1
|
Zununi Vahed S, Hejazian SM, Bakari WN, Landon R, Gueguen V, Meddahi-Pellé A, Anagnostou F, Barzegari A, Pavon-Djavid G. Milking mesenchymal stem cells: Updated protocols for cell lysate, secretome, and exosome extraction, and comparative analysis of their therapeutic potential. Methods 2025; 238:40-60. [PMID: 40058715 DOI: 10.1016/j.ymeth.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/21/2025] Open
Abstract
The potential of the cell lysate, secretome, and extracellular vesicles (EVs) of mesenchymal stem cells (MSCs) to modulate the immune response and promote tissue regeneration has positioned them as a promising option for cell-free therapy. Currently, many clinical trials in stem cells-derived EVs and secretome are in progress various diseases and sometimes the results are failing. The major challenge on this roadmap is the lack of a standard extraction method for exosome, secretome, and lysate. The most optimal method for obtaining the secretome of MSCs for clinical utilization involves a comprehensive approach that includes non-destructive collection methods, time optimization, multiple collection rounds, optimization of culture conditions, and quality control measures. Further research and clinical studies are warranted to validate and refine these methods for safe and effective utilization of the MSC exosome, secretome, and lysate in various clinical applications. To address these challenges, it is imperative to establish a standardized and unified methodology to ensure reliable evaluation of these extractions in clinical trials. This review seeks to outline the pros and cons of methods for the preparation of MSCs-derived exosome, and secretome/lysate, and comparative analysis of their therapeutic potential.
Collapse
Affiliation(s)
| | | | - William Ndjidda Bakari
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging Team, 99 Av. Jean-Baptiste Clément 93430 Villetaneuse, France; Université Paris Cité, CNRS UMR7052, INSERM U1271, ENVA, B3OA, F-75010 Paris, France
| | - Rebecca Landon
- Université Paris Cité, CNRS UMR7052, INSERM U1271, ENVA, B3OA, F-75010 Paris, France
| | - Virginie Gueguen
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging Team, 99 Av. Jean-Baptiste Clément 93430 Villetaneuse, France
| | - Anne Meddahi-Pellé
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging Team, 99 Av. Jean-Baptiste Clément 93430 Villetaneuse, France
| | - Fani Anagnostou
- Université Paris Cité, CNRS UMR7052, INSERM U1271, ENVA, B3OA, F-75010 Paris, France
| | - Abolfazl Barzegari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Graciela Pavon-Djavid
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging Team, 99 Av. Jean-Baptiste Clément 93430 Villetaneuse, France.
| |
Collapse
|
2
|
Gu Y, Feng J, Shi J, Xiao G, Zhang W, Shao S, Liu B, Guo H. Global Research Trends on Exosome in Cardiovascular Diseases: A Bibliometric-Based Visual Analysis. Vasc Health Risk Manag 2024; 20:377-402. [PMID: 39188326 PMCID: PMC11346494 DOI: 10.2147/vhrm.s473520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/10/2024] [Indexed: 08/28/2024] Open
Abstract
Background Exosomes in cardiovascular diseases (CVDs) have attracted huge attention with substantial value and potential. Our bibliometrics is based on literature from the field of cardiovascular exosomes over the past 30 years, which has been visualized to display the development process, research hotspots, and cutting-edge trends of clinical practices, mechanisms, and management strategies related to psych cardiology. Methods We selected articles and reviews on exosomes in CVDs from the core collection of Web of Science, and generated visual charts by using CiteSpace and VOSviewer software. Results Our research included 1613 publications. The number of exosome articles in CVD fluctuates slightly, but overall shows an increasing trend. The main research institutions were Tongji University and Nanjing Medical University. The International Journal of Molecular Sciences has the highest publication volume, while the Journal of Cellular and Molecular Medicine has the highest citation count. Among all the authors, Eduardo Marban ranks first in terms of publication volume and H-index. The most common keywords are exosome, extracellular vesicles, and angiogenesis. Conclusion This is a bibliometric study on the research hotspots and trends of exosomes in CVD. Exosome research in the field of cardiovascular medicine is on the rise. Some exosome treatment methods may become the focus of future research.
Collapse
Affiliation(s)
- Yunxiao Gu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jiaming Feng
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jiayi Shi
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Guanyi Xiao
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Weiwei Zhang
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Shuijin Shao
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Baonian Liu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Haidong Guo
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Yahyazadeh R, Baradaran Rahimi V, Askari VR. Stem cell and exosome therapies for regenerating damaged myocardium in heart failure. Life Sci 2024; 351:122858. [PMID: 38909681 DOI: 10.1016/j.lfs.2024.122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Finding novel treatments for cardiovascular diseases (CVDs) is a hot topic in medicine; cell-based therapies have reported promising news for controlling dangerous complications of heart disease such as myocardial infarction (MI) and heart failure (HF). Various progenitor/stem cells were tested in various in-vivo, in-vitro, and clinical studies for regeneration or repairing the injured tissue in the myocardial to accelerate the healing. Fetal, adult, embryonic, and induced pluripotent stem cells (iPSC) have revealed the proper potency for cardiac tissue repair. As an essential communicator among cells, exosomes with specific contacts (proteins, lncRNAs, and miRNAs) greatly promote cardiac rehabilitation. Interestingly, stem cell-derived exosomes have more efficiency than stem cell transplantation. Therefore, stem cells induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), cardiac stem cells (CDC), and skeletal myoblasts) and their-derived exosomes will probably be considered an alternative therapy for CVDs remedy. In addition, stem cell-derived exosomes have been used in the diagnosis/prognosis of heart diseases. In this review, we explained the advances of stem cells/exosome-based treatment, their beneficial effects, and underlying mechanisms, which will present new insights in the clinical field in the future.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Mabotuwana NS, Rech L, Lim J, Hardy SA, Murtha LA, Rainer PP, Boyle AJ. Paracrine Factors Released by Stem Cells of Mesenchymal Origin and their Effects in Cardiovascular Disease: A Systematic Review of Pre-clinical Studies. Stem Cell Rev Rep 2022; 18:2606-2628. [PMID: 35896860 PMCID: PMC9622561 DOI: 10.1007/s12015-022-10429-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
Mesenchymal stem cell (MSC) therapy has gained significant traction in the context of cardiovascular repair, and have been proposed to exert their regenerative effects via the secretion of paracrine factors. In this systematic review, we examined the literature and consolidated available evidence for the "paracrine hypothesis". Two Ovid SP databases were searched using a strategy encompassing paracrine mediated MSC therapy in the context of ischemic heart disease. This yielded 86 articles which met the selection criteria for inclusion in this study. We found that the MSCs utilized in these articles were primarily derived from bone marrow, cardiac tissue, and adipose tissue. We identified 234 individual protective factors across these studies, including VEGF, HGF, and FGF2; which are proposed to exert their effects in a paracrine manner. The data collated in this systematic review identifies secreted paracrine factors that could decrease apoptosis, and increase angiogenesis, cell proliferation, and cell viability. These included studies have also demonstrated that the administration of MSCs and indirectly, their secreted factors can reduce infarct size, and improve left ventricular ejection fraction, contractility, compliance, and vessel density. Furthering our understanding of the way these factors mediate repair could lead to the identification of therapeutic targets for cardiac regeneration.
Collapse
Affiliation(s)
- Nishani S Mabotuwana
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Lavinia Rech
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
- Department of Cardiac Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joyce Lim
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia
- Department of Cardiovascular Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Sean A Hardy
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Lucy A Murtha
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia
| | - Peter P Rainer
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Andrew J Boyle
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia.
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia.
- Department of Cardiovascular Medicine, John Hunter Hospital, Newcastle, NSW, Australia.
| |
Collapse
|
5
|
Abstract
Interleukin-15 is a pleotropic factor, capable of modulating metabolism, survival, proliferation, and differentiation in many different cell types. The rationale behind this study relates to previous work demonstrating that IL-15 is a major factor present in stem cell extracts, which protects cardiomyocytes subjected to hypoxic stress in vitro. The objective of this current study was to assess whether administration of IL-15 peptide will also show protective effects in vivo. The data indicate that administration of IL-15 reduces cell death, increases vascularity, decreases scar size, and significantly improves left ventricular ejection fraction in a mouse model of myocardial infarction.
Collapse
|
6
|
Liu W, Yan J, Pan W, Tang M. Apelin/Elabela-APJ: a novel therapeutic target in the cardiovascular system. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:243. [PMID: 32309390 PMCID: PMC7154429 DOI: 10.21037/atm.2020.02.07] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apelin and Elabela (ELA) are endogenous ligands of angiotensin domain type 1 receptor-associated proteins (APJ). Apelin/ELA-APJ signal is widely distributed in the cardiovascular system of fetuse and adult. The signal is involved in the development of the fetal heart and blood vessels and regulating vascular tension in adults. This review described the effects of apelin/ELA-APJ on fetal (vasculogenesis and angiogenesis) and adult cardiovascular function [vascular smooth muscle cell (VSMC) proliferation, vasodilation, positive myodynamia], and relative diseases [eclampsia, hypertension, pulmonary hypertension, heart failure (HF), myocardial infarction (MI), atherosclerosis, etc.] in detail. The pathways of apelin/ELA-APJ regulating cardiovascular function and cardiovascular-related diseases are summarized. The drugs developed based on apelin and ELA suggests APJ is a prospective strategy for cardiovascular disease therapy.
Collapse
Affiliation(s)
- Wei Liu
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China.,Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jialong Yan
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Weinan Pan
- Hunan Food and Drug Vocational College, Changsha 410208, China
| | - Mengjie Tang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| |
Collapse
|
7
|
Mitchell R, Mellows B, Sheard J, Antonioli M, Kretz O, Chambers D, Zeuner MT, Tomkins JE, Denecke B, Musante L, Joch B, Debacq-Chainiaux F, Holthofer H, Ray S, Huber TB, Dengjel J, De Coppi P, Widera D, Patel K. Secretome of adipose-derived mesenchymal stem cells promotes skeletal muscle regeneration through synergistic action of extracellular vesicle cargo and soluble proteins. Stem Cell Res Ther 2019; 10:116. [PMID: 30953537 PMCID: PMC6451311 DOI: 10.1186/s13287-019-1213-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The mechanisms underpinning the regenerative capabilities of mesenchymal stem cells (MSC) were originally thought to reside in their ability to recognise damaged tissue and to differentiate into specific cell types that would replace defective cells. However, recent work has shown that molecules produced by MSCs (secretome), particularly those packaged in extracellular vesicles (EVs), rather than the cells themselves are responsible for tissue repair. METHODS Here we have produced a secretome from adipose-derived mesenchymal stem cells (ADSC) that is free of exogenous molecules by incubation within a saline solution. Various in vitro models were used to evaluate the effects of the secretome on cellular processes that promote tissue regeneration. A cardiotoxin-induced skeletal muscle injury model was used to test the regenerative effects of the whole secretome or isolated extracellular vesicle fraction in vivo. This was followed by bioinformatic analysis of the components of the protein and miRNA content of the secretome and finally compared to a secretome generated from a secondary stem cell source. RESULTS Here we have demonstrated that the secretome from adipose-derived mesenchymal stem cells shows robust effects on cellular processes that promote tissue regeneration. Furthermore, we show that the whole ADSC secretome is capable of enhancing the rate of skeletal muscle regeneration following acute damage. We assessed the efficacy of the total secretome compared with the extracellular vesicle fraction on a number of assays that inform on tissue regeneration and demonstrate that both fractions affect different aspects of the process in vitro and in vivo. Our in vitro, in vivo, and bioinformatic results show that factors that promote regeneration are distributed both within extracellular vesicles and the soluble fraction of the secretome. CONCLUSIONS Taken together, our study implies that extracellular vesicles and soluble molecules within ADSC secretome act in a synergistic manner to promote muscle generation.
Collapse
Affiliation(s)
- Robert Mitchell
- School of Biological Sciences, University of Reading, Reading, UK
| | - Ben Mellows
- School of Biological Sciences, University of Reading, Reading, UK
| | - Jonathan Sheard
- Stem Cell Biology and Regenerative Biology Group, School of Pharmacy, University of Reading, Reading, UK
- Sheard BioTech Ltd, 20-22 Wenlock Road, London, N1 7GU UK
| | | | - Oliver Kretz
- Department of Medicine III, Faculty of Medicine University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Renal Division, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David Chambers
- Wolfson Centre for Age-Related Diseases, King’s College, London, UK
| | - Marie-Theres Zeuner
- Stem Cell Biology and Regenerative Biology Group, School of Pharmacy, University of Reading, Reading, UK
| | - James E. Tomkins
- Stem Cell Biology and Regenerative Biology Group, School of Pharmacy, University of Reading, Reading, UK
| | - Bernd Denecke
- Interdisciplinary Centre for Clinical Research Aachen, RWTH Aachen University, Aachen, Germany
| | - Luca Musante
- Centre for Bioanalytical Sciences (CBAS), Dublin City University, Dublin, Ireland
| | - Barbara Joch
- Department of Neuroanatomy, Institute for Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Harry Holthofer
- Centre for Bioanalytical Sciences (CBAS), Dublin City University, Dublin, Ireland
- FRIAS Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
| | - Steve Ray
- Micregen, Alderley Edge, Manchester, UK
| | - Tobias B. Huber
- Department of Medicine III, Faculty of Medicine University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Renal Division, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- FRIAS Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and Centre for Systems Biology (ZBSA), Albert-Ludwigs-University, Freiburg, Germany
| | - Joern Dengjel
- FRIAS Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Paolo De Coppi
- Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Darius Widera
- Stem Cell Biology and Regenerative Biology Group, School of Pharmacy, University of Reading, Reading, UK
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK
- FRIAS Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Li X, Xie X, Yu Z, Chen Y, Qu G, Yu H, Luo B, Lei Y, Li Y. Bone marrow mesenchymal stem cells-derived conditioned medium protects cardiomyocytes from hypoxia/reoxygenation-induced injury through Notch2/mTOR/autophagy signaling. J Cell Physiol 2019; 234:18906-18916. [PMID: 30953350 DOI: 10.1002/jcp.28530] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 12/20/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSC) can ameliorate ischemic injury of various tissues. However, the molecular mechanisms involved remain to be clarified. In this study, we intend to investigate the effects of BMSC-derived conditioned medium (BMSC-CM) on hypoxia/reoxygenation (H/R)-induced injury of H9c2 myocardial cells, and the potential mechanisms. Cell injury was determined through level of cell viability, lactate dehydrogenase (LDH) release, total intracellular reactive oxygen species (ROS), mitochondrial membrane potential (Δψm), and cell apoptosis. Autophagic activity of cells was detected through levels of the autophagy-associated proteins and autophagic flux. Results showed that BMSC-CM alleviated H/R-induced injury in H9c2 cells, as demonstrated by increased cell viability and Δψm, decreased ROS production, LDH release, and cell apoptosis. Furthermore, the H/R treatment induced a decrease in autophagic activity and an increase in Notch2 signaling activation in H9c2 cells. In the presence of BMSC-CM, the autophagic activity impaired by the H/R treatment was upregulated with decreased phosphorylation of mTOR, and the activation of Notch2 signaling was downregulated. These effects of BMSC-CM could be replicated by Notch signaling inhibitor. In contrast, inhibitors of cell autophagy including chloroquine (CQ) and 3-methyladenine, diminished the protective effects of BMSC-CM. Taken together results, our study showed that BMSC-CM could protect H9c2 cells from H/R-induced injury potentially through regulating Notch2/mTOR/autophagy signaling. These findings may provide a novel insight into the mechanisms of BMSC-CM in therapy of myocardial ischemia/reperfusion injury as well as other ischemic diseases.
Collapse
Affiliation(s)
- Xianyu Li
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Department of Pathophysiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xiaolin Xie
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yun Chen
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Gaojing Qu
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Han Yu
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Bin Luo
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yifeng Lei
- The Institute of Technological Sciences & School of Power and Mechanical Engineering, Wuhan University, Wuhan, China
| | - Yinping Li
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Huang K, Hu S, Cheng K. A New Era of Cardiac Cell Therapy: Opportunities and Challenges. Adv Healthc Mater 2019; 8:e1801011. [PMID: 30548836 PMCID: PMC6368830 DOI: 10.1002/adhm.201801011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/05/2018] [Indexed: 12/15/2022]
Abstract
Myocardial infarction (MI), caused by coronary heart disease (CHD), remains one of the most common causes of death in the United States. Over the last few decades, scientists have invested considerable resources on the study and development of cell therapies for myocardial regeneration after MI. However, due to a number of limitations, they are not yet readily available for clinical applications. Mounting evidence supports the theory that paracrine products are the main contributors to the regenerative effects attributed to these cell therapies. The next generation of cell-based MI therapies will identify and isolate cell products and derivatives, integrate them with biocompatible materials and technologies, and use them for the regeneration of damaged myocardial tissue. This review discusses the progress made thus far in pursuit of this new generation of cell therapies. Their fundamental regenerative mechanisms, their potential to combine with other therapeutic products, and their role in shaping new clinical approaches for heart tissue engineering, are addressed.
Collapse
Affiliation(s)
- Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
- Pharmacoengineeirng and Molecular Pharmaceutics Division, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
10
|
Zhang J, Tian X, Peng C, Yan C, Li Y, Sun M, Kang J, Gao E, Han Y. Transplantation of CREG modified embryonic stem cells improves cardiac function after myocardial infarction in mice. Biochem Biophys Res Commun 2018; 503:482-489. [PMID: 29684345 DOI: 10.1016/j.bbrc.2018.04.160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 11/20/2022]
Abstract
Engraftment of embryonic stem cells (ESC) has been proposed as a potential therapeutic approach for post-infarction cardiac dysfunction. However, only mild function improvement has been achieved due to low survival rate and paracrine dysfunction of transplanted stem cells. Cellular repressor of E1A stimulated genes (CREG) has been reported to be a secreted glycoprotein implicated in promoting survival and differentiation of many cell types. Therefore we hypothesized that transplantation of genetically modified ESC with CREG (CREG-ESC) can improve cardiac function after myocardial infarction in mice. A total of 2 × 105 CREG-ESC or EGFP-ESC were engrafted into the border zone in a myocardial infarction model in mice. Cardiac function, infarct size and fibrosis at 4 weeks, survival of transplanted ESC, apoptosis and cytokine level of heart tissue, and teratoma formation were assessed in vivo. Apoptosis of ESC under inflammatory stimuli and cardiac differentiation of ESC were investigated in vitro. After 4 weeks, we found transplantation of CREG-ESC could significantly improve cardiac function, ameliorate cardiac remodeling, and reduce infarct size and fibrosis area. Transplantation of CREG-ESC remarkably increased ESC survival in the border zone and inhibited apoptosis of cardiomyocytes. Furthermore, the decrease of inflammatory factors (IL-1β, IL-6 and TNF-α) and increase of anti-inflammatory factors (TGF-β, bFGF and VEGF165) in the border zone were higher in CREG-ESC transplanted hearts. Safety evaluation showed that all transplantation at 2 × 105 per heart dose produced no teratoma. Surprisingly, the mice with 3.0 × 106 CREG-ESC transplantation was demonstrated teratoma free without cardiac rhythm disturbances in contrast to 100% teratoma formation and rhythm abnormality for the same dose of EGFP-ESC transplantation. In addition, overexpression of CREG inhibits ESC apoptosis and enhanced their differentiation into cardiomyocytes in vitro. Transplantation of CREG-modified ESC exhibits a favorable survival pattern in infarcted hearts, which translates into a substantial preservation of cardiac function after acute myocardial infarction.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Cardiology, Institute of Cardiovascular Research, General Hospital of Shenyang Military Region, Shenyang 110016, China
| | - Xiaoxiang Tian
- Department of Cardiology, Institute of Cardiovascular Research, General Hospital of Shenyang Military Region, Shenyang 110016, China
| | - Chengfei Peng
- Department of Cardiology, Institute of Cardiovascular Research, General Hospital of Shenyang Military Region, Shenyang 110016, China
| | - Chenghui Yan
- Department of Cardiology, Institute of Cardiovascular Research, General Hospital of Shenyang Military Region, Shenyang 110016, China
| | - Yang Li
- Department of Cardiology, Institute of Cardiovascular Research, General Hospital of Shenyang Military Region, Shenyang 110016, China
| | - Mingyu Sun
- Department of Cardiology, Institute of Cardiovascular Research, General Hospital of Shenyang Military Region, Shenyang 110016, China
| | - Jian Kang
- Department of Cardiology, Institute of Cardiovascular Research, General Hospital of Shenyang Military Region, Shenyang 110016, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Yaling Han
- Department of Cardiology, Institute of Cardiovascular Research, General Hospital of Shenyang Military Region, Shenyang 110016, China.
| |
Collapse
|
11
|
Guo D, Murdoch CE, Liu T, Qu J, Jiao S, Wang Y, Wang W, Chen X. Therapeutic Angiogenesis of Chinese Herbal Medicines in Ischemic Heart Disease: A Review. Front Pharmacol 2018; 9:428. [PMID: 29755358 PMCID: PMC5932161 DOI: 10.3389/fphar.2018.00428] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/11/2018] [Indexed: 12/22/2022] Open
Abstract
Ischemic heart disease (IHD) is one of the primary causes of death around the world. Therapeutic angiogenesis is a promising innovative approach for treating IHD, improving cardiac function by promoting blood perfusion to the ischemic myocardium. This treatment is especially important for targeting patients that are unable to undergo angioplasty or bypass surgery. Chinese herbal medicines have been used for more than 2,500 years and they play an important role alongside contemporary medicines in China. Growing evidence in animal models show Chinese herbal medicines can provide therapeutic effect on IHD by targeting angiogenesis. Identifying the mechanism in which Chinese herbal medicines can promote angiogenesis in IHD is a major topic in the field of traditional Chinese medicine, and has the potential for advancing therapeutic treatment. This review summarizes the progression of research and highlights potential pro-angiogenic mechanisms of Chinese herbal medicines in IHD. In addition, an outline of the limitations of Chinese herbal medicines and challenges they face will be presented.
Collapse
Affiliation(s)
- Dongqing Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Colin E Murdoch
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Tianhua Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Qu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Shihong Jiao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| |
Collapse
|
12
|
Promotive effects of human induced pluripotent stem cell-conditioned medium on the proliferation and migration of dermal fibroblasts. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-017-0221-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Matsu-ura T, Sasaki H, Okada M, Mikoshiba K, Ashraf M. Attenuation of teratoma formation by p27 overexpression in induced pluripotent stem cells. Stem Cell Res Ther 2016; 7:30. [PMID: 26880084 PMCID: PMC4754927 DOI: 10.1186/s13287-016-0286-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 11/26/2015] [Accepted: 01/20/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Pluripotent stem cells, such as embryonic stem cells or induced pluripotent stem cells, have a great potential for regenerative medicine. Induced pluripotent stem cells, in particular, are suitable for replacement of tissue by autologous transplantation. However, tumorigenicity is a major risk in clinical application of both embryonic stem cells and induced pluripotent stem cells. This study explores the possibility of manipulating the cell cycle for inhibition of tumorigenicity. METHODS We genetically modified mouse induced pluripotent stem cells (miPSCs) to overexpress p27 tumor suppressor and examined their proliferation rate, gene expression, cardiac differentiation, tumorigenicity, and therapeutic potential in a mouse model of coronary artery ligation. RESULTS Overexpression of p27 inhibited cell division of miPSCs, and that inhibition was dependent on the expression level of p27. p27 overexpressing miPSCs had pluripotency characteristics but lost stemness earlier than normal miPSCs during embryoid body and teratoma formation. These cellular characteristics led to none or smaller teratoma when the cells were injected into nude mice. Transplantation of both miPSCs and p27 overexpressing miPSCs into the infarcted mouse heart reduced the infarction size and improved left ventricular function. CONCLUSIONS The overexpression of p27 attenuated tumorigenicity by reducing proliferation and earlier loss of stemness of miPSCs. The overexpression of p27 did not affect pluripotency and differentiation characteristics of miPSC. Therefore, regulation of the proliferation rate of miPSCs offers great therapeutic potential for repair of the injured myocardium.
Collapse
Affiliation(s)
- Toru Matsu-ura
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, 45267-0529, USA.
| | - Hiroshi Sasaki
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, 45267-0529, USA.
| | - Motoi Okada
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, 45267-0529, USA.
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama, 351-0198, Japan.
| | - Muhammad Ashraf
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, 45267-0529, USA. .,Department of Pharmacology, University of Illinois at Chicago College of Medicine, 835 South Wolcott Ave, Chicago, IL, 60612, USA.
| |
Collapse
|
14
|
Calderon D, Prot M, You S, Marquet C, Bellamy V, Bruneval P, Valette F, de Almeida P, Wu JC, Pucéat M, Menasché P, Chatenoud L. Control of Immune Response to Allogeneic Embryonic Stem Cells by CD3 Antibody-Mediated Operational Tolerance Induction. Am J Transplant 2016; 16:454-67. [PMID: 26492394 DOI: 10.1111/ajt.13477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 07/02/2015] [Accepted: 07/07/2015] [Indexed: 01/25/2023]
Abstract
Implantation of embryonic stem cells (ESCs) and their differentiated derivatives into allogeneic hosts triggers an immune response that represents a hurdle to clinical application. We established in autoimmunity and in transplantation that CD3 antibody therapy induces a state of immune tolerance. Promising results have been obtained with CD3 antibodies in the clinic. In this study, we tested whether this strategy can prolong the survival of undifferentiated ESCs and their differentiated derivatives in histoincompatible hosts. Recipients of either mouse ESC-derived embryoid bodies (EBs) or cardiac progenitors received a single short tolerogenic regimen of CD3 antibody. In immunocompetent mice, allogeneic EBs and cardiac progenitors were rejected within 20-25 days. Recipients treated with CD3 antibody showed long-term survival of implanted cardiac progenitors or EBs. In due course, EBs became teratomas, the growth of which was self-limited. Regulatory CD4(+)FoxP3(+) T cells and signaling through the PD1/PDL1 pathway played key roles in the CD3 antibody therapeutic effect. Gene profiling emphasized the importance of TGF-β and the inhibitory T cell coreceptor Tim3 to the observed effect. These results demonstrate that CD3 antibody administered alone promotes prolonged survival of allogeneic ESC derivatives and thus could prove useful for enhancing cell engraftment in the absence of chronic immunosuppression.
Collapse
Affiliation(s)
- D Calderon
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France.,CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| | - M Prot
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France.,CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| | - S You
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France.,CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| | - C Marquet
- INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France
| | - V Bellamy
- INSERM U970, Centre de Recherche Cardiovasculaire, Hôpital Européen Georges Pompidou, Paris, France
| | - P Bruneval
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U970, Centre de Recherche Cardiovasculaire, Hôpital Européen Georges Pompidou, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Pathology, Paris, France
| | - F Valette
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France.,CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| | - P de Almeida
- Stanford Cardiovascular Institute and Departments of Medicine and Radiology, Stanford, CA
| | - J C Wu
- Stanford Cardiovascular Institute and Departments of Medicine and Radiology, Stanford, CA
| | - M Pucéat
- INSERM UMR-S910 Team Physiopathology of Cardiac Development, Aix-Marseille University, Medical School La Timone, Marseille, France
| | - P Menasché
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U970, Centre de Recherche Cardiovasculaire, Hôpital Européen Georges Pompidou, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Cardiovascular Surgery, Paris, France
| | - L Chatenoud
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France.,CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
15
|
Kim PJ, Mahmoudi M, Ge X, Matsuura Y, Toma I, Metzler S, Kooreman NG, Ramunas J, Holbrook C, McConnell MV, Blau H, Harnish P, Rulifson E, Yang PC. Direct evaluation of myocardial viability and stem cell engraftment demonstrates salvage of the injured myocardium. Circ Res 2015; 116:e40-50. [PMID: 25654979 DOI: 10.1161/circresaha.116.304668] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RATIONALE The mechanism of functional restoration by stem cell therapy remains poorly understood. Novel manganese-enhanced MRI and bioluminescence reporter gene imaging were applied to follow myocardial viability and cell engraftment, respectively. Human-placenta-derived amniotic mesenchymal stem cells (AMCs) demonstrate unique immunoregulatory and precardiac properties. In this study, the restorative effects of 3 AMC-derived subpopulations were examined in a murine myocardial injury model: (1) unselected AMCs, (2) ckit(+)AMCs, and (3) AMC-derived induced pluripotent stem cells (MiPSCs). OBJECTIVE To determine the differential restorative effects of the AMC-derived subpopulations in the murine myocardial injury model using multimodality imaging. METHODS AND RESULTS SCID (severe combined immunodeficiency) mice underwent left anterior descending artery ligation and were divided into 4 treatment arms: (1) normal saline control (n=14), (2) unselected AMCs (n=10), (3) ckit(+)AMCs (n=13), and (4) MiPSCs (n=11). Cardiac MRI assessed myocardial viability and left ventricular function, whereas bioluminescence imaging assessed stem cell engraftment during a 4-week period. Immunohistological labeling and reverse transcriptase polymerase chain reaction of the explanted myocardium were performed. The unselected AMC and ckit(+)AMC-treated mice demonstrated transient left ventricular functional improvement. However, the MiPSCs exhibited a significantly greater increase in left ventricular function compared with all the other groups during the entire 4-week period. Left ventricular functional improvement correlated with increased myocardial viability and sustained stem cell engraftment. The MiPSC-treated animals lacked any evidence of de novo cardiac differentiation. CONCLUSION The functional restoration seen in MiPSCs was characterized by increased myocardial viability and sustained engraftment without de novo cardiac differentiation, indicating salvage of the injured myocardium.
Collapse
Affiliation(s)
- Paul J Kim
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Morteza Mahmoudi
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Xiaohu Ge
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Yuka Matsuura
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Ildiko Toma
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Scott Metzler
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Nigel G Kooreman
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - John Ramunas
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Colin Holbrook
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Michael V McConnell
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Helen Blau
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Phillip Harnish
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Eric Rulifson
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.)
| | - Phillip C Yang
- From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA (J.R., C.H., H.B.); and Eagle Vision Pharmaceutical Corporation, Exton, PA (P.H.).
| |
Collapse
|
16
|
|
17
|
Right ventricular failure secondary to chronic overload in congenital heart diseases: benefits of cell therapy using human embryonic stem cell-derived cardiac progenitors. J Thorac Cardiovasc Surg 2014; 149:708-15.e1. [PMID: 25583108 DOI: 10.1016/j.jtcvs.2014.11.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/07/2014] [Accepted: 11/16/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Despite the increasing incidence of right ventricular (RV) failure in adult patients with congenital heart disease, current therapeutic options are still limited. By contrast to left-heart diseases, cell-based myocardial regeneration applied to the right ventricle is poorly studied, even though it may be a therapeutic solution. As human embryonic stem cell-derived cardiac progenitors seem to be good candidates owing to their proliferation capacity, our aim was to assess, in a large animal model of overloaded RV dysfunction, the feasibility and effects of such a cell therapy. METHODS Human MesP1(+)/SSEA-1(+) cardiogenic mesodermal cells were administered using multiple intramyocardial injections 4 months after a surgical procedure mimicking the repaired tetralogy of Fallot, and their effects were observed 3 months later on hemodynamic, rhythmic, and histologic parameters. RESULTS All pigs (sham n = 6, treated n = 6) survived without complication, and cell therapy was clinically well tolerated. Although functional, contractility, and energetics parameters evolved similarly in both groups, benefits regarding arrhythmic susceptibility were observed in the treated group, associated with a significant decrease of peri-myocyte fibrosis (5.71% ± 2.49% vs 12.12% ± 1.85%; P < .01) without interstitial fibrosis change (5.18% ± 0.81% vs 5.49% ± 1.01%). Such a decrease could be related to paracrine effects, as no human cells could be detected within the myocardium. CONCLUSIONS Cell therapy using intramyocardial injections of human MesP1(+)/SSEA-1(+) cardiogenic mesodermal cells seems to have benefits regarding overloaded RV tissue remodeling and arrhythmic susceptibility, but this mode of administration is not sufficient to obtain a significant improvement in RV function.
Collapse
|
18
|
Bellamy V, Vanneaux V, Bel A, Nemetalla H, Emmanuelle Boitard S, Farouz Y, Joanne P, Perier MC, Robidel E, Mandet C, Hagège A, Bruneval P, Larghero J, Agbulut O, Menasché P. Long-term functional benefits of human embryonic stem cell-derived cardiac progenitors embedded into a fibrin scaffold. J Heart Lung Transplant 2014; 34:1198-207. [PMID: 25534019 DOI: 10.1016/j.healun.2014.10.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 09/22/2014] [Accepted: 10/29/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cardiac-committed cells and biomimetic scaffolds independently improve the therapeutic efficacy of stem cells. In this study we tested the long-term effects of their combination. METHODS Eighty immune-deficient rats underwent permanent coronary artery ligation. Five to 7 weeks later, those with an echocardiographically measured ejection fraction (EF) ≤55% were re-operated on and randomly allocated to receive a cell-free fibrin patch (n = 25), a fibrin patch loaded with 700,000 human embryonic stem cells (ESC) pre-treated to promote early cardiac differentiation (SSEA-1(+) progenitors [n = 30]), or to serve as sham-operated animals (n = 25). Left ventricular function was assessed by echocardiography at baseline and every month thereafter until 4 months. Hearts were then processed for assessment of fibrosis and angiogenesis and a 5-component heart failure score was constructed by integrating the absolute change in left ventricular end-systolic volume (LVESV) between 4 months and baseline, and the quantitative polymerase chain reaction (qPCR)-based expression of natriuretic peptides A and B, myosin heavy chain 7 and periostin. All data were recorded and analyzed in a blinded manner. RESULTS The cell-treated group consistently yielded better functional outcomes than the sham-operated group (p = 0.002 for EF; p = 0.01 for LVESV). Angiogenesis in the border zone was also significantly greater in the cell-fibrin group (p = 0.006), which yielded the lowest heart failure score (p = 0.04 vs sham). Engrafted progenitors were only detected shortly after transplantation; no grafted cells were identified after 4 months. There was no teratoma identified. CONCLUSIONS A fibrin scaffold loaded with ESC-derived cardiac progenitors resulted in sustained improvement in contractility and attenuation of remodeling without sustained donor cell engraftment. A paracrine effect, possibly on innate reparative responses, is a possible mechanism for this enduring effect.
Collapse
Affiliation(s)
- Valérie Bellamy
- INSERM U970, Hôpital Européen Georges Pompidou, Paris, France
| | - Valérie Vanneaux
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Cell Therapy Unit and Clinical Investigation Center in Biotherapies (CBT501), INSERM UMR1160, Université Sorbonne Paris Cité, Paris, France
| | - Alain Bel
- INSERM U970, Hôpital Européen Georges Pompidou, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Cardiovascular Surgery, Université Sorbonne Paris Cité, Paris, France
| | - Hany Nemetalla
- INSERM U970, Hôpital Européen Georges Pompidou, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Cardiology, Université Sorbonne Paris Cité, Paris, France
| | - Solène Emmanuelle Boitard
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, UMR CNRS 8256, Biological Adaptation and Ageing, Paris, France
| | - Yohan Farouz
- INSERM U970, Hôpital Européen Georges Pompidou, Paris, France
| | - Pierre Joanne
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, UMR CNRS 8256, Biological Adaptation and Ageing, Paris, France
| | | | - Estelle Robidel
- INSERM U970, Hôpital Européen Georges Pompidou, Paris, France
| | - Chantal Mandet
- INSERM U970, Hôpital Européen Georges Pompidou, Paris, France
| | - Albert Hagège
- INSERM U970, Hôpital Européen Georges Pompidou, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Cardiology, Université Sorbonne Paris Cité, Paris, France
| | - Patrick Bruneval
- INSERM U970, Hôpital Européen Georges Pompidou, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Pathology, Université Sorbonne Paris Cité, Paris, France
| | - Jérôme Larghero
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Cell Therapy Unit and Clinical Investigation Center in Biotherapies (CBT501), INSERM UMR1160, Université Sorbonne Paris Cité, Paris, France
| | - Onnik Agbulut
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, UMR CNRS 8256, Biological Adaptation and Ageing, Paris, France
| | - Philippe Menasché
- INSERM U970, Hôpital Européen Georges Pompidou, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Cardiovascular Surgery, Université Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
19
|
Fang IM, Yang CH, Chiou SH, Yang CM. Induced pluripotent stem cells without c-Myc ameliorate retinal oxidative damage via paracrine effects and reduced oxidative stress in rats. J Ocul Pharmacol Ther 2014; 30:757-70. [PMID: 25121987 DOI: 10.1089/jop.2014.0020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To investigate the efficacy and mechanisms of non-c-Myc induced pluripotent stem cell (iPSC) transplantation in a rat model of retinal oxidative damage. METHODS Paraquat was intravitreously injected into Sprague-Dawley rats. After non-c-Myc iPSC transplantation, retinal function was evaluated by electroretinograms (ERGs). The generation of reactive oxygen species (ROS) was determined by lucigenin- and luminol-enhanced chemiluminescence. The expression of brain-derived neurotrophic factor, ciliary neurotrophic factor, basic fibroblast growth factor (bFGF), stromal cell-derived factor (SDF)-1α, and CXCR4 was measured by immunohistochemistry and ELISA. An in vitro study using SH-SY5Y cells was performed to verify the protective effects of SDF-1α. RESULTS Transplantation of non-c-Myc iPSCs effectively promoted the recovery of the b-wave ratio in ERGs and significantly ameliorated retinal damage. Non-c-Myc iPSC transplantation decreased ROS production and increased the activities of superoxide dismutase and catalase, thereby reducing retinal oxidative damage and apoptotic cells. Moreover, non-c-Myc iPSC transplantation resulted in significant upregulation of SDF-1α, followed by bFGF, accompanied by a significant improvement in the ERG. In vitro studies confirmed that treatment with SDF-1α significantly reduced apoptosis in a dose-dependent manner in SH-SY5Y cells. Most transplanted cells remained in the subretinal space, with spare cells expressing neurofilament M markers at day 28. Six months after transplantation, no tumor formation was seen in animals with non-c-Myc iPSC grafts. CONCLUSIONS We demonstrated the potential benefits of non-c-Myc iPSC transplantation for treating oxidative-damage-induced retinal diseases. SDF-1α and bFGF play important roles in facilitating the amelioration of retinal oxidative damage after non-c-Myc iPSC transplantation.
Collapse
Affiliation(s)
- I-Mo Fang
- 1 Department of Ophthalmology, Taipei City Hospital Zhongxiao Branch , Taipei City, Taiwan
| | | | | | | |
Collapse
|
20
|
Menasché P, Vanneaux V, Fabreguettes JR, Bel A, Tosca L, Garcia S, Bellamy V, Farouz Y, Pouly J, Damour O, Périer MC, Desnos M, Hagège A, Agbulut O, Bruneval P, Tachdjian G, Trouvin JH, Larghero J. Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience. Eur Heart J 2014; 36:743-50. [PMID: 24835485 DOI: 10.1093/eurheartj/ehu192] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM There is now compelling evidence that cells committed to a cardiac lineage are most effective for improving the function of infarcted hearts. This has been confirmed by our pre-clinical studies entailing transplantation of human embryonic stem cell (hESC)-derived cardiac progenitors in rat and non-human primate models of myocardial infarction. These data have paved the way for a translational programme aimed at a phase I clinical trial. METHODS AND RESULTS The main steps of this programme have included (i) the expansion of a clone of pluripotent hESC to generate a master cell bank under good manufacturing practice conditions (GMP); (ii) a growth factor-induced cardiac specification; (iii) the purification of committed cells by immunomagnetic sorting to yield a stage-specific embryonic antigen (SSEA)-1-positive cell population strongly expressing the early cardiac transcription factor Isl-1; (iv) the incorporation of these cells into a fibrin scaffold; (v) a safety assessment focused on the loss of teratoma-forming cells by in vitro (transcriptomics) and in vivo (cell injections in immunodeficient mice) measurements; (vi) an extensive cytogenetic and viral testing; and (vii) the characterization of the final cell product and its release criteria. The data collected throughout this process have led to approval by the French regulatory authorities for a first-in-man clinical trial of transplantation of these SSEA-1(+) progenitors in patients with severely impaired cardiac function. CONCLUSION Although several facets of this manufacturing process still need to be improved, these data may yet provide a useful platform for the production of hESC-derived cardiac progenitor cells under safe and cost-effective GMP conditions.
Collapse
Affiliation(s)
- Philippe Menasché
- Department of Cardiovascular Surgery, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 20, rue Leblanc, 75015 Paris, France University Paris Descartes, Sorbonne Paris Cité, Paris F-75475, France INSERM U970, Hôpital Européen Georges Pompidou, Paris, France
| | - Valérie Vanneaux
- Cell Therapy Unit and Clinical Investigation Center in Biotherapies (CBT501), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France University Paris Diderot, Sorbonne Paris Cité, Paris F-75475, France INSERM UMRS1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Jean-Roch Fabreguettes
- Central Pharmacy, Clinical Trials Department, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alain Bel
- Department of Cardiovascular Surgery, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 20, rue Leblanc, 75015 Paris, France INSERM U970, Hôpital Européen Georges Pompidou, Paris, France
| | - Lucie Tosca
- Assistance Publique-Hôpitaux de Paris, University Paris Sud, Histology-Embryology-Cytogenetics, Hôpitaux Universitaires Paris Sud, Clamart 92141, France
| | - Sylvie Garcia
- Unité de Biologie des Populations Lymphocytaires, Department of Immunology, Institut Pasteur, CNRS-URA 1961, Paris, France
| | - Valérie Bellamy
- INSERM U970, Hôpital Européen Georges Pompidou, Paris, France
| | - Yohan Farouz
- University Paris Descartes, Sorbonne Paris Cité, Paris F-75475, France INSERM U970, Hôpital Européen Georges Pompidou, Paris, France
| | - Julia Pouly
- Department of Cardiovascular Surgery, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 20, rue Leblanc, 75015 Paris, France
| | - Odile Damour
- Tissues and Cells Bank, Edouard Herriot Hospital, Lyon, France
| | | | - Michel Desnos
- University Paris Descartes, Sorbonne Paris Cité, Paris F-75475, France INSERM U970, Hôpital Européen Georges Pompidou, Paris, France Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Albert Hagège
- University Paris Descartes, Sorbonne Paris Cité, Paris F-75475, France INSERM U970, Hôpital Européen Georges Pompidou, Paris, France Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Onnik Agbulut
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 8256, Biological Adaptation and Ageing, Paris, France
| | - Patrick Bruneval
- University Paris Descartes, Sorbonne Paris Cité, Paris F-75475, France INSERM U970, Hôpital Européen Georges Pompidou, Paris, France Department of Pathology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Gérard Tachdjian
- Assistance Publique-Hôpitaux de Paris, University Paris Sud, Histology-Embryology-Cytogenetics, Hôpitaux Universitaires Paris Sud, Clamart 92141, France
| | - Jean-Hugues Trouvin
- School of Pharmacy, University Paris Descartes, Paris, France Central Pharmacy, Pharmaceutical Innovation Department, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jérôme Larghero
- Cell Therapy Unit and Clinical Investigation Center in Biotherapies (CBT501), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France University Paris Diderot, Sorbonne Paris Cité, Paris F-75475, France INSERM UMRS1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
21
|
Abstract
Exosomes are nanovesicles released from cells through exocytosis and are known to be mediators of proximal as well as distant cell-to-cell signaling. They are surrounded by a classical bilayered membrane with an exceptionally high cholesterol/phospholipid ratio. Exosomes were first described in 1977, then named prostasomes, and in 1987 the name exosome was coined. Exosomes contain surface proteins, some of which can act as labels in order to find their target cells. Exosomes also contain messages in the form of proteins and nucleic acids (RNA and DNA) that are transferable to target cells. Little is known and written about cardiac exosomes, although Gupta and Knowlton described exosomes containing HSP60 in 2007. It is now known that exosomes from cardiomyocytes can transfect other cells and that the metabolic milieu of the parental cell decides the quality of exosomes released such that they induce differential gene expression in transfected cells. Future clinical use of exosomes in diagnosis, monitoring disease progress, and treatment is promising.
Collapse
Affiliation(s)
- Anders Waldenström
- From the Department of Cardiology, Heart Centre, and Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden (A.W.); and Department of Medical Sciences, Clinical Chemistry, University Hospital of Uppsala, Uppsala University, Uppsala, Sweden (G.R.)
| | | |
Collapse
|
22
|
Ngangan AV, Waring JC, Cooke MT, Mandrycky CJ, McDevitt TC. Soluble factors secreted by differentiating embryonic stem cells stimulate exogenous cell proliferation and migration. Stem Cell Res Ther 2014; 5:26. [PMID: 24564947 PMCID: PMC4055104 DOI: 10.1186/scrt415] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 02/10/2014] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Stem cells are being investigated as catalysts of tissue regeneration to either directly replace or promote cellularity lost as a result of traumatic injury or degenerative disease. In many reports, despite low numbers of stably integrated cells, the transient presence of cells delivered or recruited to sites of tissue remodeling globally benefits functional recovery. Such findings have motivated the need to determine how paracrine factors secreted from transplanted cells may be capable of positively impacting endogenous repair processes and somatic cell responses. METHODS Embryonic stem cells were differentiated as embryoid bodies (EBs) in vitro and media conditioned by EBs were collected at different intervals of time. Gene and protein expression analysis of several different growth factors secreted by EBs were examined by polymerase chain reaction and enzyme-linked immunosorbent assay analysis, respectively, as a function of time. The proliferation and migration of fibroblasts and endothelial cells treated with EB conditioned media was examined compared with unconditioned and growth media controls. RESULTS The expression of several growth factors, including bone morphogenic protein-4, insulin-like growth factors and vascular endothelial growth factor-A, increased during the course of embryonic stem cell (ESC) differentiation as EBs. Conditioned media collected from EBs at different stages of differentiation stimulated proliferation and migration of both fibroblasts and endothelial cells, based on 5-bromo-2'-deoxyuridine incorporation and transwell assays, respectively. CONCLUSIONS Overall, these results demonstrate that differentiating ESCs express increasing amounts of various growth factors over time that altogether are capable of stimulating mitogenic and motogenic activity of exogenous cell populations.
Collapse
|
23
|
Hamdi H, Planat-Benard V, Bel A, Neamatalla H, Saccenti L, Calderon D, Bellamy V, Bon M, Perrier MC, Mandet C, Bruneval P, Casteilla L, Hagège AA, Pucéat M, Agbulut O, Menasché P. Long-Term Functional Benefits of Epicardial Patches as Cell Carriers. Cell Transplant 2014; 23:87-96. [DOI: 10.3727/096368912x658836] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Both enzymatic dissociation of cells prior to needle-based injections and poor vascularization of myocardial infarct areas are two important contributors to cell death and impede the efficacy of cardiac cell therapy. Because these limitations could be overcome by scaffolds ensuring cell cohesiveness and codelivery of angiogenic cells, we used a chronic rat model of myocardial infarction to assess the long-term (6 months) effects of the epicardial delivery of a composite collagen-based patch harboring both cardiomyogenesis-targeted human embryonic SSEA-1+ (stem cell-derived stage-specific embryonic antigen-1 positive) cardiovascular progenitors and autologous (rat) adipose tissue-derived angiogenesis-targeted stromal cells ( n = 27). Cell-free patches served as controls ( n = 28). Serial follow-up echocardiographic measurements of left ventricular ejection fraction (LVEF) showed that the composite patch group yielded a significantly better preservation of left ventricular function that was sustained over time as compared with controls, and this pattern persisted when the assessment was restricted to the subgroup of rats with initial LVEFs below 50%. The composite patch group was also associated with significantly less fibrosis and more vessels in the infarct area. However, although human progenitors expressing cardiac markers were present in the patches before implantation, none of them could be subsequently identified in the grafted tissue. These data confirm the efficacy of epicardial scaffolds as cell carriers for ensuring long-term functional benefits and suggest that these effects are likely related to paracrine effects and call for optimizing cross-talks between codelivered cell populations to achieve the ultimate goal of myocardial regeneration.
Collapse
Affiliation(s)
- Hadhami Hamdi
- INSERM U633, Laboratory of Biosurgical Research, Paris, France
| | | | - Alain Bel
- INSERM U633, Laboratory of Biosurgical Research, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Cardiovascular Surgery; University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Hany Neamatalla
- INSERM U633, Laboratory of Biosurgical Research, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Cardiovascular Surgery; University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | | | - Valérie Bellamy
- INSERM U633, Laboratory of Biosurgical Research, Paris, France
| | - Martin Bon
- INSERM U633, Laboratory of Biosurgical Research, Paris, France
| | | | - Chantal Mandet
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Cardiovascular Surgery; University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Patrick Bruneval
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Cardiovascular Surgery; University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Louis Casteilla
- UMR 5273 UPS, CNRS, EFS, Inserm U1031, STROMALab, Toulouse, France
| | - Albert A. Hagège
- INSERM U633, Laboratory of Biosurgical Research, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Cardiovascular Surgery; University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Michel Pucéat
- INSERM U633, Laboratory of Biosurgical Research, Paris, France
| | - Onnik Agbulut
- Université Paris Diderot, Sorbonne Paris Cité, CNRS EAC4413, Unit of Functional and Adaptive Biology, Paris, France
| | - Philippe Menasché
- INSERM U633, Laboratory of Biosurgical Research, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Cardiovascular Surgery; University Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
24
|
Zhang Y, Wang D, Cao K, Chen M, Yang X, Tao Y. Rat Induced Pluripotent Stem Cells Protect H9C2 Cells from Cellular Senescence via a Paracrine Mechanism. Cardiology 2014; 128:43-50. [DOI: 10.1159/000357423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/12/2013] [Indexed: 11/19/2022]
|
25
|
Mozaffari MS, Liu JY, Abebe W, Baban B. Mechanisms of load dependency of myocardial ischemia reperfusion injury. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2013; 3:180-196. [PMID: 24224132 PMCID: PMC3819580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/18/2013] [Indexed: 06/02/2023]
Abstract
Coronary artery disease and associated ischemic heart disease are prevalent disorders worldwide. Further, systemic hypertension is common and markedly increases the risk for heart disease. A common denominator of systemic hypertension of various etiologies is increased myocardial load/mechanical stress. Thus, it is likely that high pressure/mechanical stress attenuates the contribution of cardioprotective but accentuates the contribution of cardiotoxic pathways thereby exacerbating the outcome of an ischemia reperfusion insult to the heart. Critical events which contribute to cardiomyocyte injury in the ischemic-reperfused heart include cellular calcium overload and generation of reactive oxygen/nitrogen species which, in turn, promote the opening of the mitochondrial permeability transition pore, an important event in cell death. Increasing evidence also indicates that the myocardium is capable of mounting a robust inflammatory response which contributes importantly to tissue injury. On the other hand, cardioprotective maneuvers of ischemic preconditioning and postconditioning have led to identification of complex web of signaling pathways (e.g., reperfusion injury salvage kinase) which ultimately converge on the mitochondria to exert cytoprotection. The present review is intended to briefly describe mechanisms of cardiac ischemia reperfusion injury followed by a discussion of our work focused on how pressure/mechanical stress modulates endogenous cardiotoxic and cardioprotective mechanisms to ultimately exacerbate ischemia reperfusion injury.
Collapse
Affiliation(s)
- Mahmood S Mozaffari
- Department of Oral Biology, College of Dental Medicine, Georgia Regents University Augusta, Georgia 30912, USA
| | | | | | | |
Collapse
|
26
|
Ultrastructural evidence of exosome secretion by progenitor cells in adult mouse myocardium and adult human cardiospheres. J Biomed Biotechnol 2012; 2012:354605. [PMID: 23226938 PMCID: PMC3511851 DOI: 10.1155/2012/354605] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/16/2012] [Indexed: 02/07/2023] Open
Abstract
The demonstration of beneficial effects of cell therapy despite the persistence of only few transplanted cells in vivo suggests secreted factors may be the active component of this treatment. This so-called paracrine hypothesis is supported by observations that culture media conditioned by progenitor cells contain growth factors that mediate proangiogenic and cytoprotective effects. Cardiac progenitor cells in semi-suspension culture form spherical clusters (cardiospheres) that deliver paracrine signals to neighboring cells. A key component of paracrine secretion is exosomes, membrane vesicles that are stored intracellularly in endosomal compartments and are secreted when these structures fuse with the cell plasma membrane. Exosomes have been identified as the active component of proangiogenic effects of bone marrow CD34+ stem cells in mice and the regenerative effects of embryonic mesenchymal stem cells in infarcted hearts in pigs and mice. Here, we provide electron microscopic evidence of exosome secretion by progenitor cells in mouse myocardium and human cardiospheres. Exosomes are emerging as an attractive vector of paracrine signals delivered by progenitor cells. They can be stored as an “off-the-shelf” product. As such, exosomes have the potential for circumventing many of the limitations of viable cells for therapeutic applications in regenerative medicine.
Collapse
|
27
|
Liu Y, Ye X, Mao L, Cheng Z, Yao X, Jia X, Mao D, Ou L, Li Z, Che Y, Liu N, Steinhoff G, Liu L, Kong D. Transplantation of parthenogenetic embryonic stem cells ameliorates cardiac dysfunction and remodelling after myocardial infarction. Cardiovasc Res 2012; 97:208-18. [PMID: 23066088 DOI: 10.1093/cvr/cvs314] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
AIMS Parthenogenetic embryonic stem cells (pESCs) derived from artificially activated oocytes without fertilization presumably raise minimal ethical concerns and may serve as attractive candidates for regenerative medicine. Here we investigated whether pESCs could repair myocardial infarction (MI), in comparison to embryonic stem cells (ESCs). METHODS AND RESULTS A total of 89 mice that survived coronary artery ligation randomly received an intramyocardial injection of undifferentiated pESCs, ESCs, or saline. Sham-operated mice (n = 21) that received no treatment served as control animals. After 7 days, transplantation of pESCs increased expression of pro-angiogenic factors and reduced leucocyte infiltration. By 14 and 30 days post-MI, similar to treatment with ESCs, treatment with pESCs efficiently prevented cardiac remodelling and enhanced angiogenesis, in contrast to saline-treated hearts. Improved heart contractile function was also notable 30 days following transplantation of pESCs. Immunofluorescence staining revealed that tissues regenerated from pESCs in the infarcted myocardium were positive for markers of cardiomyocytes, endothelial cells, and smooth muscle cells. Unlike ESC-treated mice, which exhibited a high incidence of teratoma (6 of 34), the pESC-treated mice showed no teratomas (0 of 30) 30 days following transplantation. CONCLUSION Transplantation of pESCs could attenuate cardiac dysfunction and adverse ventricular remodelling post-MI, suggesting that pESCs may provide promising therapeutic sources for MI in females.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, PR 300071, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li L, Zeng H, Chen JX. Apelin-13 increases myocardial progenitor cells and improves repair postmyocardial infarction. Am J Physiol Heart Circ Physiol 2012; 303:H605-18. [PMID: 22752632 DOI: 10.1152/ajpheart.00366.2012] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Apelin is an endogenous ligand for the angiotensin-like 1 receptor (APJ) and has beneficial effects against myocardial ischemia-reperfusion injury. Little is known about the role of apelin in the homing of vascular progenitor cells (PCs) and cardiac functional recovery postmyocardial infarction (post-MI). The present study investigated whether apelin affects PC homing to the infarcted myocardium, thereby mediating repair and functional recovery post-MI. Mice were infarcted by coronary artery ligation, and apelin-13 (1 mg·kg(-1)·day(-1)) was injected for 3 days before MI and for 14 days post-MI. Homing of vascular PCs [CD133(+)/c-Kit(+)/Sca1(+), CD133(+)/stromal cell-derived factor (SDF)-1α(+), and CD133(+)/CXC chemokine receptor (CXCR)-4(+)] into the ischemic area was examined. Myocardial Akt, endothelial nitric oxide synthase (eNOS), VEGF, jagged1, notch3, SDF-1α, and CXCR-4 expression were assessed at 24 h and 14 days post-MI. Functional analyses were performed on day 14 post-MI. Mice that received apelin-13 treatment demonstrated upregulation of SDF-1α/CXCR-4 expression and dramatically increased the number of CD133(+)/c-Kit(+)/Sca1(+), CD133(+)/SDF-1α(+), and c-Kit(+)/CXCR-4(+) cells in infarcted hearts. Apelin-13 also significantly increased Akt and eNOS phosphorylation and upregulated VEGF, jagged1, and notch3 expression in ischemic hearts. This was accompanied by a significant reduction of myocardial apoptosis. Furthermore, treatment with apelin-13 promoted myocardial angiogenesis and attenuated cardiac fibrosis and hypertrophy together with a significant improvement of cardiac function at 14 days post-MI. Apelin-13 increases angiogenesis and improves cardiac repair post-MI by a mechanism involving the upregulation of SDF-1α/CXCR-4 and homing of vascular PCs.
Collapse
Affiliation(s)
- Lanfang Li
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | |
Collapse
|
29
|
Menasché P. [Embryonic stem cells in the treatment of severe cardiac insufficiency]. Biol Aujourdhui 2012; 206:31-44. [PMID: 22463994 DOI: 10.1051/jbio/2012002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Indexed: 05/31/2023]
Abstract
The experience accumulated in cardiac cell therapy suggests that regeneration of extensively necrotic myocardial areas is unlikely to be achieved by the sole paracrine effects of the grafted cells but rather requires the conversion of these cells into cardiomyocytes featuring the capacity to substitute for those which have been irreversibly lost. In this setting, the use of human pluripotent embryonic stem cells has a strong rationale. The experimental results obtained in animal models of myocardial infarction are encouraging. However, the switch to clinical applications still requires to address some critical issues, among which optimizing cardiac specification of the embryonic stem cells, purifying the resulting progenitor cells so as to graft a purified population devoid from any contamination by residual pluripotent cells which carry the risk of tumorigenesis and controlling the expected allogeneic rejection by clinically acceptable methods. If the solution to these problems is a pre-requisite, the therapeutic success of this approach will also depend on the capacity to efficiently transfer the cells to the target tissue, to keep them alive once engrafted and to allow them to spatially organize in such a way that they can contribute to the contractile function of the heart.
Collapse
Affiliation(s)
- Philippe Menasché
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Unité de chirurgie de l'insuffisance cardiaque, 20 rue Leblanc, 75015 Paris, France.
| |
Collapse
|
30
|
Embryonic stem cells for severe heart failure: why and how? J Cardiovasc Transl Res 2012; 5:555-65. [PMID: 22411322 DOI: 10.1007/s12265-012-9356-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/21/2012] [Indexed: 01/26/2023]
Abstract
The experience accumulated in cardiac cell therapy suggests that regeneration of extensively necrotic myocardial areas is unlikely to be achieved by the sole paracrine effects of the grafted cells but rather requires the conversion of these cells into cardiomyocytes featuring the capacity to substitute for those which have been irreversibly lost. In this setting, the use of human pluripotent embryonic stem cells has a strong rationale. The experimental results obtained in animal models of myocardial infarction are encouraging. However, the switch to clinical applications still requires to address some critical issues, among which the optimization of the cardiac specification of the embryonic stem cells, the purification of the resulting progenitor cells so as to graft a purified population devoid from any contamination by residual pluripotent cells which carry the risk of tumorigenesis, and the control of the expected allogeneic rejection by clinically acceptable methods. If the solution to these problems is a prerequisite, the therapeutic success of this approach will also depend on the capacity to efficiently transfer the cells to the target tissue, to keep them alive once engrafted, and to allow them to spatially organize in such a way that they can contribute to the contractile function of the heart.
Collapse
|
31
|
Haider KH, Ashraf M. Preconditioning approach in stem cell therapy for the treatment of infarcted heart. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 111:323-56. [PMID: 22917238 DOI: 10.1016/b978-0-12-398459-3.00015-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nearly two decades of research in regenerative medicine have been focused on the development of stem cells as a therapeutic option for treatment of the ischemic heart. Given the ability of stem cells to regenerate the damaged tissue, stem-cell-based therapy is an ideal approach for cardiovascular disorders. Preclinical studies in experimental animal models and clinical trials to determine the safety and efficacy of stem cell therapy have produced encouraging results that promise angiomyogenic repair of the ischemically damaged heart. Despite these promising results, stem cell therapy is still confronted with issues ranging from uncertainty about the as-yet-undetermined "ideal" donor cell type to the nonoptimized cell delivery strategies to harness optimal clinical benefits. Moreover, these lacunae have significantly hampered the progress of the heart cell therapy approach from bench to bedside for routine clinical applications. Massive death of donor cells in the infarcted myocardium during acute phase postengraftment is one of the areas of prime concern, which immensely lowers the efficacy of the procedure. An overview of the published data relevant to stem cell therapy is provided here and the various strategies that have been adopted to develop and optimize the protocols to enhance donor stem cell survival posttransplantation are discussed, with special focus on the preconditioning approach.
Collapse
Affiliation(s)
- Khawaja Husnain Haider
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | | |
Collapse
|
32
|
Pretreating mesenchymal stem cells with interleukin-1β and transforming growth factor-β synergistically increases vascular endothelial growth factor production and improves mesenchymal stem cell-mediated myocardial protection after acute ischemia. Surgery 2011; 151:353-63. [PMID: 22088815 DOI: 10.1016/j.surg.2011.09.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 09/22/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) improve postischemic myocardial function in part through their secretion of growth factors such as vascular endothelial growth factor (VEGF). Pretreating MSCs with various cytokines or small molecules can improve VEGF secretion and MSC-mediated cardioprotection. However, whether 1 cytokine can potentiate the effect of another cytokine in MSC pretreatment to achieve a synergistic effect on VEGF production and cardioprotection is poorly studied. METHODS MSCs were treated with interleukin (IL)-1β and/or transforming growth factor (TGF)-β1 for 24 hours before experiments. VEGF production was determined by enzyme-linked immunosorbent assay. Isolated hearts from adult male Sprague-Dawley rats were subjected to 15 minutes of equilibration, 25 minutes of ischemia, and 40 minutes reperfusion. Hearts (n = 5-7 per group) were randomly infused with vehicle, untreated MSCs, or MSCs pretreated with IL-1β and/or TGF-β1. Specific inhibitors were used to delineate the roles of p38 mitogen-activated protein kinase (MAPK) and SMAD3 in IL-1β- and TGF-β1-mediated stimulation of MSCs. RESULTS MSCs cotreated with IL-1β and TGF-β1 exhibited synergistically increased VEGF secretion, and they greatly improved postischemic myocardial functional recovery. Ablation of p38 MAPK and SMAD3 activation with specific inhibitors negated both IL-1β- and TGF-β1-mediated VEGF production in MSCs and the ability of these pretreated MSCs to improve myocardial recovery after ischemia. CONCLUSION Pretreating MSCs with 2 cytokines may be useful to fully realize the potential of cell-based therapies for ischemic tissues.
Collapse
|
33
|
Transforming Growth Factor-α Enhances Stem Cell-Mediated Postischemic Myocardial Protection. Ann Thorac Surg 2011; 92:1719-25. [DOI: 10.1016/j.athoracsur.2011.06.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 11/21/2022]
|
34
|
Fang J, Chen L, Fan L, Wu L, Chen X, Li W, Lin Y, Wang W. Enhanced therapeutic effects of mesenchymal stem cells on myocardial infarction by ischemic postconditioning through paracrine mechanisms in rats. J Mol Cell Cardiol 2011; 51:839-47. [DOI: 10.1016/j.yjmcc.2011.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
|
35
|
Wu JH, Wang HJ, Tan YZ, Li ZH. Characterization of rat very small embryonic-like stem cells and cardiac repair after cell transplantation for myocardial infarction. Stem Cells Dev 2011; 21:1367-79. [PMID: 22032240 DOI: 10.1089/scd.2011.0280] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Stem cell therapy is a promising therapeutic strategy for treating myocardial infarction (MI). However, it is necessary to identify ideal adult stem cells for transplantation and explore mechanisms of the transplanted cells in improving cardiac functions after MI. In this study, a population of embryonic-like stem cells (ELSCs) was isolated from rat bone marrow. The cells express pluripotent stem cell transcriptional factors and present high proliferative activity on mouse embryonic fibroblast feeder. ELSCs retain clonal expansion and may form embryoid-like bodies in soft agarose containing leukemia inhibitory factor and basic fibroblast growth factor. The cells of the embryoid-like bodies can differentiate into the cells from 3 germ layers. Under induction, the cells can differentiate into cardiomyocytes and endothelial cells. In MI models of female rats, the transplantation of preinduced ELSCs of male rats reduce scar area and improve cardiac function significantly. Comparing with marrow-derived mesenchymal stem cells and ELSCs without induction, effects of the preinduced ELSCs on myocardial repair and improvement of cardiac function are greater. Survival of the transplanted cells in the peri-infarcted and infarcted regions was examined by fluorescence in situ hybridization. Y chromosome-positive cells may differentiate toward cardiomyocytes and express cTnT and Cx43. Cx43 expression was observed at conjunction of Y chromosome-positive cells and recipient cardiomyocytes. Some Y chromosome-positive cells express CD31 and incorporate into the microvessels in the infarcted tissue. These results suggest that a population of ELSCs resides in rat bone marrow and display similar biological characteristics of ESCs. ELSCs can differentiate into cardiomyocytes and endothelial cells and contribute to cardiomyogenesis and angiogenesis in vivo. Cardiac function after MI may be significantly improved with transplantation of the preinduced ELSCs. Therefore, ELSCs are novel seed cells for stem cell transplantation in regenerative medicine.
Collapse
Affiliation(s)
- Jin-Hong Wu
- Department of Anatomy, Histology, and Embryology, Shanghai Medical School of Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
36
|
Poynter JA, Herrmann JL, Manukyan MC, Wang Y, Abarbanell AM, Weil BR, Brewster BD, Meldrum DR. Intracoronary mesenchymal stem cells promote postischemic myocardial functional recovery, decrease inflammation, and reduce apoptosis via a signal transducer and activator of transcription 3 mechanism. J Am Coll Surg 2011; 213:253-60. [PMID: 21546276 DOI: 10.1016/j.jamcollsurg.2011.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 04/04/2011] [Accepted: 04/04/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3) regulates myocardial apoptosis, cellular proliferation, and the immune response after ischemia/reperfusion (I/R). STAT3 is also necessary for the production of vascular endothelial growth factor (VEGF) by mesenchymal stem cells (MSCs), which are known to reduce myocardial injury after I/R. However, it remains unknown whether STAT3 is an important mediator of MSC-based cardioprotection. We hypothesized that knockout of stem cell STAT3 would reduce MSC-derived myocardial functional recovery and increase myocardial inflammatory and apoptotic signaling. STUDY DESIGN With a Langendorff apparatus, male rat hearts were subjected to 15 minutes of equilibration and 25 minutes of ischemia, followed by 40 minutes of reperfusion. Immediately before ischemia, hearts received intracoronary infusions of vehicle, wild-type MSCs (WT MSCs) or STAT3 knockout MSCs (STAT3KO MSCs). Heart function was measured continuously. Myocardial homogenates were analyzed for production of interleukin (IL)-1, IL-6, and tumor necrosis factor-α (TNF-α). Additionally, MSC production of hepatocyte growth factor (HGF) and insulin-like growth factor-1 (IGF-1) were measured in vitro. RESULTS Hearts treated with WT MSCs exhibited the greatest functional recovery, and those treated with STAT3KO MSCs had equivalent recovery to vehicle. The highest proinflammatory cytokine levels were seen in vehicle-treated hearts, and the lowest in the WT MSC group. STAT3KO MSCs produced less IGF-1, but more HGF than WT MSCs. Finally, hearts treated with STAT3KO MSCs or vehicle had significantly higher caspase-3 levels than those treated with WT MSCs. CONCLUSIONS Intracoronary infusions of MSCs improve postischemic left ventricular function and reduce proapoptotic and proinflammatory signaling via a STAT3-dependent mechanism.
Collapse
Affiliation(s)
- Jeffrey A Poynter
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Templin C, Lüscher TF, Landmesser U. [Stem and progenitor cell-based therapy approaches: current developments on treatment of acute myocardial infarction and chronic ischemic cardiomyopathy]. Herz 2011; 35:445-56. [PMID: 20967401 DOI: 10.1007/s00059-010-3397-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Percutaneous coronary intervention (PCI) for coronary revascularization in conjunction with an optimized pharmacological treatment can reduce adverse left ventricular remodeling and dysfunction in patients with acute myocardial infarction. Despite these modern therapeutic strategies a significant number of these patients continue to develop adverse cardiac remodeling and LV dysfunction which is associated with a poor prognosis. Stem and progenitor cell-based approaches for treatment of acute myocardial infarction and chronic ischemic cardiomyopathy are an interesting direction of current experimental and clinical research. The current review article provides a summary of recent developments of cell-based therapies of ischemic heart disease, including the assessment of the repair and regeneration capacity of different stem and progenitor cell populations. In addition the advantages and disadvantages of different modes of cell application and potential strategies for the improvement of stem and progenitor cell function for their use in cell-based cardiovascular therapies will be described.
Collapse
Affiliation(s)
- C Templin
- Klinik für Kardiologie, UniversitätsSpital Zürich, Rämistr. 100, 8091, Zürich, Schweiz.
| | | | | |
Collapse
|
38
|
Durrani S, Konoplyannikov M, Ashraf M, Haider KH. Skeletal myoblasts for cardiac repair. Regen Med 2011; 5:919-32. [PMID: 21082891 DOI: 10.2217/rme.10.65] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stem cells provide an alternative curative intervention for the infarcted heart by compensating for the cardiomyocyte loss subsequent to myocardial injury. The presence of resident stem and progenitor cell populations in the heart, and nuclear reprogramming of somatic cells with genetic induction of pluripotency markers are the emerging new developments in stem cell-based regenerative medicine. However, until safety and feasibility of these cells are established by extensive experimentation in in vitro and in vivo experimental models, skeletal muscle-derived myoblasts, and bone marrow cells remain the most well-studied donor cell types for myocardial regeneration and repair. This article provides a critical review of skeletal myoblasts as donor cells for transplantation in the light of published experimental and clinical data, and indepth discussion of the advantages and disadvantages of skeletal myoblast-based therapeutic intervention for augmentation of myocardial function in the infarcted heart. Furthermore, strategies to overcome the problems of arrhythmogenicity and failure of the transplanted skeletal myoblasts to integrate with the host cardiomyocytes are discussed.
Collapse
Affiliation(s)
- Shazia Durrani
- Department of Pathology & Laboratory Medicine, 231 Albert Sabin Way, University of Cincinnati, OH 45267-0529, USA
| | | | | | | |
Collapse
|
39
|
Li Y, He J, Wang F, Ju Z, Liu S, Zhang Y, Kou Z, Liu Y, Cheng T, Gao S. Differentiation of embryonic stem cells in adult bone marrow. J Genet Genomics 2011; 37:431-9. [PMID: 20659707 DOI: 10.1016/s1673-8527(09)60062-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 05/30/2010] [Accepted: 06/01/2010] [Indexed: 11/25/2022]
Abstract
Embryonic stem cells (ESCs) are a potential source of generating transplantable hematopoietic stem and progenitor cells, which in turn can serve as "seed" cells for hematopoietic regeneration. In this study, we aimed to gauge the ability of mouse ESCs directly differentiating into hematopoietic cells in adult bone marrow (BM). To this end, we first derived a new mouse ESC line that constitutively expressed the green fluorescent protein (GFP) and then injected the ESCs into syngeneic BM via intra-tibia. The progeny of the transplanted ESCs were then analyzed at different time points after transplantation. Notably, however, most injected ESCs differentiated into non-hematopoietic cells in the BM whereas only a minority of the cells acquired hematopoietic cell surface markers. This study provides a strategy for evaluating the differentiation potential of ESCs in the BM micro-environment, thereby having important implications for the physiological maintenance and potential therapeutic applications of ESCs.
Collapse
Affiliation(s)
- Yueying Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lahm T, McCaslin CA, Wozniak TC, Ghumman W, Fadl YY, Obeidat OS, Schwab K, Meldrum DR. Medical and surgical treatment of acute right ventricular failure. J Am Coll Cardiol 2010; 56:1435-46. [PMID: 20951319 DOI: 10.1016/j.jacc.2010.05.046] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/20/2010] [Accepted: 05/17/2010] [Indexed: 12/22/2022]
Abstract
Acute right ventricular (RV) failure is a frequent and serious clinical challenge in the intensive care unit. It is usually seen as a consequence of left ventricular failure, pulmonary embolism, pulmonary hypertension, sepsis, acute lung injury or after cardiothoracic surgery. The presence of acute RV failure not only carries substantial morbidity and mortality, but also complicates the use of commonly used treatment strategies in critically ill patients. In contrast to the left ventricle, the RV remains relatively understudied, and investigations of the treatment of isolated RV failure are rare and usually limited to nonrandomized observations. We searched PubMed for papers in the English language by using the search words right ventricle, right ventricular failure, pulmonary hypertension, sepsis, shock, acute lung injury, cardiothoracic surgery, mechanical ventilation, vasopressors, inotropes, and pulmonary vasodilators. These were used in various combinations. We read the abstracts of the relevant titles to confirm their relevance, and the full papers were then extracted. References from extracted papers were checked for any additional relevant papers. This review summarizes the general measures, ventilation strategies, vasoactive substances, and surgical as well as mechanical approaches that are currently used or actively investigated in the treatment of the acutely failing RV.
Collapse
Affiliation(s)
- Tim Lahm
- Clarian Cardiovascular Surgery, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Differences in cardiovascular disease outcomes between men and women have long been recognized and attributed, in part, to gender and sex steroids. Gender dimorphisms also exist with respect to the roles of progenitor and stem cells in post-ischemic myocardial and endothelial repair and regeneration. Understanding how these cells are influenced by donor gender and the recipient hormonal milieu may enable researchers to further account for the gender-related disparities in clinical outcomes as well as utilize the beneficial effects of these hormones to optimize transplanted cell function and survival. This review discusses (1) the cardiovascular effects of sex steroids (specifically estradiol and testosterone); (2) the therapeutic potentials of endothelial progenitor cells, mesenchymal stem cells, and embryonic stem cells; and (3) the direct effect of sex steroids on these cell types.
Collapse
|
42
|
Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnecchi M, Dzau VJ. Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol 2010; 50:280-9. [PMID: 20727900 DOI: 10.1016/j.yjmcc.2010.08.005] [Citation(s) in RCA: 343] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 12/12/2022]
Abstract
Stem cells play an important role in restoring cardiac function in the damaged heart. In order to mediate repair, stem cells need to replace injured tissue by differentiating into specialized cardiac cell lineages and/or manipulating the cell and molecular mechanisms governing repair. Despite early reports describing engraftment and successful regeneration of cardiac tissue in animal models of heart failure, these events appear to be infrequent and yield too few new cardiomyocytes to account for the degree of improved cardiac function observed. Instead, mounting evidence suggests that stem cell mediated repair takes place via the release of paracrine factors into the surrounding tissue that subsequently direct a number of restorative processes including myocardial protection, neovascularization, cardiac remodeling, and differentiation. The potential for diverse stem cell populations to moderate many of the same processes as well as key paracrine factors and molecular pathways involved in stem cell-mediated cardiac repair will be discussed in this review. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".
Collapse
Affiliation(s)
- Maria Mirotsou
- Department of Medicine, Duke University Medical Center & Mandel Center for Hypertension and Atherosclerosis Research, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
43
|
Herrmann JL, Abarbanell AM, Weil BR, Manukyan MC, Poynter JA, Brewster BJ, Wang Y, Meldrum DR. Optimizing stem cell function for the treatment of ischemic heart disease. J Surg Res 2010; 166:138-45. [PMID: 20828719 DOI: 10.1016/j.jss.2010.05.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/13/2010] [Accepted: 05/21/2010] [Indexed: 01/07/2023]
Abstract
BACKGROUND Stem cell-based therapies for myocardial ischemia have demonstrated promising early clinical results, but their benefits have been limited in duration due to impaired donor cell engraftment and function. Several strategies have emerged for enhancing stem cell function prior to their therapeutic use particularly with regard to stem cell homing, paracrine function, and survival. This review discusses current understandings of stem cell-mediated cardioprotection as well as methods of enhancing post-transplantation stem cell function and survival through hypoxic preconditioning, genetic manipulation, and pharmacologic pretreatment. MATERIALS AND METHODS A literature search was performed using the MEDLINE and PubMed databases using the keywords "stem cell therapy," "myocardial ischemia," "hypoxic preconditioning," "paracrine function," and "stem cell pretreatment." Studies published in English since January 1990 were selected. In addition, studies were identified from references cited in publications found using the search terms. RESULTS All included studies utilized animal studies and/or in vitro techniques. Stem cell modifications generally targeted stem cell homing (SDF-1, CXCR4), paracrine function (VEGF, angiogenin, Ang-1, HGF, IL-18 binding protein, TNFR1/2), or survival (Akt, Bcl-2, Hsp20, HO-1, FGF-2). However, individual modifications commonly exhibited pleiotropic effects involving some or all of these general categories. CONCLUSION These strategies for optimizing stem cell-mediated cardioprotection present unique potential sets of advantages and disadvantages for clinical application. Additional questions remain including those that are most efficacious in terms of magnitude and duration of benefit as well as whether combinations may yield greater benefits in both the preclinical and clinical settings.
Collapse
Affiliation(s)
- Jeremy L Herrmann
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Herrmann JL, Abarbanell AM, Weil BR, Wang Y, Poynter JA, Manukyan MC, Meldrum DR. Postinfarct intramyocardial injection of mesenchymal stem cells pretreated with TGF-alpha improves acute myocardial function. Am J Physiol Regul Integr Comp Physiol 2010; 299:R371-8. [PMID: 20484699 DOI: 10.1152/ajpregu.00084.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Stem cell-based therapies offer promising potential for myocardial infarction (MI), but endogenous molecules released in response to injury likely impair posttransplantation stem cell function. Stem cell-mediated cardioprotection occurs in part via paracrine effects, and transforming growth factor-alpha (TGF-alpha) has been shown to enhance paracrine function. However, it is unknown whether pretreating stem cells with TGF-alpha increases stem cell-mediated cardioprotection after acute MI. Mesenchymal stem cells (MSCs) were treated with TGF-alpha (250 ng/ml) for 24 h. Adult male Sprague-Dawley rat hearts were isolated and perfused using the Langendorff method. MI was induced by ligating the left anterior descending coronary artery. Postligation (30 min), vehicle or 1 x 10(6) MSCs with or without pretreatment were injected in the infarct border zones, and the hearts were perfused for an additional 60 min. Left ventricular function was continuously measured, and infarct size was assessed with Evans blue dye and 2,3,5-triphenyltetrazolium chloride staining. Myocardial production of interleukin (IL)-1beta and IL-6 and caspase 3 activation was also measured. Left ventricular function decreased significantly following coronary artery ligation but improved following injection of untreated MSCs and to a greater extent after injection of pretreated MSCs. In addition, the infarct area, myocardial caspase 3 activation, and IL-6 production were lowest in hearts injected with pretreated cells. Intramyocardial injection of TGF-alpha-pretreated MSCs after acute MI is associated with increased myocardial function and decreased myocardial injury. This strategy may be useful for optimizing the therapeutic efficacy of stem cells for the treatment of acute MI.
Collapse
Affiliation(s)
- Jeremy L Herrmann
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Vrijsen KR, Sluijter JPG, Schuchardt MWL, van Balkom BWM, Noort WA, Chamuleau SAJ, Doevendans PAFM. Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells. J Cell Mol Med 2010; 14:1064-70. [PMID: 20465578 PMCID: PMC3822742 DOI: 10.1111/j.1582-4934.2010.01081.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Patients suffering from heart failure as a result of myocardial infarction are in need of heart transplantation. Unfortunately the number of donor hearts is very low and therefore new therapies are subject of investigation. Cell transplantation therapy upon myocardial infarction is a very promising strategy to replace the dead myocardium with viable cardiomyocytes, smooth muscle cells and endothelial cells, thereby reducing scarring and improving cardiac performance. Despite promising results, resulting in reduced infarct size and improved cardiac function on short term, only a few cells survive the ischemic milieu and are retained in the heart, thereby minimizing long-term effects. Although new capillaries and cardiomyocytes are formed around the infarcted area, only a small percentage of the transplanted cells can be detected months after myocardial infarction. This suggests the stimulation of an endogenous regenerative capacity of the heart upon cell transplantation, resulting from release of growth factor, cytokine and other paracrine molecules by the progenitor cells--the so-called paracrine hypothesis. Here, we focus on a relative new component of paracrine signalling, i.e. exosomes. We are interested in the release and function of exosomes derived from cardiac progenitor cells and studied their effects on the migratory capacity of endothelial cells.
Collapse
Affiliation(s)
- K R Vrijsen
- University Medical Center Utrecht, Laboratory of Experimental Cardiology, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
46
|
Bursac N, Kirkton RD, McSpadden LC, Liau B. Characterizing functional stem cell-cardiomyocyte interactions. Regen Med 2010; 5:87-105. [PMID: 20017697 DOI: 10.2217/rme.09.69] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Despite the progress in traditional pharmacological and organ transplantation therapies, heart failure still afflicts 5.3 million Americans. Since June 2000, stem cell-based approaches for the prevention and treatment of heart failure have been pursued in clinics with great excitement; however, the exact mechanisms of how transplanted cells improve heart function remain elusive. One of the main difficulties in answering these questions is the limited ability to directly access and study interactions between implanted cells and host cardiomyocytes in situ. With the growing number of candidate cell types for potential clinical use, it is becoming increasingly more important to establish standardized, well-controlled in vitro and in situ assays to compare the efficacy and safety of different stem cells in cardiac repair. This article describes recent innovative methodologies to characterize direct functional interactions between stem cells and cardiomyocytes, aimed to facilitate the rational design of future cell-based therapies for heart disease.
Collapse
Affiliation(s)
- Nenad Bursac
- Department of Biomedical Engineering, Duke University, Room 136 Hudson Hall, Durham, NC 27708, USA.
| | | | | | | |
Collapse
|
47
|
Abarbanell AM, Wang Y, Herrmann JL, Weil BR, Poynter JA, Manukyan MC, Meldrum DR. Toll-like receptor 2 mediates mesenchymal stem cell-associated myocardial recovery and VEGF production following acute ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2010; 298:H1529-36. [PMID: 20173040 DOI: 10.1152/ajpheart.01087.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Toll-like receptor 2 (TLR2), a key component of the innate immune system, is linked to inflammation and myocardial dysfunction after ischemia-reperfusion injury (I/R). Treatment of the heart with mesenchymal stem cells (MSCs) is known to improve myocardial recovery after I/R in part by paracrine factors such as VEGF. However, it is unknown whether TLR2 activation on the MSCs affects MSC-mediated myocardial recovery and VEGF production. We hypothesized that the knockout of TLR2 on the MSCs (TLR2KO MSCs) would 1) improve MSC-mediated myocardial recovery and 2) increase myocardial and MSC VEGF release. With the isolated heart perfusion system, Sprague-Dawley rat hearts were subjected to I/R and received one of three intracoronary treatments: vehicle, male wild-type MSCs (MWT MSCs), or TL2KO MSCs. All treatments were performed immediately before ischemia, and heart function was measured continuously. Postreperfusion, heart homogenates were analyzed for myocardial VEGF production. Contrary to our hypothesis, only MWT MSC treatment significantly improved the recovery of left ventricular developed pressure and the maximal positive and negative values of the first derivative of pressure. In addition, VEGF production was greatest in hearts treated with MWT MSCs. To investigate MSC production of VEGF, MSCs were activated with TNF in vitro and the supernatants collected for ELISA. In vitro basal levels of MSC VEGF production were similar. However, with TNF activation, MWT MSCs produced significantly more VEGF, whereas activated TLR2KO MSC production of VEGF was unchanged. Finally, we observed that MWT MSCs proliferated more rapidly than TLR2KO MSCs. These data indicate that TLR2 may be essential to MSC-mediated myocardial recovery and VEGF production.
Collapse
Affiliation(s)
- Aaron M Abarbanell
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Haider HK, Ashraf M. Preconditioning and stem cell survival. J Cardiovasc Transl Res 2009; 3:89-102. [PMID: 20560023 DOI: 10.1007/s12265-009-9161-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 11/24/2009] [Indexed: 01/01/2023]
Abstract
The harsh ischemic and cytokine-rich microenvironment in the infarcted myocardium, infiltrated by the inflammatory and immune cells, offers a significant challenge to the transplanted donor stem cells. Massive cell death occurs during transplantation as well as following engraftment which significantly lowers the effectiveness of the heart cell therapy. Various approaches have been adopted to overcome this problem nevertheless with multiple limitations with each of these current approaches. Cellular preconditioning and reprogramming by physical, chemical, genetic, and pharmacological manipulation of the cells has shown promise and "prime" the cells to the "state of readiness" to withstand the rigors of lethal ischemia in vitro as well as posttransplantation. This review summarizes the past and present novel approaches of ischemic preconditioning, pharmacological and genetic manipulation using preconditioning mimetics, recombinant growth factor protein treatment, and reprogramming of stem cells to overexpress survival signaling molecules, microRNAs, and trophic factors for intracrine, autocrine, and paracrine effects on cytoprotection.
Collapse
Affiliation(s)
- Husnain Kh Haider
- Department of Pathology and Laboratory Medicine, University of Cincinnati, 231-Albert, Sabin Way, OH 45267-0529, USA.
| | | |
Collapse
|
49
|
Herrmann JL, Abarbanell AM, Weil BR, Wang Y, Wang M, Tan J, Meldrum DR. Cell-based therapy for ischemic heart disease: a clinical update. Ann Thorac Surg 2009; 88:1714-22. [PMID: 19853156 DOI: 10.1016/j.athoracsur.2009.05.079] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/22/2009] [Accepted: 05/27/2009] [Indexed: 01/09/2023]
Abstract
Progenitor cell therapy is a promising treatment for ischemic heart disease. Early clinical trials of autologous bone marrow-derived progenitor cell therapy for acute and chronic myocardial ischemia showed modest functional improvements after cell delivery; however, the duration of these benefits remains unclear. Ongoing investigations continue to enhance our understanding of the mechanisms by which progenitor and stem cells function and how their survival and cardioprotective abilities can be improved. This review discusses: (1) relevant progenitor and stem cells in myocardial regenerative therapy, (2) routes of cell delivery to ischemic myocardium, (3) clinical trials investigating bone marrow-derived progenitor cell therapy for myocardial ischemia, and (4) future directions of the field.
Collapse
|
50
|
Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc Natl Acad Sci U S A 2009; 107:3317-22. [PMID: 19805054 DOI: 10.1073/pnas.0905432106] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stem cells hold great potential as cell-based therapies to promote vascularization and tissue regeneration. However, the use of stem cells alone to promote angiogenesis remains limited because of insufficient expression of angiogenic factors and low cell viability after transplantation. Here, we have developed vascular endothelial growth factor (VEGF) high-expressing, transiently modified stem cells for the purposes of promoting angiogenesis. Nonviral, biodegradable polymeric nanoparticles were developed to deliver hVEGF gene to human mesenchymal stem cells (hMSCs) and human embryonic stem cell-derived cells (hESdCs). Treated stem cells demonstrated markedly enhanced hVEGF production, cell viability, and engraftment into target tissues. S.c. implantation of scaffolds seeded with VEGF-expressing stem cells (hMSCs and hESdCs) led to 2- to 4-fold-higher vessel densities 2 weeks after implantation, compared with control cells or cells transfected with VEGF by using Lipofectamine 2000, a leading commercial reagent. Four weeks after intramuscular injection into mouse ischemic hindlimbs, genetically modified hMSCs substantially enhanced angiogenesis and limb salvage while reducing muscle degeneration and tissue fibrosis. These results indicate that stem cells engineered with biodegradable polymer nanoparticles may be therapeutic tools for vascularizing tissue constructs and treating ischemic disease.
Collapse
|