1
|
Rahman M, Alatiqi M, Al Jarallah M, Hussain MY, Monayem A, Panduranga P, Rajan R. Cardiovascular Effects of Smoking and Smoking Cessation: A 2024 Update. Glob Heart 2025; 20:15. [PMID: 39991592 PMCID: PMC11843939 DOI: 10.5334/gh.1399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/23/2025] [Indexed: 02/25/2025] Open
Abstract
Smoking is a significant risk factor for both acute and chronic cardiovascular diseases. These diseases contribute to approximately twenty percent of all-cause mortality. Research indicates that quitting smoking can substantially reduce or even reverse the harmful effects associated with smoking on cardiovascular health. Notably, these benefits can be observed in a relatively short period compared to the duration of smoking history. This article aims to provide data to understand the effects of smoking on the cardiovascular system locally as well as its effects as a pandemic globally and hence provide comprehensive strategies in the management of cardiovascular patients for smoking cessation.
Collapse
Affiliation(s)
| | | | - Mohammed Al Jarallah
- Department of Cardiology, Sabah Al Ahmed Cardiac Centre, Al Amiri Hospital, Kuwait City, Kuwait
| | | | | | - Prashant Panduranga
- Department of Cardiology, Royal Hospital, and Director General of Specialized Medical Care, Ministry of Health, Muscat, Oman
| | - Rajesh Rajan
- Department of Cardiology, Sabah Al Ahmed Cardiac Centre, Al Amiri Hospital, Kuwait City, Kuwait
| |
Collapse
|
2
|
Cirillo P, Morello M, Titolo G, Marra L, Morello A, De Rosa G, Cozzolino D, Sugraliyev A, Cimmino G. E-Cigarettes induce expression of procoagulant tissue factor in cultivated human endothelial cells. J Thromb Thrombolysis 2025; 58:62-70. [PMID: 39207592 DOI: 10.1007/s11239-024-03018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND E-cigarettes (ECIG) are proposed as an alternative for regular tobacco users with less dangerous effects for health. Several studies demonstrated that ECIG exert deleterious cardiovascular effects and promote platelet dependent thrombosis. However, ECIG role on Tissue Factor-dependent thrombosis is still unknown. Dysfunctional endothelial cells (ECs) are known to express Tissue Factor (TF) on their surface. Aim of the present study was to investigate whether ECIG might promote TF expression in ECs, shifting them to a pro thrombotic phenotype. METHODS Human Umbilical Vein Endothelial Cells (HUVEC) were incubated with increasing doses of ECIG (commercially available and mix of propylene glycol/vegetable glycerine/nicotine 18 mg/mL) up to 1.8 mg/mL. TF gene expression and protein levels were assessed at different time points by Real Time PCR and Western Blot, respectively. TF surface expression and activity were also measured by FACS analysis and coagulation assay. Finally, NF-kB translocation was investigated as possible mechanism of action. Potential protective effects by Rosuvastatin were also investigated. RESULTS ECIG significantly increased TF expression at both gene and protein levels in a time and dose dependent manner. Surface expression and procoagulant activity were increased as well. These phenomena appeared modulated by the NF-κB pathway. Rosuvastatin reduced ECIG effects on TF-mRNA. CONCLUSIONS Although in vitro, we indicate that ECIG promote a pro thrombotic phenotype in ECs via expression of functional TF. Data of the present study permit to shed a brighter light on the still partially unresolved issue about the role of ECIG in development of cardiovascular diseases suggesting that they might represent a potential risk factor for thrombotic cardiovascular events.
Collapse
Affiliation(s)
- Plinio Cirillo
- Department of Advanced Biomedical Sciences, Division of Cardiology, University of Naples "Federico II", Via Pansini, 5, Naples, 80131, Italy.
| | - Mariarosaria Morello
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gisella Titolo
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Laura Marra
- SC Cell Biology and Biotherapy, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Andrea Morello
- Biochemical Unit, Azienda Sanitaria Regionale Molise, Antonio Cardarelli Hospital, Campobasso, Italy
| | - Gennaro De Rosa
- Department of Advanced Biomedical Sciences, Division of Cardiology, University of Naples "Federico II", Via Pansini, 5, Naples, 80131, Italy
| | - Domenico Cozzolino
- Department of Precision Medicine, University of Campania, Caserta, Italy
| | - Akhmetzhan Sugraliyev
- Department of Internal Disease, Kazakh National Medical University, Almaty, Kazakhstan
| | - Giovanni Cimmino
- Department of Advanced Biomedical Sciences, Division of Cardiology, University of Naples "Federico II", Via Pansini, 5, Naples, 80131, Italy
| |
Collapse
|
3
|
Magna A, Polisena N, Polisena L, Bagnato C, Pacella E, Carnevale R, Nocella C, Loffredo L. The Hidden Dangers: E-Cigarettes, Heated Tobacco, and Their Impact on Oxidative Stress and Atherosclerosis-A Systematic Review and Narrative Synthesis of the Evidence. Antioxidants (Basel) 2024; 13:1395. [PMID: 39594537 PMCID: PMC11591068 DOI: 10.3390/antiox13111395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/03/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Electronic cigarettes and heated tobacco products have seen significant growth in sales and usage in recent years. Initially promoted as potentially less harmful alternatives to traditional tobacco, recent scientific evidence has raised serious concerns about the risks they pose, particularly in relation to atherosclerosis. While atherosclerosis has long been associated with conventional tobacco smoking, emerging research suggests that electronic cigarettes and heated tobacco may also contribute to the development of this condition and related cardiovascular complications. In a narrative review, we examined the potential effects of heated tobacco products and electronic cigarettes on oxidative stress and atherosclerosis. Several studies have shown that e-cigarettes and heated tobacco increase oxidative stress through the activation of enzymes such as NADPH oxidase. One of the primary effects of these products is their pro-thrombotic and pro-atherosclerotic impact on endothelial cells and platelets, which promotes inflammatory processes within the arteries. Furthermore, the chemicals found in electronic cigarette liquids may exacerbate inflammation and cause endothelial dysfunction. Furthermore, through a systematic review, we analyzed the effects of chronic exposure to electronic and heated tobacco cigarettes on endothelial function, as assessed by brachial flow-mediated dilation (FMD). Although electronic cigarettes and heated tobacco cigarettes are often perceived as safer alternatives to traditional smoking, they could still present risks to cardiovascular health. It is essential to raise public awareness about the potential dangers associated with these products and implement protective measures, particularly for young people.
Collapse
Affiliation(s)
- Arianna Magna
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Nausica Polisena
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Ludovica Polisena
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Chiara Bagnato
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Elena Pacella
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
- IRCCS—Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, 86077 Pozzilli, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Lorenzo Loffredo
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
4
|
Yu Q, Dai S, Chen X, Zhang X, Chen X. Advances in the application of ultrasonographic parameters for fluid management in obstetric anesthesia. Am J Transl Res 2024; 16:5981-5989. [PMID: 39544761 PMCID: PMC11558391 DOI: 10.62347/qmyl9341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024]
Abstract
Ultrasound provides a valuable non-invasive approach for fluid management in obstetric anesthesia. Ultrasonographic parameters assist anesthesiologists to effectively assess the fluid status of parturients and reduce related complications. In addition to conventional parameters, which have been widely validated in clinical practice, we provide new insights into arterial parameters such as peak velocity, velocity-time integral, corrected flow time, and vein-related parameters, including the internal jugular vein and its collapsibility index, the inferior vena cava and its collapsibility index, as well as subclavian vein and its collapsibility index. These parameters can potentially enhance fluid management in obstetric anesthesia.
Collapse
Affiliation(s)
- Qingqing Yu
- Department of Anesthesiology, Women’s Hospital School of Medicine Zhejiang UniversityHangzhou 310000, Zhejiang, China
- Department of Anesthesiology, The First People’s Hospital of Lin’an DistrictHangzhou 311300, Zhejiang, China
| | - Shaobing Dai
- Department of Anesthesiology, Women’s Hospital School of Medicine Zhejiang UniversityHangzhou 310000, Zhejiang, China
| | - Xiaoping Chen
- Department of Anesthesiology, Women’s Hospital School of Medicine Zhejiang UniversityHangzhou 310000, Zhejiang, China
| | - Xufeng Zhang
- Department of Anesthesiology, Women’s Hospital School of Medicine Zhejiang UniversityHangzhou 310000, Zhejiang, China
- Department of Anesthesiology, Ningbo Medical Center Lihuili HospitalNingbo 315500, Zhejiang, China
| | - Xinzhong Chen
- Department of Anesthesiology, Women’s Hospital School of Medicine Zhejiang UniversityHangzhou 310000, Zhejiang, China
| |
Collapse
|
5
|
Alavi R, Dai W, Mazandarani SP, Arechavala RJ, Herman DA, Kleinman MT, Kloner RA, Pahlevan NM. Adverse Cardiovascular Effects of Nicotine Delivered by Chronic Electronic Cigarettes or Standard Cigarettes Captured by Cardiovascular Intrinsic Frequencies. J Am Heart Assoc 2024; 13:e035462. [PMID: 39258553 PMCID: PMC11935601 DOI: 10.1161/jaha.124.035462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Electronic cigarettes have gained popularity as a nicotine delivery system, which has been recommended by some as an aid to help people quit traditional smoking. The potential long-term effects of vaping on the cardiovascular system, as well as how their effects compare with those from standard cigarettes, are not well understood. The intrinsic frequency (IF) method is a systems approach for analysis of left ventricle and arterial function. Recent clinical studies have demonstrated the diagnostic and prognostic value of IF. Here, we aim to determine whether the novel IF metrics derived from carotid pressure waveforms can detect effects of nicotine (delivered by chronic exposure to electronic cigarette vapor or traditional cigarette smoke) on the cardiovascular system. METHODS AND RESULTS One hundred seventeen healthy adult male and female rats were exposed to purified air (control), electronic cigarette vapor without nicotine, electronic cigarette vapor with nicotine, and traditional nicotine-rich cigarette smoke, after which hemodynamics were comprehensively evaluated. IF metrics were computed from invasive carotid pressure waveforms. Standard cigarettes significantly increased the first IF (indicating left ventricle contractile dysfunction). Electronic cigarettes with nicotine significantly reduced the second IF (indicating adverse effects on vascular function). No significant difference was seen in the IF metrics between controls and electronic cigarettes without nicotine. Exposure to electronic cigarettes with nicotine significantly increased the total IF variation (suggesting adverse effects on left ventricle-arterial coupling and its optimal state), when compared with electronic cigarettes without nicotine. CONCLUSIONS Our IF results suggest that nicotine-containing electronic cigarettes adversely affect vascular function and left ventricle-arterial coupling, whereas standard cigarettes have an adverse effect on left ventricle function.
Collapse
Affiliation(s)
- Rashid Alavi
- Department of Aerospace and Mechanical EngineeringUniversity of Southern CaliforniaLos AngelesCA
- Cardiovascular ResearchHuntington Medical Research InstitutesPasadenaCA
| | - Wangde Dai
- Division of Cardiovascular Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA
- Cardiovascular ResearchHuntington Medical Research InstitutesPasadenaCA
| | - Sohrab P. Mazandarani
- Division of Cardiovascular Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA
| | - Rebecca J. Arechavala
- Department of Environmental and Occupational Health, College of Health SciencesUniversity of CaliforniaIrvineCA
| | - David A. Herman
- Department of Environmental and Occupational Health, College of Health SciencesUniversity of CaliforniaIrvineCA
| | - Michael T. Kleinman
- Department of Environmental and Occupational Health, College of Health SciencesUniversity of CaliforniaIrvineCA
| | - Robert A. Kloner
- Division of Cardiovascular Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA
- Cardiovascular ResearchHuntington Medical Research InstitutesPasadenaCA
| | - Niema M. Pahlevan
- Department of Aerospace and Mechanical EngineeringUniversity of Southern CaliforniaLos AngelesCA
- Division of Cardiovascular Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA
- Cardiovascular ResearchHuntington Medical Research InstitutesPasadenaCA
| |
Collapse
|
6
|
Velayutham M, Mills A, Khramtsov VV, Olfert IM. An electron paramagnetic resonance time-course study of oxidative stress in the plasma of electronic cigarette exposed rats. Exp Physiol 2024; 109:1420-1425. [PMID: 39090831 PMCID: PMC11363090 DOI: 10.1113/ep092064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
The long-term consequences of electronic cigarette (Ecig) use in humans are not yet known, but it is known that Ecig aerosols contain many toxic compounds of concern. We have recently shown that Ecig exposure impairs middle cerebral artery (MCA) endothelial function and that it takes 3 days for MCA reactivity to return to normal. However, the sources contributing to impairment of the endothelium were not investigated. We hypothesized that the increased levels of oxidative stress markers in the blood are correlated with impaired MCA reactivity. We used electron paramagnetic resonance (EPR) spectroscopy to examine plasma from 4-month-old male Sprague-Dawley rats that were exposed to either air (n = 5) or 1 h Ecig exposure, after which blood samples were collected at varying times after exposure (i.e., 1-4, 24, 48 and 72 h postexposure, n = 4 or 5 in each time group). The EPR analyses were performed using the redox-sensitive hydroxylamine spin probe 1-hydroxy-3-carboxymethyl-2,2,5,5-tetramethyl-pyrrolidine (CMH) to measure the level of reactive oxidant species in the plasma samples. We found that EPR signal intensity from the CM• radical was significantly increased in plasma at 1-4, 24 and 48 h (P < 0.05, respectively) and returned to control (air) levels by 72 h. When evaluating the EPR results with MCA reactivity, we found a significant negative correlation (Pearson's P = 0.0027). These data indicate that impaired cerebrovascular reactivity resulting from vaping is associated with the oxidative stress level (measured by EPR from plasma) and indicate that a single 1 h vaping session can negatively influence vascular health for up to 3 days after vaping. HIGHLIGHTS: What is the central question of this study? Does the time course of oxidative stress triggered by electronic cigarette exposure follow the cerebral vascular dysfunction? What is the main finding and its importance? Electron paramagnetic resonance analysis shows that the oxidative stress induced after a single 1 h exposure to electronic cigarette aerosol takes ≤72 h to return to normal, which mirrors the time course for vascular dysfunction in the middle cerebral artery that we have reported previously.
Collapse
Affiliation(s)
- Murugesan Velayutham
- In vivo Multifunctional Magnetic Resonance CenterWest Virginia University School of MedicineMorgantownWest VirginiaUSA
- Center for Inhalation ToxicologyWest Virginia University School of MedicineMorgantownWest VirginiaUSA
- Department of Biochemistry and Molecular MedicineWest Virginia University School of MedicineMorgantownWest VirginiaUSA
| | - Amber Mills
- Department of Physiology, Pharmacology & ToxicologyWest Virginia University School of MedicineMorgantownWest VirginiaUSA
| | - Valery V. Khramtsov
- In vivo Multifunctional Magnetic Resonance CenterWest Virginia University School of MedicineMorgantownWest VirginiaUSA
- Department of Biochemistry and Molecular MedicineWest Virginia University School of MedicineMorgantownWest VirginiaUSA
| | - I. Mark Olfert
- Center for Inhalation ToxicologyWest Virginia University School of MedicineMorgantownWest VirginiaUSA
- Department of Physiology, Pharmacology & ToxicologyWest Virginia University School of MedicineMorgantownWest VirginiaUSA
- Department of Human Performance, Division of Exercise PhysiologyWest Virginia University School of MedicineMorgantownWest VirginiaUSA
| |
Collapse
|
7
|
Li X, Yuan L, Wang F. Health outcomes of electronic cigarettes. Chin Med J (Engl) 2024; 137:1903-1911. [PMID: 38973260 PMCID: PMC11332784 DOI: 10.1097/cm9.0000000000003098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Indexed: 07/09/2024] Open
Abstract
ABSTRACT The usage of electronic cigarettes (e-cigarettes) sparked an outbreak of unidentified vaping-related lung disease in the US during late 2019. With e-cigarettes becoming more and more popular, smokers have more options other than conventional cigarettes. Under these circumstances, a comprehensive evaluation of the general safety of new tobacco and tobacco-related products, represented by e-cigarettes, to human health is necessary. In this review, we summarize the current research on potential negative impacts of e-cigarette exposure on human health. In particular, studies detailing the relationship between e-cigarettes and the digestive system are summarized, with mechanisms mainly including hepatic metabolic dysfunction, impaired gut barrier, and worsened outcomes of inflammatory bowel disease (IBD). Although believed to be safer than traditional cigarettes, e-cigarettes exert adverse effects on systemic health and induce the development of multiple diseases including asthma, cardiovascular disease, and IBD. Moreover, nicotine-containing e-cigarettes have a negative impact on the childhood development and increase the risk of arterial stiffness compared to the non-nicotine e-cigarettes. However, non-nicotine e-cigarette components have detrimental effects including promoting liver damage and metabolic disorders.
Collapse
Affiliation(s)
- Xinmeng Li
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Hunan Key Laboratory of Non-resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Lingzhi Yuan
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Hunan Key Laboratory of Non-resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
8
|
Mohammed Abdul KS, Han K, Guerrero AB, Wilson CN, Kulkarni A, Purcell NH. Increased PHLPP1 expression through ERK-4E-BP1 signaling axis drives nicotine induced oxidative stress related damage of cardiomyocytes. J Mol Cell Cardiol 2024; 193:100-112. [PMID: 38851627 DOI: 10.1016/j.yjmcc.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Nicotine, a key constituent of tobacco/electronic cigarettes causes cardiovascular injury and mortality. Nicotine is known to induce oxidative stress and mitochondrial dysfunction in cardiomyocytes leading to cell death. However, the underlying mechanisms remain unclear. Pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) is a member of metal-dependent protein phosphatase (PPM) family and is known to dephosphorylate several AGC family kinases and thereby regulate a diverse set of cellular functions including cell growth, survival, and death. Our lab has previously demonstrated that PHLPP1 removal reduced cardiomyocyte death and cardiac dysfunction following injury. Here, we present a novel finding that nicotine exposure significantly increased PHLPP1 protein expression in the adolescent rodent heart. Building upon our in vivo finding, we determined the mechanism of PHLPP1 expression in cardiomyocytes. Nicotine significantly increased PHLPP1 protein expression without altering PHLPP2 in cardiomyocytes. In cardiomyocytes, nicotine significantly increased NADPH oxidase 4 (NOX4), which coincided with increased reactive oxygen species (ROS) and increased cardiomyocyte apoptosis which were dependent on PHLPP1 expression. PHLPP1 expression was both necessary and sufficient for nicotine induced mitochondrial dysfunction. Mechanistically, nicotine activated extracellular signal-regulated protein kinases (ERK1/2) and subsequent eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) to increase PHLPP1 protein expression. Inhibition of protein synthesis with cycloheximide (CHX) and 4EGI-1 abolished nicotine induced PHLPP1 protein expression. Moreover, inhibition of ERK1/2 activity by U0126 significantly blocked nicotine induced PHLPP1 expression. Overall, this study reveals a novel mechanism by which nicotine regulates PHLPP1 expression through ERK-4E-BP1 signaling axis to drive cardiomyocyte injury.
Collapse
Affiliation(s)
| | - Kimin Han
- Cardiovascular Signaling Division, Huntington Medical Research Institutes, Pasadena, California, USA
| | - Alyssa B Guerrero
- Cardiovascular Signaling Division, Huntington Medical Research Institutes, Pasadena, California, USA
| | - Cekia N Wilson
- Cardiovascular Signaling Division, Huntington Medical Research Institutes, Pasadena, California, USA
| | - Amogh Kulkarni
- Cardiovascular Signaling Division, Huntington Medical Research Institutes, Pasadena, California, USA
| | - Nicole H Purcell
- Cardiovascular Signaling Division, Huntington Medical Research Institutes, Pasadena, California, USA; Cardiovascular Division, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
9
|
Rimányi E, Quick JD, Yamey G, Immurana M, Malik VS, Doherty T, Jafar Z. Dynamics of combatting market-driven epidemics: Insights from U.S. reduction of cigarette, sugar, and prescription opioid consumption. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003479. [PMID: 39047013 PMCID: PMC11268728 DOI: 10.1371/journal.pgph.0003479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Misuse and overconsumption of certain consumer products have become major global risk factors for premature deaths, with their total costs in trillions of dollars. Progress in reducing such deaths has been slow and difficult. To address this challenge, this review introduces the definition of market-driven epidemics (MDEs), which arise when companies aggressively market products with proven harms, deny these harms, and resist mitigation efforts. MDEs are a specific within the broader landscape of commercial determinants of health. We selected three illustrative MDE products reflecting different consumer experiences: cigarettes (nicotine delivery product), sugar (food product), and prescription opioids (medical product). Each met the MDE case definition with proven adverse health impacts, well-documented histories, longitudinal product consumption and health impact data, and sustained reduction in product consumption. Based on these epidemics, we describe five MDE phases: market expansion, evidence of harm, corporate resistance, mitigation, and market adaptation. From the peak of consumption to the most recent data, U.S. cigarette sales fell by 82%, sugar consumption by 15%, and prescription opioid prescriptions by 62%. For each, the consumption tipping point occurred when compelling evidence of harm, professional alarm, and an authoritative public health voice and/or public mobilization overcame corporate marketing and resistance efforts. The gap between suspicion of harm and the consumption tipping point ranged from one to five decades-much of which was attributable to the time required to generate sufficient evidence of harm. Market adaptation to the reduced consumption of target products had both negative and positive impacts. To our knowledge, this is the first comparative analysis of three successful efforts to change the product consumption patterns and the associated adverse health impacts of these products. The MDE epidemiological approach of shortening the latent time to effective mitigation provides a new method to reduce the impacts of harmful products.
Collapse
Affiliation(s)
- Eszter Rimányi
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jonathan D. Quick
- Duke Global Health Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Gavin Yamey
- Duke Global Health Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Mustapha Immurana
- Institute of Health Research, University of Health and Allied Sciences, Ho, Ghana
| | - Vasanti S. Malik
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Tanya Doherty
- Health Systems Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Zain Jafar
- Trinity College, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
10
|
Sun Y, Xie A, Fang Y, Chen H, Li L, Tang J, Liao Y. Altered insular functional activity among electronic cigarettes users with nicotine dependence. Transl Psychiatry 2024; 14:293. [PMID: 39019862 PMCID: PMC11255336 DOI: 10.1038/s41398-024-03007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024] Open
Abstract
Electronic cigarettes (e-cigs) use, especially among youngsters, has been on the rise in recent years. However, little is known about the long-term effects of the use of e-cigs on brain functional activity. We acquired the resting-state functional magnetic resonance imaging (rs-fMRI) data from 93 e-cigs users with nicotine dependence and 103 health controls (HC). The local synchronization was analyzed via the regional homogeneity (ReHo) method at voxel-wise level. The functional connectivity (FC) between the nucleus accumbens (NAcc), the ventral tegmental area (VTA), and the insula was calculated at ROI-wise level. The support vector machining classification model based on rs-fMRI measures was used to identify e-cigs users from HC. Compared with HC, nicotine-dependent e-cigs users showed increased ReHo in the right rolandic operculum and the right insula (p < 0.05, FDR corrected). At the ROI-wise level, abnormal FCs between the NAcc, the VTA, and the insula were found in e-cigs users compared to HC (p < 0.05, FDR corrected). Correlation analysis found a significant negative correlation between ReHo in the left NAcc and duration of e-cigs use (r = -0.273, p = 0.008, FDR corrected). The following support vector machine model based on significant results of rs-fMRI successfully differentiates chronic e-cigs users from HC with an accuracy of 73.47%, an AUC of 0.781, a sensitivity of 67.74%, and a specificity of 78.64%. Dysregulated spontaneous activity and FC of addiction-related regions were found in e-cigs users with nicotine dependence, which provides crucial insights into the prevention of its initial use and intervention for quitting e-cigs.
Collapse
Affiliation(s)
- Yunkai Sun
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - An Xie
- Department of Radiology, The People's Hospital of Hunan Province, Changsha, Hunan, PR China
| | - Yehong Fang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Haobo Chen
- Department of Radiology, The People's Hospital of Hunan Province, Changsha, Hunan, PR China
| | - Ling Li
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Yanhui Liao
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
11
|
Lee J, Yao Z, Boakye E, Blaha MJ. The impact of chronic electronic cigarette use on endothelial dysfunction measured by flow-mediated vasodilation: A systematic review and meta-analysis. Tob Induc Dis 2024; 22:TID-22-84. [PMID: 38779295 PMCID: PMC11110651 DOI: 10.18332/tid/186932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION Despite electronic cigarettes (e-cigarettes) being marketed as a safer alternative to combustible cigarettes, the effects of chronic e-cigarette use on vascular health remain uncertain. Our meta-analysis aimed to assess the health implications of chronic exclusive e-cigarette use on endothelial dysfunction, as measured by flow-mediated vasodilation (FMD). METHODS PubMed, Embase and Scopus were searched for studies from 1 January 2004 to 31 March 2024. Four cross-sectional studies (n=769) were pooled using a random-effects model. The mean differences (MD) of FMD were reported by comparing exclusive e-cigarette use versus non-use; exclusive e-cigarette use versus combustible cigarette use; and combustible cigarette use versus non-use. RESULTS A non-significant reduction in FMD in exclusive e-cigarette use compared to non-use was reported (MD of FMD: -1.47%; 95% CI: -3.96 - 1.02; I2= 84%). Similar MD of FMD in exclusive e-cigarette use and exclusive combustible cigarette use (vs non-use) suggested that both of these products might have comparable adverse influences on endothelial health. CONCLUSIONS The limited availability of studies assessing the chronic impact of e-cigarette use restricted our ability to provide definitive findings. We emphasize the importance of additional research that explores the long-term impact of e-cigarette use on endothelial dysfunction, and identify key areas and give suggestions for further study.
Collapse
Affiliation(s)
- Jieun Lee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Zhiqi Yao
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, United States
| | - Ellen Boakye
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, United States
| | - Michael J. Blaha
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, United States
| |
Collapse
|
12
|
Glantz S, Lempert LK. Vuse Solo e-cigarettes do not provide net benefits to public health: a scientific analysis of FDA's marketing authorisation. Tob Control 2024; 33:e108-e115. [PMID: 36764683 PMCID: PMC10409877 DOI: 10.1136/tc-2022-057296] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/04/2022] [Indexed: 02/12/2023]
Abstract
In October 2021, the US Food and Drug Administration (FDA) authorised marketing of RJ Reynolds Vapor Company's (RJR) Vuse Solo e-cigarette through FDA's Premarket Tobacco Product Application (PMTA) pathway. FDA concluded that RJR demonstrated Vuse products met the statutory standard of providing a net benefit to public health. A review of FDA's scientific justification reveals deficiencies: (1) not adequately considering Vuse's popularity with youth and evidence that e-cigarettes expanded the nicotine market and stimulate cigarette smoking; (2) trading youth addiction for unproven adult benefit without quantifying these risks and benefits; (3) not considering design factors that appeal to youth; (4) not addressing evidence that e-cigarettes used as consumer products do not help smokers quit and promote relapse in former smokers; (5) not discussing evidence that dual use is more dangerous than smoking; (6) narrowly focusing on the fact that e-cigarettes deliver lower levels of some toxicants without addressing direct evidence on adverse health effects; (7) downplaying significant evidence of other substantial harms; (8) not acting on FDA's own study showing no all-cause mortality benefit of reducing (but not stopping) cigarette use; and (9) improperly considering e-cigarettes' high abuse liability and potential for high youth addiction and undermining tobacco cessation. Because marketing these products is not appropriate for the protection of the public health, FDA should reconsider its Vuse marketing order as statutorily required and not use it as a template for other e-cigarette PMTAs. Policymakers outside the USA should anticipate that tobacco companies will use FDA's decision to try to weaken tobacco control regulation of e-cigarettes and promote their products.
Collapse
Affiliation(s)
| | - Lauren Kass Lempert
- Center for Tobacco Control Research and Education, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
13
|
Tao X, Zhang J, Meng Q, Chu J, Zhao R, Liu Y, Dong Y, Xu H, Tian T, Cui J, Zhang L, Chu M. The potential health effects associated with electronic-cigarette. ENVIRONMENTAL RESEARCH 2024; 245:118056. [PMID: 38157958 DOI: 10.1016/j.envres.2023.118056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/17/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
A good old gateway theory that electronic-cigarettes (e-cigarettes) are widely recognized as safer tobacco substitutes. In actuality, demographics also show that vaping cannibalizes smoking, the best explanation of the data is the "common liability". However, the utilization of e-cigarette products remains a controversial topic at present. Currently, there has been a widespread and substantial growth in e-cigarette use worldwide owing to their endless new flavors and customizable characteristics. Furthermore, e-cigarette has grown widespread among smokers as well as non-smokers, including adolescents and young adults. And some studies have shown that e-cigarette users are at greater risk to start using combustible cigarettes while e-cigarettes use was also observed the potential benefits to people who want to quit smoking or not. Although it is true that e-cigarettes generally contain fewer toxic substances than combustible cigarettes, this does not mean that the chemical composition in e-cigarettes aerosols poses absolutely no risks. While concerns about toxic substances in e-cigarettes and their widespread use in the population are reasonable, it is also crucial to consider that e-cigarettes have been associated with the potential for promoting smoking cessation and the clinically relevant improvements in users with smoking-related pathologies. Meanwhile, there is still short of understanding of the health impacts associated with e-cigarette use. Therefore, in this review, we discussed the health impacts of e-cigarette exposure on oral, nasal, pulmonary, cardiovascular systems and brain. We aspire for this review to change people's previous perceptions of e-cigarettes and provide them with a more balanced perspective. Additionally, we suggest appropriate adjustments on regulation and policy for e-cigarette to gain greater public health benefits.
Collapse
Affiliation(s)
- Xiaobo Tao
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Jiale Zhang
- The Second People's Hospital of Nantong, Nantong, Jiangsu, China
| | - Qianyao Meng
- Department of Global Health and Population, School of Public Health, Harvard University, Boston, USA
| | - Junfeng Chu
- Department of Oncology, Jiangdu People's Hospital of Yangzhou, Yangzhou, Jiangsu, China
| | - Rongrong Zhao
- Department of Oncology, Jiangdu People's Hospital of Yangzhou, Yangzhou, Jiangsu, China
| | - Yiran Liu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yang Dong
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Huiwen Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Jiahua Cui
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Lei Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
14
|
Glantz SA, Nguyen N, Oliveira da Silva AL. Population-Based Disease Odds for E-Cigarettes and Dual Use versus Cigarettes. NEJM EVIDENCE 2024; 3:EVIDoa2300229. [PMID: 38411454 PMCID: PMC11562742 DOI: 10.1056/evidoa2300229] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
BACKGROUND: E-cigarettes are promoted as less harmful than cigarettes. There has not been a direct comparison of health effects of e-cigarettes or dual use (concurrently using e-cigarettes and cigarettes) with those of cigarettes in the general population. METHODS: Studies in PubMed, EMBASE, Web of Science, and PsychINFO published through October 1, 2023, were pooled in a random-effects meta-analysis if five or more studies were identified with a disease outcome. We assessed risk of bias with Risk Of Bias In Non-randomized Studies of Exposure and certainty with Grading of Recommendations, Assessment, Development, and Evaluations. Outcomes with fewer studies were summarized but not pooled. RESULTS: We identified 124 odds ratios (94 cross-sectional and 30 longitudinal) from 107 studies. Pooled odds ratios for current e-cigarette versus cigarette use were not different for cardiovascular disease (odds ratio, 0.81; 95% confidence interval, 0.58 to 1.14), stroke (0.73; 0.47 to 1.13), or metabolic dysfunction (0.99; 0.91 to 1.09) but were lower for asthma (0.84; 0.74 to 0.95), chronic obstructive pulmonary disease (0.53; 0.38 to 0.74), and oral disease (0.87; 0.76 to 1.00). Pooled odds ratios for dual use versus cigarettes were increased for all outcomes (range, 1.20 to 1.41). Pooled odds ratios for e-cigarettes and dual use compared with nonuse of either product were increased (e-cigarette range, 1.24 to 1.47; dual use, 1.49 to 3.29). All included studies were assessed as having a low risk of bias. Results were generally not sensitive to study characteristics. Limited studies of other outcomes suggest that e-cigarette use is associated with additional diseases. CONCLUSIONS: There is a need to reassess the assumption that e-cigarette use provides substantial harm reduction across all cigarette-caused diseases, particularly accounting for dual use.
Collapse
Affiliation(s)
| | - Nhung Nguyen
- Center for Tobacco Control Research and Education, University of California, San Francisco, San Francisco
| | | |
Collapse
|
15
|
Mekala N, Trivedi J, Bhoj P, Togre N, Rom S, Sriram U, Persidsky Y. Alcohol and e-cigarette damage alveolar-epithelial barrier by activation of P2X7r and provoke brain endothelial injury via extracellular vesicles. Cell Commun Signal 2024; 22:39. [PMID: 38225580 PMCID: PMC10789007 DOI: 10.1186/s12964-023-01461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/26/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Use of nicotine containing products like electronic cigarettes (e-Cig) and alcohol are associated with mitochondrial membrane depolarization, resulting in the extracellular release of ATP, and mitochondrial DNA (mtDNA), mediating inflammatory responses. While nicotine effects on lungs is well-known, chronic alcohol (ETH) exposure also weakens lung immune responses and cause inflammation. Extracellular ATP (eATP) released by inflammatory/stressed cells stimulate purinergic P2X7 receptors (P2X7r) activation in adjacent cells. We hypothesized that injury caused by alcohol and e-Cig to pulmonary alveolar epithelial cells (hPAEpiC) promote the release of eATP, mtDNA and P2X7r in circulation. This induces a paracrine signaling communication either directly or via EVs to affect brain cells (human brain endothelial cells - hBMVEC). METHODS We used a model of primary human pulmonary alveolar epithelial cells (hPAEpiC) and exposed the cells to 100 mM ethanol (ETH), 100 µM acetaldehyde (ALD), or e-Cig (1.75 µg/mL of 1.8% or 0% nicotine) conditioned media, and measured the mitochondrial efficiency using Agilent Seahorse machine. Gene expression was measured by Taqman RT-qPCR and digital PCR. hPAEpiC-EVs were extracted from culture supernatant and characterized by flow cytometric analysis. Calcium (Ca2+) and eATP levels were quantified using commercial kits. To study intercellular communication via paracrine signaling or by EVs, we stimulated hBMVECs with hPAEpiC cell culture medium conditioned with ETH, ALD or e-cig or hPAEpiC-EVs and measured Ca2+ levels. RESULTS ETH, ALD, or e-Cig (1.8% nicotine) stimulation depleted the mitochondrial spare respiration capacity in hPAEpiC. We observed increased expression of P2X7r and TRPV1 genes (3-6-fold) and increased intracellular Ca2+ accumulation (20-30-fold increase) in hPAEpiC, resulting in greater expression of endoplasmic reticulum (ER) stress markers. hPAEpiC stimulated by ETH, ALD, and e-Cig conditioned media shed more EVs with larger particle sizes, carrying higher amounts of eATP and mtDNA. ETH, ALD and e-Cig (1.8% nicotine) exposure also increased the P2X7r shedding in media and via EVs. hPAEpiC-EVs carrying P2X7r and eATP cargo triggered paracrine signaling in human brain microvascular endothelial cells (BMVECs) and increased Ca2+ levels. P2X7r inhibition by A804598 compound normalized mitochondrial spare respiration, reduced ER stress and diminished EV release, thus protecting the BBB function. CONCLUSION Abusive drugs like ETH and e-Cig promote mitochondrial and endoplasmic reticulum stress in hPAEpiC and disrupts the cell functions via P2X7 receptor signaling. EVs released by lung epithelial cells against ETH/e-cig insults, carry a cargo of secondary messengers that stimulate brain cells via paracrine signals.
Collapse
Affiliation(s)
- Naveen Mekala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayshil Trivedi
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Priyanka Bhoj
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Namdev Togre
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
16
|
Ponugoti A, Ngo H, Stinnett S, Vajzovic L. Chronic Effects of e-Cigarette Aerosol Inhalation on Macular Perfusion Assessed Using OCT Angiography. JOURNAL OF VITREORETINAL DISEASES 2024; 8:21-28. [PMID: 38223771 PMCID: PMC10786087 DOI: 10.1177/24741264231205071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Purpose: To determine whether there are significant differences in the microvasculature and central retinal thickness (CRT) between e-cigarette users (user group) and age-matched nonusers (control group) using optical coherence tomography angiography (OCTA). Methods: In this prospective cross-sectional observational study, OCTA images were acquired of 52 eyes of 26 users and 25 eyes of 25 age-matched nonusers. Daily e-cigarette users with no ocular history were identified from provider information in the electronic medical record. A custom algorithm was used to calculate the foveal avascular zone (FAZ), vessel area density (VAD), and vessel length density (VLD). OCT software was used to calculate the foveal, superior, inferior, nasal, and temporal CRT. Generalized estimating equations using the Z-statistic were used to determine how the FAZ, VAD, VLD, and CRT parameters varied between groups and to assess the differential contribution of descriptive data in the user group. Results: No statistically significant difference was found between the user group and control group in the FAZ, superficial vascular complex (SVC) VAD, SVC VLD, or deep vascular complex (DVC) VAD. A statistically significant difference was found for DVC VLD (P = .002), with the user group having a slightly higher VLD on average. Superior, temporal, and inferior inner macular thicknesses were significantly thinner in the user group (P = .038, P = .012, and P = .035, respectively). Conclusions: Significant negative differences were found in CRT measures but not in retinal microvasculature parameters between e-cigarette users and nonusers. Decreased inferior, temporal, and superior inner macular thickness in e-cigarette users may show an early chronic structural effect that warrants further assessment of retinal effects as this population ages and continues to use e-cigarettes.
Collapse
Affiliation(s)
- Arathi Ponugoti
- Department of Ophthalmology, Duke University Eye Center, Durham, NC, USA
| | - Hoan Ngo
- School of Biomedical Engineering, International University–VNU HCMC, Ho Chi Minh City, Vietnam
| | - Sandra Stinnett
- Department of Ophthalmology, Duke University Eye Center, Durham, NC, USA
| | - Lejla Vajzovic
- Department of Ophthalmology, Duke University Eye Center, Durham, NC, USA
| |
Collapse
|
17
|
Liu J, Nabavizadeh P, Rao P, Derakhshandeh R, Han DD, Guo R, Murphy MB, Cheng J, Schick SF, Springer ML. Impairment of Endothelial Function by Aerosol From Marijuana Leaf Vaporizers. J Am Heart Assoc 2023; 12:e032969. [PMID: 38014661 PMCID: PMC10727338 DOI: 10.1161/jaha.123.032969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Marijuana leaf vaporizers, which heat plant material and sublimate Δ-9-tetrahydrocannabinol without combustion, are popular alternatives to smoking cannabis that are generally perceived to be less harmful. We have shown that smoke from tobacco and marijuana, as well as aerosol from e-cigarettes and heated tobacco products, impair vascular endothelial function in rats measured as arterial flow-mediated dilation (FMD). METHODS AND RESULTS We exposed 8 rats per group to aerosol generated by 2 vaporizer systems (Volcano and handheld Yocan) using marijuana with varying Δ-9-tetrahydrocannabinol levels, in a single pulsatile exposure session of 2 s/min over 5 minutes, and measured changes in FMD. To model secondhand exposure, we exposed rats for 1 minute to diluted aerosol approximating release of uninhaled Volcano aerosol into typical residential rooms. Exposure to aerosol from marijuana with and without cannabinoids impaired FMD by ≈50%. FMD was similarly impaired by aerosols from Yocan (237 °C), and from Volcano at both its standard temperature (185 °C) and the minimum sublimation temperature of Δ-9-tetrahydrocannabinol (157 °C), although the low-temperature aerosol condition did not effectively deliver Δ-9-tetrahydrocannabinol to the circulation. Modeled secondhand exposure based on diluted Volcano aerosol also impaired FMD. FMD was not affected in rats exposed to clean air or water vapor passed through the Volcano system. CONCLUSIONS Acute direct exposure and modeled secondhand exposure to marijuana leaf vaporizer aerosol, regardless of cannabinoid concentration or aerosol generation temperature, impair endothelial function in rats comparably to marijuana smoke. Our findings indicate that use of leaf vaporizers is unlikely to reduce the vascular risk burden of smoking marijuana.
Collapse
Affiliation(s)
- Jiangtao Liu
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoCAUSA
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Pooneh Nabavizadeh
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoCAUSA
- Present address:
Division of CardiologyUniversity of CincinnatiCincinnatiOHUSA
| | - Poonam Rao
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Center for Tobacco Control Research and EducationUniversity of California, San FranciscoSan FranciscoCAUSA
- Present address:
Christus Good Shepherd/Texas A&M University Internal Medicine Residency ProgramLongviewTXUSA
| | - Ronak Derakhshandeh
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Daniel D. Han
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Present address:
School of Medicine and DentistryUniversity of RochesterRochesterNYUSA
| | - Raymond Guo
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Present address:
Stanford UniversityStanfordCAUSA
| | - Morgan B. Murphy
- Division of Occupational and Environmental MedicineUniversity of California, San FranciscoSan FranciscoCAUSA
- Present address:
Sutter Health California Pacific Medical CenterStanfordCAUSA
| | - Jing Cheng
- Division of Oral Epidemiology and Dental Public HealthUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Suzaynn F. Schick
- Center for Tobacco Control Research and EducationUniversity of California, San FranciscoSan FranciscoCAUSA
- Division of Occupational and Environmental MedicineUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Matthew L. Springer
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoCAUSA
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Center for Tobacco Control Research and EducationUniversity of California, San FranciscoSan FranciscoCAUSA
| |
Collapse
|
18
|
Mekala N, Trivedi J, Bhoj P, Togre N, Rom S, Sriram U, Persidsky Y. Alcohol and e-cigarette damage alveolar-epithelial barrier by activation of P2X7r and provoke brain endothelial injury via extracellular vesicles. RESEARCH SQUARE 2023:rs.3.rs-3552555. [PMID: 38014253 PMCID: PMC10680944 DOI: 10.21203/rs.3.rs-3552555/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background Use of nicotine containing products like electronic cigarettes (e-Cig) and alcohol are associated with mitochondrial membrane depolarization, resulting in the extracellular release of ATP, and mitochondrial DNA (mtDNA), mediating inflammatory responses. While nicotine effects on lungs is well-known, chronic alcohol (ETH) exposure also weakens lung immune responses and cause inflammation. Extracellular ATP (eATP) released by inflammatory/stressed cells stimulate purinergic P2X7 receptors (P2X7r) activation in adjacent cells. We hypothesized that injury caused by alcohol and e-Cig to pulmonary alveolar epithelial cells (hPAEpiC) promote the release of eATP, mtDNA and P2X7r in circulation. This induces a paracrine signaling communication either directly or via EVs to affect brain cells (human brain endothelial cells - hBMVEC). Methods We used a model of primary human pulmonary alveolar epithelial cells (hPAEpiC) and exposed the cells to 100 mM ethanol (ETH), 100 μM acetaldehyde (ALD), or e-Cig (1.75μg/mL of 1.8% or 0% nicotine) conditioned media, and measured the mitochondrial efficiency using Agilent Seahorse machine. Gene expression was measured by Taqman RT-qPCR and digital PCR. hPAEpiC-EVs were extracted from culture supernatant and characterized by flow cytometric analysis. Calcium (Ca2+) and eATP levels were quantified using commercial kits. To study intercellular communication via paracrine signaling or by EVs, we stimulated hBMVECs with hPAEpiC cell culture medium conditioned with ETH, ALD or e-cig or hPAEpiC-EVs and measured Ca2+ levels. Results ETH, ALD, or e-Cig (1.8% nicotine) stimulation depleted the mitochondrial spare respiration capacity in hPAEpiC. We observed increased expression of P2X7r and TRPV1 genes (3-6-fold) and increased intracellular Ca2+ accumulation (20-30-fold increase) in hPAEpiC, resulting in greater expression of endoplasmic reticulum (ER) stress markers. hPAEpiC stimulated by ETH, ALD, and e-Cig conditioned media shed more EVs with larger particle sizes, carrying higher amounts of eATP and mtDNA. ETH, ALD and e-Cig (1.8% nicotine) exposure also increased the P2X7r shedding in media and via EVs. hPAEpiC-EVs carrying P2X7r and eATP cargo triggered paracrine signaling in human brain microvascular endothelial cells (BMVECs) and increased Ca2+ levels. P2X7r inhibition by A804598 compound normalized mitochondrial spare respiration, reduced ER stress and diminished EV release, thus protecting the BBB function. Conclusion Abusive drugs like ETH and e-Cig promote mitochondrial and endoplasmic reticulum stress in hPAEpiC and disrupts the cell functions via P2X7 receptor signaling. EVs released by lung epithelial cells against ETH/e-cig insults, carry a cargo of secondary messengers that stimulate brain cells via paracrine signals.
Collapse
|
19
|
Jones CA, Wallace MJ, Bandaru P, Woodbury ED, Mohler PJ, Wold LE. E-cigarettes and arrhythmogenesis: a comprehensive review of pre-clinical studies and their clinical implications. Cardiovasc Res 2023; 119:2157-2164. [PMID: 37517059 PMCID: PMC10578912 DOI: 10.1093/cvr/cvad113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Electronic cigarette use has grown exponentially in recent years, and while their popularity has increased, the long-term effects on the heart are yet to be fully studied and understood. Originally designed as devices to assist with those trying to quit traditional combustible cigarette use, their popularity has attracted use by teens and adolescents who traditionally have not smoked combustible cigarettes. Acute effects on the heart have been shown to be similar to traditional combustible cigarettes, including increased heart rate and blood pressure. The main components of electronic cigarettes that contribute to these arrhythmic effects are found in the e-liquid that is aerosolized and inhaled, comprised of nicotine, flavourings, and a combination of vegetable glycerin (VG) and propylene glycol (PG). Nicotine can potentially induce both ventricular and atrial arrhythmogenesis, with both the atrial and ventricular effects resulting from the interactions of nicotine and the catecholamines they release via potassium channels. Atrial arrhythmogenesis, more specifically atrial fibrillation, can also occur due to structural alterations, which happens because of nicotine downregulating microRNAs 133 and 590, both post-transcriptional growth factor repressors. Liquid flavourings and the combination of PG and VG can possibly lead to arrhythmic events by exposing users to acrolein, an aldehyde that stimulates TRPA1 that in turn causes a change towards sympathetic activation and autonomic imbalance. The design of these electronic delivery devices is constantly changing; therefore, it has proven extremely difficult to study the long-term effects on the heart caused by electronic cigarettes but will be important to understand given their rising popularity. The arrhythmic effects of electronic cigarettes appear similar to traditional cigarettes as well; however, a comprehensive review has not been compiled and is the focus of this article.
Collapse
Affiliation(s)
- Carson A Jones
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, 473 W 12th Avenue, Columbus, OH 43210, USA
| | - Michael J Wallace
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, 473 W 12th Avenue, Columbus, OH 43210, USA
| | - Priya Bandaru
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, 473 W 12th Avenue, Columbus, OH 43210, USA
| | - Emerson D Woodbury
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, 473 W 12th Avenue, Columbus, OH 43210, USA
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, 473 W 12th Avenue, Columbus, OH 43210, USA
- Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Loren E Wold
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, 473 W 12th Avenue, Columbus, OH 43210, USA
- Division of Cardiac Surgery, Department of Surgery, Wexner Medical Center, The Ohio State University, 473 W 12th Avenue, Room 603, Columbus, OH 43210, USA
| |
Collapse
|
20
|
Wölkart G, Kollau A, Russwurm M, Koesling D, Schrammel A, Mayer B. Varied effects of tobacco smoke and e-cigarette vapor suggest that nicotine does not affect endothelium-dependent relaxation and nitric oxide signaling. Sci Rep 2023; 13:15833. [PMID: 37739972 PMCID: PMC10517138 DOI: 10.1038/s41598-023-42750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023] Open
Abstract
Chronic smoking causes dysfunction of vascular endothelial cells, evident as a reduction of flow-mediated dilation in smokers, but the role of nicotine is still controversial. Given the increasing use of e-cigarettes and other nicotine products, it appears essential to clarify this issue. We studied extracts from cigarette smoke (CSE) and vapor from e-cigarettes (EVE) and heated tobacco (HTE) for their effects on vascular relaxation, endothelial nitric oxide signaling, and the activity of soluble guanylyl cyclase. The average nicotine concentrations of CSE, EVE, and HTE were 164, 800, and 85 µM, respectively. At a dilution of 1:3, CSE almost entirely inhibited the relaxation of rat aortas and porcine coronary arteries to acetylcholine and bradykinin, respectively, while undiluted EVE, with a 15-fold higher nicotine concentration, had no significant effect. With about 50% inhibition at 1:2 dilution, the effect of HTE was between CSE and EVE. Neither extract affected endothelium-independent relaxation to an NO donor. At the dilutions tested, CSE was not toxic to cultured endothelial cells but, in contrast to EVE, impaired NO signaling and inhibited NO stimulation of soluble guanylyl cyclase. Our results demonstrate that nicotine does not mediate the impaired endothelium-dependent vascular relaxation caused by smoking.
Collapse
Affiliation(s)
- Gerald Wölkart
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Universität Graz, Humboldtstraße 46, 8010, Graz, Austria
| | - Alexander Kollau
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Universität Graz, Humboldtstraße 46, 8010, Graz, Austria
| | - Michael Russwurm
- Department of Pharmacology and Toxicology, Ruhr-Universität Bochum, MA N1-39, 44780, Bochum, Germany
| | - Doris Koesling
- Department of Pharmacology and Toxicology, Ruhr-Universität Bochum, MA N1-39, 44780, Bochum, Germany
| | - Astrid Schrammel
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Universität Graz, Humboldtstraße 46, 8010, Graz, Austria
| | - Bernd Mayer
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Universität Graz, Humboldtstraße 46, 8010, Graz, Austria.
| |
Collapse
|
21
|
Rose JJ, Krishnan-Sarin S, Exil VJ, Hamburg NM, Fetterman JL, Ichinose F, Perez-Pinzon MA, Rezk-Hanna M, Williamson E. Cardiopulmonary Impact of Electronic Cigarettes and Vaping Products: A Scientific Statement From the American Heart Association. Circulation 2023; 148:703-728. [PMID: 37458106 DOI: 10.1161/cir.0000000000001160] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Vaping and electronic cigarette (e-cigarette) use have grown exponentially in the past decade, particularly among youth and young adults. Cigarette smoking is a risk factor for both cardiovascular and pulmonary disease. Because of their more limited ingredients and the absence of combustion, e-cigarettes and vaping products are often touted as safer alternative and potential tobacco-cessation products. The outbreak of e-cigarette or vaping product use-associated lung injury in the United States in 2019, which led to >2800 hospitalizations, highlighted the risks of e-cigarettes and vaping products. Currently, all e-cigarettes are regulated as tobacco products and thus do not undergo the premarket animal and human safety studies required of a drug product or medical device. Because youth prevalence of e-cigarette and vaping product use was as high as 27.5% in high school students in 2019 in the United States, it is critical to assess the short-term and long-term health effects of these products, as well as the development of interventional and public health efforts to reduce youth use. The objectives of this scientific statement are (1) to describe and discuss e-cigarettes and vaping products use patterns among youth and adults; (2) to identify harmful and potentially harmful constituents in vaping aerosols; (3) to critically assess the molecular, animal, and clinical evidence on the acute and chronic cardiovascular and pulmonary risks of e-cigarette and vaping products use; (4) to describe the current evidence of e-cigarettes and vaping products as potential tobacco-cessation products; and (5) to summarize current public health and regulatory efforts of e-cigarettes and vaping products. It is timely, therefore, to review the short-term and especially the long-term implications of e-cigarettes and vaping products on cardiopulmonary health. Early molecular and clinical evidence suggests various acute physiological effects from electronic nicotine delivery systems, particularly those containing nicotine. Additional clinical and animal-exposure model research is critically needed as the use of these products continues to grow.
Collapse
|
22
|
Lyytinen G, Brynedal A, Anesäter E, Antoniewicz L, Blomberg A, Wallén H, Bosson JA, Hedman L, Mobarrez F, Tehrani S, Lundbäck M. Electronic Cigarette Vaping with Nicotine Causes Increased Thrombogenicity and Impaired Microvascular Function in Healthy Volunteers: A Randomised Clinical Trial. Cardiovasc Toxicol 2023; 23:255-264. [PMID: 37548804 PMCID: PMC10435650 DOI: 10.1007/s12012-023-09802-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 07/15/2023] [Indexed: 08/08/2023]
Abstract
Electronic cigarette (EC) vaping is increasingly popular, despite growing evidence of adverse health effects. To further evaluate the impact of EC use on vascular health, we investigated the effects of brief EC inhalation on flow-dependent thrombus formation and microcirculation in healthy volunteers. The study was performed with a randomised double-blind crossover design. Twenty-two healthy subjects aged between 18 and 45 years with occasional tobacco use were recruited. Subjects inhaled 30 puffs of EC aerosol with and without nicotine on two occasions separated by a wash-out period of at least 1 week. Blood samples were collected at baseline and at 15 and 60 min following exposure and analysed with the Total-Thrombus-formation analysis system evaluating fibrin-rich thrombus formation and platelet thrombus formation in whole blood under flow. Microvascular function was assessed at baseline and 30 min after exposure by laser speckle contrast imaging and iontophoresis of acetylcholine and sodium nitroprusside (SNP) to evaluate the endothelium-dependent and independent pathways of vasodilation. Compared with nicotine free EC aerosol, exposure to EC aerosol with nicotine significantly increased platelet thrombus formation and fibrin-rich thrombus formation at 15 min (p = 0.017 and p = 0.037, respectively) with normalisation after 60 min. Peak SNP-mediated microvascular perfusion, i.e. endothelium-independent vasodilation, was reduced following EC vaping with nicotine compared with baseline (p = 0.006). Thirty puffs of EC aerosol with nicotine increased platelet and fibrin-dependent thrombus formation and reduced microvascular dilatation capacity. No compelling effects of EC vaping without nicotine were observed, indicating nicotine as the main effector. Trial registration: ClinicalTrials.gov Identifier: NCT04175457 URL: https://clinicaltrials.gov/ct2/show/NCT04175457.
Collapse
Affiliation(s)
- Gustaf Lyytinen
- Department of Clinical Sciences, Division of Cardiovascular Medicine, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden.
| | - Amelie Brynedal
- Section of Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Erik Anesäter
- Department of Clinical Sciences, Division of Cardiovascular Medicine, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
| | - Lukasz Antoniewicz
- Department of Medicine II, Division of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Anders Blomberg
- Section of Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Håkan Wallén
- Department of Clinical Sciences, Division of Cardiovascular Medicine, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
| | - Jenny A Bosson
- Section of Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Linnea Hedman
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, The OLIN Unit, Umeå University, Umeå, Sweden
| | | | - Sara Tehrani
- Department of Clinical Sciences, Division of Internal Medicine, Danderyd University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Lundbäck
- Department of Clinical Sciences, Division of Cardiovascular Medicine, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
| |
Collapse
|
23
|
Ma H, Kieu TKT, Ribisl KM, Noar SM. Do Vaping Prevention Messages Impact Adolescents and Young Adults? A Meta-Analysis of Experimental Studies. HEALTH COMMUNICATION 2023; 38:1709-1722. [PMID: 36882378 PMCID: PMC10258164 DOI: 10.1080/10410236.2023.2185578] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vaping prevention messages are widely used to communicate the health harms and addiction risks of vaping and discourage vaping among adolescents and young adults. We conducted a meta-analysis of experimental studies to examine the effects of these messages and to understand their theoretical mechanisms. Systematic, comprehensive searches generated 4,451 references, among which 12 studies (cumulative N = 6,622) met inclusion criteria for the meta-analysis. Across these studies, a total of 35 different vaping-related outcomes were measured, and 14 outcomes assessed in two or more independent samples were meta-analyzed. Results showed that compared to control, exposure to vaping prevention messages led to higher vaping risk perceptions, including harm perceptions (d = 0.30, p < .001), perceived likelihood of harm (d = 0.23, p < .001), perceived relative harm (d = 0.14, p = .036), addiction perceptions (d = 0.39, p < .001), perceived likelihood of addiction (d = 0.22, p < .001), and perceived relative addiction (d = 0.33, p = .015). Also, compared to control, exposure to vaping prevention messages led to more vaping knowledge (d = 0.37, p < .001), lower intentions to vape (d = -0.09, p = .022), and higher perceived message effectiveness (message perceptions; d = 0.57, p < .001; effects perceptions; d = 0.55, p < .001). Findings suggest vaping prevention messages have an impact, yet may operate through different theoretical mechanisms than cigarette pack warnings.
Collapse
Affiliation(s)
- Haijing Ma
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Talia Klm-Thanh Kieu
- Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Kurt M. Ribisl
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Seth M. Noar
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Hussman School of Journalism and Media, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
24
|
Fountoulakis P, Theofilis P, Tsalamandris S, Antonopoulos AS, Tsioufis P, Toutouzas K, Oikonomou E, Tsioufis K, Tousoulis D. The cardiovascular consequences of electronic cigarette smoking: a narrative review. Expert Rev Cardiovasc Ther 2023; 21:651-661. [PMID: 37755116 DOI: 10.1080/14779072.2023.2264179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION E-cigarettes have emerged as a popular alternative to traditional tobacco smoking in recent years. Despite their growing popularity, concerns have arisen regarding the cardiovascular implications of e-cigarette use. AREAS COVERED This narrative review aims to highlight the latest evidence on the impact of e-cigarettes on cardiovascular health. EXPERT OPINION Numerous studies have demonstrated that e-cigarette use can lead to acute adverse cardiovascular effects. Inhalation of e-cigarette aerosols exposes users to a wide range of potentially harmful substances that have been implicated in critical pathophysiologic pathways of cardiovascular disease, namely endothelial dysfunction, oxidative stress, inflammation, sympathetic overdrive, and arterial stiffness. While long-term epidemiological studies specifically focusing on the cardiovascular effects of e-cigarettes are still relatively scarce, early evidence suggests a potential association between e-cigarette use and an increased risk of adverse cardiovascular events. However, it is essential to recognize that e-cigarettes are relatively new products, and the full extent of their long-term cardiovascular impact has not been fully elucidated. In the meantime, promoting tobacco cessation strategies that are evidence-based and regulated, along with rigorous monitoring of e-cigarette use patterns and associated health outcomes, are essential steps in safeguarding cardiovascular health in the face of this emerging public health challenge.
Collapse
Affiliation(s)
- Petros Fountoulakis
- Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| | - Panagiotis Theofilis
- Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| | - Sotiris Tsalamandris
- Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| | - Alexios S Antonopoulos
- Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| | - Panagiotis Tsioufis
- Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| | - Konstantinos Toutouzas
- Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| | - Evangelos Oikonomou
- Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
- Cardiology Department, Sotiria Chest Diseases Hospital, University of Athens Medical School, Athens, Greece
| | - Konstantinos Tsioufis
- Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| | - Dimitris Tousoulis
- Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| |
Collapse
|
25
|
Pitzer CR, Aboaziza EA, O'Reilly JM, Mandler WK, Olfert IM. Nicotine and Microvascular Responses in Skeletal Muscle from Acute Exposure to Cigarettes and Vaping. Int J Mol Sci 2023; 24:10208. [PMID: 37373356 DOI: 10.3390/ijms241210208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Despite claims of safety or harm reduction for electronic cigarettes (E-cig) use (also known as vaping), emerging evidence indicates that E-cigs are not likely safe, or necessarily safer than traditional cigarettes, when considering the user's risk of developing vascular dysfunction/disease. E-cigs are different from regular cigarettes in that E-cig devices are highly customizable, and users can change the e-liquid composition (such as the base solution, flavors, and nicotine level). Since the effects of E-cigs on the microvascular responses in skeletal muscle are poorly understood, we used intravital microscopy with an acute (one-time 10 puff) exposure paradigm to evaluate the individual components of e-liquid on vascular tone and endothelial function in the arterioles of the gluteus maximus muscle of anesthetized C57Bl/6 mice. Consistent with the molecular responses seen with endothelial cells, we found that the peripheral vasoconstriction response was similar between mice exposed to E-cig aerosol or cigarette smoke (i.e., 3R4F reference cigarette); this response was not nicotine dependent, and endothelial cell-mediated vasodilation was not altered within this acute exposure paradigm. We also report that, regardless of the base solution component [i.e., vegetable glycerin (VG)-only or propylene glycol (PG)-only], the vasoconstriction responses were the same in mice with inhalation exposure to 3R4F cigarette smoke or E-cig aerosol. Key findings from this work reveal that some component other than nicotine, in inhaled smoke or aerosol, is responsible for triggering peripheral vasoconstriction in skeletal muscle, and that regardless of one's preference for an E-cig base solution composition (i.e., ratio of VG-to-PG), the acute physiological response to blood vessels appears to be the same. The data suggest that vaping is not likely to be 'safer' than smoking towards blood vessels and can be expected to produce and/or result in the same adverse vascular health outcomes associated with smoking cigarettes.
Collapse
Affiliation(s)
- Christopher R Pitzer
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Eiman A Aboaziza
- West Virginia Clinical and Translational Science Institute, Morgantown, WV 26506, USA
- Center for Inhalation Toxicology, West Virginia University, Morgantown, WV 26506, USA
| | - Juliana M O'Reilly
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - W Kyle Mandler
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - I Mark Olfert
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Center for Inhalation Toxicology, West Virginia University, Morgantown, WV 26506, USA
- Department of Physiology, Pharmacology and Toxicology, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
26
|
Ding R, Ren X, Sun Q, Sun Z, Duan J. An integral perspective of canonical cigarette and e-cigarette-related cardiovascular toxicity based on the adverse outcome pathway framework. J Adv Res 2023; 48:227-257. [PMID: 35998874 PMCID: PMC10248804 DOI: 10.1016/j.jare.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Nowadays, cigarette smoking remains the leading cause of chronic disease and premature death, especially cardiovascular disease. As an emerging tobacco product, e-cigarettes have been advocated as alternatives to canonical cigarettes, and thus may be an aid to promote smoking cessation. However, recent studies indicated that e-cigarettes should not be completely harmless to the cardiovascular system. AIM OF REVIEW This review aimed to build up an integral perspective of cigarettes and e-cigarettes-related cardiovascular toxicity. KEY SCIENTIFIC CONCEPTS OF REVIEW This review adopted the adverse outcome pathway (AOP) framework as a pivotal tool and aimed to elucidate the association between the molecular initiating events (MIEs) induced by cigarette and e-cigarette exposure to the cardiovascular adverse outcome. Since the excessive generation of reactive oxygen species (ROS) has been widely approved to play a critical role in cigarette smoke-related CVD and may also be involved in e-cigarette-induced toxic effects, the ROS overproduction and subsequent oxidative stress are regarded as essential parts of this framework. As far as we know, this should be the first AOP framework focusing on cigarette and e-cigarette-related cardiovascular toxicity, and we hope our work to be a guide in exploring the biomarkers and novel therapies for cardiovascular injury.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
27
|
Mulorz J, Spin JM, Mulorz P, Wagenhäuser MU, Deng A, Mattern K, Rhee YH, Toyama K, Adam M, Schelzig H, Maegdefessel L, Tsao PS. E-cigarette exposure augments murine abdominal aortic aneurysm development: role of Chil1. Cardiovasc Res 2023; 119:867-878. [PMID: 36413508 PMCID: PMC10409905 DOI: 10.1093/cvr/cvac173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022] Open
Abstract
AIMS Abdominal aortic aneurysm (AAA) is a common cardiovascular disease with a strong correlation to smoking, although underlying mechanisms have been minimally explored. Electronic cigarettes (e-cigs) have gained recent broad popularity and can deliver nicotine at comparable levels to tobacco cigarettes, but effects on AAA development are unknown. METHODS AND RESULTS We evaluated the impact of daily e-cig vaping with nicotine on AAA using two complementary murine models and found that exposure enhanced aneurysm development in both models and genders. E-cigs induced changes in key mediators of AAA development including cytokine chitinase-3-like protein 1 (CHI3L1/Chil1) and its targeting microRNA-24 (miR-24). We show that nicotine triggers inflammatory signalling and reactive oxygen species while modulating miR-24 and CHI3L1/Chil1 in vitro and that Chil1 is crucial to e-cig-augmented aneurysm formation using a knockout model. CONCLUSIONS In conclusion our work shows increased aneurysm formation along with augmented vascular inflammation in response to e-cig exposure with nicotine. Further, we identify Chil1 as a key mediator in this context. Our data raise concerns regarding the potentially harmful long-term effects of e-cig nicotine vaping.
Collapse
Affiliation(s)
- Joscha Mulorz
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Joshua M Spin
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Pireyatharsheny Mulorz
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Markus Udo Wagenhäuser
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alicia Deng
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Karin Mattern
- Department of Anesthesiology, Intensive Care and Emergency Medicine, Medical University of Göttingen, Göttingen, Germany
| | - Yae H Rhee
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Kensuke Toyama
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Matti Adam
- Department of Cardiology, Heart Center, University of Cologne, Cologne, Germany
| | - Hubert Schelzig
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
- German Center for Cardiovascular Research (DZHK), Berlin, Germany (partner site: Munich)
| | - Philip S Tsao
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| |
Collapse
|
28
|
Jongenelis MI. E-cigarette product preferences of Australian adolescent and adult users: a 2022 study. BMC Public Health 2023; 23:220. [PMID: 36726091 PMCID: PMC9893577 DOI: 10.1186/s12889-023-15142-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Research that comprehensively documents preferences for different types of novel nicotine products in Australia is lacking, making it difficult for policymakers to determine where public health efforts should be focused. This study thus sought to explore Australian adolescent and adult e-cigarette users' preferences for different types of e-cigarettes and e-liquids. Purchasing behaviours and sources of e-liquid were also examined. METHODS An online survey was administered to 4,617 Australians aged 12 + years, 636 of whom had used an e-cigarette in the last 30 days and were the focus of this study. Among users, 45% also smoked tobacco cigarettes, 41% were non-smokers, and 14% had never smoked. RESULTS The majority (82%) of e-cigarette users surveyed reported using nicotine-containing e-liquid in their devices. Fewer (60%) reported using non-nicotine e-liquid. The preference for nicotine over non-nicotine e-liquid was observed among all age and smoking groups. Most users (89%) reported using flavoured e-liquids, with adolescents (96%) significantly more likely than young adults (90%) and adults aged 25 + years (85%) to report using such e-liquids. Fruit flavours were the most popular among all subgroups. In terms of device type, disposable e-cigarettes were the most common product used among almost all groups; the exception being adults aged 25 + years who preferred systems with refillable tanks. Friends and tobacco retailers were the most frequently nominated sources of nicotine e-liquid among adolescents and young adults. Among adults aged 25 + years, tobacco retailers and the Internet were the most frequently nominated sources of these products. CONCLUSION Disposable e-cigarettes with flavoured, nicotine-containing e-liquid are popular among users of the devices, including adolescents. Measures that restrict the accessibility and availability of flavoured e-liquids and disposable e-cigarettes, and greater enforcement of laws regarding the sale and importation of nicotine e-liquids, are urgently needed to protect youth and never smokers from these products.
Collapse
Affiliation(s)
- Michelle I Jongenelis
- Melbourne Centre for Behaviour Change, Melbourne School of Psychological Sciences, University of Melbourne, 3010, Parkville, VIC, Australia.
| |
Collapse
|
29
|
Michon M, Mercier C, Petit C, Leclerc L, Bertoletti L, Pourchez J, Forest V. In Vitro Biological Effects of E-Cigarette on the Cardiovascular System-Pro-Inflammatory Response Enhanced by the Presence of the Cinnamon Flavor. TOXICS 2022; 10:784. [PMID: 36548617 PMCID: PMC9782467 DOI: 10.3390/toxics10120784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The potential cardiovascular effects of e-cigarettes remain largely unidentified and poorly understood. E-liquids contain numerous chemical compounds and can induce exposure to potentially toxic ingredients (e.g., nicotine, flavorings, etc.). Moreover, the heating process can also lead to the formation of new thermal decomposition compounds that may be also hazardous. Clinical as well as in vitro and in vivo studies on e-cigarette toxicity have reported potential cardiovascular damages; however, results remain conflicting. The aim of this study was to assess, in vitro, the toxicity of e-liquids and e-cigarette aerosols on human aortic smooth muscle cells. To that purpose, cells were exposed either to e-liquids or to aerosol condensates obtained using an e-cigarette device at different power levels (8 W or 25 W) to assess the impact of the presence of: (i) nicotine, (ii) cinnamon flavor, and (iii) thermal degradation products. We observed that while no cytotoxicity and no ROS production was induced, a pro-inflammatory response was reported. In particular, the production of IL-8 was significantly enhanced at a high power level of the e-cigarette device and in the presence of the cinnamon flavor (confirming the suspected toxic effect of this additive). Further investigations are required, but this study contributes to shedding light on the biological effects of vaping on the cardiovascular system.
Collapse
Affiliation(s)
- Marine Michon
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, 42023 Saint-Etienne, France
| | - Clément Mercier
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, 42023 Saint-Etienne, France
| | - Claudie Petit
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, 42023 Saint-Etienne, France
| | - Lara Leclerc
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, 42023 Saint-Etienne, France
| | - Laurent Bertoletti
- Service de Médecine Vasculaire et Thérapeutique, CHU de Saint-Etienne, 42055 Saint-Etienne, France
- INSERM, UMR1059, Equipe Dysfonction Vasculaire et Hémostase, Université Jean-Monnet, 42055 Saint-Etienne, France
- INSERM, CIC-1408, CHU Saint-Etienne, 42055 Saint-Etienne, France
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, 42023 Saint-Etienne, France
| | - Valérie Forest
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, 42023 Saint-Etienne, France
| |
Collapse
|
30
|
Mohammadi L, Han DD, Xu F, Huang A, Derakhshandeh R, Rao P, Whitlatch A, Cheng J, Keith RJ, Hamburg NM, Ganz P, Hellman J, Schick SF, Springer ML. Chronic E-Cigarette Use Impairs Endothelial Function on the Physiological and Cellular Levels. Arterioscler Thromb Vasc Biol 2022; 42:1333-1350. [PMID: 36288290 PMCID: PMC9625085 DOI: 10.1161/atvbaha.121.317749] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The harmful vascular effects of smoking are well established, but the effects of chronic use of electronic cigarettes (e-cigarettes) on endothelial function are less understood. We hypothesized that e-cigarette use causes changes in blood milieu that impair endothelial function. METHODS Endothelial function was measured in chronic e-cigarette users, chronic cigarette smokers, and nonusers. We measured effects of participants' sera, or e-cigarette aerosol condensate, on NO and H2O2 release and cell permeability in cultured endothelial cells (ECs). RESULTS E-cigarette users and smokers had lower flow-mediated dilation (FMD) than nonusers. Sera from e-cigarette users and smokers reduced VEGF (vascular endothelial growth factor)-induced NO secretion by ECs relative to nonuser sera, without significant reduction in endothelial NO synthase mRNA or protein levels. E-cigarette user sera caused increased endothelial release of H2O2, and more permeability than nonuser sera. E-cigarette users and smokers exhibited changes in circulating biomarkers of inflammation, thrombosis, and cell adhesion relative to nonusers, but with distinct profiles. E-cigarette user sera had higher concentrations of the receptor for advanced glycation end products (RAGE) ligands S100A8 and HMGB1 (high mobility group box 1) than smoker and nonuser sera, and receptor for advanced glycation end product inhibition reduced permeability induced by e-cigarette user sera but did not affect NO production. CONCLUSIONS Chronic vaping and smoking both impair FMD and cause changes in the blood that inhibit endothelial NO release. Vaping, but not smoking, causes changes in the blood that increase microvascular endothelial permeability and may have a vaping-specific effect on intracellular oxidative state. Our results suggest a role for RAGE in e-cigarette-induced changes in endothelial function.
Collapse
Affiliation(s)
- Leila Mohammadi
- Division of Cardiology, University of California, San
Francisco, San Francisco, California
| | - Daniel D. Han
- Division of Cardiology, University of California, San
Francisco, San Francisco, California
| | - Fengyun Xu
- Department of Anesthesia and Perioperative Care, University
of California, San Francisco, San Francisco, California
| | - Abel Huang
- Division of Occupational and Environmental Medicine,
University of California, San Francisco, San Francisco, California
| | - Ronak Derakhshandeh
- Division of Cardiology, University of California, San
Francisco, San Francisco, California
| | - Poonam Rao
- Division of Cardiology, University of California, San
Francisco, San Francisco, California
| | - Adam Whitlatch
- Division of Occupational and Environmental Medicine,
University of California, San Francisco, San Francisco, California
| | - Jing Cheng
- Division of Oral Epidemiology and Dental Public Health,
University of California, San Francisco, San Francisco
| | - Rachel J. Keith
- Department of Medicine, University of Louisville Medical
School, Louisville, Kentucky
| | - Naomi M. Hamburg
- Department of Medicine, Boston University School of
Medicine, Massachusetts
| | - Peter Ganz
- Division of Cardiology, University of California, San
Francisco, San Francisco, California
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University
of California, San Francisco, San Francisco, California
| | - Suzaynn F. Schick
- Division of Occupational and Environmental Medicine,
University of California, San Francisco, San Francisco, California
- Center for Tobacco Control Research and Education,
University of California, San Francisco, San Francisco, California
| | - Matthew L. Springer
- Division of Cardiology, University of California, San
Francisco, San Francisco, California
- Center for Tobacco Control Research and Education,
University of California, San Francisco, San Francisco, California
- Cardiovascular Research Institute, University of
California, San Francisco, San Francisco, California
| |
Collapse
|
31
|
Nabavizadeh P, Liu J, Rao P, Ibrahim S, Han DD, Derakhshandeh R, Qiu H, Wang X, Glantz SA, Schick SF, Springer ML. Impairment of Endothelial Function by Cigarette Smoke Is Not Caused by a Specific Smoke Constituent, but by Vagal Input From the Airway. Arterioscler Thromb Vasc Biol 2022; 42:1324-1332. [PMID: 36288292 PMCID: PMC9616206 DOI: 10.1161/atvbaha.122.318051] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Exposure to tobacco or marijuana smoke, or e-cigarette aerosols, causes vascular endothelial dysfunction in humans and rats. We aimed to determine what constituent, or class of constituents, of smoke is responsible for endothelial functional impairment. METHODS We investigated several smoke constituents that we hypothesized to mediate this effect by exposing rats and measuring arterial flow-mediated dilation (FMD) pre- and post-exposure. We measured FMD before and after inhalation of sidestream smoke from research cigarettes containing normal and reduced nicotine level with and without menthol, as well as 2 of the main aldehyde gases found in both smoke and e-cigarette aerosol (acrolein and acetaldehyde), and inert carbon nanoparticles. RESULTS FMD was reduced by all 4 kinds of research cigarettes, with extent of reduction ranging from 20% to 46% depending on the cigarette type. While nicotine was not required for the impairment, higher nicotine levels in smoke were associated with a greater percent reduction of FMD (41.1±4.5% reduction versus 19.2±9.5%; P=0.047). Lower menthol levels were also associated with a greater percent reduction of FMD (18.5±9.8% versus 40.5±4.8%; P=0.048). Inhalation of acrolein or acetaldehyde gases at smoke-relevant concentrations impaired FMD by roughly 50% (P=0.001). However, inhalation of inert carbon nanoparticles at smoke-relevant concentrations with no gas phase also impaired FMD by a comparable amount (P<0.001). Bilateral cervical vagotomy blocked the impairment of FMD by tobacco smoke. CONCLUSIONS There is no single constituent or class of constituents responsible for acute impairment of endothelial function by smoke; rather, we propose that acute endothelial dysfunction by disparate inhaled products is caused by vagus nerve signaling initiated by airway irritation.
Collapse
Affiliation(s)
- Pooneh Nabavizadeh
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Jiangtao Liu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Poonam Rao
- Division of Cardiology, University of California, San Francisco, San Francisco, California
- Center for Tobacco Control Research and Education, University of California, San Francisco, San Francisco, California
| | - Sharina Ibrahim
- Division of Cardiology, University of California, San Francisco, San Francisco, California
| | - Daniel D. Han
- Division of Cardiology, University of California, San Francisco, San Francisco, California
| | - Ronak Derakhshandeh
- Division of Cardiology, University of California, San Francisco, San Francisco, California
| | - Huiliang Qiu
- Division of Cardiology, University of California, San Francisco, San Francisco, California
| | - Xiaoyin Wang
- Division of Cardiology, University of California, San Francisco, San Francisco, California
| | - Stanton A. Glantz
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
- Division of Cardiology, University of California, San Francisco, San Francisco, California
- Center for Tobacco Control Research and Education, University of California, San Francisco, San Francisco, California
| | - Suzaynn F. Schick
- Division of Occupational and Environmental Medicine, University of California, San Francisco, San Francisco, California
| | - Matthew L. Springer
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
- Division of Cardiology, University of California, San Francisco, San Francisco, California
- Center for Tobacco Control Research and Education, University of California, San Francisco, San Francisco, California
| |
Collapse
|
32
|
Is There a Smoking Gun for Nicotine? A Review of the Role of Nicotine in Dermatologic Surgery. Dermatol Surg 2022; 48:1171-1175. [PMID: 35862721 DOI: 10.1097/dss.0000000000003547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Dermatologic surgeons are faced with a dilemma when counseling actively smoking patients who require dermatologic surgery: recommend total cessation of all nicotine that is associated with extremely high rates of cessation failure or recommend nicotine replacement therapy (NRT). OBJECTIVE To determine the safety of NRT in dermatologic surgery. MATERIALS AND METHODS PubMed was queried: [(nicotine OR electronic cigarettes) AND (flap OR wound healing)]. RESULTS Smoking tobacco is detrimental to wound healing, supported by ample evidence (1A). Perioperative smoking cessation reduces risk (1B). Basic science demonstrates both a benefit and detriment of nicotine depending on the factor studied (2A). Human studies suggest no detrimental effect of nicotine on perioperative complications (1B). Nicotine may be detrimental to flaps, but evidence is limited to basic science (2A). CONCLUSION Dermatologists should consider recommending nicotine replacement for smokers in the perioperative period. Evidence is lacking to determine safety in flaps. It is presumed based on animal studies that nicotine has a negative effect on flaps; however, it is likely less than tobacco. Weighing the risk of cessation failure without nicotine replacement versus nicotine replacement after flap is challenging. Electronic cigarettes should be discouraged as a means of NRT.
Collapse
|
33
|
Carll AP, Arab C, Salatini R, Miles MD, Nystoriak MA, Fulghum KL, Riggs DW, Shirk GA, Theis WS, Talebi N, Bhatnagar A, Conklin DJ. E-cigarettes and their lone constituents induce cardiac arrhythmia and conduction defects in mice. Nat Commun 2022; 13:6088. [PMID: 36284091 PMCID: PMC9596490 DOI: 10.1038/s41467-022-33203-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/24/2022] [Indexed: 01/11/2023] Open
Abstract
E-cigarette use has surged, but the long-term health effects remain unknown. E-cigarette aerosols containing nicotine and acrolein, a combustion and e-cigarette byproduct, may impair cardiac electrophysiology through autonomic imbalance. Here we show in mouse electrocardiograms that acute inhalation of e-cigarette aerosols disturbs cardiac conduction, in part through parasympathetic modulation. We demonstrate that, similar to acrolein or combustible cigarette smoke, aerosols from e-cigarette solvents (vegetable glycerin and propylene glycol) induce bradycardia, bradyarrhythmias, and elevations in heart rate variability during inhalation exposure, with inverse post-exposure effects. These effects are slighter with tobacco- or menthol-flavored aerosols containing nicotine, and in female mice. Yet, menthol-flavored and PG aerosols also increase ventricular arrhythmias and augment early ventricular repolarization (J amplitude), while menthol uniquely alters atrial and atrioventricular conduction. Exposure to e-cigarette aerosols from vegetable glycerin and its byproduct, acrolein, diminish heart rate and early repolarization. The pro-arrhythmic effects of solvent aerosols on ventricular repolarization and heart rate variability depend partly on parasympathetic modulation, whereas ventricular arrhythmias positively associate with early repolarization dependent on the presence of nicotine. Our study indicates that chemical constituents of e-cigarettes could contribute to cardiac risk by provoking pro-arrhythmic changes and stimulating autonomic reflexes.
Collapse
Affiliation(s)
- Alex P Carll
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA.
- American Heart Association Tobacco Regulation and Addiction Center, Louisville, KY, USA.
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA.
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, USA.
- Center for Integrative Environmental Health Sciences, School of Medicine, University of Louisville, Louisville, KY, USA.
- Division of Environmental Medicine, School of Medicine, University of Louisville, Louisville, KY, USA.
| | - Claudia Arab
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Department of Cardiology, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Renata Salatini
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Meredith D Miles
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Matthew A Nystoriak
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Kyle L Fulghum
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Daniel W Riggs
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
- Department of Epidemiology and Population Health, University of Louisville, Louisville, KY, USA
| | - Gregg A Shirk
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Whitney S Theis
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Nima Talebi
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Center for Integrative Environmental Health Sciences, School of Medicine, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Daniel J Conklin
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Center for Integrative Environmental Health Sciences, School of Medicine, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
34
|
Pipe AL, Mir H. E-Cigarettes Reexamined: Product Toxicity. Can J Cardiol 2022; 38:1395-1405. [PMID: 36089290 DOI: 10.1016/j.cjca.2022.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022] Open
Abstract
The introduction of e-cigarettes, or electronic nicotine delivery systems (ENDS), has been accompanied by controversy regarding their safety and effectiveness as a cessation aid and by an explosion in their use by youth. Their use does not involve the combustion of tobacco and the creation of harmful combustion products; they have been seen as a "harm reduction" tool that may be of assistance in promoting smoking cessation. Recognition that ENDS can deliver an array of chemicals and materials with known adverse consequences has spurred more careful examination of these products. Nicotine, nitrosamines, carbonyl compounds, heavy metals, free radicals, reactive oxygen species, particulate matter, and "emerging chemicals of concern" are among the constituents of the heated chemical aerosol that is inhaled when ENDS are used. They raise concerns for cardiovascular and respiratory health that merit the attention of clinicians and regulatory agencies. Frequently cited concerns include evidence of disordered respiratory function, altered hemodynamics, endothelial dysfunction, vascular reactivity, and enhanced thrombogenesis. The absence of evidence of the consequences of their long-term use is of additional concern. Their effectiveness as cessation aids and beneficial impact on health outcomes continue to be examined. It is important to ensure that their production and availability are thoughtfully regulated to optimise their safety and permit their use as harm reduction devices and potentially as smoking-cessation aids. It is equally vital to effectively prevent them from becoming ubiquitous consumer products with the potential to rapidly induce nicotine addiction among large numbers of youth. Clinicians should understand the nature of these products and the implications of their use.
Collapse
Affiliation(s)
- Andrew L Pipe
- Division of Cardiac Prevention and Rehabilitation, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| | - Hassan Mir
- Division of Cardiac Prevention and Rehabilitation, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
35
|
Englund EK, Langham MC, Wehrli FW, Fanning MJ, Khan Z, Schmitz KH, Ratcliffe SJ, Floyd TF, Mohler ER. Impact of supervised exercise on skeletal muscle blood flow and vascular function measured with MRI in patients with peripheral artery disease. Am J Physiol Heart Circ Physiol 2022; 323:H388-H396. [PMID: 35802515 PMCID: PMC9359664 DOI: 10.1152/ajpheart.00633.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022]
Abstract
Supervised exercise is a common therapeutic intervention for patients with peripheral artery disease (PAD), however, the mechanism underlying the improvement in claudication symptomatology is not completely understood. The hypothesis that exercise improves microvascular blood flow is herein tested via temporally resolved magnetic resonance imaging (MRI) measurement of blood flow and oxygenation dynamics during reactive hyperemia in the leg with the lower ankle-brachial index. One hundred and forty-eight subjects with PAD were prospectively assigned to standard medical care or 3 mo of supervised exercise therapy. Before and after the intervention period, subjects performed a graded treadmill walking test, and MRI data were collected with Perfusion, Intravascular Venous Oxygen saturation, and T2* (PIVOT), a method that simultaneously quantifies microvascular perfusion, as well as relative oxygenation changes in skeletal muscle and venous oxygen saturation in a large draining vein. The 3-mo exercise intervention was associated with an improvement in peak walking time (64% greater in those randomized to the exercise group at follow-up, P < 0.001). Significant differences were not observed in the MRI measures between the subjects randomized to exercise therapy versus standard medical care based on an intention-to-treat analysis. However, the peak postischemia perfusion averaged across the leg between baseline and follow-up visits increased by 10% (P = 0.021) in participants that were adherent to the exercise protocol (completed >80% of prescribed exercise visits). In this cohort of adherent exercisers, there was no difference in the time to peak perfusion or oxygenation metrics, suggesting that there was no improvement in microvascular function nor changes in tissue metabolism in response to the 3-mo exercise intervention.NEW & NOTEWORTHY Supervised exercise interventions can improve symptomatology in patients with peripheral artery disease, but the underlying mechanism remains unclear. Here, MRI was used to evaluate perfusion, relative tissue oxygenation, and venous oxygen saturation in response to cuff-induced ischemia. Reactive hyperemia responses were measured before and after 3 mo of randomized supervised exercise therapy or standard medical care. Those participants who were adherent to the exercise regimen had a significant improvement in peak perfusion.
Collapse
Affiliation(s)
- Erin K Englund
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael C Langham
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Molly J Fanning
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zeeshan Khan
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathryn H Schmitz
- Department of Public Health Sciences, Penn State University, University Park, Pennsylvania
| | - Sarah J Ratcliffe
- Department of Biostatistics, University of Virginia, Charlottesville, Virginia
| | - Thomas F Floyd
- Department of Anesthesiology and Pain Management, University of Texas Southwestern, Dallas, Texas
| | - Emile R Mohler
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
36
|
Mills A, Dakhlallah D, Robinson M, Kirk A, Llavina S, Boyd JW, Chantler PD, Olfert IM. Short-term effects of electronic cigarettes on cerebrovascular function: A time course study. Exp Physiol 2022; 107:994-1006. [PMID: 35661445 PMCID: PMC9357197 DOI: 10.1113/ep090341] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/31/2022] [Indexed: 01/12/2023]
Abstract
NEW FINDINGS What is the central question of this study? Acute exposure to electronic cigarettes (Ecigs) triggers abnormal vascular responses in systemic arteries; however, effects on cerebral vessels are poorly understood and time for recovery is not known. We hypothesized that exposure to cigarettes or Ecigs would trigger rapid (<4 h) impairment of the middle cerebral artery (MCA) but that this would resolve by 24 h. What is the main finding and its importance? Cigarettes and Ecigs caused similar degree and duration of MCA impairment. We find it takes ~72 hours after exposure for MCA function to return to normal. This suggests that Ecig use is likely to produce similar adverse vascular health outcomes to those seen with cigarette smoke. ABSTRACT Temporal influences of electronic cigarettes (Ecigs) on blood vessels are poorly understood. In this study, we evaluated a single episode of cigarette versus Ecig exposure on middle cerebral artery (MCA) reactivity and determined how long after the exposure MCA responses took to return to normal. We hypothesized that cigarette and Ecig exposure would induce rapid (<4 h) reduction in MCA endothelial function and would resolve within 24 h. Sprague-Dawley rats (4 months old) were exposed to either air (n = 5), traditional cigarettes (20 puffs, n = 16) or Ecigs (20-puff group, n = 16; or 60-puff group, n = 12). Thereafter, the cigarette and Ecig groups were randomly assigned for postexposure vessel myography testing on day 0 (D0, 1-4 h postexposure), day 1 (D1, 24-28 h postexposure), day 2 (D2, 48-52 h postexposure) and day 3 (72-76 h postexposure). The greatest effect on endothelium-dependent dilatation was observed within 24 h of exposure (∼50% decline between D0 and D1) for both cigarette and Ecig groups, and impairment persisted with all groups for up to 3 days. Changes in endothelium-independent dilatation responses were less severe (∼27%) and shorter lived (recovering by D2) compared with endothelium-dependent dilatation responses. Vasoconstriction in response to serotonin (5-HT) was similar to endothelium-independent dilatation, with greatest impairment (∼45% for all exposure groups) at D0-D1, returning to normal by D2. These data show that exposure to cigarettes and Ecigs triggers a similar level/duration of cerebrovascular dysfunction after a single exposure. The finding that Ecig (without nicotine) and cigarette (with nicotine) exposure produce the same effects suggesting that nicotine is not likely to be triggering MCA dysfunction, and that vaping (with/without nicotine) has potential to produce the same vascular harm and/or disease as smoking.
Collapse
Affiliation(s)
- Amber Mills
- Dept. of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Duaa Dakhlallah
- Dept. of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506,Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University of Cairo, Egypt
| | - Madison Robinson
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Ally Kirk
- Alderson Broaddus University, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Sam Llavina
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Jonathan W. Boyd
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV 26506,Dept. of Orthopedics, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Paul D. Chantler
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506,Dept. of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
| | - I. Mark Olfert
- Dept. of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506,Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506,Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV 26506
| |
Collapse
|
37
|
Wold LE, Tarran R, Crotty Alexander LE, Hamburg NM, Kheradmand F, St Helen G, Wu JC. Cardiopulmonary Consequences of Vaping in Adolescents: A Scientific Statement From the American Heart Association. Circ Res 2022; 131:e70-e82. [PMID: 35726609 DOI: 10.1161/res.0000000000000544] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the US Food and Drug Administration has not approved e-cigarettes as a cessation aid, industry has at times positioned their products in that way for adults trying to quit traditional cigarettes; however, their novelty and customizability have driven them into the hands of unintended users, particularly adolescents. Most new users of e-cigarette products have never smoked traditional cigarettes; therefore, understanding the respiratory and cardiovascular consequences of e-cigarette use has become of increasing interest to the research community. Most studies have been performed on adult e-cigarette users, but the majority of these study participants are either former traditional smokers or smokers who have used e-cigarettes to switch from traditional smoking. Therefore, the respiratory and cardiovascular consequences in this population are not attributable to e-cigarette use alone. Preclinical studies have been used to study the effects of naive e-cigarette use on various organ systems; however, almost all of these studies have used adult animals, which makes translation of health effects to adolescents problematic. Given that inhalation of any foreign substance can have effects on the respiratory and cardiovascular systems, a more holistic understanding of the pathways involved in toxicity could help to guide researchers to novel therapeutic treatment strategies. The goals of this scientific statement are to provide salient background information on the cardiopulmonary consequences of e-cigarette use (vaping) in adolescents, to guide therapeutic and preventive strategies and future research directions, and to inform public policymakers on the risks, both short and long term, of vaping.
Collapse
|
38
|
Rao P, Han DD, Tan K, Mohammadi L, Derakhshandeh R, Navabzadeh M, Goyal N, Springer ML. Comparable Impairment of Vascular Endothelial Function by a Wide Range of Electronic Nicotine Delivery Devices. Nicotine Tob Res 2022; 24:1055-1062. [PMID: 35100430 PMCID: PMC9199952 DOI: 10.1093/ntr/ntac019] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/29/2021] [Accepted: 01/28/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Electronic nicotine delivery systems (ENDS; ie, vaping devices) such as e-cigarettes, heated tobacco products, and newer coil-less ultrasonic vaping devices are promoted as less harmful alternatives to combustible cigarettes. However, their cardiovascular effects are understudied. We investigated whether exposure to aerosol from a wide range of ENDS devices, including a new ultrasonic vaping device, impairs endothelial function. AIMS AND METHODS We measured arterial flow-mediated dilation (FMD) in rats (n = 8/group) exposed to single session of 10 cycles of pulsatile 5-second exposure over 5 minutes to aerosol from e-liquids with and without nicotine generated from a USONICIG ultrasonic vaping device, previous generation e-cigarettes, 5% nicotine JUUL pods (Virginia Tobacco, Mango, Menthol), and an IQOS heated tobacco product; with Marlboro Red cigarette smoke and clean air as controls. We evaluated nicotine absorption and serum nitric oxide levels after exposure, and effects of different nicotine acidifiers on platelet aggregation. RESULTS Aerosol/smoke from all conditions except air significantly impaired FMD. Serum nicotine varied widely from highest in the IQOS group to lowest in USONICIG and previous generation e-cig groups. Nitric oxide levels were not affected by exposure. Exposure to JUUL and similarly acidified nicotine salt e-liquids did not affect platelet aggregation rate. Despite lack of heating coil, the USONICIG under airflow conditions heated e-liquid to ~77°C. CONCLUSIONS A wide range of ENDS, including multiple types of e-cigarettes with and without nicotine, a heated tobacco product, and an ultrasonic vaping device devoid of heating coil, all impair FMD after a single vaping session comparably to combusted cigarettes. IMPLICATIONS The need to understand the cardiovascular effects of various ENDS is of timely importance, as we have seen a dramatic increase in the use of these products in recent years, along with the growing assumption among its users that these devices are relatively benign. Our conclusion that a single exposure to aerosol from a wide range of ENDS impairs endothelial function comparably to cigarettes indicates that vaping can cause similar acute vascular functional impairment to smoking and is not a harmless activity.
Collapse
Affiliation(s)
- Poonam Rao
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
- Center for Tobacco Control Research and Education, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel D Han
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Kelly Tan
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Leila Mohammadi
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Ronak Derakhshandeh
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Mina Navabzadeh
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Natasha Goyal
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew L Springer
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
- Center for Tobacco Control Research and Education, University of California, San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
39
|
Effect Comparison of E-Cigarette and Traditional Smoking and Association with Stroke-A Cross-Sectional Study of NHANES. Neurol Int 2022; 14:441-452. [PMID: 35736618 PMCID: PMC9227824 DOI: 10.3390/neurolint14020037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
Introduction: Tobacco use is one of the most significant risk factors for stroke. Besides traditional cigarettes and combustible products, the use of e-cigarettes and electronic nicotine delivery products has been widespread among young adults in the recent era. Furthermore, the trend of vaping has increased over the last decade. However, the relationship between e-cigarettes and stroke is largely unknown. The aim of this study was to evaluate the prevalence and identify the relationship between e-cigarette smoking and stroke. Methods: A cross-sectional study was performed using the NHANES database of the US population. Adults with a history of smoking were considered in our study and divided into three groups, e-cigarette users, traditional, and dual smokers. The Chi-squared test, Wilcoxon rank-sum test, and multivariable logistic regression analysis were used to identify the prevalence and association of e-cigarette consumption and stroke. Results: Out of a total of 266,058 respondents from 2015 to 2018, we found 79,825 respondents who smoked e-cigarettes (9.72%) or traditional (29.37%) or dual smoking (60.91%). Stroke prevalence among e-cigarette smokers was 1.57%. Stroke was more prevalent among traditional smokers than among e-cigarette smokers. (6.75% vs. 1.09%; p < 0.0001) E-cigarette smokers had early onset of stroke in comparison with traditional smokers. (median age: 48 vs. 59 years; p < 0.0001). Among females with stroke, the prevalence of e-cigarette use was higher in comparison with traditional smoking (36.36% vs. 33.91%; p < 0.0001). Among the stroke population, the prevalence of e-cigarette use was higher among Mexican-Americans (21.21% vs. 6.02%) and other Hispanics (24.24% vs. 7.70%) compared with traditional smoking (p < 0.0001). The regression analysis found higher odds of stroke history among e-cigarette users than traditional smokers [aOR: 1.15; 95% CI: 1.15−1.16)]. Conclusion: Though stroke was more prevalent in traditional smokers, the incidence of stroke was early-in-onset and was strongly associated with e-cigarette use compared to traditional smokers. We have also identified vascular effects of e-cigarettes components as possible triggers for the stroke.
Collapse
|
40
|
Nyilas S, Bauman G, Korten I, Pusterla O, Singer F, Ith M, Groen C, Schoeni A, Heverhagen JT, Christe A, Rodondi N, Bieri O, Geiser T, Auer R, Funke-Chambour M, Ebner L. MRI Shows Lung Perfusion Changes after Vaping and Smoking. Radiology 2022; 304:195-204. [PMID: 35380498 DOI: 10.1148/radiol.211327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Evidence regarding short-term effects of electronic nicotine delivery systems (ENDS) and tobacco smoke on lung ventilation and perfusion is limited. Purpose To examine the immediate effect of ENDS exposure and tobacco smoke on lung ventilation and perfusion by functional MRI and lung function tests. Materials and Methods This prospective observational pilot study was conducted from November 2019 to September 2021 (substudy of randomized controlled trial NCT03589989). Included were 44 healthy adult participants (10 control participants, nine former tobacco smokers, 13 ENDS users, and 12 active tobacco smokers; mean age, 41 years ± 12 [SD]; 28 men) who underwent noncontrast-enhanced matrix pencil MRI and lung function tests before and immediately after the exposure to ENDS products or tobacco smoke. Baseline measurements were acquired after 2 hours of substance abstinence. Postexposure measurements were performed immediately after the exposure. MRI showed semiquantitative measured impairment of lung perfusion (RQ) and fractional ventilation (RFV) impairment as percentages of affected lung volume. Lung clearance index (LCI) was assessed by nitrogen multiple-breath washout to capture ventilation inhomogeneity and spirometry to assess airflow limitation. Absolute differences were calculated with paired Wilcoxon signed-rank test and differences between groups with unpaired Mann-Whitney test. Healthy control participants underwent two consecutive MRI measurements to assess MRI reproducibility. Results MRI was performed and lung function measurement was acquired in tobacco smokers and ENDS users before and after exposure. MRI showed a decrease of perfusion after exposure (RQ, 8.6% [IQR, 7.2%-10.0%] to 9.1% [IQR, 7.8%-10.7%]; P = .03) and no systematic change in RFV (P = .31) among tobacco smokers. Perfusion increased in participants who used ENDS after exposure (RQ, 9.7% [IQR, 7.1%-10.9%] to 9.0% [IQR, 6.9%-10.0%]; P = .01). RFV did not change (P = .38). Only in tobacco smokers was LCI elevated after smoking (P = .02). Spirometry indexes did not change in any participants. Conclusion MRI showed a decrease of lung perfusion after exposure to tobacco smoke and an increase of lung perfusion after use of electronic nicotine delivery systems. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Kligerman in this issue.
Collapse
Affiliation(s)
- Sylvia Nyilas
- From the Department of Diagnostic, Interventional and Pediatric Radiology (S.N., M.I., J.T.H., A.C., L.E.), Department of Pediatrics, Division of Pediatric Respiratory Medicine and Allergology (I.K.), Department of General Internal Medicine (N.R.), and Department of Pulmonary Medicine (T.G., M.F.C.), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern 3010, Switzerland; Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland (G.B., O.P., O.B.); Department of Biomedical Engineering, University of Basel, Basel, Switzerland (G.B., O.P., O.B.); Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (O.P.); Division of Paediatric Pulmonology and Allergology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria (F.S.); Department of Respiratory Medicine, University Children's Hospital Zurich and Childhood Research Center, Zurich, Switzerland (F.S.); Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland (C.G., A.S., N.R., R.A.); and Center for Primary Care and Public Health, Unisanté, Lausanne, Switzerland (R.A.)
| | - Grzegorz Bauman
- From the Department of Diagnostic, Interventional and Pediatric Radiology (S.N., M.I., J.T.H., A.C., L.E.), Department of Pediatrics, Division of Pediatric Respiratory Medicine and Allergology (I.K.), Department of General Internal Medicine (N.R.), and Department of Pulmonary Medicine (T.G., M.F.C.), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern 3010, Switzerland; Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland (G.B., O.P., O.B.); Department of Biomedical Engineering, University of Basel, Basel, Switzerland (G.B., O.P., O.B.); Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (O.P.); Division of Paediatric Pulmonology and Allergology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria (F.S.); Department of Respiratory Medicine, University Children's Hospital Zurich and Childhood Research Center, Zurich, Switzerland (F.S.); Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland (C.G., A.S., N.R., R.A.); and Center for Primary Care and Public Health, Unisanté, Lausanne, Switzerland (R.A.)
| | - Insa Korten
- From the Department of Diagnostic, Interventional and Pediatric Radiology (S.N., M.I., J.T.H., A.C., L.E.), Department of Pediatrics, Division of Pediatric Respiratory Medicine and Allergology (I.K.), Department of General Internal Medicine (N.R.), and Department of Pulmonary Medicine (T.G., M.F.C.), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern 3010, Switzerland; Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland (G.B., O.P., O.B.); Department of Biomedical Engineering, University of Basel, Basel, Switzerland (G.B., O.P., O.B.); Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (O.P.); Division of Paediatric Pulmonology and Allergology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria (F.S.); Department of Respiratory Medicine, University Children's Hospital Zurich and Childhood Research Center, Zurich, Switzerland (F.S.); Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland (C.G., A.S., N.R., R.A.); and Center for Primary Care and Public Health, Unisanté, Lausanne, Switzerland (R.A.)
| | - Orso Pusterla
- From the Department of Diagnostic, Interventional and Pediatric Radiology (S.N., M.I., J.T.H., A.C., L.E.), Department of Pediatrics, Division of Pediatric Respiratory Medicine and Allergology (I.K.), Department of General Internal Medicine (N.R.), and Department of Pulmonary Medicine (T.G., M.F.C.), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern 3010, Switzerland; Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland (G.B., O.P., O.B.); Department of Biomedical Engineering, University of Basel, Basel, Switzerland (G.B., O.P., O.B.); Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (O.P.); Division of Paediatric Pulmonology and Allergology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria (F.S.); Department of Respiratory Medicine, University Children's Hospital Zurich and Childhood Research Center, Zurich, Switzerland (F.S.); Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland (C.G., A.S., N.R., R.A.); and Center for Primary Care and Public Health, Unisanté, Lausanne, Switzerland (R.A.)
| | - Florian Singer
- From the Department of Diagnostic, Interventional and Pediatric Radiology (S.N., M.I., J.T.H., A.C., L.E.), Department of Pediatrics, Division of Pediatric Respiratory Medicine and Allergology (I.K.), Department of General Internal Medicine (N.R.), and Department of Pulmonary Medicine (T.G., M.F.C.), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern 3010, Switzerland; Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland (G.B., O.P., O.B.); Department of Biomedical Engineering, University of Basel, Basel, Switzerland (G.B., O.P., O.B.); Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (O.P.); Division of Paediatric Pulmonology and Allergology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria (F.S.); Department of Respiratory Medicine, University Children's Hospital Zurich and Childhood Research Center, Zurich, Switzerland (F.S.); Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland (C.G., A.S., N.R., R.A.); and Center for Primary Care and Public Health, Unisanté, Lausanne, Switzerland (R.A.)
| | - Michael Ith
- From the Department of Diagnostic, Interventional and Pediatric Radiology (S.N., M.I., J.T.H., A.C., L.E.), Department of Pediatrics, Division of Pediatric Respiratory Medicine and Allergology (I.K.), Department of General Internal Medicine (N.R.), and Department of Pulmonary Medicine (T.G., M.F.C.), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern 3010, Switzerland; Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland (G.B., O.P., O.B.); Department of Biomedical Engineering, University of Basel, Basel, Switzerland (G.B., O.P., O.B.); Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (O.P.); Division of Paediatric Pulmonology and Allergology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria (F.S.); Department of Respiratory Medicine, University Children's Hospital Zurich and Childhood Research Center, Zurich, Switzerland (F.S.); Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland (C.G., A.S., N.R., R.A.); and Center for Primary Care and Public Health, Unisanté, Lausanne, Switzerland (R.A.)
| | - Cindy Groen
- From the Department of Diagnostic, Interventional and Pediatric Radiology (S.N., M.I., J.T.H., A.C., L.E.), Department of Pediatrics, Division of Pediatric Respiratory Medicine and Allergology (I.K.), Department of General Internal Medicine (N.R.), and Department of Pulmonary Medicine (T.G., M.F.C.), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern 3010, Switzerland; Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland (G.B., O.P., O.B.); Department of Biomedical Engineering, University of Basel, Basel, Switzerland (G.B., O.P., O.B.); Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (O.P.); Division of Paediatric Pulmonology and Allergology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria (F.S.); Department of Respiratory Medicine, University Children's Hospital Zurich and Childhood Research Center, Zurich, Switzerland (F.S.); Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland (C.G., A.S., N.R., R.A.); and Center for Primary Care and Public Health, Unisanté, Lausanne, Switzerland (R.A.)
| | - Anna Schoeni
- From the Department of Diagnostic, Interventional and Pediatric Radiology (S.N., M.I., J.T.H., A.C., L.E.), Department of Pediatrics, Division of Pediatric Respiratory Medicine and Allergology (I.K.), Department of General Internal Medicine (N.R.), and Department of Pulmonary Medicine (T.G., M.F.C.), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern 3010, Switzerland; Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland (G.B., O.P., O.B.); Department of Biomedical Engineering, University of Basel, Basel, Switzerland (G.B., O.P., O.B.); Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (O.P.); Division of Paediatric Pulmonology and Allergology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria (F.S.); Department of Respiratory Medicine, University Children's Hospital Zurich and Childhood Research Center, Zurich, Switzerland (F.S.); Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland (C.G., A.S., N.R., R.A.); and Center for Primary Care and Public Health, Unisanté, Lausanne, Switzerland (R.A.)
| | - Johannes T Heverhagen
- From the Department of Diagnostic, Interventional and Pediatric Radiology (S.N., M.I., J.T.H., A.C., L.E.), Department of Pediatrics, Division of Pediatric Respiratory Medicine and Allergology (I.K.), Department of General Internal Medicine (N.R.), and Department of Pulmonary Medicine (T.G., M.F.C.), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern 3010, Switzerland; Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland (G.B., O.P., O.B.); Department of Biomedical Engineering, University of Basel, Basel, Switzerland (G.B., O.P., O.B.); Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (O.P.); Division of Paediatric Pulmonology and Allergology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria (F.S.); Department of Respiratory Medicine, University Children's Hospital Zurich and Childhood Research Center, Zurich, Switzerland (F.S.); Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland (C.G., A.S., N.R., R.A.); and Center for Primary Care and Public Health, Unisanté, Lausanne, Switzerland (R.A.)
| | - Andreas Christe
- From the Department of Diagnostic, Interventional and Pediatric Radiology (S.N., M.I., J.T.H., A.C., L.E.), Department of Pediatrics, Division of Pediatric Respiratory Medicine and Allergology (I.K.), Department of General Internal Medicine (N.R.), and Department of Pulmonary Medicine (T.G., M.F.C.), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern 3010, Switzerland; Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland (G.B., O.P., O.B.); Department of Biomedical Engineering, University of Basel, Basel, Switzerland (G.B., O.P., O.B.); Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (O.P.); Division of Paediatric Pulmonology and Allergology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria (F.S.); Department of Respiratory Medicine, University Children's Hospital Zurich and Childhood Research Center, Zurich, Switzerland (F.S.); Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland (C.G., A.S., N.R., R.A.); and Center for Primary Care and Public Health, Unisanté, Lausanne, Switzerland (R.A.)
| | - Nicolas Rodondi
- From the Department of Diagnostic, Interventional and Pediatric Radiology (S.N., M.I., J.T.H., A.C., L.E.), Department of Pediatrics, Division of Pediatric Respiratory Medicine and Allergology (I.K.), Department of General Internal Medicine (N.R.), and Department of Pulmonary Medicine (T.G., M.F.C.), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern 3010, Switzerland; Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland (G.B., O.P., O.B.); Department of Biomedical Engineering, University of Basel, Basel, Switzerland (G.B., O.P., O.B.); Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (O.P.); Division of Paediatric Pulmonology and Allergology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria (F.S.); Department of Respiratory Medicine, University Children's Hospital Zurich and Childhood Research Center, Zurich, Switzerland (F.S.); Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland (C.G., A.S., N.R., R.A.); and Center for Primary Care and Public Health, Unisanté, Lausanne, Switzerland (R.A.)
| | - Oliver Bieri
- From the Department of Diagnostic, Interventional and Pediatric Radiology (S.N., M.I., J.T.H., A.C., L.E.), Department of Pediatrics, Division of Pediatric Respiratory Medicine and Allergology (I.K.), Department of General Internal Medicine (N.R.), and Department of Pulmonary Medicine (T.G., M.F.C.), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern 3010, Switzerland; Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland (G.B., O.P., O.B.); Department of Biomedical Engineering, University of Basel, Basel, Switzerland (G.B., O.P., O.B.); Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (O.P.); Division of Paediatric Pulmonology and Allergology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria (F.S.); Department of Respiratory Medicine, University Children's Hospital Zurich and Childhood Research Center, Zurich, Switzerland (F.S.); Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland (C.G., A.S., N.R., R.A.); and Center for Primary Care and Public Health, Unisanté, Lausanne, Switzerland (R.A.)
| | - Thomas Geiser
- From the Department of Diagnostic, Interventional and Pediatric Radiology (S.N., M.I., J.T.H., A.C., L.E.), Department of Pediatrics, Division of Pediatric Respiratory Medicine and Allergology (I.K.), Department of General Internal Medicine (N.R.), and Department of Pulmonary Medicine (T.G., M.F.C.), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern 3010, Switzerland; Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland (G.B., O.P., O.B.); Department of Biomedical Engineering, University of Basel, Basel, Switzerland (G.B., O.P., O.B.); Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (O.P.); Division of Paediatric Pulmonology and Allergology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria (F.S.); Department of Respiratory Medicine, University Children's Hospital Zurich and Childhood Research Center, Zurich, Switzerland (F.S.); Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland (C.G., A.S., N.R., R.A.); and Center for Primary Care and Public Health, Unisanté, Lausanne, Switzerland (R.A.)
| | - Reto Auer
- From the Department of Diagnostic, Interventional and Pediatric Radiology (S.N., M.I., J.T.H., A.C., L.E.), Department of Pediatrics, Division of Pediatric Respiratory Medicine and Allergology (I.K.), Department of General Internal Medicine (N.R.), and Department of Pulmonary Medicine (T.G., M.F.C.), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern 3010, Switzerland; Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland (G.B., O.P., O.B.); Department of Biomedical Engineering, University of Basel, Basel, Switzerland (G.B., O.P., O.B.); Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (O.P.); Division of Paediatric Pulmonology and Allergology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria (F.S.); Department of Respiratory Medicine, University Children's Hospital Zurich and Childhood Research Center, Zurich, Switzerland (F.S.); Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland (C.G., A.S., N.R., R.A.); and Center for Primary Care and Public Health, Unisanté, Lausanne, Switzerland (R.A.)
| | - Manuela Funke-Chambour
- From the Department of Diagnostic, Interventional and Pediatric Radiology (S.N., M.I., J.T.H., A.C., L.E.), Department of Pediatrics, Division of Pediatric Respiratory Medicine and Allergology (I.K.), Department of General Internal Medicine (N.R.), and Department of Pulmonary Medicine (T.G., M.F.C.), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern 3010, Switzerland; Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland (G.B., O.P., O.B.); Department of Biomedical Engineering, University of Basel, Basel, Switzerland (G.B., O.P., O.B.); Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (O.P.); Division of Paediatric Pulmonology and Allergology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria (F.S.); Department of Respiratory Medicine, University Children's Hospital Zurich and Childhood Research Center, Zurich, Switzerland (F.S.); Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland (C.G., A.S., N.R., R.A.); and Center for Primary Care and Public Health, Unisanté, Lausanne, Switzerland (R.A.)
| | - Lukas Ebner
- From the Department of Diagnostic, Interventional and Pediatric Radiology (S.N., M.I., J.T.H., A.C., L.E.), Department of Pediatrics, Division of Pediatric Respiratory Medicine and Allergology (I.K.), Department of General Internal Medicine (N.R.), and Department of Pulmonary Medicine (T.G., M.F.C.), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern 3010, Switzerland; Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland (G.B., O.P., O.B.); Department of Biomedical Engineering, University of Basel, Basel, Switzerland (G.B., O.P., O.B.); Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (O.P.); Division of Paediatric Pulmonology and Allergology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria (F.S.); Department of Respiratory Medicine, University Children's Hospital Zurich and Childhood Research Center, Zurich, Switzerland (F.S.); Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland (C.G., A.S., N.R., R.A.); and Center for Primary Care and Public Health, Unisanté, Lausanne, Switzerland (R.A.)
| |
Collapse
|
41
|
Neczypor EW, Mears MJ, Ghosh A, Sassano MF, Gumina RJ, Wold LE, Tarran R. E-Cigarettes and Cardiopulmonary Health: Review for Clinicians. Circulation 2022; 145:219-232. [PMID: 35041473 PMCID: PMC8820458 DOI: 10.1161/circulationaha.121.056777] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Electronic cigarettes (e-cigarettes) are battery powered electronic nicotine delivery systems that use a propylene glycol/vegetable glycerin base to deliver vaporized nicotine and flavorings to the body. E-cigarettes became commercially available without evidence regarding their risks, long-term safety, or utility in smoking cessation. Recent clinical trials suggest that e-cigarette use with counseling may be effective in reducing cigarette use but not nicotine dependence. However, meta-analyses of observational studies demonstrate that e-cigarette use is not associated with smoking cessation. Cardiovascular studies reported sympathetic activation, vascular stiffening, and endothelial dysfunction, which are associated with adverse cardiovascular events. The majority of pulmonary clinical trials in e-cigarette users included standard spirometry as the primary outcome measure, reporting no change in lung function. However, studies reported increased biomarkers of pulmonary disease in e-cigarette users. These studies were conducted in adults, but >30% of high school-age adolescents reported e-cigarette use. The effects of e-cigarette use on cardiopulmonary endpoints in adolescents and young adults remain unstudied. Because of adverse clinical findings and associations between e-cigarette use and increased incidence of respiratory diseases in people who have never smoked, large longitudinal studies are needed to understand the risk profile of e-cigarettes. Consistent with the Centers for Disease Control and Prevention recommendations, clinicians should monitor the health risks of e-cigarette use, discourage nonsmokers and adolescents from using e-cigarettes, and discourage smokers from engaging in dual use without cigarette reduction or cessation.
Collapse
Affiliation(s)
- Evan W Neczypor
- Colleges of Nursing and Medicine (E.W.N., M.J.M., L.E.W.), The Ohio State University, Columbus
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, College of Medicine (E.W.N., M.J.M., L.E.W.), The Ohio State University, Columbus
| | - Matthew J Mears
- Colleges of Nursing and Medicine (E.W.N., M.J.M., L.E.W.), The Ohio State University, Columbus
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, College of Medicine (E.W.N., M.J.M., L.E.W.), The Ohio State University, Columbus
| | - Arunava Ghosh
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill (A.G., M.F.S., R.T.)
| | - M Flori Sassano
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill (A.G., M.F.S., R.T.)
| | - Richard J Gumina
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus (R.J.G.)
| | - Loren E Wold
- Colleges of Nursing and Medicine (E.W.N., M.J.M., L.E.W.), The Ohio State University, Columbus
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, College of Medicine (E.W.N., M.J.M., L.E.W.), The Ohio State University, Columbus
| | - Robert Tarran
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill (A.G., M.F.S., R.T.)
| |
Collapse
|
42
|
Abstract
Since the spread of tobacco from the Americas hundreds of years ago, tobacco cigarettes and, more recently, alternative tobacco products have become global products of nicotine addiction. Within the evolving alternative tobacco product space, electronic cigarette (e-cigarette) vaping has surpassed conventional cigarette smoking among adolescents and young adults in the United States and beyond. This review describes the experimental and clinical evidence of e-cigarette toxicity and deleterious health effects. Adverse health effects related to e-cigarette aerosols are influenced by several factors, including e-liquid components, physical device factors, chemical changes related to heating, and health of the e-cigarette user (e.g., asthmatic). Federal, state, and local regulations have attempted to govern e-cigarette flavors, manufacturing, distribution, and availability, particularly to underaged youths. However, the evolving e-cigarette landscape continues to impede timely toxicological studies and hinder progress made toward our understanding of the long-term health consequence of e-cigarettes.
Collapse
Affiliation(s)
- Terry Gordon
- Department of Environmental Medicine, NYU School of Medicine, New York, NY 10010, USA;
| | - Emma Karey
- Department of Environmental Medicine, NYU School of Medicine, New York, NY 10010, USA;
| | - Meghan E Rebuli
- Department of Pediatrics and Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Yael-Natalie H Escobar
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Ilona Jaspers
- Department of Pediatrics and Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Lung Chi Chen
- Department of Environmental Medicine, NYU School of Medicine, New York, NY 10010, USA;
| |
Collapse
|
43
|
Larue F, Tasbih T, Ribeiro PAB, Lavoie KL, Dolan E, Bacon SL. Immediate physiological effects of acute electronic cigarette use in humans: A systematic review and meta-analysis. Respir Med 2021; 190:106684. [PMID: 34808583 DOI: 10.1016/j.rmed.2021.106684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Electronic cigarettes (e-cigs) are widely used devices that were initially created to aid in smoking cessation. However, their acute physiological effects are unclear and there have been a number of E-cig and Vaping Acute Lung Injury (EVALI) events reported. RESEARCH QUESTION What are the immediate physiological effects (i.e. cardiovascular, respiratory or blood-based responses) of acute e-cig usage in humans? STUDY DESIGN AND METHODS PubMed, Web of Science, Cochrane and Scopus databases were searched for English or French peer-reviewed articles published until May 20, 2021 and measuring at least one physiological parameter before and after using an e-cig. The study followed PRISMA guidelines and assessed article quality using the Downs and Black checklist. Independent extraction was conducted by two reviewers. Data were pooled using random-effect models. Sensitivity analysis and meta-regressions were performed to explore heterogeneity. MAIN OUTCOMES Systolic and diastolic blood pressure, heart rate, augmentation index (AIx75), fraction of exhaled nitric oxide (FeNO), and spirometry were the most frequently assessed parameters and were therefore chosen for meta-analyses. RESULTS Of 19823 articles screened, 45 articles were included for the qualitative synthesis, and 27 articles (919 patients) were included in meta-analyses. Acute use of nicotine e-cig was associated with increased heart rate(SMD = 0.71; 95%CI 0.46-0.95), systolic blood pressure (SMD = 0.38; 95%CI 0.18-0.57), diastolic blood pressure (SMD = 0.52; 95%CI 0.33-0.70), and augmentation index AIx75 (SMD = 0.580; 95%CI 0.220-0.941), along with decreased FeNO (SMD = -0.26; 95%CI -0.49 to -0.04). E-cig exposure wasn't associated with significant changes in any spirometry measure. INTERPRETATION Acute use of nicotine e-cigs was associated with statistically significant cardiovascular and respiratory responses. These devices have a physiological impact that could be clinically relevant, especially in terms of cardiovascular morbidity. However, the direct consequences of long-term e-cig use needs to be further explored.
Collapse
Affiliation(s)
- Florent Larue
- Montreal Behavioural Medicine Centre, Centre Integrée Universitaire de Santé et Services Sociaux Du Nord de L'Ile de Montréal (CIUSSS-NIM), Montreal, QC, H4J 1C5, Canada; Department of Health, Kinesiology, and Applied Physiology, Concordia University, 7141 Sherbrooke St West, Montreal, H4B 1R6, Canada; Faculty of Medicine of Montpellier, Montpellier, France
| | - Tasfia Tasbih
- Montreal Behavioural Medicine Centre, Centre Integrée Universitaire de Santé et Services Sociaux Du Nord de L'Ile de Montréal (CIUSSS-NIM), Montreal, QC, H4J 1C5, Canada; Department of Health, Kinesiology, and Applied Physiology, Concordia University, 7141 Sherbrooke St West, Montreal, H4B 1R6, Canada
| | - Paula A B Ribeiro
- Montreal Behavioural Medicine Centre, Centre Integrée Universitaire de Santé et Services Sociaux Du Nord de L'Ile de Montréal (CIUSSS-NIM), Montreal, QC, H4J 1C5, Canada
| | - Kim L Lavoie
- Montreal Behavioural Medicine Centre, Centre Integrée Universitaire de Santé et Services Sociaux Du Nord de L'Ile de Montréal (CIUSSS-NIM), Montreal, QC, H4J 1C5, Canada; Department of Psychology, University of Quebec at Montreal, CP 8888, Succursale Centre-Ville, Montreal, QC, H3C 3P8, Canada
| | - Emilie Dolan
- Montreal Behavioural Medicine Centre, Centre Integrée Universitaire de Santé et Services Sociaux Du Nord de L'Ile de Montréal (CIUSSS-NIM), Montreal, QC, H4J 1C5, Canada; Department of Health, Kinesiology, and Applied Physiology, Concordia University, 7141 Sherbrooke St West, Montreal, H4B 1R6, Canada
| | - Simon L Bacon
- Montreal Behavioural Medicine Centre, Centre Integrée Universitaire de Santé et Services Sociaux Du Nord de L'Ile de Montréal (CIUSSS-NIM), Montreal, QC, H4J 1C5, Canada; Department of Health, Kinesiology, and Applied Physiology, Concordia University, 7141 Sherbrooke St West, Montreal, H4B 1R6, Canada.
| |
Collapse
|
44
|
Snoderly HT, Nurkiewicz TR, Bowdridge EC, Bennewitz MF. E-Cigarette Use: Device Market, Study Design, and Emerging Evidence of Biological Consequences. Int J Mol Sci 2021; 22:12452. [PMID: 34830344 PMCID: PMC8619996 DOI: 10.3390/ijms222212452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Electronic cigarettes are frequently viewed as a safer alternative to conventional cigarettes; however, evidence to support this perspective has not materialized. Indeed, the current literature reports that electronic cigarette use is associated with both acute lung injury and subclinical dysfunction to the lung and vasculature that may result in pathology following chronic use. E-cigarettes can alter vascular dynamics, polarize innate immune populations towards a proinflammatory state, compromise barrier function in the pulmonary endothelium and epithelium, and promote pre-oncogenic phenomena. This review will summarize the variety of e-cigarette products available to users, discuss current challenges in e-cigarette study design, outline the range of pathologies occurring in cases of e-cigarette associated acute lung injury, highlight disease supporting tissue- and cellular-level changes resulting from e-cigarette exposure, and briefly examine how these changes may promote tumorigenesis. Continued research of the mechanisms by which e-cigarettes induce pathology benefit users and clinicians by resulting in increased regulation of vaping devices, informing treatments for emerging diseases e-cigarettes produce, and increasing public awareness to reduce e-cigarette use and the onset of preventable disease.
Collapse
Affiliation(s)
- Hunter T. Snoderly
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506, USA;
- Center for Inhalation Toxicology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (T.R.N.); (E.C.B.)
| | - Timothy R. Nurkiewicz
- Center for Inhalation Toxicology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (T.R.N.); (E.C.B.)
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Elizabeth C. Bowdridge
- Center for Inhalation Toxicology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (T.R.N.); (E.C.B.)
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Margaret F. Bennewitz
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506, USA;
- Center for Inhalation Toxicology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (T.R.N.); (E.C.B.)
| |
Collapse
|
45
|
Saz-Lara A, Martínez-Vizcaíno V, Sequí-Domínguez I, Álvarez-Bueno C, Notario-Pacheco B, Cavero-Redondo I. The effect of smoking and smoking cessation on arterial stiffness: a systematic review and meta-analysis. Eur J Cardiovasc Nurs 2021; 21:297-306. [PMID: 34741612 DOI: 10.1093/eurjcn/zvab102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 09/18/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022]
Abstract
AIMS One of the most important mechanisms by which smoking contributes to cardiovascular disease is endothelial dysfunction, including arterial stiffness. However, the effects of smoking and smoking cessation on arterial stiffness remain unclear. This meta-analysis aimed to evaluate the effect of smoking and smoking cessation on arterial stiffness in the adult population. METHODS AND RESULTS Random effects models were used to compute pooled estimates of effect size (ES) and their respective 95% confidence intervals (95% CIs) and %change in pulse wave velocity (PWv) (m/s) for the acute and chronic effect of smoking and smoking cessation, and for the effect of smoking cessation vs. the pooled ES estimate for the effect of smoking cessation vs. maintaining this behaviour. Thirteen studies were included in the meta-analysis. Smoking cessation decreased the PWv (ES -0.52, 95% CI -1.02 to -0.03, 3.5% m/s) compared to those maintaining this behaviour. Pooled estimates of both smoking conventional cigarettes and vaping significantly increased the PWv (ES 0.68, 95% CI 0.39-0.98, 10.0% m/s; and ES 0.37, 95% CI 0.14-0.61, 4.7% m/s, respectively). In addition, smoking cessation was effective in reducing arterial stiffness but only in healthy subjects (ES -0.95, 95% CI -1.85 to -0.05, -6.7% m/s). The chronic effect of smoking showed non-significant results on arterial stiffness. CONCLUSION Our results show that arterial stiffness levels decrease after smoking cessation. These findings are of clinical importance, as smoking cessation partially reverses the effects of smoking on arterial stiffness.
Collapse
Affiliation(s)
- Alicia Saz-Lara
- Universidad de Castilla-La Mancha, Health and Social Research Center, Santa Teresa Jornet s/n, 16071 Cuenca, Spain
| | - Vicente Martínez-Vizcaíno
- Universidad de Castilla-La Mancha, Health and Social Research Center, Santa Teresa Jornet s/n, 16071 Cuenca, Spain.,Universidad Autónoma de Chile, Facultad de Ciencias de la Salud, Talca, Chile
| | - Irene Sequí-Domínguez
- Universidad de Castilla-La Mancha, Health and Social Research Center, Santa Teresa Jornet s/n, 16071 Cuenca, Spain
| | - Celia Álvarez-Bueno
- Universidad de Castilla-La Mancha, Health and Social Research Center, Santa Teresa Jornet s/n, 16071 Cuenca, Spain.,Universidad Politécnica y Artística del Paraguay, Asunción, Paraguay
| | - Blanca Notario-Pacheco
- Universidad de Castilla-La Mancha, Health and Social Research Center, Santa Teresa Jornet s/n, 16071 Cuenca, Spain
| | - Iván Cavero-Redondo
- Universidad de Castilla-La Mancha, Health and Social Research Center, Santa Teresa Jornet s/n, 16071 Cuenca, Spain.,Rehabilitation in Health Research Center (CIRES), Universidad de las Americas, Santiago, Chile
| |
Collapse
|
46
|
Prasad KN, Bondy SC. Electronic cigarette aerosol increases the risk of organ dysfunction by enhancing oxidative stress and inflammation. Drug Chem Toxicol 2021; 45:2561-2567. [PMID: 34474637 DOI: 10.1080/01480545.2021.1972680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
An electronic cigarette is a rechargeable device that produces an inhaled aerosol containing varying levels of nicotine, and inorganic and organic toxicants and carcinogenic compounds. The aerosol is generated by heating a solution of propylene glycol and glycerin with nicotine and flavoring ingredients at a high temperature. The e-cigarette was developed and marketed as a safer alternative to the regular cigarette which is known to be injurious to human health. However, published studies suggest that the aerosol of e-cigarette can also have adverse health effects. The main objective of this review is to briefly describe some consequences of e-cigarette smoking, and to present data showing that the resulting increased oxidative stress and inflammation are likely to be involved in effecting to lung damage. Other organs are also likely to be affected. The aerosol contains varying amounts of organic and inorganic toxicants as well as carcinogens, which might serve as the source of such deleterious events. In addition, the aerosol also contains nicotine, which is known to be addictive. E-cigarette smoking releases these toxicants into the air leading to inhalation by nonsmokers in residential or work place areas. Unlike regular tobacco smoke, the long-term consequences of direct and secondhand exposure to e-cigarette aerosol have not been extensively studied but based on available data, e-cigarette aerosol should be considered harmful to human health.
Collapse
Affiliation(s)
| | - Stephen C Bondy
- Center for Occupational and Environmental Health, University of California, Irvine, CA, USA
| |
Collapse
|
47
|
Marques P, Piqueras L, Sanz MJ. An updated overview of e-cigarette impact on human health. Respir Res 2021; 22:151. [PMID: 34006276 PMCID: PMC8129966 DOI: 10.1186/s12931-021-01737-5] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/03/2021] [Indexed: 12/18/2022] Open
Abstract
The electronic cigarette (e-cigarette), for many considered as a safe alternative to conventional cigarettes, has revolutionised the tobacco industry in the last decades. In e-cigarettes, tobacco combustion is replaced by e-liquid heating, leading some manufacturers to propose that e-cigarettes have less harmful respiratory effects than tobacco consumption. Other innovative features such as the adjustment of nicotine content and the choice of pleasant flavours have won over many users. Nevertheless, the safety of e-cigarette consumption and its potential as a smoking cessation method remain controversial due to limited evidence. Moreover, it has been reported that the heating process itself can lead to the formation of new decomposition compounds of questionable toxicity. Numerous in vivo and in vitro studies have been performed to better understand the impact of these new inhalable compounds on human health. Results of toxicological analyses suggest that e-cigarettes can be safer than conventional cigarettes, although harmful effects from short-term e-cigarette use have been described. Worryingly, the potential long-term effects of e-cigarette consumption have been scarcely investigated. In this review, we take stock of the main findings in this field and their consequences for human health including coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Patrice Marques
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avda. Blasco Ibañez 15, 46010, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Laura Piqueras
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avda. Blasco Ibañez 15, 46010, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain.,CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, ISCIII, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Maria-Jesus Sanz
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avda. Blasco Ibañez 15, 46010, Valencia, Spain. .,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain. .,CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, ISCIII, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain.
| |
Collapse
|
48
|
Loffredo L, Carnevale R, Battaglia S, Marti R, Pizzolo S, Bartimoccia S, Nocella C, Cammisotto V, Sciarretta S, Chimenti I, De Falco E, Cavarretta E, Peruzzi M, Marullo A, Miraldi F, Violi F, Morelli A, Biondi-Zoccai G, Frati G. Impact of chronic use of heat-not-burn cigarettes on oxidative stress, endothelial dysfunction and platelet activation: the SUR-VAPES Chronic Study. Thorax 2021; 76:618-620. [PMID: 34157671 DOI: 10.1136/thoraxjnl-2020-215900] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 02/05/2023]
Abstract
Tobacco habit still represents the leading preventable cause of morbidity and mortality worldwide. Heat-not-burn cigarettes (HNBCs) are considered as an alternative to traditional combustion cigarettes (TCCs) due to the lack of combustion and the absence of combustion-related specific toxicants. The aim of this observational study was to assess the effect of HNBC on endothelial function, oxidative stress and platelet activation in chronic adult TCC smokers and HNBC users. The results showed that both HNBC and TCC display an adverse phenotype in terms of endothelial function, oxidative stress and platelet activation. Future randomised studies are strongly warranted to confirm these data.
Collapse
Affiliation(s)
- Lorenzo Loffredo
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Roma, Lazio, Italy
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Sapienza University of Rome, Roma, Italy .,Mediterranea Cardiocentro, Napoli, Italy
| | - Simona Battaglia
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Roma, Lazio, Italy
| | | | | | - Simona Bartimoccia
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Roma, Lazio, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Roma, Lazio, Italy
| | - Vittoria Cammisotto
- Department of General Surgery and Surgical Speciality Paride Stefanini, Sapienza University of Rome, Roma, Lazio, Italy
| | - Sebastiano Sciarretta
- Universita degli Studi di Roma La Sapienza, Roma, Italy.,IRCCS NeuroMed, Pozzilli, Italy
| | - Isotta Chimenti
- Mediterranea Cardiocentro, Napoli, Italy.,Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Roma, Lazio, Italy
| | - Elena De Falco
- Mediterranea Cardiocentro, Napoli, Italy.,Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Roma, Lazio, Italy
| | - Elena Cavarretta
- Mediterranea Cardiocentro, Napoli, Italy.,Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Roma, Lazio, Italy
| | - Mariangela Peruzzi
- Mediterranea Cardiocentro, Napoli, Italy.,Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Roma, Lazio, Italy
| | - Antonino Marullo
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Roma, Lazio, Italy
| | | | - Francesco Violi
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Roma, Lazio, Italy.,Mediterranea Cardiocentro, Napoli, Italy
| | | | - Giuseppe Biondi-Zoccai
- Mediterranea Cardiocentro, Napoli, Italy.,Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Roma, Lazio, Italy
| | - Giacomo Frati
- IRCCS NeuroMed, Pozzilli, Italy.,Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Roma, Lazio, Italy
| |
Collapse
|
49
|
Keith R, Bhatnagar A. Cardiorespiratory and Immunologic Effects of Electronic Cigarettes. CURRENT ADDICTION REPORTS 2021; 8:336-346. [PMID: 33717828 PMCID: PMC7935224 DOI: 10.1007/s40429-021-00359-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Although e-cigarettes have become popular, especially among youth, the health effects associated with e-cigarette use remain unclear. This review discusses current evidence relating to the cardiovascular, pulmonary, and immunological effects of e-cigarettes. RECENT FINDINGS The use of e-cigarettes by healthy adults has been shown to increase blood pressure, heart rate, and arterial stiffness, as well as resistance to air flow in lungs. Inhalation of e-cigarette aerosol has been shown to elicit immune responses and increase the production of immunomodulatory cytokines in young tobacco-naïve individuals. In animal models, long-term exposure to e-cigarettes leads to marked changes in lung architecture, dysregulation of immune genes, and low-grade inflammation. Exposure to e-cigarette aerosols in mice has been shown to induce DNA damage, inhibit DNA repair, and promote carcinogenesis. Chronic exposure to e-cigarettes has also been reported to result in the accumulation of lipid-laden macrophages in the lung and dysregulation of lipid metabolism and transport in mice. Although, the genotoxic and inflammatory effects of e-cigarettes are milder than those of combustible cigarettes, some of the cardiorespiratory effects of the two insults are comparable. The toxicity of e-cigarettes has been variably linked to nicotine, as well as other e-cigarette constituents, operating conditions, and use patterns. SUMMARY The use of e-cigarettes in humans is associated with significant adverse cardiorespiratory and immunological changes. Data from animal models and in vitro studies support the notion that long-term use of e-cigarettes may pose significant health risks.
Collapse
Affiliation(s)
- Rachel Keith
- American Heart Association Tobacco Regulation and Addiction Center & The Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, 302E Muhammad Ali Blvd, Louisville, KY 40202 USA
| | - Aruni Bhatnagar
- American Heart Association Tobacco Regulation and Addiction Center & The Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, 302E Muhammad Ali Blvd, Louisville, KY 40202 USA
| |
Collapse
|
50
|
Klein AP, Yarbrough K, Cole JW. Stroke, Smoking and Vaping: The No-Good, the Bad and the Ugly. ANNALS OF PUBLIC HEALTH AND RESEARCH 2021; 8:1104. [PMID: 34322688 PMCID: PMC8315328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Both stroke and smoking continue to be major public health crises in the United States, with stroke being the third and fourth leading cause of death among women and men, respectively. The goal of this review will be to provide clinicians a succinct overview regarding the epidemiology, economics, and biology of stroke in the setting of smoking and electronic cigarette use. Special attention will be given to the escalating public health crisis of electronic cigarette use, emphasizing mechanistic relationships of stroke and lung injury. Readers will be made aware of the need for continued scientific advancement and study regarding these relationships, as well as the need for improved governmental and public health efforts to curb these ongoing public health crises.
Collapse
Affiliation(s)
- Adam P Klein
- Department of Neurology, University of Maryland School of Medicine, USA
| | - Karen Yarbrough
- Department of Neurology, University of Maryland School of Medicine, USA
| | - John W Cole
- Department of Neurology, Veterans Affairs Maryland Health Care System and the University of Maryland School of Medicine, USA
| |
Collapse
|