1
|
Boonchalermvichian C, Yan H, Gupta B, Rubin A, Baker J, Negrin RS. invariant Natural Killer T cell therapy as a novel therapeutic approach in hematological malignancies. FRONTIERS IN TRANSPLANTATION 2024; 3:1353803. [PMID: 38993780 PMCID: PMC11235242 DOI: 10.3389/frtra.2024.1353803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/04/2024] [Indexed: 07/13/2024]
Abstract
Invariant Natural Killer T cell therapy is an emerging platform of immunotherapy for cancer treatment. This unique cell population is a promising candidate for cell therapy for cancer treatment because of its inherent cytotoxicity against CD1d positive cancers as well as its ability to induce host CD8 T cell cross priming. Substantial evidence supports that iNKT cells can modulate myelomonocytic populations in the tumor microenvironment to ameliorate immune dysregulation to antagonize tumor progression. iNKT cells can also protect from graft-versus-host disease (GVHD) through several mechanisms, including the expansion of regulatory T cells (Treg). Ultimately, iNKT cell-based therapy can retain antitumor activity while providing protection against GVHD simultaneously. Therefore, these biological properties render iNKT cells as a promising "off-the-shelf" therapy for diverse hematological malignancies and possible solid tumors. Further the introduction of a chimeric antigen recetor (CAR) can further target iNKT cells and enhance function. We foresee that improved vector design and other strategies such as combinatorial treatments with small molecules or immune checkpoint inhibitors could improve CAR iNKT in vivo persistence, functionality and leverage anti-tumor activity along with the abatement of iNKT cell dysfunction or exhaustion.
Collapse
|
2
|
Weijler AM, Wekerle T. Combining Treg Therapy With Donor Bone Marrow Transplantation: Experimental Progress and Clinical Perspective. Transplantation 2024; 108:1100-1108. [PMID: 37789519 DOI: 10.1097/tp.0000000000004814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Donor-specific tolerance remains a goal in transplantation because it could improve graft survival and reduce morbidity. Cotransplantation of donor hematopoietic cells to achieve chimerism is a promising approach for tolerance induction, which was successfully tested in clinical trials. However, current protocols are associated with side effects related to the myelosuppressive recipient conditioning, which makes it difficult to introduce them as standard therapy. More recently, adoptive cell therapy with polyclonal or donor-specific regulatory T cells (Treg) proved safe and feasible in several transplant trials, but it is unclear whether it can induce tolerance on its own. The combination of both approaches-Treg therapy and hematopoietic cell transplantation-leads to chimerism and tolerance without myelosuppressive treatment in murine models. Treg therapy promotes engraftment of allogeneic hematopoietic cells, reducing conditioning requirements and enhancing regulatory mechanisms maintaining tolerance. This review discusses possible modes of action of transferred Treg in experimental chimerism models and describes translational efforts investigating the potent synergy of Treg and chimerism.
Collapse
Affiliation(s)
- Anna Marianne Weijler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
3
|
Singh V, Nandi S, Ghosh A, Adhikary S, Mukherjee S, Roy S, Das C. Epigenetic reprogramming of T cells: unlocking new avenues for cancer immunotherapy. Cancer Metastasis Rev 2024; 43:175-195. [PMID: 38233727 DOI: 10.1007/s10555-024-10167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
T cells, a key component of cancer immunotherapy, undergo a variety of histone modifications and DNA methylation changes since their bone marrow progenitor stages before developing into CD8+ and CD4+ T cells. These T cell types can be categorized into distinct subtypes based on their functionality and properties, such as cytotoxic T cells (Tc), helper T cells (Th), and regulatory T cells (Treg) as subtypes for CD8+ and CD4+ T cells. Among these, the CD4+ CD25+ Tregs potentially contribute to cancer development and progression by lowering T effector (Teff) cell activity under the influence of the tumor microenvironment (TME). This contributes to the development of therapeutic resistance in patients with cancer. Subsequently, these individuals become resistant to monoclonal antibody therapy as well as clinically established immunotherapies. In this review, we delineate the different epigenetic mechanisms in cancer immune response and its involvement in therapeutic resistance. Furthermore, the possibility of epi-immunotherapeutic methods based on histone deacetylase inhibitors and histone methyltransferase inhibitors are under investigation. In this review we highlight EZH2 as the principal driver of cancer cell immunoediting and an immune escape regulator. We have addressed in detail how understanding T cell epigenetic regulation might bring unique inventive strategies to overcome drug resistance and increase the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Aritra Ghosh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Indian Institute of Science Education and Research, Kolkata, India
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Siddhartha Roy
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.
- Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
4
|
Mengrelis K, Muckenhuber M, Wekerle T. Chimerism-based Tolerance Induction in Clinical Transplantation: Its Foundations and Mechanisms. Transplantation 2023; 107:2473-2485. [PMID: 37046378 DOI: 10.1097/tp.0000000000004589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Hematopoietic chimerism remains the most promising strategy to bring transplantation tolerance into clinical routine. The concept of chimerism-based tolerance aims to extend the recipient's mechanisms of self-tolerance (ie, clonal deletion, anergy, and regulation) to include the tolerization of donor antigens that are introduced through the cotransplantation of donor hematopoietic cells. For this to be successful, donor hematopoietic cells need to engraft in the recipient at least temporarily. Three pioneering clinical trials inducing chimerism-based tolerance in kidney transplantation have been published to date. Within this review, we discuss the mechanisms of tolerance that are associated with the specific therapeutic protocols of each trial. Recent data highlight the importance of regulation as a mechanism that maintains tolerance. Insufficient regulatory mechanisms are also a likely explanation for situations of tolerance failure despite persisting donor chimerism. After decades of preclinical development of chimerism protocols, mechanistic data from clinical trials have recently become increasingly important. Better understanding of the required mechanisms for tolerance to be induced in humans will be a key to design more reliable and less invasive chimerism protocols in the future.
Collapse
Affiliation(s)
- Konstantinos Mengrelis
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
5
|
Short S, Lewik G, Issa F. An Immune Atlas of T Cells in Transplant Rejection: Pathways and Therapeutic Opportunities. Transplantation 2023; 107:2341-2352. [PMID: 37026708 PMCID: PMC10593150 DOI: 10.1097/tp.0000000000004572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 04/08/2023]
Abstract
Short-term outcomes in allotransplantation are excellent due to technical and pharmacological advances; however, improvement in long-term outcomes has been limited. Recurrent episodes of acute cellular rejection, a primarily T cell-mediated response to transplanted tissue, have been implicated in the development of chronic allograft dysfunction and loss. Although it is well established that acute cellular rejection is primarily a CD4 + and CD8 + T cell mediated response, significant heterogeneity exists within these cell compartments. During immune responses, naïve CD4 + T cells are activated and subsequently differentiate into specific T helper subsets under the influence of the local cytokine milieu. These subsets have distinct phenotypic and functional characteristics, with reported differences in their contribution to rejection responses specifically. Of particular relevance are the regulatory subsets and their potential to promote tolerance of allografts. Unraveling the specific contributions of these cell subsets in the context of transplantation is complex, but may reveal new avenues of therapeutic intervention for the prevention of rejection.
Collapse
Affiliation(s)
- Sarah Short
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Guido Lewik
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
6
|
Ou Q, Power R, Griffin MD. Revisiting regulatory T cells as modulators of innate immune response and inflammatory diseases. Front Immunol 2023; 14:1287465. [PMID: 37928540 PMCID: PMC10623442 DOI: 10.3389/fimmu.2023.1287465] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Regulatory T cells (Treg) are known to be critical for the maintenance of immune homeostasis by suppressing the activation of auto- or allo-reactive effector T cells through a diverse repertoire of molecular mechanisms. Accordingly, therapeutic strategies aimed at enhancing Treg numbers or potency in the setting of autoimmunity and allogeneic transplants have been energetically pursued and are beginning to yield some encouraging outcomes in early phase clinical trials. Less well recognized from a translational perspective, however, has been the mounting body of evidence that Treg directly modulate most aspects of innate immune response under a range of different acute and chronic disease conditions. Recognizing this aspect of Treg immune modulatory function provides a bridge for the application of Treg-based therapies to common medical conditions in which organ and tissue damage is mediated primarily by inflammation involving myeloid cells (mononuclear phagocytes, granulocytes) and innate lymphocytes (NK cells, NKT cells, γδ T cells and ILCs). In this review, we comprehensively summarize pre-clinical and human research that has revealed diverse modulatory effects of Treg and specific Treg subpopulations on the range of innate immune cell types. In each case, we emphasize the key mechanistic insights and the evidence that Treg interactions with innate immune effectors can have significant impacts on disease severity or treatment. Finally, we discuss the opportunities and challenges that exist for the application of Treg-based therapeutic interventions to three globally impactful, inflammatory conditions: type 2 diabetes and its end-organ complications, ischemia reperfusion injury and atherosclerosis.
Collapse
Affiliation(s)
- Qifeng Ou
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Rachael Power
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Matthew D. Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Nephrology Department, Galway University Hospitals, Saolta University Healthcare Group, Galway, Ireland
| |
Collapse
|
7
|
Rotolo A, Whelan EC, Atherton MJ, Kulikovskaya I, Jarocha D, Fraietta JA, Kim MM, Diffenderfer ES, Cengel KA, Piviani M, Radaelli E, Duran-Struuck R, Mason NJ. Unedited allogeneic iNKT cells show extended persistence in MHC-mismatched canine recipients. Cell Rep Med 2023; 4:101241. [PMID: 37852175 PMCID: PMC10591065 DOI: 10.1016/j.xcrm.2023.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
Allogeneic invariant natural killer T cells (allo-iNKTs) induce clinical remission in patients with otherwise incurable cancers and COVID-19-related acute respiratory failure. However, their functionality is inconsistent among individuals, and they become rapidly undetectable after infusion, raising concerns over rejection and limited therapeutic potential. We validate a strategy to promote allo-iNKT persistence in dogs, an established large-animal model for novel cellular therapies. We identify donor-specific iNKT biomarkers of survival and sustained functionality, conserved in dogs and humans and retained upon chimeric antigen receptor engineering. We reason that infusing optimal allo-iNKTs enriched in these biomarkers will prolong their persistence without requiring MHC ablation, high-intensity chemotherapy, or cytokine supplementation. Optimal allo-iNKTs transferred into MHC-mismatched dogs remain detectable for at least 78 days, exhibiting sustained immunomodulatory effects. Our canine model will accelerate biomarker discovery of optimal allo-iNKT products, furthering application of MHC-unedited allo-iNKTs as a readily accessible universal platform to treat incurable conditions worldwide.
Collapse
Affiliation(s)
- Antonia Rotolo
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Eoin C Whelan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew J Atherton
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Irina Kulikovskaya
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danuta Jarocha
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keith A Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martina Piviani
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raimon Duran-Struuck
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicola J Mason
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Zhao W, Wang Y, Zhang X, Hao J, Zhang K, Huang X, Chang Y, Wu H, Jin R, Ge Q. Impaired thymic iNKT cell differentiation at early precursor stage in murine haploidentical bone marrow transplantation with GvHD. Front Immunol 2023; 14:1203614. [PMID: 37600815 PMCID: PMC10438461 DOI: 10.3389/fimmu.2023.1203614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Early recovery of donor-derived invariant natural killer T (iNKT) cells are associated with reduced risk of graft-versus-host disease (GvHD) and overall survival. Patients with severe GvHD, however, had much slower iNKT cell reconstitution relative to conventional T cells. Methods To characterize the delay of iNKT cell reconstitution and explore its possible causes, we used a haploidentical bone marrow transplantation (haplo-BMT) mouse model with GvHD. We found the delayed recovery of thymic and peripheral iNKT cell numbers with markedly decreased thymic NKT1 subset in GvHD mice. The defective generation of thymic iNKT precursors with egress capability contributed to the reduced peripheral iNKT cells in GvHD mice. We further identified intermediate NK1.1- NKT1 precursor subpopulations under steady-state conditions and found that the differentiation of these subpopulations was impaired in the thymi of GvHD mice. Detailed characterization of iNKT precursors and thymic microenvironment showed a close association of elevated TCR/co-stimulatory signaling provided by double positive thymocytes and macrophages with defective down-regulation of proliferation, metabolism, and NKT2 signature in iNKT precursor cells. Correspondingly, NKT2 but not NKT1 differentiation was favored in GvHD mice. Discussion These data underline the important roles of TCR and co-stimulatory signaling in the differentiation of thymic iNKT subsets under transplantation conditions.
Collapse
Affiliation(s)
- Weijia Zhao
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yujia Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Xinwei Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Jie Hao
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Kunshan Zhang
- Central Lab, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaojun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People’s Hospital & Institute of Hematology, Beijing, China
| | - Yingjun Chang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People’s Hospital & Institute of Hematology, Beijing, China
| | - Hounan Wu
- Peking University Medical and Health Analytical Center, Peking University, Beijing, China
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Qing Ge
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
9
|
Sirajuddin N, Yin XT, Stuart PM. Role of NK T cells in transplantation with particular emphasis on corneal transplantation. Transpl Immunol 2022; 75:101727. [PMID: 36183944 DOI: 10.1016/j.trim.2022.101727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 11/18/2022]
Abstract
Natural killer T cells (NKT cells) are a unique subset of the immune system that possess characteristics of both an innate and adaptive immune response. This study reviews the reported roles of NKT cells in different solid transplantations such as cardiac, skin, liver, and corneal grafts as well as investigates a novel role of NKT cells in steroid-resistant corneal rejections. It is unknown why there is late corneal graft rejection despite being treated with immunosuppression. Our experimental data suggests NKT cells are playing a crucial part in steroid-resistant late graft rejections. While the pathophysiology of acute rejection is better understood, the process of chronic graft rejection is much less clear. Our data suggests NKT cells as a potential therapeutic target to prevent chronic transplant rejection which needs further investigation.
Collapse
Affiliation(s)
- Nadia Sirajuddin
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Xiao-Tang Yin
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Patrick M Stuart
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
10
|
Abstract
Unconventional T cells are a diverse and underappreciated group of relatively rare lymphocytes that are distinct from conventional CD4+ and CD8+ T cells, and that mainly recognize antigens in the absence of classical restriction through the major histocompatibility complex (MHC). These non-MHC-restricted T cells include mucosal-associated invariant T (MAIT) cells, natural killer T (NKT) cells, γδ T cells and other, often poorly defined, subsets. Depending on the physiological context, unconventional T cells may assume either protective or pathogenic roles in a range of inflammatory and autoimmune responses in the kidney. Accordingly, experimental models and clinical studies have revealed that certain unconventional T cells are potential therapeutic targets, as well as prognostic and diagnostic biomarkers. The responsiveness of human Vγ9Vδ2 T cells and MAIT cells to many microbial pathogens, for example, has implications for early diagnosis, risk stratification and targeted treatment of peritoneal dialysis-related peritonitis. The expansion of non-Vγ9Vδ2 γδ T cells during cytomegalovirus infection and their contribution to viral clearance suggest that these cells can be harnessed for immune monitoring and adoptive immunotherapy in kidney transplant recipients. In addition, populations of NKT, MAIT or γδ T cells are involved in the immunopathology of IgA nephropathy and in models of glomerulonephritis, ischaemia-reperfusion injury and kidney transplantation.
Collapse
|
11
|
Hongo D, Zheng P, Dutt S, Pawar RD, Meyer E, Engleman EG, Strober S. Identification of Two Subsets of Murine DC1 Dendritic Cells That Differ by Surface Phenotype, Gene Expression, and Function. Front Immunol 2021; 12:746469. [PMID: 34777358 PMCID: PMC8589020 DOI: 10.3389/fimmu.2021.746469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Classical dendritic cells (cDCs) in mice have been divided into 2 major subsets based on the expression of nuclear transcription factors: a CD8+Irf8+Batf3 dependent (DC1) subset, and a CD8-Irf4+ (DC2) subset. We found that the CD8+DC1 subset can be further divided into CD8+DC1a and CD8+DC1b subsets by differences in surface receptors, gene expression, and function. Whereas all 3 DC subsets can act alone to induce potent Th1 cytokine responses to class I and II MHC restricted peptides derived from ovalbumin (OVA) by OT-I and OT-II transgenic T cells, only the DC1b subset could effectively present glycolipid antigens to natural killer T (NKT) cells. Vaccination with OVA protein pulsed DC1b and DC2 cells were more effective in reducing the growth of the B16-OVA melanoma as compared to pulsed DC1a cells in wild type mice. In conclusion, the Batf3-/- dependent DC1 cells can be further divided into two subsets with different immune functional profiles in vitro and in vivo.
Collapse
Affiliation(s)
- David Hongo
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, United States
| | - Pingping Zheng
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
| | - Suparna Dutt
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, United States
| | - Rahul D Pawar
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, United States
| | - Everett Meyer
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Samuel Strober
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
12
|
Development of immunosuppressive myeloid cells to induce tolerance in solid organ and hematopoietic cell transplant recipients. Blood Adv 2021; 5:3290-3302. [PMID: 34432869 DOI: 10.1182/bloodadvances.2020003669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/04/2021] [Indexed: 01/03/2023] Open
Abstract
Replacement of failed organs followed by safe withdrawal of immunosuppressive drugs has long been the goal of organ transplantation. We studied changes in the balance of T cells and myeloid cells in the blood of HLA-matched and -mismatched patients given living donor kidney transplants followed by total lymphoid irradiation, anti-thymocyte globulin conditioning, and donor hematopoietic cell transplant to induce mixed chimerism and immune tolerance. The clinical trials were based on a conditioning regimen used to establish mixed chimerism and tolerance in mice. In preclinical murine studies, there was a profound depletion of T cells and an increase in immunosuppressive polymorphonuclear (pmn) myeloid-derived suppressor cells (MDSCs) in the spleen and blood following transplant. Selective depletion of pmn MDSCs in mice abrogated mixed chimerism and tolerance. In our clinical trials, patients given an analogous tolerance conditioning regimen developed similar changes, including profound depletion of T cells and a marked increase in MDSCs in blood posttransplant. Posttransplant pmn MDSCs transiently increased expression of lectin-type oxidized LDL receptor-1, a marker of immunosuppression, and production of the T-cell inhibitor arginase-1. These posttransplant pmn MDSCs suppressed the activation, proliferation, and inflammatory cytokine secretion of autologous T-cell receptor microbead-stimulated pretransplant T cells when cocultured in vitro. In conclusion, we elucidated changes in receptors and function of immunosuppressive myeloid cells in patients enrolled in the tolerance protocol that were nearly identical to those of MDSCs required for tolerance in mice. These trials were registered at www.clinicaltrials.gov as #NCT00319657 and #NCT01165762.
Collapse
|
13
|
Slepicka PF, Yazdanifar M, Bertaina A. Harnessing Mechanisms of Immune Tolerance to Improve Outcomes in Solid Organ Transplantation: A Review. Front Immunol 2021; 12:688460. [PMID: 34177941 PMCID: PMC8222735 DOI: 10.3389/fimmu.2021.688460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Survival after solid organ transplantation (SOT) is limited by chronic rejection as well as the need for lifelong immunosuppression and its associated toxicities. Several preclinical and clinical studies have tested methods designed to induce transplantation tolerance without lifelong immune suppression. The limited success of these strategies has led to the development of clinical protocols that combine SOT with other approaches, such as allogeneic hematopoietic stem cell transplantation (HSCT). HSCT prior to SOT facilitates engraftment of donor cells that can drive immune tolerance. Recent innovations in graft manipulation strategies and post-HSCT immune therapy provide further advances in promoting tolerance and improving clinical outcomes. In this review, we discuss conventional and unconventional immunological mechanisms underlying the development of immune tolerance in SOT recipients and how they can inform clinical advances. Specifically, we review the most recent mechanistic studies elucidating which immune regulatory cells dampen cytotoxic immune reactivity while fostering a tolerogenic environment. We further discuss how this understanding of regulatory cells can shape graft engineering and other therapeutic strategies to improve long-term outcomes for patients receiving HSCT and SOT.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Mahboubeh Yazdanifar
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Alice Bertaina
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
14
|
Song Q, Wang X, Wu X, Qin H, Li Y, Riggs AD, Martin PJ, Chen YZ, Zeng D. Tolerogenic anti-IL-2 mAb prevents graft-versus-host disease while preserving strong graft-versus-leukemia activity. Blood 2021; 137:2243-2255. [PMID: 33511398 PMCID: PMC8063091 DOI: 10.1182/blood.2020006345] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/01/2021] [Indexed: 12/15/2022] Open
Abstract
Donor T cells mediate both graft-versus-leukemia (GVL) activity and graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (allo-HCT). Development of methods that preserve GVL activity while preventing GVHD remains a long-sought goal. Tolerogenic anti-interleukin-2 (IL-2) monoclonal antibody (JES6-1) forms anti-IL-2/IL-2 complexes that block IL-2 binding to IL-2Rβ and IL-2Rγ on conventional T cells that have low expression of IL-2Rα. Here, we show that administration of JES6 early after allo-HCT in mice markedly attenuates acute GVHD while preserving GVL activity that is dramatically stronger than observed with tacrolimus (TAC) treatment. The anti-IL-2 treatment downregulated activation of the IL-2-Stat5 pathway and reduced production of granulocyte-macrophage colony-stimulating factor (GM-CSF). In GVHD target tissues, enhanced T-cell programmed cell death protein 1 (PD-1) interaction with tissue-programmed cell death-ligand 1 (PD-L1) led to reduced activation of protein kinase-mammalian target of rapamycin pathway and increased expression of eomesodermin and B-lymphocyte-induced maturation protein-1, increased T-cell anergy/exhaustion, expansion of Foxp3-IL-10-producing type 1 regulatory (Tr1) cells, and depletion of GM-CSF-producing T helper type 1 (Th1)/cytotoxic T cell type 1 (Tc1) cells. In recipient lymphoid tissues, lack of donor T-cell PD-1 interaction with tissue PD-L1 preserved donor PD-1+TCF-1+Ly108+CD8+ T memory progenitors and functional effectors that have strong GVL activity. Anti-IL-2 and TAC treatments have qualitatively distinct effects on donor T cells in the lymphoid tissues, and CD8+ T memory progenitor cells are enriched with anti-IL-2 treatment compared with TAC treatment. We conclude that administration of tolerogenic anti-IL-2 monoclonal antibody early after allo-HCT represents a novel approach for preventing acute GVHD while preserving GVL activity.
Collapse
Affiliation(s)
- Qingxiao Song
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA
- Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, and Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xiaoning Wang
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Xiwei Wu
- Department of Integrative Genomics Core, The Beckman Research Institute of City of Hope, Duarte, CA
| | - Hanjun Qin
- Department of Integrative Genomics Core, The Beckman Research Institute of City of Hope, Duarte, CA
| | - Yingfei Li
- The Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China; and
| | - Arthur D Riggs
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA
| | | | - Yuan-Zhong Chen
- Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, and Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Defu Zeng
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
15
|
Pathak S, Meyer EH. Tregs and Mixed Chimerism as Approaches for Tolerance Induction in Islet Transplantation. Front Immunol 2021; 11:612737. [PMID: 33658995 PMCID: PMC7917336 DOI: 10.3389/fimmu.2020.612737] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 01/07/2023] Open
Abstract
Pancreatic islet transplantation is a promising method for the treatment of type 1 and type 3 diabetes whereby replacement of islets may be curative. However, long-term treatment with immunosuppressive drugs (ISDs) remains essential for islet graft survival. Current ISD regimens carry significant side-effects for transplant recipients, and are also toxic to the transplanted islets. Pre-clinical efforts to induce immune tolerance to islet allografts identify ways in which the recipient immune system may be reeducated to induce a sustained transplant tolerance and even overcome autoimmune islet destruction. The goal of these efforts is to induce tolerance to transplanted islets with minimal to no long-term immunosuppression. Two most promising cell-based therapeutic strategies for inducing immune tolerance include T regulatory cells (Tregs) and donor and recipient hematopoietic mixed chimerism. Here, we review preclinical studies which utilize Tregs for tolerance induction in islet transplantation. We also review myeloablative and non-myeloablative hematopoietic stem cell transplantation (HSCT) strategies in preclinical and clinical studies to induce sustained mixed chimerism and allograft tolerance, in particular in islet transplantation. Since Tregs play a critical role in the establishment of mixed chimerism, it follows that the combination of Treg and HSCT may be synergistic. Since the success of the Edmonton protocol, the feasibility of clinical islet transplantation has been established and nascent clinical trials testing immune tolerance strategies using Tregs and/or hematopoietic mixed chimerism are underway or being formulated.
Collapse
Affiliation(s)
- Shiva Pathak
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, United States
| | - Everett H. Meyer
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
16
|
Amirian N, Ranjbaran R, Shokrgozar N, Ataei S, Bazrafshan A, Sharifzadeh S. Skewed intracellular cytokine production of iNKT cells toward Th2-related responses in alloimmunized thalassemia patients. Cytokine 2021; 140:155425. [PMID: 33508653 DOI: 10.1016/j.cyto.2021.155425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/26/2020] [Accepted: 12/28/2020] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Red blood cell alloimmunization is a challenging issue in thalassemia patients. Several studies have investigated the role of different immune system compartment in alloimmunization, but the exact mechanism remains unclear. Considering the immunoregulatory function of iNKT cells and their subsets, in this study, we evaluated the possible role of these cells in alloimmunization status of thalassemia patients. METHODS 78 β-thalassemia major patients (41 alloimmunized and 37 non-alloimmunized) and 17 healthy controls were engaged in this study. Mononuclear cells were isolated from peripheral blood samples and stimulated for cytokine production. Samples were subjected to flow cytometry for enumeration of iNKT cells and characterized based on their cytokine production pattern. Finally, the results correlated with alloimmunization status, clinical and laboratory data. RESULTS Results demonstrated that the number of iNKT, iNKT+IFN-ɤ+, and iNKT+IL-4+ cells in thalassemia group was significantly higher than healthy controls while no significant change was observed in the number of these cells between alloimmunized and non-alloimmunized thalassemia patients. Interestingly, the ratio of iNKT+IL-4+: iNKT+IFN-γ+ cells in alloimmunized thalassemia group represent a considerable increase in comparison to both non-alloimmunized thalassemia group and healthy controls. However, evaluating this value in non-alloimmunized group represents an approximately equal ratio of 0.94, which was almost similar to this ratio in the control group (0.99). CONCLUSION Our results illustrated a noteworthy imbalance in the ratio of iNKT cell subsets in favour of IL-4 producing iNKT cells in alloimmunized thalassemia patients. Regarding the role of IL-4 in stimulating the Th2-related immune responses, this imbalance could consider as a possible mechanism in alloantibody responses of thalassemia patients.
Collapse
Affiliation(s)
- Niloofar Amirian
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Ranjbaran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Shokrgozar
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Ataei
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asghar Bazrafshan
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Sharifzadeh
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Issa F, Strober S, Leventhal JR, Kawai T, Kaufman DB, Levitsky J, Sykes M, Mas V, Wood KJ, Bridges N, Welniak LA, Chandran S, Madsen JC, Nickerson P, Demetris AJ, Lakkis FG, Thomson AW. The Fourth International Workshop on Clinical Transplant Tolerance. Am J Transplant 2021; 21:21-31. [PMID: 32529725 DOI: 10.1111/ajt.16139] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/20/2020] [Accepted: 06/08/2020] [Indexed: 01/25/2023]
Abstract
The International Workshop on Clinical Transplant Tolerance is a biennial meeting that aims to provide an update on the progress of studies of immunosuppression minimization or withdrawal in solid organ transplantation. The Fourth International Workshop on Clinical Tolerance was held in Pittsburgh, Pennsylvania, September 5-6, 2019. This report is a summary of presentations on the status of clinical trials designed to minimize or withdraw immunosuppressive drugs in kidney, liver, and lung transplantation without subsequent evidence of rejection. All protocols had in common the use of donor or recipient cell therapy combined with organ transplantation. The workshop also included presentations of mechanistic studies designed to improve understanding of the cellular and molecular basis of tolerance and to identify potential predictors/biomarkers of tolerance. Strategies to enhance the safety of hematopoietic cell transplantation and to improve patient selection/risk stratification for clinical trials were also discussed.
Collapse
Affiliation(s)
- Fadi Issa
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Samuel Strober
- Department of Medicine, Stanford University, Stanford, California, USA
| | - Joseph R Leventhal
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Tatsuo Kawai
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dixon B Kaufman
- Department of Surgery, University of Wisconsin, Madison, Wisconsin, USA
| | - Josh Levitsky
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Microbiology & Immunology, Columbia University, New York, New York, USA
| | - Valeria Mas
- Transplant Research Institute, James D. Eason Transplant Institute, School of Medicine, The University of Tennessee Health Care Science, Memphis, Tennessee, USA
| | - Kathryn J Wood
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Nancy Bridges
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisbeth A Welniak
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sindhu Chandran
- Department of Medicine, University of California, San Francisco, California, USA
| | - Joren C Madsen
- MGH Transplant Center and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Peter Nickerson
- Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anthony J Demetris
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fadi G Lakkis
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Angus W Thomson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Giaccone L, Faraci DG, Butera S, Lia G, Di Vito C, Gabrielli G, Cerrano M, Mariotti J, Dellacasa C, Felicetti F, Brignardello E, Mavilio D, Bruno B. Biomarkers for acute and chronic graft versus host disease: state of the art. Expert Rev Hematol 2020; 14:79-96. [PMID: 33297779 DOI: 10.1080/17474086.2021.1860001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Despite significant advances in treatment and prevention, graft-versus-host disease (GVHD) still represents the main cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Thus, considerable research efforts have been made to find and validate reliable biomarkers for diagnosis, prognosis, and risk stratification of GVHD. AREAS COVERED In this review the most recent evidences on different types of biomarkers studied for GVHD, such as genetic, plasmatic, cellular markers, and those associated with microbiome, were summarized. A comprehensive search of peer-review literature was performed in PubMed including meta-analysis, preclinical and clinical trials, using the terms: cellular and plasma biomarkers, graft-versus-host disease, cytokines, and allogeneic hematopoietic stem cell transplantation. EXPERT OPINION In the near future, several validated biomarkers will be available to help clinicians in the diagnosis of GVHD, the identification of patients at high risk of GVHD development and in patients' stratification according to its severity. Then, immunosuppressive treatment could be tailored to each patient's real needs. However, more efforts are needed to achieve this goal. Although most of the proposed biomarkers currently lack validation with large-scale clinical data, their study led to improved knowledge of the biological basis of GVHD, and ultimately to implementation of GHVD treatment.
Collapse
Affiliation(s)
- Luisa Giaccone
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Danilo Giuseppe Faraci
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Sara Butera
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Giuseppe Lia
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (Biometra), University of Milan , Milan, Italy
| | - Giulia Gabrielli
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Marco Cerrano
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Jacopo Mariotti
- Bone Marrow Transplant Unit, Humanitas Clinical and Research Center, IRCCS , Rozzano, Italy
| | - Chiara Dellacasa
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy
| | - Francesco Felicetti
- Transition Unit for Childhood Cancer Survivors, A.O.U. Città Della Salute E Della Scienza Di Torino , University of Torino , Torino, Italy
| | - Enrico Brignardello
- Transition Unit for Childhood Cancer Survivors, A.O.U. Città Della Salute E Della Scienza Di Torino , University of Torino , Torino, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (Biometra), University of Milan , Milan, Italy
| | - Benedetto Bruno
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| |
Collapse
|
19
|
Combined kidney and hematopoeitic cell transplantation to induce mixed chimerism and tolerance. Bone Marrow Transplant 2020; 54:793-797. [PMID: 31431706 DOI: 10.1038/s41409-019-0603-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Based on preclinical studies, combined kidney and hematopoietic cell transplantation was performed on fully HLA matched and haplotype matched patients at the Stanford University Medical Center. The object of the studies was to induce mixed chimerism, immune tolerance, and complete immunosuppressive drug withdrawal. Tolerance, persistent mixed chimerism, and complete withdrawal was achieved in the majority of fully matched patients. Persistent mixed chimerism and partial withdrawal has been achieved in the haplotype matched patients at present.
Collapse
|
20
|
Abstract
The present review discusses current developments in tolerance induction for solid organ transplantation with a particular emphasis on chimerism-based approaches. It explains the basic mechanisms of chimerism-based tolerance and provides an update on ongoing clinical tolerance trials. The concept of "delayed tolerance" is presented, and ongoing preclinical studies in the nonhuman primate setting-including current limitations and hurdles regarding this approach-are illustrated. In addition, a brief overview and update on cell-based tolerogenic clinical trials is provided. In a critical approach, advantages, limitations, and potential implications for the future of these different regimens are discussed.
Collapse
|
21
|
Mancusi A, Piccinelli S, Velardi A, Pierini A. CD4 +FOXP3 + Regulatory T Cell Therapies in HLA Haploidentical Hematopoietic Transplantation. Front Immunol 2019; 10:2901. [PMID: 31921162 PMCID: PMC6927932 DOI: 10.3389/fimmu.2019.02901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022] Open
Abstract
Since their discovery CD4+FOXP3+ regulatory T cells (Tregs) represented a promising tool to induce tolerance in allogeneic hematopoietic cell transplantation. Preclinical models proved that adoptive transfer of Tregs or the use of compounds that can favor their function in vivo are effective for prevention and treatment of graft-vs.-host disease (GvHD). Following these findings, Treg-based therapies have been employed in clinical trials. Adoptive immunotherapy with Tregs effectively prevents GvHD induced by alloreactive T cells in the setting of one HLA haplotype mismatched hematopoietic transplantation. The absence of post transplant pharmacologic immunosuppression unleashes T-cell mediated graft-vs.-tumor (GvT) effect, which results in an unprecedented, almost complete control of leukemia relapse in this setting. In the present review, we will report preclinical studies and clinical trials that demonstrate Treg ability to promote donor engraftment, protect from GvHD and improve GvT effect. We will also discuss new strategies to further enhance in vivo efficacy of Treg-based therapies.
Collapse
Affiliation(s)
- Antonella Mancusi
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, Italy
| | - Sara Piccinelli
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, Italy
| | - Andrea Velardi
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, Italy
| | - Antonio Pierini
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
22
|
Jahnke S, Schmid H, Secker KA, Einhaus J, Duerr-Stoerzer S, Keppeler H, Schober-Melms I, Baur R, Schumm M, Handgretinger R, Bethge W, Kanz L, Schneidawind C, Schneidawind D. Invariant NKT Cells From Donor Lymphocyte Infusions (DLI-iNKTs) Promote ex vivo Lysis of Leukemic Blasts in a CD1d-Dependent Manner. Front Immunol 2019; 10:1542. [PMID: 31354710 PMCID: PMC6629940 DOI: 10.3389/fimmu.2019.01542] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a curative treatment option for hematologic malignancies but relapse remains the most common cause of death. Infusion of donor lymphocytes (DLIs) can induce remission and prolong survival by exerting graft-vs.-leukemia (GVL) effects. However, sufficient tumor control cannot be established in all patients and occurrence of graft-vs.-host disease (GVHD) prevents further dose escalation. Previous data indicate that invariant natural killer T (iNKT) cells promote anti-tumor immunity without exacerbating GVHD. In the present study we investigated lysis of leukemic blasts through iNKT cells from donor-derived lymphocytes for leukemia control and found that iNKT cells constitute about 0.12% of cryopreserved donor T cells. Therefore, we established a 2-week cell culture protocol allowing for a robust expansion of iNKT cells from cryopreserved DLIs (DLI-iNKTs) that can be used for further preclinical and clinical applications. Such DLI-iNKTs efficiently lysed leukemia cell lines and primary patient AML blasts ex vivo in a dose- and CD1d-dependent manner. Furthermore, expression of CD1d on target cells was required to release proinflammatory cytokines and proapoptotic effector molecules. Our results suggest that iNKT cells from donor-derived lymphocytes are involved in anti-tumor immunity after allo-HCT and therefore may reduce the risk of relapse and improve progression-free and overall survival.
Collapse
Affiliation(s)
- Simona Jahnke
- Department of Hematology and Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Hannes Schmid
- Department of Hematology and Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Kathy-Ann Secker
- Department of Hematology and Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Jakob Einhaus
- Department of Hematology and Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Silke Duerr-Stoerzer
- Department of Hematology and Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Hildegard Keppeler
- Department of Hematology and Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Irmtraud Schober-Melms
- Department of Hematology and Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Rebecca Baur
- Department of Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Schumm
- Department of Hematology and Oncology, Children's University Hospital, Tuebingen, Germany
| | - Rupert Handgretinger
- Department of Hematology and Oncology, Children's University Hospital, Tuebingen, Germany
| | - Wolfgang Bethge
- Department of Hematology and Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Lothar Kanz
- Department of Hematology and Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Corina Schneidawind
- Department of Hematology and Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Dominik Schneidawind
- Department of Hematology and Oncology, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
23
|
Xu X, Han Y, Huang H, Bi L, Kong X, Ma X, Shi B, Xiao L. Circulating NK cell subsets and NKT‑like cells in renal transplant recipients with acute T‑cell‑mediated renal allograft rejection. Mol Med Rep 2019; 19:4238-4248. [PMID: 30942398 PMCID: PMC6471129 DOI: 10.3892/mmr.2019.10091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence indicates that natural killer (NK) cells and NKT-like cells may affect allograft outcomes following solid organ transplantation. However, the roles of these cells in allograft acceptance and dysfunction are controversial. To assess the changes in NK cell and CD3+CD56+ NKT-like cell frequency and phenotype in renal allograft recipients and to explore their associations with acute T-cell-mediated renal allograft rejection (ACR), longitudinal changes in NK and NKT-like cell frequency and phenotype were characterized using flow cytometry and immunohistochemistry in the peripheral blood and kidney allograft tissues in 142 recipients undergoing kidney transplantation. The serum concentrations of NK cell-associated cytokines were also detected by cytokine multiplex immunoassay. In contrast to the healthy controls, recipients with stable graft function exhibited increased proportions of CD56brightCD16dim subsets and decreased proportions of NKT-like cells in their peripheral blood mononuclear cells (PBMCs). Patients with ACR demonstrated increased proportions of NK cells, which were associated with increased CD3−CD56bright subsets and decreased CD3−CD56dim subsets, an increase in the CD56bright/CD56dim ratio in PBMCs and increased CD56+ NK cell infiltration in the kidney allograft, compared with the stable controls. In addition, there was a decreased proportion of NKT-like cells in patients with ACR, and an increased ratio of CD56bright/NKT-like cells compared with the stable controls. These differences appeared to be consistent with the increase in the serum concentrations of C-C motif chemokine 19 and the decrease in the serum concentrations of interleukin-15. These data indicate that CD56bright NK cells may promote the development of ACR, and that NKT-like cells may have immunoregulatory function. The results also imply that the CD56bright/CD56dim ratio may affect the ACR signatures.
Collapse
Affiliation(s)
- Xiaoguang Xu
- Beijing Key Laboratory of Organ Transplant and Immune Regulation, Transplant Research Laboratory of Organ Transplantation Institute, The 309th Hospital of Chinese People's Liberation Army, Beijing 100091, P.R. China
| | - Yong Han
- Beijing Key Laboratory of Organ Transplant and Immune Regulation, Transplant Research Laboratory of Organ Transplantation Institute, The 309th Hospital of Chinese People's Liberation Army, Beijing 100091, P.R. China
| | - Haiyan Huang
- Beijing Key Laboratory of Organ Transplant and Immune Regulation, Transplant Research Laboratory of Organ Transplantation Institute, The 309th Hospital of Chinese People's Liberation Army, Beijing 100091, P.R. China
| | - Lili Bi
- Beijing Key Laboratory of Organ Transplant and Immune Regulation, Transplant Research Laboratory of Organ Transplantation Institute, The 309th Hospital of Chinese People's Liberation Army, Beijing 100091, P.R. China
| | - Xiangrui Kong
- Beijing Key Laboratory of Organ Transplant and Immune Regulation, Transplant Research Laboratory of Organ Transplantation Institute, The 309th Hospital of Chinese People's Liberation Army, Beijing 100091, P.R. China
| | - Xihui Ma
- Beijing Key Laboratory of Organ Transplant and Immune Regulation, Transplant Research Laboratory of Organ Transplantation Institute, The 309th Hospital of Chinese People's Liberation Army, Beijing 100091, P.R. China
| | - Bingyi Shi
- Beijing Key Laboratory of Organ Transplant and Immune Regulation, Transplant Research Laboratory of Organ Transplantation Institute, The 309th Hospital of Chinese People's Liberation Army, Beijing 100091, P.R. China
| | - Li Xiao
- Beijing Key Laboratory of Organ Transplant and Immune Regulation, Transplant Research Laboratory of Organ Transplantation Institute, The 309th Hospital of Chinese People's Liberation Army, Beijing 100091, P.R. China
| |
Collapse
|
24
|
A natural killer T-cell subset that protects against airway hyperreactivity. J Allergy Clin Immunol 2019; 143:565-576.e7. [DOI: 10.1016/j.jaci.2018.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/31/2018] [Accepted: 03/19/2018] [Indexed: 12/25/2022]
|
25
|
Guimarães FTL, Ferreira RN, Brito-Melo GEA, Rocha-Vieira E, Pereira WDF, Pinheiro SVB, Miranda AS, Simões E Silva AC. Pediatric Patients With Steroid-Sensitive Nephrotic Syndrome Have Higher Expression of T Regulatory Lymphocytes in Comparison to Steroid-Resistant Disease. Front Pediatr 2019; 7:114. [PMID: 31001501 PMCID: PMC6455073 DOI: 10.3389/fped.2019.00114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Background and Aim: Idiopathic nephrotic syndrome (INS) is classified according to the response to drug therapy in steroid-sensitive (SS), steroid-dependent (SD), and steroid-resistant (SR) categories. Previous studies showed changes in inflammatory activity of subpopulations of lymphocytes in INS. This study aimed to compare SS and SR patients in regard to subpopulations of leukocytes, profile of regulatory lymphocytes, and migratory activity of lymphocyte subpopulations. Results obtained in INS patients were also compared to age and sex-matched healthy controls. Methods: This is a cross-sectional study including SS patients (n = 30), SR patients (n = 14), and controls (n = 10). Peripheral blood samples were withdrawn for ex-vivo leukocyte flow cytometry analysis. Results: Percentage of B-lymphocytes and natural killer (NK) cells were significantly reduced in SR patients when compared to controls, while the percentage of NKT cells were decreased in SS patients in comparison to controls. Percentages of CD4+ expressing FoxP3 and CTLA4 were significantly higher in SS patients in comparison to SR patients and controls. The expression of integrin CD18 on the surface of T lymphocytes (CD3+) was reduced in SS patients if compared to controls. Conclusion: This study found that SS INS patients have higher levels of regulatory T-lymphocytes and lower expression of adhesion molecules than SR patients.
Collapse
Affiliation(s)
- Fabio Tadeu Lourenço Guimarães
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde - CIPq, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Rodrigo Novaes Ferreira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gustavo Eustáquio Alvim Brito-Melo
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde - CIPq, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Etel Rocha-Vieira
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde - CIPq, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Wagner de Fátima Pereira
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde - CIPq, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Sérgio Veloso Brant Pinheiro
- Unidade de Nefrologia Pediátrica, Departamento de Pediatria, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Aline Silva Miranda
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Cristina Simões E Silva
- Unidade de Nefrologia Pediátrica, Departamento de Pediatria, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
26
|
Schmid H, Schneidawind C, Jahnke S, Kettemann F, Secker KA, Duerr-Stoerzer S, Keppeler H, Kanz L, Savage PB, Schneidawind D. Culture-Expanded Human Invariant Natural Killer T Cells Suppress T-Cell Alloreactivity and Eradicate Leukemia. Front Immunol 2018; 9:1817. [PMID: 30127790 PMCID: PMC6088196 DOI: 10.3389/fimmu.2018.01817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/24/2018] [Indexed: 11/13/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a major cause of significant morbidity and mortality after allogeneic hematopoietic cell transplantation (HCT). Invariant natural killer T (iNKT) cells are potent regulators of immune responses, protect from lethal GVHD, and promote graft-versus-leukemia effects in murine studies. Since iNKT cells constitute less than 0.5% of human peripheral blood mononuclear cells (PBMCs), in vitro expansion with their glycolipid ligands is required before they can be used for cytotherapy and experimental purposes. Three weeks of cell culture and autologous restimulation with either KRN7000, PBS44, or PBS57 resulted in a robust proliferation of iNKT cells from human PBMCs. Next, iNKT cells were sorted to a purity higher than 90% being crucial for further experimental and clinical applications. These iNKT cells significantly decreased activation and proliferation of allogeneic CD3+ T lymphocytes. In addition, leukemia cell lines and primary leukemia cells were efficiently lysed by culture-expanded iNKT cells. Importantly, culture-expanded donor iNKT cells promoted robust antileukemia activity against HLA-matched allogeneic patient leukemia cells. Our data indicate that the adoptive transfer of culture-expanded iNKT cells could be a powerful cytotherapeutic approach to induce immune tolerance and prevent leukemia relapse after allogeneic HCT in humans.
Collapse
Affiliation(s)
- Hannes Schmid
- Department of Medicine II, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Corina Schneidawind
- Department of Medicine II, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Simona Jahnke
- Department of Medicine II, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Felix Kettemann
- Department of Medicine II, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Kathy-Ann Secker
- Department of Medicine II, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Silke Duerr-Stoerzer
- Department of Medicine II, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Hildegard Keppeler
- Department of Medicine II, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Lothar Kanz
- Department of Medicine II, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Dominik Schneidawind
- Department of Medicine II, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
27
|
Trujillo-Ocampo A, Cho HW, Herrmann AC, Ruiz-Vazquez W, Thornton AB, He H, Li D, Qazilbash MA, Ma Q, Porcelli SA, Shpall EJ, Molldrem J, Im JS. Rapid ex vivo expansion of highly enriched human invariant natural killer T cells via single antigenic stimulation for cell therapy to prevent graft-versus-host disease. Cytotherapy 2018; 20:1089-1101. [PMID: 30076070 DOI: 10.1016/j.jcyt.2018.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND AIMS CD1d-restricted invariant natural killer (iNK) T cells are rare regulatory T cells that may contribute to the immune-regulation in allogeneic stem cell transplantation (ASCT). Here, we sought to develop an effective strategy to expand human iNK T cells for use in cell therapy to prevent graft-versus-host disease (GVHD) in ASCT. METHODS Human iNK T cells were first enriched from peripheral blood mononuclear cells (PBMCs) using magnetic-activated cell sorting separation, then co-cultured with dendritic cells in the presence of agonist glycolipids, alpha-galactosylceramide, for 2 weeks. RESULTS The single antigenic stimulation reliably expanded iNK T cells to an average of 2.8 × 107 per 5 × 108 PBMCs in an average purity of 98.8% in 2 weeks (N = 24). The expanded iNK T cells contained a significantly higher level of CD4+ and central memory phenotype (CD45RA-CD62L+) compared with freshly isolated iNK T cells, and maintained their ability to produce both Th-1 (interferon [IFN]γ and tumor necrosis factor [TNF]α) and Th-2 type cytokines (interleukin [IL]-4, IL-5 and IL-13) upon antigenic stimulation or stimulation with Phorbol 12-myristate 13-acetate/ionomycin. Interestingly, expanded iNK T cells were highly autoreactive and produced a Th-2 polarized cytokine production profile after being co-cultured with dendritic cells alone without exogenous agonist glycolipid antigen. Lastly, expanded iNK T cells suppressed conventional T-cell proliferation and ameliorated xenograft GVHD (hazard ratio, 0.1266; P < 0.0001). CONCLUSION We have demonstrated a feasible approach for obtaining ex vivo expanded, highly enriched human iNK T cells for use in adoptive cell therapy to prevent GVHD in ASCT.
Collapse
Affiliation(s)
- Abel Trujillo-Ocampo
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hyun-Woo Cho
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amanda C Herrmann
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wilfredo Ruiz-Vazquez
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andrew B Thornton
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hong He
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dan Li
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mariam A Qazilbash
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qing Ma
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven A Porcelli
- Department of Microbiology & Immunology, and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey Molldrem
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jin S Im
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
28
|
Abstract
Type I or invariant natural killer T cells belong to a unique lineage of innate T cells, which express markers of both T lymphocytes and NK cells, namely T cell receptor (TCR) and NK1.1 (CD161C), respectively. Thus, apart from direct killing of target cells like NK cells, and they also produce a myriad of cytokines which modulate the adaptive immune responses. Unlike traditional T cells which carry a conventional αβ TCR, NKT cells express semi-invariant TCR - Vα14-Jα18, coupled with Vβ8, Vβ7 and Vβ2 in mice. In humans, the invariant TCR is composed of Vα24-Jα18, coupled with Vβ11.
Collapse
Affiliation(s)
- Kalyani Pyaram
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, USA
| | - Viveka Nand Yadav
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, USA
| |
Collapse
|
29
|
Induction of immune tolerance and altered cytokine expression in skin transplantation recipients. Kaohsiung J Med Sci 2018; 34:330-334. [DOI: 10.1016/j.kjms.2018.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 01/09/2023] Open
|
30
|
Kawai K, Uchiyama M, Hester J, Wood K, Issa F. Regulatory T cells for tolerance. Hum Immunol 2018; 79:294-303. [DOI: 10.1016/j.humimm.2017.12.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/16/2017] [Accepted: 12/26/2017] [Indexed: 12/29/2022]
|
31
|
Ishii R, Hirai T, Miyairi S, Omoto K, Okumi M, Ishii Y, Tanabe K. iNKT cell activation plus T-cell transfer establishes complete chimerism in a murine sublethal bone marrow transplant model. Am J Transplant 2018; 18:328-340. [PMID: 28766890 DOI: 10.1111/ajt.14453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 01/25/2023]
Abstract
Transplant tolerance induction makes it possible to preserve functional grafts for a lifetime without immunosuppressants. One powerful method is to generate mixed hematopoietic chimeras in recipients by adoptive transfer of donor-derived bone marrow cells (BMCs). In our murine transplantation model, we established a novel method for mixed chimera generation using sublethal irradiation, CD40-CD40L blockade, and invariant natural killer T-cell activation. However, numerous BMCs that are required to achieve stable chimerism makes it difficult to apply this model for human transplantation. Here, we show that donor-derived splenic T cells could contribute to not only the reduction of BMC usage but also the establishment of complete chimerism in model mice. By cotransfer of T cells together even with one-fourth of the BMCs used in our original method, the recipient mice yielded complete chimerism and could acquire donor-specific skin-allograft tolerance. The complete chimeric mice did not show any remarks of graft versus host reaction in vivo and in vitro. Inhibition of the apoptotic signal resulted in increase in host-derived CD8+ T cells and chimerism brake. These results suggest that donor-derived splenic T cells having veto activity play a role in the depletion of host-derived CD8+ T cells and the facilitation of complete chimerism.
Collapse
Affiliation(s)
- Rumi Ishii
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshihito Hirai
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Satoshi Miyairi
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazuya Omoto
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayoshi Okumi
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasuyuki Ishii
- Cluster for Industry Partnerships (CIP), RIKEN, Yokohama, Japan
| | - Kazunari Tanabe
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
32
|
Sáez de Guinoa J, Jimeno R, Gaya M, Kipling D, Garzón MJ, Dunn-Walters D, Ubeda C, Barral P. CD1d-mediated lipid presentation by CD11c + cells regulates intestinal homeostasis. EMBO J 2018; 37:embj.201797537. [PMID: 29378774 PMCID: PMC5830915 DOI: 10.15252/embj.201797537] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022] Open
Abstract
Intestinal homeostasis relies on a continuous dialogue between the commensal bacteria and the immune system. Natural killer T (NKT) cells, which recognize CD1d‐restricted microbial lipids and self‐lipids, contribute to the regulation of mucosal immunity, yet the mechanisms underlying their functions remain poorly understood. Here, we demonstrate that NKT cells respond to intestinal lipids and CD11c+ cells (including dendritic cells (DCs) and macrophages) are essential to mediate lipid presentation within the gut ultimately controlling intestinal NKT cell homeostasis and activation. Conversely, CD1d and NKT cells participate in the control of the intestinal bacteria composition and compartmentalization, in the regulation of the IgA repertoire and in the induction of regulatory T cells within the gut. These changes in intestinal homeostasis require CD1d expression on DC/macrophage populations as mice with conditional deletion of CD1d on CD11c+ cells exhibit dysbiosis and altered immune homeostasis. These results unveil the importance of CD11c+ cells in controlling lipid‐dependent immunity in the intestinal compartment and reveal an NKT cell–DC crosstalk as a key mechanism for the regulation of gut homeostasis.
Collapse
Affiliation(s)
- Julia Sáez de Guinoa
- The Peter Gorer Department of Immunobiology, King's College London, London, UK.,The Francis Crick Institute, London, UK
| | - Rebeca Jimeno
- The Peter Gorer Department of Immunobiology, King's College London, London, UK.,The Francis Crick Institute, London, UK
| | - Mauro Gaya
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - David Kipling
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - María José Garzón
- Departamento de Genómica y Salud, Centro Superior de Investigación en Salud Pública - FISABIO, Valencia, Spain
| | | | - Carles Ubeda
- Departamento de Genómica y Salud, Centro Superior de Investigación en Salud Pública - FISABIO, Valencia, Spain.,Centers of Biomedical Research Network (CIBER) in Epidemiology and Public Health, Madrid, Spain
| | - Patricia Barral
- The Peter Gorer Department of Immunobiology, King's College London, London, UK .,The Francis Crick Institute, London, UK
| |
Collapse
|
33
|
Scandling JD, Busque S, Lowsky R, Shizuru J, Shori A, Engleman E, Jensen K, Strober S. Macrochimerism and clinical transplant tolerance. Hum Immunol 2018; 79:266-271. [PMID: 29330112 DOI: 10.1016/j.humimm.2018.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/15/2017] [Accepted: 01/04/2018] [Indexed: 11/18/2022]
Abstract
Current theory holds that macrochimerism is essential to the development of transplant tolerance. Hematopoietic cell transplantation from the solid organ donor is necessary to achieve macrochimerism. Over the last 10-20 years, trials of tolerance induction with combined kidney and hematopoietic cell transplantation have moved from the preclinical to the clinical arena. The achievement of macrochimerism in the clinical setting is challenging, and potentially toxic due to the conditioning regimen necessary to hematopoietic cell transplantation and due to the risk of graft-versus-host disease. There are differences in chimerism goals and methods of the three major clinical stage tolerance induction strategies in both HLA-matched and HLA-mismatched living donor kidney transplantation, with consequent differences in efficacy and safety. The Stanford protocol has proven efficacious in the induction of tolerance in HLA-matched kidney transplantation, allowing cessation of immunosuppressive drug therapy in 80% of study participants, with the safety profile of conventional transplantation. In HLA-mismatched transplantation, multi-lineage macrochimerism of over a year's duration can now be consistently achieved with the Stanford protocol, with complete withdrawal of immunosuppressive drug therapy during the second post-transplant year as the next experimental step and test of tolerance.
Collapse
Affiliation(s)
- John D Scandling
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Stephan Busque
- Divsion of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Robert Lowsky
- Divsion of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Judith Shizuru
- Divsion of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Asha Shori
- Divsion of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Edgar Engleman
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Kent Jensen
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Samuel Strober
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| |
Collapse
|
34
|
Mahr B, Granofszky N, Muckenhuber M, Wekerle T. Transplantation Tolerance through Hematopoietic Chimerism: Progress and Challenges for Clinical Translation. Front Immunol 2017; 8:1762. [PMID: 29312303 PMCID: PMC5743750 DOI: 10.3389/fimmu.2017.01762] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
The perception that transplantation of hematopoietic stem cells can confer tolerance to any tissue or organ from the same donor is widely accepted but it has not yet become a treatment option in clinical routine. The reasons for this are multifaceted but can generally be classified into safety and efficacy concerns that also became evident from the results of the first clinical pilot trials. In comparison to standard immunosuppressive therapies, the infection risk associated with the cytotoxic pre-conditioning necessary to allow allogeneic bone marrow engraftment and the risk of developing graft-vs.-host disease (GVHD) constitute the most prohibitive hurdles. However, several approaches have recently been developed at the experimental level to reduce or even overcome the necessity for cytoreductive conditioning, such as costimulation blockade, pro-apoptotic drugs, or Treg therapy. But even in the absence of any hazardous pretreatment, the recipients are exposed to the risk of developing GVHD as long as non-tolerant donor T cells are present. Total lymphoid irradiation and enriching the stem cell graft with facilitating cells emerged as potential strategies to reduce this peril. On the other hand, the long-lasting survival of kidney allografts, seen with transient chimerism in some clinical series, questions the need for durable chimerism for robust tolerance. From a safety point of view, loss of chimerism would indeed be favorable as it eliminates the risk of GVHD, but also complicates the assessment of tolerance. Therefore, other biomarkers are warranted to monitor tolerance and to identify those patients who can safely be weaned off immunosuppression. In addition to these safety concerns, the limited efficacy of the current pilot trials with approximately 40-60% patients becoming tolerant remains an important issue that needs to be resolved. Overall, the road ahead to clinical routine may still be rocky but the first successful long-term patients and progress in pre-clinical research provide encouraging evidence that deliberately inducing tolerance through hematopoietic chimerism might eventually make it from dream to reality.
Collapse
Affiliation(s)
- Benedikt Mahr
- Department of Surgery, Section of Transplantation Immunology, Medical University of Vienna, Vienna, Austria
| | - Nicolas Granofszky
- Department of Surgery, Section of Transplantation Immunology, Medical University of Vienna, Vienna, Austria
| | - Moritz Muckenhuber
- Department of Surgery, Section of Transplantation Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Department of Surgery, Section of Transplantation Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Pilat N, Granofszky N, Wekerle T. Combining Adoptive Treg Transfer with Bone Marrow Transplantation for Transplantation Tolerance. CURRENT TRANSPLANTATION REPORTS 2017; 4:253-261. [PMID: 29201599 PMCID: PMC5691126 DOI: 10.1007/s40472-017-0164-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The mixed chimerism approach is an exceptionally potent strategy for the induction of donor-specific tolerance in organ transplantation and so far the only one that was demonstrated to work in the clinical setting. Regulatory T cells (Tregs) have been shown to improve chimerism induction in experimental animal models. This review summarizes the development of innovative BMT protocols using therapeutic Treg transfer for tolerance induction. RECENT FINDINGS Treg cell therapy promotes BM engraftment in reduced conditioning protocols in both, mice and non-human primates. In mice, transfer of polyclonal recipient Tregs was sufficient to substitute cytotoxic recipient conditioning. Treg therapy prevented chronic rejection of skin and heart allografts related to tissue-specific antigen disparities, in part by promoting intragraft Treg accumulation. SUMMARY Adoptive Treg transfer is remarkably effective in facilitating BM engraftment in reduced-intensity protocols in mice and non-human primates. Furthermore, it promotes regulatory mechanisms that prevent chronic rejection.
Collapse
Affiliation(s)
- Nina Pilat
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Nicolas Granofszky
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Thomas Wekerle
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
36
|
Takeuchi A, Kato K, Akashi K, Eto M. Cyclophosphamide-induced tolerance in kidney transplantation avoids long-term immunosuppressive therapy. Int J Urol 2017; 25:112-120. [PMID: 29105189 DOI: 10.1111/iju.13474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 08/22/2017] [Indexed: 12/28/2022]
Abstract
There has recently been remarkable progress in immunosuppressive agents, such as tacrolimus and cyclosporine. Therefore, the rate of organ establishment has improved in transplantation. However, immunosuppressive agents generally suppress the function of T cells. Thus, opportunistic infections, such as cytomegalovirus infection, are still a major problem in kidney transplantation. Induction of specific tolerance to avoid immunosuppressive drug therapy after kidney transplantation is considered as the ultimate goal of transplantation. Various factors induce tolerance that involves establishment of hematopoietic chimerism and various cell subsets. In particular, we have carried out various studies regarding the cyclophosphamide-induced tolerance system. Tolerance is induced after establishment of hematopoietic chimerism after donor bone marrow transplantation. At the clinical stage, kidney transplantation before administration of cyclophosphamide after transfusion of bone marrow to create hematopoietic chimera is considered to be one of the most successful protocols. Furthermore, recent studies have shown the involvement of multiple populations of immune cells in preserving immunological tolerance and promoting long-term renal grafts. The present review focuses on how cyclophosphamide and other immune factors induce tolerance in kidney transplantation.
Collapse
Affiliation(s)
- Ario Takeuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Kato
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
37
|
Yang JH, Eun SC. Therapeutic application of T regulatory cells in composite tissue allotransplantation. J Transl Med 2017; 15:218. [PMID: 29073905 PMCID: PMC5658973 DOI: 10.1186/s12967-017-1322-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022] Open
Abstract
With growing number of cases in recent years, composite tissue allotransplantation (CTA) has been improving the quality of life of patient who seeks reconstruction and repair of damaged tissues. Composite tissue allografts are heterogeneous. They are composed of a variety of tissue types, including skin, muscle, vessel, bone, bone marrow, lymph nodes, nerve, and tendon. As a primary target of CTA, skin has high antigenicity with a rich repertoire of resident cells that play pivotal roles in immune surveillance. In this regard, understanding the molecular mechanisms involved in immune rejection in the skin would be essential to achieve successful CTA. Although scientific evidence has proved the necessity of immunosuppressive drugs to prevent rejection of allotransplanted tissues, there remains a lingering dilemma due to the lack of specificity of targeted immunosuppression and risks of side effects. A cumulative body of evidence has demonstrated T regulatory (Treg) cells have critical roles in induction of immune tolerance and immune homeostasis in preclinical and clinical studies. Presently, controlling immune susceptible characteristics of CTA with adoptive transfer of Treg cells is being considered promising and it has drawn great interests. This updated review will focus on a dominant form of Treg cells expressing CD4+CD25+ surface molecules and a forkhead box P3 transcription factor with immune tolerant and immune homeostasis activities. For future application of Treg cells as therapeutics in CTA, molecular and cellular characteristics of CTA and immune rejection, Treg cell development and phenotypes, Treg cell plasticity and stability, immune tolerant functions of Treg cells in CTA in preclinical studies, and protocols for therapeutic application of Treg cells in clinical settings are addressed in this review. Collectively, Treg cell therapy in CTA seems feasible with promising perspectives. However, the extreme high immunogenicity of CTA warrants caution.
Collapse
Affiliation(s)
- Jeong-Hee Yang
- Department of Plastic and Reconstructive Surgery, Composite Tissue Allotransplantation Immunology Laboratory, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Seok-Chan Eun
- Department of Plastic and Reconstructive Surgery, Composite Tissue Allotransplantation Immunology Laboratory, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
38
|
Lam PY, Nissen MD, Mattarollo SR. Invariant Natural Killer T Cells in Immune Regulation of Blood Cancers: Harnessing Their Potential in Immunotherapies. Front Immunol 2017; 8:1355. [PMID: 29109728 PMCID: PMC5660073 DOI: 10.3389/fimmu.2017.01355] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/03/2017] [Indexed: 01/03/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique innate T lymphocyte population that possess cytolytic properties and profound immunoregulatory activities. iNKT cells play an important role in the immune surveillance of blood cancers. They predominantly recognize glycolipid antigens presented on CD1d, but their activation and cytolytic activities are not confined to CD1d expressing cells. iNKT cell stimulation and subsequent production of immunomodulatory cytokines serve to enhance the overall antitumor immune response. Crucially, the activation of iNKT cells in cancer often precedes the activation and priming of other immune effector cells, such as NK cells and T cells, thereby influencing the generation and outcome of the antitumor immune response. Blood cancers can evade or dampen iNKT cell responses by downregulating expression of recognition receptors or by actively suppressing or diverting iNKT cell functions. This review will discuss literature on iNKT cell activity and associated dysregulation in blood cancers as well as highlight some of the strategies designed to harness and enhance iNKT cell functions against blood cancers.
Collapse
Affiliation(s)
- Pui Yeng Lam
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Michael D. Nissen
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Stephen R. Mattarollo
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
39
|
Mavers M, Maas-Bauer K, Negrin RS. Invariant Natural Killer T Cells As Suppressors of Graft-versus-Host Disease in Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2017; 8:900. [PMID: 28824628 PMCID: PMC5534641 DOI: 10.3389/fimmu.2017.00900] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/13/2017] [Indexed: 11/30/2022] Open
Abstract
Invariant natural killer T (iNKT) cells serve as a bridge between innate and adaptive immunity and have been shown to play an important role in immune regulation, defense against pathogens, and cancer immunity. Recent data also suggest that this compartment of the immune system plays a significant role in reducing graft-versus-host disease (GVHD) in the setting of allogeneic hematopoietic stem cell transplantation. Murine studies have shown that boosting iNKT numbers through certain conditioning regimens or adoptive transfer leads to suppression of acute or chronic GVHD. Preclinical work reveals that iNKT cells exert their suppressive function by expanding regulatory T cells in vivo, though the exact mechanism by which this occurs has yet to be fully elucidated. Human studies have demonstrated that a higher number of iNKT cells in the graft or in the peripheral blood of the recipient post-transplantation are associated with a reduction in GVHD risk, importantly without a loss of graft-versus-tumor effect. In two separate analyses of many immune cell subsets in allogeneic grafts, iNKT cell dose was the only parameter associated with a significant improvement in GVHD or in GVHD-free progression-free survival. Failure to reconstitute iNKT cells following allogeneic transplantation has also been associated with an increased risk of relapse. These data demonstrate that iNKT cells hold promise for future clinical application in the prevention of GVHD in allogeneic stem cell transplantation and warrant further study of the immunoregulatory functions of iNKT cells in this setting.
Collapse
Affiliation(s)
- Melissa Mavers
- Divisions of Hematology/Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Kristina Maas-Bauer
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Robert S Negrin
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
40
|
Li L, Tu J, Jiang Y, Zhou J, Schust DJ. Regulatory T cells decrease invariant natural killer T cell-mediated pregnancy loss in mice. Mucosal Immunol 2017; 10:613-623. [PMID: 27706127 DOI: 10.1038/mi.2016.84] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 08/26/2016] [Indexed: 02/04/2023]
Abstract
Pregnancy loss is the commonest complication of pregnancy. The causes of pregnancy loss are poorly understood. It has been reported that stimulation of invariant natural killer T (iNKT) cells using α-galactosylceramide (αGC) induces pregnancy loss in mice. Here we investigated the mechanisms, especially the role of regulatory T (Treg) cells, in iNKT cell-mediated pregnancy loss. We found that injection of αGC rapidly induced fetal resorption, activated decidual iNKT cells, decreased the percentage of decidual Treg cells and their interleukin (IL)-10 and transforming growth factor (TGF)-β production, and upregulated the levels of interferon (IFN)-γ, tumor necrosis factor-α, IL-4, and IL-10 in serum. Adoptive transfer of iNKT cells from wild-type (WT) and IL-4-/- mice but not IFN-γ-/- mice into αGC-treated iNKT cell-deficient Jα18-/- mice restored αGC-induced pregnancy loss. Adoptive transfer of Treg cells downregulated α-GC-induced pregnancy loss in WT mice. Finally, co-culture with αGC-stimulated decidual iNKT cells decreased the production of IL-10 and TGF-β in decidual Treg cells and inhibited their suppressive activity. These findings suggest that activation of iNKT cells induces pregnancy loss in mice in an IFN-γ-dependent manner. In addition, inhibition of the function of decidual Treg cells has an important role in iNKT cell-mediated pregnancy loss.
Collapse
Affiliation(s)
- L Li
- Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - J Tu
- Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Y Jiang
- Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - J Zhou
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - D J Schust
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
41
|
Trojan K, Zhu L, Aly M, Weimer R, Bulut N, Morath C, Opelz G, Daniel V. Association of peripheral NK cell counts with Helios + IFN-γ - T regs in patients with good long-term renal allograft function. Clin Exp Immunol 2017; 188:467-479. [PMID: 28194759 DOI: 10.1111/cei.12945] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2017] [Indexed: 12/16/2022] Open
Abstract
Little is known about a possible interaction of natural killer (NK) cells with regulatory T cells (Treg ) in long-term stable kidney transplant recipients. Absolute counts of lymphocyte and Treg subsets were studied in whole blood samples of 136 long-term stable renal transplant recipients and 52 healthy controls using eight-colour fluorescence flow cytometry. Patients were 1946 ± 2201 days (153-10 268 days) post-transplant and showed a serum creatinine of 1·7 ± 0·7 mg/dl. Renal transplant recipients investigated > 1·5 years post-transplant showed higher total NK cell counts than recipients studied < 1·5 years after transplantation (P = 0·006). High NK cells were associated with high glomerular filtration rate (P = 0·002) and low serum creatinine (P = 0·005). Interestingly, high NK cells were associated with high CD4+ CD25+ CD127- forkhead box protein 3 (FoxP3+ ) Treg that co-express the phenotype Helios+ interferon (IFN)-γ- and appear to have stable FoxP3 expression and originate from the thymus. Furthermore, high total NK cells were associated with Treg that co-express the phenotypes interleukin (IL)-10- transforming growth factor (TGF)-β+ (P = 0·013), CD183+ CD62L- (P = 0·003), CD183+ CD62+ (P = 0·001), CD183- CD62L+ (P = 0·002), CD252- CD152+ (P < 0·001), CD28+ human leucocyte antigen D-related (HLA-DR- ) (P = 0·002), CD28+ HLA-DR+ (P < 0·001), CD95+ CD178- (P < 0·001) and CD279- CD152+ (P < 0·001), suggesting that these activated Treg home in peripheral tissues and suppress effector cells via TGF-β and cytotoxic T lymphocyte-associated protein 4 (CTLA-4). The higher numbers of NK and Treg cell counts in patients with long-term good allograft function and the statistical association of these two lymphocyte subsets with each other suggest a direct or indirect (via DC) interaction of these cell subpopulations that contributes to good long-term allograft acceptance. Moreover, we speculate that regulatory NK cells are formed late post-transplant that are able to inhibit graft-reactive effector cells.
Collapse
Affiliation(s)
- K Trojan
- Transplantation-Immunology, Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - L Zhu
- Transplantation-Immunology, Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany.,Department of Hematology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - M Aly
- Transplantation-Immunology, Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany.,Nephrology Unit, Internal Medicine Department, Assiut University, Egypt
| | - R Weimer
- Department of Internal Medicine, University of Giessen, Giessen, Germany
| | - N Bulut
- Department of Internal Medicine, University of Giessen, Giessen, Germany
| | - C Morath
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - G Opelz
- Transplantation-Immunology, Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - V Daniel
- Transplantation-Immunology, Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
42
|
da Silva MB, da Cunha FF, Terra FF, Camara NOS. Old game, new players: Linking classical theories to new trends in transplant immunology. World J Transplant 2017; 7:1-25. [PMID: 28280691 PMCID: PMC5324024 DOI: 10.5500/wjt.v7.i1.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/16/2016] [Accepted: 12/07/2016] [Indexed: 02/05/2023] Open
Abstract
The evolutionary emergence of an efficient immune system has a fundamental role in our survival against pathogenic attacks. Nevertheless, this same protective mechanism may also establish a negative consequence in the setting of disorders such as autoimmunity and transplant rejection. In light of the latter, although research has long uncovered main concepts of allogeneic recognition, immune rejection is still the main obstacle to long-term graft survival. Therefore, in order to define effective therapies that prolong graft viability, it is essential that we understand the underlying mediators and mechanisms that participate in transplant rejection. This multifaceted process is characterized by diverse cellular and humoral participants with innate and adaptive functions that can determine the type of rejection or promote graft acceptance. Although a number of mediators of graft recognition have been described in traditional immunology, recent studies indicate that defining rigid roles for certain immune cells and factors may be more complicated than originally conceived. Current research has also targeted specific cells and drugs that regulate immune activation and induce tolerance. This review will give a broad view of the most recent understanding of the allogeneic inflammatory/tolerogenic response and current insights into cellular and drug therapies that modulate immune activation that may prove to be useful in the induction of tolerance in the clinical setting.
Collapse
|
43
|
Miyairi S, Hirai T, Ishii R, Okumi M, Nunoda S, Yamazaki K, Ishii Y, Tanabe K. Donor bone marrow cells are essential for iNKT cell-mediated Foxp3+ Treg cell expansion in a murine model of transplantation tolerance. Eur J Immunol 2017; 47:734-742. [PMID: 28127757 DOI: 10.1002/eji.201646670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/03/2016] [Accepted: 01/23/2017] [Indexed: 01/03/2023]
Abstract
Mixed chimerism induction is the most reliable method for establishing transplantation tolerance. We previously described a novel treatment using a suboptimal dose of anti-CD40 ligand (anti-CD40L) and liposomal formulation of a ligand for invariant natural killer T cells administered to sub-lethally irradiated recipient mice after donor bone marrow cell (BMC) transfer. Recipient mice treated with this regimen showed expansion of a Foxp3-positive regulatory T(Treg) cell phenotype, and formation of mixed chimera. However, the mechanism of expansion and bioactivity of Treg cells remains unclear. Here, we examine the role of donor BMCs in the expansion of bioactive Treg cells. The mouse model was transplanted with a heart allograft the day after treatment. The results showed that transfer of spleen cells in place of BMCs failed to deplete host interferon (IFN)-γ-producing CD8+ T cells, expand host Ki67+ CD4+ CD25+ Foxp3+ Treg cells, and prolong graft survival. Severe combined immunodeficiency mice who received Treg cells obtained from BMC-recipients accepted skin grafts in an allo-specific manner. Myeloid-derived suppressor cells, which were a copious cell subset in BMCs, enhanced the Ki67 expression of Treg cells. This suggests that donor BMCs are indispensable for the expansion of host bioactive Treg cells in our novel treatment for transplant tolerance induction.
Collapse
Affiliation(s)
- Satoshi Miyairi
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan.,Department of Cardiovascular Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshihito Hirai
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Rumi Ishii
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayoshi Okumi
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Shinichi Nunoda
- Department of Cardiovascular Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Kenji Yamazaki
- Department of Cardiovascular Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasuyuki Ishii
- Cluster for Industry Partnerships (CIP), RIKEN, Yokohama, Kanagawa, Japan
| | - Kazunari Tanabe
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
44
|
Jaiswal SR, Zaman S, Nedunchezhian M, Chakrabarti A, Bhakuni P, Ahmed M, Sharma K, Rawat S, O'donnell P, Chakrabarti S. CD56-enriched donor cell infusion after post-transplantation cyclophosphamide for haploidentical transplantation of advanced myeloid malignancies is associated with prompt reconstitution of mature natural killer cells and regulatory T cells with reduced incidence of acute graft versus host disease: A pilot study. Cytotherapy 2017; 19:531-542. [PMID: 28131632 DOI: 10.1016/j.jcyt.2016.12.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/29/2016] [Accepted: 12/23/2016] [Indexed: 01/09/2023]
Abstract
We conducted a pilot study on the feasibility of CD56-enriched donor cell infusion after post-transplantation cyclophosphamide (PTCy) for 10 patients with advanced myeloid malignancies undergoing haploidentical peripheral blood stem cell transplantation with cyclosporine alone as graft-versus-host disease (GVHD) prophylaxis and compared the outcome and immune reconstitution with a control group of 20 patients undergoing the same without CD56-enriched donor cell infusion. An early and rapid surge of mature NK cells as well as CD4+ T cells and regulatory T cells (Tregs) was noted compared with the control group. KIR of donor phenotype reconstituted as early as day 30 with expression of CD56dimCD16+NKG2A-KIR+ phenotype. None experienced viral or fungal infections, and non-relapse mortality was 10% only. The incidence of grade 2-4 acute GVHD was 50% in the control group with none in the CD56 group (P = 0.01). Only two had de novo chronic GVHD in each group. Relapse occurred in five patients in CD56 group with a median follow-up of 12 months, similar to the control group. Our preliminary data show that CD56+ donor cell infusion after PTCy and short-course cyclosporine is feasible with prompt engraftment, rapid reconstitution of CD4+T cells, Tregs and NK cells and reduced incidence of acute GVHD.
Collapse
Affiliation(s)
- Sarita Rani Jaiswal
- Manashi Chakrabarti Foundation, Kolkata, India; Department of Blood and Marrow Transplantation, Dharamshila Hospital and Research Centre, New Delhi, India.
| | - Shamsur Zaman
- Department of Blood and Marrow Transplantation, Dharamshila Hospital and Research Centre, New Delhi, India
| | | | | | - Prakash Bhakuni
- Department of Blood and Marrow Transplantation, Dharamshila Hospital and Research Centre, New Delhi, India
| | - Margoob Ahmed
- Department of Blood and Marrow Transplantation, Dharamshila Hospital and Research Centre, New Delhi, India
| | - Kanika Sharma
- Department of Blood and Marrow Transplantation, Dharamshila Hospital and Research Centre, New Delhi, India
| | - Sheh Rawat
- Department of Blood and Marrow Transplantation, Dharamshila Hospital and Research Centre, New Delhi, India
| | - Paul O'donnell
- Fred Hutchinson Cancer Research Centre, Seattle, Washington, USA
| | - Suparno Chakrabarti
- Manashi Chakrabarti Foundation, Kolkata, India; Department of Blood and Marrow Transplantation, Dharamshila Hospital and Research Centre, New Delhi, India
| |
Collapse
|
45
|
Tolerogenic interactions between CD8 + dendritic cells and NKT cells prevent rejection of bone marrow and organ grafts. Blood 2017; 129:1718-1728. [PMID: 28096089 DOI: 10.1182/blood-2016-07-723015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022] Open
Abstract
The combination of total lymphoid irradiation and anti-T-cell antibodies safely induces immune tolerance to combined hematopoietic cell and organ allografts in humans. Our mouse model required host natural killer T (NKT) cells to induce tolerance. Because NKT cells normally depend on signals from CD8+ dendritic cells (DCs) for their activation, we used the mouse model to test the hypothesis that, after lymphoid irradiation, host CD8+ DCs play a requisite role in tolerance induction through interactions with NKT cells. Selective deficiency of either CD8+ DCs or NKT cells abrogated chimerism and organ graft acceptance. After radiation, the CD8+ DCs increased expression of surface molecules required for NKT and apoptotic cell interactions and developed suppressive immune functions, including production of indoleamine 2,3-deoxygenase. Injection of naive mice with apoptotic spleen cells generated by irradiation led to DC changes similar to those induced by lymphoid radiation, suggesting that apoptotic body ingestion by CD8+ DCs initiates tolerance induction. Tolerogenic CD8+ DCs induced the development of tolerogenic NKT cells with a marked T helper 2 cell bias that, in turn, regulated the differentiation of the DCs and suppressed rejection of the transplants. Thus, reciprocal interactions between CD8+ DCs and invariant NKT cells are required for tolerance induction in this system that was translated into a successful clinical protocol.
Collapse
|
46
|
Abstract
The trillions of microorganisms inhabiting human mucosal surfaces participate intricately in local homeostatic processes as well as development and function of the host immune system. These microorganisms, collectively referred to as the "microbiome," play a vital role in modulating the balance between clearance of pathogenic organisms and tolerance of commensal cells, including but not limited to human allografts. Advances in immunology, gnotobiotics, and culture-independent molecular techniques have provided growing insights into the complex relationship between the microbiome and the host, how it is modified by variables such as immunosuppressive and antimicrobial drugs, and its potential impact on posttransplantation outcomes. Here, we provide an overview of fundamental principles, recent discoveries, and clinical implications of this promising field of research.
Collapse
Affiliation(s)
- James H. Tabibian
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Wilmott-Barna Center for Endoscopic Innovation, Research, and Training, University of Pennsylvania, Philadelphia, PA
| | - Saad S. Kenderian
- Translational Research Program, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
47
|
Bone marrow chimerism as a strategy to produce tolerance in solid organ allotransplantation. Curr Opin Organ Transplant 2016; 21:595-602. [PMID: 27805947 DOI: 10.1097/mot.0000000000000366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW Clinical transplant tolerance has been most successfully achieved combining hematopoietic chimerism with kidney transplantation. This review outlines this strategy in animal models and human transplantation, and possible clinical challenges. RECENT FINDINGS Kidney transplant tolerance has been achieved through chimerism in several centers beginning with Massachusetts General Hospital's success with mixed chimerism in human leukocyte antigen (HLA)-mismatched patients and the Stanford group with HLA-matched patients, and the more recent success of the Northwestern protocol achieving full chimerism. This has challenged the original view that stable mixed chimerism is necessary for organ graft tolerance. However, among the HLA-mismatched kidney transplant-tolerant patients, loss of mixed chimerism does not lead to renal-graft rejection, and the development of host Foxp3+ regulatory T cells has been observed. Recent animal models suggest that graft tolerance through bone marrow chimerism occurs through both clonal deletion and regulatory immune cells. Further, Tregs have been shown to improve chimerism in animal models. SUMMARY Animal studies continue to suggest ways to improve our current clinical strategies. Advances in chimerism protocols suggest that tolerance may be clinically achievable with relative safety for HLA-mismatched kidney transplants.
Collapse
|
48
|
Edinur HA, Manaf SM, Che Mat NF. Genetic barriers in transplantation medicine. World J Transplant 2016; 6:532-541. [PMID: 27683631 PMCID: PMC5036122 DOI: 10.5500/wjt.v6.i3.532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/26/2016] [Accepted: 07/13/2016] [Indexed: 02/05/2023] Open
Abstract
The successful of transplantation is determined by the shared human leukocyte antigens (HLAs) and ABO blood group antigens between donor and recipient. In recent years, killer cell receptor [i.e., killer cell immunoglobulin-like receptor (KIR)] and major histocompatibility complex (MHC) class I chain-related gene molecule (i.e., MICA) were also reported as important determinants of transplant compatibility. At present, several different genotyping techniques (e.g., sequence specific primer and sequence based typing) can be used to characterize blood group, HLA, MICA and KIR and loci. These molecular techniques have several advantages because they do not depend on the availability of anti-sera, cellular expression and have greater specificity and accuracy compared with the antibody-antigen based typing. Nonetheless, these molecular techniques have limited capability to capture increasing number of markers which have been demonstrated to determine donor and recipient compatibility. It is now possible to genotype multiple markers and to the extent of a complete sequencing of the human genome using next generation sequencer (NGS). This high throughput genotyping platform has been tested for HLA, and it is expected that NGS will be used to simultaneously genotype a large number of clinically relevant transplantation genes in near future. This is not far from reality due to the bioinformatics support given by the immunogenetics community and the rigorous improvement in NGS methodology. In addition, new developments in immune tolerance based therapy, donor recruitment strategies and bioengineering are expected to provide significant advances in the field of transplantation medicine.
Collapse
|
49
|
Extrinsic allospecific signals of hematopoietic origin dictate iNKT cell lineage-fate decisions during development. Sci Rep 2016; 6:28837. [PMID: 27354027 PMCID: PMC4926280 DOI: 10.1038/srep28837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/09/2016] [Indexed: 12/14/2022] Open
Abstract
Invariant NKT (iNKT) cells are critical to the maintenance of tolerance toward alloantigens encountered during postnatal life pointing to the existence of a process for self-education. However, the impact of developmentally encountered alloantigens in shaping the phenotype and function of iNKT cells has not been described. To better understand this process, the current report examined naïve iNKT cells as they matured in an allogeneic environment. Following the prenatal transfer of fetal hematopoietic cells between age-matched allogeneic murine fetuses, cell-extrinsic signals appeared to dictate allospecific patterns of Ly49 receptor expression and lineage diversity in developing iNKT cells. Regulation for this process arose from cells of hematopoietic origin requiring only rare exposure to facilitate broad changes in developing iNKT cells. These findings highlight surprisingly asymmetric allospecific alterations in iNKT cells as they develop and mature in an allogeneic environment and establish a new paradigm for study of the self-education of iNKT cells.
Collapse
|
50
|
Abstract
Tolerance to combined kidney and hematopoietic cell transplant has been achieved in humans after establishment of mixed chimerism allowing for the withdrawal of immunosuppressive drugs. The seminal contributions of Ray Owen provided the scientific basis for the human protocol.
Collapse
Affiliation(s)
- Samuel Strober
- a Department of Medicine , Stanford University School of Medicine , Stanford , CA , USA
| |
Collapse
|