1
|
Sharma N, Kumar V, Bari A, Venugopal R, Sharma S, Agarwal T, Dada T, Pushker N. The clinical outcomes of minor salivary gland transplantation for severe dry eye disease secondary to chronic Stevens-Johnson syndrome. Ocul Surf 2024; 34:277-282. [PMID: 39128650 DOI: 10.1016/j.jtos.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/15/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE To study the outcomes of minor salivary gland transplantation for severe dry eye disease secondary to chronic Steven Johnson Syndrome. METHODS It was an ambispective, interventional case series conducted at Rajendra Prasad Centre for Ophthalmic Sciences, Delhi, India from 2022 to 2023 evaluating the outcomes of minor salivary gland transplantation with anchorage of the minor salivary glands to superior rectus muscle in twenty cases of severe dry eye disease secondary to chronic Steven-Johnson Syndrome. The pre-operative clinical parameters were compared to those at post-operative 1 year follow-up. RESULTS At 1 year follow-up, there was an improvement in mean Schirmer-1 value (p = 0.0004), hyperemia score (p = 0.0004), keratinization score (p = 0.04), corneal epithelial defect score (p = 0.0004), corneal opacification score (p = 0.001), corneal neovascularization score (p = 0.001), palisades of Vogt score (p = 0.007), corneal keratinization score (p = 0.04) and corneal conjunctivalization score (p = 0.08). CONCLUSION The minor salivary gland transplantation is a viable management option for cases with severe dry eye disease secondary to chronic Steven Johnson Syndrome with clinical improvement in corneal and conjunctival parameters of the ocular surface.
Collapse
Affiliation(s)
- Namrata Sharma
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India, Pin -110029.
| | - Vishal Kumar
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India, Pin -110029.
| | - Aafreen Bari
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India, Pin -110029.
| | - Renu Venugopal
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India, Pin -110029.
| | - Shivam Sharma
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India, Pin -110029.
| | - Tushar Agarwal
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India, Pin -110029.
| | - Tanuj Dada
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India, Pin -110029.
| | - Neelam Pushker
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India, Pin -110029.
| |
Collapse
|
2
|
C Zapico S, Roca G. A spit in time: identification of saliva stains and assessment of total DNA recovery up to 180 days after deposition. Forensic Sci Med Pathol 2024; 20:552-559. [PMID: 37581750 DOI: 10.1007/s12024-023-00691-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
The main aim of this work was to validate the detection of saliva samples from denim, cotton, and polyester fabrics aged up to six months, applying rapid immunochromatographic tests resulting in the analysis of nuclear and mitochondrial DNA recovered. A comparison was also carried out between two saliva detection tests, Laboratory and Crime Scene. 50 μl saliva samples (three per time and test) were deposited on denim, cotton, and polyester fabrics. After 1, 3, 7, 14, 21, 30, 60, 90, 150, and 180 days of storage at room temperature, the samples were recovered by swabbing and detected by SERATEC® Amylase (Laboratory) test and SERATEC® SALIVA CS (Crime Scene) test (SERATEC®, Göttingen, Germany). DNA was isolated from the swab extraction buffer applying a silica-based methodology, and quantified based on fluorescent and human-specific quantifications. Then, it was submitted to STR profiling and mtDNA sequencing. According to our results, saliva stains up to six months after deposition remain valid specimens. The intensity of the bands varied among fabric type and time. Total DNA was successfully recovered from all tested samples, though with the limitations of obtaining partial nuclear DNA profiles from the oldest samples. In contrast, complete characterization of mtDNA was achieved from all samples. Lab and CS tests performed similar on the detection of saliva, as well as, DNA yield and profiling. Future research will be able to expand these results, analyzing the stability of other body fluids and the sensitivity of rapid immunochromatographic tests to detect them.
Collapse
Affiliation(s)
- Sara C Zapico
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 161 Warren Street, Tiernan Hall, 365, Newark, New Jersey, 07102, USA.
- Smithsonian Institution, National Museum of Natural History, Anthropology Department, 10th and Constitution Ave, PO 37012, NW, 20560, Washington DC, USA.
| | - Gabriela Roca
- SERATEC®, Gesellschaft für Biotechnologie mbH. Ernst-Ruhstrat-Strasse 5, Göttingen, 37079, Germany
| |
Collapse
|
3
|
Ghemrawi M, Fernandez-Tejero N, Vaquero L, Wanna A, Carmel JH, McCord B. An examination of differences in epigenetic methylation of saliva type samples based on collection method. Electrophoresis 2024; 45:897-905. [PMID: 38385810 DOI: 10.1002/elps.202300240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/23/2024]
Abstract
In the context of forensic casework, it is imperative to both establish a DNA profile from biological specimens and accurately identify the specific bodily fluid source. To achieve this, DNA methylation markers have been developed for the differentiation of blood, semen, vaginal epithelial secretions, and saliva samples. Saliva, alternatively referred to as oral fluid, is recognized for its heterogeneous cellular composition, characterized by a mixture of epithelial, leukocytic, and bacterial cells. Consequently, our research has revealed variations in methylation percentages that correlate with the method employed for collecting saliva samples. To investigate these concepts, we scrutinized four CpG markers situated within or in proximity to the BCAS4, SLC12A8, SOX2OT, and FAM43A genes. Subsequently, we designed primers based on bioinformatically transformed reference sequences for these markers and rigorously assessed their quality by examining dimer and hairpin formation, melting temperature, and specificity. These loci were identified as saliva markers based on either buccal swabs or spit collection. Yet, there has been minimal or no research conducted to explore the variations in methylation between different collection methods. For this study, buccal, lip, tongue, spit, and nasal swabs were collected from 20 individuals (N = 100). Mock forensic samples, which include chewing gum (N = 10) and cigarettes (N = 10), were also tested. DNA was extracted, bisulfite converted, then amplified using in-house designed assays, and pyrosequenced. The methylation levels were compared to other body fluids (semen, blood, vaginal epithelia, and menstrual blood [N = 32]). A total of 608 pyrosequencing results demonstrated that sampling location and collection method can greatly influence the level of methylation, highlighting the importance of examining multiple collection/deposition methods for body fluids when developing epigenetic markers.
Collapse
Affiliation(s)
- Mirna Ghemrawi
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Nicole Fernandez-Tejero
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Lia Vaquero
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Amani Wanna
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Justin H Carmel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Bruce McCord
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| |
Collapse
|
4
|
Sarf EA, Dyachenko EI, Bel’skaya LV. Salivary Tryptophan as a Metabolic Marker of HER2-Negative Molecular Subtypes of Breast Cancer. Metabolites 2024; 14:247. [PMID: 38786723 PMCID: PMC11123106 DOI: 10.3390/metabo14050247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Changes in the concentration of tryptophan (Trp) indicate a serious metabolic restructuring, which is both a cause and a consequence of many diseases. This work examines the upward change in salivary Trp concentrations among patients with breast cancer. This study involved volunteers divided into three groups: breast cancer (n = 104), non-malignant breast pathologies (n = 30) and healthy controls (n = 20). In all participants, before treatment, the quantitative content of Trp in saliva was determined by capillary electrophoresis. In 20 patients with breast cancer, Trp was re-tested four weeks after surgical removal of the tumor. An increase in the Trp content in saliva in breast cancer has been shown, which statistically significantly decreases after surgical removal of the tumor. A direct correlation was found between increased Trp levels with the degree of malignancy and aggressive molecular subtypes of breast cancer, namely triple negative and luminal B-like HER2-negative. These conclusions were based on an increase in Ki-67 and an increase in Trp in HER2-negative and progesterone-negative subtypes. Factors under which an increase in Trp concentration in saliva was observed were identified: advanced stage of breast cancer, the presence of regional metastasis, low tumor differentiation, a lack of expression of HER2, estrogen and progesterone receptors and the high proliferative activity of the tumor. Thus, the determination of salivary Trp may be a valuable tool in the study of metabolic changes associated with cancer, particularly breast cancer.
Collapse
Affiliation(s)
| | | | - Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia; (E.A.S.); (E.I.D.)
| |
Collapse
|
5
|
Nazir S. Salivary biomarkers: The early diagnosis of Alzheimer's disease. Aging Med (Milton) 2024; 7:202-213. [PMID: 38725701 PMCID: PMC11077336 DOI: 10.1002/agm2.12282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 05/12/2024] Open
Abstract
The precise identification of Alzheimer's disease and other prevalent neurodegenerative diseases remains a difficult issue that requires the development of early detection of the disease and inexpensive biomarkers that can replace the present cerebrospinal fluid and imaging biomarkers. Blood biomarkers, such as amyloid and neurofilament light, have been emphasized as an important and practical tool in a testing or examination procedure thanks to advancements in ultra-sensitive detection techniques. Although saliva is not currently being researched for neurodegenerative diseases, it is an important source of biomarkers that can be used for the identification of diseases and has some advantages over other biofluids. While this may be true for most people, getting saliva from elderly people presents some significant challenges. In this overview, we will first discuss how saliva is created and how aging-related illnesses may affect the amount and kind of saliva produced. The findings support the use of salivary amyloid protein, tau species, and novel biomarkers in the diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Sophia Nazir
- Wolfson Nanomaterials and Devices Laboratory, School of Computing, Electronics and MathematicsPlymouth UniversityDevonUK
| |
Collapse
|
6
|
Kumar H, Mandal S, Yadav R, Gupta S, Meena H, Kadu M, Kudawla R, Sharma P, Kaur IP, Maiti S, Ipsen JH, Bhatia T. Bottom-up approach to explore alpha-amylase assisted membrane remodelling. Chem Phys Lipids 2024; 259:105374. [PMID: 38176612 DOI: 10.1016/j.chemphyslip.2023.105374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Soluble alpha-amylases play an important role in the catabolism of polysaccharides. In this work, we show that the malt α -amylase can interact with the lipid membrane and further alter its mechanical properties. Vesicle fluctuation spectroscopy is used for quantitative measurement of the membrane bending rigidity of phosphatidylcholines lipid vesicles from the shape fluctuation based on the whole contour of Giant Unilamellar Vesicles (GUVs). The bending rigidity of the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipid vesicles in water increases significantly with the presence of 0.14 micromolar alpha-amylase (AA) in the exterior solution. It appears that the enzyme present in the external solution interacts with the outer layer of the bilayer membrane, leading to an asymmetry of the solution on either side of the bilayer membrane and altering its elasticity. At AA concentration of 1.5 micromolars and above, changes in the morphology of the GUV membrane are observed. The interaction between AA in the external solution and the external leaflet causes the bilayer membrane to curve spontaneously, leading to the formation of outbuds, giving a positive spontaneous curvature of C0 ≤ 0.05 μm-1 at ≈ 1 mg / ml of the AA concentration. We validate and characterize its concentration-dependent role in stabilizing the membrane curvature. Our findings indicate that the involvement of the enzyme, depending on the concentration, can have a considerable effect on the mechanical characteristics of the membrane.
Collapse
Affiliation(s)
- Harshit Kumar
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli, SAS Nagar, Punjab 140306, India
| | - Sayar Mandal
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli, SAS Nagar, Punjab 140306, India
| | - Reena Yadav
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli, SAS Nagar, Punjab 140306, India
| | - Suhasi Gupta
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli, SAS Nagar, Punjab 140306, India
| | - Hemraj Meena
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli, SAS Nagar, Punjab 140306, India
| | - Mayur Kadu
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli, SAS Nagar, Punjab 140306, India
| | - Rajni Kudawla
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli, SAS Nagar, Punjab 140306, India
| | - Pratibha Sharma
- University Institute of Pharmaceutical Sciences, Punjab University, Sector 14, Chandigarh 160014, Punjab, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Punjab University, Sector 14, Chandigarh 160014, Punjab, India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli, SAS Nagar, Punjab 140306, India
| | - John H Ipsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej, Odense, 5230 M, Denmark.
| | - Tripta Bhatia
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
7
|
Chiba-Ohkuma R, Chiba T, Miake Y, Mishima H, Yamakoshi Y. Comparative study of tissue structure and composition of human and dog supragingival tartar. Arch Oral Biol 2024; 157:105829. [PMID: 37913566 DOI: 10.1016/j.archoralbio.2023.105829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE Only a few anatomical studies have compared tartar between humans and animals. This study aimed to compare the structure and chemical composition of human and dog supragingival tartars using histological and analytical methods. DESIGN Supragingival tartar samples were obtained from humans and indoor dogs with advanced periodontal disease. Tartar samples were analysed using X-ray micro-computed tomography, scanning electron microscopy, transmission electron microscopy, scanning electron microscopy-energy dispersive X-ray spectroscopy, electron probe X-ray microanalysis, and X-ray diffraction. RESULTS Layered structures and cavities were found inside the tartar; however, cavities were more common in dogs than in humans. Ca and P were distributed throughout the human tartar; however, P was not detected in some internal regions in dog tartar. The Ca/P ratio of dog supragingival tartar was 1.98 ± 0.10, which was higher than that of hydroxyapatite (1.67) and human supragingival tartar (1.73 ± 0.16). Needle-like crystals were observed in human tartar, such as carbonate apatite (CO3Ap). Numerous plate-like crystals were observed in the dog tartar, and it contained both calcite (calcium carbonate; CaCO3) and CO3AP. CONCLUSIONS Dog supragingival tartar contains more organic matter than human supragingival tartar. The crystal structure of dog tartar differs from that of humans and contains mixed calcite and CO3AP.
Collapse
Affiliation(s)
- Risako Chiba-Ohkuma
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Toshie Chiba
- Research Center of Electron Microscopy, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Yasuo Miake
- Department of Anatomy, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Hiroyuki Mishima
- Department of Dental Engineering, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| |
Collapse
|
8
|
Al Habobe H, Haverkort EB, Nazmi K, Van Splunter AP, Pieters RHH, Bikker FJ. The impact of saliva collection methods on measured salivary biomarker levels. Clin Chim Acta 2024; 552:117628. [PMID: 37931731 DOI: 10.1016/j.cca.2023.117628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Saliva diagnostics have become increasingly popular due to their non-invasive nature and patient-friendly collection process. Various collection methods are available, yet these are not always well standardized for either quantitative or qualitative analysis. In line, the objective of this study was to evaluate if measured levels of various biomarkers in the saliva of healthy individuals were affected by three distinct saliva collection methods: 1) unstimulated saliva, 2) chew stimulated saliva, and 3) oral rinse. Saliva samples from 30 healthy individuals were obtained by the three collection methods. Then, the levels of various salivary biomarkers such as proteins and ions were determined. It was found that levels of various biomarkers obtained from unstimulated saliva were comparable to those in chew stimulated saliva. The levels of potassium, sodium, and amylase activity differed significantly among the three collection methods. Levels of all biomarkers measured using the oral rinse method significantly differed from those obtained from unstimulated and chew-stimulated saliva. In conclusion, both unstimulated and chew-stimulated saliva provided comparable levels for a diverse group of biomarkers. However, the results obtained from the oral rinse method significantly differed from those of unstimulated and chew-stimulated saliva, due to the diluted nature of the saliva extract.
Collapse
Affiliation(s)
- H Al Habobe
- Research Group Innovative Testing in Life Sciences and Chemistry, Research Centre for Healthy and Sustainable Living, University of Applied Sciences Utrecht, The Netherlands; Institute for Risk Assessment Sciences, Faculty of Veterinary Medicines, Utrecht University, The Netherlands; Dept of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands.
| | - E B Haverkort
- Research Group Innovations in Preventive Care, Utrecht University of Applied Sciences, The Netherlands
| | - K Nazmi
- Dept of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - A P Van Splunter
- Dept of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - R H H Pieters
- Research Group Innovative Testing in Life Sciences and Chemistry, Research Centre for Healthy and Sustainable Living, University of Applied Sciences Utrecht, The Netherlands; Institute for Risk Assessment Sciences, Faculty of Veterinary Medicines, Utrecht University, The Netherlands
| | - F J Bikker
- Dept of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Vishnu JP, Gautam A, Mishra SP, Durrani F, Imran F, Kumari E. Comparative evaluation of mucin and total protein in periodontal disease before and after nonsurgical periodontal therapy. J Indian Soc Periodontol 2024; 28:84-90. [PMID: 38988956 PMCID: PMC11232802 DOI: 10.4103/jisp.jisp_258_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 07/12/2024] Open
Abstract
Background Periodontal ailments cause a quantum leap in the biomarker profile of the saliva. This profile is, in fact, the epiphany of the scale and extent of the disease. Both gingivitis and periodontitis are chronic inflammatory diseases with a step-grade progression. The study aimed to determine the response of the host in these conditions by analyzing concentrations of salivary mucin and total protein activity, before and after nonsurgical periodontal therapy (NSPT). Materials and Methods Sixty adult subjects were clinically examined and divided into three groups (n = 20) according to the clinical assessment and categorized as Group I (healthy), Group II (gingivitis), and Group III (chronic periodontitis). Whole saliva was collected, and salivary mucin and total protein levels were quantitatively measured at baseline in all the groups and additionally after NSPT in Groups II and III. Results Levels of mucin and total protein increased in patients with gingivitis and periodontitis. There was a slight decline in mucin levels in periodontitis patients in comparison with the gingivitis group. A positive correlation was found between the respective clinical parameters of both the groups along with their levels of salivary mucin and total protein. It indicated that the response of salivary glands to increase their protective potential caused the change among the groups. Conclusion Periodontal diseases induce an increase in the levels of mucins and proteins, which is believed as the action of the salivary glands to protect the oral cavity and put off the chaos caused by the microorganisms.
Collapse
Affiliation(s)
- J P Vishnu
- Department of Periodontology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Anju Gautam
- Department of Periodontology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Surendra Pratap Mishra
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Farhan Durrani
- Department of Periodontology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Fouzia Imran
- Department of Periodontology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ekta Kumari
- Department of Periodontology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
10
|
Khoury ZH, Sultan AS. Prosthodontic implications of saliva and salivary gland dysfunction. J Prosthodont 2023; 32:766-775. [PMID: 37302138 DOI: 10.1111/jopr.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023] Open
Abstract
PURPOSE To provide a detailed overview of the fundamentals of saliva constituents and production. The review outlines the clinical manifestations as a consequence of salivary gland dysfunction and management strategies for patients with salivary gland dysfunction. Prosthodontic implications of saliva and salivary gland dysfunction are presented. MATERIALS AND METHODS English-language literature relating to saliva constituents, physiologic saliva production, clinical manifestations secondary to salivary gland dysfunction, salivary biomarkers, and management strategies were retrieved via electronic search. Relevant articles were summarized for this manuscript with a view toward providing pragmatic information. RESULTS Saliva is produced by three pairs of major and minor salivary glands. The major salivary glands, namely, the parotid, submandibular, and sublingual glands, contribute approximately 90% of saliva production. Saliva contains serous and mucinous secretions produced by different types of cells within salivary glands. Parasympathetic and sympathetic fibers innervate the major salivary glands, and upon stimulation, the parasympathetic innervation increases serous secretions, while the sympathetic innervation increases protein secretion. Stimulated saliva is mainly derived from the parotid glands which are composed of serous acini, while unstimulated saliva is mainly derived from the submandibular glands which are composed of mixed seromucous acini. As major salivary glands contribute the most to salivary flow, local or systemic factors influencing those glands can disrupt saliva production resulting in clinically significant oral manifestations. CONCLUSION This review provides a fundamental overview of saliva production. In addition, the review highlights the various clinical manifestations secondary to salivary gland dysfunction, explores salivary biomarkers for screening of systemic diseases, discusses management strategies for patients with salivary gland dysfunction, and outlines the prosthodontic implications of saliva and salivary gland dysfunction.
Collapse
Affiliation(s)
- Zaid H Khoury
- Department of Oral Diagnostic Sciences and Research, Meharry Medical College, School of Dentistry, Nashville, Tennessee, USA
| | - Ahmed S Sultan
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Yoshikuni Y, Iijima M, Takahashi G, Okumura T, Kogure T, Suzuki M. Effect of phosphoproteins on intracellular calcification of bacteria. Eur J Oral Sci 2023; 131:e12929. [PMID: 36929523 DOI: 10.1111/eos.12929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023]
Abstract
This study aimed to evaluate the effects of phosphoproteins on bacterial mineralization. Dental calculus formation is attributed to bacterial mineralization in the oral cavity; however, the influence of phosphoproteins (which are abundant in saliva) is not clear. The model bacterium Escherichia coli was suspended in a calcification solution containing casein as a model phosphoprotein. To evaluate mineralization independent of bacterial metabolism, bacteria killed by heat treatment at 70°C were compared with viable bacteria. After incubation at 37°C for 24 h, the mode of calcification was observed using electron microscopy and energy dispersive x-ray spectroscopy. Solutions without casein produced precipitation in solution, which was identical to that in experiments without bacteria. In contrast, calcification solutions with 200 ppm casein only produced calcium phosphate deposition intracellularly. Without heat treatment, intracellular calcification rarely occurred, even when casein was added. Thus, phosphoproteins promoted intracellular calcification of dead bacteria; this is similar to the calcification of insoluble matrices, such as collagen fibrils, promoted by acidic polymers. We concluded that intracellular calcification is caused by the collagen fibril-like behavior of dead bacteria. The promotion of intracellular calcification of dead bacteria by phosphoproteins suggested a basic principle of dental calculus formation.
Collapse
Affiliation(s)
- Yukihisa Yoshikuni
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mayumi Iijima
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Gen Takahashi
- Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Taiga Okumura
- Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Toshihiro Kogure
- Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
12
|
Upadhyay M, Shrivastava P, Verma K, Joshi B. Recent advancements in identification and detection of saliva as forensic evidence: a review. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2023. [DOI: 10.1186/s41935-023-00336-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Abstract
Background
Saliva is the most common biological evidence found at any crime scene next to blood. It is a clear liquid which makes it immune to any possible evidence of alteration by the perpetrator. In forensics, saliva is used as biological evidence and is very helpful in determining various aspects of an individual such as sex, individuality, ABO blood groups, microbial signature, biomarkers, or habits like smoking.
Main body
Saliva shares a great resemblance with plasma as it encompasses similar organic or inorganic compound contents. In forensic casework, identifying any evidence is the primary goal to establish the groundwork for further investigation. Saliva may be found in the form of a pool or stained form, but its identification is challenging because of its transparency. It has been widely used as an informative tool in forensic situations like poisoning, hanging, or cases of drug abuse, etc. for more than two decades now. Over the years, many proposed ways or methods have been identified and described, which helped in the detection and identification of saliva as evidence.
Conclusion
This review article represents the significance of saliva as important forensic evidence, along with the different forms it may be encountered at the crime scene. The use of diverse collection and detection methods, over the past few decades, has been discussed. An attempt has been made to collect the available data, highlighting the merit and demerits of different identification techniques. The relevant data has been collected from all the published and reported literature (1987–2021).
Collapse
|
13
|
Kékedy-Nagy L, Perry JM, Little SR, Llorens OY, Shih SCC. An electrochemical aptasensor for Δ 9-tetrahydrocannabinol detection in saliva on a microfluidic platform. Biosens Bioelectron 2023; 222:114998. [PMID: 36549107 DOI: 10.1016/j.bios.2022.114998] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
We present a novel "on-off", cost-effective, rapid electrochemical aptasensor combined with a microfluidics cartridge system for the detection of Δ9-THC (Δ9-tetrahydrocannabinol) in human saliva via differential pulse voltammetry. The assay relied on the competitive binding between the Δ9-THC and a soluble redox indicator methylene blue, using an aptamer selected via FRELEX. We found that the aptasensor can detected 1 nM of Δ9-THC in PBS in a three-electrode cell system, while the sensitivity and both the dissociation constant (Kd) and association constant (Kb) were dependent on the aptamer density. The aptamer also showed great affinity towards Δ9-THC when tested against cannabinol and cannabidiol. The same limit of detection of 1 nM in PBS was achieved in small volume samples (∼60 μL) using the aptamer-modified gold screen-printed electrodes combined with the microfluidic cartridge setup, however, the presence of 10% raw human saliva had a negative effect which manifested in a 10-fold increase in the LOD due to interfering elements. Filtering the saliva, improved the tested volume to 50% and the LOD to 5 nM of Δ9-THC which is lower than the concentrations associated with impairment (6.5-32 nM). The aptasensor showed a good storage capability up to 3 days, however, the reusability significantly dropped from 10 cycles (freshly prepared) to 5 cycles. The results clearly demonstrate the feasibility of the aptasensor platform with the microfluidics chamber towards a point-of-care testing application for the detection of Δ9-THC in saliva.
Collapse
Affiliation(s)
- László Kékedy-Nagy
- Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd West, Montreal, Quebec, H3G1M8, Canada; Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B1R6, Canada
| | - James M Perry
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B1R6, Canada; Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B1R6, Canada
| | - Samuel R Little
- Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd West, Montreal, Quebec, H3G1M8, Canada; Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B1R6, Canada
| | - Oriol Y Llorens
- Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd West, Montreal, Quebec, H3G1M8, Canada; Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B1R6, Canada
| | - Steve C C Shih
- Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd West, Montreal, Quebec, H3G1M8, Canada; Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B1R6, Canada; Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B1R6, Canada.
| |
Collapse
|
14
|
Microbiota-dependent and -independent postnatal development of salivary immunity. Cell Rep 2023; 42:111981. [PMID: 36640306 DOI: 10.1016/j.celrep.2022.111981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/12/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
While saliva regulates the interplay between the microbiota and the oral immune system, the mechanisms establishing postnatal salivary immunity are ill-defined. Here, we show that high levels of neutrophils and neonatal Fc receptor (FcRn)-transferred maternal IgG are temporarily present in the neonatal murine salivary glands in a microbiota-independent manner. During weaning, neutrophils, FcRn, and IgG decrease in the salivary glands, while the polymeric immunoglobulin receptor (pIgR) is upregulated in a growth arrest-specific 6 (GAS6)-dependent manner independent of the microbiota. Production of salivary IgA begins following weaning and relies on CD4-help, IL-17, and the microbiota. The weaning phase is characterized by a transient accumulation of dendritic cells capable of migrating from the oral mucosa to the salivary glands upon exposure to microbial challenges and activating T cells. This study reveals the postnatal mechanisms developed in the salivary glands to induce immunity and proposes the salivary glands as an immune inductive site.
Collapse
|
15
|
Agorastos G, van Halsema E, Bast A, Klosse P. On the importance of saliva in mouthfeel sensations. Int J Gastron Food Sci 2023. [DOI: 10.1016/j.ijgfs.2023.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Ramírez Thomé S, Ávila Curiel B, Hernández Huerta MT, Solórzano Mata C. β-defensinas como posibles indicadores de la actividad inflamatoria en la enfermedad periodontal. INVESTIGACIÓN CLÍNICA 2022. [DOI: 10.54817/ic.v63n4a08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Periodontal disease (gingivitis and periodontitis) is an inflam-matory process caused by the activity of pathogenic bacteria and their products on the gingival sulcus, with the consequent activation of the immune response. Saliva and crevicular fluid contain a wide variety of enzymes and antimicrobial factors that are in contact with the supragingival and subgingival region, in-cluding β-defensins (hBDs). hHBDs are non-glycosylated, cysteine-rich cationic peptides produced by epithelial cells with antimicrobial and immunoregulatory effects, thus contributing to maintaining homeostasis in periodontal tissues. The changes in the microbiota and the immune response from a healthy peri-odontium to gingivitis and, finally, to periodontitis are complex. Their sever-ity depends on a dynamic balance between bacteria associated with plaque, genetic and environmental factors. Recent advances have made it possible to understand the implication of hBDs in the detection, diagnosis, and therapy of periodontal disease and the relationship between periodontitis and other inflammatory conditions. This review aims to describe the effect of hBDs on the immune response and its use as a possible marker of the inflammatory activity of the periodontal disease.
Collapse
Affiliation(s)
- Saira Ramírez Thomé
- Facultad de Odontología. Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
| | | | | | - Carlos Solórzano Mata
- Facultad de Odontología. Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
| |
Collapse
|
17
|
Abney SE, Wilson AM, Ijaz MK, McKinney J, Reynolds KA, Gerba CP. Minding the matrix: The importance of inoculum suspensions on finger transfer efficiency of virus. J Appl Microbiol 2022; 133:3083-3093. [PMID: 35916494 DOI: 10.1111/jam.15758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 01/07/2023]
Abstract
AIMS The aim of this study was to determine how the transfer efficiency of MS-2 coliphage from the toilet seat to hands and fingertip to lip differs according to the suspension of the inoculum. METHODS AND RESULTS Hands were sampled after lifting a toilet seat which was inoculated with MS-2 on the underneath side. MS-2 was suspended in a spectrum of proteinaceous and non-proteinaceous solutions. Transfer efficiencies were greatest with the ASTM tripartite soil load (3.02% ± 4.03) and lowest with phosphate-buffered saline (PBS) (1.10% ± 0.81) for hand-to-toilet seat contacts. Finger-to-lip transfer rates were significantly different (p < 0.05) depending on suspension matrix, with PBS yielding the highest transfer (52.53% ± 4.48%) and tryptose soy broth (TSB) the lowest (23.15% ± 24.27%). Quantitative microbial risk assessment was used to estimate the probability of infection from adenovirus and norovirus from finger contact with a toilet seat. CONCLUSIONS The greatest transfer as well as the largest variation of transfer were measured for finger-to-lip contacts as opposed to toilet seat-to-finger contacts. These factors influence the estimation of the probability of infection from micro-activity, that is, toilet seat adjustment. SIGNIFICANCE AND IMPACT Viruses may be transferred from various human excreta with differing transfer efficiencies, depending on the protein content.
Collapse
Affiliation(s)
- Sarah E Abney
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| | - Amanda M Wilson
- Department of Community, Environment, and Policy, University of Arizona, Tucson, Arizona, USA
| | - M Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, New Jersey, USA.,Department of Biology, Medgar Evers College of the City University of New York (CUNY), Brooklyn, New York, USA
| | - Julie McKinney
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, New Jersey, USA
| | - Kelly A Reynolds
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA.,Department of Community, Environment, and Policy, University of Arizona, Tucson, Arizona, USA
| | - Charles P Gerba
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
18
|
Non-Invasive Nasal Discharge Fluid and Other Body Fluid Biomarkers in Alzheimer’s Disease. Pharmaceutics 2022; 14:pharmaceutics14081532. [PMID: 35893788 PMCID: PMC9330777 DOI: 10.3390/pharmaceutics14081532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The key to current Alzheimer’s disease (AD) therapy is the early diagnosis for prompt intervention, since available treatments only slow the disease progression. Therefore, this lack of promising therapies has called for diagnostic screening tests to identify those likely to develop full-blown AD. Recent AD diagnosis guidelines incorporated core biomarker analyses into criteria, including amyloid-β (Aβ), total-tau (T-tau), and phosphorylated tau (P-tau). Though effective, the accessibility of screening tests involving conventional cerebrospinal fluid (CSF)- and blood-based analyses is often hindered by the invasiveness and high cost. In an attempt to overcome these shortcomings, biomarker profiling research using non-invasive body fluid has shown the potential to capture the pathological changes in the patients’ bodies. These novel non-invasive body fluid biomarkers for AD have emerged as diagnostic and pathological targets. Here, we review the potential peripheral biomarkers, including non-invasive peripheral body fluids of nasal discharge, tear, saliva, and urine for AD.
Collapse
|
19
|
Ahlawat A, Mishra SK, Herrmann H, Rajeev P, Gupta T, Goel V, Sun Y, Wiedensohler A. Impact of Chemical Properties of Human Respiratory Droplets and Aerosol Particles on Airborne Viruses' Viability and Indoor Transmission. Viruses 2022; 14:v14071497. [PMID: 35891477 PMCID: PMC9318922 DOI: 10.3390/v14071497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
The airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as a potential pandemic challenge, especially in poorly ventilated indoor environments, such as certain hospitals, schools, public buildings, and transports. The impacts of meteorological parameters (temperature and humidity) and physical property (droplet size) on the airborne transmission of coronavirus in indoor settings have been previously investigated. However, the impacts of chemical properties of viral droplets and aerosol particles (i.e., chemical composition and acidity (pH)) on viability and indoor transmission of coronavirus remain largely unknown. Recent studies suggest high organic content (proteins) in viral droplets and aerosol particles supports prolonged survival of the virus by forming a glassy gel-type structure that restricts the virus inactivation process under low relative humidity (RH). In addition, the virus survival was found at neutral pH, and inactivation was observed to be best at low (<5) and high pH (>10) values (enveloped bacteriophage Phi6). Due to limited available information, this article illustrates an urgent need to research the impact of chemical properties of exhaled viral particles on virus viability. This will improve our fundamental understanding of indoor viral airborne transmission mechanisms.
Collapse
Affiliation(s)
- Ajit Ahlawat
- Leibniz Institute for Tropospheric Research, 04318 Leipzig, Germany; (H.H.); (A.W.)
- Correspondence:
| | | | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research, 04318 Leipzig, Germany; (H.H.); (A.W.)
| | - Pradhi Rajeev
- Department of Civil Engineering, Indian Institute of Technology (IIT), Kanpur 208016, India; (P.R.); (T.G.)
| | - Tarun Gupta
- Department of Civil Engineering, Indian Institute of Technology (IIT), Kanpur 208016, India; (P.R.); (T.G.)
| | - Vikas Goel
- School of Interdisciplinary Research, Indian Institute of Technology (IIT), Delhi 110016, India;
| | - Yele Sun
- LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100017, China;
| | - Alfred Wiedensohler
- Leibniz Institute for Tropospheric Research, 04318 Leipzig, Germany; (H.H.); (A.W.)
| |
Collapse
|
20
|
Morzel M, Canon F, Guyot S. Interactions between Salivary Proteins and Dietary Polyphenols: Potential Consequences on Gastrointestinal Digestive Events. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6317-6327. [PMID: 35583948 DOI: 10.1021/acs.jafc.2c01183] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present review documents the current knowledge and hypotheses on how polyphenols-saliva interactions may modulate the bioaccessibility or bioavailability of nutrients and highlights research prospects in the field. After an updated description of the different classes of dietary polyphenols and their modifications by food processing or digestion, an overview of interactions between salivary proteins and polyphenols (with an emphasis on tannins) is provided. In vitro studies show that the solubility of salivary protein-tannin complexes in gastric conditions depends on the degree of tannin polymerization, while complexes are partly solubilized by bile salts. Salivary proteins-polyphenols interactions may affect digestive processes. For example, polyphenols can bind to and inhibit salivary amylase, with downstream consequences on starch digestion. Some salivary proteins (PRPs) prevent tannin-induced reduced protein digestibility, probably through binding tannins before they interact with digestive proteases. Salivary proteins may also act as scavenger molecules to limit the intestinal uptake of tannins.
Collapse
Affiliation(s)
| | - Francis Canon
- Centre des Sciences du Goût et de l'Alimentation, UMR 1324 INRAE, UMR 6265 CNRS, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | | |
Collapse
|
21
|
Younas N, Fernandez Flores LC, Hopfner F, Höglinger GU, Zerr I. A new paradigm for diagnosis of neurodegenerative diseases: peripheral exosomes of brain origin. Transl Neurodegener 2022; 11:28. [PMID: 35527262 PMCID: PMC9082915 DOI: 10.1186/s40035-022-00301-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of maladies, characterized by progressive loss of neurons. These diseases involve an intricate pattern of cross-talk between different types of cells to maintain specific signaling pathways. A component of such intercellular cross-talk is the exchange of various types of extracellular vesicles (EVs). Exosomes are a subset of EVs, which are increasingly being known for the role they play in the pathogenesis and progression of neurodegenerative diseases, e.g., synucleinopathies and tauopathies. The ability of the central nervous system exosomes to cross the blood–brain barrier into blood has generated enthusiasm in their study as potential biomarkers. However, the lack of standardized, efficient, and ultra-sensitive methods for the isolation and detection of brain-derived exosomes has hampered the development of effective biomarkers. Exosomes mirror heterogeneous biological changes that occur during the progression of these incurable illnesses, potentially offering a more comprehensive outlook of neurodegenerative disease diagnosis, progression and treatment. In this review, we aim to discuss the challenges and opportunities of peripheral biofluid-based brain-exosomes in the diagnosis and biomarker discovery of Alzheimer’s and Parkinson’s diseases. In the later part, we discuss the traditional and emerging methods used for the isolation of exosomes and compare their advantages and disadvantages in clinical settings.
Collapse
|
22
|
Tokajuk J, Deptuła P, Piktel E, Daniluk T, Chmielewska S, Wollny T, Wolak P, Fiedoruk K, Bucki R. Cathelicidin LL-37 in Health and Diseases of the Oral Cavity. Biomedicines 2022; 10:1086. [PMID: 35625823 PMCID: PMC9138798 DOI: 10.3390/biomedicines10051086] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023] Open
Abstract
The mechanisms for maintaining oral cavity homeostasis are subject to the constant influence of many environmental factors, including various chemicals and microorganisms. Most of them act directly on the oral mucosa, which is the mechanical and immune barrier of the oral cavity, and such interaction might lead to the development of various oral pathologies and systemic diseases. Two important players in maintaining oral health or developing oral pathology are the oral microbiota and various immune molecules that are involved in controlling its quantitative and qualitative composition. The LL-37 peptide is an important molecule that upon release from human cathelicidin (hCAP-18) can directly perform antimicrobial action after insertion into surface structures of microorganisms and immunomodulatory function as an agonist of different cell membrane receptors. Oral LL-37 expression is an important factor in oral homeostasis that maintains the physiological microbiota but is also involved in the development of oral dysbiosis, infectious diseases (including viral, bacterial, and fungal infections), autoimmune diseases, and oral carcinomas. This peptide has also been proposed as a marker of inflammation severity and treatment outcome.
Collapse
Affiliation(s)
- Joanna Tokajuk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
- Dentistry and Medicine Tokajuk, Zelazna 9/7, 15-297 Bialystok, Poland
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, Mickiewicza 2B, 15-222 Białystok, Poland;
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| | - Sylwia Chmielewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland;
| | - Przemysław Wolak
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland;
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| |
Collapse
|
23
|
Poetsch M, Markwerth P, Konrad H, Bajanowski T, Helmus J. About the influence of environmental factors on the persistence of DNA - a long-term study. Int J Legal Med 2022; 136:687-693. [PMID: 35195781 PMCID: PMC9005405 DOI: 10.1007/s00414-022-02800-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/09/2022] [Indexed: 11/05/2022]
Abstract
DNA persistence and DNA transfer are important features in the assessment of a crime scene. The question how long DNA may persist at a certain location is similarly important as the one how the DNA has been transferred to this location. Depending on the source of the DNA as well as the conditions at the crime scene, the answer to this question is quite difficult. In this study, persistence of DNA from epithelial abrasions, blood cells, and saliva cells in indoor and outdoor scenarios has been investigated with regard to exposure time and exposure conditions including sunlight, temperature, and humidity in summer and winter scenarios. Overall, we generated 338 epithelial samples, 572 blood samples, and 572 saliva samples. A complete profile of the cell/DNA donor after exposure could be obtained in 47%, 65%, and 58% of epithelial abrasions, blood samples, and saliva samples, respectively. Regarding blood samples, there were no differences between supporting materials cloth and plastic; however, the percentage of complete profiles was higher for saliva samples on plastic and for epithelial samples on cloth. In indoor scenarios, complete profiles could be recovered from nearly all blood and saliva samples up to 9 months, whereas the amount of epithelial complete profiles already started to decline after 3 months. In outdoor scenarios, we observed a tipping point at an exposure time of 3 months. Blood and saliva samples collected after this period displayed complete profiles in less than 25% of samples. After 12 months, no outdoor sample showed a complete profile. The results of this study facilitate decisions on the relevance of recovered DNA from crime scenes.
Collapse
Affiliation(s)
- Micaela Poetsch
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany.
| | - Philipp Markwerth
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Helen Konrad
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Thomas Bajanowski
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Janine Helmus
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany
| |
Collapse
|
24
|
Nik Mohamed Kamal NNS, Shahidan WNS. Salivary Exosomes: From Waste to Promising Periodontitis Treatment. Front Physiol 2022; 12:798682. [PMID: 35069258 PMCID: PMC8766748 DOI: 10.3389/fphys.2021.798682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Periodontitis is a chronic inflammatory condition that causes tooth loss by destroying the supporting components of the teeth. In most cases, it is difficult to diagnose early and results in severe phases of the disease. Given their endogenous origins, exosomes, which are rich in peptides, lipids, and nucleic acids, have emerged as a cell-free therapeutic approach with low immunogenicity and increased safety. Because the constituents of exosomes can be reprogrammed depending on disease states, exosomes are increasingly being evaluated to act as potential diagnostic biomarkers for dental disease, including periodontitis. Exosomes also have been demonstrated to be involved in inflammatory signal transmission and periodontitis progression in vitro, indicating that they could be used as therapeutic targets for periodontal regeneration. Nevertheless, a review on the involvement of salivary exosomes in periodontitis in impacting the successful diagnosis and treatment of periodontitis is still lacking in the literature. Thus, this review is intended to scrutinize recent advancements of salivary exosomes in periodontitis treatment. We summarize recent research reports on the emerging roles and characteristics of salivary exosomes, emphasizing the different expressions and changed biological roles of exosomes in periodontitis.
Collapse
|
25
|
Oxidative/anti-oxidative effects of colloidal silver ions and chlorhexidine in saliva and gingival fluid of periodontal patients. VOJNOSANIT PREGL 2022. [DOI: 10.2298/vsp200921137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background/Aim. Chronic periodontitis is an inflammatory disease. Oxidative stress is an important factor in periodontitis progress, hence examining the antioxidative properties of antiseptics, such as chlorhexidine (CHX) and silver ions solution (SSI), is a beneficial biomarker in estimating the recovery of tissue impairment during periodontal disease treatment. Methods. This clinical trial was conducted on the control group referred to healthy volunteers and individuals with periodontal disease, divided into two subgroups: before and after applying antiseptic treatments (CHX or SSI). Measurements of oxidative/antioxidative parameters were addressed to determine thiobarbituric acid products (TBARS) concentration and total superoxide dismutase (tSOD) activity in saliva and gingival crevicular fluid (GCF) of periodontal patients. Results. TBARS concentration was increased in saliva before the CHX treatment compared to the periodontal group after the CHX treatment, as well as before both CHX and SSI antiseptic treatment in CGF, compared to controls and periodontal groups after the treatment. Patients before SSI treatment had increased tSOD activity in saliva compared to the control group treated with SSI, as well as compared to patients after the SSI treatment. Additionally, tSOD activity was increased in GCF in patients with periodontitis before antiseptic treatment (CHX, SSI) compared to the control or the group of patients after the appropriate treatment. Conclusion. Our results revealed elevated lipid peroxidation in CGF, which reflected the promotion of oxidative stress during periodontal inflammation. The study suggests that antiseptics with antioxidant properties may reduce tissue damage initiated by periodontal disease. Moreover, the determination of oxidative/antioxidative parameters can be important for diagnosing, monitoring, and prognosis of the clinical state of periodontal patients.
Collapse
|
26
|
|
27
|
Tonguc Altin K, Topcuoglu N, Duman G, Unsal M, Celik A, Selvi Kuvvetli S, Kasikci E, Sahin F, Kulekci G. Antibacterial effects of saliva substitutes containing lysozyme or lactoferrin against Streptococcus mutans. Arch Oral Biol 2021; 129:105183. [PMID: 34091207 DOI: 10.1016/j.archoralbio.2021.105183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To determine the antibacterial effects of different saliva-substitutes-containing-lysozyme(LYZ) or-lactoferrin(LF) on Streptococcus mutans(S. mutans) in comparison with human saliva. DESIGN In vitro wound-healing assay was performed with L929 mouse fibroblast cell line by using various concentrations of LYZ and LF to determine optimum concentrations and to confirm do not show any cytotoxicity of proteins according to cell culture studies. Antibacterial effect was assessed by determining Minimum Inhibitory Concentrations for all groups on S.mutans. Bacterial adhesion of S. mutans for 4 h on hydroxyapatite(HAP) discs after application of different saliva substitutes was evaluated. The formulations were:saliva-substitute(Group SS);saliva-substitute-containing-Lactoferrin(Group SSLF);saliva-substitute-containing-Lysozyme(Group SSLYZ). Human saliva was control group(Group HS). RESULTS In vitro wound healing assay results showed that, when added into the cell culture media, LYZ and LF significantly increase 48 -h scratch wound closure compared to the cell culture media(p < 0.0001). At the end of second day, samples treated with both between 2.5-100 μg/mL LF and 5-200 μg/mL LYZ were found to have significant wound healing effect(p < 001). It was observed that saliva-substitutes-containing-LYZ or-LF had antibacterial effects on S.mutans. Bacterial adhesion on HAP discs was observed significantly higher in control group than in study groups. The amount of adhered S. mutans was significantly higher in Group SS than other study groups(p < 0.0001). However, no statistically significant difference was found between the number of bacteria adhered to HAP discs between SSLYZ and SSLF groups(p > 0.05). CONCLUSIONS The study of cell viability and wound healing was great significance in the optimum concentrations of LYZ and LF. Among formulations, saliva-substitutes-containing-LYZ or-LF exhibited higher inhibitory effect on S.mutans.
Collapse
Affiliation(s)
- Kubra Tonguc Altin
- Yeditepe University, Faculty of Dentistry, Department of Pediatric Dentistry, Bağdat Caddesi, No: 238, 34728 Göztepe - Istanbul, Turkey.
| | - Nursen Topcuoglu
- Istanbul University, Faculty of Dentistry, Department of Oral Microbiology, Turgut Özal Caddesi (Millet Cd.), 34390 Istanbul, Turkey
| | - Gulengul Duman
- Yeditepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 26 Ağustos Kampusu, Kayisdağı Caddesi, 34755 Atasehir - Istanbul, Turkey
| | - Melis Unsal
- Yeditepe University, Faculty of Dentistry, Department of Pediatric Dentistry, Bağdat Caddesi, No: 238, 34728 Göztepe - Istanbul, Turkey
| | - Ayse Celik
- Yeditepe University, Faculty of Dentistry, Department of Pediatric Dentistry, Bağdat Caddesi, No: 238, 34728 Göztepe - Istanbul, Turkey
| | - Senem Selvi Kuvvetli
- Yeditepe University, Faculty of Dentistry, Department of Pediatric Dentistry, Bağdat Caddesi, No: 238, 34728 Göztepe - Istanbul, Turkey
| | - Ezgi Kasikci
- Yeditepe University, Faculty of Engineering, Department of Genetics and Bioengineering, 26 Ağustos Kampusu, Kayisdağı Caddesi, 34755 Atasehir, Istanbul, Turkey; Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York 10461, USA
| | - Fikrettin Sahin
- Yeditepe University, Faculty of Engineering, Department of Genetics and Bioengineering, 26 Ağustos Kampusu, Kayisdağı Caddesi, 34755 Atasehir, Istanbul, Turkey
| | - Guven Kulekci
- Istanbul University, Faculty of Dentistry, Department of Oral Microbiology, Turgut Özal Caddesi (Millet Cd.), 34390 Istanbul, Turkey
| |
Collapse
|
28
|
Malik SD. Detection of Dried Saliva on Human Skin using an Ultra Violet Spectrometer: A Technical Report. J Forensic Dent Sci 2021. [DOI: 10.18311/jfds/12/1/2020.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction: Human beings produce saliva, which is a vital secreted fluid. A significant quantity of saliva is left on the skin while biting, sucking, or licking. This saliva if effectively detected could be utilized as forensic evidence. DNA extraction and typing is complex and expensive technique; hence, ultraviolet (UV) spectroscopy could be used as an effective tool in detecting saliva. Aim: The aim was to detect the presence of dried saliva on the human skin using a UV spectrometer. Materials and Methodology: In this study, 50 volunteers deposited their saliva on their own arm. The saliva was air‑dried, then, the absorption spectra were recorded utilizing the UV spectrometer. Results: Saliva was detected with 64% of samples showing a peak at 282 nm. The technique proved to be very specific and sensitive, and it did not deteriorate the sample. Conclusion: UV‑spectroscopy is a specific and technique sensitive method that could detect the presence of saliva without deteriorating the quality of the given sample.
Collapse
|
29
|
Niazi S, Groth R, Spann K, Johnson GR. The role of respiratory droplet physicochemistry in limiting and promoting the airborne transmission of human coronaviruses: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:115767. [PMID: 33243541 PMCID: PMC7645283 DOI: 10.1016/j.envpol.2020.115767] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/16/2020] [Accepted: 09/29/2020] [Indexed: 05/19/2023]
Abstract
Whether virulent human pathogenic coronaviruses (SARS-CoV, MERS-CoV, SARS-CoV-2) are effectively transmitted by aerosols remains contentious. Transmission modes of the novel coronavirus have become a hot topic of research with the importance of airborne transmission controversial due to the many factors that can influence virus transmission. Airborne transmission is an accepted potential route for the spread of some viral infections (measles, chickenpox); however, aerosol features and infectious inoculum vary from one respiratory virus to another. Infectious virus-laden aerosols can be produced by natural human respiratory activities, and their features are vital determinants for virus carriage and transmission. Physicochemical characteristics of infectious respiratory aerosols can influence the efficiency of virus transmission by droplets. This critical review identifies studies reporting instances of infected patients producing airborne human pathogenic coronaviruses, and evidence for the role of physical/chemical characteristics of human-generated droplets in altering embedded viruses' viability. We also review studies evaluating these viruses in the air, field studies and available evidence about seasonality patterns. Ultimately the literature suggests that a proportion of virulent human coronaviruses can plausibly be transmitted via the air, even though this might vary in different conditions. Evidence exists for respirable-sized airborne droplet nuclei containing viral RNA, although this does not necessarily imply that the virus is transmittable, capable of replicating in a recipient host, or that inoculum is sufficient to initiate infection. However, evidence suggests that coronaviruses can survive in simulated droplet nuclei for a significant time (>24 h). Nevertheless, laboratory nebulized virus-laden aerosols might not accurately model the complexity of human carrier aerosols in studying airborne viral transport. In summary, there is disagreement on whether wild coronaviruses can be transmitted via an airborne path and display seasonal patterns. Further studies are therefore required to provide supporting evidence for the role of airborne transmission and assumed mechanisms underlying seasonality.
Collapse
Affiliation(s)
- Sadegh Niazi
- Queensland University of Technology (QUT), Science and Engineering Faculty, School of Earth and Atmospheric Sciences, Brisbane, Australia
| | - Robert Groth
- Queensland University of Technology (QUT), Science and Engineering Faculty, School of Earth and Atmospheric Sciences, Brisbane, Australia
| | - Kirsten Spann
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Brisbane, Australia
| | - Graham R Johnson
- Queensland University of Technology (QUT), Science and Engineering Faculty, School of Earth and Atmospheric Sciences, Brisbane, Australia.
| |
Collapse
|
30
|
Yilbas BS, Hassan G, Yilbas AE, Abubakar AA, Al-Qahtani H. On the Mechanism of Human Saliva Interaction with Environmental Dust in Relation to Spreading of Viruses. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4714-4726. [PMID: 33835806 DOI: 10.1021/acs.langmuir.1c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Environmental effects such as dust mitigation can amplify the spread of viruses via inhaling infected dust particles. Infusion and the spreading rate of human saliva over the dust particles can play a critical role in contiguous virus spread. In the present study, mechanical and chemical interactions of human saliva with environmental dust particles are considered. The saliva droplet impact on dust particles is examined while mimicking saliva droplet spreading during coughing in a dusty ambience. The mechanisms of saliva infusion and cloaking on the dust particles are explored. The characteristics of saliva droplet normal and oblique impacts on a dust particle are examined experimentally and numerically to evaluate the amount of saliva residues on the impacted particle surface. The findings reveal that the saliva liquid infuses and cloaks the dust particle surfaces. The saliva droplet impact on the dust particles leaves a considerable amount of saliva residues on the impacted surfaces, which remain undried for a prolonged period in indoor environments. Weak adhesion of the saliva-infected dust particles on surfaces, such as glass surfaces, enables saliva-infected dust particles to rejoin neighboring ambient air while possessing a high potential for virus spreading.
Collapse
Affiliation(s)
- Bekir Sami Yilbas
- Mechanical Engineering Department, KFUPM, Dhahran 31261, Saudi Arabia
- Center of Research Excellence in Renewable Energy (CoRE-RE), KFUPM, Dhahran 31261, Saudi Arabia
- Senior Researcher at K.A.CARE Energy Research & Innovation Center, DTV, Dhahran 31261, Saudi Arabia
| | - Ghassan Hassan
- Mechanical Engineering Department, KFUPM, Dhahran 31261, Saudi Arabia
- Researcher at K.A.CARE Energy Research & Innovation Center, DTV, Dhahran 31261, Saudi Arabia
| | - Ayse Elif Yilbas
- University of Ottawa, General Surgery, Ottawa, ON K1N 6N5, Canada
| | - Abba A Abubakar
- Mechanical Engineering Department, KFUPM, Dhahran 31261, Saudi Arabia
| | | |
Collapse
|
31
|
Teixeira H, Branco AC, Rodrigues I, Silva D, Cardoso S, Colaço R, Serro AP, Figueiredo-Pina CG. Effect of albumin, urea, lysozyme and mucin on the triboactivity of Ti6Al4V/zirconia pair used in dental implants. J Mech Behav Biomed Mater 2021; 118:104451. [PMID: 33730640 DOI: 10.1016/j.jmbbm.2021.104451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
The titanium implant/zirconia abutment interface can suffer failure upon mechanical and biological issues, ultimately leading to the loss of the artificial tooth. The study of the effect of the organic compounds present in saliva on the tribological behavior of these systems is of utmost importance to understand the failure mechanisms and better mimic the in vivo conditions. The aim of the present work is to evaluate the effect of the addition of albumin, urea, lysozyme and mucin to artificial saliva, on the triboactivity of Ti6Al4V/zirconia pair commonly used in dental implants and then, compare the results with those obtained with human saliva. The solutions' viscosity was measured and the adsorption of the different biomolecules to both Ti6Al4V and zirconia was accessed. Tribological tests were performed using Ti6Al4V balls sliding on zirconia plates inside of a corrosion cell. Friction and wear coefficients were determined, and the open circuit potential (OCP) was monitored during the tests. Also, the wear mechanisms were identified. The presence of mucin in the artificial lubricant led to the lowest wear coefficients. The main wear mechanism was abrasion, independently of the used lubricant. Adhesive wear was observed for the systems without mucin. Tribocorrosion activity and wear coefficient were lower in the presence of mucin. None of the studied artificial lubricants mimicked the effect of human saliva (HS) on the tribological behavior of the studied pair since this lubricant led to the lowest friction coefficient and highest corrosion activity.
Collapse
Affiliation(s)
- H Teixeira
- Centro de Desenvolvimento de Produto e Transferência de Tecnologia (CDP2T), Department of Mechanical Engineering, Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, Setúbal, Portugal
| | - A C Branco
- Centro de Desenvolvimento de Produto e Transferência de Tecnologia (CDP2T), Department of Mechanical Engineering, Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, Setúbal, Portugal; Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Centro de investigação interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, Portugal
| | - I Rodrigues
- Centro de Desenvolvimento de Produto e Transferência de Tecnologia (CDP2T), Department of Mechanical Engineering, Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, Setúbal, Portugal; Centro de Física e Engenharia de Materiais Avançados (CeFEMA), Instituto Superior Técnico, University of Lisbon, Lisboa, Portugal
| | - D Silva
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - S Cardoso
- Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC-MN), Lisboa, Portugal
| | - R Colaço
- Instituto de Engenharia Mecânica (IDMEC), Departamento de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - A P Serro
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Centro de investigação interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, Portugal.
| | - C G Figueiredo-Pina
- Centro de Desenvolvimento de Produto e Transferência de Tecnologia (CDP2T), Department of Mechanical Engineering, Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, Setúbal, Portugal; Centro de investigação interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, Portugal; Centro de Física e Engenharia de Materiais Avançados (CeFEMA), Instituto Superior Técnico, University of Lisbon, Lisboa, Portugal
| |
Collapse
|
32
|
Ligtenberg AJM, Bikker FJ, Bolscher JGM. LFchimera: a synthetic mimic of the two antimicrobial domains of bovine lactoferrin. Biochem Cell Biol 2021; 99:128-137. [PMID: 33560169 DOI: 10.1139/bcb-2020-0285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Saliva is essential for the maintenance of oral health. When salivary flow is impaired, the risk of various oral diseases such as caries and candidiasis increases drastically. Under healthy conditions, saliva provides effective protection against microbial colonization by the collaborative action of numerous host-defense molecules. This review describes how saliva has been the guideline for the design and characterization of a heterodimeric antimicrobial construct called LFchimera. This construct mimics the helical parts of two antimicrobial domains in the crystal structure of bovine lactoferrin. It shows high antimicrobial activity against a broad spectrum of Gram-positive and Gram-negative bacteria, fungi, and parasites including biowarfare agents such as Bacillus anthracis, Burkholderia pseudomallei, and Yersinia pestis. Further, sublethal concentrations of LFchimera inhibited biofilm formation, the invasiveness of HeLa cells by Yersinia spp., and prevented haemolysis of enteropathogenic Escherichia coli, demonstrating the versatility of these peptides.
Collapse
Affiliation(s)
- A J M Ligtenberg
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, G. Mahlerlaan 3004, 1081LA Amsterdam, the Netherlands.,Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, G. Mahlerlaan 3004, 1081LA Amsterdam, the Netherlands
| | - F J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, G. Mahlerlaan 3004, 1081LA Amsterdam, the Netherlands.,Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, G. Mahlerlaan 3004, 1081LA Amsterdam, the Netherlands
| | - J G M Bolscher
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, G. Mahlerlaan 3004, 1081LA Amsterdam, the Netherlands.,Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, G. Mahlerlaan 3004, 1081LA Amsterdam, the Netherlands
| |
Collapse
|
33
|
Narayan RK, Kumari C, Panchal P, Ghosh SK, Kumar A. A macroscopic salivary gland and a potential organ or simply tubarial sero-mucinous glands? Radiother Oncol 2021; 154:324-325. [PMID: 33347865 DOI: 10.1016/j.radonc.2020.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Ravi K Narayan
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India
| | - Chiman Kumari
- Department of Anatomy, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - P Panchal
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India
| | - Sanjib K Ghosh
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India
| | - Ashutosh Kumar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India.
| |
Collapse
|
34
|
Fedorenko A, Grinberg M, Orevi T, Kashtan N. Survival of the enveloped bacteriophage Phi6 (a surrogate for SARS-CoV-2) in evaporated saliva microdroplets deposited on glass surfaces. Sci Rep 2020; 10:22419. [PMID: 33376251 PMCID: PMC7772334 DOI: 10.1038/s41598-020-79625-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Survival of respiratory viral pathogens in expelled saliva microdroplets is central to their transmission, yet the factors that determine survival in such microdroplets are not well understood. Here we combine microscopy imaging with virus viability assays to study survival of three bacteriophages suggested as good models for respiratory pathogens: the enveloped Phi6 (a surrogate for SARS-CoV-2), and the non-enveloped PhiX174 and MS2. We measured virus viability in human saliva microdroplets, SM buffer, and water following deposition on glass surfaces at various relative humidities (RH). Saliva and water microdroplets dried out rapidly, within minutes, at all tested RH levels (23%, 43%, 57%, and 78%), while SM microdroplets remained hydrated at RH ≥ 57%. Generally, the survival of all three viruses in dry saliva microdroplets was significantly greater than those in SM buffer and water under all RH (except PhiX174 in water under 57% RH survived the best among 3 media). Thus, atmosphere RH and microdroplet hydration state are not sufficient to explain virus survival, indicating that the virus-suspended medium, and association with saliva components in particular, likely play a role in virus survival. Uncovering the exact properties and components that make saliva a favorable environment for the survival of viruses, in particular enveloped ones like Phi6, is thus of great importance for reducing transmission of viral respiratory pathogens including SARS-CoV-2.
Collapse
Affiliation(s)
- Aliza Fedorenko
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Maor Grinberg
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Tomer Orevi
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Nadav Kashtan
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
35
|
Fedorenko A, Grinberg M, Orevi T, Kashtan N. Survival of the enveloped bacteriophage Phi6 (a surrogate for SARS-CoV-2) in evaporated saliva microdroplets deposited on glass surfaces. Sci Rep 2020; 10:22419. [PMID: 33376251 DOI: 10.1101/2020.06.15.152983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/10/2020] [Indexed: 05/28/2023] Open
Abstract
Survival of respiratory viral pathogens in expelled saliva microdroplets is central to their transmission, yet the factors that determine survival in such microdroplets are not well understood. Here we combine microscopy imaging with virus viability assays to study survival of three bacteriophages suggested as good models for respiratory pathogens: the enveloped Phi6 (a surrogate for SARS-CoV-2), and the non-enveloped PhiX174 and MS2. We measured virus viability in human saliva microdroplets, SM buffer, and water following deposition on glass surfaces at various relative humidities (RH). Saliva and water microdroplets dried out rapidly, within minutes, at all tested RH levels (23%, 43%, 57%, and 78%), while SM microdroplets remained hydrated at RH ≥ 57%. Generally, the survival of all three viruses in dry saliva microdroplets was significantly greater than those in SM buffer and water under all RH (except PhiX174 in water under 57% RH survived the best among 3 media). Thus, atmosphere RH and microdroplet hydration state are not sufficient to explain virus survival, indicating that the virus-suspended medium, and association with saliva components in particular, likely play a role in virus survival. Uncovering the exact properties and components that make saliva a favorable environment for the survival of viruses, in particular enveloped ones like Phi6, is thus of great importance for reducing transmission of viral respiratory pathogens including SARS-CoV-2.
Collapse
Affiliation(s)
- Aliza Fedorenko
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Maor Grinberg
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Tomer Orevi
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Nadav Kashtan
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
36
|
Ikeda A, Yamamoto T, Mineshiba J, Takashiba S. Follistatin expressed in mechanically-damaged salivary glands of male mice induces proliferation of CD49f + cells. Sci Rep 2020; 10:19959. [PMID: 33203957 PMCID: PMC7673039 DOI: 10.1038/s41598-020-77004-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/02/2020] [Indexed: 11/10/2022] Open
Abstract
Salivary glands (SGs) are very important for maintaining the physiological functions of the mouth. When SGs regenerate and repair from various damages, including mechanical, radiological, and immune diseases, acinar and granular duct cells originate from intercalated duct cells. However, the recovery is often insufficient because of SGs' limited self-repair function. Furthermore, the precise repair mechanism has been unclear. Here, we focused on CD49f, one of the putative stem cell markers, and characterized CD49f positive cells (CD49f+ cells) isolated from male murine SGs. CD49f+ cells possess self-renewal ability and express epithelial and pluripotent markers. Compared to CD49f negative cells, freshly isolated CD49f+ cells highly expressed inhibin beta A and beta B, which are components of activin that has anti-proliferative effects. Notably, an inhibitor of activin, follistatin was expressed in mechanically-damaged SGs, meanwhile no follistatin was expressed in normal SGs in vivo. Moreover, sub-cultured CD49f+ cells highly expressed both Follistatin and a series of proliferative genes, expressions of which were decreased by Follistatin siRNA. These findings indicated that the molecular interaction between activin and follistatin may induce CD49f+ cells proliferation in the regeneration and repair of mouse SGs.
Collapse
Affiliation(s)
- A Ikeda
- Department of Periodontics and Endodontics, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - T Yamamoto
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - J Mineshiba
- Hanamizuki Dental Clinic, 285-2 Hirano, Kita-ku, Okayama, 701-0151, Japan
| | - S Takashiba
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
37
|
Ferreira RO, Aragão WAB, Bittencourt LO, Fernandes LPM, Balbinot KM, Alves-Junior SM, Pinheiro JDJV, Maia CDSF, Crespo-Lopez ME, Lima RR. Ethanol binge drinking during pregnancy and its effects on salivary glands of offspring rats: oxidative stress, morphometric changes and salivary function impairments. Biomed Pharmacother 2020; 133:110979. [PMID: 33190033 DOI: 10.1016/j.biopha.2020.110979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/18/2020] [Accepted: 11/03/2020] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES To investigate the biochemical and morphological effects of ethanol (EtOH) binge drinking during pregnancy on parotid glands (PG), submandibular glands (SMG), and saliva of offspring rats. METHODS Pregnant Wistar rats (n = 8) were exposed to EtOH consumption (3 g/kg/day - 20 % w/v) for three consecutive days. The saliva of 40-day-old offspring rats was collected to determine amylase activity and total protein concentration. PG and SMG were collected to performe oxidative biochemistry, morphometric and immunohistochemistry analyses (Student's t-test, p < .05). RESULTS EtOH consumption during pregnancy significantly decreased the total protein concentration and decreased amylase activity. In the PG, the EtOH group showed increased lipid peroxidation and decreased antioxidant capacity against peroxyl. In the SMG, the EtOH group showed increased lipid peroxidation and NOx metabolite levels. PG exposed to EtOH showed a decrease of acini, ducts, and total parenchymal area. SMG exposed to EtOH showed an increase in the total stromal area. The expression of CK-19 and Vimentin were found not different between groups. CONCLUSIONS For the first time, a three-day EtOH binge-drinking protocol during pregnancy is associated with oxidative stress and morphometric alterations in the salivary glands of offspring rats and with the functional reduction of the main salivary enzyme (amylase). CLINICAL RELEVANCE EtOH consumption during pregnancy altered the morphology and physiology of the salivary glands of offspring rats.
Collapse
Affiliation(s)
- Railson O Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Walessa A B Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Leonardo O Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Luanna P M Fernandes
- Laboratory of Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Karolyny M Balbinot
- School of Dentistry, Institute of Health Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Sérgio M Alves-Junior
- School of Dentistry, Institute of Health Sciences, Federal University of Pará, Belém, PA, Brazil
| | - João de Jesus V Pinheiro
- School of Dentistry, Institute of Health Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Cristiane do Socorro Ferraz Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Maria E Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil.
| |
Collapse
|
38
|
Peng J, Xiao H, Yang D, Lei L, Zheng J, Zhou Z. Surface Hardening Behavior of Enamel by Masticatory Loading: Occurrence Mechanism and Antiwear Effect. ACS Biomater Sci Eng 2020; 6:4454-4461. [PMID: 33455168 DOI: 10.1021/acsbiomaterials.0c00740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous studies have suggested that surface hardening occurs in human tooth enamel under certain loading conditions. However, the occurrence mechanism and significance remain unclear. In this study, the surface hardening behavior of enamel under masticatory loading was studied in vitro using impact treatment and the nanoindentation/scratch technique to identify the mechanism and antiwear effect. The fundamental block of enamel is made of hydroxyapatite (HAP) nanofibers, which consist of fine nanoparticles held together by protein. These fibers respond to masticatory loading in two ways: bending deflection at low loads and fragmentation at high loads. When the contact pressure exceeds the bonding strength between the nanoparticles, the HAP fibers split into fine nanoparticles and then form a surface layer consisting of tightly packed nanoparticles. This results in surface hardening dominated by an increased hardness and elastic modulus. The maximum degree and depth of surface hardening were determined as approximately 60% and 100 nm, respectively. With the occurrence of surface hardening, the wear resistance of the enamel is enhanced, which is manifested by a reduced friction coefficient and wear volume. In summary, the surface hardening of enamel induced by masticatory loading is a result of HAP nanoparticle rearrangement as a response of the enamel hierarchical structure to high chewing loads. It is adaptive overload protection derived from the enamel hierarchical structure and plays a critical role in resisting excessive wear induced by high chewing loads.
Collapse
Affiliation(s)
- Jiapin Peng
- Tribology Research Institute, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Heng Xiao
- Tribology Research Institute, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Dan Yang
- Tribology Research Institute, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Lei Lei
- Tribology Research Institute, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Jing Zheng
- Tribology Research Institute, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhongrong Zhou
- Tribology Research Institute, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
39
|
Komatsu T, Kobayashi K, Morimoto Y, Helmerhorst E, Oppenheim F, Chang-Il Lee M. Direct evaluation of the antioxidant properties of salivary proline-rich proteins. J Clin Biochem Nutr 2020; 67:131-136. [PMID: 33041509 PMCID: PMC7533858 DOI: 10.3164/jcbn.19-75] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/10/2019] [Indexed: 01/20/2023] Open
Abstract
Proline-rich proteins are associated with the formation of an acquired protein layer overlying the tooth enamel surface. Previous studies have described the antioxidant activity of salivary histatin against the hydroxyl radical from Fenton’s reaction, acting as the critical reactive oxygen species. However, the role of proline-rich proteins in mitigating the oxidative stress caused by reactive oxygen species in the oral cavity remains unclear. In this study, we investigated the antioxidant effects of proline-rich proteins 2 on direct reactive oxygen species using electron spin resonance spectroscopy. For the first time, we demonstrated that proline-rich proteins 2 exhibits antioxidant activity directly against the hydroxyl radical produced by hydrogen peroxide with ultraviolet. Considering that identical results were obtained when assaying 30 residues of proline-rich proteins 2, the direct antioxidant effects against the hydroxyl radical by proline-rich proteins 2 may be related to these specific 30 residues.
Collapse
Affiliation(s)
- Tomoko Komatsu
- Division of Dentistry for the Special Patient, Department of Critical Care Medicine and Dentistry, Kanagawa Dental University Graduate School of Dental Medicine, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan.,Yokosuka-Shonan Disaster Oral Health Research Center & Oxidative Stress/ESR Laboratories, Kanagawa Dental University Graduate School of Dental Medicine, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Kyo Kobayashi
- Yokosuka-Shonan Disaster Oral Health Research Center & Oxidative Stress/ESR Laboratories, Kanagawa Dental University Graduate School of Dental Medicine, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Yoshinari Morimoto
- Department of Critical Care Medicine and Dentistry, Kanagawa Dental University Graduate School of Dental Medicine, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Eva Helmerhorst
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Albany street, Boston, MA 02118, USA
| | - Frank Oppenheim
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Albany street, Boston, MA 02118, USA
| | - Masaichi Chang-Il Lee
- Yokosuka-Shonan Disaster Oral Health Research Center & Oxidative Stress/ESR Laboratories, Kanagawa Dental University Graduate School of Dental Medicine, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| |
Collapse
|
40
|
Urbanowicz M, Sadowska K, Pijanowska DG, Pomećko R, Bocheńska M. Potentiometric Solid-Contact Ion-Selective Electrode for Determination of Thiocyanate in Human Saliva. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2817. [PMID: 32429165 PMCID: PMC7288078 DOI: 10.3390/s20102817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
A new solid-contact potentiometric ion-selective electrode for the determination of SCN- (SCN-ISE) has been described. Synthesized phosphonium derivative of calix[4]arene was used as a charged ionophore. The research included selection of the ion-selective membrane composition, determination of the ISEs metrological parameters and SCN-ISE application for thiocyanate determination in human saliva. Preparation of the ISEs included selection of a plasticizer for the ion-selective membrane composition and type of the electrode material. The study was carried out using ISE with liquid internal electrolyte (LE-ISE) and solid-contact electrodes made of glassy carbon (GC-ISE) and gold rods (Au-ISE). The best parameters were found for GC sensors for which the ion-selective membrane contained chloroparaffin as a plasticizer (S = 59.9 mV/dec, LOD = 1.6 ´ 10-6 M). The study of potentiometric selectivity coefficients has shown that the thiocyanate-selective sensor could be applied in biomedical research for determination of SCN- concentration in human saliva. The accuracy of the SCN- determination was verified by testing 59 samples of volunteers' saliva by potentiometric sensors and UV-Vis spectrophotometry as a reference technique. Moreover, SCN- concentrations in the smokers' and non-smokers' saliva were compared. In order to investigate the influence of various factors (sex, health status, taken medications) on the thiocyanate level in the saliva, more extensive studies on a group of 100 volunteers were carried out. Additionally, for a group of 18 volunteers, individual profiles of SCN- concentration in saliva measured on a daily basis for over a month were collected.
Collapse
Affiliation(s)
- Marcin Urbanowicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland; (K.S.); (D.G.P.)
| | - Kamila Sadowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland; (K.S.); (D.G.P.)
| | - Dorota G. Pijanowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland; (K.S.); (D.G.P.)
| | - Radosław Pomećko
- Department of Chemistry and Technology of Functional Materials, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (R.P.); (M.B.)
| | - Maria Bocheńska
- Department of Chemistry and Technology of Functional Materials, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (R.P.); (M.B.)
| |
Collapse
|
41
|
Ahmadi-Motamayel F, Vaziri-Amjad S, Davoodi P, Goodarzi MT, Poorolajal J. Evaluation of Salivary Alkaline Phosphatase and Albumin in HIV Infected Patients: A Historical Cohort Study. Infect Disord Drug Targets 2020; 19:398-402. [PMID: 30289082 DOI: 10.2174/1871526518666181005120804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 09/02/2018] [Accepted: 10/01/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Saliva is a very important complex biological oral fluid .Antioxidants are present in all body fluids. Uric acid, albumin and vitamins are some of the non- enzymatic molecular antioxidants. Alkaline phosphatase is related to cell injury and death. OBJECTIVES The aim of this study was the evaluation of salivary alkaline phosphatase and albumin level in HIV positive patients in comparison to healthy control group. METHODS Case groups were 49 HIV positive subjects, compared with 49 healthy control group. Oral clinical examination was carried out. Five ml unstimulated whole saliva was collected during 5 min with the Navazesh method. Alkaline phosphatase was determined by spectrophotometric assay. Albumin was assessed by the nephelometric method. RESULTS The results of this study showed significantly lower salivary albumin in the case group in comparison to healthy control group (p= 0.001). HIV positive group had greater alkaline phosphatase than the healthy control group. However, this difference was not statistically significant (p=0.458). CONCLUSION Salivary albumin level was significantly decreased and salivary alkaline phosphatase level slightly increased in HIV positive patients in comparison to healthy control group. All of the HIV infected patients were in early phase of HIV infection with normal immune status. More research is needed to estimate these enzymes changes in late phase of HIV infection and AIDS step.
Collapse
Affiliation(s)
- Fatemeh Ahmadi-Motamayel
- Dental Implant Research Center and Dental Research Center, Department of Oral Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Samaneh Vaziri-Amjad
- Department of Oral Medicine, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Poorandokht Davoodi
- Department of Oral Medicine, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad T Goodarzi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jalal Poorolajal
- Research Center for Health Sciences and Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
42
|
Schepici G, Silvestro S, Trubiani O, Bramanti P, Mazzon E. Salivary Biomarkers: Future Approaches for Early Diagnosis of Neurodegenerative Diseases. Brain Sci 2020; 10:brainsci10040245. [PMID: 32326227 PMCID: PMC7226627 DOI: 10.3390/brainsci10040245] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022] Open
Abstract
Many neurological diseases are characterized by progressive neuronal degeneration. Early diagnosis and new markers are necessary for prompt therapeutic intervention. Several studies have aimed to identify biomarkers in different biological liquids. Furthermore, it is being considered whether saliva could be a potential biological sample for the investigation of neurodegenerative diseases. This work aims to provide an overview of the literature concerning biomarkers identified in saliva for the diagnosis of neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Specifically, the studies have revealed that is possible to quantify beta-amyloid1–42 and TAU protein from the saliva of AD patients. Instead, alpha-synuclein and protein deglycase (DJ-1) have been identified as new potential salivary biomarkers for the diagnosis of PD. Nevertheless, future studies will be needed to validate these salivary biomarkers in the diagnosis of neurological diseases.
Collapse
Affiliation(s)
- Giovanni Schepici
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (G.S.); (S.S.); (P.B.)
| | - Serena Silvestro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (G.S.); (S.S.); (P.B.)
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | - Placido Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (G.S.); (S.S.); (P.B.)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (G.S.); (S.S.); (P.B.)
- Correspondence: ; Tel.: +39-090-6012-8172
| |
Collapse
|
43
|
Farooq I, Bugshan A. The role of salivary contents and modern technologies in the remineralization of dental enamel: a narrative review. F1000Res 2020; 9:171. [PMID: 32201577 PMCID: PMC7076334 DOI: 10.12688/f1000research.22499.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 08/21/2024] Open
Abstract
Human enamel once formed cannot be biologically repaired or replaced. Saliva has a significant role in remineralization of dental enamel. It not only has a buffering capacity to neutralize the oral cavity's low pH generated after acidic encounters, but also acts as a carrier of essential ions, such as fluoride, calcium and phosphate, which have a positive role in enamel's remineralization. This review discusses how salivary contents, like proteins and enzymes, have a natural role in enamel's mineralization. In addition, the presence of ions, such as fluoride, calcium and phosphate, in saliva further enhances its capability to remineralize the demineralized enamel surface. The review further examines modern innovative technologies, based on biomimetic regeneration systems, including dentin phosphoproteins, aspartate-serine-serine, recombinant porcine amelogenin, leucine-rich amelogenin peptide and nano-hydroxyapatite, that promote enamel remineralization. Fluoride boosters like calcium phosphates, polyphosphates, and certain natural products can also play an important role in enamel remineralization.
Collapse
Affiliation(s)
- Imran Farooq
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Amr Bugshan
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| |
Collapse
|
44
|
Farooq I, Bugshan A. The role of salivary contents and modern technologies in the remineralization of dental enamel: a narrative review. F1000Res 2020; 9:171. [PMID: 32201577 PMCID: PMC7076334 DOI: 10.12688/f1000research.22499.3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
Human enamel once formed cannot be biologically repaired or replaced. Saliva has a significant role in remineralization of dental enamel. It not only has a buffering capacity to neutralize the oral cavity’s low pH generated after acidic encounters, but also acts as a carrier of essential ions, such as fluoride, calcium and phosphate, which have a positive role in enamel’s remineralization. This review discusses how salivary contents, like proteins and enzymes, have a natural role in enamel’s mineralization. In addition, the presence of ions, such as fluoride, calcium and phosphate, in saliva further enhances its capability to remineralize the demineralized enamel surface. The review further examines modern innovative technologies, based on biomimetic regeneration systems, including dentin phosphoproteins, aspartate-serine-serine, recombinant porcine amelogenin, leucine-rich amelogenin peptide and nano-hydroxyapatite, that promote enamel remineralization. Fluoride boosters like calcium phosphates, polyphosphates, and certain natural products can also play an important role in enamel remineralization.
Collapse
Affiliation(s)
- Imran Farooq
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Amr Bugshan
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| |
Collapse
|
45
|
Farooq I, Bugshan A. The role of salivary contents and modern technologies in the remineralization of dental enamel: a narrative review. F1000Res 2020; 9:171. [PMID: 32201577 PMCID: PMC7076334 DOI: 10.12688/f1000research.22499.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 01/19/2024] Open
Abstract
Human enamel once formed cannot be biologically repaired or replaced. Saliva has a significant role in remineralization of dental enamel. It not only has a buffering capacity to neutralize the oral cavity's low pH generated after acidic encounters, but also acts as a carrier of essential ions, such as fluoride, calcium and phosphate, which have a positive role in enamel's remineralization. This review discusses how salivary contents, like proteins and enzymes, have a natural role in enamel's mineralization. In addition, the presence of ions, such as fluoride, calcium and phosphate, in saliva further enhances its capability to remineralize the demineralized enamel surface. The review further examines modern innovative technologies, based on biomimetic regeneration systems, including dentin phosphoproteins, aspartate-serine-serine, recombinant porcine amelogenin, leucine-rich amelogenin peptide and nano-hydroxyapatite, that promote enamel remineralization. Fluoride boosters like calcium phosphates, polyphosphates, and certain natural products can also play an important role in enamel remineralization.
Collapse
Affiliation(s)
- Imran Farooq
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Amr Bugshan
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| |
Collapse
|
46
|
Gill AD, Hickey BL, Zhong W, Hooley RJ. Selective sensing of THC and related metabolites in biofluids by host:guest arrays. Chem Commun (Camb) 2020; 56:4352-4355. [DOI: 10.1039/d0cc01489c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A host–guest fluorescence sensor array can selectively detect THC and its metabolites in biofluids such as urine and saliva.
Collapse
Affiliation(s)
- Adam D. Gill
- Department of Biochemistry and Molecular Biology
- University of California-Riverside
- Riverside
- USA
| | - Briana L. Hickey
- Department of Chemistry
- University of California-Riverside
- Riverside
- USA
| | - Wenwan Zhong
- Department of Chemistry
- University of California-Riverside
- Riverside
- USA
- Environmental Toxicology Program
| | - Richard J. Hooley
- Department of Biochemistry and Molecular Biology
- University of California-Riverside
- Riverside
- USA
- Department of Chemistry
| |
Collapse
|
47
|
Pokrowiecki R, Wojnarowicz J, Zareba T, Koltsov I, Lojkowski W, Tyski S, Mielczarek A, Zawadzki P. Nanoparticles And Human Saliva: A Step Towards Drug Delivery Systems For Dental And Craniofacial Biomaterials. Int J Nanomedicine 2019; 14:9235-9257. [PMID: 31819427 PMCID: PMC6886554 DOI: 10.2147/ijn.s221608] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/27/2019] [Indexed: 12/02/2022] Open
Abstract
Aim The aims of this study were to investigate new nano-formulations based on ZnO and Ag nanoparticle (NP) compounds when used against clinical strains of oral gram-positive and gram-negative bacteria, and to examine the stability and behaviour of nano-formulation mixtures in saliva based on different compositions of Ag NPs, ZnO NPs and ZnO+x·Ag NPs. Methods: ZnO NPs with and without nanosilver were obtained by microwave solvothermal synthesis. Then, antibacterial activity was evaluated against bacteria isolated from human saliva. Behavior and nanoparticle solutions were evaluated in human saliva and control (artificial saliva and deionized water). Results were statistically compared. Results The NP mixtures had an average size of 30±3 nm, while the commercial Ag NPs had an average size of 55±5 nm. The suspensions displayed differing antibacterial activities and kinetics of destabilisation processes, depending on NPs composition and fluid types. Conclusion The present study showed that all NPs suspensions displayed significant destabilisation and high destabilisation over the 24 h of the analyses. The agglomeration processes of NPs in human saliva can be reversible.
Collapse
Affiliation(s)
- Rafal Pokrowiecki
- Department of Cranio-Maxillofacial Surgery, Oral Surgery and Implantology, Medical University of Warsaw, Warsaw, Poland.,Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland.,Private Practice, Warsaw, Poland
| | - Jacek Wojnarowicz
- Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Zareba
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland
| | - Iwona Koltsov
- Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Witold Lojkowski
- Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland.,Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Mielczarek
- Department of Conservative Dentistry, Medical University of Warsaw, Warsaw, Poland
| | - Pawel Zawadzki
- Department of Cranio-Maxillofacial Surgery, Oral Surgery and Implantology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
48
|
Abstract
A variety of diseases ranging from obstructions, infections, to benign and malignant tumors occur in salivary glands. The most common problem is painful blockage of ducts by stones that prevents drainage of saliva. Sialadenitis can be due to either infectious or noninfectious factors. Bacterial or viral infections are the most common causes of acute sialadenitis. Staphylococcus is the usual bacterial cause, whereas paramyxovirus (mumps) is the common viral cause. Eighty percent of salivary tumors are benign, whereas about 20% are malignant. Most tumors occur in the parotid gland and on the hard palate. Classifications, imaging, and suggested treatment are described.
Collapse
|
49
|
Komatsu T, Kobayashi K, Helmerhorst E, Oppenheim F, Chang-Il Lee M. Direct assessment of the antioxidant property of salivary histatin. J Clin Biochem Nutr 2019; 65:217-222. [PMID: 31777423 PMCID: PMC6877405 DOI: 10.3164/jcbn.19-53] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/17/2019] [Indexed: 11/22/2022] Open
Abstract
Histatin, a salivary protein, affects oral homeostasis through preservation of tooth integrity and protection against caries and fungal infections. However, the effects of histatin in the generation of oxidative stress induced by reactive oxygen species and in the oral cavity remain unclear. In this study, the effects of histatin on direct reactive oxygen species scavenging activity were examined using electron spin resonance. We demonstrated, for the first time, that histatin exhibits antioxidant activity against hydroxyl radicals generated by Fenton's reaction by metal chelation or binding. The direct antioxidant effects of histatin, along with its antimicrobial activity, may be important in the oral protection of salivary proteins.
Collapse
Affiliation(s)
- Tomoko Komatsu
- Division of Dentistry for the Special Patient, Department of Critical Care Medicine and Dentistry, Kanagawa Dental University Graduate School of Dental Medicine, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan.,Yokosuka-Shonan Disaster Oral Health Research Center & Oxidative Stress/ESR Laboratories, Kanagawa Dental University Graduate School of Dental Medicine, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Kyo Kobayashi
- Yokosuka-Shonan Disaster Oral Health Research Center & Oxidative Stress/ESR Laboratories, Kanagawa Dental University Graduate School of Dental Medicine, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Eva Helmerhorst
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Albany street, Boston, MA 02118, USA
| | - Frank Oppenheim
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Albany street, Boston, MA 02118, USA
| | - Masaichi Chang-Il Lee
- Yokosuka-Shonan Disaster Oral Health Research Center & Oxidative Stress/ESR Laboratories, Kanagawa Dental University Graduate School of Dental Medicine, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| |
Collapse
|
50
|
Mahmud MS, Fang H, Carreiro S, Wang H, Boyer EW. Wearables technology for drug abuse detection: A survey of recent advancement. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.smhl.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|