1
|
Wang T, Lin H, Deng Y, Chen W, Xu Y, Wang L, Zhou A, Zhang Y, Wang Z, Jin X, Zhang L, Wang X, Zhou Y, Wang R, Rong S. Time-restricted feeding mitigates HFD-induced sarcopenic obesity in aging mice through improving the sensitivity of FGF21. J Nutr Biochem 2025; 140:109893. [PMID: 40054671 DOI: 10.1016/j.jnutbio.2025.109893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 02/15/2025] [Accepted: 02/28/2025] [Indexed: 03/30/2025]
Abstract
Time-restricted feeding (TRF) is a dietary intervention that has been shown to have numerous health benefits. However, it is important to further investigate the potential effectiveness of TRF in addressing sarcopenic obesity (SO), which is characterized by a combination of age-related obesity and sarcopenia. In this study, 14-month-old C57BL/6J male mice were fed either regular chow diet or high-fat diet (HFD), and had either ad libitum or restricted access to food for 8 hours daily (Intervention for 7 months). For the human trial (ChiCTR2100052876), obese individuals (n=21) with a Body Mass Index ≥28 were recruited and instructed to adopt an 8-hour eating window and a 16-hour fasting period. Here, we found that the TRF intervention significantly reduced global fat mass (P < .001) and volume (P < .05), and increase lean mass compared to mice fed with HFD. Furthermore, TRF improved overall metabolic mobility (8h TRF+HFD vs. AL+HFD). This intervention also enhanced liver FGF21 protein levels (P < .01) and the expression of FGFR1 and FGF21 target genes in adipose and muscle tissues, thus improving mitochondrial quality control in these tissues. Notably, TRF interventions led to a significant decrease in serum FGF21 levels (P < .05). In the human trial, TRF intervention resulted in a significant reduction in weight (P < .001) and body fat levels (P < .001) among obese individuals, as well as a decrease in serum GLU (P < .001), insulin (P < .001), and TC levels (P < .05). Overall, the findings indicate that TRF intervention improves SO by regulating liver FGF21 expression, thereby enhancing FGF21 sensitivity in adipose and muscle tissues.
Collapse
Affiliation(s)
- Ting Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Institute of Pharmaceutical Process, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Hongkun Lin
- Department of Food and Nutrition Health, School of Public Health, Wuhan University, Wuhan, China
| | - Yan Deng
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Wenwen Chen
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yangliu Xu
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Li Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Aojia Zhou
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yidan Zhang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Ziping Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xin Jin
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Department of Clinical Nutrition, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Zhang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Xinhua Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Xin Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yang Zhou
- Department of Food and Nutrition Health, School of Public Health, Wuhan University, Wuhan, China
| | - Ruhan Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shuang Rong
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Department of Food and Nutrition Health, School of Public Health, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Abou Daya F, Mandigo T, Ober L, Patel D, Maher M, Math S, Tchio C, Walker JA, Saxena R, Melkani GC. Identifying links between cardiovascular disease and insomnia by modeling genes from a pleiotropic locus. Dis Model Mech 2025; 18:dmm052139. [PMID: 40176577 DOI: 10.1242/dmm.052139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 03/27/2025] [Indexed: 04/04/2025] Open
Abstract
Insomnia symptoms double the risk of cardiovascular disease (CVD), yet shared genetic pathways remain unclear. Genome-wide association studies identified a genetic locus (near ATP5G1, UBE2Z, SNF8, IGF2BP1 and GIP) linked to insomnia and CVD. We used Drosophila models to perform tissue-specific RNA interference knockdowns of four conserved orthologs (ATPsynC, lsn, Bruce and Imp) in neurons and the heart. Neuronal-specific knockdown of ATPsynC, Imp and lsn impaired sleep quantity and quality. In contrast, cardiac knockdown of ATPsynC and lsn reduced cardiac function and lifespan, with lsn knockdown also causing cardiac dilation and myofibrillar disorganization. Cross-tissue effects were evident: neuronal Imp knockdown compromised cardiac function, whereas cardiac ATPsynC and lsn knockdown increased sleep fragmentation and inflammation (marked by Upd3 elevation in the heart or head). Overexpression of Upd3 in neurons impaired cardiac function, and its overexpression in the heart disrupted sleep. Our findings reveal conserved genes mediating tissue-specific and cross-tissue interactions between sleep and cardiac function, providing novel insights into the genetic mechanisms linking insomnia and CVD through inflammation.
Collapse
Affiliation(s)
- Farah Abou Daya
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Torrey Mandigo
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02114, USA
| | - Lily Ober
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dev Patel
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Matthew Maher
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Suraj Math
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Cynthia Tchio
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - James A Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02114, USA
| | - Richa Saxena
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02114, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Girish C Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- UAB Nathan Shock Center, Birmingham, AL 35294, USA
| |
Collapse
|
3
|
Abou Daya F, Mandigo T, Patel D, Math S, Ober L, Maher M, Melkani G, Walker J, Saxena R. Drosophila Modeling Identifies Increased Sleep as a Link Between Insomnia and Cardiovascular Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647668. [PMID: 40291700 PMCID: PMC12026989 DOI: 10.1101/2025.04.07.647668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Insomnia is a common sleep disorder associated with negative long-term health outcomes. Mendelian randomization studies have found that insomnia significantly increases the risk of cardiovascular disease (CVD). To better understand the link between sleep and heart health, we identify genes associated with both insomnia and CVD. We model the disruption of the Drosophila melanogaster orthologs in neurons and cardiac tissue to characterize their cell-autonomous and non-cell-autonomous role in regulating sleep and cardiac physiology. We identify three genes that function in neurons and the heart to cell-autonomously regulate the function of each tissue. We find that the disruption of insomnia- and CVD-associated Drosophila orthologs in the heart most often lead to increased nighttime sleep. Inversely, disruptions in neurons that lead to increased sleep most often result in an elevated heart rate. To confirm the association between increased sleep and cardiac function, we performed a genetic correlation analysis from human data between long sleep-related traits and adverse cardiac outcomes. Significant correlations were found between most long sleep traits and heart failure, coronary artery disease, or myocardial infarction, reinforcing our findings in the fly linking increased or excessive sleep and altered cardiac health.
Collapse
|
4
|
Chellappa SL, Gao L, Qian J, Vujovic N, Li P, Hu K, Scheer FAJL. Daytime eating during simulated night work mitigates changes in cardiovascular risk factors: secondary analyses of a randomized controlled trial. Nat Commun 2025; 16:3186. [PMID: 40199860 PMCID: PMC11978778 DOI: 10.1038/s41467-025-57846-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 03/05/2025] [Indexed: 04/10/2025] Open
Abstract
Effective countermeasures against the adverse cardiovascular effects of circadian misalignment, such as effects experienced due to night work or jet lag, remain to be established in humans. Here, we aim to test whether eating only during daytime can mitigate such adverse effects vs. eating during the night and day (typical for night shift workers) under simulated night work (secondary analysis of NCT02291952). This single-blind, parallel-arm trial randomized 20 healthy participants (non-shift workers) to simulated night work with meals consumed during night and day (Nighttime Meal Control Group) or only during daytime (Daytime Meal Intervention Group). The primary outcomes were pNN50 (percentage consecutive heartbeat intervals >50 ms), RMSSD (root mean square of successive heartbeat differences), and LF/HF (low/high cardiac frequency). The secondary outcome was blood concentrations of prothrombotic factor plasminogen activator inhibitor-1 (PAI-1). These measures were assessed under Constant Routine conditions, before (baseline) and after (postmisalignment) simulated night work. The meal timing intervention significantly modified the impact of simulated night work on cardiac vagal modulation and PAI-1 (pFDR = 0.001). In the Control Group, the postmisalignment Constant Routine showed a decrease in pNN50 by 25.7% (pFDR = 0.008) and RMMSD by 14.3% (pFDR = 0.02), and an increase in LF/HF by 5.5% (pFDR = 0.04) and PAI-1 by 23.9% (pFDR = 0.04), vs. the baseline Constant Routine. In the Intervention Group, there were no significant changes in these outcomes. For exploratory outcomes, the intervention significantly modified the impact of simulated night work on blood pressure (P < 0.05), with no significant change in the Control Group, and a significant reduction by 6-8% (P < 0.01) in the Intervention Group; without significant effects for heart rate or cortisol. These findings indicate that daytime eating, despite mistimed sleep, may mitigate changes in cardiovascular risk factors and offer translational evidence for developing a behavioral strategy to help minimize the adverse changes in cardiovascular risk factors in individuals exposed to circadian misalignment, such as shift workers.
Collapse
Affiliation(s)
- Sarah L Chellappa
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
- School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK.
| | - Lei Gao
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jingyi Qian
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Nina Vujovic
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Peng Li
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Kun Hu
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Frank A J L Scheer
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
5
|
Yadav A, Ouyang X, Barkley M, Watson JC, Madamanchi K, Kramer J, Zhang J, Melkani G. Regulation of lipid dysmetabolism and neuroinflammation linked with Alzheimer's disease through modulation of Dgat2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638929. [PMID: 40027815 PMCID: PMC11870505 DOI: 10.1101/2025.02.18.638929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder marked by amyloid-β (Aβ) plaque accumulation, cognitive decline, lipid dysregulation, and neuroinflammation. While mutations in the Amyloid Precursor Protein (APP) and Aβ42 accumulation contribute to AD, the mechanisms linking Aβ to lipid metabolism and neuroinflammation remain unclear. Using Drosophila models, we show that App NLG and Aβ42 expression causes locomotor deficits, disrupted sleep, memory impairments, lipid accumulation, synaptic loss, and neuroinflammation. Similar lipid and inflammatory changes are observed in the App NLG-F knock-in mouse model, reinforcing their role in AD pathogenesis. We identify diacylglycerol O-acyltransferase 2 (Dgat2), a key lipid metabolism enzyme, as a modulator of AD phenotypes. In Drosophila and mouse AD models, Dgat2 levels and its transcription factors are altered. Dgat2 knockdown in Drosophila reduced lipid accumulation, restored synaptic integrity, improved locomotor and cognitive function, and mitigated neuroinflammation. Additionally, Dgat2 modulation improved sleep and circadian rhythms. In App NLG-F mice, Dgat2 inhibition decreased neuroinflammation and reduced AD risk gene expression. These findings highlight the intricate link between amyloid pathology, lipid dysregulation, and neuroinflammation, suggesting that targeting Dgat2 may offer a novel therapeutic approach for AD. Conserved lipid homeostasis mechanisms across species provide valuable translational insights.
Collapse
|
6
|
Wang R, Liao Y, Deng Y, Shuang R. Unraveling the Health Benefits and Mechanisms of Time-Restricted Feeding: Beyond Caloric Restriction. Nutr Rev 2025; 83:e1209-e1224. [PMID: 38954563 DOI: 10.1093/nutrit/nuae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Time-restricted feeding (TRF) is a lifestyle intervention that aims to maintain a consistent daily cycle of feeding and fasting to support robust circadian rhythms. Recently, it has gained scientific, medical, and public attention due to its potential to enhance body composition, extend lifespan, and improve overall health, as well as induce autophagy and alleviate symptoms of diseases like cardiovascular diseases, type 2 diabetes, neurodegenerative diseases, cancer, and ischemic injury. However, there is still considerable debate on the primary factors that contribute to the health benefits of TRF. Despite not imposing strict limitations on calorie intake, TRF consistently led to reductions in calorie intake. Therefore, while some studies suggest that the health benefits of TRF are primarily due to caloric restriction (CR), others argue that the key advantages of TRF arise not only from CR but also from factors like the duration of fasting, the timing of the feeding period, and alignment with circadian rhythms. To elucidate the roles and mechanisms of TRF beyond CR, this review incorporates TRF studies that did not use CR, as well as TRF studies with equivalent energy intake to CR, which addresses the previous lack of comprehensive research on TRF without CR and provides a framework for future research directions.
Collapse
Affiliation(s)
- Ruhan Wang
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 43000, China
| | - Yan Deng
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| | - Rong Shuang
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| |
Collapse
|
7
|
Zeng X, Xing YH, Ma XM, Long Y, Jiang ZZ, Xu Y. Proteomic and metabolomic profiling reveals the underlying molecular mechanisms in modified alternate-day fasting-mediated protection against Diabetic kidney disease. PLoS One 2025; 20:e0319053. [PMID: 39964999 PMCID: PMC11835337 DOI: 10.1371/journal.pone.0319053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/26/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is a leading cause of chronic kidney disease, and while lifestyle interventions like intermittent fasting have shown promise in treating diabetes, the impact of modified alternate-day fasting (MADF) on DKD is not well understood. This study aimed to explore MADF's effects on DKD in db/db mice, a model for the condition, and to investigate its underlying mechanisms. METHODS We implemented an MADF regimen in db/db mice on a high-fat diet, measuring blood glucose, body weight, and renal function at various times. After the intervention, we analyzed the proteome and metabolome of renal tissues. RESULTS MADF was found to reduce hyperglycemia and slow the pathological progression of DKD in the mice. Proteomic analysis identified 165 proteins that increased and 196 that decreased in the kidneys of db/db mice compared to controls. MADF intervention led to a decrease in 26 of the increased proteins and an increase in 18 of the decreased ones. Notably, many of these proteins, including cathepsin S (CTSS), were related to lysosomes, suggesting a role in renal protection. Metabolomic profiling revealed changes in metabolites associated with inflammation, such as prostaglandin A1, which was downregulated in db/db mice and upregulated with MADF. Western blotting, immunohistochemistry, and immunofluorescence staining confirmed the expression changes of CTSS observed in the proteomic data. Additionally, CTSS expression was found to increase in renal cells exposed to high glucose and palmitic acid. CONCLUSION MADF appears to mitigate the progression of DKD, with proteomic evidence pointing to lysosome-related proteins like CTSS as potential mediators of its renal protective effects. These findings indicate that MADF and the inhibition of CTSS could be considered as novel therapeutic strategies for DKD treatment.
Collapse
Affiliation(s)
- Xin Zeng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yi-hang Xing
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xiu-mei Ma
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Long
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| | - Zong-zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
8
|
Bettadapura SS, Todd WD, McGinnis GR, Bruns DR. Circadian biology of cardiac aging. J Mol Cell Cardiol 2025; 199:95-103. [PMID: 39753393 DOI: 10.1016/j.yjmcc.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/14/2024] [Accepted: 12/04/2024] [Indexed: 02/03/2025]
Abstract
The age of the U.S. population is increasing alongside a growing burden of age-related cardiovascular disease. Circadian rhythms are critical for human health and are disrupted with aging and cardiovascular disease. The goal of the present review is to summarize how cardiac circadian rhythms change with age and how this might contribute to the increasing burden of age-associated heart disease. Further, we will review what is known about interventions to slow aging and whether they impact cardiac clock function, as well as whether time-of-day or chronotherapy may improve cardiac function with age. Although much remains to be understood about the circadian biology of cardiac aging, we propose that altered circadian clock output should be considered a hallmark of aging and that efforts to fix the clock are warranted for healthy cardiac aging.
Collapse
Affiliation(s)
| | - William D Todd
- Zoology & Physiology, University of Wyoming, Laramie, WY, USA; Program in Neuroscience, University of Wyoming, Laramie, WY, USA
| | - Graham R McGinnis
- Kinesiology & Nutrition Sciences, University of Nevada, Las Vegas, NV, USA
| | - Danielle R Bruns
- Kinesiology & Health, University of Wyoming, Laramie, WY, USA; Zoology & Physiology, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
9
|
Prša P, Miller IP, Kramar B, Šuput D, Milisav I. Short-Term Fasting Induces Hepatocytes' Stress Response and Increases Their Resilience. Int J Mol Sci 2025; 26:999. [PMID: 39940770 PMCID: PMC11817670 DOI: 10.3390/ijms26030999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Fasting leads to a range of metabolic adaptations that have developed through evolution, as humans and other mammals have unequal access to food over the circadian cycle and are therefore adapted to fasting and feeding cycles. We have investigated the role of a single fasting episode in rats in triggering the stress response of liver hepatocytes. Since the stress responses were observed in both animals and isolated cells, we investigated whether the effects of the animal stressor could persist in the cells after isolation. By measuring staurosporine-induced apoptosis, stress signalling, and oxidative and antioxidant responses in hepatocytes from fasted and ad libitum-fed animals, we found that only fasting animals elicited a stress response that prevented caspase-9 activation and persisted in isolated cells. The addition of glucose oxidase, a hydrogen peroxide-producing enzyme, to the cells from ad libitum-fed animals also led to a stress response phenotype and prevented the activation of caspase-9. A single fasting episode thus leads to a stress response in normal hepatocytes, with hydrogen peroxide as a second messenger that reduces the initiation of apoptosis. This finding is the first characterisation of a mechanism underlying the effects of fasting and provides a basis for the development of methods to increase the resilience of cells. These findings need to be taken into account when interpreting the results obtained in animal and cell research models to account for the effects of overnight fasting used in many laboratory protocols. The research results also form the basis for the development of clinical applications to increase the resistance of transplants and to improve the fitness of hepatocytes under acute stress conditions in liver and some metabolic diseases.
Collapse
Affiliation(s)
- Patrik Prša
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
| | - Izak Patrik Miller
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
| | - Barbara Kramar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
| | - Dušan Šuput
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Tan Y, Li M, Li H, Guo Y, Zhang B, Wu G, Li J, Zhang Q, Sun Y, Gao F, Yi W, Zhang X. Cardiac Urea Cycle Activation by Time-Restricted Feeding Protects Against Pressure Overload-Induced Heart Failure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407677. [PMID: 39467073 DOI: 10.1002/advs.202407677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/14/2024] [Indexed: 10/30/2024]
Abstract
Heart failure is a leading cause of mortality worldwide, necessitating the development of novel therapeutic and lifestyle interventions. Recent studies highlight a potential role of time-restricted feeding (TRF) in the prevention and treatment of cardiac diseases. Here, it is found that TRF protected against heart failure at different stages in mice. Metabolomic profiling revealed that TRF upregulated most circulating amino acids, and amino acid supplementation protected against heart failure. In contrast, TRF showed a mild effect on cardiac amino acid profile, but increased cardiac amino acid utilization and activated the cardiac urea cycle through upregulating argininosuccinate lyase (ASL) expression. Cardiac-specific ASL knockout abolished the cardioprotective effects afforded by TRF. Circulating amino acids also protected against heart failure through activation of the urea cycle. Additionally, TRF upregulated cardiac ASL expression through transcription factor Yin Yang 1, and urea cycle-derived NO contributes to TRF-afforded cardioprotection. Furthermore, arteriovenous gradients of circulating metabolites across the human hearts were measured, and found that amino acid utilization and urea cycle activity were impaired in patients with decreased cardiac function. These results suggest that TRF is a promising intervention for heart failure, and highlight the importance of urea cycle in regulation of cardiac function.
Collapse
Affiliation(s)
- Yanzhen Tan
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Min Li
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Han Li
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital, Cardiovascular Disease Laboratory, Chongqing Medical University, Chongqing, 400016, China
| | - Bing Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Guiling Wu
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia Li
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Qian Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Sun
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Department of Rehabilitation, Air Force Medical Center, Beijing, 100142, China
| |
Collapse
|
11
|
Meng Y, Sun J, Zhang G, Yu T, Piao H. Fasting: A Complex, Double-Edged Blade in the Battle Against Doxorubicin-Induced Cardiotoxicity. Cardiovasc Toxicol 2024; 24:1395-1409. [PMID: 39354217 DOI: 10.1007/s12012-024-09925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
In recent years, there has been a surge in the popularity of fasting as a method to enhance one's health and overall well-being. Fasting is a customary practice characterized by voluntary refraining from consuming food and beverages for a specified duration, ranging from a few hours to several days. The potential advantages of fasting, including enhanced insulin sensitivity, decreased inflammation, and better cellular repair mechanisms, have been well documented. However, the effects of fasting on cancer therapy have been the focus of recent scholarly investigations. Doxorubicin (Dox) is one of the most widely used chemotherapy medications for cancer treatment. Unfortunately, cardiotoxicity, which may lead to heart failure and other cardiovascular issues, has been linked to Dox usage. This study aims to comprehensively examine the possible advantages and disadvantages of fasting concerning Dox-induced cardiotoxicity. Researchers have investigated the potential benefits of fasting in lowering the risk of Dox-induced cardiac damage to solve this problem. Nevertheless, new studies indicate that prolonged alternate-day fasting may adversely affect the heart's capacity to manage the cardiotoxic properties of Dox. Though fasting may benefit overall health, it is essential to proceed cautiously and consider the potential risks in certain circumstances.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Tao Yu
- Department of Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Liaoning Province Cancer Hospital, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| | - Haozhe Piao
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Liaoning Province Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
12
|
Moraes RCM, Roth JR, Mao H, Crawley SR, Xu BP, Watson JC, Melkani GC. Apolipoprotein E Induces Lipid Accumulation Through Dgat2 That Is Prevented with Time-Restricted Feeding in Drosophila. Genes (Basel) 2024; 15:1376. [PMID: 39596576 PMCID: PMC11594465 DOI: 10.3390/genes15111376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Apolipoprotein E (ApoE) is the leading genetic risk factor for late-onset Alzheimer's disease (AD), which is the leading cause of dementia worldwide. Most people have two ApoE-ε3 (ApoE3) alleles, while ApoE-ε2 (ApoE2) is protective from AD, and ApoE-ε4 (ApoE4) confers AD risk. How these alleles modulate AD risk is not clearly defined, and ApoE's role in lipid metabolism is also not fully known. Lipid droplets increase in AD. However, how ApoE contributes to lipid accumulation in the brain remains unknown. Methods: Here, we use Drosophila to study the effects of ApoE alleles on lipid accumulation in the brain and muscle in a cell-autonomous and non-cell-autonomous manner. Results: We report that pan-neuronal expression of each ApoE allele induces lipid accumulation specifically in the brain, but not in the muscle. However, this was not the case when expressed with muscle-specific drivers. ApoE2- and ApoE3-induced lipid accumulation is dependent on the expression of Dgat2, a key regulator of triacylglycerol production, while ApoE4 still induces lipid accumulation even with knock-down of Dgat2. Additionally, we find that implementation of time-restricted feeding (TRF), a dietary intervention in which food access only occurs in the active period (day), prevents ApoE-induced lipid accumulation in the brain of flies and modulates lipid metabolism genes. Conclusions: Altogether, our results demonstrate that ApoE induces lipid accumulation in the brain, that ApoE4 is unique in causing lipid accumulation independent of Dgat2, and that TRF prevents ApoE-induced lipid accumulation. These results support the idea that lipid metabolism is critical in AD, and that TRF could be a promising therapeutic approach to prevent ApoE-associated dysfunction in lipid metabolism.
Collapse
Affiliation(s)
- Ruan C. M. Moraes
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jonathan R. Roth
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hailey Mao
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Savannah R. Crawley
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Brittney P. Xu
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John C. Watson
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Girish C. Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- UAB Nathan Shock Center, 1300 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
13
|
Liu AC, Shen Y, Serbinski CR, He H, Roman D, Endale M, Aschbacher-Smith L, King KA, Granadillo JL, López I, Krueger DA, Dye TJ, Smith DF, Hogenesch JB, Prada CE. Clinical and functional studies of MTOR variants in Smith-Kingsmore syndrome reveal deficits of circadian rhythm and sleep-wake behavior. HGG ADVANCES 2024; 5:100333. [PMID: 39030910 PMCID: PMC11342114 DOI: 10.1016/j.xhgg.2024.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024] Open
Abstract
Heterozygous de novo or inherited gain-of-function mutations in the MTOR gene cause Smith-Kingsmore syndrome (SKS). SKS is a rare autosomal dominant condition, and individuals with SKS display macrocephaly/megalencephaly, developmental delay, intellectual disability, and seizures. A few dozen individuals are reported in the literature. Here, we report a cohort of 28 individuals with SKS that represent nine MTOR pathogenic variants. We conducted a detailed natural history study and found pathophysiological deficits among individuals with SKS in addition to the common neurodevelopmental symptoms. These symptoms include sleep-wake disturbance, hyperphagia, and hyperactivity, indicative of homeostatic imbalance. To characterize these variants, we developed cell models and characterized their functional consequences. We showed that these SKS variants display a range of mechanistic target of rapamycin (mTOR) activities and respond to the mTOR inhibitor, rapamycin, differently. For example, the R1480_C1483del variant we identified here and the previously known C1483F are more active than wild-type controls and less responsive to rapamycin. Further, we showed that SKS mutations dampened circadian rhythms and low-dose rapamycin improved the rhythm amplitude, suggesting that optimal mTOR activity is required for normal circadian function. As SKS is caused by gain-of-function mutations in MTOR, rapamycin was used to treat several patients. While higher doses of rapamycin caused delayed sleep-wake phase disorder in a subset of patients, optimized lower doses improved sleep. Our study expands the clinical and molecular spectrum of SKS and supports further studies for mechanism-guided treatment options to improve sleep-wake behavior and overall health.
Collapse
Affiliation(s)
- Andrew C Liu
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | - Yang Shen
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Carolyn R Serbinski
- Divisions of Human Genetics, Neurology, Immunobiology, Pediatric Otolaryngology, and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Genetics, Genomics & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Hongzhi He
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Destino Roman
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Mehari Endale
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Lindsey Aschbacher-Smith
- Divisions of Human Genetics, Neurology, Immunobiology, Pediatric Otolaryngology, and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Katherine A King
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jorge L Granadillo
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Isabel López
- Pediatric Neurology Unit, Department of Neurology, Clínica Las Condes, Santiago, Chile
| | - Darcy A Krueger
- Divisions of Human Genetics, Neurology, Immunobiology, Pediatric Otolaryngology, and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Thomas J Dye
- Divisions of Human Genetics, Neurology, Immunobiology, Pediatric Otolaryngology, and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - David F Smith
- Divisions of Pediatric Otolaryngology and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Sleep Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Center for Circadian Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Otolaryngology Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - John B Hogenesch
- Divisions of Human Genetics, Neurology, Immunobiology, Pediatric Otolaryngology, and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Carlos E Prada
- Divisions of Human Genetics, Neurology, Immunobiology, Pediatric Otolaryngology, and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Genetics, Genomics & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
14
|
Dos Santos E, Cochemé HM. How does a fly die? Insights into ageing from the pathophysiology of Drosophila mortality. GeroScience 2024; 46:4003-4015. [PMID: 38642259 PMCID: PMC11336040 DOI: 10.1007/s11357-024-01158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/22/2024] Open
Abstract
The fruit fly Drosophila melanogaster is a common animal model in ageing research. Large populations of flies are used to study the impact of genetic, nutritional and pharmacological interventions on survival. However, the processes through which flies die and their relative prevalence in Drosophila populations are still comparatively unknown. Understanding the causes of death in an animal model is essential to dissect the lifespan-extending interventions that are organism- or disease-specific from those broadly applicable to ageing. Here, we review the pathophysiological processes that can lead to fly death and discuss their relation to ageing.
Collapse
Affiliation(s)
- Eliano Dos Santos
- MRC Laboratory of Medical Sciences (LMS), Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
- Institute of Clinical Sciences, Hammersmith Hospital Campus, Imperial College London, Du Cane Road, London, W12 0HS, UK
| | - Helena M Cochemé
- MRC Laboratory of Medical Sciences (LMS), Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK.
- Institute of Clinical Sciences, Hammersmith Hospital Campus, Imperial College London, Du Cane Road, London, W12 0HS, UK.
| |
Collapse
|
15
|
Pye C, Parr EB, Flint SA, Devlin BL. Exploring Australian Dietitians' knowledge, experience and perspectives of time-restricted eating in private practice: A qualitative study. Clin Obes 2024; 14:e12671. [PMID: 38661018 DOI: 10.1111/cob.12671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/15/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024]
Abstract
Time-restricted eating is a novel nutrition intervention with evidence of beneficial effects on weight loss, blood glucose management, and other metabolic health outcomes. Adherence to time-restricted eating is higher than some traditional nutrition interventions to support individuals living with overweight/obesity and type 2 diabetes mellitus. However, there may be an evidence-practice gap of time-restricted eating in Australian dietetic practice. The present study aimed to explore dietitians' knowledge, experiences, and perspectives of time-restricted eating and timing of eating advice in practice. Semi-structured interviews with 10 private practice dietitians across Australia were conducted. Audio recordings were transcribed and analysed thematically. Six themes were identified: (i) distinction of time-restricted eating to other fasting protocols; (ii) knowledge of health benefits of time-restricted eating; (iii) patient-led advice frequently given: timing of breakfast and dinner; (iv) dietitian-led advice frequently given: eating cut-off time to avoid late night snacking; (v) barriers and facilitators to offering time-restricted eating or timing of eating advice; (vi) timing of eating advice within professional guidelines and resources. These findings suggest the need for development of professional resources and educational development tools for dietitians on time-restricted eating.
Collapse
Affiliation(s)
- Caitlin Pye
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Evelyn B Parr
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Steve A Flint
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Brooke L Devlin
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
16
|
Ye Z, Huang K, Dai X, Gao D, Gu Y, Qian J, Zhang F, Zhai Q. Light-phase time-restricted feeding disrupts the muscle clock and insulin sensitivity yet potentially induces muscle fiber remodeling in mice. Heliyon 2024; 10:e37475. [PMID: 39328525 PMCID: PMC11425116 DOI: 10.1016/j.heliyon.2024.e37475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Skeletal muscle plays a critical role in regulating systemic metabolic homeostasis. It has been demonstrated that time-restricted feeding (TRF) during the rest phase can desynchronize the suprachiasmatic nucleus (SCN) and peripheral clocks, thereby increasing the risk of metabolic diseases. However, the impact of dietary timing on the muscle clock and health remains poorly understood. Here, through the analysis of cycling genes and differentially expressed genes in the skeletal muscle transcriptome, we identified disruptions in muscle diurnal rhythms by 2 weeks of light-phase TRF. Furthermore, compared with ad libitum (AL) feeding mice, 2 weeks of light-phase TRF was found to induce insulin resistance, muscle fiber type remodeling, and changes in the expression of muscle growth-related genes, while both light-phase and dark-phase TRF having a limited impact on bone quality relative to AL mice. In summary, our research reveals that the disruption of the skeletal muscle clock may contribute to the abnormal metabolic phenotype resulting from feeding restricted to the inactive period. Additionally, our study provides a comprehensive omics atlas of the diurnal rhythms in skeletal muscle regulated by dietary timing.
Collapse
Affiliation(s)
- Zhou Ye
- Division of Spine Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Kai Huang
- Orthopaedic Institute, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Xueqin Dai
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Dandan Gao
- Wenzhou Medical University, Wenzhou, China
| | - Yue Gu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, China
| | - Jun Qian
- Division of Spine Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Feng Zhang
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Qiaocheng Zhai
- Division of Spine Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- The Joint Innovation Center for Engineering in Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Han H, Jia H, Wang YF, Song JP. Cardiovascular adaptations and pathological changes induced by spaceflight: from cellular mechanisms to organ-level impacts. Mil Med Res 2024; 11:68. [PMID: 39334239 PMCID: PMC11429428 DOI: 10.1186/s40779-024-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
The advancement in extraterrestrial exploration has highlighted the crucial need for studying how the human cardiovascular system adapts to space conditions. Human development occurs under the influence of gravity, shielded from space radiation by Earth's magnetic field, and within an environment characterized by 24-hour day-night cycles resulting from Earth's rotation, thus deviating from these conditions necessitates adaptive responses for survival. With upcoming manned lunar and Martian missions approaching rapidly, it is essential to understand the impact of various stressors induced by outer-space environments on cardiovascular health. This comprehensive review integrates insights from both actual space missions and simulated experiments on Earth, to analyze how microgravity, space radiation, and disrupted circadian affect cardiovascular well-being. Prolonged exposure to microgravity induces myocardial atrophy and endothelial dysfunction, which may be exacerbated by space radiation. Mitochondrial dysfunction and oxidative stress emerge as key underlying mechanisms along with disturbances in ion channel perturbations, cytoskeletal damage, and myofibril changes. Disruptions in circadian rhythms caused by factors such as microgravity, light exposure, and irregular work schedules, could further exacerbate cardiovascular issues. However, current research tends to predominantly focus on disruptions in the core clock gene, overlooking the multifactorial nature of circadian rhythm disturbances in space. Future space missions should prioritize targeted prevention strategies and early detection methods for identifying cardiovascular risks, to preserve astronaut health and ensure mission success.
Collapse
Affiliation(s)
- Han Han
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yi-Fan Wang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jiang-Ping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
18
|
Kędzierska-Kapuza K, Łopuszyńska I, Niewiński G, Franek E, Szczuko M. The Influence of Non-Pharmacological and Pharmacological Interventions on the Course of Autosomal Dominant Polycystic Kidney Disease. Nutrients 2024; 16:3216. [PMID: 39339816 PMCID: PMC11434835 DOI: 10.3390/nu16183216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Polycystic kidney disease (PKD) includes autosomal dominant (ADPKD) and autosomal recessive (ARPKD) forms, both of which are primary genetic causes of kidney disease in adults and children. ADPKD is the most common hereditary kidney disease, with a prevalence of 329 cases per million in Europe. This condition accounts for 5-15% of end-stage chronic kidney disease (ESKD) cases, and in developed countries such as Poland, 8-10% of all dialysis patients have ESKD due to ADPKD. The disease is caused by mutations in the PKD1 and PKD2 genes, with PKD1 mutations responsible for 85% of cases, leading to a more aggressive disease course. Recent research suggests that ADPKD involves a metabolic defect contributing to cystic epithelial proliferation and cyst growth. Aim: This review explores the interplay between metabolism, obesity, and ADPKD, discussing dietary and pharmacological strategies that target these metabolic abnormalities to slow disease progression. Conclusion: Metabolic reprogramming therapies, including GLP-1 analogs and dual agonists of GIP/GLP-1 or glucagon/GLP-1 receptors, show promise, though further research is needed to understand their potential in ADPKD treatment fully.
Collapse
Affiliation(s)
- Karolina Kędzierska-Kapuza
- Department of Internal Diseases, Endocrinology and Diabetology, National Medical Institute of the Ministry of Interior and Administration, 137 Wołoska St., 02-507 Warsaw, Poland
| | - Inga Łopuszyńska
- Department of Gastroenterological Surgery and Transplantology, National Medical Institute of the Ministry of Interior and Administration, 137 Wołoska St., 02-507 Warsaw, Poland
| | - Grzegorz Niewiński
- Department of Gastroenterological Surgery and Transplantology, National Medical Institute of the Ministry of Interior and Administration, 137 Wołoska St., 02-507 Warsaw, Poland
| | - Edward Franek
- Department of Internal Diseases, Endocrinology and Diabetology, National Medical Institute of the Ministry of Interior and Administration, 137 Wołoska St., 02-507 Warsaw, Poland
| | - Małgorzata Szczuko
- Department of Human Nutrition and Metabolomic, Pomeranian Medical University, 24 W. Broniewskiego St., 71-460 Szczecin, Poland
| |
Collapse
|
19
|
Chaix A, Lin T, Ramms B, Cutler RG, Le T, Lopez C, Miu P, Pinto AFM, Saghatelian A, Playford MP, Mehta NN, Mattson MP, Gordts P, Witztum JL, Panda S. Time-Restricted Feeding Reduces Atherosclerosis in LDLR KO Mice but Not in ApoE Knockout Mice. Arterioscler Thromb Vasc Biol 2024; 44:2069-2087. [PMID: 39087348 PMCID: PMC11409897 DOI: 10.1161/atvbaha.124.320998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Dyslipidemia increases cardiovascular disease risk, the leading cause of death worldwide. Under time-restricted feeding (TRF), wherein food intake is restricted to a consistent window of <12 hours, weight gain, glucose intolerance, inflammation, dyslipidemia, and hypercholesterolemia are all reduced in mice fed an obesogenic diet. LDLR (low-density lipoprotein receptor) mutations are a major cause of familial hypercholesterolemia and early-onset cardiovascular disease. METHODS We subjected benchmark preclinical models, mice lacking LDLR-knockout or ApoE knockout to ad libitum feeding of an isocaloric atherogenic diet either ad libitum or 9 hours TRF for up to 13 weeks and assessed disease development, mechanism, and global changes in hepatic gene expression and plasma lipids. In a regression model, a subset of LDLR-knockout mice were ad libitum fed and then subject to TRF. RESULTS TRF could significantly attenuate weight gain, hypercholesterolemia, and atherosclerosis in mice lacking the LDLR-knockout mice under experimental conditions of both prevention and regression. In LDLR-knockout mice, increased hepatic expression of genes mediating β-oxidation during fasting is associated with reduced VLDL (very-low-density lipoprotein) secretion and lipid accumulation. Additionally, increased sterol catabolism coupled with fecal loss of cholesterol and bile acids contributes to the atheroprotective effect of TRF. Finally, TRF alone or combined with a cholesterol-free diet can reduce atherosclerosis in LDLR-knockout mice. However, mice lacking ApoE, which is an important protein for hepatic lipoprotein reuptake do not respond to TRF. CONCLUSIONS In a preclinical animal model, TRF is effective in both the prevention and regression of atherosclerosis in LDLR knockout mice. The results suggest TRF alone or in combination with a low-cholesterol diet can be a lifestyle intervention for reducing cardiovascular disease risk in humans.
Collapse
Affiliation(s)
- Amandine Chaix
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Terry Lin
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Bastian Ramms
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA. 92093
| | - Roy G. Cutler
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD, USA. 21224
| | - Tiffani Le
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Catherine Lopez
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Phuong Miu
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA. 92093
| | - Antonio F. M. Pinto
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Martin P. Playford
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nehal N. Mehta
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD, USA. 21224
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States. 21205
| | - Philip Gordts
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA. 92093
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Joseph L. Witztum
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA. 92093
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Lead contact
| |
Collapse
|
20
|
Lenhart A, Ahsan A, McHaty M, Bergland AO. Improvement of starvation resistance via periodic fasting is genetically variable in Drosophila melanogaster. PHYSIOLOGICAL ENTOMOLOGY 2024; 49:270-278. [PMID: 39130127 PMCID: PMC11315414 DOI: 10.1111/phen.12443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/23/2024] [Indexed: 08/13/2024]
Abstract
Organisms subjected to periodic nutrient limitation early in life exhibit improvements in aspects of survival, including resistance to some environmental stressors. Recent findings indicate that forms of periodic fasting such as intermittent fasting and time restricted feeding can improve starvation resistance. However, it remains unclear to what extent this survival improvement persists across different genetic backgrounds. In this study, we examine fasting-induced starvation resistance across a broad survey of wild-derived lineages and document genetic variation within this trait. We adopt a standard dietary intervention and show improvement to starvation resistance within a common laboratory lineage, replicating previous results. Next, we examine fasting-induced starvation resistance across isofemale lines collected across latitudes and in different seasons, and among inbred lines derived from flies collected on different continents. We discover genetic variation of fasting-induced starvation resistance, and show that fasting improved starvation resistance as often as it worsened starvation resistance. Fasted flies generally showed reduced fat concentration, and their starvation survival varied with sex, season of collection, and geographic origin. While specific lineages common to the laboratory can show a specific fasting-induced phenotype, we show that this result is not consistent across genetic backgrounds, reinforcing the idea that phenotypes observed in historic laboratory strains may not be conserved across a species.
Collapse
Affiliation(s)
- Adam Lenhart
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22554
| | - Ayesha Ahsan
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22554
| | - Margaret McHaty
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22554
| | - Alan O. Bergland
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22554
| |
Collapse
|
21
|
Chiem E, Zhao K, Dell’Angelica D, Ghiani CA, Paul KN, Colwell CS. Scheduled feeding improves sleep in a mouse model of Huntington's disease. Front Neurosci 2024; 18:1427125. [PMID: 39161652 PMCID: PMC11330895 DOI: 10.3389/fnins.2024.1427125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024] Open
Abstract
Sleep disturbances are common features of neurodegenerative disorders including Huntington's disease (HD). Sleep and circadian disruptions are recapitulated in animal models, providing the opportunity to evaluate the effectiveness of circadian interventions as countermeasures for neurodegenerative disease. For instance, time restricted feeding (TRF) successfully improved activity rhythms, sleep behavior and motor performance in mouse models of HD. Seeking to determine if these benefits extend to physiological measures of sleep, electroencephalography (EEG) was used to measure sleep/wake states and polysomnographic patterns in male and female wild-type (WT) and bacterial artificial chromosome transgenic (BACHD) adult mice, under TRF and ad lib feeding (ALF). Our findings show that male, but not female, BACHD mice exhibited significant changes in the temporal patterning of wake and non-rapid eye movement (NREM) sleep. The TRF intervention reduced the inappropriate early morning activity by increasing NREM sleep in the male BACHD mice. In addition, the scheduled feeding reduced sleep fragmentation (# bouts) in the male BACHD mice. The phase of the rhythm in rapid-eye movement (REM) sleep was significantly altered by the scheduled feeding in a sex-dependent manner. The treatment did impact the power spectral curves during the day in male but not female mice regardless of the genotype. Sleep homeostasis, as measured by the response to six hours of gentle handling, was not altered by the diet. Thus, TRF improves the temporal patterning and fragmentation of NREM sleep without impacting sleep homeostasis. This work adds critical support to the view that sleep is a modifiable risk factor in neurodegenerative diseases.
Collapse
Affiliation(s)
- Emily Chiem
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
- Molecular, Cellular, Integrative Physiology Program, University of California Los Angeles, Los Angeles, CA, United States
| | - Kevin Zhao
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
| | - Derek Dell’Angelica
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Cristina A. Ghiani
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Ketema N. Paul
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Christopher S. Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
22
|
Ozcan M, Abdellatif M, Javaheri A, Sedej S. Risks and Benefits of Intermittent Fasting for the Aging Cardiovascular System. Can J Cardiol 2024; 40:1445-1457. [PMID: 38354947 DOI: 10.1016/j.cjca.2024.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Population aging and the associated increase in cardiovascular disease rates pose serious threats to global public health. Different forms of fasting have become an increasingly attractive strategy to directly address aging and potentially limit or delay the onset of cardiovascular diseases. A growing number of experimental studies and clinical trials indicate that the amount and timing of food intake as well as the daily time window during which food is consumed, are crucial determinants of cardiovascular health. Indeed, intermittent fasting counteracts the molecular hallmarks of cardiovascular aging and promotes different aspects of cardiometabolic health, including blood pressure and glycemic control, as well as body weight reduction. In this report, we summarize current evidence from randomized clinical trials of intermittent fasting on body weight and composition as well as cardiovascular and metabolic risk factors. Moreover, we critically discuss the preventive and therapeutic potential of intermittent fasting, but also possible detrimental effects in the context of cardiovascular aging and related disease. We delve into the physiological mechanisms through which intermittent fasting might improve cardiovascular health, and raise important factors to consider in the design of clinical trials on the efficacy of intermittent fasting to reduce major adverse cardiovascular events among aged individuals at high risk of cardiovascular disease. We conclude that despite growing evidence and interest among the lay and scientific communities in the cardiovascular health-improving effects of intermittent fasting, further research efforts and appropriate caution are warranted before broadly implementing intermittent fasting regimens, especially in elderly persons.
Collapse
Affiliation(s)
- Mualla Ozcan
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Ali Javaheri
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA; John J. Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| |
Collapse
|
23
|
Guo Y, Abou Daya F, Le HD, Panda S, Melkani GC. Diurnal expression of Dgat2 induced by time-restricted feeding maintains cardiac health in the Drosophila model of circadian disruption. Aging Cell 2024; 23:e14169. [PMID: 38616316 PMCID: PMC11258440 DOI: 10.1111/acel.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024] Open
Abstract
Circadian disruption is associated with an increased risk of cardiometabolic disorders and cardiac diseases. Time-restricted feeding/eating (TRF/TRE), restricting food intake within a consistent window of the day, has shown improvements in heart function from flies and mice to humans. However, whether and how TRF still conveys cardiac benefits in the context of circadian disruption remains unclear. Here, we demonstrate that TRF sustains cardiac performance, myofibrillar organization, and regulates cardiac lipid accumulation in Drosophila when the circadian rhythm is disrupted by constant light. TRF induces oscillations in the expression of genes associated with triglyceride metabolism. In particular, TRF induces diurnal expression of diacylglycerol O-acyltransferase 2 (Dgat2), peaking during the feeding period. Heart-specific manipulation of Dgat2 modulates cardiac function and lipid droplet accumulation. Strikingly, heart-specific overexpression of human Dgat2 at ZT 0-10 significantly improves cardiac performance in flies exposed to constant light. We have demonstrated that TRF effectively attenuates cardiac decline induced by circadian disruption. Moreover, our data suggests that diurnal expression of Dgat2 induced by TRF is beneficial for heart health under circadian disruption. Overall, our findings have underscored the relevance of TRF in preserving heart health under circadian disruptions and provided potential targets, such as Dgat2, and strategies for therapeutic interventions in mitigating cardiac aging, metabolic disorders, and cardiac diseases in humans.
Collapse
Affiliation(s)
- Yiming Guo
- Department of Pathology, Division of Molecular and Cellular PathologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Farah Abou Daya
- Department of Pathology, Division of Molecular and Cellular PathologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Hiep Dinh Le
- Regulatory Biology LaboratorySalk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Satchidananda Panda
- Regulatory Biology LaboratorySalk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Girish C. Melkani
- Department of Pathology, Division of Molecular and Cellular PathologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
24
|
Festus ID, Spilberg J, Young ME, Cain S, Khoshnevis S, Smolensky MH, Zaheer F, Descalzi G, Martino TA. Pioneering new frontiers in circadian medicine chronotherapies for cardiovascular health. Trends Endocrinol Metab 2024; 35:607-623. [PMID: 38458859 DOI: 10.1016/j.tem.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/10/2024]
Abstract
Cardiovascular disease (CVD) is a global health concern. Circadian medicine improves cardiovascular care by aligning treatments with our body's daily rhythms and their underlying cellular circadian mechanisms. Time-based therapies, or chronotherapies, show special promise in clinical cardiology. They optimize treatment schedules for better outcomes with fewer side effects by recognizing the profound influence of rhythmic body cycles. In this review, we focus on three chronotherapy areas (medication, light, and meal timing) with potential to enhance cardiovascular care. We also highlight pioneering research in the new field of rest, the gut microbiome, novel chronotherapies for hypertension, pain management, and small molecules that targeting the circadian mechanism.
Collapse
Affiliation(s)
- Ifene David Festus
- Centre for Cardiovascular Investigations, University of Guelph; Guelph, Ontario, Canada; Department of Biomedical Sciences, University of Guelph; Guelph, Ontario, Canada
| | - Jeri Spilberg
- Centre for Cardiovascular Investigations, University of Guelph; Guelph, Ontario, Canada; Department of Biomedical Sciences, University of Guelph; Guelph, Ontario, Canada
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sean Cain
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Sepideh Khoshnevis
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Michael H Smolensky
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA; Department of Internal Medicine, Division of Cardiology, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fariya Zaheer
- Department of Biomedical Sciences, University of Guelph; Guelph, Ontario, Canada
| | - Giannina Descalzi
- Department of Biomedical Sciences, University of Guelph; Guelph, Ontario, Canada
| | - Tami A Martino
- Centre for Cardiovascular Investigations, University of Guelph; Guelph, Ontario, Canada; Department of Biomedical Sciences, University of Guelph; Guelph, Ontario, Canada.
| |
Collapse
|
25
|
Melkani Y, Pant A, Guo Y, Melkani GC. Automated assessment of cardiac dynamics in aging and dilated cardiomyopathy Drosophila models using machine learning. Commun Biol 2024; 7:702. [PMID: 38849449 PMCID: PMC11161577 DOI: 10.1038/s42003-024-06371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
The Drosophila model is pivotal in deciphering the pathophysiological underpinnings of various human ailments, notably aging and cardiovascular diseases. Cutting-edge imaging techniques and physiology yield vast high-resolution videos, demanding advanced analysis methods. Our platform leverages deep learning to segment optical microscopy images of Drosophila hearts, enabling the quantification of cardiac parameters in aging and dilated cardiomyopathy (DCM). Validation using experimental datasets confirms the efficacy of our aging model. We employ two innovative approaches deep-learning video classification and machine-learning based on cardiac parameters to predict fly aging, achieving accuracies of 83.3% (AUC 0.90) and 79.1%, (AUC 0.87) respectively. Moreover, we extend our deep-learning methodology to assess cardiac dysfunction associated with the knock-down of oxoglutarate dehydrogenase (OGDH), revealing its potential in studying DCM. This versatile approach promises accelerated cardiac assays for modeling various human diseases in Drosophila and holds promise for application in animal and human cardiac physiology under diverse conditions.
Collapse
Affiliation(s)
- Yash Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Engineering Physics Department, College of Engineering, University of California, Berkeley, CA, USA
| | - Aniket Pant
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yiming Guo
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Girish C Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
26
|
Chiem E, Zhao K, Dell’Angelica D, Ghiani CA, Paul KN, Colwell CS. Scheduled feeding improves sleep in a mouse model of Huntington's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592428. [PMID: 38766112 PMCID: PMC11100594 DOI: 10.1101/2024.05.04.592428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Sleep disturbances are common features of neurodegenerative disorders including Huntington's disease (HD). The sleep and circadian disruptions are recapitulated in animal models, and these models provide the opportunity to evaluate whether circadian interventions can be effective countermeasures for neurodegenerative disease. Time restricted feeding (TRF) interventions successfully improve activity rhythms, sleep behavior and motor performance in mouse models of HD. Seeking to determine if these benefits of scheduled feeding extend to physiological measures of sleep, electroencephalography (EEG) was used to measure sleep/wake states and polysomnographic patterns in adult mice (six mo-old) under TRF and ad lib feeding (ALF). With each diet, both male and female wild-type (WT) and bacterial artificial chromosome transgenic (BACHD) mice were evaluated. Our findings show that male, but not female, BACHD mice exhibited significant changes in the temporal patterning of wake and nonrapid eye movement (NREM) sleep. The TRF intervention reduced the inappropriate early morning activity by increasing NREM sleep in the male BACHD mice. In addition, the scheduled feeding reduced sleep fragmentation (# bouts) in the male BACHD mice. The phase of the rhythm in rapid-eye movement (REM) sleep was significantly altered by the scheduled feeding. The treatment did impact the power spectral curves during the day in male but not female mice. Sleep homeostasis, as measured by the response to six hours of gentle handling, was not altered by the diet. Thus, TRF improves the temporal patterning and fragmentation of NREM sleep without impacting sleep homeostasis. This work adds critical support to the view that sleep is a modifiable risk factor in neurodegenerative diseases.
Collapse
Affiliation(s)
- Emily Chiem
- Department of Integrative Biology and Physiology, University of California Los Angeles
- Molecular, Cellular, Integrative Physiology program, University of California Los Angeles
| | - Kevin Zhao
- Department of Integrative Biology and Physiology, University of California Los Angeles
| | - Derek Dell’Angelica
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles
| | - Cristina A. Ghiani
- Department of Pathology and Laboratory Medicine, University of California Los Angeles
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles
| | - Ketema N. Paul
- Department of Integrative Biology and Physiology, University of California Los Angeles
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles
| | | |
Collapse
|
27
|
Lal H, Verma SK, Wang Y, Xie M, Young ME. Circadian Rhythms in Cardiovascular Metabolism. Circ Res 2024; 134:635-658. [PMID: 38484029 PMCID: PMC10947116 DOI: 10.1161/circresaha.123.323520] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/19/2024]
Abstract
Energetic demand and nutrient supply fluctuate as a function of time-of-day, in alignment with sleep-wake and fasting-feeding cycles. These daily rhythms are mirrored by 24-hour oscillations in numerous cardiovascular functional parameters, including blood pressure, heart rate, and myocardial contractility. It is, therefore, not surprising that metabolic processes also fluctuate over the course of the day, to ensure temporal needs for ATP, building blocks, and metabolism-based signaling molecules are met. What has become increasingly clear is that in addition to classic signal-response coupling (termed reactionary mechanisms), cardiovascular-relevant cells use autonomous circadian clocks to temporally orchestrate metabolic pathways in preparation for predicted stimuli/stresses (termed anticipatory mechanisms). Here, we review current knowledge regarding circadian regulation of metabolism, how metabolic rhythms are synchronized with cardiovascular function, and whether circadian misalignment/disruption of metabolic processes contribute toward the pathogenesis of cardiovascular disease.
Collapse
Affiliation(s)
- Hind Lal
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yajing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Min Xie
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Martin E. Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
28
|
Guo Y, Livelo C, Melkani G. Time-restricted feeding regulates lipid metabolism under metabolic challenges. Bioessays 2023; 45:e2300157. [PMID: 37850554 PMCID: PMC10841423 DOI: 10.1002/bies.202300157] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Dysregulation of lipid metabolism is a commonly observed feature associated with metabolic syndrome and leads to the development of negative health outcomes such as obesity, diabetes mellitus, non-alcoholic fatty liver disease, or atherosclerosis. Time-restricted feeding/eating (TRF/TRE), an emerging dietary intervention, has been shown to promote pleiotropic health benefits including the alteration of diurnal expression of genes associated with lipid metabolism, as well as levels of lipid species. Although TRF likely induces a response in multiple organs leading to the modulation of lipid metabolism, a majority of the studies related to TRF effects on lipids have focused only on individual tissues, and furthermore there is a lack of insight into potential underlying mechanisms. In this review, we summarize the current insights regarding TRF effects on lipid metabolism and the potential mechanisms in adipose tissue, liver, skeletal muscle, and heart, and conclude by outlining possible avenues for future exploration.
Collapse
Affiliation(s)
- Yiming Guo
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christopher Livelo
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Girish Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
29
|
Alassaf M, Rajan A. Diet-induced glial insulin resistance impairs the clearance of neuronal debris in Drosophila brain. PLoS Biol 2023; 21:e3002359. [PMID: 37934726 PMCID: PMC10629620 DOI: 10.1371/journal.pbio.3002359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
Obesity significantly increases the risk of developing neurodegenerative disorders, yet the precise mechanisms underlying this connection remain unclear. Defects in glial phagocytic function are a key feature of neurodegenerative disorders, as delayed clearance of neuronal debris can result in inflammation, neuronal death, and poor nervous system recovery. Mounting evidence indicates that glial function can affect feeding behavior, weight, and systemic metabolism, suggesting that diet may play a role in regulating glial function. While it is appreciated that glial cells are insulin sensitive, whether obesogenic diets can induce glial insulin resistance and thereby impair glial phagocytic function remains unknown. Here, using a Drosophila model, we show that a chronic obesogenic diet induces glial insulin resistance and impairs the clearance of neuronal debris. Specifically, obesogenic diet exposure down-regulates the basal and injury-induced expression of the glia-associated phagocytic receptor, Draper. Constitutive activation of systemic insulin release from Drosophila insulin-producing cells (IPCs) mimics the effect of diet-induced obesity on glial Draper expression. In contrast, genetically attenuating systemic insulin release from the IPCs rescues diet-induced glial insulin resistance and Draper expression. Significantly, we show that genetically stimulating phosphoinositide 3-kinase (Pi3k), a downstream effector of insulin receptor (IR) signaling, rescues high-sugar diet (HSD)-induced glial defects. Hence, we establish that obesogenic diets impair glial phagocytic function and delays the clearance of neuronal debris.
Collapse
Affiliation(s)
- Mroj Alassaf
- Basic Sciences Division, Fred Hutch, Seattle, Washington, United States of America
| | - Akhila Rajan
- Basic Sciences Division, Fred Hutch, Seattle, Washington, United States of America
| |
Collapse
|
30
|
Liu DM, Wu ZX, Guan JY. Intercellular competitive growth dynamics with microenvironmental feedback. Phys Rev E 2023; 108:054105. [PMID: 38115538 DOI: 10.1103/physreve.108.054105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/11/2023] [Indexed: 12/21/2023]
Abstract
Normal life activities between cells rely crucially on the homeostasis of the cellular microenvironment, but aging and cancer will upset this balance. In this paper we introduce the microenvironmental feedback mechanism to the growth dynamics of multicellular organisms, which changes the cellular competitive ability and thereby regulates the growth of multicellular organisms. We show that the presence of microenvironmental feedback can effectively delay aging, but cancer cells may grow uncontrollably due to the emergence of the tumor microenvironment (TME). We study the effect of the fraction of cancer cells relative to that of senescent cells on the feedback rate of the microenvironment on the lifespan of multicellular organisms and find that the average lifespan shortened is close to the data for non-Hodgkin's lymphoma in Canada from 1980 to 2015. We also investigate how the competitive ability of cancer cells affects the lifespan of multicellular organisms and reveal that there is an optimal value of the competitive ability of cancer cells allowing the organism to survive longest. Interestingly, the proposed microenvironmental feedback mechanism can give rise to the phenomenon of Parrondo's paradox: When the competitive ability of cancer cells switches between a too-high and a too-low value, multicellular organisms are able to live longer than in each case individually. Our results may provide helpful clues for targeted therapies aimed at the TME.
Collapse
Affiliation(s)
- De-Ming Liu
- Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou University, Lanzhou, Gansu 730000, China and Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhi-Xi Wu
- Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou University, Lanzhou, Gansu 730000, China and Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jian-Yue Guan
- Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou University, Lanzhou, Gansu 730000, China and Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
31
|
Mühlematter C, Nielsen DS, Castro-Mejía JL, Brown SA, Rasch B, Wright KP, Walser JC, Schoch SF, Kurth S. Not simply a matter of parents-Infants' sleep-wake patterns are associated with their regularity of eating. PLoS One 2023; 18:e0291441. [PMID: 37796923 PMCID: PMC10553286 DOI: 10.1371/journal.pone.0291441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023] Open
Abstract
In adults there are indications that regular eating patterns are related to better sleep quality. During early development, sleep and eating habits experience major maturational transitions. Further, the bacterial landscape of the gut microbiota undergoes a rapid increase in complexity. Yet little is known about the association between sleep, eating patterns and the gut microbiota. We first hypothesized that higher eating regularity is associated with more mature sleep patterns, and second, that this association is mediated by the maturational status of the gut microbiota. To test this hypothesis, we performed a longitudinal study in 162 infants to assess actigraphy, diaries of sleep and eating times, and stool microbiota composition at ages 3, 6 and 12 months. To comprehensively capture infants' habitual sleep-wake patterns, 5 sleep composites that characterize infants' sleep habits across multiple days in their home environment were computed. To assess timing of eating habits, we developed an Eating Regularity Index (ERI). Gut microbial composition was assessed by 16S rRNA gene amplicon sequencing, and its maturation was assessed based on alpha diversity, bacterial maturation index, and enterotype. First, our results demonstrate that increased eating regularity (higher ERI) in infants is associated with less time spent awake during the night (sleep fragmentation) and more regular sleep patterns. Second, the associations of ERI with sleep evolve with age. Third, the link between infant sleep and ERI remains significant when controlling for parents' subjectively rated importance of structuring their infant's eating and sleeping times. Finally, the gut microbial maturational markers did not account for the link between infant's sleep patterns and ERI. Thus, infants who eat more regularly have more mature sleep patterns, which is independent of the maturational status of their gut microbiota. Interventions targeting infant eating rhythm thus constitute a simple, ready-to-use anchor to improve sleep quality.
Collapse
Affiliation(s)
| | - Dennis S. Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Josue L. Castro-Mejía
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Steven A. Brown
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Kenneth P. Wright
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | | | - Sarah F. Schoch
- Donders Institute for Brain, Radboud University Medical Center, Nijmegen, Netherlands
| | - Salome Kurth
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Roth JR, de Moraes RCM, Xu BP, Crawley SR, Khan MA, Melkani GC. Rapamycin reduces neuronal mutant huntingtin aggregation and ameliorates locomotor performance in Drosophila. Front Aging Neurosci 2023; 15:1223911. [PMID: 37823007 PMCID: PMC10562706 DOI: 10.3389/fnagi.2023.1223911] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease characterized by movement and cognitive dysfunction. HD is caused by a CAG expansion in exon 1 of the HTT gene that leads to a polyglutamine (PQ) repeat in the huntingtin protein, which aggregates in the brain and periphery. Previously, we used Drosophila models to determine that Htt-PQ aggregation in the heart causes shortened lifespan and cardiac dysfunction that is ameliorated by promoting chaperonin function or reducing oxidative stress. Here, we further study the role of neuronal mutant huntingtin and how it affects peripheral function. We overexpressed normal (Htt-PQ25) or expanded mutant (Htt-PQ72) exon 1 of huntingtin in Drosophila neurons and found that mutant huntingtin caused age-dependent Htt-PQ aggregation in the brain and could cause a loss of synapsin. To determine if this neuronal dysfunction led to peripheral dysfunction, we performed a negative geotaxis assay to measure locomotor performance and found that neuronal mutant huntingtin caused an age-dependent decrease in locomotor performance. Next, we found that rapamycin reduced Htt-PQ aggregation in the brain. These results demonstrate the role of neuronal Htt-PQ in dysfunction in models of HD, suggest that brain-periphery crosstalk could be important to the pathogenesis of HD, and show that rapamycin reduces mutant huntingtin aggregation in the brain.
Collapse
Affiliation(s)
- Jonathan R. Roth
- Department of Pathology, Cellular and Molecular Division, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ruan Carlos Macedo de Moraes
- Department of Pathology, Cellular and Molecular Division, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Brittney P. Xu
- Department of Pathology, Cellular and Molecular Division, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Savannah R. Crawley
- Department of Pathology, Cellular and Molecular Division, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Malghalara A. Khan
- Department of Pathology, Cellular and Molecular Division, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Girish C. Melkani
- Department of Pathology, Cellular and Molecular Division, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
33
|
Cheng Y, Chi Y, Sun L, Wang GZ. Dominant constraints on the evolution of rhythmic gene expression. Comput Struct Biotechnol J 2023; 21:4301-4311. [PMID: 37692081 PMCID: PMC10492206 DOI: 10.1016/j.csbj.2023.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023] Open
Abstract
Although the individual transcriptional regulators of the core circadian clock are distinct among different organisms, the autoregulatory feedback loops they form are conserved. This unified design principle explains how daily physiological activities oscillate across species. However, it is unknown whether analogous design principles govern the gene expression output of circadian clocks. In this study, we performed a comparative analysis of rhythmic gene expression in eight diverse species and identified four common distribution patterns of cycling gene expression across these species. We hypothesized that the maintenance of reduced energetic costs constrains the evolution of rhythmic gene expression. Our large-scale computational simulations support this hypothesis by showing that selection against high-energy expenditure completely regenerates all cycling gene patterns. Moreover, we find that the peaks of rhythmic expression have been subjected to this type of selective pressure. The results suggest that selective pressure from circadian regulation efficiently removes unnecessary gene products from the transcriptome, thereby significantly impacting its evolutionary path.
Collapse
Affiliation(s)
| | | | | | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
34
|
He L, Wu B, Shi J, Du J, Zhao Z. Regulation of feeding and energy homeostasis by clock-mediated Gart in Drosophila. Cell Rep 2023; 42:112912. [PMID: 37531254 DOI: 10.1016/j.celrep.2023.112912] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/19/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023] Open
Abstract
Feeding behavior is essential for growth and survival of animals; however, relatively little is known about its intrinsic mechanisms. Here, we demonstrate that Gart is expressed in the glia, fat body, and gut and positively regulates feeding behavior via cooperation and coordination. Gart in the gut is crucial for maintaining endogenous feeding rhythms and food intake, while Gart in the glia and fat body regulates energy homeostasis between synthesis and metabolism. These roles of Gart further impact Drosophila lifespan. Importantly, Gart expression is directly regulated by the CLOCK/CYCLE heterodimer via canonical E-box, in which the CLOCKs (CLKs) in the glia, fat body, and gut positively regulate Gart of peripheral tissues, while the core CLK in brain negatively controls Gart of peripheral tissues. This study provides insight into the complex and subtle regulatory mechanisms of feeding and lifespan extension in animals.
Collapse
Affiliation(s)
- Lei He
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Binbin Wu
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Jian Shi
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Juan Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China; College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China.
| |
Collapse
|
35
|
Gangitano E, Martinez-Sanchez N, Bellini MI, Urciuoli I, Monterisi S, Mariani S, Ray D, Gnessi L. Weight Loss and Sleep, Current Evidence in Animal Models and Humans. Nutrients 2023; 15:3431. [PMID: 37571368 PMCID: PMC10420950 DOI: 10.3390/nu15153431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Sleep is a vital process essential for survival. The trend of reduction in the time dedicated to sleep has increased in industrialized countries, together with the dramatic increase in the prevalence of obesity and diabetes. Short sleep may increase the risk of obesity, diabetes and cardiovascular disease, and on the other hand, obesity is associated with sleep disorders, such as obstructive apnea disease, insomnia and excessive daytime sleepiness. Sleep and metabolic disorders are linked; therefore, identifying the physiological and molecular pathways involved in sleep regulation and metabolic homeostasis can play a major role in ameliorating the metabolic health of the individual. Approaches aimed at reducing body weight could provide benefits for both cardiometabolic risk and sleep quality, which indirectly, in turn, may determine an amelioration of the cardiometabolic phenotype of individuals. We revised the literature on weight loss and sleep, focusing on the mechanisms and the molecules that may subtend this relationship in humans as in animal models.
Collapse
Affiliation(s)
- Elena Gangitano
- OCDEM Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Noelia Martinez-Sanchez
- OCDEM Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | | | - Irene Urciuoli
- Department of Surgery, Sapienza University of Rome, 00161 Rome, Italy
| | - Stefania Monterisi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Stefania Mariani
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - David Ray
- OCDEM Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Lucio Gnessi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
36
|
Mihaylova MM, Chaix A, Delibegovic M, Ramsey JJ, Bass J, Melkani G, Singh R, Chen Z, Ja WW, Shirasu-Hiza M, Latimer MN, Mattison JA, Thalacker-Mercer AE, Dixit VD, Panda S, Lamming DW. When a calorie is not just a calorie: Diet quality and timing as mediators of metabolism and healthy aging. Cell Metab 2023; 35:1114-1131. [PMID: 37392742 PMCID: PMC10528391 DOI: 10.1016/j.cmet.2023.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/07/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
An epidemic of obesity has affected large portions of the world, increasing the risk of developing many different age-associated diseases, including cancer, cardiovascular disease, and diabetes. In contrast with the prevailing notion that "a calorie is just a calorie," there are clear differences, within and between individuals, in the metabolic response to different macronutrient sources. Recent findings challenge this oversimplification; calories from different macronutrient sources or consumed at different times of day have metabolic effects beyond their value as fuel. Here, we summarize discussions conducted at a recent NIH workshop that brought together experts in calorie restriction, macronutrient composition, and time-restricted feeding to discuss how dietary composition and feeding schedule impact whole-body metabolism, longevity, and healthspan. These discussions may provide insights into the long-sought molecular mechanisms engaged by calorie restriction to extend lifespan, lead to novel therapies, and potentially inform the development of a personalized food-as-medicine approach to healthy aging.
Collapse
Affiliation(s)
- Maria M Mihaylova
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA; The Ohio State University, Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, Columbus, OH, USA.
| | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Mirela Delibegovic
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen, UK
| | - Jon J Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Girish Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rajat Singh
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - William W Ja
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Michele Shirasu-Hiza
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - Mary N Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Anna E Thalacker-Mercer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vishwa Deep Dixit
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA; Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA; Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Satchidananda Panda
- Regulatory Biology Lab, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
37
|
In Het Panhuis W, Schönke M, Modder M, Tom HE, Lalai RA, Pronk ACM, Streefland TCM, van Kerkhof LWM, Dollé MET, Depuydt MAC, Bot I, Vos WG, Bosmans LA, van Os BW, Lutgens E, Rensen PCN, Kooijman S. Time-restricted feeding attenuates hypercholesterolaemia and atherosclerosis development during circadian disturbance in APOE∗3-Leiden.CETP mice. EBioMedicine 2023; 93:104680. [PMID: 37356205 DOI: 10.1016/j.ebiom.2023.104680] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Circadian disturbance (CD) is the consequence of a mismatch between endogenous circadian rhythms, behaviour, and/or environmental cycles, and frequently occurs during shift work. Shift work has been associated with elevated risk for atherosclerotic cardiovascular disease (asCVD) in humans, but evidence for the effectiveness of prevention strategies is lacking. METHODS Here, we applied time-restricted feeding (TRF) as a strategy to counteract atherosclerosis development during CD in female APOE∗3-Leiden.CETP mice, a well-established model for humanized lipoprotein metabolism. Control groups were subjected to a fixed 12:12 h light-dark cycle, while CD groups were subjected to 6-h phase advancement every 3 days. Groups had either ad libitum (AL) access to food or were subjected to TRF with restricted food access to the dark phase. FINDINGS TRF did not prevent the increase in the relative abundance of circulating inflammatory monocytes and elevation of (postprandial) plasma triglycerides during CD. Nonetheless, TRF reduced atherosclerotic lesion size and prevented an elevation in macrophage content of atherosclerotic lesions during CD, while it increased the relative abundance of anti-inflammatory monocytes, prevented activation of T cells, and lowered plasma total cholesterol levels and markers of hepatic cholesterol synthesis. These effects were independent of total food intake. INTERPRETATION We propose that time restricted eating could be a promising strategy for the primary prevention of asCVD risk in shift workers, which warrants future study in humans. FUNDING This work was funded by the Novo Nordisk Foundation, the Netherlands Ministry of Social Affairs and Employment, Amsterdam Cardiovascular Sciences, and the Dutch Heart Foundation.
Collapse
Affiliation(s)
- Wietse In Het Panhuis
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Milena Schönke
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Melanie Modder
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Hannah E Tom
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Reshma A Lalai
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Amanda C M Pronk
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Trea C M Streefland
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Linda W M van Kerkhof
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Marie A C Depuydt
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| | - Ilze Bot
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| | - Winnie G Vos
- Department of Medical Biochemistry, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam Immunity and Infection, Amsterdam, the Netherlands
| | - Laura A Bosmans
- Department of Medical Biochemistry, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam Immunity and Infection, Amsterdam, the Netherlands
| | - Bram W van Os
- Department of Medical Biochemistry, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam Immunity and Infection, Amsterdam, the Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam Immunity and Infection, Amsterdam, the Netherlands; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
38
|
Panda S, Maier G, Villareal DT. Targeting Energy Intake and Circadian Biology to Engage Mechanisms of Aging in Older Adults With Obesity: Calorie Restriction and Time-Restricted Eating. J Gerontol A Biol Sci Med Sci 2023; 78:79-85. [PMID: 37325958 PMCID: PMC10272989 DOI: 10.1093/gerona/glad069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 06/17/2023] Open
Abstract
With the rise in obesity across age groups, it has been a hindrance to engaging in physical activity and mobility in older adults. Daily calorie restriction (CR) up to 25% has been the cornerstone of obesity management even though the safety in older adults remains incompletely understood. Although some adults can follow CR with clinically significant weight loss and improved health metrics, CR faces 2 obstacles-many fail to adopt CR and even among those who can adopt it short term, long-term compliance can be difficult. Furthermore, there is a continuing debate about the net benefits of CR-induced weight loss in older adults because of the concern that CR may worsen sarcopenia, osteopenia, and frailty. The science of circadian rhythm and its plasticity toward the timing of nutrition offer promise to alleviate some challenges of CR. The new concept of Time-Restricted Feeding/Eating (TRF for animal studies and TRE for human studies) can be an actionable approach to sustaining the circadian regulation of physiology, metabolism, and behavior. TRE can often (not always) lead to CR. Hence, the combined effect of TRE through circadian optimization and CR can potentially reduce weight and improve cardiometabolic and functional health while lessening the detrimental effects of CR. However, the science and efficacy of TRE as a sustainable lifestyle in humans are in its infancy, whereas animal studies have offered many desirable outcomes and underlying mechanisms. In this article, we will discuss the scope and opportunities to combine CR, exercise, and TRE to improve functional capacity among older adults with obesity.
Collapse
Affiliation(s)
| | - Geraldine Maier
- The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Dennis T Villareal
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, Texas, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, Texas, USA
| |
Collapse
|
39
|
Shukla P, Melkani GC. Mitochondrial epigenetic modifications and nuclear-mitochondrial communication: A new dimension towards understanding and attenuating the pathogenesis in women with PCOS. Rev Endocr Metab Disord 2023; 24:317-326. [PMID: 36705802 PMCID: PMC10150397 DOI: 10.1007/s11154-023-09789-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 01/28/2023]
Abstract
Mitochondrial DNA (mtDNA) epigenetic modifications have recently gained attention in a plethora of complex diseases, including polycystic ovary syndrome (PCOS), a common cause of infertility in women of reproductive age. Herein we discussed mtDNA epigenetic modifications and their impact on nuclear-mitochondrial interactions in general and the latest advances indicating the role of mtDNA methylation in the pathophysiology of PCOS. We highlighted epigenetic changes in nuclear-related mitochondrial genes, including nuclear transcription factors that regulate mitochondrial function and may be involved in the development of PCOS or its related traits. Additionally, therapies targeting mitochondrial epigenetics, including time-restricted eating (TRE), which has been shown to have beneficial effects by improving mitochondrial function and may be mediated by epigenetic modifications, have also been discussed. As PCOS has become a major metabolic disorder and a risk factor for obesity, cardiometabolic disorders, and diabetes, lifestyle/behavior intervention using TRE that reinforces feeding-fasting rhythms without reducing caloric intake may be a promising therapeutic strategy for attenuating the pathogenesis. Furthermore, future perspectives in the area of mitochondrial epigenetics are described.
Collapse
Affiliation(s)
- Pallavi Shukla
- Department of Molecular Endocrinology, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai, 400012, India.
| | - Girish C Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| |
Collapse
|
40
|
Tang D, Tang Q, Huang W, Zhang Y, Tian Y, Fu X. Fasting: From Physiology to Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204487. [PMID: 36737846 PMCID: PMC10037992 DOI: 10.1002/advs.202204487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Overnutrition is a risk factor for various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. Therefore, targeting overnutrition represents a simple but attractive strategy for the treatment of these increasing public health threats. Fasting as a dietary intervention for combating overnutrition has been extensively studied. Fasting has been practiced for millennia, but only recently have its roles in the molecular clock, gut microbiome, and tissue homeostasis and function emerged. Fasting can slow aging in most species and protect against various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. These centuried and unfading adventures and explorations suggest that fasting has the potential to delay aging and help prevent and treat diseases while minimizing side effects caused by chronic dietary interventions. In this review, recent animal and human studies concerning the role and underlying mechanism of fasting in physiology and pathology are summarized, the therapeutic potential of fasting is highlighted, and the combination of pharmacological intervention and fasting is discussed as a new treatment regimen for human diseases.
Collapse
Affiliation(s)
- Dongmei Tang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Qiuyan Tang
- Neurology Department of Integrated Traditional Chinese and Western Medicine, School of Clinical MedicineChengdu University of Traditional Chinese MedicineChengduSichuan610075China
| | - Wei Huang
- West China Centre of Excellence for PancreatitisInstitute of Integrated Traditional Chinese and Western MedicineWest China‐Liverpool Biomedical Research CentreWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yuwei Zhang
- Division of Endocrinology and MetabolismWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| |
Collapse
|
41
|
Livelo C, Guo Y, Abou Daya F, Rajasekaran V, Varshney S, Le HD, Barnes S, Panda S, Melkani GC. Time-restricted feeding promotes muscle function through purine cycle and AMPK signaling in Drosophila obesity models. Nat Commun 2023; 14:949. [PMID: 36810287 PMCID: PMC9944249 DOI: 10.1038/s41467-023-36474-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/01/2023] [Indexed: 02/23/2023] Open
Abstract
Obesity caused by genetic and environmental factors can lead to compromised skeletal muscle function. Time-restricted feeding (TRF) has been shown to prevent muscle function decline from obesogenic challenges; however, its mechanism remains unclear. Here we demonstrate that TRF upregulates genes involved in glycine production (Sardh and CG5955) and utilization (Gnmt), while Dgat2, involved in triglyceride synthesis is downregulated in Drosophila models of diet- and genetic-induced obesity. Muscle-specific knockdown of Gnmt, Sardh, and CG5955 lead to muscle dysfunction, ectopic lipid accumulation, and loss of TRF-mediated benefits, while knockdown of Dgat2 retains muscle function during aging and reduces ectopic lipid accumulation. Further analyses demonstrate that TRF upregulates the purine cycle in a diet-induced obesity model and AMPK signaling-associated pathways in a genetic-induced obesity model. Overall, our data suggest that TRF improves muscle function through modulations of common and distinct pathways under different obesogenic challenges and provides potential targets for obesity treatments.
Collapse
Affiliation(s)
- Christopher Livelo
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Yiming Guo
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Farah Abou Daya
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Vasanthi Rajasekaran
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Shweta Varshney
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA, 92182, USA
| | - Hiep D Le
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Girish C Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
42
|
Roth JR, Varshney S, de Moraes RCM, Melkani GC. Circadian-mediated regulation of cardiometabolic disorders and aging with time-restricted feeding. Obesity (Silver Spring) 2023; 31 Suppl 1:40-49. [PMID: 36623845 PMCID: PMC10089654 DOI: 10.1002/oby.23664] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 01/11/2023]
Abstract
Circadian rhythms are present throughout biology, from the molecular level to complex behaviors such as eating and sleeping. They are driven by molecular clocks within cells, and different tissues can have unique rhythms. Circadian disruption can trigger obesity and other common metabolic disorders such as aging, diabetes, and cardiovascular disease, and circadian genes control metabolism. At an organismal level, feeding and fasting rhythms are key drivers of circadian rhythms. This underscores the bidirectional relationship between metabolism and circadian rhythms, and many metabolic disorders have circadian disruption or misalignment. Therefore, studying circadian rhythms may offer new avenues for understanding the etiology and management of obesity. This review describes how circadian rhythm dysregulation is linked with cardiometabolic disorders and how the lifestyle intervention of time-restricted feeding (TRF) regulates them. TRF reinforces feeding-fasting rhythms without reducing caloric intake and ameliorates metabolic disorders such as obesity and associated cardiac dysfunction, along with reducing inflammation. TRF optimizes the expression of genes and pathways related to normal metabolic function, linking metabolism with TRF's benefits and demonstrating the molecular link between metabolic disorders and circadian rhythms. Thus, TRF has tremendous therapeutic potential that could be easily adopted to reduce obesity-linked dysfunction and cardiometabolic disorders.
Collapse
Affiliation(s)
- Jonathan R. Roth
- Department of Pathology, Division of Molecular and Cellular Pathology, School of Medicine, The University of Alabama at Birmingham, AL 35294, USA
| | - Shweta Varshney
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ruan Carlos Macedo de Moraes
- Department of Pathology, Division of Molecular and Cellular Pathology, School of Medicine, The University of Alabama at Birmingham, AL 35294, USA
| | - Girish C. Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, School of Medicine, The University of Alabama at Birmingham, AL 35294, USA
| |
Collapse
|
43
|
Gallop MR, Tobin SY, Chaix A. Finding balance: understanding the energetics of time-restricted feeding in mice. Obesity (Silver Spring) 2023; 31 Suppl 1:22-39. [PMID: 36513496 PMCID: PMC9877167 DOI: 10.1002/oby.23607] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 12/15/2022]
Abstract
Over the course of mammalian evolution, the ability to store energy likely conferred a survival advantage when food became scarce. A long-term increase in energy storage results from an imbalance between energy intake and energy expenditure, two tightly regulated parameters that generally balance out to maintain a fairly stable body weight. Understanding the molecular determinants of this feat likely holds the key to new therapeutic development to manage obesity and associated metabolic dysfunctions. Time-restricted feeding (TRF), a dietary intervention that limits feeding to the active phase, can prevent and treat obesity and metabolic dysfunction in rodents fed a high-fat diet, likely by exerting effects on energetic balance. Even when body weight is lower in mice on active-phase TRF, food intake is generally isocaloric as compared with ad libitum fed controls. This discrepancy between body weight and energy intake led to the hypothesis that energy expenditure is increased during TRF. However, at present, there is no consensus in the literature as to how TRF affects energy expenditure and energy balance as a whole, and the mechanisms behind metabolic adaptation under TRF are unknown. This review examines our current understanding of energy balance on TRF in rodents and provides a framework for future studies to evaluate the energetics of TRF and its molecular determinants.
Collapse
Affiliation(s)
- Molly R Gallop
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Selene Y Tobin
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| |
Collapse
|
44
|
Abstract
The gut microbiome is well known to impact host physiology and health. Given widespread control of physiology by circadian clocks, we asked how the microbiome interacts with circadian rhythms in the Drosophila gut. The microbiome did not cycle in flies fed ad libitum, and timed feeding (TF) drove limited cycling only in clockless per01 flies. However, TF and loss of the microbiome influenced the composition of the gut cycling transcriptome, independently and together. Moreover, both interventions increased the amplitude of rhythmic gene expression, with effects of TF at least partly due to changes in histone acetylation. Contrary to expectations, timed feeding rendered animals more sensitive to stress. Analysis of microbiome function in circadian physiology revealed that germ-free flies reset more rapidly with shifts in the light:dark cycle. We propose that the microbiome stabilizes cycling in the host gut to prevent rapid fluctuations with changing environmental conditions.
Collapse
|
45
|
Hwangbo DS, Kwon YJ, Iwanaszko M, Jiang P, Abbasi L, Wright N, Alli S, Hutchison AL, Dinner AR, Braun RI, Allada R. Dietary Restriction Impacts Peripheral Circadian Clock Output Important for Longevity in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522718. [PMID: 36711760 PMCID: PMC9881908 DOI: 10.1101/2023.01.04.522718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Circadian clocks may mediate lifespan extension by caloric or dietary restriction (DR). We find that the core clock transcription factor Clock is crucial for a robust longevity and fecundity response to DR in Drosophila. To identify clock-controlled mediators, we performed RNA-sequencing from abdominal fat bodies across the 24 h day after just 5 days under control or DR diets. In contrast to more chronic DR regimens, we did not detect significant changes in the rhythmic expression of core clock genes. Yet we discovered that DR induced de novo rhythmicity or increased expression of rhythmic clock output genes. Network analysis revealed that DR increased network connectivity in one module comprised of genes encoding proteasome subunits. Adult, fat body specific RNAi knockdown demonstrated that proteasome subunits contribute to DR-mediated lifespan extension. Thus, clock control of output links DR-mediated changes in rhythmic transcription to lifespan extension.
Collapse
Affiliation(s)
- Dae-Sung Hwangbo
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
- Department of Biology, University of Louisville, Louisville, 40292, KY, USA
| | - Yong-Jae Kwon
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Marta Iwanaszko
- Biostatistics Division, Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Peng Jiang
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Ladan Abbasi
- Department of Biology, University of Louisville, Louisville, 40292, KY, USA
| | - Nicholas Wright
- Department of Biology, University of Louisville, Louisville, 40292, KY, USA
| | - Sarayu Alli
- Department of Biology, University of Louisville, Louisville, 40292, KY, USA
| | - Alan L. Hutchison
- James Franck Institute, Department of Chemistry, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Aaron R. Dinner
- James Franck Institute, Department of Chemistry, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Rosemary I Braun
- Biostatistics Division, Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
46
|
Deota S, Lin T, Chaix A, Williams A, Le H, Calligaro H, Ramasamy R, Huang L, Panda S. Diurnal transcriptome landscape of a multi-tissue response to time-restricted feeding in mammals. Cell Metab 2023; 35:150-165.e4. [PMID: 36599299 PMCID: PMC10026518 DOI: 10.1016/j.cmet.2022.12.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/08/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023]
Abstract
Time-restricted feeding (TRF) is an emerging behavioral nutrition intervention that involves a daily cycle of feeding and fasting. In both animals and humans, TRF has pleiotropic health benefits that arise from multiple organ systems, yet the molecular basis of TRF-mediated benefits is not well understood. Here, we subjected mice to isocaloric ad libitum feeding (ALF) or TRF of a western diet and examined gene expression changes in samples taken from 22 organs and brain regions collected every 2 h over a 24-h period. We discovered that TRF profoundly impacts gene expression. Nearly 80% of all genes show differential expression or rhythmicity under TRF in at least one tissue. Functional annotation of these changes revealed tissue- and pathway-specific impacts of TRF. These findings and resources provide a critical foundation for future mechanistic studies and will help to guide human time-restricted eating (TRE) interventions to treat various disease conditions with or without pharmacotherapies.
Collapse
Affiliation(s)
- Shaunak Deota
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Terry Lin
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Amandine Chaix
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - April Williams
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hiep Le
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hugo Calligaro
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ramesh Ramasamy
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ling Huang
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Satchidananda Panda
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
47
|
Lushchak O, Strilbytska O, Storey KB. Gender-specific effects of pro-longevity interventions in Drosophila. Mech Ageing Dev 2023; 209:111754. [PMID: 36375654 DOI: 10.1016/j.mad.2022.111754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Sex differences in lifespan are well recognized in the majority of animal species. For example, in male versus female Drosophila melanogaster there are significant differences in behavior and physiology. However, little is known about the underlying mechanisms of gender differences in responses to pro-longevity interventions in this model organism. Here we summarize the existing data on the effects of nutritional and pharmacological anti-aging interventions such as nutrition regimens, diet and dietary supplementation on the lifespan of male and female Drosophila. We demonstrate that males and females have different sensitivities to interventions and that the effects are highly dependent on genetic background, mating, dose and exposure duration. Our work highlights the importance of understanding the mechanisms that underlie the gender-specific effect of anti-aging manipulations. This will provide insight into how these benefits may be valuable for elucidating the primary physiological and molecular targets involved in aging and lifespan determination.
Collapse
Affiliation(s)
- Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk 76018, Ukraine; Research and Development University, 13a Shota Rustaveli Str., Ivano-Frankivsk 76018, Ukraine.
| | - Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk 76018, Ukraine
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
48
|
Yoo SH. Circadian regulation of cardiac muscle function and protein degradation. Chronobiol Int 2023; 40:4-12. [PMID: 34521283 PMCID: PMC8918439 DOI: 10.1080/07420528.2021.1957911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
The circadian clock plays a fundamental role in physiology. In particular, the heart is a target organ where the clock orchestrates various aspects of cardiac function. At the molecular level, the clock machinery governs daily rhythms of gene expression. Such circadian regulation is in tune with the dynamic nature of heart structure and function, and provides the foundation for chronotherapeutic applications in cardiovascular diseases. In comparison, a regulatory role of the clock in cardiac protein degradation is poorly documented. Sarcomere is the structural and functional unit responsible for cardiac muscle contraction, and sarcomere components are closely regulated by protein folding and proteolysis. Emerging evidence supports a role of the circadian clock in governing sarcomere integrity and function. Particularly, recent studies uncovered a circadian regulation of a core sarcomere component TCAP. It is possible that circadian regulation of the cardiac muscle protein turnover is a key regulatory mechanism underlying cardiac remodeling in response to physiological and environmental stimuli. While the detailed regulatory mechanisms and the molecular links to cardiac (patho)physiology remain to be further studied, therapeutic strategies targeting circadian control in the heart may markedly enhance intervention outcomes against cardiovascular disease.
Collapse
Affiliation(s)
- Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
49
|
Banerjee S, Ray S. Circadian medicine for aging attenuation and sleep disorders: Prospects and challenges. Prog Neurobiol 2023; 220:102387. [PMID: 36526042 DOI: 10.1016/j.pneurobio.2022.102387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/17/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Aging causes progressive deterioration of daily rhythms in behavioral and metabolic processes and disruption in the regular sleep-wake cycle. Circadian disruption is directly related to diverse age-induced health abnormalities. Rising evidence from various organisms shows that core clock gene mutations cause premature aging, reduced lifespan, and sleeping irregularities. Improving the clock functions and correcting its disruption by pharmacological interventions or time-regulated feeding patterns could be a novel avenue for effective clinical management of aging and sleep disorders. To this end, many drugs for sleep disorders and anti-aging compounds interact with the core clock machinery and alter the circadian output. Evaluation of dosing time-dependency and circadian regulation of drug metabolism for therapeutic improvement of the existing drugs is another fundamental facet of chronomedicine. Multiple studies have demonstrated dose-dependent manipulation of the circadian period and phase-shifting by pharmacologically active compounds. The chronobiology research field is gradually moving towards the development of novel therapeutic strategies based on targeting the molecular clock or dosing time-oriented medications. However, such translational research ventures would require more experimental evidence from studies on humans. This review discusses the impact of circadian rhythms on aging and sleep, emphasizing the potentiality of circadian medicine in aging attenuation and sleep disorders.
Collapse
Affiliation(s)
- Srishti Banerjee
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
Young ME, Latimer MN. Circadian rhythms in cardiac metabolic flexibility. Chronobiol Int 2023; 40:13-26. [PMID: 34162286 PMCID: PMC8695643 DOI: 10.1080/07420528.2021.1939366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/01/2021] [Indexed: 12/25/2022]
Abstract
Numerous aspects of cardiovascular physiology (e.g., heart rate, blood pressure) and pathology (e.g., myocardial infarction and sudden cardiac death) exhibit time-of-day-dependency. In association with day-night differences in energetic demand and substrate availability, the healthy heart displays remarkable metabolic flexibility through temporal partitioning of the metabolic fate of common substrates (glucose, lipid, amino acids). The purpose of this review is to highlight the contribution that circadian clocks provide toward 24-hr fluctuations in cardiac metabolism and to discuss whether attenuation and/or augmentation of these metabolic rhythms through adjustment of nutrient intake timing impacts cardiovascular disease development.
Collapse
Affiliation(s)
- Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Mary N Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|