies, such as targeted molecular therapies and immunotherapies, will be reviewed. Current challenges and future directions for research will be discussed.
Collapse
Affiliation(s)
- Julie J Miller
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - L Nicolas Gonzalez Castro
- Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Samuel McBrayer
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, Texas, 75235, USA
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | | | - Jana Portnow
- Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Ovidiu Andronesi
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jill S Barnholtz-Sloan
- Informatics and Data Science (IDS), Center for Biomedical Informatics and Information Technology (CBIIT), Trans-Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Bethesda, MD, USA
| | - Brigitta G Baumert
- Cantonal Hospital Graubunden, Institute of Radiation-Oncology, Chur, Switzerland
| | - Mitchell S Berger
- Department of Neurosurgery, University of California-San Francisco, San Francisco, California, USA
| | - Wenya Linda Bi
- Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ranjit Bindra
- Department of Therapeutic Radiology, Brain Tumor Center, Yale School of Medicine, New Haven, CT, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Susan M Chang
- Department of Neurosurgery, University of California-San Francisco, San Francisco, California, USA
| | - Joseph F Costello
- Department of Neurosurgery, University of California-San Francisco, San Francisco, California, USA
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Raymond Y Huang
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Robert B Jenkins
- Individualized Medicine Research, Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, Minnesota 55901, USA
| | - Keith L Ligon
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Ingo K Mellinghoff
- Department of Neurology, Evnin Family Chair in Neuro-Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - L Burt Nabors
- Department of Neurology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael Platten
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - David A Reardon
- Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Diana D Shi
- Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - David Schiff
- Division of Neuro-Oncology, Department of Neurology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Wolfgang Wick
- Neuro-Oncology at the German Cancer Research Center (DKFZ), Program Chair of Neuro-Oncology at the National Center for Tumor Diseases (NCT), and Neurology and Chairman at the Neurology Clinic in Heidelberg, Heidelberg, Germany
| | - Hai Yan
- Genetron Health Inc, Gaithersburg, Maryland 20879, USA
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg, and, Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), and, DKTK, INF 224, 69120 Heidelberg, Germany
| | - Martin van den Bent
- Brain Tumour Centre, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands
| | - William G Kaelin
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
35
|
Liu Z, Wu J, Ji H, Zhao H, Wang F, Dong J, Zhang J, Wang N, Yan X, Wang K, Hu S. Stromal protein CCN family contributes to the poor prognosis in lower-grade gioma by modulating immunity, matrix, stemness, and metabolism. Front Mol Biosci 2022; 9:1027236. [PMID: 36589241 PMCID: PMC9800986 DOI: 10.3389/fmolb.2022.1027236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background: The CCN family of stromal proteins is involved in the regulation of many important biological functions. However, the role of dysregulated CCN proteins in lower-grade glioma (LGG) remain less understand. Methods: The clinical significance of the CCN proteins was explored based on RNA-seq profiles from multiple cohorts. A CCNScore was constructed using LASSO regression analysis. The PanCanAtlas data and MEXPRESS database were employed to elucidate molecular underpinnings. Results: The expression of CCN4 was associated with poor prognosis in LGG. The CCNScore (CCN1 = 0.06, CCN4 = 0.86) showed implication in prognosis prediction, subtype assessment and therapy selection. The gene mutation pattern of the high-CCNScore group was similar with glioblastoma, including EGFR, PTEN, and NF1 mutation frequently. Besides, the high-CCNScore group was comprised of samples mainly classic-like and mesenchymal-like, had lower methylation levels, higher stemness, higher inflammation, higher levels of extracellular matrix remodel and dysfunction of metabolic pathways. On the other hand, the low-CCNScore group consisted mainly of IDH-mutation LGG, and was characterized by TP53, CIC, and ATRX gene mutations, hyper-methylation status, lower stemness, lower proliferation, immune quietness and low extracellular matrix stiffness. Conclusion: In summary, these results outlined the role of CCN family in LGG and provided a potential and promising therapeutic target.
Collapse
Affiliation(s)
- Zhihui Liu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiasheng Wu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hang Ji
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongtao Zhao
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fang Wang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiawei Dong
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiheng Zhang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Wang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiuwei Yan
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,*Correspondence: Xiuwei Yan, ; Kaikai Wang, ; Shaoshan Hu,
| | - Kaikai Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China,Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China,*Correspondence: Xiuwei Yan, ; Kaikai Wang, ; Shaoshan Hu,
| | - Shaoshan Hu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,*Correspondence: Xiuwei Yan, ; Kaikai Wang, ; Shaoshan Hu,
| |
Collapse
|
36
|
Han X, Cao X, Aguiar-Pulido V, Yang W, Karki M, Ramirez PAP, Cabrera RM, Lin YL, Wlodarczyk BJ, Shaw GM, Ross ME, Zhang C, Finnell RH, Lei Y. CIC missense variants contribute to susceptibility for spina bifida. Hum Mutat 2022; 43:2021-2032. [PMID: 36054333 PMCID: PMC9772115 DOI: 10.1002/humu.24460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/29/2023]
Abstract
Neural tube defects (NTDs) are congenital malformations resulting from abnormal embryonic development of the brain, spine, or spinal column. The genetic etiology of human NTDs remains poorly understood despite intensive investigation. CIC, homolog of the Capicua transcription repressor, has been reported to interact with ataxin-1 (ATXN1) and participate in the pathogenesis of spinocerebellar ataxia type 1. Our previous study demonstrated that CIC loss of function (LoF) variants contributed to the cerebral folate deficiency syndrome by downregulating folate receptor 1 (FOLR1) expression. Given the importance of folate transport in neural tube formation, we hypothesized that CIC variants could contribute to increased risk for NTDs by depressing embryonic folate concentrations. In this study, we examined CIC variants from whole-genome sequencing (WGS) data of 140 isolated spina bifida cases and identified eight missense variants of CIC gene. We tested the pathogenicity of the observed variants through multiple in vitro experiments. We determined that CIC variants decreased the FOLR1 protein level and planar cell polarity (PCP) pathway signaling in a human cell line (HeLa). In a murine cell line (NIH3T3), CIC loss of function variants downregulated PCP signaling. Taken together, this study provides evidence supporting CIC as a risk gene for human NTD.
Collapse
Affiliation(s)
- Xiao Han
- Department of Reproductive Medicine Center, Henan
Provincial People’s Hospital, People’s Hospital of Zhengzhou
University, Zhengzhou, Henan Province, People’s Republic of China
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Xuanye Cao
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Vanessa Aguiar-Pulido
- Center for Neurogenetics, Brain and Mind Research
Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Computer Science, University of Miami, Coral
Gables, FL 33146, USA
| | - Wei Yang
- Department of Pediatrics, Stanford University School of
Medicine, Stanford, CA, USA
| | - Menuka Karki
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Paula Andrea Pimienta Ramirez
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Robert M. Cabrera
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Ying Linda Lin
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Bogdan J. Wlodarczyk
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of
Medicine, Stanford, CA, USA
| | - M. Elizabeth Ross
- Center for Neurogenetics, Brain and Mind Research
Institute, Weill Cornell Medicine, New York, NY, USA
| | - Cuilian Zhang
- Department of Reproductive Medicine Center, Henan
Provincial People’s Hospital, People’s Hospital of Zhengzhou
University, Zhengzhou, Henan Province, People’s Republic of China
| | - Richard H. Finnell
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
- Departments of Molecular and Human Genetics and Medicine,
Baylor College of Medicine, Houston, TX 77031, USA
| | - Yunping Lei
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| |
Collapse
|
37
|
Gupta N, Song H, Wu W, Ponce RK, Lin YK, Kim JW, Small EJ, Feng FY, Huang FW, Okimoto RA. The CIC-ERF co-deletion underlies fusion-independent activation of ETS family member, ETV1, to drive prostate cancer progression. eLife 2022; 11:e77072. [PMID: 36383412 PMCID: PMC9668335 DOI: 10.7554/elife.77072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022] Open
Abstract
Human prostate cancer can result from chromosomal rearrangements that lead to aberrant ETS gene expression. The mechanisms that lead to fusion-independent ETS factor upregulation and prostate oncogenesis remain relatively unknown. Here, we show that two neighboring transcription factors, Capicua (CIC) and ETS2 repressor factor (ERF), which are co-deleted in human prostate tumors can drive prostate oncogenesis. Concurrent CIC and ERF loss commonly occur through focal genomic deletions at chromosome 19q13.2. Mechanistically, CIC and ERF co-bind the proximal regulatory element and mutually repress the ETS transcription factor, ETV1. Targeting ETV1 in CIC and ERF-deficient prostate cancer limits tumor growth. Thus, we have uncovered a fusion-independent mode of ETS transcriptional activation defined by concurrent loss of CIC and ERF.
Collapse
Affiliation(s)
- Nehal Gupta
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Hanbing Song
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Wei Wu
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Rovingaile K Ponce
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Yone K Lin
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Ji Won Kim
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Eric J Small
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
- Helen Diller Family Comprehensive Cancer Center, University of CaliforniaSan FranciscoUnited States
| | - Felix Y Feng
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
- Helen Diller Family Comprehensive Cancer Center, University of CaliforniaSan FranciscoUnited States
- Department of Radiation Oncology, University of CaliforniaSan FranciscoUnited States
| | - Franklin W Huang
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
- Helen Diller Family Comprehensive Cancer Center, University of CaliforniaSan FranciscoUnited States
| | - Ross A Okimoto
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
- Helen Diller Family Comprehensive Cancer Center, University of CaliforniaSan FranciscoUnited States
| |
Collapse
|
38
|
Islam SA, Díaz-Gay M, Wu Y, Barnes M, Vangara R, Bergstrom EN, He Y, Vella M, Wang J, Teague JW, Clapham P, Moody S, Senkin S, Li YR, Riva L, Zhang T, Gruber AJ, Steele CD, Otlu B, Khandekar A, Abbasi A, Humphreys L, Syulyukina N, Brady SW, Alexandrov BS, Pillay N, Zhang J, Adams DJ, Martincorena I, Wedge DC, Landi MT, Brennan P, Stratton MR, Rozen SG, Alexandrov LB. Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. CELL GENOMICS 2022; 2:None. [PMID: 36388765 PMCID: PMC9646490 DOI: 10.1016/j.xgen.2022.100179] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 04/10/2022] [Accepted: 08/31/2022] [Indexed: 12/09/2022]
Abstract
Mutational signature analysis is commonly performed in cancer genomic studies. Here, we present SigProfilerExtractor, an automated tool for de novo extraction of mutational signatures, and benchmark it against another 13 bioinformatics tools by using 34 scenarios encompassing 2,500 simulated signatures found in 60,000 synthetic genomes and 20,000 synthetic exomes. For simulations with 5% noise, reflecting high-quality datasets, SigProfilerExtractor outperforms other approaches by elucidating between 20% and 50% more true-positive signatures while yielding 5-fold less false-positive signatures. Applying SigProfilerExtractor to 4,643 whole-genome- and 19,184 whole-exome-sequenced cancers reveals four novel signatures. Two of the signatures are confirmed in independent cohorts, and one of these signatures is associated with tobacco smoking. In summary, this report provides a reference tool for analysis of mutational signatures, a comprehensive benchmarking of bioinformatics tools for extracting signatures, and several novel mutational signatures, including one putatively attributed to direct tobacco smoking mutagenesis in bladder tissues.
Collapse
Affiliation(s)
- S.M. Ashiqul Islam
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Yang Wu
- Centre for Computational Biology and Programme in Cancer & Stem Cell Biology, Duke NUS Medical School, Singapore 169857, Singapore
| | - Mark Barnes
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Erik N. Bergstrom
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Yudou He
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Mike Vella
- NVIDIA Corporation, 2788 San Tomas Expressway, Santa Clara, CA 95051, USA
| | - Jingwei Wang
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Jon W. Teague
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Peter Clapham
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Sarah Moody
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Sergey Senkin
- Genetic Epidemiology Group, International Agency for Research on Cancer, Cedex 08, 69372 Lyon, France
| | - Yun Rose Li
- Departments of Radiation Oncology and Cancer Genetics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Laura Riva
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Andreas J. Gruber
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
- Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
- Department of Biology, University of Konstanz, Universitaetsstrasse 10, D-78464 Konstanz, Germany
| | - Christopher D. Steele
- Research Department of Pathology, Cancer Institute, University College London, London WC1E 6BT, UK
| | - Burçak Otlu
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Ammal Abbasi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Laura Humphreys
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | | | - Samuel W. Brady
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Boian S. Alexandrov
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Nischalan Pillay
- Research Department of Pathology, Cancer Institute, University College London, London WC1E 6BT, UK
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex HA7 4LP, UK
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David J. Adams
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - David C. Wedge
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
- Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, Cedex 08, 69372 Lyon, France
| | - Michael R. Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Steven G. Rozen
- Centre for Computational Biology and Programme in Cancer & Stem Cell Biology, Duke NUS Medical School, Singapore 169857, Singapore
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
39
|
Alves G, Ornellas MH, Liehr T. The role of Calmodulin Binding Transcription Activator 1 (CAMTA1) gene and its putative genetic partners in the human nervous system. Psychogeriatrics 2022; 22:869-878. [PMID: 35949142 DOI: 10.1111/psyg.12881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
The Calmodulin Binding Transcription Activator 1 (CAMTA1) gene plays a central role in the human nervous system. Here evidence-based perspectives on its clinical value for the screening of CAMTA1 malfunction is provided and argued that in future, patients suffering from brain tumours and/or neurological disorders could benefit from this diagnostic. In neuroblastomas as well as in low-grade gliomas, the influence of reduced expression of CAMTA1 results in opposite prognosis, probably because of different carcinogenic pathways in which CAMTA1 plays different roles, but the exact genetics bases remains unsolved. Rearrangements, mutations and variants of CAMTA1 were associated with human neurodegenerative disorders, while some CAMTA1 single nucleotide polymorphisms were associated with poorer memory in clinical cases and also amyotrophic lateral sclerosis. So far, the follow-up of patients with neurological diseases with alterations in CAMTA1 indicates that defects (expression, mutations, and rearrangements) in CAMTA1 alone are not sufficient to drive carcinogenesis. It is necessary to continue studying CAMTA1 rearrangements and expression in more cases than done by now. To understand the influence of CAMTA1 variants and their role in nervous system tumours and in several psychiatric disorders is currently a challenge.
Collapse
Affiliation(s)
- Gilda Alves
- Circulating Biomarkers Laboratory, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Helena Ornellas
- Circulating Biomarkers Laboratory, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| |
Collapse
|
40
|
Abstract
Undifferentiated small round cell sarcomas (SRCSs) of bone and soft tissue comprise a heterogeneous group of highly aggressive tumours associated with a poor prognosis, especially in metastatic disease. SRCS entities mainly occur in the third decade of life and can exhibit striking disparities regarding preferentially affected sex and tumour localization. SRCSs comprise new entities defined by specific genetic abnormalities, namely EWSR1-non-ETS fusions, CIC-rearrangements or BCOR genetic alterations, as well as EWSR1-ETS fusions in the prototypic SRCS Ewing sarcoma. These gene fusions mainly encode aberrant oncogenic transcription factors that massively rewire the transcriptome and epigenome of the as yet unknown cell or cells of origin. Additional mutations or copy number variants are rare at diagnosis and, depending on the tumour entity, may involve TP53, CDKN2A and others. Histologically, these lesions consist of small round cells expressing variable levels of CD99 and specific marker proteins, including cyclin B3, ETV4, WT1, NKX3-1 and aggrecan, depending on the entity. Besides locoregional treatment that should follow standard protocols for sarcoma management, (neo)adjuvant treatment is as yet ill-defined but generally follows that of Ewing sarcoma and is associated with adverse effects that might compromise quality of life. Emerging studies on the molecular mechanisms of SRCSs and the development of genetically engineered animal models hold promise for improvements in early detection, disease monitoring, treatment-related toxicity, overall survival and quality of life.
Collapse
|
41
|
Choi SR, Lee M. Estimating the Prognosis of Low-Grade Glioma with Gene Attention Using Multi-Omics and Multi-Modal Schemes. BIOLOGY 2022; 11:biology11101462. [PMID: 36290366 PMCID: PMC9598836 DOI: 10.3390/biology11101462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/20/2022]
Abstract
The prognosis estimation of low-grade glioma (LGG) patients with deep learning models using gene expression data has been extensively studied in recent years. However, the deep learning models used in these studies do not utilize the latest deep learning techniques, such as residual learning and ensemble learning. To address this limitation, in this study, a deep learning model using multi-omics and multi-modal schemes, namely the Multi-Prognosis Estimation Network (Multi-PEN), is proposed. When using Multi-PEN, gene attention layers are employed for each datatype, including mRNA and miRNA, thereby allowing us to identify prognostic genes. Additionally, recent developments in deep learning, such as residual learning and layer normalization, are utilized. As a result, Multi-PEN demonstrates competitive performance compared to conventional models for prognosis estimation. Furthermore, the most significant prognostic mRNA and miRNA were identified using the attention layers in Multi-PEN. For instance, MYBL1 was identified as the most significant prognostic mRNA. Such a result accords with the findings in existing studies that have demonstrated that MYBL1 regulates cell survival, proliferation, and differentiation. Additionally, hsa-mir-421 was identified as the most significant prognostic miRNA, and it has been extensively reported that hsa-mir-421 is highly associated with various cancers. These results indicate that the estimations of Multi-PEN are valid and reliable and showcase Multi-PEN's capacity to present hypotheses regarding prognostic mRNAs and miRNAs.
Collapse
|
42
|
Bunse L, Bunse T, Krämer C, Chih YC, Platten M. Clinical and Translational Advances in Glioma Immunotherapy. Neurotherapeutics 2022; 19:1799-1817. [PMID: 36303101 PMCID: PMC9723056 DOI: 10.1007/s13311-022-01313-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 02/06/2023] Open
Abstract
Gliomas are highly treatment refractory against immune checkpoint blockade, an immunotherapeutic modality that revolutionized therapy for many tumors. At the same time, technological innovation has dramatically accelerated the development of immunotherapeutic approaches such as personalized tumor-specific vaccine production, dendritic cell vaccine manufacture, patient-individual target selection and chimeric antigen receptor, and T cell receptor T cell manufacture. Here we review recent clinical and translational advances in glioma immunotherapy with a focus on targets and their cognate immune receptor derivates as well as concepts to improve intratumoral T cell effector functions.
Collapse
Affiliation(s)
- Lukas Bunse
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany
| | - Theresa Bunse
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany
| | - Christopher Krämer
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yu-Chan Chih
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Michael Platten
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany.
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Helmholtz Institute of Translational Oncology (HI-TRON), Mainz, Germany.
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|
43
|
FBP1 knockdown decreases ovarian cancer formation and cisplatin resistance through EZH2-mediated H3K27me3. Biosci Rep 2022; 42:231685. [PMID: 36000567 PMCID: PMC9469104 DOI: 10.1042/bsr20221002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Worldwide, ovarian cancer (OC) is the seventh common cancer and the second most common cause of cancer death in women. Due to high rates of relapse, there is an urgent need for the identification of new targets for OC treatment. The far-upstream element binding protein 1 (FBP1) and enhancer of zeste homolog 2 (EZH2) are emerging proto-oncogenes that regulate cell proliferation and metastasis. In the present study, Oncomine data analysis demonstrated that FBP1 was closely associated with the development of OC, and The Cancer Genome Atlas (TCGA) data analysis indicated that there was a positive correlation between FBP1 and EZH2 in ovarian tissues. Moreover, we found that FBP1 knockdown suppressed tumor formation in nude mice and cisplatin resistance of OC cells, but the role of FBP1 in the cisplatin resistance of OC cells remained unclear. In addition, we verified physical binding between FBP1 and EZH2 in OC cells, and we demonstrated that FBP1 knockdown enhanced cisplatin cytotoxicity in OC cells and down-regulated EZH2 expression and trimethylation of H3K27. These results suggested that FBP1 increases cisplatin resistance of OC cells by up-regulating EZH2/H3K27me3. Thus, FBP1 is a prospective novel target for the development of OC treatment.
Collapse
|
44
|
Karami Fath M, Azami J, Masoudi A, Mosaddeghi Heris R, Rahmani E, Alavi F, Alagheband Bahrami A, Payandeh Z, Khalesi B, Dadkhah M, Pourzardosht N, Tarhriz V. Exosome-based strategies for diagnosis and therapy of glioma cancer. Cancer Cell Int 2022; 22:262. [PMID: 35989351 PMCID: PMC9394011 DOI: 10.1186/s12935-022-02642-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/26/2022] [Indexed: 11/10/2022] Open
Abstract
Glioblastoma belongs to the most aggressive type of cancer with a low survival rate that is characterized by the ability in forming a highly immunosuppressive tumor microenvironment. Intercellular communication are created via exosomes in the tumor microenvironment through the transport of various biomolecules. They are primarily involved in tumor growth, differentiation, metastasis, and chemotherapy or radiation resistance. Recently several studies have highlighted the critical role of tumor-derived exosomes against immune cells. According to the structural and functional properties, exosomes could be essential instruments to gain a better molecular mechanism for tumor understanding. Additionally, they are qualified as diagnostic/prognostic markers and therapeutic tools for specific targeting of invasive tumor cells such as glioblastomas. Due to the strong dependency of exosome features on the original cells and their developmental status, it is essential to review their critical modulating molecules, clinical relevance to glioma, and associated signaling pathways. This review is a non-clinical study, as the possible role of exosomes and exosomal microRNAs in glioma cancer are reported. In addition, their content to overcome cancer resistance and their potential as diagnostic biomarkers are analyzed.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Jalil Azami
- Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Alireza Masoudi
- Department of Laboratory Sciences, Faculty of Alied Medical Sciences, Qom University of Medical Sciences, Qom, Iran
| | | | - Elnaz Rahmani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Alavi
- Department of Pathobiology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research, Tabriz, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
45
|
Bao JH, Lu WC, Duan H, Ye YQ, Li JB, Liao WT, Li YC, Sun YP. Identification of a novel cuproptosis-related gene signature and integrative analyses in patients with lower-grade gliomas. Front Immunol 2022; 13:933973. [PMID: 36045691 PMCID: PMC9420977 DOI: 10.3389/fimmu.2022.933973] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/22/2022] [Indexed: 12/20/2022] Open
Abstract
Background Cuproptosis is a newly discovered unique non-apoptotic programmed cell death distinguished from known death mechanisms like ferroptosis, pyroptosis, and necroptosis. However, the prognostic value of cuproptosis and the correlation between cuproptosis and the tumor microenvironment (TME) in lower-grade gliomas (LGGs) remain unknown. Methods In this study, we systematically investigated the genetic and transcriptional variation, prognostic value, and expression patterns of cuproptosis-related genes (CRGs). The CRG score was applied to quantify the cuproptosis subtypes. We then evaluated their values in the TME, prognostic prediction, and therapeutic responses in LGG. Lastly, we collected five paired LGG and matched normal adjacent tissue samples from Sun Yat-sen University Cancer Center (SYSUCC) to verify the expression of signature genes by quantitative real-time PCR (qRT-PCR) and Western blotting (WB). Results Two distinct cuproptosis-related clusters were identified using consensus unsupervised clustering analysis. The correlation between multilayer CRG alterations with clinical characteristics, prognosis, and TME cell infiltration were observed. Then, a well-performed cuproptosis-related risk model (CRG score) was developed to predict LGG patients' prognosis, which was evaluated and validated in two external cohorts. We classified patients into high- and low-risk groups according to the CRG score and found that patients in the low-risk group showed significantly higher survival possibilities than those in the high-risk group (P<0.001). A high CRG score implies higher TME scores, more significant TME cell infiltration, and increased mutation burden. Meanwhile, the CRG score was significantly correlated with the cancer stem cell index, chemoradiotherapy sensitivity-related genes and immune checkpoint genes, and chemotherapeutic sensitivity, indicating the association with CRGs and treatment responses. Univariate and multivariate Cox regression analyses revealed that the CRG score was an independent prognostic predictor for LGG patients. Subsequently, a highly accurate predictive model was established for facilitating the clinical application of the CRG score, showing good predictive ability and calibration. Additionally, crucial CRGs were further validated by qRT-PCR and WB. Conclusion Collectively, we demonstrated a comprehensive overview of CRG profiles in LGG and established a novel risk model for LGG patients' therapy status and prognosis. Our findings highlight the potential clinical implications of CRGs, suggesting that cuproptosis may be the potential therapeutic target for patients with LGG.
Collapse
Affiliation(s)
- Jia-hao Bao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wei-cheng Lu
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Collaborative Innovation for Cancer Medicine, Guangzhou, China
| | - Hao Duan
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ya-qi Ye
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Collaborative Innovation for Cancer Medicine, Guangzhou, China
| | - Jiang-bo Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wen-ting Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China,*Correspondence: Yang-peng Sun, ; Yong-chun Li, ; Wen-ting Liao,
| | - Yong-chun Li
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Collaborative Innovation for Cancer Medicine, Guangzhou, China,*Correspondence: Yang-peng Sun, ; Yong-chun Li, ; Wen-ting Liao,
| | - Yang-peng Sun
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China,*Correspondence: Yang-peng Sun, ; Yong-chun Li, ; Wen-ting Liao,
| |
Collapse
|
46
|
Noncanonical function of Capicua as a growth termination signal in Drosophila oogenesis. Proc Natl Acad Sci U S A 2022; 119:e2123467119. [PMID: 35881788 PMCID: PMC9351367 DOI: 10.1073/pnas.2123467119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Capicua (Cic) proteins are conserved HMG-box transcriptional repressors that control receptor tyrosine kinase (RTK) signaling responses and are implicated in human neurological syndromes and cancer. While Cic is known to exist as short (Cic-S) and long (Cic-L) isoforms with identical HMG-box and associated core regions but distinct N termini, most previous studies have focused on Cic-S, leaving the function of Cic-L unexplored. Here we show that Cic-L acts in two capacities during Drosophila oogenesis: 1) as a canonical sensor of RTK signaling in somatic follicle cells, and 2) as a regulator of postmitotic growth in germline nurse cells. In these latter cells, Cic-L behaves as a temporal signal that terminates endoreplicative growth before they dump their contents into the oocyte. We show that Cic-L is necessary and sufficient for nurse cell endoreplication arrest and induces both stabilization of CycE and down-regulation of Myc. Surprisingly, this function depends mainly on the Cic-L-specific N-terminal module, which is capable of acting independently of the Cic HMG-box-containing core. Mirroring these observations, basal metazoans possess truncated Cic-like proteins composed only of Cic-L N-terminal sequences, suggesting that this module plays unique, ancient roles unrelated to the canonical function of Cic.
Collapse
|
47
|
Pallavajjala A, Haley L, Stinnett V, Adams E, Pallavajjala R, Huang J, Morsberger L, Hardy M, Long P, Gocke CD, Eshleman JR, Rodriguez FJ, Zou YS. Utility of targeted next-generation sequencing assay to detect 1p/19q co-deletion in formalin-fixed paraffin-embedded glioma specimens. Hum Pathol 2022; 126:63-76. [PMID: 35561840 DOI: 10.1016/j.humpath.2022.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
Abstract
Molecular classification of brain neoplasms is important for diagnosis, prognosis, and treatment outcome of histologically similar tumors. Oligodendroglioma is a glioma subtype characterized by 1p/19q co-deletion and IDH1/IDH2 mutations, which predict a good prognosis, responsiveness to therapy, and an improved overall survival compared to other adult gliomas. In a routine clinical setting, 1p/19q co-deletion is detected by interphase-FISH and SNP microarray, and somatic mutations are detected by targeted next-generation sequencing (NGS). The aim of this proof-of-principle study was to investigate the feasibility of using targeted NGS to simultaneously detect both 1p/19q co-deletion and somatic mutations. Among 247 consecutive patients with formalin-fixed paraffin-embedded brain tumors with various subtypes, NGS revealed 1p/19q co-deletion in 26 oligodendrogliomas and an IDH-wildtype astrocytoma, and partial loss across chromosomes 1p and 19q/whole-arm loss of 1p or 19q/copy neutral loss of heterozygosity in 11 nonoligodendrogliomas. For this 247 brain-tumor cohort, the overall sensitivity, specificity, and accuracy of detecting 1p/19q co-deletion by NGS in oligodendrogliomas were 96.2%, 99.6%, and 99.2%, respectively. The oligodendroglioma cohort had more mutations in IDH1/IDH2, CIC, FUBP1, and TERT, and fewer mutations in ATRX and TP53 than the nonoligodendroglioma cohort. This proof-of-concept study demonstrated that targeted NGS can simultaneously detect both 1p/19q co-deletion and somatic mutations, which can provide a more comprehensive genetic profiling for patients with gliomas using a single assay in a clinical setting.
Collapse
Affiliation(s)
- Aparna Pallavajjala
- Johns Hopkins Genomics, USA; Department of Pathology, Johns Hopkins University School of Medicine, USA
| | - Lisa Haley
- Johns Hopkins Genomics, USA; Department of Pathology, Johns Hopkins University School of Medicine, USA
| | - Victoria Stinnett
- Johns Hopkins Genomics, USA; Department of Pathology, Johns Hopkins University School of Medicine, USA; Cytogenetics Laboratory, Johns Hopkins University Hospital, Baltimore, MD, 21205, USA
| | - Emily Adams
- Johns Hopkins Genomics, USA; Department of Pathology, Johns Hopkins University School of Medicine, USA
| | | | - Jialing Huang
- Department of Pathology, Thomas Jefferson University, 132 South 10th Street, Main Building, Philadelphia, PA, 1910, USA
| | - Laura Morsberger
- Johns Hopkins Genomics, USA; Department of Pathology, Johns Hopkins University School of Medicine, USA; Cytogenetics Laboratory, Johns Hopkins University Hospital, Baltimore, MD, 21205, USA
| | - Melanie Hardy
- Johns Hopkins Genomics, USA; Department of Pathology, Johns Hopkins University School of Medicine, USA; Cytogenetics Laboratory, Johns Hopkins University Hospital, Baltimore, MD, 21205, USA
| | - Patty Long
- Johns Hopkins Genomics, USA; Department of Pathology, Johns Hopkins University School of Medicine, USA; Cytogenetics Laboratory, Johns Hopkins University Hospital, Baltimore, MD, 21205, USA
| | - Christopher D Gocke
- Johns Hopkins Genomics, USA; Department of Pathology, Johns Hopkins University School of Medicine, USA
| | - James R Eshleman
- Johns Hopkins Genomics, USA; Department of Pathology, Johns Hopkins University School of Medicine, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Fausto J Rodriguez
- Johns Hopkins Genomics, USA; Department of Pathology, Johns Hopkins University School of Medicine, USA
| | - Ying S Zou
- Johns Hopkins Genomics, USA; Department of Pathology, Johns Hopkins University School of Medicine, USA; Cytogenetics Laboratory, Johns Hopkins University Hospital, Baltimore, MD, 21205, USA.
| |
Collapse
|
48
|
Rincon-Torroella J, Rakovec M, Materi J, Raj D, Vivas-Buitrago T, Ferres A, Reyes Serpa W, Redmond KJ, Holdhoff M, Bettegowda C, González Sánchez JJ. Current and Future Frontiers of Molecularly Defined Oligodendrogliomas. Front Oncol 2022; 12:934426. [PMID: 35957904 PMCID: PMC9358027 DOI: 10.3389/fonc.2022.934426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Oligodendrogliomas are a subtype of adult diffuse glioma characterized by their better responsiveness to systemic chemotherapy than other high-grade glial tumors. The World Health Organization (WHO) 2021 brain tumor classification highlighted defining molecular markers, including 1p19q codeletion and IDH mutations which have become key in diagnosing and treating oligodendrogliomas. The management for patients with oligodendrogliomas includes observation or surgical resection potentially followed by radiation and chemotherapy with PCV (Procarbazine, Lomustine, and Vincristine) or Temozolomide. However, most of the available research about oligodendrogliomas includes a mix of histologically and molecularly diagnosed tumors. Even data driving our current management guidelines are based on post-hoc subgroup analyses of the 1p19q codeleted population in landmark prospective trials. Therefore, the optimal treatment paradigm for molecularly defined oligodendrogliomas is incompletely understood. Many questions remain open, such as the optimal timing of radiation and chemotherapy, the response to different chemotherapeutic agents, or what genetic factors influence responsiveness to these agents. Ultimately, oligodendrogliomas are still incurable and new therapies, such as targeting IDH mutations, are necessary. In this opinion piece, we present relevant literature in the field, discuss current challenges, and propose some studies that we think are necessary to answer these critical questions.
Collapse
Affiliation(s)
- Jordina Rincon-Torroella
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurosurgery, Hospital Clínic i Provincial, Barcelona, Spain
| | - Maureen Rakovec
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Josh Materi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Divyaansh Raj
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Abel Ferres
- Department of Neurosurgery, Hospital Clínic i Provincial, Barcelona, Spain
| | | | - Kristin J. Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Matthias Holdhoff
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Chetan Bettegowda, ; José Juan González Sánchez,
| | - José Juan González Sánchez
- Department of Neurosurgery, Hospital Clínic i Provincial, Barcelona, Spain
- *Correspondence: Chetan Bettegowda, ; José Juan González Sánchez,
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW CIC-DUX4 sarcoma (CDS) is a high-grade undifferentiated round cells sarcoma that belongs to the undifferentiated round cell sarcomas family. It represents less than one percent of sarcomas, defining a rarest among rare malignancies. It affects young adults, displaying soft tissue mass. Considered very aggressive, a high proportion of cases display an advanced disease with lung metastasis at diagnosis. Here we discuss recent progress in molecular characterization of CDS, the main tracks of CDS biology and the current and future prospects of therapeutic approaches. RECENT FINDINGS CDS is characterized by a specific oncogenic translocation CIC::DUX4 that induce ETV4 overexpression. Patients with CDS show an aggressive clinical course and have a significantly unfavorable outcome compared to Ewing sarcoma. As of today, there is a lack of consensus on whether they should be treated with an Ewing-like approach, as currently done by most sites, or regarded as high-grade soft tissue sarcoma (STS). Anyway, when feasible, combination regimens including anthracycline and alkylating agents should be favored and patients should not benefit from a therapeutic de-escalation. Overall, registration within clinical trials and prospective registries is recommended. SUMMARY Overall, CDS showed a poor prognosis regardless of the patterns of treatment that warrant biological studies to better understand the disease.
Collapse
|
50
|
Tao R, Liu Q, Huang R, Wang K, Sun Z, Yang P, Wang J. A Novel TNFSF-Based Signature Predicts the Prognosis and Immunosuppressive Status of Lower-Grade Glioma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3194996. [PMID: 35592520 PMCID: PMC9112166 DOI: 10.1155/2022/3194996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 02/08/2023]
Abstract
Purpose Tumour necrosis factor (TNF) superfamilies play important roles in cell proliferation, migration, differentiation, and apoptosis. We believe that TNF has a huge potential and might cast new insight into antitumour therapies. Therefore, we established this signature based on TNF superfamilies. Results A six-gene signature derived from the TNF superfamilies was established. The Riskscore correlated significantly with the expression of immune checkpoint genes and infiltrating M2 macrophages in the tumour specimen. This signature was also associated with mutations in genes that regulate tumour cell proliferation. Univariate and multivariate regression analyses further confirmed the Riskscore, TNFRSF11b, and TNFRSF12a as independent risk factors in The Cancer Genome Atlas and Chinese Glioma Genome Atlas datasets. Conclusion Our signature could accurately predict the prognosis of lower-grade gliomas (LGG). In addition, this six-gene signature could predict the immunosuppressive status of LGG and provide evidence that TNF superfamilies had correlations with some critical mutations that could be effectively targeted now.
Collapse
Affiliation(s)
- Rui Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruoyu Huang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kuanyu Wang
- Gamma Knife Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiyan Sun
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Pei Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|