1
|
Gu X, Lu H, Wang W, Zhao Z, Zhang W, Lu X. miR-130a-5p/TFPI2 axis promotes invasion of hepatocellular carcinoma by altering epithelial-to-mesenchymal transition. Discov Oncol 2025; 16:546. [PMID: 40244374 PMCID: PMC12006631 DOI: 10.1007/s12672-025-02296-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND MicroRNAs (miRNAs), particularly miR-130a-5p, play pivotal roles in the tumorigenesis and progression of hepatocellular carcinoma (HCC) by participating in diverse biological processes. The objective of this study was to elucidate the mechanistic basis by which miR-130a-5p regulates the expression of tissue factor pathway inhibitor-2 (TFPI2) and to demonstrate the subsequent impact of the miR-130a-5p/TFPI2 axis on HCC invasion. METHODS Expression levels of miR-130a-5p and TFPI2 were quantified in HepG2 cell lines using quantitative real-time PCR (qRT-PCR). Western blot and qRT-PCR were employed to assess the expression of TFPI2 and epithelial-to-mesenchymal transition (EMT)-related proteins in both cancer cells and tissues. miR-130a-5p knockdown and TFPI2 overexpression were achieved through transfection of HepG2 cells with short hairpin RNA (shRNA) and synthetic overexpression plasmids, respectively. A dual luciferase reporter assay was conducted to verify the binding of miR-130a-5p to TFPI2. Migration and invasion capabilities of cancer cells were evaluated using Transwell migration and invasion assays. A mouse xenograft tumor model was established to investigate tumor growth in vivo. Immunohistochemical (IHC) staining was utilized to examine the expression of EMT-related proteins in tumor tissues. RESULTS The dual-luciferase reporter assay confirmed that miR-130a-5p binds to the 3' untranslated region (3'UTR) of TFPI2 mRNA, inhibiting its luciferase activity. Western blot analysis revealed that miR-130a-5p negatively regulates TFPI2 protein expression and promotes EMT molecular events by targeting TFPI2 in HCC cells. Transwell assays demonstrated that downregulation of miR-130a-5p and upregulation of TFPI2 inhibited the migration and invasion abilities of HCC cells in vitro. Silencing of miR-130a-5p was found to retard the growth of HCC xenografts in vivo, decrease TFPI2 expression, and alter the EMT process. CONCLUSIONS miR-130a-5p binds to TFPI2 mRNA and promotes HCC cell migration, invasion, and xenograft tumor growth by regulating the EMT process. These findings suggest that the miR-130a-5p/TFPI2 axis may represent a promising therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Xiaoyuan Gu
- Department of Oncology, Shibei Hospital of Shanghai, Jing'an District, No. 4500, Gonghexin Road, Shanghai, China
| | - Hongmin Lu
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 145, Shandong Middle Road, Shanghai, 200127, China
| | - Wei Wang
- Department of Oncology, Shibei Hospital of Shanghai, Jing'an District, No. 4500, Gonghexin Road, Shanghai, China
| | - Zijun Zhao
- Department of Oncology, Shibei Hospital of Shanghai, Jing'an District, No. 4500, Gonghexin Road, Shanghai, China
| | - Weiqiang Zhang
- Department of Oncology, Shibei Hospital of Shanghai, Jing'an District, No. 4500, Gonghexin Road, Shanghai, China.
| | - Xinyuan Lu
- Department of Pathology, Shanghai Baoshan District Wusong Central Hospital (Wusong Branch, Zhongshan Hospital Affiliated to Fudan University), Shanghai, 200940, China.
| |
Collapse
|
2
|
Zeng L, Zhu L, Fu S, Li Y, Hu K. Mitochondrial Dysfunction-Molecular Mechanisms and Potential Treatment approaches of Hepatocellular Carcinoma. Mol Cell Biochem 2025; 480:2131-2142. [PMID: 39463200 DOI: 10.1007/s11010-024-05144-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Primary liver cancer (PLC), also known as hepatocellular carcinoma (HCC), is a common type of malignant tumor of the digestive system. Its pathological form has a significant negative impact on the patients' quality of life and ability to work, as well as a significant financial burden on society. Current researches had identified chronic hepatitis B virus infection, aflatoxin B1 exposure, and metabolic dysfunction-associated steatotic liver disease (MASLD) as the main causative factors of HCC. Numerous variables, including inflammatory ones, oxidative stress, apoptosis, autophagy, and others, have been linked to the pathophysiology of HCC. On the other hand, autoimmune regulation, inflammatory response, senescence of the hepatocytes, and mitochondrial dysfunction are all closely related to the pathogenesis of HCC. In fact, a growing number of studies have suggested that mitochondrial dysfunction in hepatocytes may be a key factor in the pathogenesis of HCC. In disorders linked to cancer, mitochondrial dysfunction has gained attention in recent 10 years. As the primary producer of adenosine triphosphate (ATP) in liver cells, mitochondria are essential for preserving cell viability and physiological processes. By influencing multiple pathological processes, including mitochondrial fission/fusion, mitophagy, cellular senescence, and cell death, mitochondrial dysfunction contributes to the development of HCC. We review the molecular mechanisms of HCC-associated mitochondrial dysfunction and discuss new directions for quality control of mitochondrial disorders as a treatment for HCC.
Collapse
Affiliation(s)
- Lianlin Zeng
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Lutao Zhu
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Shasha Fu
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Yangan Li
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Kehui Hu
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China.
| |
Collapse
|
3
|
Yang T, Wang M, Wang N, Pan M, Xu Y, You Q, Yao L, Xu J, Gu L, Sun X, Zhang L, Xu J, Li B, Wang G, Cai S, Lv G, Shen F. Cost-Effective Identification of Hepatocellular Carcinoma from Cirrhosis or Chronic Hepatitis Virus Infection Using Eight Methylated Plasma DNA Markers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2411945. [PMID: 40135830 DOI: 10.1002/advs.202411945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/20/2025] [Indexed: 03/27/2025]
Abstract
Early detection of hepatocellular carcinoma (HCC) in patients with liver cirrhosis (LC) and/or hepatitis virus B/C infection (HVI) improves survival, highlighting the need for accurate, affordable diagnostic tools. Here, 11 methylated DNA markers (MDMs) are identified during marker discovery. In phase I, each selected MDM is validated in 175 plasma samples (HCC, n = 85; LC/HVI, n = 72) by the CO-methylation aMplification rEal-Time PCR (COMET) assay. Of these, 8 MDMs are qualified for phase II study, where a logistic regression model (COMET-LR) is trained and validated with 336 plasma samples (HCC, n = 211; LC/HVI, n = 113; training vs validation, 2:1). In the validation, the COMET-LR achieved 90.0% sensitivity at 97.4% specificity. Notably, sensitivity in patients with TNM stage I, diameter<3 cm, AFP-negative (<20 ng mL-1), PIVKA-II-negative (<40 mAU mL-1) is 82.4%, 77.8%, 88.6%, and 85.7%, respectively. The COMET-LR outperformed multiple protein markers (AFP, AFP-L3, and PIVKA-II) and published scores for HCC screening (GALAD, Doylestown, and ASAP), in terms of both sensitivity and specificity. The assay represents a significant advancement in addressing the unmet need for accurate, non-invasive, accessible, and cost-effective early detection tools for LC/HVI individuals. Further validation in a prospective cohort is warranted.
Collapse
Affiliation(s)
- Tian Yang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Mingda Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Nanya Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
- Phase I clinical trials unit, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Mingxin Pan
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yu Xu
- Burning Rock Biotech, Guangzhou, 510300, China
| | | | - Lanqing Yao
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Jiahao Xu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Lihui Gu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Xiaodong Sun
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Lei Zhang
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Jiayue Xu
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Bingsi Li
- Burning Rock Biotech, Guangzhou, 510300, China
| | | | - Shangli Cai
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| |
Collapse
|
4
|
Ye Y, Zeng Y, Huang S, Zhu C, Wang Q. A Chemotherapy Response-Related Gene Signature and DNAJC8 as Key Mediators of Hepatocellular Carcinoma Progression and Drug Resistance. J Hepatocell Carcinoma 2025; 12:579-595. [PMID: 40130083 PMCID: PMC11932135 DOI: 10.2147/jhc.s506706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Background Chemotherapy resistance in hepatocellular carcinoma presents a significant challenge to improved patient outcomes. Identifying genes associated with chemotherapy response can enhance treatment strategies and prognostic models. Methods We analyzed the expression of chemotherapy response-related gene in hepatocellular carcinoma using TCGA and GSE109211 cohorts. We constructed a prognostic model using Least Absolute Shrinkage and Selection Operator (LASSO) analysis and assessed its efficacy using Kaplan-Meier survival analysis. Additionally, we evaluated the immune landscape and gene mutation profiles between different chemotherapy response-related gene (CRRG) subtypes. DNAJC8's role in hepatocellular carcinoma cell functions and chemotherapy resistance was further explored through gene knockdown experiments in vitro and in vivo. Results Differential expression analysis identified 220 common genes associated with chemotherapy response. The prognostic model incorporating seven key genes efficiently distinguished responders from non-responders and indicated poorer overall survival for the CRRG-high subtype. The CRRG value correlated with tumor stage and grade, and mutation profiles showed distinct patterns between CRRG subtypes. The CRRG-high subtype exhibited an immune-suppressive phenotype with higher expression of PD-L1 and CTLA-4. High DNAJC8 expression was linked to poor prognosis in multiple cohorts. Knocking down DNAJC8 significantly inhibited hepatocellular carcinoma cell proliferation, migration, invasion, and reduced sorafenib IC50. Conclusion The seven-gene CRRG model, particularly DNAJC8, holds potential for predicting chemotherapy response and serves as a therapeutic target in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yan Ye
- Ganzhou Key Laboratory of Molecular Medicine, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, People’s Republic of China
| | - Yanmei Zeng
- Ganzhou Key Laboratory of Molecular Medicine, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, People’s Republic of China
| | - Shenggang Huang
- Ganzhou Key Laboratory of Molecular Medicine, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, People’s Republic of China
- Department of Gastroenterology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, People’s Republic of China
| | - Chunping Zhu
- Ganzhou Key Laboratory of Molecular Medicine, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, People’s Republic of China
- Department of Gastroenterology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, People’s Republic of China
| | - Qingshui Wang
- College of Integrative Medicine, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China
| |
Collapse
|
5
|
Hwang SY, Danpanichkul P, Agopian V, Mehta N, Parikh ND, Abou-Alfa GK, Singal AG, Yang JD. Hepatocellular carcinoma: updates on epidemiology, surveillance, diagnosis and treatment. Clin Mol Hepatol 2025; 31:S228-S254. [PMID: 39722614 PMCID: PMC11925437 DOI: 10.3350/cmh.2024.0824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global burden, ranking as the third leading cause of cancer-related mortality. HCC due to chronic hepatitis B virus (HBV) or C virus (HCV) infection has decreased due to universal vaccination for HBV and effective antiviral therapy for both HBV and HCV, but HCC related to metabolic dysfunction-associated steatotic liver disease and alcohol-associated liver disease is increasing. Biannual liver ultrasonography and serum α-fetoprotein are the primary surveillance tools for early HCC detection among high-risk patients (e.g., cirrhosis, chronic HBV). Alternative surveillance tools such as blood-based biomarker panels and abbreviated magnetic resonance imaging (MRI) are being investigated. Multiphasic computed tomography or MRI is the standard for HCC diagnosis, but histological confirmation should be considered, especially when inconclusive findings are seen on cross-sectional imaging. Staging and treatment decisions are complex and should be made in multidisciplinary settings, incorporating multiple factors including tumor burden, degree of liver dysfunction, patient performance status, available expertise, and patient preferences. Early-stage HCC is best treated with curative options such as resection, ablation, or transplantation. For intermediate-stage disease, locoregional therapies are primarily recommended although systemic therapies may be preferred for patients with large intrahepatic tumor burden. In advanced-stage disease, immune checkpoint inhibitor-based therapy is the preferred treatment regimen. In this review article, we discuss the recent global epidemiology, risk factors, and HCC care continuum encompassing surveillance, diagnosis, staging, and treatments.
Collapse
Affiliation(s)
- Soo Young Hwang
- Department of Internal Medicine, University of Maryland Medical Center, Midtown Campus, Baltimore, Maryland, USA
| | - Pojsakorn Danpanichkul
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Vatche Agopian
- Dumont-UCLA Transplant and Liver Cancer Centers, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Neil Mehta
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, California, USA
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ghassan K Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
- Department of Medicine, Weill Medical College at Cornell University, New York, USA
- Trinity College Dublin, Dublin, Ireland
| | - Amit G Singal
- Division of Digestive and Liver Diseases, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
6
|
Sogbe M, Aliseda D, Sangro P, de la Torre-Aláez M, Sangro B, Argemi J. Prognostic value of circulating tumor DNA in different cancer types detected by ultra-low-pass whole-genome sequencing: a systematic review and patient-level survival data meta-analysis. Carcinogenesis 2025; 46:bgae073. [PMID: 39549302 PMCID: PMC11886806 DOI: 10.1093/carcin/bgae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024] Open
Abstract
Ultra-low-pass whole-genome sequencing (ULP-WGS) (≤0.5 × coverage) of plasma cell-free DNA (cfDNA) has emerged as a low-cost, promising tool to assess the circulating tumor DNA (ctDNA) fraction. This meta-analysis aims to summarize the current findings and comprehensively investigate the prognostic value of baseline ctDNA detected by ULP-WGS in solid tumors. A systematic review was carried out by searching PubMed/MEDLINE and Scopus databases to identify eligible studies conducted between January 2014 and January 2024. Inclusion criteria comprised studies with reported overall survival and progression-free survival outcomes across therapy-naïve patients with different solid tumors. All patients underwent baseline ULP-WGS of plasma cfDNA and were categorized as ctDNA positive (tumor fraction ≥10%) or negative (tumor fraction <10%). A one-stage meta-analysis was performed using patient-level survival data reconstructed from published articles. A Cox proportional hazards model with shared frailty was used to assess the difference in survival between arms. A total of six studies, comprising 620 patients (367 negative ctDNA and 253 positive ctDNA), were included in the overall survival analysis, while five studies, involving 349 patients (212 negative ctDNA and 137 positive ctDNA), were included in the progression-free survival analysis. The meta-analysis showed that patients with baseline positive ctDNA had a significantly higher risk of death (HR = 2.60, 95% CI: 2.01-3.36) and disease progression (HR = 2.28, 95% CI: 1.71-3.05) compared to those with negative ctDNA. The presence of a positive ctDNA at baseline is associated with increased risk of death and progression in patients with same-stage cancer.
Collapse
Affiliation(s)
- Miguel Sogbe
- Liver Unit and HPB Oncology Area, Clinica Universidad de Navarra, Av Pio XII 36, 31008, Pamplona, Spain
| | - Daniel Aliseda
- HPB and Liver Transplant Unit, Department of General Surgery and HPB Oncology Area, Clinica Universidad de Navarra, Av Pio XII 36, 31008, Pamplona, Spain
| | - Paloma Sangro
- Liver Unit and HPB Oncology Area, Clinica Universidad de Navarra, Calle Marquesado de Santa Marta 1, 28027, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Av Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Manuel de la Torre-Aláez
- Liver Unit and HPB Oncology Area, Clinica Universidad de Navarra, Calle Marquesado de Santa Marta 1, 28027, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Av Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Bruno Sangro
- Liver Unit and HPB Oncology Area, Clinica Universidad de Navarra, Av Pio XII 36, 31008, Pamplona, Spain
- Liver Unit and HPB Oncology Area, Clinica Universidad de Navarra, Calle Marquesado de Santa Marta 1, 28027, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Av Monforte de Lemos 3-5, 28029, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Calle Irunlarrea 3, 31008, Pamplona, Spain
| | - Josepmaria Argemi
- Liver Unit and HPB Oncology Area, Clinica Universidad de Navarra, Av Pio XII 36, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Av Monforte de Lemos 3-5, 28029, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Calle Irunlarrea 3, 31008, Pamplona, Spain
- Center for Applied Medical Research (CIMA), RNA and DNA Medicine Program, University of Navarra, Av Pio XII 55, 31008, Pamplona, Spain
| |
Collapse
|
7
|
Alvarado-Tapias E, Maya-Miles D, Albillos A, Aller R, Ampuero J, Andrade RJ, Arechederra M, Aspichueta P, Banales JM, Blas-García A, Caparros E, Cardoso Delgado T, Carrillo-Vico A, Claria J, Cubero FJ, Díaz-Ruiz A, Fernández-Barrena MG, Fernández-Iglesias A, Fernández-Veledo S, Francés R, Gallego-Durán R, Gracia-Sancho J, Irimia M, Lens S, Martínez-Chantar ML, Mínguez B, Muñoz-Hernández R, Nogueiras R, Ramos-Molina B, Riveiro-Barciela M, Rodríguez-Perálvarez ML, Romero-Gómez M, Sabio G, Sancho-Bru P, Ventura-Cots M, Vidal S, Gahete MD. Proceedings of the 5th Meeting of Translational Hepatology, organized by the Spanish Association for the Study of the Liver (AEEH). GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:502207. [PMID: 38723772 DOI: 10.1016/j.gastrohep.2024.502207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 11/30/2024]
Abstract
This is the summary report of the 5th Translational Hepatology Meeting, endorsed by the Spanish Association for the Study of the Liver (AEEH) and held in Seville, Spain, in October 2023. The meeting aimed to provide an update on the latest advances in the field of basic and translational hepatology, covering different molecular, cellular, and pathophysiological aspects of the most relevant clinical challenges in liver pathologies. This includes the identification of novel biomarkers and diagnostic tools, the understanding of the relevance of immune response and inflammation in liver diseases, the characterization of current medical approaches to reverse liver diseases, the incorporation of novel molecular insights through omics techniques, or the characterization of the impact of toxic and metabolic insults, as well as other organ crosstalk, in liver pathophysiology.
Collapse
Affiliation(s)
- Edilmar Alvarado-Tapias
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Gastroenterology, Hospital Santa Creu I Sant Pau, Institut de Recerca Sant Pau, Universidad Autónoma de Barcelona, Barcelona, Spain.
| | - Douglas Maya-Miles
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain.
| | - Agustin Albillos
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Servicio de Gastroenterología y Hepatología, Hospital Universitario Ramón y Cajal/Universidad de Alcalá/Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Rocio Aller
- BioCritic, Group for Biomedical Research in Critical Care Medicine, Spain; Department of Medicine, Dermatology and Toxicology, Universidad de Valladolid, Spain; Gastroenterology Unit, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Javier Ampuero
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Raul J Andrade
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Maria Arechederra
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Patricia Aspichueta
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain; Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Jesus M Banales
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), Ikerbasque, Donostia-San Sebastian, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Ana Blas-García
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Fisiología, Universitat de València, Av. Blasco Ibáñez, 15, 46010 Valencia, Spain; FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Av. de Catalunya, 21, 46020 Valencia, Spain
| | - Esther Caparros
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain; Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Teresa Cardoso Delgado
- Biobizkaia Health Research Institute, Barakaldo, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Joan Claria
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Biochemistry and Molecular Genetics Service, Hospital Clínic, IDIBAPS, Barcelona, Spain; University of Barcelona, Spain
| | - Francisco Javier Cubero
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
| | - Alberto Díaz-Ruiz
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Maite G Fernández-Barrena
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Spain
| | - Anabel Fernández-Iglesias
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Vascular Biology Research Group, IDIBAPS, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ruben Francés
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain; Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Rocío Gallego-Durán
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Jordi Gracia-Sancho
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Vascular Biology Research Group, IDIBAPS, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Manuel Irimia
- Universitat Pompeu Fabra (UPF), Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, ICREA, Barcelona, Spain
| | - Sabela Lens
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Liver Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - María Luz Martínez-Chantar
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Beatriz Mínguez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Rocío Muñoz-Hernández
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain; Departamento de fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Rubén Nogueiras
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain
| | - Bruno Ramos-Molina
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Mar Riveiro-Barciela
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Manuel L Rodríguez-Perálvarez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Hepatology and Liver Transplantation, Reina Sofia University Hospital, Cordoba, Spain; Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Cordoba, Spain
| | - Manuel Romero-Gómez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Stress Kinases in Diabetes, Cancer and Biochemistry, Spain; Centro Nacional de Investigaciones Oncologicas (CNIO), Organ Crosstalk in Metabolic Diseases, Madrid, Spain
| | - Pau Sancho-Bru
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Meritxell Ventura-Cots
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Center for Liver Diseases, Pittsburgh Liver Research Center, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Silvia Vidal
- Group of Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Manuel D Gahete
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Molecular Hepatology Group, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Spain; Reina Sofia University Hospital, Cordoba, Spain.
| |
Collapse
|
8
|
Jo S, Kim JM, Li M, Kim HS, An YJ, Park S. TAT as a new marker and its use for noninvasive chemical biopsy in NASH diagnosis. Mol Med 2024; 30:232. [PMID: 39592957 PMCID: PMC11590374 DOI: 10.1186/s10020-024-00992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Early diagnosis of Nonalcoholic steatohepatitis (NASH) is crucial to prevent its progression to hepatocellular carcinoma, but its gold standard diagnosis still requires invasive biopsy. Here, a new marker-based noninvasive chemical biopsy approach is introduced that uses urine-secreted tyrosine metabolites. METHODS We first identified NASH-specific decrease in TAT expression, the first enzyme in the tyrosine degradation pathway (TDP), by employing exometabolome-transcriptome correlations, single-cell RNA -seq, and tissue staining on human NASH patient samples. A selective extrahepatic monitoring of the TAT activity was established by the chemical biopsy exploiting the enzyme's metabolic conversion of D2-tyrosine into D2-4HPP. The approach was applied to a NASH mouse model using the methionine-choline deficient diet, where urine D2-4HPP level was measured with a specific LC-MS detection, following oral administration of D2-tyrosine. RESULTS The noninvasive urine chemical biopsy approach could effectively differentiate NASH from normal mice (normal = 14, NASH = 15, p = 0.0054), correlated with the NASH pathology and TAT level decrease observed with immunostaining on the liver tissue. In addition, we showed that the diagnostic differentiation could be enhanced by measuring the downstream metabolites of TDP. The specificity of the TAT and the related TDP enzymes in NASH were also addressed in other settings employing high fat high fructose mouse NASH model and human obesity vs. NASH cohort. CONCLUSIONS Overall, we propose TAT and TDP as pathology-relevant markers for NASH and present the urine chemical biopsy as a noninvasive modality to evaluate the NASH-specific changes in urine that may help the NASH diagnosis.
Collapse
Affiliation(s)
- Sihyang Jo
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jin-Mo Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Minshu Li
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Han Sun Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Biochemistry, College of Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Yong Jin An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Sunghyouk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
9
|
Nabi P, Rammohan A, Rela M. Living Donor Liver Transplantation for Hepatocellular Carcinoma. J Clin Exp Hepatol 2024; 14:101933. [PMID: 39183736 PMCID: PMC11342762 DOI: 10.1016/j.jceh.2024.101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/06/2024] [Indexed: 08/27/2024] Open
Abstract
Liver transplantation (LT) offers the best chance of cure for patients with hepatocellular carcinoma (HCC), as it addresses simultaneously the underlying disease and the tumour. The Milan criteria has been the standard for over 3 decades in selecting patients with HCC who will benefit from LT. While, early studies showed higher recurrence rates for HCC following living donor LT (LDLT), recent series, especially in the past decade have shown LDLT to have equal oncological outcomes as compared to deceased donor LT (DDLT) for HCC, even in patients beyond Milan criteria. Further, the intention to treat analysis data suggests that LDLT may actually provide a survival advantage. In the west, factors such as improved outcomes on par with DDLT, ability to time the LT etc., have led to a steadily increased number of LDLTs being performed for this indication. On the other hand, in the east, given its geo-socio-cultural idiosyncrasies, LDLT has always been the predominant form of LT for HCC, consequently resulting in an increased number of LDLTs being performed for this indication across the world. While LDLT in HCC has its distinctive advantages compared to DDLT, the double equipoise of balancing the donor risk with the recipient outcomes has to be considered while selecting patients for LDLT. There have been several advances including the application of downstaging therapies and the use of biological markers, which have further helped improve outcomes of LDLT for this indication. This review aims to provide an update on the current advances in the field of transplant oncology related to the practice of LDLT in HCC.
Collapse
Affiliation(s)
- Prithiviraj Nabi
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Bharath Institute of Higher Education & Research, Chennai, India
| | - Ashwin Rammohan
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Bharath Institute of Higher Education & Research, Chennai, India
| | - Mohamed Rela
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Bharath Institute of Higher Education & Research, Chennai, India
| |
Collapse
|
10
|
Ning J, Wang Y, Tao Z. The complex role of immune cells in antigen presentation and regulation of T-cell responses in hepatocellular carcinoma: progress, challenges, and future directions. Front Immunol 2024; 15:1483834. [PMID: 39502703 PMCID: PMC11534672 DOI: 10.3389/fimmu.2024.1483834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent form of liver cancer that poses significant challenges regarding morbidity and mortality rates. In the context of HCC, immune cells play a vital role, especially concerning the presentation of antigens. This review explores the intricate interactions among immune cells within HCC, focusing on their functions in antigen presentation and the modulation of T-cell responses. We begin by summarizing the strategies that HCC uses to escape immune recognition, emphasizing the delicate equilibrium between immune surveillance and evasion. Next, we investigate the specific functions of various types of immune cells, including dendritic cells, natural killer (NK) cells, and CD8+ T cells, in the process of antigen presentation. We also examine the impact of immune checkpoints, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and the pathways involving programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1), on antigen presentation, while taking into account the clinical significance of checkpoint inhibitors. The review further emphasizes the importance of immune-based therapies, including cancer vaccines and CAR-T cell therapy, in improving antigen presentation. In conclusion, we encapsulate the latest advancements in research, propose future avenues for exploration, and stress the importance of innovative technologies and customized treatment strategies. By thoroughly analyzing the interactions of immune cells throughout the antigen presentation process in HCC, this review provides an up-to-date perspective on the field, setting the stage for new therapeutic approaches.
Collapse
Affiliation(s)
- Jianbo Ning
- The Fourth Clinical College, China Medical University, Shenyang, China
| | - Yutao Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zijia Tao
- Department of Interventional Radiology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Campani C, Imbeaud S, Couchy G, Ziol M, Hirsch TZ, Rebouissou S, Noblet B, Nahon P, Hormigos K, Sidali S, Seror O, Taly V, Ganne Carrie N, Laurent-Puig P, Zucman-Rossi J, Nault JC. Circulating tumour DNA in patients with hepatocellular carcinoma across tumour stages and treatments. Gut 2024; 73:1870-1882. [PMID: 39054058 DOI: 10.1136/gutjnl-2024-331956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Circulating tumour DNA (ctDNA) is a promising non-invasive biomarker in cancer. We aim to assess the dynamic of ctDNA in patients with hepatocellular carcinoma (HCC). DESIGN We analysed 772 plasmas from 173 patients with HCC collected at the time of diagnosis or treatment (n=502), 24 hours after locoregional treatment (n=154) and during follow-up (n=116). For controls, 56 plasmas from patients with chronic liver disease without HCC were analysed. All samples were analysed for cell free DNA (cfDNA) concentration, and for mutations in TERT promoter, CTNNB1, TP53, PIK3CA and NFE2L2 by sequencing and droplet-based digital PCR. Results were compared with 232 corresponding tumour samples. RESULTS In patients with active HCC, 40.2% of the ctDNA was mutated vs 14.6% in patients with inactive HCC and 1.8% in controls (p<0.001). In active HCC, we identified 27.5% of mutations in TERT promoter, 21.3% in TP53, 13.1% in CTNNB1, 0.4% in PIK3CA and 0.2% in NFE2L2, most of the times similar to those identified in the corresponding tumour. CtDNA mutation rate increased with advanced tumour stages (p<0.001). In 103 patients treated by percutaneous ablation, the presence and number of mutations in the ctDNA before treatment were associated with higher risk of death (p=0.001) and recurrence (p<0.001). Interestingly, cfDNA concentration and detectable mutations increased 24 hours after a locoregional treatment. Among 356 plasmas collected in 53 patients treated by systemic treatments, we detected mutations at baseline in 60.4% of the cases. In patients treated by atezolizumab-bevacizumab, persistence of mutation in ctDNA was associated with radiological progression (63.6% vs 36.4% for disappearance, p=0.019). In two patients progressing under systemic treatments, we detected the occurrence of mutations in CTNNB1 in the plasma that was subclonal in the tumour for one patient and not detectable in the tumour for the other one. CONCLUSION ctDNA offers dynamic information reflecting tumour biology. It represents a non-invasive tool useful to guide HCC clinical management.
Collapse
Affiliation(s)
- Claudia Campani
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Internal Medicine and Hepatology Unit, Department of Experimental and Clinical Medicine, University of Firenze, Florence, Italy
| | - Sandrine Imbeaud
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
| | - Gabrielle Couchy
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
| | - Marianne Ziol
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Pathology Department and Biological Resource Center Center (BB-0033-00027), Paris-Seine-Saint-Denis, University Hospital, Avicenne Hospital, APHP, Sorbonne Paris Nord University, Bobugny, France
| | - Theo Z Hirsch
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
| | - Sandra Rebouissou
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
| | - Bénédicte Noblet
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
| | - Pierre Nahon
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Liver Unit, Avicenne Hospital, APHP, University Sorbonne Paris Nord, Bobigny, France
| | - Katia Hormigos
- Cordeliers Research Center, INSERM, CNRS SNC 5096, Sorbonne University, Paris Cité University, Paris, France
| | - Sabrina Sidali
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Liver unit, Paris Cité University, Beaujon Hospital, APHP, DMU DIGEST, Clichy, France
| | - Olivier Seror
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Interventional Radiology Unit, Avicenne Hospital, APHP, Bobigny, Paris, France
| | - Valerie Taly
- Cordeliers Research Center, INSERM, CNRS SNC 5096, Sorbonne University, Paris Cité University, Paris, France
| | - Nathalie Ganne Carrie
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Liver Unit, Avicenne Hospital, APHP, University Sorbonne Paris Nord, Bobigny, France
| | - Pierre Laurent-Puig
- Cordeliers Research Center, INSERM, Sorbonne University, Paris Cité University, Institut of Cancer Paris CARPEM, AP-HP-Hôpital Européen Georges Pompidou, Paris, France
| | - Jessica Zucman-Rossi
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Cordeliers Research Center, INSERM, Sorbonne University, Paris Cité University, Institut of Cancer Paris CARPEM, AP-HP-Hôpital Européen Georges Pompidou, Paris, France
| | - Jean-Charles Nault
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Liver Unit, Avicenne Hospital, APHP, University Sorbonne Paris Nord, Bobigny, France
| |
Collapse
|
12
|
Su X, Li Y, Ren Y, Cao M, Yang G, Luo J, Hu Z, Deng H, Deng M, Liu B, Yao Z. A new strategy for overcoming drug resistance in liver cancer: Epigenetic regulation. Biomed Pharmacother 2024; 176:116902. [PMID: 38870626 DOI: 10.1016/j.biopha.2024.116902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Drug resistance in hepatocellular carcinoma has posed significant obstacles to effective treatment. Recent evidence indicates that, in addition to traditional gene mutations, epigenetic recoding plays a crucial role in HCC drug resistance. Unlike irreversible gene mutations, epigenetic changes are reversible, offering a promising avenue for preventing and overcoming drug resistance in liver cancer. This review focuses on various epigenetic modifications relevant to drug resistance in HCC and their underlying mechanisms. Additionally, we introduce current clinical epigenetic drugs and clinical trials of these drugs as regulators of drug resistance in other solid tumors. Although there is no clinical study to prevent the occurrence of drug resistance in liver cancer, the development of liquid biopsy and other technologies has provided a bridge to achieve this goal.
Collapse
Affiliation(s)
- Xiaorui Su
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yuxuan Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yupeng Ren
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingbo Cao
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Gaoyuan Yang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jing Luo
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Ziyi Hu
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Meihai Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Bo Liu
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zhicheng Yao
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
13
|
Ezzeldin N, El-Lebedy D, Hassan M, Shalaby AO, Hussein SAM, Gharib AM, Hamdy G, Mohammed AM, Ramadan A, Sobeih ME. Evaluating circulating cell-free DNA and DNA integrity index as biomarkers in non-small cell lung cancer. J Egypt Natl Canc Inst 2024; 36:21. [PMID: 38880832 DOI: 10.1186/s43046-024-00219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/23/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Analysis of free DNA molecules shed from tumour cells in plasma of patients referred as circulating tumour DNA (ctDNA) with reference to physiological circulating cell-free DNA (cfDNA) is nowadays exploited as liquid biopsy and is considered a new emerging promising biomarker for diagnosis, selection of proper treatment, and prognosis of cancer. DNA integrity index (DII) is assessed by calculating the ratio between the concentration of long cfDNA strands released from tumour cells (ALU247) and the short strands released from normal cells (ALU115). The aim of the current study was to evaluate DII as a potential diagnostic and prognostic biomarker of NSCLC. METHODS Our study included 48 NSCLC patients diagnosed as primary NSCLC before starting treatment, 30 COPD patients diagnosed clinically, radiologically, and subjected to chest high-resolution computerized tomography, and 40 healthy controls. cfDNA concentration and DII were measured by quantitative real-time polymerase chain reaction (qPCR). RESULTS ALU115, ALU247, and DII were significantly higher in NSCLC compared to COPD patients (p < 0.0001) and controls (p < 0.0001) and in COPD patients compared to control subjects (p < 0.0001). DII positively correlated with the stage of tumour (p = 0.01), tumour metastasis (p = 0.004), and with adenocarcinoma compared to other histopathological types (p = 0.02). To evaluate clinical utility of DII in NSCLC, ROC curve analysis demonstrated an AUC of 0.91 at a cut-off value of 0.44 with total accuracy = 85.6%, sensitivity = 90%, specificity = 83%, PPV = 78.1%, and NPV = 92.1%. CONCLUSION cfDNA and DII represent a promising diagnostic and prognostic tool in NSCLC. This type of noninvasive liquid biopsy revealed its chance in the screening, early diagnosis, and monitoring of NSCLC.
Collapse
Affiliation(s)
- Nada Ezzeldin
- Chest Diseases, National Research Centre, Cairo, Egypt
| | - Dalia El-Lebedy
- Clinical Pathology department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Mirhane Hassan
- Clinical Pathology department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt.
| | | | | | | | - Gehan Hamdy
- Chest Diseases, National Research Centre, Cairo, Egypt
| | - Asmaa Mahmoud Mohammed
- Department of Environmental and Occupational Medicine, National Research Centre, Cairo, Egypt
| | - Abeer Ramadan
- Molecular Genetics and Enzymology Department, Human Genetics and Genomics Research Institute, National Research Centre, Cairo, Egypt
| | | |
Collapse
|
14
|
Ren M, Lu C, Zhou M, Jiang X, Li X, Liu N. The intersection of virus infection and liver disease: A comprehensive review of pathogenesis, diagnosis, and treatment. WIREs Mech Dis 2024; 16:e1640. [PMID: 38253964 DOI: 10.1002/wsbm.1640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024]
Abstract
Liver disease represents a significant global burden, placing individuals at a heightened risk of developing cirrhosis and liver cancer. Viral infections act as a primary cause of liver diseases on a worldwide scale. Infections involving hepatitis viruses, notably hepatitis B, C, and E viruses, stand out as the most prevalent contributors to acute and chronic intrahepatic adverse outcome, although the hepatitis C virus (HCV) can be effectively cured with antiviral drugs, but no preventative vaccination developed. Hepatitis B virus (HBV) and HCV can lead to both acute and chronic liver diseases, including liver cirrhosis and hepatocellular carcinoma (HCC), which are principal causes of worldwide morbidity and mortality. Other viruses, such as Epstein-Barr virus (EBV) and cytomegalovirus (CMV), are capable of causing liver damage. Therefore, it is essential to recognize that virus infections and liver diseases are intricate and interconnected processes. A profound understanding of the underlying relationship between virus infections and liver diseases proves pivotal in the effective prevention, diagnosis, and treatment of these conditions. In this review, we delve into the mechanisms by which virus infections induce liver diseases, as well as explore the pathogenesis, diagnosis, and treatment of liver diseases. This article is categorized under: Infectious Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Meng Ren
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Institute of Liver Diseases, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Chenxia Lu
- Institute of Liver Diseases, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Institute of Liver Diseases, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Mingwei Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Li
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Institute of Liver Diseases, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Institute of Liver Diseases, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Ningning Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Sogbe M, Bilbao I, Marchese FP, Zazpe J, De Vito A, Pozuelo M, D’Avola D, Iñarrairaegui M, Berasain C, Arechederra M, Argemi J, Sangro B. Prognostic value of ultra-low-pass whole-genome sequencing of circulating tumor DNA in hepatocellular carcinoma under systemic treatment. Clin Mol Hepatol 2024; 30:177-190. [PMID: 38163441 PMCID: PMC11016491 DOI: 10.3350/cmh.2023.0426] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND/AIMS New prognostic markers are needed to identify patients with hepatocellular carcinoma (HCC) who carry a worse prognosis. Ultra-low-pass whole-genome sequencing (ULP-WGS) (≤0.5× coverage) of cell-free DNA (cfDNA) has emerged as a low-cost promising tool to assess both circulating tumor DNA (ctDNA) fraction and large structural genomic alterations. Here, we studied the performance of ULP-WGS of plasma cfDNA to infer prognosis in patients with HCC. METHODS Plasma samples were obtained from patients with HCC prior to surgery, locoregional or systemic therapy, and were analyzed by ULP-WGS of cfDNA to an average genome-wide fold coverage of 0.3x. ctDNA and copy number alterations (CNA) were estimated using the software package ichorCNA. RESULTS Samples were obtained from 73 HCC patients at different BCLC stages (BCLC 0/A: n=37, 50.7%; BCLC B/C: n=36, 49.3%). ctDNA was detected in 18 out of 31 patients who received systemic treatment. Patients with detectable ctDNA showed significantly worse overall survival (median, 13.96 months vs not reached). ctDNA remained an independent predictor of prognosis after adjustment by clinical-pathologic features and type of systemic treatment (hazard ratio 7.69; 95%, CI 2.09-28.27). Among ctDNA-positive patients under systemic treatments, the loss of large genomic regions in 5q and 16q arms was associated with worse prognosis after multivariate analysis. CONCLUSION ULP-WGS of cfDNA provides clinically relevant information about the tumor biology. The presence of ctDNA and the loss of 5q and 16q arms in ctDNA-positive patients are independent predictors of worse prognosis in patients with advanced HCC receiving systemic therapy.
Collapse
Affiliation(s)
- Miguel Sogbe
- Clinica Universidad de Navarra, Liver Unit, Pamplona, Spain
| | - Idoia Bilbao
- Clinica Universidad de Navarra, Liver Unit, Pamplona, Spain
| | - Francesco P. Marchese
- University of Navarra, Center for Applied Medical Research (CIMA), Computational Biology and Translational Genomics Program, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Jon Zazpe
- University of Navarra, Center for Applied Medical Research (CIMA), Computational Biology and Translational Genomics Program, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Annarosaria De Vito
- University of Navarra, Center for Applied Medical Research (CIMA), Computational Biology and Translational Genomics Program, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Marta Pozuelo
- University of Navarra, Center for Applied Medical Research (CIMA), Computational Biology and Translational Genomics Program, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Delia D’Avola
- Clinica Universidad de Navarra, Internal Medicine Department, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
| | - Mercedes Iñarrairaegui
- Clinica Universidad de Navarra, Liver Unit, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
| | - Carmen Berasain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- University of Navarra, Center for Applied Medical Research (CIMA), Hepatology Laboratory, Solid Tumors Program, Pamplona, Spain
| | - Maria Arechederra
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- University of Navarra, Center for Applied Medical Research (CIMA), Hepatology Laboratory, Solid Tumors Program, Pamplona, Spain
| | - Josepmaria Argemi
- Clinica Universidad de Navarra, Liver Unit, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- University of Navarra, Center for Applied Medical Research (CIMA), Hepatology Laboratory, Solid Tumors Program, Pamplona, Spain
| | - Bruno Sangro
- Clinica Universidad de Navarra, Liver Unit, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Clinica Universidad de Navarra, Liver Unit, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
| |
Collapse
|
16
|
Llovet JM, Pinyol R, Yarchoan M, Singal AG, Marron TU, Schwartz M, Pikarsky E, Kudo M, Finn RS. Adjuvant and neoadjuvant immunotherapies in hepatocellular carcinoma. Nat Rev Clin Oncol 2024; 21:294-311. [PMID: 38424197 PMCID: PMC11984461 DOI: 10.1038/s41571-024-00868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Liver cancer, specifically hepatocellular carcinoma (HCC), is the sixth most common cancer and the third leading cause of cancer mortality worldwide. The development of effective systemic therapies, particularly those involving immune-checkpoint inhibitors (ICIs), has substantially improved the outcomes of patients with advanced-stage HCC. Approximately 30% of patients are diagnosed with early stage disease and currently receive potentially curative therapies, such as resection, liver transplantation or local ablation, which result in median overall survival durations beyond 60 months. Nonetheless, up to 70% of these patients will have disease recurrence within 5 years of resection or local ablation. To date, the results of randomized clinical trials testing adjuvant therapy in patients with HCC have been negative. This major unmet need has been addressed with the IMbrave 050 trial, demonstrating a recurrence-free survival benefit in patients with a high risk of relapse after resection or local ablation who received adjuvant atezolizumab plus bevacizumab. In parallel, studies testing neoadjuvant ICIs alone or in combination in patients with early stage disease have also reported efficacy. In this Review, we provide a comprehensive overview of the current approaches to manage patients with early stage HCC. We also describe the tumour immune microenvironment and the mechanisms of action of ICIs and cancer vaccines in this setting. Finally, we summarize the available evidence from phase II/III trials of neoadjuvant and adjuvant approaches and discuss emerging clinical trials, identification of biomarkers and clinical trial design considerations for future studies.
Collapse
Affiliation(s)
- Josep M Llovet
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| | - Roser Pinyol
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Mark Yarchoan
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amit G Singal
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas U Marron
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Myron Schwartz
- Department of Liver Surgery, Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Richard S Finn
- Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
17
|
Andre M, Caobi A, Miles JS, Vashist A, Ruiz MA, Raymond AD. Diagnostic potential of exosomal extracellular vesicles in oncology. BMC Cancer 2024; 24:322. [PMID: 38454346 PMCID: PMC10921614 DOI: 10.1186/s12885-024-11819-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024] Open
Abstract
Liquid biopsy can detect circulating cancer cells or tumor cell-derived DNA at various stages of cancer. The fluid from these biopsies contains extracellular vesicles (EVs), such as apoptotic bodies, microvesicles, exomeres, and exosomes. Exosomes contain proteins and nucleic acids (DNA/RNA) that can modify the microenvironment and promote cancer progression, playing significant roles in cancer pathology. Clinically, the proteins and nucleic acids within the exosomes from liquid biopsies can be biomarkers for the detection and prognosis of cancer. We review EVs protein and miRNA biomarkers identified for select cancers, specifically melanoma, glioma, breast, pancreatic, hepatic, cervical, prostate colon, and some hematological malignancies. Overall, this review demonstrates that EV biomolecules have great potential to expand the diagnostic and prognostic biomarkers used in Oncology; ultimately, EVs could lead to earlier detection and novel therapeutic targets. Clinical implicationsEVs represent a new paradigm in cancer diagnostics and therapeutics. The potential use of exosomal contents as biomarkers for diagnostic and prognostic indicators may facilitate cancer management. Non-invasive liquid biopsy is helpful, especially when the tumor is difficult to reach, such as in pancreatic adenocarcinoma. Moreover, another advantage of using minimally invasive liquid biopsy is that monitoring becomes more manageable. Identifying tumor-derived exosomal proteins and microRNAs would allow a more personalized approach to detecting cancer and improving treatment.
Collapse
Affiliation(s)
- Mickensone Andre
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Allen Caobi
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Jana S Miles
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Arti Vashist
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Marco A Ruiz
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
- Medical Oncology, Baptist Health Miami Cancer Institute, Miami, 33176, FL, USA
| | - Andrea D Raymond
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA.
| |
Collapse
|
18
|
Abboud Y, Ismail M, Khan H, Medina-Morales E, Alsakarneh S, Jaber F, Pyrsopoulos NT. Hepatocellular Carcinoma Incidence and Mortality in the USA by Sex, Age, and Race: A Nationwide Analysis of Two Decades. J Clin Transl Hepatol 2024; 12:172-181. [PMID: 38343612 PMCID: PMC10851066 DOI: 10.14218/jcth.2023.00356] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/27/2023] [Accepted: 12/15/2023] [Indexed: 07/26/2024] Open
Abstract
BACKGROUND AND AIMS While the incidence rates of hepatocellular carcinoma (HCC) are increasing, there are limited comprehensive data on demographic-specific incidence and mortality trends in the USA. We aimed to evaluate recent trends in HCC incidence and mortality among different demographic groups in the USA. METHODS Age-adjusted HCC incidence rates were calculated from the Centers for Disease Control's United States Cancer Statistics database, which combines incidence data on newly diagnosed cancer cases and covers approximately 98% of the population in the USA. Additionally, age-adjusted HCC mortality rates were obtained from the Centers for Disease Control's National Center for Health Statistics database, which offers comprehensive coverage spanning nearly 100% of deaths attributed to HCC in the USA. Rates were stratified by sex, age (older [≥55 years] and younger [<55 years] adults), race and ethnicity (Non-Hispanic White, Non-Hispanic Black, Hispanic, Non-Hispanic Asian/Pacific Islander, and Non-Hispanic American Indian/Alaska Native), and tumor stage at diagnosis (early and late). Annual and average annual percentage change (AAPC) were calculated using joinpoint regression. A sex-specific pairwise comparison was conducted. RESULTS Between 2001 and 2020, there were 467,346 patients diagnosed with HCC (26.0% women), with increasing incidence in both sexes without significant difference (p=0.65). In younger adults (78,169 patients), the incidence decreased in men but not in women (AAPC difference=-2.39, p=0.002). This was seen in various racial and ethnic groups, mostly driven by early-stage tumors (AAPC difference=-2.65, p=0.02). There were 329,973 deaths attributed to HCC between 2000 and 2020 (28.4% women). In younger adults (43,093 deaths), mortality decreased in men at a greater rate than in women (AAPC difference=1.61, p=0.007). This was seen in various racial and ethnic groups, most notably in non-Hispanic American Indian/Alaska Natives (AAPC difference=-4.51, p=0.01). CONCLUSIONS Nationwide USA data, covering nearly all HCC cases, show an increasing incidence and mortality over the last two decades. In younger adults, there was a decreasing incidence in men but not in women, due to early-stage tumors. Mortality improved in younger men at a greater rate than in women, especially in Non-Hispanic American Indian/Alaska Natives. Future studies are warranted to identify the risk factors associated with the occurrence and outcomes of HCC in demographic-specific populations, especially younger women.
Collapse
Affiliation(s)
- Yazan Abboud
- Department of Internal Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Mohamed Ismail
- Department of Internal Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Hamza Khan
- Department of Internal Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Esli Medina-Morales
- Department of Internal Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Saqr Alsakarneh
- Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Fouad Jaber
- Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Nikolaos T. Pyrsopoulos
- Division of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
19
|
Huang A, Guo DZ, Zhang X, Sun Y, Zhang SY, Zhang X, Fu XT, Wang YP, Yang GH, Sun QM, He YF, Song K, Huang XW, Yang XR, Liu WR, Ding ZB, Shi YH, Fan J, Zhou J. Serial circulating tumor DNA profiling predicts tumor recurrence after liver transplantation for liver cancer. Hepatol Int 2024; 18:254-264. [PMID: 37980313 DOI: 10.1007/s12072-023-10594-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/04/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Minimal residual disease (MRD) is proposed to be responsible for tumor recurrence. The role of circulating tumor DNA (ctDNA) to detect MRD, monitor recurrence, and predict prognosis in liver cancer patients undergoing liver transplantation (LT) remains unrevealed. METHODS Serial blood samples were collected to profile ctDNA mutational changes. Baseline ctDNA mutational profiles were compared with those of matched tumor tissues. Correlations between ctDNA status and recurrence rate (RR) and recurrence-free survival (RFS) were analyzed, respectively. Dynamic change of ctDNA was monitored to predict tumor recurrence. RESULTS Baseline mutational profiles of ctDNA were highly concordant with those of tumor tissues (median, 89.85%; range 46.2-100%) in the 74 patients. Before LT, positive ctDNA status was associated with higher RR (31.7% vs 11.5%; p = 0.001) and shorter RFS than negative ctDNA status (17.8 vs 19.4 months; p = 0.019). After LT, the percentage of ctDNA positivity decreased (17.6% vs 47.0%; p < 0.001) and patients with positive ctDNA status had higher RR (46.2% vs 21.3%; p < 0.001) and shorter RFS (17.2 vs 19.2 months; p = 0.010). Serial ctDNA profiling demonstrated patients with decreased or constant negative ctDNA status had lower RR (33.3% vs 50.0%; p = 0.015) and favorable RFS (18.2 vs 15.0 months, p = 0.003) than those with increased or constant positive ctDNA status. Serial ctDNA profiling predicted recurrence months ahead of imaging evidence and serum tumor biomarkers. CONCLUSIONS ctDNA could effectively detect MRD and predict tumor recurrence in liver cancer patients undergone LT.
Collapse
Affiliation(s)
- Ao Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - De-Zhen Guo
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xuan Zhang
- Key Laboratory of Clinical in Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310030, China
- GenomiCare Biotechnology (Shanghai) Co., Ltd., 5th Floor, Building #2, No. 111 Xiangke Road, Shanghai, 201210, China
| | - Ying Sun
- GenomiCare Biotechnology (Shanghai) Co., Ltd., 5th Floor, Building #2, No. 111 Xiangke Road, Shanghai, 201210, China
| | - Shi-Yu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xin Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiu-Tao Fu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yu-Peng Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guo-Huan Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qi-Man Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yi-Feng He
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Kang Song
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiao-Wu Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xin-Rong Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei-Ren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhen-Bin Ding
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, China
| | - Ying-Hong Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China.
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, China.
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
20
|
Ma W, Wu H, Chen Y, Xu H, Jiang J, Du B, Wan M, Ma X, Chen X, Lin L, Su X, Bao X, Shen Y, Xu N, Ruan J, Jiang H, Ding Y. New techniques to identify the tissue of origin for cancer of unknown primary in the era of precision medicine: progress and challenges. Brief Bioinform 2024; 25:bbae028. [PMID: 38343328 PMCID: PMC10859692 DOI: 10.1093/bib/bbae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/10/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Despite a standardized diagnostic examination, cancer of unknown primary (CUP) is a rare metastatic malignancy with an unidentified tissue of origin (TOO). Patients diagnosed with CUP are typically treated with empiric chemotherapy, although their prognosis is worse than those with metastatic cancer of a known origin. TOO identification of CUP has been employed in precision medicine, and subsequent site-specific therapy is clinically helpful. For example, molecular profiling, including genomic profiling, gene expression profiling, epigenetics and proteins, has facilitated TOO identification. Moreover, machine learning has improved identification accuracy, and non-invasive methods, such as liquid biopsy and image omics, are gaining momentum. However, the heterogeneity in prediction accuracy, sample requirements and technical fundamentals among the various techniques is noteworthy. Accordingly, we systematically reviewed the development and limitations of novel TOO identification methods, compared their pros and cons and assessed their potential clinical usefulness. Our study may help patients shift from empirical to customized care and improve their prognoses.
Collapse
Affiliation(s)
- Wenyuan Ma
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Wu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiran Chen
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongxia Xu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Junjie Jiang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bang Du
- Real Doctor AI Research Centre, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Mingyu Wan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolu Ma
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Lin
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinhui Su
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifei Shen
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nong Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiping Jiang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongfeng Ding
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Boonkaew B, Satthawiwat N, Pinjaroen N, Chuaypen N, Tangkijvanich P. Circulating Extracellular Vesicle-Derived microRNAs as Novel Diagnostic and Prognostic Biomarkers for Non-Viral-Related Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:16043. [PMID: 38003232 PMCID: PMC10671272 DOI: 10.3390/ijms242216043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Extracellular vesicle-derived microRNAs (EV-miRNAs) are promising circulating biomarkers for chronic liver disease. In this study, we explored the potential significance of plasma EV-miRNAs in non-hepatitis B-, non-hepatitis C-related HCC (NBNC-HCC). We compared, using the NanoString method, plasma EV-miRNA profiles between NBNC-HCC and control groups including patients with non-alcoholic fatty liver disease (NAFLD) and healthy controls. The differentially expressed EV-miRNAs were validated in another set of plasma samples by qRT-PCR. A total of 66 significantly differentially expressed EV-miRNAs between the HCC and the control groups were identified in the discovery set. In the validation cohort, including plasma samples of 70 NBNC-HCC patients, 70 NAFLD patients, and 35 healthy controls, 5 plasma EV-miRNAs were significantly elevated in HCC, which included miR-19-3p, miR-16-5p, miR-223-3p, miR-30d-5p, and miR-451a. These miRNAs were found to participate in several cancer-related signaling pathways based on bioinformatic analysis. Among them, EV-miR-19-3p exhibited the best diagnostic performance and displayed a high sensitivity for detecting alpha-fetoprotein-negative HCC and early-stage HCC. In multivariate analysis, a high EV-miR-19-3p level was demonstrated as an independently unfavorable predictor of overall survival in patients with NBNC-HCC. In conclusion, our data have indicated, for the first time, that EV-miR-19-3p could serve as a novel circulating biomarker for the diagnosis and prognosis of NBNC-HCC.
Collapse
Affiliation(s)
- Bootsakorn Boonkaew
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (B.B.); (N.S.)
| | - Nantawat Satthawiwat
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (B.B.); (N.S.)
| | - Nutcha Pinjaroen
- Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (B.B.); (N.S.)
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (B.B.); (N.S.)
| |
Collapse
|
22
|
Greten TF, Villanueva A, Korangy F, Ruf B, Yarchoan M, Ma L, Ruppin E, Wang XW. Biomarkers for immunotherapy of hepatocellular carcinoma. Nat Rev Clin Oncol 2023; 20:780-798. [PMID: 37726418 DOI: 10.1038/s41571-023-00816-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Immune-checkpoint inhibitors (ICIs) are now widely used for the treatment of patients with advanced-stage hepatocellular carcinoma (HCC). Two different ICI-containing regimens, atezolizumab plus bevacizumab and tremelimumab plus durvalumab, are now approved standard-of-care first-line therapies in this setting. However, and despite substantial improvements in survival outcomes relative to sorafenib, most patients with advanced-stage HCC do not derive durable benefit from these regimens. Advances in genome sequencing including the use of single-cell RNA sequencing (both of tumour material and blood samples), as well as immune cell identification strategies and other techniques such as radiomics and analysis of the microbiota, have created considerable potential for the identification of novel predictive biomarkers enabling the accurate selection of patients who are most likely to derive benefit from ICIs. In this Review, we summarize data on the immunology of HCC and the outcomes in patients receiving ICIs for the treatment of this disease. We then provide an overview of current biomarker use and developments in the past 5 years, including gene signatures, circulating tumour cells, high-dimensional flow cytometry, single-cell RNA sequencing as well as approaches involving the microbiome, radiomics and clinical markers. Novel concepts for further biomarker development in HCC are then discussed including biomarker-driven trials, spatial transcriptomics and integrated 'big data' analysis approaches. These concepts all have the potential to better identify patients who are most likely to benefit from ICIs and to promote the development of new treatment approaches.
Collapse
Affiliation(s)
- Tim F Greten
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Augusto Villanueva
- Divisions of Liver Disease and Hematology/Medical Oncology, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Benjamin Ruf
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mark Yarchoan
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Xin W Wang
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
23
|
Safrastyan A, Zu Siederdissen CH, Wollny D. Decoding cell-type contributions to the cfRNA transcriptomic landscape of liver cancer. Hum Genomics 2023; 17:90. [PMID: 37798661 PMCID: PMC10552294 DOI: 10.1186/s40246-023-00537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Liquid biopsy, particularly cell-free RNA (cfRNA), has emerged as a promising non-invasive diagnostic tool for various diseases, including cancer, due to its accessibility and the wealth of information it provides. A key area of interest is the composition and cellular origin of cfRNA in the blood and the alterations in the cfRNA transcriptomic landscape during carcinogenesis. Investigating these changes can offer insights into the manifestations of tissue alterations in the blood, potentially leading to more effective diagnostic strategies. However, the consistency of these findings across different studies and their clinical utility remains to be fully elucidated, highlighting the need for further research in this area. RESULTS In this study, we analyzed over 350 blood samples from four distinct studies, investigating the cell type contributions to the cfRNA transcriptomic landscape in liver cancer. We found that an increase in hepatocyte proportions in the blood is a consistent feature across most studies and can be effectively utilized for classifying cancer and healthy samples. Moreover, our analysis revealed that in addition to hepatocytes, liver endothelial cell signatures are also prominent in the observed changes. By comparing the classification performance of cellular proportions to established markers, we demonstrated that cellular proportions could distinguish cancer from healthy samples as effectively as existing markers and can even enhance classification when used in combination with these markers. CONCLUSIONS Our comprehensive analysis of liver cell-type composition changes in blood revealed robust effects that help classify cancer from healthy samples. This is especially noteworthy, considering the heterogeneous nature of datasets and the etiological distinctions of samples. Furthermore, the observed differences in results across studies underscore the importance of integrative and comparative approaches in the future research to determine the consistency and robustness of findings. This study contributes to the understanding of cfRNA composition in liver cancer and highlights the potential of cellular deconvolution in liquid biopsy.
Collapse
Affiliation(s)
- Aram Safrastyan
- RNA Bioinformatics and High Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany.
- Leibniz Institute On Aging-Fritz Lipmann Institute (FLI), Jena, Germany.
| | | | - Damian Wollny
- RNA Bioinformatics and High Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany.
- Leibniz Institute On Aging-Fritz Lipmann Institute (FLI), Jena, Germany.
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
24
|
Kästle S, Stechele MR, Richter L, Schinner R, Öcal E, Alunni-Fabbroni M, De Toni E, Corradini S, Seidensticker M, Goldberg SN, Ricke J, Wildgruber M, Kimm MA. Peripheral blood-based cell signature indicates response to interstitial brachytherapy in primary liver cancer. J Cancer Res Clin Oncol 2023; 149:9777-9786. [PMID: 37247078 PMCID: PMC10423129 DOI: 10.1007/s00432-023-04875-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE Biomarkers are essential to implement personalized therapies in cancer treatment options. As primary liver tumors are increasing and treatment is coupled to liver function and activation of systemic cells of the immune system, we investigated blood-based cells for their ability to predict response to local ablative therapy. METHODS We analyzed peripheral blood cells in 20 patients with primary liver cancer at baseline and following brachytherapy. In addition to platelets, leukocytes, lymphocytes, monocytes, neutrophils and most common ratios PLR, LMR, NMR and NLR, we investigated T cell and NKT cell populations of 11 responders and 9 non-responders using flow cytometry. RESULTS We have found a peripheral blood cell signature that differed significantly between responders and non-responders treated with interstitial brachytherapy (IBT). At baseline, non-responders featured higher numbers of platelets, monocytes and neutrophils, a higher platelet-to-lymphocyte ratio and an increase in the NKT cell population with a concurrent reduction in CD16 + NKT cells. Simultaneously, a lower percentage of CD4 + T cells was present in non-responders, as also reflected in a lower CD4/8 ratio. CD45RO + memory cells were lower in both, CD4 + and CD8 + T cell populations whereas PD-1 + T cells were only present in the CD4 + T cell population. CONCLUSION Baseline blood-based cell signature may function as a biomarker to predict response following brachytherapy in primary liver cancer.
Collapse
Affiliation(s)
- Sophia Kästle
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Lisa Richter
- Core Facility Flow Cytometry, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Regina Schinner
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Elif Öcal
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Enrico De Toni
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - S Nahum Goldberg
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Image-Guided Therapy and Interventional Oncology, Department of Radiology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Melanie A Kimm
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
25
|
Lominadze Z, Shaik MR, Choi D, Zaffar D, Mishra L, Shetty K. Hepatocellular Carcinoma Genetic Classification. Cancer J 2023; 29:249-258. [PMID: 37796642 PMCID: PMC10686192 DOI: 10.1097/ppo.0000000000000682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
ABSTRACT Hepatocellular carcinoma (HCC) represents a significant global burden, with management complicated by its heterogeneity, varying presentation, and relative resistance to therapy. Recent advances in the understanding of the genetic, molecular, and immunological underpinnings of HCC have allowed a detailed classification of these tumors, with resultant implications for diagnosis, prognostication, and selection of appropriate treatments. Through the correlation of genomic features with histopathology and clinical outcomes, we are moving toward a comprehensive and unifying framework to guide our diagnostic and therapeutic approach to HCC.
Collapse
Affiliation(s)
- Zurabi Lominadze
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine
| | | | - Dabin Choi
- Department of Medicine, University of Maryland Medical Center
| | - Duha Zaffar
- Department of Medicine, University of Maryland Midtown Medical Center
| | - Lopa Mishra
- Feinstein Institutes for Medical Research and Cold Spring Harbor Laboratory; Divisions of Gastroenterology and Hepatology, Northwell Health
| | - Kirti Shetty
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine
| |
Collapse
|
26
|
Berenguer M, de Martin E, Hessheimer AJ, Levitsky J, Maluf DG, Mas VR, Selzner N, Hernàndez-Èvole H, Lutu A, Wahid N, Zubair H. European Society for Organ Transplantation Consensus Statement on Biomarkers in Liver Transplantation. Transpl Int 2023; 36:11358. [PMID: 37711401 PMCID: PMC10498996 DOI: 10.3389/ti.2023.11358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/25/2023] [Indexed: 09/16/2023]
Abstract
Currently, one-year survival following liver transplantation (LT) exceeds 90% in large international registries, and LT is considered definitive treatment for patients with end-stage liver disease and liver cancer. Recurrence of disease, including hepatocellular carcinoma (HCC), significantly hampers post-LT outcomes. An optimal approach to immunosuppression (IS), including safe weaning, may benefit patients by mitigating the effect on recurrent diseases, as well as reducing adverse events associated with over-/under-IS, including chronic kidney disease (CKD). Prediction of these outcome measures-disease recurrence, CKD, and immune status-has long been based on relatively inaccurate clinical models. To address the utility of new biomarkers in predicting these outcomes in the post-LT setting, the European Society of Organ Transplantation (ESOT) and International Liver Transplant Society (ILTS) convened a working group of experts to review literature pertaining to primary disease recurrence, development of CKD, and safe weaning of IS. Summaries of evidence were presented to the group of panelists and juries to develop guidelines, which were discussed and voted in-person at the Consensus Conference in Prague November 2022. The consensus findings and recommendations of the Liver Working Group on new biomarkers in LT, clinical applicability, and future needs are presented in this article.
Collapse
Affiliation(s)
- Marina Berenguer
- Hepatology and Liver Transplantation Unit, Hospital Universitario la Fe - IIS La Fe Valencia, CiberEHD and University of Valencia, Valencia, Spain
| | - Eleonora de Martin
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Inserm UMR-S 1193, Université Paris-Saclay, Villejuif, France
| | - Amelia J. Hessheimer
- General & Digestive Surgery, Hospital Universitario La Paz, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Josh Levitsky
- Division of Gastroenterology and Hepatology, Department of Medicine, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniel G. Maluf
- Program in Transplantation, Department of Surgery, University of Maryland Medical Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Valeria R. Mas
- Surgical Sciences Research in Transplantation, Chief Surgical Sciences Division, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nazia Selzner
- Ajmera Transplant Center, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | | | - Alina Lutu
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Inserm UMR-S 1193, Université Paris-Saclay, Villejuif, France
| | - Nabeel Wahid
- Division of Gastroenterology and Hepatology, Department of Medicine, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Haseeb Zubair
- Surgical Sciences Division, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
27
|
Nasser A, Smith V, Campbell N, Rivers-Bowerman MD, Stueck AE, Costa AF, Arseneau R, Westhaver L, Gala-Lopez BL. Is hepatocellular carcinoma viability important when using intraoperative blood salvage during liver transplantation? INTERNATIONAL JOURNAL OF GASTROINTESTINAL INTERVENTION 2023; 12:145-151. [DOI: 10.18528/ijgii230020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 01/03/2025] Open
Affiliation(s)
- Ahmed Nasser
- Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Victoria Smith
- Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Niamh Campbell
- Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | | | | | - Andreu Francesc Costa
- Department of Radiology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology & Immunology and Pathology, Beatrice Hunter Cancer Research Institute, QEII Health Science Centre, Dalhousie University, Halifax, NS, Canada
| | - Riley Arseneau
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Lauren Westhaver
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Boris Luis Gala-Lopez
- Department of Surgery, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology & Immunology and Pathology, Beatrice Hunter Cancer Research Institute, QEII Health Science Centre, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
28
|
Seay TW, Suo Z. Roles of Extracellular Vesicles on the Progression and Metastasis of Hepatocellular Carcinoma. Cells 2023; 12:1879. [PMID: 37508544 PMCID: PMC10378249 DOI: 10.3390/cells12141879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Liver cancer is a global health challenge as it is the third leading cause of cancer death worldwide. Hepatocellular carcinoma (HCC) is the most common type of liver cancer and is often found in liver cells, where it is associated with high morbidity and mortality rates. Recent studies have shown that extracellular vesicles (EVs) secreted by HCC cells play a critical role in HCC progression and metastasis. EVs contain proteins, nucleic acids, lipids, and metabolites as cargos. EVs derived from HCC cells can transfer oncogenic factors to surrounding cells leading to increased tumor growth, cell invasion, and angiogenesis. In this review, we summarize the roles that EVs play and the specific effects of their cargos on HCC progression and metastasis and identify potential therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Turner W Seay
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
29
|
Soin A, Lesurtel M, Bhangui P, Cocchi L, Bouattour M, Clavien PA. Are patients with hepatocellular carcinoma and portal vein tumour thrombosis candidates for liver transplantation? J Hepatol 2023; 78:1124-1129. [PMID: 37208099 DOI: 10.1016/j.jhep.2023.03.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 05/21/2023]
Abstract
In this debate, the authors consider whether patients with hepatocellular carcinoma (HCC) and portal vein tumour thrombosis are candidates for liver transplantation (LT). The argument for LT in this context is based on the premise that, following successful downstaging treatment, LT confers a much greater clinical benefit in terms of survival outcomes than the available alternative (palliative systemic therapy). A major argument against relates to limitations in the quality of evidence for LT in this setting - in relation to study design, as well as heterogeneity in patient characteristics and downstaging protocols. While acknowledging the superior outcomes offered by LT for patients with portal vein tumour thrombosis, the counterargument is that expected survival in such patients is still below accepted thresholds for LT and, indeed, the levels achieved for other patients who receive transplants beyond the Milan criteria. Based on the available evidence, it seems too early for consensus guidelines to recommend such an approach, however, it is hoped that with higher quality evidence and standardised downstaging protocols, LT may soon be more widely indicated, including for this population with high unmet clinical need.
Collapse
Affiliation(s)
- Arvinder Soin
- Medanta Institute of Liver Transplantation and Regenerative Medicine, Gurgaon, India
| | - Mickaël Lesurtel
- Department of HPB Surgery & Liver Transplantation, APHP Beaujon Hospital, University of Paris Cité, 100, bd General Leclerc, 92110 Clichy, France
| | - Prashant Bhangui
- Medanta Institute of Liver Transplantation and Regenerative Medicine, Gurgaon, India
| | - Lorenzo Cocchi
- Department of HPB Surgery & Liver Transplantation, APHP Beaujon Hospital, University of Paris Cité, 100, bd General Leclerc, 92110 Clichy, France
| | - Mohamed Bouattour
- Department of Hepatology, APHP Beaujon Hospital, University of Paris Cité, 100, Bd General Leclerc, 92110 Clichy, France
| | | |
Collapse
|
30
|
Xu FQ, Zhang Z, Hu A, Huang DS. Circulating biomarkers for diagnosis and management of hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2023; 31:404-411. [DOI: 10.11569/wcjd.v31.i10.404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, but the prognosis of HCC patients is poor due to the difficulty of early diagnosis and high recurrence rate. Therefore, it is particularly important to seek effective methods for early diagnosis and early recurrence monitoring after treatment. Circulating biomarkers play an important role in the diagnosis, progression monitoring, and prognosis evaluation of HCC. In recent years, with the discovery of a variety of new biomarkers, the development of biomarkers-related models, and the emergence of liquid biopsy technology, the diagnosis and treatment of HCC have been greatly improved. This article reviews the latest research advances of biomarkers in the diagnosis and treatment of HCC, aiming to provide new ideas for improving the prognosis of HCC patients.
Collapse
|
31
|
Wang Z, Qin H, Liu S, Sheng J, Zhang X. Precision diagnosis of hepatocellular carcinoma. Chin Med J (Engl) 2023; 136:1155-1165. [PMID: 36939276 PMCID: PMC10278703 DOI: 10.1097/cm9.0000000000002641] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 03/21/2023] Open
Abstract
ABSTRACT Hepatocellular carcinoma (HCC) is the most common type of primary hepatocellular carcinoma (PHC). Early diagnosis of HCC remains the key to improve the prognosis. In recent years, with the promotion of the concept of precision medicine and more in-depth analysis of the biological mechanism underlying HCC, new diagnostic methods, including emerging serum markers, liquid biopsies, molecular diagnosis, and advances in imaging (novel contrast agents and radiomics), have emerged one after another. Herein, we reviewed and analyzed scientific advances in the early diagnosis of HCC and discussed their application and shortcomings. This review aimed to provide a reference for scientific research and clinical practice of HCC.
Collapse
Affiliation(s)
- Zhenxiao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Hanjiao Qin
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Shui Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| |
Collapse
|
32
|
Girardi DM, Sousa LP, Miranda TA, Haum FNC, Pereira GCB, Pereira AAL. Systemic Therapy for Advanced Hepatocellular Carcinoma: Current Stand and Perspectives. Cancers (Basel) 2023; 15:1680. [PMID: 36980566 PMCID: PMC10046570 DOI: 10.3390/cancers15061680] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Hepatocellular carcinoma often develops in the context of chronic liver disease. It is the sixth most frequently diagnosed cancer and the third most common cause of cancer-related mortality worldwide. Although the mainstay of therapy is surgical resection, most patients are not eligible because of liver dysfunction or tumor extent. Sorafenib was the first tyrosine kinase inhibitor that improved the overall survival of patients who failed to respond to local therapies or had advanced disease, and for many years, it was the only treatment approved for the first-line setting. However, in recent years, trials have demonstrated an improvement in survival with treatments based on immunotherapy and new targeting agents, thereby extending the treatment options. A phase III trial showed that a combination of immunotherapy and targeted therapy, including atezolizumab plus bevacizumab, improved survival in the first-line setting, and is now considered the new standard of care. Other agents and combinations are being tested, including the combination of nivolumab plus ipilimumab and tremelimumab plus durvalumab, and they reportedly have clinical benefits. The aim of this manuscript is to review the latest approved therapeutic options in first- and second-line settings for advanced HCC and discuss future perspectives.
Collapse
Affiliation(s)
- Daniel M. Girardi
- Hospital Sírio-Libanes, SGAS 613/614 Conjunto E Lote 95-Asa Sul, Brasília 70200-730, Brazil
- Hospital de Base do Distrito Federal, SMHS-Área Especial, Q. 101-Asa Sul, Brasília 70330-150, Brazil
| | - Lara P. Sousa
- Escola Superior de Ciências em Saúde, SMHN Conjunto A Bloco 01 Edifício Fepecs-Asa Norte, Brasília 70710-907, Brazil
| | - Thiago A. Miranda
- Escola Superior de Ciências em Saúde, SMHN Conjunto A Bloco 01 Edifício Fepecs-Asa Norte, Brasília 70710-907, Brazil
| | - Fernanda N. C. Haum
- Escola Superior de Ciências em Saúde, SMHN Conjunto A Bloco 01 Edifício Fepecs-Asa Norte, Brasília 70710-907, Brazil
| | - Gabriel C. B. Pereira
- Hospital Sírio-Libanes, SGAS 613/614 Conjunto E Lote 95-Asa Sul, Brasília 70200-730, Brazil
- Hospital de Base do Distrito Federal, SMHS-Área Especial, Q. 101-Asa Sul, Brasília 70330-150, Brazil
| | - Allan A. L. Pereira
- Hospital Sírio-Libanes, SGAS 613/614 Conjunto E Lote 95-Asa Sul, Brasília 70200-730, Brazil
- Hospital de Base do Distrito Federal, SMHS-Área Especial, Q. 101-Asa Sul, Brasília 70330-150, Brazil
| |
Collapse
|
33
|
HAMP as a Potential Diagnostic, PD-(L)1 Immunotherapy Sensitivity and Prognostic Biomarker in Hepatocellular Carcinoma. Biomolecules 2023; 13:biom13020360. [PMID: 36830729 PMCID: PMC9953231 DOI: 10.3390/biom13020360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 02/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global medical problem. Programmed cell death protein 1 (PD-1) is a powerful weapon against many cancers, but it is not sensitive to some patients with HCC. We obtained datasets from the Gene Expression Omnibus (GEO) database on HCC patients and PD-1 immunotherapy to select seven intersecting DEGs. Through Lasso regression, two intersecting genes were acquired as predictors of HCC and PD-1 treatment prognosis, including HAMP and FOS. Logistic regression was performed to build a prediction model. HAMP had a better ability to diagnose HCC and predict PD1 treatment sensitivity. Further, we adapted the support vector machine (SVM) technique using HAMP to predict triple-classified outcomes after PD1 treatment in HCC patients, which had an excellent classification ability. We also performed external validation using TCGA data, which showed that HAMP was elevated in the early stage of HCC. HAMP was positively correlated with the infiltration of 18 major immune cells and the expression of 2 important immune checkpoints, PDCD1 and CTLA4. We discovered a biomarker that can be used for the early diagnosis, prognosis and PD1 immunotherapy efficacy prediction of HCC for the first time and developed a diagnostic model, prognostic model and prediction model of PD1 treatment sensitivity and treatment outcome for HCC patients accordingly.
Collapse
|
34
|
Toh MR, Wong EYT, Wong SH, Ng AWT, Loo LH, Chow PKH, Ngeow JYY. Global Epidemiology and Genetics of Hepatocellular Carcinoma. Gastroenterology 2023; 164:766-782. [PMID: 36738977 DOI: 10.1053/j.gastro.2023.01.033] [Citation(s) in RCA: 233] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading cancers worldwide. Classically, HCC develops in genetically susceptible individuals who are exposed to risk factors, especially in the presence of liver cirrhosis. Significant temporal and geographic variations exist for HCC and its etiologies. Over time, the burden of HCC has shifted from the low-moderate to the high sociodemographic index regions, reflecting the transition from viral to nonviral causes. Geographically, the hepatitis viruses predominate as the causes of HCC in Asia and Africa. Although there are genetic conditions that confer increased risk for HCC, these diagnoses are rarely recognized outside North America and Europe. In this review, we will evaluate the epidemiologic trends and risk factors of HCC, and discuss the genetics of HCC, including monogenic diseases, single-nucleotide polymorphisms, gut microbiome, and somatic mutations.
Collapse
Affiliation(s)
- Ming Ren Toh
- Cancer Genetics Service, National Cancer Centre Singapore, Singapore
| | | | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Alvin Wei Tian Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Lit-Hsin Loo
- Bioinformatics Institute, Agency for Science, Technology, and Research (A∗STAR), Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Pierce Kah-Hoe Chow
- Department of Hepato-Pancreato-Biliary and Transplant Surgery, National Cancer Center Singapore and Singapore General Hospital, Singapore; Duke-NUS Medical School Singapore, Singapore
| | - Joanne Yuen Yie Ngeow
- Cancer Genetics Service, National Cancer Centre Singapore, Singapore; Division of Medical Oncology, National Cancer Centre Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Duke-NUS Medical School Singapore, Singapore.
| |
Collapse
|
35
|
Chen N, Wang J, Zhou L, Hu B, Chen Y, Zhu Z. GPBAR1 is associated with asynchronous bone metastasis and poor prognosis of hepatocellular carcinoma. Front Oncol 2023; 12:1113785. [PMID: 36755861 PMCID: PMC9899898 DOI: 10.3389/fonc.2022.1113785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death in China. Asynchronous metastasis is the main reason for HCC recurrence, but the current assessment of HCC metastasis and prognosis is far from clinically satisfactory. Materials In our study, we investigated the expression of G-protein-coupled bile acid receptor (GPBAR1) in HCC tissues and tumor-adjacent tissues by qRT-PCR and immunohistochemistry. The associations between GPBAR1 expression, clinicopathological factors, and asynchronous metastases were assessed by the Chi-square test. The overall survival curves of different variables were plotted with the Kaplan-Meier method, and the statistical significance between different subgroups was analyzed with the log-rank test. The independent prognostic factors were identified by the Cox regression hazard model. Results GPBAR1 was more highly expressed in HCC tissues than in tumor-adjacent tissues. GPBAR1 expression in HCC was significantly higher than that in liver cirrhosis, followed by normal liver tissues. GPBAR1 was significantly associated with poor prognosis in HCC and can be regarded as an independent prognostic biomarker. Interestingly, GPBAR1 expression in HCC was significantly correlated with asynchronous metastasis to the bone but not to the liver or lung. Conclusions GPBAR1 was found to be an independent, unfavorable prognostic factor of HCC, as well as an indicator of asynchronous bone metastasis but not liver or lung metastases. Our results could provide a new aspect for HCC metastasis studies and help identify high-risk HCC patients, which helps ameliorate the prognostic assessment of HCC.
Collapse
Affiliation(s)
- Nan Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, China
| | - Jieqing Wang
- Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, Tai'an, Shandong, China
| | - Lei Zhou
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, China
| | - Baiqiang Hu
- Department of Orthopaedic Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Yinzhong Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, China
| | - Zhuangchen Zhu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, China,*Correspondence: Zhuangchen Zhu,
| |
Collapse
|
36
|
Badovinac D, Goričar K, Lavrin T, Zavrtanik H, Dolžan V, Lenassi M, Tomažič A. Plasma Extracellular Vesicle Characteristics as Biomarkers of Resectability and Radicality of Surgical Resection in Pancreatic Cancer-A Prospective Cohort Study. Cancers (Basel) 2023; 15:605. [PMID: 36765562 PMCID: PMC9913838 DOI: 10.3390/cancers15030605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Due to possible diagnostic misjudgment of tumor resectability, patients with pancreatic ductal adenocarcinoma (PDAC) might be exposed to non-radical resection or unnecessary laparotomy. With small extracellular vesicles (sEV) obtained by liquid biopsy, we aimed to evaluate their potential as biomarkers of tumor resectability, radicality of resection and overall survival (OS). Our prospective study included 83 PDAC patients undergoing surgery with curative intent followed-up longitudinally. sEV were isolated from plasma, and their concentration and size were determined. Fifty patients underwent PDAC resection, and thirty-three had no resection. Preoperatively, patients undergoing resection had higher sEV concentrations than those without resection (p = 0.023). Resection was predicted at the cutoff value of 1.88 × 109/mL for preoperative sEV concentration (p = 0.023) and the cutoff value of 194.8 nm for preoperative mean diameter (p = 0.057). Furthermore, patients with R0 resection demonstrated higher preoperative plasma sEV concentrations than patients with R1/R2 resection (p = 0.014). If sEV concentration was above 1.88 × 109/mL or if the mean diameter was below 194.8 nm, patients had significantly longer OS (p = 0.018 and p = 0.030, respectively). Our proof-of-principle study identified preoperative sEV characteristics as putative biomarkers of feasibility and radicality of PDAC resection that also enable discrimination of patients with worse OS. Liquid biopsy with sEV could aid in PDAC patient stratification and treatment optimization in the future.
Collapse
Affiliation(s)
- David Badovinac
- Department of Abdominal Surgery, University Medical Centre Ljubljana, Zaloška 7, 1000 Ljubljana, Slovenia
- Department of Surgery, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Katja Goričar
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Teja Lavrin
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Hana Zavrtanik
- Department of Abdominal Surgery, University Medical Centre Ljubljana, Zaloška 7, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Metka Lenassi
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Aleš Tomažič
- Department of Abdominal Surgery, University Medical Centre Ljubljana, Zaloška 7, 1000 Ljubljana, Slovenia
- Department of Surgery, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
37
|
Lu Z, Huang Y, Huang J, Ni HH, Luo T, Wei X, Bai X, Qi L, Xiang B. High Platelet Count is a Potential Prognostic Factor of the Early Recurrence of Hepatocellular Carcinoma in the Presence of Circulating Tumor Cells. J Hepatocell Carcinoma 2023; 10:57-68. [PMID: 36685111 PMCID: PMC9849918 DOI: 10.2147/jhc.s398591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Purpose Recent studies indicated the vital role of platelet in enhancing the survival of circulating tumor cells (CTCs) in the blood, thereby stimulating the metastasis of tumors. CTCs have been considered an indicator of early tumor recurrence. Therefore, this study evaluated the prognostic potential of platelet count in predicting the early recurrence of hepatocellular carcinoma (HCC) in the presence of CTCs. Patients and Methods 127 patients, whose preoperative CTCs were detected, were enrolled in this study. Univariate analysis was performed to identify the significant association of factors with the early recurrence of HCC, followed by multivariate analysis to determine the independent prognostic indicators. The prediction potential was evaluated using receiver operating characteristic (ROC) curves. Results A total of 81 (63.7%) patients showed early HCC recurrence. The platelet count ≥225×109/L (hazard ratio, HR: 1.679, P = 0.041), CTCs >5/5 mL (HR: 2.467, P = 0.001), and presence of microvascular invasion (MVI) (HR: 2.580, P = 0.002) were independent factors correlated with the early recurrence of HCC in multivariate analysis. The prognostic potential of the combined CTCs-platelet count (0.738) was better than that of CTCs (0.703) and platelet (0.604) alone. The subgroup analysis, excluding 23 patients with pathological cirrhosis and splenomegaly, showed that the platelet count ≥225×109/L and CTCs >5/5 mL were also independent factors of early HCC recurrence. The prediction potential of the combined CTCs-platelet count was 0.753, which was better than that of the whole cohort. Kaplan-Meier survival curve analysis indicated that the HCC patients with high platelet or CTCs had the worse recurrence-free survival (RFS). Conclusion The high platelet count was an independent factor of early HCC recurrence in the presence of CTCs. The combination of preoperative CTCs and platelet count could effectively predict the early recurrence of HCC. The subgroup analysis also showed similar results.
Collapse
Affiliation(s)
- Zhan Lu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China,Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Ministry of Education, Nanning, People’s Republic of China
| | - Yiyue Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China,Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Ministry of Education, Nanning, People’s Republic of China
| | - Juntao Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China,Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Ministry of Education, Nanning, People’s Republic of China
| | - Hang-Hang Ni
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China,Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Ministry of Education, Nanning, People’s Republic of China
| | - Tai Luo
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
| | - Xingyu Wei
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
| | - Xue Bai
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
| | - Lunnan Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China,Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Ministry of Education, Nanning, People’s Republic of China,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, People’s Republic of China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China,Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Ministry of Education, Nanning, People’s Republic of China,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, People’s Republic of China,Correspondence: Bangde Xiang; Lunnan Qi, Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, 71# Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, People’s Republic of China, Tel +86-7715301253; +86-135-1788-6990, Email ; ;
| |
Collapse
|
38
|
Hernaez R, Avila MA. Immunogenomic classification of hepatocellular carcinoma patients for immune check-point inhibitors therapy: cui bono? Gut 2023; 72:7-9. [PMID: 35474266 DOI: 10.1136/gutjnl-2022-327132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Ruben Hernaez
- Gastroenterology and Hepatology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA .,Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA.,Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
| | - Matias A Avila
- Hepatology, CIMA-University of Navarra, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
39
|
Kim M, Delgado E, Ko S. DNA methylation in cell plasticity and malignant transformation in liver diseases. Pharmacol Ther 2023; 241:108334. [PMID: 36535346 PMCID: PMC9841769 DOI: 10.1016/j.pharmthera.2022.108334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The liver possesses extraordinary regenerative capacity mainly attributable to the ability of hepatocytes (HCs) and biliary epithelial cells (BECs) to self-replicate. This ability is left over from their bipotent parent cell, the hepatoblast, during development. When this innate regeneration is compromised due to the absence of proliferative parenchymal cells, such as during cirrhosis, HCs and BEC can transdifferentiate; thus, adding another layer of complexity to the process of liver repair. In addition, dysregulated lineage maintenance in these two cell populations has been shown to promote malignant growth in experimental conditions. Here, malignant transformation, driven in part by insufficient maintenance of lineage reprogramming, contributes to end-stage liver disease. Epigenetic changes are key drivers for cell fate decisions as well as transformation by finetuning overall transcription and gene expression. In this review, we address how altered DNA methylation contributes to the initiation and progression of hepatic cell fate conversion and cancer formation. We also discussed the diagnostic and therapeutic potential of targeting DNA methylation in liver cancer, its current limitations, and what future research is necessary to facilitate its contribution to clinical translation.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Evan Delgado
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America.
| |
Collapse
|
40
|
Jaffe A, Taddei TH, Giannini EG, Ilagan-Ying YC, Colombo M, Strazzabosco M. Holistic management of hepatocellular carcinoma: The hepatologist's comprehensive playbook. Liver Int 2022; 42:2607-2619. [PMID: 36161463 PMCID: PMC10878125 DOI: 10.1111/liv.15432] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 09/21/2022] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common complication in patients with chronic liver disease and leads to significant morbidity and mortality. Liver disease and liver cancer are preventable by mitigating and managing common risk factors, including chronic hepatitis B and C infection, alcohol use, diabetes, obesity and other components of the metabolic syndrome. The management of patients with HCC requires treatment of the malignancy and adequate control of the underlying liver disease, as preserving liver function is critical for successful cancer treatment and may have a relevant prognostic role independent of HCC management. Hepatologists are the ideal providers to guide the care of patients with HCC as they are trained to identify patients at risk, apply appropriate surveillance strategies, assess and improve residual liver function, evaluate candidacy for transplant, provide longitudinal care to optimize and preserve liver function during and after HCC treatment, survey for cancer recurrence and manage its risk factors, and prevent and treat decompensating events. We highlight the need for a team-based holistic approach to the patient with liver disease and HCC and identify necessary gaps in current care and knowledge.
Collapse
Affiliation(s)
- Ariel Jaffe
- Liver Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Smilow Cancer Hospital and Liver Cancer Program, New Haven, CT, USA
| | - Tamar H. Taddei
- Liver Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Edoardo G. Giannini
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Ysabel C. Ilagan-Ying
- Liver Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | - Mario Strazzabosco
- Liver Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Smilow Cancer Hospital and Liver Cancer Program, New Haven, CT, USA
| |
Collapse
|
41
|
Kramvis A, Chang KM, Dandri M, Farci P, Glebe D, Hu J, Janssen HLA, Lau DTY, Penicaud C, Pollicino T, Testoni B, Van Bömmel F, Andrisani O, Beumont-Mauviel M, Block TM, Chan HLY, Cloherty GA, Delaney WE, Geretti AM, Gehring A, Jackson K, Lenz O, Maini MK, Miller V, Protzer U, Yang JC, Yuen MF, Zoulim F, Revill PA. A roadmap for serum biomarkers for hepatitis B virus: current status and future outlook. Nat Rev Gastroenterol Hepatol 2022; 19:727-745. [PMID: 35859026 PMCID: PMC9298709 DOI: 10.1038/s41575-022-00649-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 12/13/2022]
Abstract
Globally, 296 million people are infected with hepatitis B virus (HBV), and approximately one million people die annually from HBV-related causes, including liver cancer. Although there is a preventative vaccine and antiviral therapies suppressing HBV replication, there is no cure. Intensive efforts are under way to develop curative HBV therapies. Currently, only a few biomarkers are available for monitoring or predicting HBV disease progression and treatment response. As new therapies become available, new biomarkers to monitor viral and host responses are urgently needed. In October 2020, the International Coalition to Eliminate Hepatitis B Virus (ICE-HBV) held a virtual and interactive workshop on HBV biomarkers endorsed by the International HBV Meeting. Various stakeholders from academia, clinical practice and the pharmaceutical industry, with complementary expertise, presented and participated in panel discussions. The clinical utility of both classic and emerging viral and immunological serum biomarkers with respect to the course of infection, disease progression, and response to current and emerging treatments was appraised. The latest advances were discussed, and knowledge gaps in understanding and interpretation of HBV biomarkers were identified. This Roadmap summarizes the strengths, weaknesses, opportunities and challenges of HBV biomarkers.
Collapse
Affiliation(s)
- Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa.
| | - Kyong-Mi Chang
- The Corporal Michael J. Crescenz Veterans Affairs Medical Center and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems partner site, Hamburg, Germany
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dieter Glebe
- National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Jianming Hu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Philadelphia, PA, USA
| | - Harry L A Janssen
- Toronto Centre for Liver Disease, University of Toronto, Toronto, Canada
| | - Daryl T Y Lau
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Capucine Penicaud
- Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Teresa Pollicino
- Laboratory of Molecular Hepatology, Department of Human Pathology, University Hospital "G. Martino" of Messina, Messina, Italy
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
| | - Florian Van Bömmel
- Department of Hepatology, Leipzig University Medical Center, Leipzig, Germany
| | - Ourania Andrisani
- Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
| | | | | | - Henry L Y Chan
- Chinese University of Hong Kong, Shatin, Hong Kong
- Union Hospital, Shatin, Hong Kong
| | | | | | - Anna Maria Geretti
- Roche Pharma Research & Early Development, Basel, Switzerland
- Department of Infectious Diseases, Fondazione PTV, Faculty of Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Adam Gehring
- Toronto Centre for Liver Disease, University Health Network, Toronto, Canada
| | - Kathy Jackson
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | | | - Mala K Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Veronica Miller
- Forum for Collaborative Research, University of California Berkeley School of Public Health, Washington DC Campus, Washington, DC, USA
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
| | | | - Man-Fung Yuen
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Fabien Zoulim
- INSERM Unit 1052 - Cancer Research Center of Lyon, Hospices Civils de Lyon, Lyon University, Lyon, France
| | - Peter A Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
42
|
Kim SC, Kim J, Kim DW, Choi Y, Park K, Cho EJ, Yu SJ, Kim-Ha J, Kim YJ. Methylation-sensitive high-resolution melting analysis of the USP44 promoter can detect early-stage hepatocellular carcinoma in blood samples. BMB Rep 2022; 55:553-558. [PMID: 36016503 PMCID: PMC9712700 DOI: 10.5483/bmbrep.2022.55.11.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 10/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is dangerous cancer that often evades early detection because it is asymptomatic and an effective detection method is lacking. For people with chronic liver inflammation who are at high risk of developing HCC, a sensitive detection method for HCC is needed. In a meta-analysis of The Cancer Genome Atlas pan-cancer methylation database, we identified a CpG island in the USP44 promoter that is methylated specifically in HCC. We developed methylation-sensitive high-resolution melting (MS-HRM) analysis to measure the methylation levels of the USP promoter in cell-free DNA isolated from patients. Our MS-HRM assay correctly identified 40% of patients with early-stage HCC, whereas the α-fetoprotein test, which is currently used to detect HCC, correctly identified only 25% of early-stage HCC patients. These results demonstrate that USP44 MS-HRM analysis is suitable for HCC surveillance. [BMB Reports 2022; 55(11): 553-558].
Collapse
Affiliation(s)
- Si-Cho Kim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Korea
| | - Jiwon Kim
- Department of Integrative Bioscience & Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Da-Won Kim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Korea
| | - Yanghee Choi
- Department of Integrative Bioscience & Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Kyunghyun Park
- Department of Integrative Bioscience & Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jeongsil Kim-Ha
- Department of Integrative Bioscience & Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Young-Joon Kim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Korea
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
43
|
Kim SC, Kim J, Kim DW, Choi Y, Park K, Cho EJ, Yu SJ, Kim-Ha J, Kim YJ. Methylation-sensitive high-resolution melting analysis of the USP44 promoter can detect early-stage hepatocellular carcinoma in blood samples. BMB Rep 2022; 55:553-558. [PMID: 36016503 PMCID: PMC9712700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is dangerous cancer that often evades early detection because it is asymptomatic and an effective detection method is lacking. For people with chronic liver inflammation who are at high risk of developing HCC, a sensitive detection method for HCC is needed. In a meta-analysis of The Cancer Genome Atlas pan-cancer methylation database, we identified a CpG island in the USP44 promoter that is methylated specifically in HCC. We developed methylation-sensitive high-resolution melting (MS-HRM) analysis to measure the methylation levels of the USP promoter in cell-free DNA isolated from patients. Our MS-HRM assay correctly identified 40% of patients with early-stage HCC, whereas the α-fetoprotein test, which is currently used to detect HCC, correctly identified only 25% of early-stage HCC patients. These results demonstrate that USP44 MS-HRM analysis is suitable for HCC surveillance. [BMB Reports 2022; 55(11): 553-558].
Collapse
Affiliation(s)
- Si-Cho Kim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Korea
| | - Jiwon Kim
- Department of Integrative Bioscience & Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Da-Won Kim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Korea
| | - Yanghee Choi
- Department of Integrative Bioscience & Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Kyunghyun Park
- Department of Integrative Bioscience & Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jeongsil Kim-Ha
- Department of Integrative Bioscience & Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Young-Joon Kim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Korea
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
44
|
Sung PS, Lee IK, Roh PR, Kang MW, Ahn J, Yoon SK. Blood-based biomarkers for immune-based therapy in advanced HCC: Promising but a long way to go. Front Oncol 2022; 12:1028728. [PMID: 36387149 PMCID: PMC9659956 DOI: 10.3389/fonc.2022.1028728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/17/2022] [Indexed: 09/08/2024] Open
Abstract
The introduction of immune checkpoint inhibitors (ICIs) represents a key shift in the management strategy for patients with hepatocellular carcinoma (HCC). However, there is a paucity of predictive biomarkers that facilitate the identification of patients that would respond to ICI therapy. Although several researchers have attempted to resolve the issue, the data is insufficient to alter daily clinical practice. The use of minimally invasive procedures to obtain patient-derived specimen, such as using blood-based samples, is increasingly preferred. Circulating tumor DNA (ctDNA) can be isolated from the blood of cancer patients, and liquid biopsies can provide sufficient material to enable ongoing monitoring of HCC. This is particularly significant for patients for whom surgery is not indicated, including those with advanced HCC. In this review, we summarize the current state of understanding of blood-based biomarkers for ICI-based therapy in advanced HCC, which is promising despite there is still a long way to go.
Collapse
Affiliation(s)
- Pil Soo Sung
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, POSTECH-Catholic Biomedical Engineering Institute, The Catholic University of Korea, Seoul, South Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Isaac Kise Lee
- Department of Computer Science and Engineering, Incheon National University, Incheon, South Korea
| | - Pu Reun Roh
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, POSTECH-Catholic Biomedical Engineering Institute, The Catholic University of Korea, Seoul, South Korea
| | - Min Woo Kang
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, POSTECH-Catholic Biomedical Engineering Institute, The Catholic University of Korea, Seoul, South Korea
| | - Jaegyoon Ahn
- Department of Computer Science and Engineering, Incheon National University, Incheon, South Korea
| | - Seung Kew Yoon
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, POSTECH-Catholic Biomedical Engineering Institute, The Catholic University of Korea, Seoul, South Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
45
|
Chen W, Chen F, Gong M, Jin Z, Shu L, Wang ZW, Wang J. Comprehensive analysis of lncRNA-mediated ceRNA networkfor hepatocellular carcinoma. Front Oncol 2022; 12:1042928. [PMID: 36338699 PMCID: PMC9634570 DOI: 10.3389/fonc.2022.1042928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a high-burden cancer. The molecular mechanism of HCC has not been fully elucidated. Notably, current research has revealed a significant function for long non-coding RNAs (lncRNAs) in the prognosis of patients with HCC. Here, this study aims to construct a regulated lncRNA-mediated ceRNA network and find biological targets for the treatment of HCC. Methods Based on the RNA expression patterns from the TCGA, we did an analysis to determine which genes were expressed differently between liver tumor tissues and noncancerous tissues. Then, using bioinformatic tools, we built a lncRNA-miRNA-mRNA ceRNA network and used GO and KEGG functional analyses on the DEmRNAs connected to ceRNA networks. The main lncRNAs in the subnetwork were chosen, and we next looked at the relationships between these lncRNAs and the clinical characteristics of patients with HCC. The prognosis-related genes and immune cells were identified using Kaplan-Meier and Cox proportional hazard analyses, and CIBERSORT was utilized to separate the 22 immune cell types. CCK8 assay was performed to measure cell viability in HCC cells after lncRNA HOTTIP modulation. Results Differentially expressed mRNA and lncRNAs in HCC and paracancerous tissues were identified. There are 245 lncRNAs, 126 miRNAs, and 1980 mRNAs that are expressed differently in liver tumour tissues than in noncancerous cells. Function analysis showed that mRNAs in ceRNA network were significantly enriched in G1/S transition of mototiv cell cycle, positive regulation of cell cycle process, hepatocellular carcinoma, and cancer related pathways. CD8 T cells and T follicular helper cells had a favourable link with a 0.65 correlation coefficient. Additionally, there was a strong correlation between Eosinophils, activated NK cells, and B memory cells. Strikingly, depletion of lncRNA HOTTIP inhibited viability of HCC cells. In addition, miR-205 upregulation suppressed viability of HCC cells, while miR-205 downregulation repressed viability of HCC cells. Notably, miR-205 depletion rescued HOTTIP depletion-mediated suppression of cell viability in HCC. Conclusion A ceRNA network was created by examining the lncRNA, miRNA, and mRNA expression profiles of liver tumours from the TCGA database. LncRNA HOTTIP promoted cell viability via inhibition of miR-205 in HCC cells.
Collapse
Affiliation(s)
- Weiqing Chen
- First People’s Hospital of Hangzhou Lin’an District, Affiliated Lin’an People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Feihua Chen
- First People’s Hospital of Hangzhou Lin’an District, Affiliated Lin’an People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Mouchun Gong
- First People’s Hospital of Hangzhou Lin’an District, Affiliated Lin’an People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhaoqing Jin
- First People’s Hospital of Hangzhou Lin’an District, Affiliated Lin’an People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Lilu Shu
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, China
| | - Zhi-wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jianjiang Wang, ; Zhi-wei Wang,
| | - Jianjiang Wang
- First People’s Hospital of Hangzhou Lin’an District, Affiliated Lin’an People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Jianjiang Wang, ; Zhi-wei Wang,
| |
Collapse
|
46
|
Lee HW, Kim E, Cho KJ, Park HJ, Seo J, Lee H, Baek E, Choi JR, Han KH, Lee ST, Park JY. Applications of molecular barcode sequencing for the detection of low-frequency variants in circulating tumour DNA from hepatocellular carcinoma. Liver Int 2022; 42:2317-2326. [PMID: 35776657 DOI: 10.1111/liv.15356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 05/02/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Liquid biopsy has emerged as a promising tool for minimally invasive and accurate detection of various malignancies. We aimed to apply molecular barcode sequencing to circulating tumour DNA (ctDNA) from liquid biopsies of hepatocellular carcinoma (HCC). STUDY DESIGN Patients with HCC or benign liver disease were enrolled between 2017 and 2018. Matched tissue and serum samples were obtained from these patients. Plasma cell-free DNA was extracted and subjected to targeted sequencing with ultra-high coverage and molecular barcoding. RESULTS The study included 143 patients: 102 with HCC, 7 with benign liver tumours and 34 with chronic liver disease. No tier 1/2 or oncogenic mutations were detected in patients with benign liver disease. Among the HCC patients, 49 (48%) had tier 1/2 mutations in at least one gene; detection rates were higher in advanced stages (75%) than in early stages (26%-33%). TERT was the most frequently mutated gene (30%), followed by TP53 (16%), CTNNB1 (14%), ARID2 (5%), ARID1A (4%), NFE2L2 (4%), AXIN1 (3%) and KRAS (1%). Survival among patients with TP53 mutations was significantly worse (p = 0.007) than among patients without these mutations, whereas CTNNB1 and TERT mutations did not affect survival. ctDNA testing combined with α-fetoprotein and prothrombin induced by vitamin K absence-II analyses improved HCC detection, even in early stages. CONCLUSIONS ctDNA detection using molecular barcoding technology offers dynamic and personalized information concerning tumour biology, such information can guide clinical diagnosis and management. This detection also has the potential as a minimally invasive approach for prognostic stratification and post-therapeutic monitoring.
Collapse
Affiliation(s)
- Hye Won Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
- Yonsei Liver Center, Severance Hospital, Seoul, South Korea
| | - Esl Kim
- Department of Medical Science, The Graduate School, Yonsei University, Seoul, South Korea
| | - Kyung Joo Cho
- Yonsei Liver Center, Severance Hospital, Seoul, South Korea
| | - Hye Jung Park
- Yonsei Liver Center, Severance Hospital, Seoul, South Korea
| | - Jieun Seo
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyeonah Lee
- Department of Medical Science, The Graduate School, Yonsei University, Seoul, South Korea
| | - Eunha Baek
- Dxome Co. Ltd., Seongnam-si, Gyeonggi-do, South Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Dxome Co. Ltd., Seongnam-si, Gyeonggi-do, South Korea
| | - Kwang-Hyub Han
- Yonsei Liver Center, Severance Hospital, Seoul, South Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Dxome Co. Ltd., Seongnam-si, Gyeonggi-do, South Korea
| | - Jun Yong Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
- Yonsei Liver Center, Severance Hospital, Seoul, South Korea
| |
Collapse
|
47
|
Lin ZF, Qin LX, Chen JH. Biomarkers for response to immunotherapy in hepatobiliary malignancies. Hepatobiliary Pancreat Dis Int 2022; 21:413-419. [PMID: 35973935 DOI: 10.1016/j.hbpd.2022.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/29/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND The advent of immune checkpoint inhibitors (ICIs) has revolutionized the therapeutic options of hepatobiliary malignancies. However, the clinical benefit provided by immunotherapy seems limited to a small subgroup of patients with hepatobiliary malignancies. The identification of reliable predictors of the response to immunotherapy is urgently needed. DATA SOURCES Literature search was conducted in PubMed for relevant articles published up to May 2022. Information of clinical trials was obtained from https://clinicaltrials.gov/. RESULTS Biomarkers for ICI response of hepatobiliary malignancies remain in the exploration stage and lack compelling evidence. Tumor programmed death-ligand 1 (PD-L1) expression is the most widely studied biomarker in hepatocellular carcinoma (HCC) and biliary tract cancers (BTCs), but there are conflicting results on its predictive potential. Tumor mutational burden (TMB) is generally low both in HCC and BTCs, and the clinical trials of TMB are rare in hepatobiliary malignancies. Promisingly, mismatch repair deficiency (dMMR)/high microsatellite instability (MSI-H) may be a predictive biomarker of response to anti-PD-1 therapy in BTCs. Furthermore, some emerging biomarkers, such as gut microbiota, show predictive potential in the preliminary studies. Radiomics and liquid-biopsy biomarkers, including circulating tumor cells, circulating tumor DNA (ctDNA) and exosomal PD-L1 provide a quick and non-invasive approach for monitoring the ICI response, showing a new promising direction. CONCLUSIONS Multiple potential biomarkers for predicting ICI response of hepatobiliary malignancies have been explored and tried to apply in clinic. Yet there is no robust evidence to prove their clinical value in predicting immunotherapeutic response for patients with hepatobiliary malignancies. The identification of predictors for response to ICIs is an urgent need and major challenge. Further studies are warranted to validate the role of emerging biomarkers in predicting immunotherapeutic responses.
Collapse
Affiliation(s)
- Zhi-Fei Lin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Jin-Hong Chen
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200040, China.
| |
Collapse
|
48
|
lncRNA TINCR Regulates Proliferation and Invasion of Hepatocellular Carcinoma Cells by Regulating the miR-375/ATG7 Axis. JOURNAL OF ONCOLOGY 2022; 2022:8132403. [PMID: 36157234 PMCID: PMC9507645 DOI: 10.1155/2022/8132403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022]
Abstract
Purpose The aim of this study was to examine the role of the long noncoding RNA (lncRNA) terminal differentiation-induced noncoding RNA (TINCR) on the proliferation, apoptosis, and invasion of liver cancer cells and its mechanism. Methods The expression of lncRNA TINCR in twenty cases of liver cancer tissues, matched liver cancer cell lines, and paracancerous tissues was analyzed by RT-PCR. CCK-8, clonogenic test, flow cytometry, and Transwell assay were used to measure the effect of lncRNA TINCR overexpression and knockdown on cell proliferation, apoptosis, and invasion. Luciferase reporter and Western blotting showed that lncRNA TINCR regulates the expression of ATG7 through miR-375, and the rescue experiment proved that lncRNA TINCR controls the invasion and proliferation of liver cancer cells via the miR-375/ATG7 signaling pathway. Furthermore, in vivo nude mouse assay demonstrated that overexpression of lncRNA TINCR inhibited liver cancer cell growth. Results The lncRNA TINCR was highly expressed in liver cancer tissues and cell lines. Liver cancer cells responded differently to knockdown of the lncRNA TINCR compared to overexpression in terms of proliferation, colony formation, and invasion. miR-375 negatively affected the expression of ATG7. The lncRNA TINCR bound to miR-375 and influenced its expression. Transfection of miR-375 mimics greatly inhibited the inhibitory effect of lncRNA TINCR knockdown on the invasion and proliferation, whereas transfection of miR-375 inhibitor considerably reverses this effect on liver cancer cells. Overexpressing lncRNA TINCR increased liver cancer cell proliferation in vivo. Conclusion By controlling the miR-375/ATG7 axis, the lncRNA TINCR impacts the proliferation and invasion of liver cancer cells. Therefore, the lncRNA TINCR/miR-375/ATG7 signaling axis could be a novel biological target for the diagnosis and therapy of liver cancer.
Collapse
|
49
|
Chen ZX, Liu SY, Tong XM. Preoperative prediction of microvascular invasion: Is invasive biopsy of HCC necessary? J Hepatol 2022; 77:892-893. [PMID: 35483536 DOI: 10.1016/j.jhep.2022.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/03/2023]
Affiliation(s)
- Zi-Xiang Chen
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Cancer Center, Affiliated People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Zhejiang, China; Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Si-Yu Liu
- The Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Zhejiang University Lishui Hospital, Lishui, Zhejiang, China
| | - Xiang-Min Tong
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Cancer Center, Affiliated People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Zhejiang, China; The Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Zhejiang University Lishui Hospital, Lishui, Zhejiang, China.
| |
Collapse
|
50
|
de la Cruz-Ojeda P, Schmid T, Boix L, Moreno M, Sapena V, Praena-Fernández JM, Castell FJ, Falcón-Pérez JM, Reig M, Brüne B, Gómez-Bravo MA, Giráldez Á, Bruix J, Ferrer MT, Muntané J. miR-200c-3p, miR-222-5p, and miR-512-3p Constitute a Biomarker Signature of Sorafenib Effectiveness in Advanced Hepatocellular Carcinoma. Cells 2022; 11:cells11172673. [PMID: 36078082 PMCID: PMC9454520 DOI: 10.3390/cells11172673] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Sorafenib constitutes a suitable treatment alternative for patients with advanced hepatocellular carcinoma (HCC) in whom atezolizumab + bevacizumab therapy is contraindicated. The aim of the study was the identification of a miRNA signature in liquid biopsy related to sorafenib response. Methods: miRNAs were profiled in hepatoblastoma HepG2 cells and tested in animal models, extracellular vesicles (EVs), and plasma from HCC patients. Results: Sorafenib altered the expression of 11 miRNAs in HepG2 cells. miR-200c-3p and miR-27a-3p exerted an anti-tumoral activity by decreasing cell migration and invasion, whereas miR-122-5p, miR-148b-3p, miR-194-5p, miR-222-5p, and miR-512-3p exerted pro-tumoral properties by increasing cell proliferation, migration, or invasion, or decreasing apoptosis. Sorafenib induced a change in EVs population with an increased number of larger EVs, and promoted an accumulation of miR-27a-3p, miR-122-5p, miR-148b-3p, miR-193b-3p, miR-194-5p, miR-200c-3p, and miR-375 into exosomes. In HCC patients, circulating miR-200c-3p baseline levels were associated with increased survival, whereas high levels of miR-222-5p and miR-512-3p after 1 month of sorafenib treatment were related to poor prognosis. The RNA sequencing revealed that miR-200c-3p was related to the regulation of cell growth and death, whereas miR-222-5p and miR-512-3p were related to metabolic control. Conclusions: The study showed that Sorafenib regulates a specific miRNA signature in which miR-200c-3p, miR-222-5p, and miR-512-3p bear prognostic value and contribute to treatment response.
Collapse
Affiliation(s)
- Patricia de la Cruz-Ojeda
- Institute of Biomedicine of Seville (IBiS), Hospital University “Virgen del Rocío”/CSIC/University of Seville, 41013 Seville, Spain
- Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
- Department of Medical Physiology and Biophysics, University of Seville, 41004 Seville, Spain
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60528 Frankfurt, Germany
| | - Loreto Boix
- Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
- BCLC Group, Liver Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBEREHD, 08036 Barcelona, Spain
| | - Manuela Moreno
- Department of General Surgery, Hospital University “Virgen del Rocío”/CSIC/University of Seville/IBIS, 41013 Seville, Spain
| | - Víctor Sapena
- BCLC Group, Liver Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBEREHD, 08036 Barcelona, Spain
| | | | - Francisco J. Castell
- Department of Radiology, Hospital University “Virgen del Rocío”/CSIC/University of Seville/IBIS, 41013 Seville, Spain
| | - Juan Manuel Falcón-Pérez
- Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
- Exosomes Lab, CIC bioGUNE, 48160 Derio, Spain
| | - María Reig
- Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
- BCLC Group, Liver Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBEREHD, 08036 Barcelona, Spain
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60528 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60528 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60528 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60528 Frankfurt, Germany
| | - Miguel A. Gómez-Bravo
- Department of General Surgery, Hospital University “Virgen del Rocío”/CSIC/University of Seville/IBIS, 41013 Seville, Spain
| | - Álvaro Giráldez
- Unit for the Clinical Management of Digestive Diseases, Hospital University “Virgen del Rocío”/CSIC/University of Seville/IBIS, 41013 Seville, Spain
| | - Jordi Bruix
- Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
- BCLC Group, Liver Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBEREHD, 08036 Barcelona, Spain
| | - María T. Ferrer
- Unit for the Clinical Management of Digestive Diseases, Hospital University “Virgen del Rocío”/CSIC/University of Seville/IBIS, 41013 Seville, Spain
| | - Jordi Muntané
- Institute of Biomedicine of Seville (IBiS), Hospital University “Virgen del Rocío”/CSIC/University of Seville, 41013 Seville, Spain
- Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
- Department of Medical Physiology and Biophysics, University of Seville, 41004 Seville, Spain
- Correspondence: ; Tel.: +34-955-923-122; Fax: +34-955-923-002
| |
Collapse
|