1
|
Silva Angulo F, Joseph CV, Delval L, Deruyter L, Heumel S, Bicharel M, Rodrigues PB, Sencio V, Bourguignon T, Machado MG, Fourcot M, Delhaye S, Salomé-Desnoulez S, Valet P, Adnot S, Wolowczuk I, Sirard JC, Pichavant M, Staels B, Haas JT, Gref R, Vandel J, Machelart A, Duez H, Pourcet B, Trottein F. Rev-erb-α antagonism in alveolar macrophages protects against pneumococcal infection in elderly mice. Cell Rep 2025; 44:115273. [PMID: 39908141 DOI: 10.1016/j.celrep.2025.115273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/08/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
Circadian rhythms control the diurnal nature of many physiological, metabolic, and immune processes. We hypothesized that age-related impairments in circadian rhythms are associated with high susceptibility to bacterial respiratory tract infections. Our data show that the time-of-day difference in the control of Streptococcus pneumoniae infection is altered in elderly mice. A lung circadian transcriptome analysis revealed that aging alters the daily oscillations in the expression of a specific set of genes and that some pathways that are rhythmic in young-adult mice are non-rhythmic or time shifted in elderly mice. In particular, the circadian expression of the clock component Rev-erb-α and apelin/apelin receptor was altered in elderly mice. In young-adult mice, we discovered an interaction between Rev-erb-α and the apelinergic axis that controls host defenses against S. pneumoniae via alveolar macrophages. Pharmacological repression of Rev-erb-α in elderly mice resulted in greater resistance to pneumococcal infection. These data suggest the causative role of age-associated impairments in circadian rhythms on respiratory infections and have clinical relevance.
Collapse
Affiliation(s)
- Fabiola Silva Angulo
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Claudine Vanessa Joseph
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Lou Delval
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Lucie Deruyter
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Séverine Heumel
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Marie Bicharel
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, 59000 Lille, France
| | - Patricia Brito Rodrigues
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Valentin Sencio
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Tom Bourguignon
- University Paris Saclay, CNRS, UMR 8214 - Institute of Molecular Sciences, 91400 Orsay, France
| | - Marina Gomes Machado
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Marie Fourcot
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, 59000 Lille, France
| | - Stéphane Delhaye
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, 59000 Lille, France
| | - Sophie Salomé-Desnoulez
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, 59000 Lille, France
| | - Philippe Valet
- University Paul Sabatier, University Toulouse, INSERM, CNRS, U1301 - UMR 5070 - Institut RESTORE, 31000 Toulouse, France
| | - Serge Adnot
- University Paris-Est Créteil, INSERM, U955, Institut Mondor de Recherche Biomédicale, 94010 Créteil, France
| | - Isabelle Wolowczuk
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Jean-Claude Sirard
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Muriel Pichavant
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Bart Staels
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, 59000 Lille, France
| | - Joel T Haas
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, 59000 Lille, France
| | - Ruxandra Gref
- University Paris Saclay, CNRS, UMR 8214 - Institute of Molecular Sciences, 91400 Orsay, France
| | - Jimmy Vandel
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, 59000 Lille, France
| | - Arnaud Machelart
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Hélène Duez
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, 59000 Lille, France.
| | - Benoit Pourcet
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, 59000 Lille, France.
| | - François Trottein
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France.
| |
Collapse
|
2
|
Manji A, Wang L, Pape CM, McCaig LA, Troitskaya A, Batnyam O, McDonald LJ, Appleton CT, Veldhuizen RA, Gill SE. Effect of aging on pulmonary cellular responses during mechanical ventilation. JCI Insight 2025; 10:e185834. [PMID: 39946196 PMCID: PMC11949020 DOI: 10.1172/jci.insight.185834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/28/2025] [Indexed: 03/25/2025] Open
Abstract
Acute respiratory distress syndrome (ARDS) results in substantial morbidity and mortality, especially in elderly people. Mechanical ventilation, a common supportive treatment for ARDS, is necessary for maintaining gas exchange but can also propagate injury. We hypothesized that aging leads to alterations in surfactant function, inflammatory signaling, and microvascular permeability within the lung during mechanical ventilation. Young and aged male mice were mechanically ventilated, and surfactant function, inflammation, and vascular permeability were assessed. Additionally, single-cell RNA-Seq was used to delineate cell-specific transcriptional changes. The results showed that, in aged mice, surfactant dysfunction and vascular permeability were significantly augmented, while inflammation was less pronounced. Differential gene expression and pathway analyses revealed that alveolar macrophages in aged mice showed a blunted inflammatory response, while aged endothelial cells exhibited altered cell-cell junction formation. In vitro functional analysis revealed that aged endothelial cells had an impaired ability to form a barrier. These results highlight the complex interplay between aging and mechanical ventilation, including an age-related predisposition to endothelial barrier dysfunction, due to altered cell-cell junction formation, and decreased inflammation, potentially due to immune exhaustion. It is concluded that age-related vascular changes may underlie the increased susceptibility to injury during mechanical ventilation in elderly patients.
Collapse
Affiliation(s)
- Aminmohamed Manji
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology
| | - Lefeng Wang
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Medicine, and
| | - Cynthia M. Pape
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Medicine, and
| | - Lynda A. McCaig
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Medicine, and
| | - Alexandra Troitskaya
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology
| | - Onon Batnyam
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
| | - Leah J.J. McDonald
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | - Ruud A.W. Veldhuizen
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology
- Department of Medicine, and
| | - Sean E. Gill
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology
- Department of Medicine, and
| |
Collapse
|
3
|
García-Alvarez F, Chueca-Marco Á, Martínez-Lostao L, Aso-Gonzalvo M, Estella-Nonay R, Albareda J. Serum levels of IL-6 and IL-10 on admission correlate with complications in elderly patients with hip fracture. Injury 2024; 55 Suppl 5:111736. [PMID: 39068064 DOI: 10.1016/j.injury.2024.111736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/02/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVES Ageing may cause a progressive pro-inflammatory environment and alter functionality of different immune-cell populations. The aim of the present study is to examine the influence of certain serum immunological parameters on hospitalization stay and complications in patients who have suffered a hip fracture. PATIENTS AND METHODS A prospective study was carried out with 87 patients (63 women) presenting with either trochanteric femoral fracture or Garden IV displaced subcapital fracture. The average age was 84.43 ± 9, ranging from 65 to 104 years old. Data regarding different comorbidities were recorded at the time of arrival. The morning after patient's admission peripheral blood samples were obtained and a series of immunological parameters were determined: leukocyte formula, platelets count, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), IL-6 and IL-10 levels, T-lymphocytes count, number of cells/mm3 and percentages of CD3, CD4, CD8, CD3-/CD16/56+ (NK cells), and CD3-/CD19+ (B cells). RESULTS IL-6 serum levels presented a positive and significant correlation with higher levels of CRP (p < 0.001), IL-10 (p = 0.002), and higher percentages of NK CD56+ cells (p = 0.046). IL-6 serum levels at hospitalization presented a positive and significant correlation with a longer hospitalization stay (p = 0.037). Hospitalization increased by 0.231 days for every 1 pg/mL above the IL-6 mean value (40.43 pg/mL). Lower serum IL-10 levels on admission were associated with the appearance of symptomatic urinary tract infection during hospitalization (p = 0.032). Higher number of CD19+ cells/mm3 presented a significant relationship with pneumonia (p = 0.018) and symptomatic urinary tract infection (p = 0.0019). CONCLUSIONS IL-6 serum levels on admission showed a positive and significant correlation with a longer hospitalization stay in elderly patients presenting with hip fracture. Lower levels of IL-10 in peripheral blood on admission were associated with symptomatic urinary tract infections. A higher number of CD19+ cells/mm³ was significantly associated with pneumonia and symptomatic urinary tract infection. These immunological variables on admission may serve as risk indicators of complications during hospitalization.
Collapse
Affiliation(s)
- Felícito García-Alvarez
- Department of Orthopedic Surgery and Traumatology, Hospital Clínico "Lozano Blesa", Zaragoza, Spain; University of Zaragoza, Zaragoza, Spain.
| | - Álvaro Chueca-Marco
- Department of Orthopedic Surgery and Traumatology, Hospital Clínico "Lozano Blesa", Zaragoza, Spain
| | - Luis Martínez-Lostao
- University of Zaragoza, Zaragoza, Spain; Department of Immunology, Hospital Clínico "Lozano Blesa", Zaragoza, Spain
| | | | - Ruben Estella-Nonay
- Department of Orthopedic Surgery and Traumatology, Hospital Clínico "Lozano Blesa", Zaragoza, Spain
| | - Jorge Albareda
- Department of Orthopedic Surgery and Traumatology, Hospital Clínico "Lozano Blesa", Zaragoza, Spain; University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
4
|
Monteiro R, Kumar Sivasubramanian M, Harrison KS, Plakkot B, Sadeghi H, Subramanian M, Jones C. Examination of neuro-inflammation and senescence in brainstem of aged mice latently infected with human alphaherpesvirus 1 (HSV-1). Virus Res 2024; 347:199420. [PMID: 38880336 PMCID: PMC11252931 DOI: 10.1016/j.virusres.2024.199420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Human alphaherpesvirus 1 (HSV-1) establishes life-long latency in sensory neurons in trigeminal ganglia (TG), brainstem neurons, and other CNS neurons. Two important segments of the brainstem were examined in this study: principal sensory nucleus of the spinal trigeminal tract (Pr5) because it receives direct afferent inputs from TG, and locus coeruleus (LC) because it is indirectly connected to Pr5 and LC sends axonal projections to cortical structures, which may facilitate viral spread from brainstem to the brain. The only viral gene abundantly expressed during latency is the latency associated transcript (LAT). Previous studies revealed 8-week old female C57Bl/6 mice infected with a LAT null mutant (dLAT2903) versus wild-type (wt) HSV-1 exhibit higher levels of senescence markers and inflammation in LC of females. New studies revealed 1-year old mice latently infected with wt HSV-1 or dLAT2903 contained differences in neuroinflammation and senescence in Pr5 and LC versus young mice. In summary, these studies confirm HSV-1 promotes neuro-inflammation in the brainstem, which may accelerate neurodegenerative disease.
Collapse
Affiliation(s)
- Raisa Monteiro
- Department of Physiological Sciences, Oklahoma State University, College of Veterinary Medicine, Stillwater, OK 74078, USA
| | - Mahesh Kumar Sivasubramanian
- Department of Physiological Sciences, Oklahoma State University, College of Veterinary Medicine, Stillwater, OK 74078, USA
| | - Kelly S Harrison
- Department of Veterinary Pathobiology, Oklahoma State University, College of Veterinary Medicine, Stillwater, OK 74078, USA
| | - Bhuvana Plakkot
- Department of Physiological Sciences, Oklahoma State University, College of Veterinary Medicine, Stillwater, OK 74078, USA
| | - Hafez Sadeghi
- Department of Veterinary Pathobiology, Oklahoma State University, College of Veterinary Medicine, Stillwater, OK 74078, USA
| | - Madhan Subramanian
- Department of Physiological Sciences, Oklahoma State University, College of Veterinary Medicine, Stillwater, OK 74078, USA.
| | - Clinton Jones
- Department of Veterinary Pathobiology, Oklahoma State University, College of Veterinary Medicine, Stillwater, OK 74078, USA.
| |
Collapse
|
5
|
Sommer C, Reamon-Buettner SM, Niehof M, Hildebrand CB, Braun A, Sewald K, Dehmel S, Brandenberger C. Age-dependent inflammatory response is altered in an ex vivo model of bacterial pneumonia. Respir Res 2024; 25:15. [PMID: 38178102 PMCID: PMC10765774 DOI: 10.1186/s12931-023-02609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Aging is associated with an increased incidence and mortality of Pseudomonas aeruginosa-induced pneumonias. This might be partly due to age-dependent increases in inflammatory mediators, referred to as inflamm-aging and a decline in immune functions, known as immunosenescence. Still, the impact of dysregulated immune responses on lung infection during aging is poorly understood. Here, we aimed to mimic inflamm-aging using ex vivo precision-cut lung slices (PCLS) and neutrophils - as important effector cells of innate immunity - from young and old mice and investigated the influence of aging on inflammation upon infection with P. aeruginosa bacteria. METHODS Murine PCLS were infected with the P. aeruginosa standard lab strain PAO1 and a clinical P. aeruginosa isolate D61. After infection, whole-transcriptome analysis of the tissue as well as cytokine expression in supernatants and tissue lysates were performed. Responses of isolated neutrophils towards the bacteria were investigated by quantifying neutrophil extracellular trap (NET) formation, cytokine secretion, and analyzing expression of surface activation markers using flow cytometry. RESULTS Inflamm-aging was observed by transcriptome analysis, showing an enrichment of biological processes related to inflammation, innate immune response, and chemotaxis in uninfected PCLS of old compared with young mice. Upon P. aeruginosa infection, the age-dependent pro-inflammatory response was even further promoted as shown by increased production of cytokines and chemokines such as IL-1β, IL-6, CXCL1, TNF-α, and IL-17A. In neutrophil cultures, aging did not influence NET formation or cytokine secretion during P. aeruginosa infection. However, expression of receptors associated with inflammatory responses such as complement, adhesion, phagocytosis, and degranulation was lower in neutrophils stimulated with bacteria from old mice as compared to young animals. CONCLUSIONS By using PCLS and neutrophils from young and old mice as immunocompetent ex vivo test systems, we could mimic dysregulated immune responses upon aging on levels of gene expression, cytokine production, and receptor expression. The results furthermore reflect the exacerbation of inflammation upon P. aeruginosa lung infection as a result of inflamm-aging in old age.
Collapse
Affiliation(s)
- Charline Sommer
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Fraunhofer CIMD, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) research network, Hannover, Germany
| | - Stella Marie Reamon-Buettner
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Fraunhofer CIMD, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) research network, Hannover, Germany
| | - Monika Niehof
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Fraunhofer CIMD, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) research network, Hannover, Germany
| | - Christina Beatrix Hildebrand
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) research network, Hannover, Germany
- Institute for Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Institute of Functional Anatomy, Charité - Universitätsmedizin Berlin, Philippstr. 11, Berlin, 10117, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Fraunhofer CIMD, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) research network, Hannover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Fraunhofer CIMD, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) research network, Hannover, Germany
| | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.
- Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Fraunhofer CIMD, Hannover, Germany.
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) research network, Hannover, Germany.
| | - Christina Brandenberger
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) research network, Hannover, Germany.
- Institute for Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
- Institute of Functional Anatomy, Charité - Universitätsmedizin Berlin, Philippstr. 11, Berlin, 10117, Germany.
| |
Collapse
|
6
|
Miao C, Cui Y, Li Y, Qi Q, Shang W, Chen H, Gao Y, Yuan R, Long Q, Wu W, Wang X, Yan Z, Jiang Y. Immunoinformatics Prediction and Protective Efficacy of Vaccine Candidate PiuA-PlyD4 Against Streptococcus Pneumoniae. Drug Des Devel Ther 2023; 17:3783-3801. [PMID: 38146490 PMCID: PMC10749580 DOI: 10.2147/dddt.s441302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023] Open
Abstract
Purpose This study was designed to evaluate the immune protective efficacy of the novel Streptococcus pneumoniae (S. pneumoniae) protein vaccine PiuA-PlyD4 through immunoinformatics prediction and in vitro and in vivo experiments. Methods In this study, we conducted immunoinformatics prediction and protection analysis on the fusion protein PiuA-PlyD4. The epitope composition of the vaccine was analyzed based on the prediction of B-cell and helper T-cell epitopes. Meanwhile, the molecular docking of PiuA and TLR2/4 was simulated. After immunizing C57BL/6 mice with the prepared vaccine, the biological safety, immunogenicity and conservation were evaluated. By constructing different infection models and from the aspects of adhesion inhibition and cytokines, the protective effect of the fusion protein vaccine PiuA-PlyD4 on S. pneumoniae infection was explored. Results PiuA-PlyD4 has abundant B-cell and helper T-cell epitopes and shows a high antigenicity score and structural stability. Molecular docking analysis suggested the potential interaction between PiuA and TLR2/4. The specific antibody titer of fusion protein antiserum was as high as (7.81±2.32) ×105. The protective effect of the immunized mice on nasal and lung colonization was significantly better than that of the control group, and the survival rate against S. pneumoniae infection of serotype 3 reached 50%. Cytokine detection showed that the humoral immune response, Th1, Th2 and Th17 cellular immune pathways were all involved in the process. Conclusion The study indicates that PiuA-PlyD4, whether the results are predicted by immunoinformatics or experimentally validated in vivo and in vitro, has good immunogenicity and immunoreactivity and can provide effective protection against S. pneumoniae infection. Therefore, it can be considered a promising prophylactic vaccine candidate for S. pneumoniae.
Collapse
Affiliation(s)
- Chenglin Miao
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Yali Cui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, Sichuan Province, People’s Republic of China
- Department of Laboratory Medicine, West China Second University Hospital (Tianfu), Sichuan University/Sichuan Provincial Children’s Hospital, Meishan, Sichuan Province, People’s Republic of China
| | - Yingying Li
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Qianqian Qi
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Wenling Shang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Huilian Chen
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, Sichuan Province, People’s Republic of China
- Department of Laboratory Medicine, West China Second University Hospital (Tianfu), Sichuan University/Sichuan Provincial Children’s Hospital, Meishan, Sichuan Province, People’s Republic of China
| | - Yujie Gao
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, Sichuan Province, People’s Republic of China
- Department of Laboratory Medicine, West China Second University Hospital (Tianfu), Sichuan University/Sichuan Provincial Children’s Hospital, Meishan, Sichuan Province, People’s Republic of China
| | - Ruomei Yuan
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, Sichuan Province, People’s Republic of China
- Department of Laboratory Medicine, West China Second University Hospital (Tianfu), Sichuan University/Sichuan Provincial Children’s Hospital, Meishan, Sichuan Province, People’s Republic of China
| | - Qichen Long
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Wenjing Wu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Xia Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Ziyi Yan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
7
|
Elean M, Raya Tonetti F, Fukuyama K, Arellano-Arriagada L, Namai F, Suda Y, Gobbato N, Nishiyama K, Villena J, Kitazawa H. Immunobiotic Ligilactobacillus salivarius FFIG58 Confers Long-Term Protection against Streptococcus pneumoniae. Int J Mol Sci 2023; 24:15773. [PMID: 37958756 PMCID: PMC10648150 DOI: 10.3390/ijms242115773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Previously, we isolated potentially probiotic Ligilactobacillus salivarius strains from the intestines of wakame-fed pigs. The strains were characterized based on their ability to modulate the innate immune responses triggered by the activation of Toll-like receptor (TLR)-3 or TLR4 signaling pathways in intestinal mucosa. In this work, we aimed to evaluate whether nasally administered L. salivarius strains are capable of modulating the innate immune response in the respiratory tract and conferring long-term protection against the respiratory pathogen Streptococcus pneumoniae. Infant mice (3-weeks-old) were nasally primed with L. salivarius strains and then stimulated with the TLR3 agonist poly(I:C). Five or thirty days after the last poly(I:C) administration mice were infected with pneumococci. Among the strains evaluated, L. salivarius FFIG58 had a remarkable ability to enhance the protection against the secondary pneumococcal infection by modulating the respiratory immune response. L. salivarius FFIG58 improved the ability of alveolar macrophages to produce interleukin (IL)-6, interferon (IFN)-γ, IFN-β, tumor necrosis factor (TNF)-α, IL-27, chemokine C-C motif ligand 2 (CCL2), chemokine C-X-C motif ligand 2 (CXCL2), and CXCL10 in response to pneumococcal challenge. Furthermore, results showed that the nasal priming of infant mice with the FFIG58 strain protected the animals against secondary infection until 30 days after stimulation with poly(I:C), raising the possibility of using nasally administered immunobiotics to stimulate trained immunity in the respiratory tract.
Collapse
Affiliation(s)
- Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (M.E.); (F.R.T.); (L.A.-A.)
| | - Fernanda Raya Tonetti
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (M.E.); (F.R.T.); (L.A.-A.)
| | - Kohtaro Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Luciano Arellano-Arriagada
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (M.E.); (F.R.T.); (L.A.-A.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (F.N.); (K.N.)
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai 980-8572, Japan;
| | - Nadia Gobbato
- Laboratory of Immunology, Microbiology Institute, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Tucuman 4000, Argentina;
| | - Keita Nishiyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (M.E.); (F.R.T.); (L.A.-A.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (F.N.); (K.N.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| |
Collapse
|
8
|
Mouse Models for Mycobacterium tuberculosis Pathogenesis: Show and Do Not Tell. Pathogens 2022; 12:pathogens12010049. [PMID: 36678397 PMCID: PMC9865329 DOI: 10.3390/pathogens12010049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
Science has been taking profit from animal models since the first translational experiments back in ancient Greece. From there, and across all history, several remarkable findings have been obtained using animal models. One of the most popular models, especially for research in infectious diseases, is the mouse. Regarding research in tuberculosis, the mouse has provided useful information about host and bacterial traits related to susceptibility to the infection. The effect of aging, sexual dimorphisms, the route of infection, genetic differences between mice lineages and unbalanced immunity scenarios upon Mycobacterium tuberculosis infection and tuberculosis development has helped, helps and will help biomedical researchers in the design of new tools for diagnosis, treatment and prevention of tuberculosis, despite various discrepancies and the lack of deep study in some areas of these traits.
Collapse
|
9
|
Hollwedel FD, Maus R, Stolper J, Jonigk D, Hildebrand CB, Welte T, Brandenberger C, Maus UA. Neutrophilic Pleuritis Is a Severe Complication of Klebsiella pneumoniae Pneumonia in Old Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2172-2180. [PMID: 36426980 DOI: 10.4049/jimmunol.2200413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
The pathomechanisms underlying the frequently observed fatal outcome of Klebsiella pneumoniae pneumonia in elderly patients are understudied. In this study, we examined the early antibacterial immune response in young mice (age 2-3 mo) as compared with old mice (age 18-19 mo) postinfection with K. pneumoniae. Old mice exhibited significantly higher bacterial loads in lungs and bacteremia as early as 24 h postinfection compared with young mice, with neutrophilic pleuritis nearly exclusively developing in old but not young mice. Moreover, we observed heavily increased cytokine responses in lungs and pleural spaces along with increased mortality in old mice. Mechanistically, Nlrp3 inflammasome activation and caspase-1-dependent IL-1β secretion contributed to the observed hyperinflammation, which decreased upon caspase-1 inhibitor treatment of K. pneumoniae-infected old mice. Irradiated old mice transplanted with the bone marrow of young mice did not show hyperinflammation or early bacteremia in response to K. pneumoniae. Collectively, the accentuated lung pathology observed in K. pneumoniae-infected old mice appears to be due to regulatory defects of the bone marrow but not the lung, while involving dysregulated activation of the Nlrp3/caspase-1/IL-1β axis.
Collapse
Affiliation(s)
- Femke D Hollwedel
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Regina Maus
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Jennifer Stolper
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, Partner Site Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Hannover, Germany
| | | | - Tobias Welte
- German Center for Lung Research, Partner Site Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Hannover, Germany.,Clinic for Pneumology, Hannover Medical School, Hannover, Germany; and
| | - Christina Brandenberger
- German Center for Lung Research, Partner Site Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Hannover, Germany.,Institute of Functional Anatomy, Charité University Medicine, Berlin, Germany
| | - Ulrich A Maus
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, Partner Site Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Hannover, Germany
| |
Collapse
|
10
|
Inhaled particulate accumulation with age impairs immune function and architecture in human lung lymph nodes. Nat Med 2022; 28:2622-2632. [PMID: 36411343 PMCID: PMC9835154 DOI: 10.1038/s41591-022-02073-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
Abstract
Older people are particularly susceptible to infectious and neoplastic diseases of the lung and it is unclear how lifelong exposure to environmental pollutants affects respiratory immune function. In an analysis of human lymph nodes (LNs) from 84 organ donors aged 11-93 years, we found a specific age-related decline in lung-associated, but not gut-associated, LN immune function linked to the accumulation of inhaled atmospheric particulate matter. Increasing densities of particulates were found in lung-associated LNs with age, but not in the corresponding gut-associated LNs. Particulates were specifically contained within CD68+CD169- macrophages, which exhibited decreased activation, phagocytic capacity, and altered cytokine production compared with non-particulate-containing macrophages. The structures of B cell follicles and lymphatic drainage were also disrupted in lung-associated LNs with particulates. Our results reveal that the cumulative effects of environmental exposure and age may compromise immune surveillance of the lung via direct effects on immune cell function and lymphoid architecture.
Collapse
|
11
|
Alveolar macrophage metabolic programming via a C-type lectin receptor protects against lipo-toxicity and cell death. Nat Commun 2022; 13:7272. [PMID: 36433992 PMCID: PMC9700784 DOI: 10.1038/s41467-022-34935-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/12/2022] [Indexed: 11/27/2022] Open
Abstract
Alveolar macrophages (AM) hold lung homeostasis intact. In addition to the defense against inhaled pathogens and deleterious inflammation, AM also maintain pulmonary surfactant homeostasis, a vital lung function that prevents pulmonary alveolar proteinosis. Signals transmitted between AM and pneumocytes of the pulmonary niche coordinate these specialized functions. However, the mechanisms that guide the metabolic homeostasis of AM remain largely elusive. We show that the NK cell-associated receptor, NKR-P1B, is expressed by AM and is essential for metabolic programming. Nkrp1b-/- mice are vulnerable to pneumococcal infection due to an age-dependent collapse in the number of AM and the formation of lipid-laden AM. The AM of Nkrp1b-/- mice show increased uptake but defective metabolism of surfactant lipids. We identify a physical relay between AM and alveolar type-II pneumocytes that is dependent on pneumocyte Clr-g expression. These findings implicate the NKR-P1B:Clr-g signaling axis in AM-pneumocyte communication as being important for maintaining metabolism in AM.
Collapse
|
12
|
Marrella V, Facoetti A, Cassani B. Cellular Senescence in Immunity against Infections. Int J Mol Sci 2022; 23:11845. [PMID: 36233146 PMCID: PMC9570409 DOI: 10.3390/ijms231911845] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is characterized by irreversible cell cycle arrest in response to different triggers and an inflammatory secretome. Although originally described in fibroblasts and cell types of solid organs, cellular senescence affects most tissues with advancing age, including the lymphoid tissue, causing chronic inflammation and dysregulation of both innate and adaptive immune functions. Besides its normal occurrence, persistent microbial challenge or pathogenic microorganisms might also accelerate the activation of cellular aging, inducing the premature senescence of immune cells. Therapeutic strategies counteracting the detrimental effects of cellular senescence are being developed. Their application to target immune cells might have the potential to improve immune dysfunctions during aging and reduce the age-dependent susceptibility to infections. In this review, we discuss how immune senescence influences the host's ability to resolve more common infections in the elderly and detail the different markers proposed to identify such senescent cells; the mechanisms by which infectious agents increase the extent of immune senescence are also reviewed. Finally, available senescence therapeutics are discussed in the context of their effects on immunity and against infections.
Collapse
Affiliation(s)
- Veronica Marrella
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Amanda Facoetti
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Barbara Cassani
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, Università Degli Studi di Milano, 20089 Milan, Italy
| |
Collapse
|
13
|
Loureiro Salgado C, Mendéz Corea AF, Covre LP, De Matos Guedes HL, Falqueto A, Gomes DCO. Ageing impairs protective immunity and promotes susceptibility to murine visceral leishmaniasis. Parasitology 2022; 149:1249-1256. [PMID: 35670372 PMCID: PMC11010576 DOI: 10.1017/s0031182022000828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/14/2022] [Accepted: 05/30/2022] [Indexed: 11/06/2022]
Abstract
It is well accepted that the impact of diseases is generally more detrimental in elderly individuals than in younger ones. Changes in the immune system due to ageing can directly affect the ability to respond effectively to infections and may contribute to the higher morbidities and mortalities in the elderly population. Leishmaniasis is a complex of clinically unique diseases caused by obligate intracellular protozoa belonging to genus Leishmania, wherein visceral leishmaniasis (VL) is the most severe form and is fatal if left untreated. In this study, aged mice (72 weeks old) presented increased susceptibility to L. infantum infection compared to younger mice (4–6-week-old), with notable parasitism in both the spleen and liver, as well as exhibiting hepatosplenomegaly. A pronounced inflammatory profile was observed in the aged-infected mice, with excessive production of TNF-α and nitrite, along with diminished IFN-γ production and reduced proliferative capacity of T cells (assessed by expression of the Ki67 marker). Additionally, both CD4+ and CD8+ T cells from the aged-infected mice presented increased expression of the inhibitory receptors PD-1 and KLRG1 that strongly correlated with the parasitism found in the liver and spleen of this group. Overall, the data reported in this study suggests for the first time that ageing may negatively impact the VL outcome and provides a perspective for new therapeutic strategies involving manipulation of immunosenescence features against Leishmania infection.
Collapse
Affiliation(s)
- Caio Loureiro Salgado
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | | | | | - Herbet Leonel De Matos Guedes
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aloisio Falqueto
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | - Daniel Cláudio Oliviera Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitoria, Brazil
| |
Collapse
|
14
|
Kennedy II DE, Mody P, Gout JF, Tan W, Seo KS, Olivier AK, Rosch JW, Thornton JA. Contribution of Puma to Inflammatory Resolution During Early Pneumococcal Pneumonia. Front Cell Infect Microbiol 2022; 12:886901. [PMID: 35694536 PMCID: PMC9177954 DOI: 10.3389/fcimb.2022.886901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Apoptosis of cells at the site of infection is a requirement for shutdown of inflammatory signaling, avoiding tissue damage, and preventing progression of sepsis. Puma+/+ and Puma-/- mice were challenged with TIGR4 strain pneumococcus and cytokines were quantitated from lungs and blood using a magnetic bead panel analysis. Puma-/- mice exhibited higher lung and blood cytokine levels of several major inflammatory cytokines, including IL-6, G-CSF, RANTES, IL-12, IFN-ϒ, and IP-10. Puma-/- mice were more susceptible to bacterial dissemination and exhibited more weight loss than their wild-type counterparts. RNA sequencing analysis of whole pulmonary tissue revealed Puma-dependent regulation of Nrxn2, Adam19, and Eln. Enrichment of gene ontology groups differentially expressed in Puma-/- tissues were strongly correlated to IFN-β and -ϒ signaling. Here, we demonstrate for the first time the role of Puma in prohibition of the cytokine storm during bacterial pneumonia. These findings further suggest a role for targeting immunomodulation of IFN signaling during pulmonary inflammation. Additionally, our findings suggest previously undemonstrated roles for genes encoding regulatory and binding proteins during the early phase of the innate immune response of pneumococcal pneumonia.
Collapse
Affiliation(s)
- Daniel E. Kennedy II
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Perceus Mody
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Jean-Francois Gout
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Wei Tan
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Keun Seok Seo
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Alicia K. Olivier
- Department of Population and Pathobiology, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Jason W. Rosch
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Justin A. Thornton
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
- *Correspondence: Justin A. Thornton,
| |
Collapse
|
15
|
Palmer CS, Kimmey JM. Neutrophil Recruitment in Pneumococcal Pneumonia. Front Cell Infect Microbiol 2022; 12:894644. [PMID: 35646729 PMCID: PMC9136017 DOI: 10.3389/fcimb.2022.894644] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/18/2022] [Indexed: 01/19/2023] Open
Abstract
Streptococcus pneumoniae (Spn) is the primary agent of community-acquired pneumonia. Neutrophils are innate immune cells that are essential for bacterial clearance during pneumococcal pneumonia but can also do harm to host tissue. Neutrophil migration in pneumococcal pneumonia is therefore a major determinant of host disease outcomes. During Spn infection, detection of the bacterium leads to an increase in proinflammatory signals and subsequent expression of integrins and ligands on both the neutrophil as well as endothelial and epithelial cells. These integrins and ligands mediate the tethering and migration of the neutrophil from the bloodstream to the site of infection. A gradient of host-derived and bacterial-derived chemoattractants contribute to targeted movement of neutrophils. During pneumococcal pneumonia, neutrophils are rapidly recruited to the pulmonary space, but studies show that some of the canonical neutrophil migratory machinery is dispensable. Investigation of neutrophil migration is necessary for us to understand the dynamics of pneumococcal infection. Here, we summarize what is known about the pathways that lead to migration of the neutrophil from the capillaries to the lung during pneumococcal infection.
Collapse
Affiliation(s)
| | - Jacqueline M. Kimmey
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
16
|
Stijlemans B, Schoovaerts M, De Baetselier P, Magez S, De Trez C. The Role of MIF and IL-10 as Molecular Yin-Yang in the Modulation of the Host Immune Microenvironment During Infections: African Trypanosome Infections as a Paradigm. Front Immunol 2022; 13:865395. [PMID: 35464430 PMCID: PMC9022210 DOI: 10.3389/fimmu.2022.865395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
African trypanosomes are extracellular flagellated unicellular protozoan parasites transmitted by tsetse flies and causing Sleeping Sickness disease in humans and Nagana disease in cattle and other livestock. These diseases are usually characterized by the development of a fatal chronic inflammatory disease if left untreated. During African trypanosome infection and many other infectious diseases, the immune response is mediating a see-saw balance between effective/protective immunity and excessive infection-induced inflammation that can cause collateral tissue damage. African trypanosomes are known to trigger a strong type I pro-inflammatory response, which contributes to peak parasitaemia control, but this can culminate into the development of immunopathologies, such as anaemia and liver injury, if not tightly controlled. In this context, the macrophage migration inhibitory factor (MIF) and the interleukin-10 (IL-10) cytokines may operate as a molecular “Yin-Yang” in the modulation of the host immune microenvironment during African trypanosome infection, and possibly other infectious diseases. MIF is a pleiotropic pro-inflammatory cytokine and critical upstream mediator of immune and inflammatory responses, associated with exaggerated inflammation and immunopathology. For example, it plays a crucial role in the pro-inflammatory response against African trypanosomes and other pathogens, thereby promoting the development of immunopathologies. On the other hand, IL-10 is an anti-inflammatory cytokine, acting as a master regulator of inflammation during both African trypanosomiasis and other diseases. IL-10 is crucial to counteract the strong MIF-induced pro-inflammatory response, leading to pathology control. Hence, novel strategies capable of blocking MIF and/or promoting IL-10 receptor signaling pathways, could potentially be used as therapy to counteract immunopathology development during African trypanosome infection, as well as during other infectious conditions. Together, this review aims at summarizing the current knowledge on the opposite immunopathological molecular “Yin-Yang” switch roles of MIF and IL-10 in the modulation of the host immune microenvironment during infection, and more particularly during African trypanosomiasis as a paradigm.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie (VIB) Centre for Inflammation Research, Brussels, Belgium
| | - Maxime Schoovaerts
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie (VIB) Centre for Inflammation Research, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory of Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
17
|
Sundaresh B, Xu S, Noonan B, Mansour MK, Leong JM, van Opijnen T. Host-informed therapies for the treatment of pneumococcal pneumonia. Trends Mol Med 2021; 27:971-989. [PMID: 34376327 DOI: 10.1016/j.molmed.2021.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022]
Abstract
Over the past two decades, traditional antimicrobial strategies have lost efficacy due to a rapid rise in antibiotic resistance and limited success in developing new antibiotics. Rather than relying on therapeutics solely targeting the bacterial pathogen, therapies are emerging that simultaneously focus on host responses. Here, we describe the most promising 'host-informed therapies' (HITs) in two categories: those that aid patients with fully functional immune systems, and those that aid patients with perturbed immune processes. Using Streptococcus pneumoniae, the leading cause of bacterial pneumonia, as a case study, we show HITs as an attractive option for supplementing infection management. However, to broaden their applicability and design new strategies, targeted research and clinical trials will be essential.
Collapse
Affiliation(s)
| | - Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA; Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA, USA
| | - Brian Noonan
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts Medical Center, Boston, MA, USA
| | - Michael K Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts Medical Center, Boston, MA, USA.
| | - Tim van Opijnen
- Department of Biology, Boston College, Chestnut Hill, MA, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
18
|
Weight CM, Jochems SP, Adler H, Ferreira DM, Brown JS, Heyderman RS. Insights Into the Effects of Mucosal Epithelial and Innate Immune Dysfunction in Older People on Host Interactions With Streptococcus pneumoniae. Front Cell Infect Microbiol 2021; 11:651474. [PMID: 34113578 PMCID: PMC8185287 DOI: 10.3389/fcimb.2021.651474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
In humans, nasopharyngeal carriage of Streptococcus pneumoniae is common and although primarily asymptomatic, is a pre-requisite for pneumonia and invasive pneumococcal disease (IPD). Together, these kill over 500,000 people over the age of 70 years worldwide every year. Pneumococcal conjugate vaccines have been largely successful in reducing IPD in young children and have had considerable indirect impact in protection of older people in industrialized country settings (herd immunity). However, serotype replacement continues to threaten vulnerable populations, particularly older people in whom direct vaccine efficacy is reduced. The early control of pneumococcal colonization at the mucosal surface is mediated through a complex array of epithelial and innate immune cell interactions. Older people often display a state of chronic inflammation, which is associated with an increased mortality risk and has been termed 'Inflammageing'. In this review, we discuss the contribution of an altered microbiome, the impact of inflammageing on human epithelial and innate immunity to S. pneumoniae, and how the resulting dysregulation may affect the outcome of pneumococcal infection in older individuals. We describe the impact of the pneumococcal vaccine and highlight potential research approaches which may improve our understanding of respiratory mucosal immunity during pneumococcal colonization in older individuals.
Collapse
Affiliation(s)
- Caroline M. Weight
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Simon P. Jochems
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Hugh Adler
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Tropical and Infectious Diseases Unit, Liverpool University Hospitals National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Daniela M. Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jeremy S. Brown
- Respiratory Medicine, University College London, London, United Kingdom
| | - Robert S. Heyderman
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
19
|
Froneman C, Kelleher P, José RJ. Pneumococcal Vaccination in Immunocompromised Hosts: An Update. Vaccines (Basel) 2021; 9:536. [PMID: 34063785 PMCID: PMC8223771 DOI: 10.3390/vaccines9060536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
Infections with the pathogen, Streptococcus pneumoniae, are a common cause of morbidity and mortality worldwide. It particularly affects those at the extremes of age and immunocompromised individuals. Preventing pneumococcal disease is paramount in at risk individuals, and pneumococcal vaccination should be offered. Here, we discuss the role of pneumococcal vaccination in specific groups of immunocompromised hosts.
Collapse
Affiliation(s)
- Claire Froneman
- Department of Respiratory Medicine, Royal Brompton Hospital, London SW3 6NP, UK; (C.F.); (P.K.)
| | - Peter Kelleher
- Department of Respiratory Medicine, Royal Brompton Hospital, London SW3 6NP, UK; (C.F.); (P.K.)
- Department of Infectious Disease, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Ricardo J. José
- Department of Respiratory Medicine, Royal Brompton Hospital, London SW3 6NP, UK; (C.F.); (P.K.)
- Centre for Inflammation and Tissue Repair, UCL, London WC1E 6BT, UK
| |
Collapse
|
20
|
Older but Not Wiser: the Age-Driven Changes in Neutrophil Responses during Pulmonary Infections. Infect Immun 2021; 89:IAI.00653-20. [PMID: 33495271 DOI: 10.1128/iai.00653-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Elderly individuals are at increased risk of life-threatening pulmonary infections. Neutrophils are a key determinant of the disease course of pathogen-induced pneumonia. Optimal host defense balances initial robust pulmonary neutrophil responses to control pathogen numbers, ultimately followed by the resolution of inflammation to prevent pulmonary damage. Recent evidence suggests that phenotypic and functional heterogeneity in neutrophils impacts host resistance to pulmonary pathogens. Apart from their apparent role in innate immunity, neutrophils also orchestrate subsequent adaptive immune responses during infection. Thus, the outcome of pulmonary infections can be shaped by neutrophils. This review summarizes the age-driven impairment of neutrophil responses and the contribution of these cells to the susceptibility of the elderly to pneumonia. We describe how aging is accompanied by changes in neutrophil recruitment, resolution, and function. We discuss how systemic and local changes alter the neutrophil phenotype in aged hosts. We highlight the gap in knowledge of whether these changes in neutrophils also contribute to the decline in adaptive immunity seen with age. We further detail the factors that drive dysregulated neutrophil responses in the elderly and the pathways that may be targeted to rebalance neutrophil activity and boost host resistance to pulmonary infections.
Collapse
|
21
|
Macrophage LC3-associated phagocytosis is an immune defense against Streptococcus pneumoniae that diminishes with host aging. Proc Natl Acad Sci U S A 2020; 117:33561-33569. [PMID: 33376222 PMCID: PMC7776987 DOI: 10.1073/pnas.2015368117] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae is a leading cause of pneumonia and invasive disease, particularly, in the elderly. S. pneumoniae lung infection of aged mice is associated with high bacterial burdens and detrimental inflammatory responses. Macrophages can clear microorganisms and modulate inflammation through two distinct lysosomal trafficking pathways that involve 1A/1B-light chain 3 (LC3)-marked organelles, canonical autophagy, and LC3-associated phagocytosis (LAP). The S. pneumoniae pore-forming toxin pneumolysin (PLY) triggers an autophagic response in nonphagocytic cells, but the role of LAP in macrophage defense against S. pneumoniae or in age-related susceptibility to infection is unexplored. We found that infection of murine bone-marrow-derived macrophages (BMDMs) by PLY-producing S. pneumoniae triggered Atg5- and Atg7-dependent recruitment of LC3 to S. pneumoniae-containing vesicles. The association of LC3 with S. pneumoniae-containing phagosomes required components specific for LAP, such as Rubicon and the NADPH oxidase, but not factors, such as Ulk1, FIP200, or Atg14, required specifically for canonical autophagy. In addition, S. pneumoniae was sequestered within single-membrane compartments indicative of LAP. Importantly, compared to BMDMs from young (2-mo-old) mice, BMDMs from aged (20- to 22-mo-old) mice infected with S. pneumoniae were not only deficient in LAP and bacterial killing, but also produced higher levels of proinflammatory cytokines. Inhibition of LAP enhanced S. pneumoniae survival and cytokine responses in BMDMs from young but not aged mice. Thus, LAP is an important innate immune defense employed by BMDMs to control S. pneumoniae infection and concomitant inflammation, one that diminishes with age and may contribute to age-related susceptibility to this important pathogen.
Collapse
|
22
|
Wyatt TA, Nemecek M, Chandra D, DeVasure JM, Nelson AJ, Romberger DJ, Poole JA. Organic dust-induced lung injury and repair: Bi-directional regulation by TNFα and IL-10. J Immunotoxicol 2020; 17:153-162. [PMID: 32634062 PMCID: PMC11238278 DOI: 10.1080/1547691x.2020.1776428] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Exposure to organic dust increases chronic airway inflammatory disorders. Effective treatment strategies are lacking. It has been reported that hog barn dust extracts (HDE) induce TNFα through protein kinase C (PKC) activation and that lung inflammation is enhanced in scavenger receptor A (SRA/CD204) knockout (KO) mice following HDE. Because interleukin (IL)-10 production can limit excessive inflammation, it was hypothesized here that HDE-induced IL-10 would require CD204 to effect inflammatory responses. C57BL/6 wild-type (WT), SRA KO, and IL-10 KO mice were intranasally challenged daily for 8 days with HDE and subsequently rested for 3 days with/without recombinant IL-10 (rIL-10) treatment. Primary peritoneal macrophages (PM) and murine alveolar macrophages (MH-S cells) were treated in vitro with HDE, SRA ligand (fucoidan), rIL-10, and/or PKC isoform inhibitors. HDE induced in vivo lung IL-10 in WT, but not SRA KO mice, and similar trends were demonstrated in isolated PM from same treated mice. Lung lymphocyte aggregates and neutrophils were elevated in in vivo HDE-treated SRA and IL-10 KO mice after a 3-d recovery, and treatment during recovery with rIL-10 abrogated these responses. In vitro rIL-10 treatment reduced HDE-stimulated TNFα release in MH-S and WT PM. In SRA KO macrophages, there was reduced IL-10 and PKC zeta (ζ) activity and increased TNFα following in vitro HDE stimulation. Similarly, blocking SRA (24 hr fucoidan pre-treatment) resulted in enhanced HDE-stimulated macrophage TNFα and decreased IL-10 and PKCζ activation. PKCζ inhibitors blocked HDE-stimulated IL-10, but not TNFα. Collectively, HDE stimulates IL-10 by an SRA- and PKCζ-dependent mechanism to regulate TNFα. Enhancing resolution of dust-mediated lung inflammation through targeting IL-10 and/or SRA may represent new approaches to therapeutic interventions.
Collapse
Affiliation(s)
- T A Wyatt
- Pulmonary, Critical Care, and Sleep, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - M Nemecek
- Pulmonary, Critical Care, and Sleep, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - D Chandra
- Pulmonary, Critical Care, and Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - J M DeVasure
- Pulmonary, Critical Care, and Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - A J Nelson
- Allergy and Immunology Divisions, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - D J Romberger
- Pulmonary, Critical Care, and Sleep, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - J A Poole
- Allergy and Immunology Divisions, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
23
|
Impact of Key Nicotinic AChR Subunits on Post-Stroke Pneumococcal Pneumonia. Vaccines (Basel) 2020; 8:vaccines8020253. [PMID: 32481512 PMCID: PMC7349987 DOI: 10.3390/vaccines8020253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Pneumonia is the most frequent severe medical complication after stroke. An overactivation of the cholinergic signaling after stroke contributes to immunosuppression and the development of spontaneous pneumonia caused by Gram-negative pathogens. The α7 nicotinic acetylcholine receptor (α7nAChR) has already been identified as an important mediator of the anti-inflammatory pathway after stroke. However, whether the α2, α5 and α9/10 nAChR expressed in the lung also play a role in suppression of pulmonary innate immunity after stroke is unknown. In the present study, we investigate the impact of various nAChRs on aspiration-induced pneumonia after stroke. Therefore, α2, α5, α7 and α9/10 nAChR knockout (KO) mice and wild type (WT) littermates were infected with Streptococcus pneumoniae (S. pneumoniae) three days after middle cerebral artery occlusion (MCAo). One day after infection pathogen clearance, cellularity in lung and spleen, cytokine secretion in bronchoalveolar lavage (BAL) and alveolar-capillary barrier were investigated. Here, we found that deficiency of various nAChRs does not contribute to an enhanced clearance of a Gram-positive pathogen causing post-stroke pneumonia in mice. In conclusion, these findings suggest that a single nAChR is not sufficient to mediate the impaired pulmonary defense against S. pneumoniae after experimental stroke.
Collapse
|
24
|
Malinina A, Dikeman D, Westbrook R, Moats M, Gidner S, Poonyagariyagorn H, Walston J, Neptune ER. IL10 deficiency promotes alveolar enlargement and lymphoid dysmorphogenesis in the aged murine lung. Aging Cell 2020; 19:e13130. [PMID: 32170906 PMCID: PMC7189990 DOI: 10.1111/acel.13130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/22/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
The connection between aging-related immune dysfunction and the lung manifestations of aging is poorly understood. A detailed characterization of the aging IL10-deficient murine lung, a model of accelerated aging and frailty, reconciles features of both immunosenescence and lung aging in a coherent model. Airspace enlargement developed in the middle-aged (12 months old) and aged (20-22 months old) IL10-deficient lung punctuated by an expansion of macrophages and alveolar cell apoptosis. Compared to wild-type (WT) controls, the IL10-deficient lungs from young (4-month-old) mice showed increased oxidative stress which was enhanced in both genotypes by aging. Active caspase 3 staining was increased in the alveolar epithelial cells of aged WT and mutant lungs but was greater in the IL10-deficient milieu. Lung macrophages were increased in the aged IL10-deficient lungs with exuberant expression of MMP12. IL10 treatment of naïve and M2-polarized bone marrow-derived WT macrophages reduced MMP12 expression. Conditioned media studies demonstrated the secretome of aged mutant macrophages harbors reduced AECII prosurvival factors, specifically keratinocyte growth factor (KGF) and hepatocyte growth factor (HGF), promotes cell death, and reduces survival of primary alveolar epithelial cells. Compared to WT controls, aged IL10-deficient mice have increased parenchymal lymphoid collections comprised of a reduced number of apoptotic cells and B cells. We establish that IL10 is a key modulator of airspace homeostasis and lymphoid morphogenesis in the aging lung enabling macrophage-mediated alveolar epithelial cell survival and B-cell survival within tertiary lymphoid structures.
Collapse
Affiliation(s)
- Alla Malinina
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
| | - Dustin Dikeman
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
| | - Reyhan Westbrook
- Division of Geriatrics Johns Hopkins School of Medicine Baltimore MD USA
| | - Michelle Moats
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
- Departments of Biology and Chemistry and Biochemistry Florida International University Miami FL USA
| | - Sarah Gidner
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
| | | | - Jeremy Walston
- Division of Geriatrics Johns Hopkins School of Medicine Baltimore MD USA
| | - Enid R. Neptune
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
| |
Collapse
|
25
|
Siwapornchai N, Lee JN, Tchalla EYI, Bhalla M, Yeoh JH, Roggensack SE, Leong JM, Bou Ghanem EN. Extracellular adenosine enhances the ability of PMNs to kill Streptococcus pneumoniae by inhibiting IL-10 production. J Leukoc Biol 2020; 108:867-882. [PMID: 32017200 DOI: 10.1002/jlb.4ma0120-115rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
Polymorphonuclear leukocytes (PMNs) are crucial for initial control of Streptococcus pneumoniae (pneumococcus) lung infection; however, as the infection progresses their persistence in the lungs becomes detrimental. Here we explored why the antimicrobial efficacy of PMNs declines over the course of infection. We found that the progressive inability of PMNs to control infection correlated with phenotypic differences characterized by a decrease in CD73 expression, an enzyme required for production of extracellular adenosine (EAD). EAD production by CD73 was crucial for the ability of both murine and human PMNs to kill S. pneumoniae. In exploring the mechanisms by which CD73 controlled PMN function, we found that CD73 mediated its antimicrobial activity by inhibiting IL-10 production. PMNs from wild-type mice did not increase IL-10 production in response to S. pneumoniae; however, CD73-/- PMNs up-regulated IL-10 production upon pneumococcal infection in vitro and during lung challenge. IL-10 inhibited the ability of WT PMNs to kill pneumococci. Conversely, blocking IL-10 boosted the bactericidal activity of CD73-/- PMNs as well as host resistance of CD73-/- mice to pneumococcal pneumonia. CD73/IL-10 did not affect apoptosis, bacterial uptake, and intracellular killing or production of antimicrobial neutrophil elastase and myeloperoxidase. Rather, inhibition of IL-10 production by CD73 was important for optimal reactive oxygen species (ROS) production by PMNs. ROS contributed to PMN antimicrobial function as their removal or detoxification impaired the ability of PMNs to efficiently kill S. pneumoniae. This study demonstrates that CD73 controls PMN antimicrobial phenotype during S. pneumoniae infection.
Collapse
Affiliation(s)
- Nalat Siwapornchai
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - James N Lee
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Essi Y I Tchalla
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Manmeet Bhalla
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Jun Hui Yeoh
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Sara E Roggensack
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Elsa N Bou Ghanem
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| |
Collapse
|
26
|
Metersky M, Waterer G. Can animal models really teach us anything about pneumonia? Con. Eur Respir J 2020; 55:55/1/1901525. [PMID: 31896677 DOI: 10.1183/13993003.01525-2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/05/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Mark Metersky
- Dept of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Grant Waterer
- Dept of Medicine, School of Medicine and Pharmacology and Lung Institute of Western Australia, University of Western Australia, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
27
|
Vom Steeg LG, Attreed SE, Zirkin B, Klein SL. Testosterone treatment of aged male mice improves some but not all aspects of age-associated increases in influenza severity. Cell Immunol 2019; 345:103988. [PMID: 31540670 PMCID: PMC6876866 DOI: 10.1016/j.cellimm.2019.103988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022]
Abstract
The severity of influenza increases with age, with worse disease in aged males than females. Testosterone concentrations decline with age in males, which may impact influenza pathogenesis. Aged male mice were treated with testosterone or placebo and outcomes during influenza A virus (IAV) infection were compared with adult male mice. Aged males experienced greater morbidity and mortality than adult males, which was partially improved by testosterone treatment of aged males. Aged males cleared IAV from lungs slower than adult males, regardless of testosterone treatment. As compared with adult males, aged males experienced pulmonary, but not systemic, cytokine dysregulation, and delayed influx and contraction of IAV-specific CD8+ T cells in the lungs. Testosterone treatment in aged males partially restored pulmonary cytokine responses to levels consistent with adult males but did not alter the age-associated changes in IAV-specific CD8+ T cells. Testosterone only modestly improves outcomes of influenza in aged males.
Collapse
Affiliation(s)
- Landon G Vom Steeg
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sarah E Attreed
- Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Barry Zirkin
- Department of Biochemistry and Molecular Biology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Biochemistry and Molecular Biology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
28
|
Gotts JE, Bernard O, Chun L, Croze RH, Ross JT, Nesseler N, Wu X, Abbott J, Fang X, Calfee CS, Matthay MA. Clinically relevant model of pneumococcal pneumonia, ARDS, and nonpulmonary organ dysfunction in mice. Am J Physiol Lung Cell Mol Physiol 2019; 317:L717-L736. [PMID: 31509438 DOI: 10.1152/ajplung.00132.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pneumonia is responsible for more deaths in the United States than any other infectious disease. Severe pneumonia is a common cause of acute respiratory failure and acute respiratory distress syndrome (ARDS). Despite the introduction of effective antibiotics and intensive supportive care in the 20th century, death rates from community-acquired pneumonia among patients in the intensive care unit remain as high as 35%. Beyond antimicrobial treatment, no targeted molecular therapies have yet proven effective, highlighting the need for additional research. Despite some limitations, small animal models of pneumonia and the mechanistic insights they produce are likely to continue to play an important role in generating new therapeutic targets. Here we describe the development of an innovative mouse model of pneumococcal pneumonia developed for enhanced clinical relevance. We first reviewed the literature of small animal models of bacterial pneumonia that incorporated antibiotics. We then did a series of experiments in mice in which we systematically varied the pneumococcal inoculum and the timing of antibiotics while measuring systemic and lung-specific end points, producing a range of models that mirrors the spectrum of pneumococcal lung disease in patients, from mild self-resolving infection to severe pneumonia refractory to antibiotics. A delay in antibiotic treatment resulted in ongoing inflammation and renal and hepatic dysfunction despite effective bacterial killing. The addition of fluid resuscitation to the model improved renal function but worsened the severity of lung injury based on direct measurements of pulmonary edema and lung compliance, analogous to patients with pneumonia and sepsis who develop ARDS following fluid administration.
Collapse
Affiliation(s)
- Jeffrey E Gotts
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Olivier Bernard
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Lauren Chun
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | | | - James T Ross
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Nicolas Nesseler
- Department of Anesthesia and Critical Care, Pontchaillou, University Hospital of Rennes, Rennes, France
| | - Xueling Wu
- Shanghai Jiaotong University, Respiratory Medicine, Renji Hospital, Shanghai, China
| | - Jason Abbott
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Xiaohui Fang
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Carolyn S Calfee
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Michael A Matthay
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| |
Collapse
|
29
|
Abstract
Streptococcus pneumoniae remains the most common bacterial pathogen causing lower respiratory tract infections and is a leading cause of morbidity and mortality worldwide, especially in children and the elderly. Another important aspect related to pneumococcal infections is the persistent rate of penicillin and macrolide resistance. Therefore, animal models have been developed to better understand the pathogenesis of pneumococcal disease and test new therapeutic agents and vaccines. This narrative review will focus on the characteristics of the different animal pneumococcal pneumonia models. The assessment of the different animal models will include considerations regarding pneumococcal strains, microbiology properties, procedures used for bacterial inoculation, pathogenesis, clinical characteristics, diagnosis, treatment, and preventive approaches.
Collapse
|
30
|
David SC, Norton T, Tyllis T, Wilson JJ, Singleton EV, Laan Z, Davies J, Hirst TR, Comerford I, McColl SR, Paton JC, Alsharifi M. Direct interaction of whole-inactivated influenza A and pneumococcal vaccines enhances influenza-specific immunity. Nat Microbiol 2019; 4:1316-1327. [PMID: 31110357 DOI: 10.1038/s41564-019-0443-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/02/2019] [Indexed: 12/21/2022]
Abstract
The upper respiratory tract is continuously exposed to a vast array of potentially pathogenic viruses and bacteria. Influenza A virus (IAV) has particular synergism with the commensal bacterium Streptococcus pneumoniae in this niche, and co-infection exacerbates pathogenicity and causes significant mortality. However, it is not known whether this synergism is associated with a direct interaction between the two pathogens. We have previously reported that co-administration of a whole-inactivated IAV vaccine (γ-Flu) with a whole-inactivated pneumococcal vaccine (γ-PN) enhances pneumococcal-specific responses. In this study, we show that mucosal co-administration of γ-Flu and γ-PN similarly augments IAV-specific immunity, particularly tissue-resident memory cell responses in the lung. In addition, our in vitro analysis revealed that S. pneumoniae directly interacts with both γ-Flu and with live IAV, facilitating increased uptake by macrophages as well as increased infection of epithelial cells by IAV. These observations provide an additional explanation for the synergistic pathogenicity of IAV and S. pneumoniae, as well as heralding the prospect of exploiting the phenomenon to develop better vaccine strategies for both pathogens.
Collapse
Affiliation(s)
- Shannon C David
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Todd Norton
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Timona Tyllis
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jasmine J Wilson
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Eve V Singleton
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Zoe Laan
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Justin Davies
- Australian Nuclear Science and Technology Organisation, Sydney, New South Wales, Australia
| | - Timothy R Hirst
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Gamma Vaccines Pty Ltd, Yarralumla, Australian Capital Territory, Australia.,GPN Vaccines Pty Ltd, Yarralumla, Australian Capital Territory, Australia
| | - Iain Comerford
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Shaun R McColl
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,GPN Vaccines Pty Ltd, Yarralumla, Australian Capital Territory, Australia
| | - Mohammed Alsharifi
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia. .,Gamma Vaccines Pty Ltd, Yarralumla, Australian Capital Territory, Australia. .,GPN Vaccines Pty Ltd, Yarralumla, Australian Capital Territory, Australia.
| |
Collapse
|
31
|
Ribeiro Júnior G, de Souza Xavier Costa N, Belotti L, Dos Santos Alemany AA, Amato-Lourenço LF, da Cunha PG, de Oliveira Duro S, Ribeiro SP, Veras MM, Quirino Dos Santos Lopes FDT, Marcourakis T, Nascimento Saldiva PH, Poliselli Farsky SH, Mauad T. Diesel exhaust exposure intensifies inflammatory and structural changes associated with lung aging in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:314-323. [PMID: 30530184 DOI: 10.1016/j.ecoenv.2018.11.139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Life expectancy is increasing worldwide. Lung aging is a process marked by changes in multiple morphological, physiological and age-related biomarkers (e.g., sirtuins) and is influenced by external factors, such as air pollution. Hence, the elderly are considered more vulnerable to the air pollution hazards. We hypothesized that diesel exhaust (DE) exposure intensifies changes in lung inflammatory and structural parameters in aging subjects. Two- and fifteen-month-old mice were exposed to DE for 30 days. Lung function was measured using the forced oscillation method. The inflammatory profile was evaluated in the bronchoalveolar lavage fluid (BALF) and blood, and lung volumes were estimated by stereology. Antioxidant enzyme activity was evaluated by spectrophotometry, sirtuin 1 (SIRT1), sirtuin 2 (SIRT2) and sirtuin 6 (SIRT6) expression was assessed by reverse transcription polymerase chain reaction (RT-PCR), and levels of the sirtuin proteins were evaluated by immunohistochemical staining in lung tissues. Older mice presented decreased pulmonary resistance and elastance, increased macrophage infiltration and decreased tumor necrosis factor (TNF) and interleukin 10 (IL-10) levels in the BALF, reduced activities of the antioxidant enzymes glutathione peroxidase (GPx) and glutathione reductase (GR), and increased activity glutathione S-transferase (GST); increased lung volumes with decreased elastic fiber and increased airway collagen content. SIRT1 gene expression was decreased in older animals, but protein levels were increased. DE exposure increased macrophage infiltration and oxidative stress in the lungs of animals of both ages. SIRT6 gene expression was decreased by DE exposure, with increased protein levels. In older animals, DE affected lung structure and collagen content. Lung aging features, such as decreased antioxidant reserves, lower IL-10 expression, and decreased SIRT1 levels may predispose subjects to exacerbated responses after DE exposure. Our data support the hypothesis that strategies designed to reduce ambient air pollution are an important step towards healthy aging.
Collapse
Affiliation(s)
- Gabriel Ribeiro Júnior
- Department of Pathology, University of São Paulo - School of Medicine, LIM05 São Paulo, São Paulo, Brazil.
| | | | - Luciano Belotti
- Department of Pathology, University of São Paulo - School of Medicine, LIM05 São Paulo, São Paulo, Brazil
| | | | | | - Paula Gabriela da Cunha
- Department of Clinical and Toxicological Analyses, University of São Paulo - School of Pharmaceutical Sciences, São Paulo, São Paulo, Brazil
| | - Stephanie de Oliveira Duro
- Department of Clinical and Toxicological Analyses, University of São Paulo - School of Pharmaceutical Sciences, São Paulo, São Paulo, Brazil
| | - Susan Pereira Ribeiro
- Department Clinical Medicine, LIM60 University of São Paulo - School of Medicine, São Paulo, São Paulo, Brazil; Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Mariana Matera Veras
- Department of Pathology, University of São Paulo - School of Medicine, LIM05 São Paulo, São Paulo, Brazil
| | | | - Tania Marcourakis
- Department of Clinical and Toxicological Analyses, University of São Paulo - School of Pharmaceutical Sciences, São Paulo, São Paulo, Brazil
| | | | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, University of São Paulo - School of Pharmaceutical Sciences, São Paulo, São Paulo, Brazil
| | - Thais Mauad
- Department of Pathology, University of São Paulo - School of Medicine, LIM05 São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Cryptotanshinone Ameliorates Radiation-Induced Lung Injury in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1908416. [PMID: 30915142 PMCID: PMC6402207 DOI: 10.1155/2019/1908416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/21/2018] [Accepted: 01/16/2019] [Indexed: 02/07/2023]
Abstract
Cryptotanshinone (CTS) was reported to repress a variety of systemic inflammation and alleviate cardiac fibrosis, but it is still unclear whether CTS could prevent radiation-induced lung injury (RILI). Here, we investigated the effects and underlying mechanisms of CTS on a RILI rat model. Our data revealed that CTS could efficiently preserve pulmonary function in RILI rats and reduce early pulmonary inflammation infiltration elicited, along with marked decreased levels of IL-6 and IL-10. Moreover, we found that CTS is superior to prednisone in attenuating collagen deposition and pulmonary fibrosis, in parallel with a marked drop of HYP (a collagen indicator) and α-SMA (a myofibroblast marker). Mechanistically, CTS inhibited profibrotic signals TGF-β1 and NOX-4 expressions, while enhancing the levels of antifibrotic enzyme MMP-1 in lung tissues. It is noteworthy that CTS treatment, in consistent with trichrome staining analysis, exhibited a clear advantage over PND in enhancing MMP-1 levels. However, CTS exhibited little effect on CTGF activation and on COX-2 suppression. Finally, CTS treatment significantly mitigated the radiation-induced activation of CCL3 and its receptor CCR1. In summary, CTS treatment could attenuate RILI, especially pulmonary fibrosis, in rats. The regulation on production and release of inflammatory or fibrotic factors IL-6, IL-10, TGF-β1, NOX-4, and MMP-1, especially MMP-1 and inhibition on CCL3/CCR1 activation, may partly attribute to its attenuating RILI effect.
Collapse
|
33
|
Fulop T, Franceschi C, Hirokawa K, Pawelec G. Immunosenescence Modulation by Vaccination. HANDBOOK OF IMMUNOSENESCENCE 2019. [PMCID: PMC7121048 DOI: 10.1007/978-3-319-99375-1_71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A decline in immune function is a hallmark of aging that leads to complicated illness from a variety of infectious diseases, cancer and other immune-mediated disorders, and may limit the ability to appropriately respond to vaccination. How vaccines might alter the senescent immune response and what are the immune correlates of protection will be addressed from the perspective of (1) stimulating a previously primed response as in the case of vaccines for seasonal influenza and herpes zoster, (2) priming the response to novel antigens such as pandemic influenza or West Nile virus, (3) vaccination against bacterial pathogens such as pneumococcus and pertussis, (4) vaccines against bacterial toxins such as tetanus and Clostridium difficile, and (5) vaccine approaches to mitigate effects of cytomegalovirus on immune senescence. New or improved vaccines developed over recent years demonstrate the considerable opportunity to improve current vaccines and develop new vaccines as a preventive approach to a variety of diseases in older adults. Strategies for selecting appropriate immunologic targets for new vaccine development and evaluating how vaccines may alter the senescent immune response in terms of potential benefits and risks in the preclinical and clinical trial phases of vaccine development will be discussed.
Collapse
Affiliation(s)
- Tamas Fulop
- Division of Geriatrics Research Center on Aging, University of Sherbrooke Department of Medicine, Sherbrooke, QC Canada
| | - Claudio Franceschi
- Department of Experimental Pathology, University of Bologna, Bologna, Italy
| | | | - Graham Pawelec
- Center for Medical Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
34
|
Kowara M, Kasarełło K, Czarzasta K, Opolski G, Cudnoch-Jędrzejewska A. Early-life inflammation pathways trigger a cascade leading to development of atherosclerotic plaque through the “butterfly effect” – An hypothesis. Med Hypotheses 2019; 122:106-110. [DOI: 10.1016/j.mehy.2018.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/20/2018] [Accepted: 10/29/2018] [Indexed: 12/23/2022]
|
35
|
Age-related changes in the levels and kinetics of pulmonary cytokine and chemokine responses to Streptococcuspneumoniae in mouse pneumonia models. Cytokine 2018; 111:389-397. [PMID: 30463053 DOI: 10.1016/j.cyto.2018.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 11/20/2022]
Abstract
Streptococcuspneumoniae is a major human pathogen at the extremes of age. The elderly are particularly vulnerable to S.pneumoniae, the most common causative agent of bacterial pneumonia in this population. Despite the availability of vaccines and antibiotics, mortality rates associated with pneumococcal pneumonia in this age group remain high. In light of globally increasing life-expectancy, a better understanding of the patho-mechanisms of elderly pneumococcal pneumonia, including alterations in innate immune responses, is needed to develop improved therapies. In this study we aimed at investigating how increased susceptibility to pneumococcal infection relates to inflammation kinetics in the aged mouse pneumonia model by determining pulmonary cytokine and chemokine levels and comparing these parameters to those measured in young adult mice. Firstly, we detected overall higher pulmonary cytokine and chemokine levels in aged mice. However, upon induction of pneumococcal pneumonia in aged mice, delayed production of certain analytes, such as IFN-γ, MIG (CXCL9), IP-10 (CXCL10), MCP-1 (CCL2), TARC (CCL17) and MDC (CCL22) became apparent. In addition, aged mice were unable to control excess inflammatory responses: while young mice showed peak inflammatory responses at 20 h and subsequent resolution by 48 h post intranasal challenge, in aged mice increasing cytokine and chemokine levels were measured. These findings highlight the importance of considering multiple time points when delineating inflammatory responses to S.pneumoniae in an age-related context. Finally, correlation between pulmonary bacterial burden and cytokine or chemokine levels in young mice suggested that appropriately controlled inflammatory responses support the host to fight pneumococcal infection.
Collapse
|
36
|
LeVan TD, Romberger DJ, Siahpush M, Grimm BL, Ramos AK, Johansson PL, Michaud TL, Heires AJ, Wyatt TA, Poole JA. Relationship of systemic IL-10 levels with proinflammatory cytokine responsiveness and lung function in agriculture workers. Respir Res 2018; 19:166. [PMID: 30176916 PMCID: PMC6122449 DOI: 10.1186/s12931-018-0875-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/27/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Agriculture workers are exposed to microbial component- and particulate matter-enriched organic dust aerosols. Whereas it is clear that exposure to these aerosols can lead to lung inflammation, it is not known how inflammatory responses are resolved in some individuals while others develop chronic lung disease. Interleukin (IL)-10 is an immunomodulatory cytokine that is recognized as a potent anti-inflammatory and pro-resolving factor. The objective of this study was to determine whether there is a relationship of systemic IL-10 and proinflammatory responses and/or respiratory health effects in humans with prior agriculture exposure. METHODS This is a cross sectional study of 625 veterans with > 2 years of farming experience. Whole blood was stimulated with or without organic dust and measured for IL-6, TNFα and IL-10. Participants underwent spirometry and respiratory symptoms were assessed by questionnaire. RESULTS We found that baseline IL-10 concentration from the whole blood assay was inversely associated with ΔTNF-α (r = - 0.63) and ΔIL-6 (r = - 0.37) levels. Results remained highly significant in the linear regression model after adjusting for age, sex, BMI, race, education, smoking status, and white blood cell count (ΔTNF-α, p < 0.0001; ΔIL-6, p < 0.0001). We found no association between chronic cough (p = 0.18), chronic phlegm (p = 0.31) and chronic bronchitis (p = 0.06) and baseline IL-10 levels using univariate logistic regression models. However, we did find that higher FEV1/FVC was significantly associated with increased baseline IL-10 concentration. CONCLUSIONS Collectively, these studies support a potential role for IL-10 in modulating an inflammatory response and lung function in agriculture-exposed persons.
Collapse
Affiliation(s)
- Tricia D. LeVan
- College of Public Health, University of Nebraska Medical Center, Omaha, NE USA
- Veterans Affairs Nebraska Western Iowa Healthcare System, Omaha, NE USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE USA
- Department of Epidemiology, University of Nebraska Medical Center, Omaha, NE USA
| | - Debra J. Romberger
- Veterans Affairs Nebraska Western Iowa Healthcare System, Omaha, NE USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE USA
| | - Mohammad Siahpush
- College of Public Health, University of Nebraska Medical Center, Omaha, NE USA
| | - Brandon L. Grimm
- College of Public Health, University of Nebraska Medical Center, Omaha, NE USA
| | - Athena K. Ramos
- College of Public Health, University of Nebraska Medical Center, Omaha, NE USA
| | - Patrik L. Johansson
- College of Public Health, University of Nebraska Medical Center, Omaha, NE USA
| | - Tzeyu L. Michaud
- College of Public Health, University of Nebraska Medical Center, Omaha, NE USA
| | - Art J. Heires
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE USA
| | - Todd A. Wyatt
- Veterans Affairs Nebraska Western Iowa Healthcare System, Omaha, NE USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE USA
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE USA
| | - Jill A. Poole
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE USA
| |
Collapse
|
37
|
Brandenberger C, Kling KM, Vital M, Christian M. The Role of Pulmonary and Systemic Immunosenescence in Acute Lung Injury. Aging Dis 2018; 9:553-565. [PMID: 30090646 PMCID: PMC6065297 DOI: 10.14336/ad.2017.0902] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/02/2017] [Indexed: 12/19/2022] Open
Abstract
Acute lung injury (ALI) is associated with increased morbidity and mortality in the elderly (> 65 years), but the knowledge about origin and effects of immunosenescence in ALI is limited. Here, we investigated the immune response at pulmonary, systemic and cellular level in young (2-3 months) and old (18-19 months) C57BL/6J mice to localize and characterize effects of immunosenescence in ALI. ALI was induced by intranasal lipopolysaccharide (LPS) application and the animals were sacrificed 24 or 72 h later. Pulmonary inflammation was investigated by analyzing histopathology, bronchoalveolar lavage fluid (BALF) cytometry and cytokine expression. Systemic serum cytokine expression, spleen lymphocyte populations and the gut microbiome were analyzed, as well as activation of alveolar and bone marrow derived macrophages (BMDM) in vitro. Pulmonary pathology of ALI was more severe in old compared with young mice. Old mice showed significantly more inflammatory cells and pro-inflammatory cyto- or chemokines (TNFα, IL-6, MCP-1, CXCL1, MIP-1α) in the BALF, but a delayed expression of cytokines associated with activation of adaptive immunity and microbial elimination (IL-12 and IFNγ). Alveolar macrophages, but not BMDM, of old mice showed greater activation after in vivo and in vitro stimulation with LPS. No systemic enhanced pro-inflammatory cytokine response was detected in old animals after LPS exposure, but a delayed expression of IL-12 and IFNγ. Furthermore, old mice had less CD8+ T-cells and NK cells and more regulatory T-cells in the spleen compared with young mice and a distinct gut microbiome structure. The results of our study show an increased alveolar macrophage activation and pro-inflammatory signaling in the lungs, but not systemically, suggesting a key role of senescent alveolar macrophages in ALI. A decrease in stimulators of adaptive immunity with advancing age might further promote the susceptibility to a worse prognosis in ALI in elderly.
Collapse
Affiliation(s)
- Christina Brandenberger
- 1Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,2Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,3Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| | - Katharina Maria Kling
- 1Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,2Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Marius Vital
- 4Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mühlfeld Christian
- 1Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,2Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,3Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Preventing pneumonia in the elderly and individuals with comorbidities is an unmet clinical need. Streptococcus pneumoniae is the commonest bacterial cause of pneumonia, and we summarize recent findings regarding current S. pneumoniae vaccines, and debate their efficacy and cost-effectiveness in risk groups. We also discuss potential future vaccine strategies such as protein antigen vaccines. RECENT FINDINGS Current vaccination with pneumococcal polysaccharide vaccine does not prevent S. pneumoniae pneumonia. Vaccination with pneumococcal conjugated vaccine (PCV) prevents nasopharyngeal colonization, but although PCV13 has recently been shown to prevent S. pneumoniae pneumonia in adults, its overall efficacy was relatively low. The results of cost-effectiveness studies of PCV vaccination in adults are variable with some showing this is a cost-effective strategy, whereas others have not. The lack of cost-effectiveness is predominantly because of the current cost of the PCV vaccine and the existing herd immunity effect from childhood PCV vaccination on vaccine serotypes. SUMMARY S. pneumoniae pneumonia is a vaccine-preventable disease but remains a common cause of morbidity and mortality. Advances in vaccination using approaches that induce serotypes-independent immunity and are immunogenic in high-risk groups are required to reduce the burden of disease because of S. pneumoniae.
Collapse
|
39
|
Song Y, Wang B, Song R, Hao Y, Wang D, Li Y, Jiang Y, Xu L, Ma Y, Zheng H, Kong Y, Zeng H. T-cell Immunoglobulin and ITIM Domain Contributes to CD8 + T-cell Immunosenescence. Aging Cell 2018; 17:e12716. [PMID: 29349889 PMCID: PMC5847879 DOI: 10.1111/acel.12716] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2017] [Indexed: 02/02/2023] Open
Abstract
Aging is associated with immune dysfunction, especially T-cell defects, which result in increased susceptibility to various diseases. Previous studies showed that T cells from aged mice express multiple inhibitory receptors, providing evidence of the relationship between T-cell exhaustion and T-cell senescence. In this study, we showed that T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT), a novel co-inhibitory receptor, was upregulated in CD8+ T cells of elderly adults. Aged TIGIT+ CD8+ T cells expressed high levels of other inhibitory receptors including PD-1 and exhibited features of exhaustion such as downregulation of the key costimulatory receptor CD28, representative intrinsic transcriptional regulation, low production of cytokines, and high susceptibility to apoptosis. Importantly, their functional defects associated with aging were reversed by TIGIT knockdown. CD226 downregulation on aged TIGIT+ CD8+ T cells is likely involved in TIGIT-mediated negative immune suppression. Collectively, our findings indicated that TIGIT acts as a critical immune regulator during aging, providing a strong rationale for targeting TIGIT to improve dysfunction related to immune system aging.
Collapse
Affiliation(s)
- Yangzi Song
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Beibei Wang
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Rui Song
- Beijing Key Laboratory of Emerging Infectious DiseasesThe National Clinical Key Department of Infectious DiseaseBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Yu Hao
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Di Wang
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Yuxin Li
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Yu Jiang
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Ling Xu
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Yaluan Ma
- Lab for Molecular BiologyInstitute of Basic Theory on Chinese MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Hong Zheng
- Penn State Hershey Cancer InstitutePenn State University College of MedicineHersheyPAUSA
| | - Yaxian Kong
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Hui Zeng
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
40
|
Hecker L. Mechanisms and consequences of oxidative stress in lung disease: therapeutic implications for an aging populace. Am J Physiol Lung Cell Mol Physiol 2017; 314:L642-L653. [PMID: 29351446 DOI: 10.1152/ajplung.00275.2017] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rapid expansion of the elderly population has led to the recent epidemic of age-related diseases, including increased incidence and mortality of chronic and acute lung diseases. Numerous studies have implicated aging and oxidative stress in the pathogenesis of various pulmonary diseases; however, despite recent advances in these fields, the specific contributions of aging and oxidative stress remain elusive. This review will discuss the consequences of aging on lung morphology and physiology, and how redox imbalance with aging contributes to lung disease susceptibility. Here, we focus on three lung diseases for which aging is a significant risk factor: acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Preclinical and clinical development for redox- and senescence-altering therapeutic strategies are discussed, as well as scientific advancements that may direct current and future therapeutic development. A deeper understanding of how aging impacts normal lung function, redox balance, and injury-repair processes will inspire the development of new therapies to prevent and/or reverse age-associated pulmonary diseases, and ultimately increase health span and longevity. This review is intended to encourage basic, clinical, and translational research that will bridge knowledge gaps at the intersection of aging, oxidative stress, and lung disease to fuel the development of more effective therapeutic strategies for lung diseases that disproportionately afflict the elderly.
Collapse
Affiliation(s)
- Louise Hecker
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona , Tucson, Arizona and Southern Arizona Veterans Affairs Health Care System, Tucson, Arizona
| |
Collapse
|
41
|
Turturice BA, McGee HS, Oliver B, Baraket M, Nguyen BT, Ascoli C, Ranjan R, Rani A, Perkins DL, Finn PW. Atopic asthmatic immune phenotypes associated with airway microbiota and airway obstruction. PLoS One 2017; 12:e0184566. [PMID: 29053714 PMCID: PMC5650135 DOI: 10.1371/journal.pone.0184566] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/25/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Differences in asthma severity may be related to inflammation in the airways. The lower airway microbiota has been associated with clinical features such as airway obstruction, symptom control, and response to corticosteroids. OBJECTIVE To assess the relationship between local airway inflammation, severity of disease, and the lower airway microbiota in atopic asthmatics. METHODS A cohort of young adult, atopic asthmatics with intermittent or mild/moderate persistent symptoms (n = 13) were assessed via bronchoscopy, lavage, and spirometry. These individuals were compared to age matched non-asthmatic controls (n = 6) and to themselves after six weeks of treatment with fluticasone propionate (FP). Inflammation of the airways was assessed via a cytokine and chemokine panel. Lower airway microbiota composition was determined by metagenomic shotgun sequencing. RESULTS Unsupervised clustering of cytokines and chemokines prior to treatment with FP identified two asthmatic phenotypes (AP), termed AP1 and AP2, with distinct bronchoalveolar lavage inflammatory profiles. AP2 was associated with more obstruction, compared to AP1. After treatment with FP reduced MIP-1β and TNF-α and increased IL-2 was observed. A module of highly correlated cytokines that include MIP-1β and TNF-α was identified that negatively correlated with pulmonary function. Independently, IL-2 was positively correlated with pulmonary function. The airway microbiome composition correlated with asthmatic phenotypes. AP2, prior to FP treatment, was enriched with Streptococcus pneumoniae. Unique associations between IL-2 or the cytokine module and the microbiota composition of the airways were observed in asthmatics subjects prior to treatment but not after or in controls. CONCLUSION The underlying inflammation in atopic asthma is related to the composition of microbiota and is associated with severity of airway obstruction. Treatment with inhaled corticosteroids was associated with changes in the airway inflammatory response to microbiota.
Collapse
Affiliation(s)
- Benjamin A. Turturice
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, Chicago, IL, United States of America
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Halvor S. McGee
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Brian Oliver
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
- Molecular Biosciences, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Melissa Baraket
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW, Australia
- Department of Respiratory Medicine and Sleep Medicine and Ingham Institute Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Brian T. Nguyen
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Christian Ascoli
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Ravi Ranjan
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Asha Rani
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, Chicago, IL, United States of America
| | - David L. Perkins
- Department of Medicine, Division of Nephrology, University of Illinois at Chicago, Chicago, IL, United States of America
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States of America
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Patricia W. Finn
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, Chicago, IL, United States of America
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
42
|
Shi S, Liu X, Li H. Downregulation of caspase‑3 alleviates Mycoplasma pneumoniae‑induced apoptosis in alveolar epithelial cells. Mol Med Rep 2017; 16:9601-9606. [PMID: 29039549 DOI: 10.3892/mmr.2017.7782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/05/2017] [Indexed: 11/06/2022] Open
Abstract
Mycoplasma pneumoniae (M. pneumoniae) infection is closely associated with pneumonia in children. Apoptosis of alveolar epithelial cells is involved in the development of pneumonia in children. The present study aimed to examine how caspase‑3 influences apoptosis rates in M. pneumoniae‑infected alveolar epithelial cells. A549 alveolar epithelial cells were treated with M. pneumoniae, and cells and culture supernatant were collected at different time points. Alterations in apoptosis rates and caspase‑3 mRNA and protein levels were measured for each treatment group. Cell apoptosis was detected using flow cytometry and TUNEL assay, and cell proliferation was detected using Cell Counting Kit‑8 assay. Caspase‑3 expression in A549 cells was inhibited via small interfering RNA (siRNA) knockdown and relative alterations in mRNA and protein levels and apoptosis rates were measured. Cytokine levels were measured using ELISA assay. Apoptosis rates of alveolar epithelial cells increased with prolonged exposure to M. pneumoniae (P<0.05). M. pneumoniae infection increased interleukin (IL)‑4, IL‑6 and IL‑13 levels and reduced IL‑10 levels. Caspase‑3 was upregulated, whereas B cell lymphoma (Bcl)‑2 was downregulated upon M. pneumoniae exposure for 24 h (P<0.05). Following 12 and 24 h of treatment, caspase‑3 levels in the siRNA‑treated cells were decreased compared with control group (P<0.05). M. pneumoniae also significantly altered caspase‑3 and Bcl‑2 protein expression. M. pneumoniae promoted apoptosis in alveolar epithelial cells via activation of the external death receptor pathway. Therefore, M. pneumoniae infection may affect the development of pneumonia in children by regulating caspase‑3 expression and promoting apoptosis.
Collapse
Affiliation(s)
- Shan Shi
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaolei Liu
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Haibo Li
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
43
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
44
|
Receptor for advanced glycation endproducts (RAGE) maintains pulmonary structure and regulates the response to cigarette smoke. PLoS One 2017; 12:e0180092. [PMID: 28678851 PMCID: PMC5497997 DOI: 10.1371/journal.pone.0180092] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 06/09/2017] [Indexed: 12/15/2022] Open
Abstract
The receptor for advanced glycation endproducts (RAGE) is highly expressed in the lung but its physiological functions in this organ is still not completely understood. To determine the contribution of RAGE to physiological functions of the lung, we analyzed pulmonary mechanics and structure of wildtype and RAGE deficient (RAGE-/-) mice. RAGE deficiency spontaneously resulted in a loss of lung structure shown by an increased mean chord length, increased respiratory system compliance, decreased respiratory system elastance and increased concentrations of serum protein albumin in bronchoalveolar lavage fluids. Pulmonary expression of RAGE was mainly localized on alveolar epithelial cells and alveolar macrophages. Primary murine alveolar epithelial cells isolated from RAGE-/- mice revealed an altered differentiation and defective barrier formation under in vitro conditions. Stimulation of interferone-y (IFNy)-activated alveolar macrophages deficient for RAGE with Toll-like receptor (TLR) ligands resulted in significantly decreased release of proinflammatory cytokines and chemokines. Exposure to chronic cigarette smoke did not affect emphysema-like changes in lung parenchyma in RAGE-/- mice. Acute cigarette smoke exposure revealed a modified inflammatory response in RAGE-/- mice that was characterized by an influx of macrophages and a decreased keratinocyte-derived chemokine (KC) release. Our data suggest that RAGE regulates the differentiation of alveolar epithelial cells and impacts on the development and maintenance of pulmonary structure. In cigarette smoke-induced lung pathology, RAGE mediates inflammation that contributes to lung damage.
Collapse
|
45
|
Gano A, Doremus-Fitzwater TL, Deak T. A cross-sectional comparison of ethanol-related cytokine expression in the hippocampus of young and aged Fischer 344 rats. Neurobiol Aging 2017; 54:40-53. [PMID: 28319836 PMCID: PMC5401774 DOI: 10.1016/j.neurobiolaging.2017.01.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/02/2017] [Accepted: 01/23/2017] [Indexed: 12/22/2022]
Abstract
Our work in Sprague Dawley rats has shown rapid alterations in neuroimmune gene expression (RANGE) in the hippocampus and paraventricular nucleus of the hypothalamus (PVN). These manifest as increased interleukin (IL)-6 and IκBα, and suppressed IL-1β and tumor necrosis factor alpha during acute ethanol intoxication. The present studies tested these effects across the lifespan (young adulthood at 2-3 months; senescence at 18 and 24 months), as well as across strain (Fischer 344) and sex. The hippocampus revealed age-dependent shifts in cytokine expression (IL-6, IL-1β, and monocyte chemoattractant protein 1), but no changes were observed in the PVN at baseline or following ethanol. RANGE in adults was similar across sex and comparable with effects seen in Sprague Dawley rats. Plasma corticosterone levels increased with age, whereas the blood ethanol concentrations and loss of righting reflex were similar in all groups older than 2 months. These findings indicate that the RANGE effect is largely conserved across strain and is durable across age, even in the face of a shifting neuroimmune profile that emerges during immunosenescence.
Collapse
Affiliation(s)
- Anny Gano
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | | | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
46
|
Kling KM, Lopez-Rodriguez E, Pfarrer C, Mühlfeld C, Brandenberger C. Aging exacerbates acute lung injury-induced changes of the air-blood barrier, lung function, and inflammation in the mouse. Am J Physiol Lung Cell Mol Physiol 2016; 312:L1-L12. [PMID: 27815259 DOI: 10.1152/ajplung.00347.2016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/28/2016] [Indexed: 01/07/2023] Open
Abstract
Acute lung injury (ALI) is characterized by hypoxemia, enhanced permeability of the air-blood barrier, and pulmonary edema. Particularly in the elderly, ALI is associated with increased morbidity and mortality. The reasons for this, however, are poorly understood. We hypothesized that age-related changes in pulmonary structure, function, and inflammation lead to a worse prognosis in ALI. ALI was induced in young (10 wk old) and old (18 mo old) male C57BL/6 mice by intranasal application of 2.5 mg lipopolysaccharide (LPS)/kg body wt or saline (control mice). After 24 h, lung function was assessed, and lungs were either processed for stereological or inflammatory analysis, such as bronchoalveolar lavage fluid (BALF) cytometry and qPCR. Both young and old mice developed severe signs of ALI, including alveolar and septal edema and enhanced inflammatory BALF cells. However, the pathology of ALI was more pronounced in old compared with young mice with nearly sixfold higher BALF protein concentration, twice the number of neutrophils, and significantly higher expression of neutrophil chemokine Cxcl1, adhesion molecule Icam-1, and metalloprotease-9, whereas the expression of tight junction protein occludin significantly decreased. The old LPS mice had thicker alveolar septa attributable to higher volumes of interstitial cells and extracellular matrix. Tissue resistance and elastance reflected observed changes at the ultrastructural level in the lung parenchyma in ALI of young and old mice. In summary, the pathology of ALI with advanced age in mice is characterized by a greater neutrophilic inflammation, leakier air-blood barrier, and altered lung function, which is in line with findings in elderly patients.
Collapse
Affiliation(s)
- Katharina Maria Kling
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Christiane Pfarrer
- Department of Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany; and
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Cluster of Excellence from Regenerative Biology to Reconstructive Therapy (REBIRTH), Hannover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Cluster of Excellence from Regenerative Biology to Reconstructive Therapy (REBIRTH), Hannover, Germany
| |
Collapse
|
47
|
Boe DM, Boule LA, Kovacs EJ. Innate immune responses in the ageing lung. Clin Exp Immunol 2016; 187:16-25. [PMID: 27711979 DOI: 10.1111/cei.12881] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2016] [Indexed: 12/19/2022] Open
Abstract
The world is undergoing an unprecedented shift in demographics, with the number of individuals over the age of 60 years projected to reach 2 billion or more by 2050, representing 22% of the global population. Elderly people are at a higher risk for chronic disease and more susceptible to infection, due in part to age-related dysfunction of the immune system resulting from low-grade chronic inflammation known as 'inflamm-ageing'. The innate immune system of older individuals exhibits a diminished ability to respond to microbial threats and clear infections, resulting in a greater occurrence of many infectious diseases in elderly people. In particular, the incidence of and mortality from lung infections increase sharply with age, with such infections often leading to worse outcomes, prolonged hospital stays and life-threatening complications, such as sepsis or acute respiratory distress syndrome. In this review, we highlight research on bacterial pneumonias and pulmonary viral infections and discuss age-related changes in innate immunity that contribute to the higher rate of these infections in older populations. By understanding more clearly the innate immune defects in elderly individuals, we can design age-specific therapies to address lung infections in such a vulnerable population.
Collapse
Affiliation(s)
- D M Boe
- Division of GI, Endocrine and Tumor Surgery, Department of Surgery, Mucosal Inflammation Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - L A Boule
- Division of GI, Endocrine and Tumor Surgery, Department of Surgery, Mucosal Inflammation Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - E J Kovacs
- Division of GI, Endocrine and Tumor Surgery, Department of Surgery, Mucosal Inflammation Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
48
|
Peñaloza HF, Schultz BM, Nieto PA, Salazar GA, Suazo I, Gonzalez PA, Riedel CA, Alvarez-Lobos MM, Kalergis AM, Bueno SM. Opposing roles of IL-10 in acute bacterial infection. Cytokine Growth Factor Rev 2016; 32:17-30. [PMID: 27522641 DOI: 10.1016/j.cytogfr.2016.07.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 07/14/2016] [Indexed: 12/16/2022]
Abstract
Interleukin-10 (IL-10) is recognized as an anti-inflammatory cytokine that downmodulates inflammatory immune responses at multiple levels. In innate cells, production of this cytokine is usually triggered after pathogen recognition receptor (PRR) engagement by pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patters (DAMPs), as well as by other soluble factors. Importantly, IL-10 is frequently secreted during acute bacterial infections and has been described to play a key role in infection resolution, although its effects can significantly vary depending on the infecting bacterium. While the production of IL-10 might favor host survival in some cases, it may also result harmful for the host in other circumstances, as it can prevent appropriate bacterial clearance. In this review we discuss the role of IL-10 in bacterial clearance and propose that this cytokine is required to recover from infection caused by extracellular or highly pro-inflammatory bacteria. Altogether, we propose that IL-10 drives excessive suppression of the immune response upon infection with intracellular bacteria or in non-inflammatory bacterial infections, which ultimately favors bacterial persistence and dissemination within the host. Thus, the nature of the bacterium causing infection is an important factor that needs to be taken into account when considering new immunotherapies that consist on the modulation of inflammation, such as IL-10. Indeed, induction of this cytokine may significantly improve the host's immune response to certain bacteria when antibiotics are not completely effective.
Collapse
Affiliation(s)
- Hernán F Peñaloza
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Barbara M Schultz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Pamela A Nieto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Geraldyne A Salazar
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Isidora Suazo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Pablo A Gonzalez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Chile
| | - Manuel M Alvarez-Lobos
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile; Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile; INSERM U1064, Nantes, France
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile; INSERM U1064, Nantes, France.
| |
Collapse
|
49
|
Nieto PA, Peñaloza HF, Salazar-Echegarai FJ, Castellanos RM, Opazo MC, Venegas L, Padilla O, Kalergis AM, Riedel CA, Bueno SM. Gestational Hypothyroidism Improves the Ability of the Female Offspring to Clear Streptococcus pneumoniae Infection and to Recover From Pneumococcal Pneumonia. Endocrinology 2016; 157:2217-28. [PMID: 27035652 DOI: 10.1210/en.2015-1957] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Maternal thyroid hormones are essential for proper fetal development. A deficit of these hormones during gestation has enduring consequences in the central nervous system of the offspring, including detrimental learning and impaired memory. Few studies have shown that thyroid hormone deficiency has a transient effect in the number of T and B cells in the offspring gestated under hypothyroidism; however, there are no studies showing whether maternal hypothyroidism during gestation impacts the response of the offspring to infections. In this study, we have evaluated whether adult mice gestated in hypothyroid mothers have an altered response to pneumococcal pneumonia. We observed that female mice gestated in hypothyroidism have increased survival rate and less bacterial dissemination to blood and brain after an intranasal challenge with Streptococcus pneumoniae. Further, these mice had higher amounts of inflammatory cells in the lungs and reduced production of cytokines characteristic of sepsis in spleen, blood, and brain at 48 hours after infection. Interestingly, mice gestated in hypothyroid mothers had basally increased vascular permeability in the lungs. These observations suggest that gestational hypothyroidism alters the immune response and the physiology of lungs in the offspring, increasing the resistance to respiratory bacterial infections.
Collapse
Affiliation(s)
- Pamela A Nieto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (P.A.N., H.F.P., F.J.S.-E., A.M.K., S.A.M.), Santiago, Chile 8331150; Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello (R.M.C.), Santiago, Chile 8370146; Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello (M.C.O., L.V., C.A.R.), Santiago, Chile 8370146; Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile (O.P.), Santiago, Chile 8330073; Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1064 (A.M.K., S.M.B.), Nantes, France 44093; and Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile (A.M.K.), Santiago, Chile 8330074
| | - Hernán F Peñaloza
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (P.A.N., H.F.P., F.J.S.-E., A.M.K., S.A.M.), Santiago, Chile 8331150; Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello (R.M.C.), Santiago, Chile 8370146; Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello (M.C.O., L.V., C.A.R.), Santiago, Chile 8370146; Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile (O.P.), Santiago, Chile 8330073; Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1064 (A.M.K., S.M.B.), Nantes, France 44093; and Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile (A.M.K.), Santiago, Chile 8330074
| | - Francisco J Salazar-Echegarai
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (P.A.N., H.F.P., F.J.S.-E., A.M.K., S.A.M.), Santiago, Chile 8331150; Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello (R.M.C.), Santiago, Chile 8370146; Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello (M.C.O., L.V., C.A.R.), Santiago, Chile 8370146; Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile (O.P.), Santiago, Chile 8330073; Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1064 (A.M.K., S.M.B.), Nantes, France 44093; and Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile (A.M.K.), Santiago, Chile 8330074
| | - Raquel M Castellanos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (P.A.N., H.F.P., F.J.S.-E., A.M.K., S.A.M.), Santiago, Chile 8331150; Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello (R.M.C.), Santiago, Chile 8370146; Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello (M.C.O., L.V., C.A.R.), Santiago, Chile 8370146; Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile (O.P.), Santiago, Chile 8330073; Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1064 (A.M.K., S.M.B.), Nantes, France 44093; and Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile (A.M.K.), Santiago, Chile 8330074
| | - Maria Cecilia Opazo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (P.A.N., H.F.P., F.J.S.-E., A.M.K., S.A.M.), Santiago, Chile 8331150; Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello (R.M.C.), Santiago, Chile 8370146; Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello (M.C.O., L.V., C.A.R.), Santiago, Chile 8370146; Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile (O.P.), Santiago, Chile 8330073; Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1064 (A.M.K., S.M.B.), Nantes, France 44093; and Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile (A.M.K.), Santiago, Chile 8330074
| | - Luis Venegas
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (P.A.N., H.F.P., F.J.S.-E., A.M.K., S.A.M.), Santiago, Chile 8331150; Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello (R.M.C.), Santiago, Chile 8370146; Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello (M.C.O., L.V., C.A.R.), Santiago, Chile 8370146; Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile (O.P.), Santiago, Chile 8330073; Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1064 (A.M.K., S.M.B.), Nantes, France 44093; and Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile (A.M.K.), Santiago, Chile 8330074
| | - Oslando Padilla
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (P.A.N., H.F.P., F.J.S.-E., A.M.K., S.A.M.), Santiago, Chile 8331150; Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello (R.M.C.), Santiago, Chile 8370146; Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello (M.C.O., L.V., C.A.R.), Santiago, Chile 8370146; Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile (O.P.), Santiago, Chile 8330073; Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1064 (A.M.K., S.M.B.), Nantes, France 44093; and Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile (A.M.K.), Santiago, Chile 8330074
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (P.A.N., H.F.P., F.J.S.-E., A.M.K., S.A.M.), Santiago, Chile 8331150; Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello (R.M.C.), Santiago, Chile 8370146; Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello (M.C.O., L.V., C.A.R.), Santiago, Chile 8370146; Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile (O.P.), Santiago, Chile 8330073; Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1064 (A.M.K., S.M.B.), Nantes, France 44093; and Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile (A.M.K.), Santiago, Chile 8330074
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (P.A.N., H.F.P., F.J.S.-E., A.M.K., S.A.M.), Santiago, Chile 8331150; Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello (R.M.C.), Santiago, Chile 8370146; Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello (M.C.O., L.V., C.A.R.), Santiago, Chile 8370146; Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile (O.P.), Santiago, Chile 8330073; Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1064 (A.M.K., S.M.B.), Nantes, France 44093; and Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile (A.M.K.), Santiago, Chile 8330074
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (P.A.N., H.F.P., F.J.S.-E., A.M.K., S.A.M.), Santiago, Chile 8331150; Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello (R.M.C.), Santiago, Chile 8370146; Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello (M.C.O., L.V., C.A.R.), Santiago, Chile 8370146; Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile (O.P.), Santiago, Chile 8330073; Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1064 (A.M.K., S.M.B.), Nantes, France 44093; and Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile (A.M.K.), Santiago, Chile 8330074
| |
Collapse
|
50
|
Khedoe PPSJ, Rensen PCN, Berbée JFP, Hiemstra PS. Murine models of cardiovascular comorbidity in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1011-27. [PMID: 26993520 DOI: 10.1152/ajplung.00013.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/15/2016] [Indexed: 01/12/2023] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) have an increased risk for cardiovascular disease (CVD). Currently, COPD patients with atherosclerosis (i.e., the most important underlying cause of CVD) receive COPD therapy complemented with standard CVD therapy. This may, however, not be the most optimal treatment. To investigate the link between COPD and atherosclerosis and to develop specific therapeutic strategies for COPD patients with atherosclerosis, a substantial number of preclinical studies using murine models have been performed. In this review, we summarize the currently used murine models of COPD and atherosclerosis, both individually and combined, and discuss the relevance of these models for studying the pathogenesis and development of new treatments for COPD patients with atherosclerosis. Murine and clinical studies have provided complementary information showing a prominent role for systemic inflammation and oxidative stress in the link between COPD and atherosclerosis. These and other studies showed that murine models for COPD and atherosclerosis are useful tools and can provide important insights relevant to understanding the link between COPD and CVD. More importantly, murine studies provide good platforms for studying the potential of promising (new) therapeutic strategies for COPD patients with CVD.
Collapse
Affiliation(s)
- P Padmini S J Khedoe
- Department of Pulmonology, Leiden University Medical Center, the Netherlands; Department of Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands; and
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands; and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands
| | - Jimmy F P Berbée
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands; and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, the Netherlands
| |
Collapse
|