1
|
Yang H, Zhang J, Zhong Y, Wang L. 5-Aminolevulinic acid improves strawberry salt tolerance through a NO-H 2O 2 signaling circuit regulated by FaWRKY70 and FaWRKY40. J Adv Res 2024:S2090-1232(24)00609-X. [PMID: 39743212 DOI: 10.1016/j.jare.2024.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/13/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
INTRODUCTION 5-Aminolevulinic acid (ALA) is an essential biosynthetic precursor of tetrapyrrole compounds, naturally occurring in all living organisms. It has also been suggested as a new plant growth regulator. Treatment with ALA promotes strawberry Na+ homeostasis under salt stress. Regulation of this process requires the signaling molecules nitric oxide (NO) and hydrogen peroxide (H2O2), but the specific signaling cascade and transcriptional regulatory mechanism have not previously been characterized. OBJECTIVES Our work focused on the dissection of the NO and H2O2 signaling cascade and transcriptional regulatory mechanism by which FaWRKY70-FaWRKY40 participated in ALA-improved Na+ homeostasis and salt tolerance of strawberry. METHODS It was preliminarily confirmed by transcriptome and RT-qPCR that FaWRKY40 and FaWRKY70 participated in ALA-induced salt tolerance of strawberry. Two WRKY transcription factors overexpressed in woodland strawberry as well as tobacco were used to identify the gene functions in salt tolerance. Yeast one-hybrid (Y1H), β-glucuronidase (GUS), dual luciferase reporter (DLR) and electrophoretic mobility shift assays (EMSA) were used to verify the interaction with the target gene. RESULTS ALA induced NO and H2O2 production, which formed a signaling circuit reciprocally regulated by FaNR1 and FaRbohD expression to coordinate Na+ homeostasis. FaWRKY40 was shown to act as a positive transcription factor in this pathway: FaWRKY40 overexpression improved salt tolerance in woodland strawberry and tobacco, whereas FaWRKY40 RNA interference increased plant salt injury. FaWRKY40 bound to the promoters of FaRbohD, FaNHX1, and FaSOS1 to promote root H2O2 generation and Na+ reallocation. Conversely, FaWRKY70, a negative WRKY transcription factor, was found to increase salt sensitivity by inhibiting expression of FvWRKY40, FvNR1, and FvHKT1. ALA inhibited FaWRKY70 but increased FaWRKY40 expression, coordinating the regulation of NO-H2O2 signaling and Na+ homeostasis when strawberry was stress by salinity. CONCLUSION ALA inhibits NaCl-stimulated FaWRYK70 expression, relieving the transcriptional inhibition of its downstream targets. The NO-H2O2 signaling circuit can then initiate mechanisms such as Na+ exclusion, vacuolar sequestration, and removal of Na+ from the xylem sap, limiting Na+ accumulation in the leaves and promoting Na+ homeostasis and plant salt tolerance.
Collapse
Affiliation(s)
- Hao Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 21095, China.
| | - Jianting Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 21095, China.
| | - Yan Zhong
- College of Horticulture, Nanjing Agricultural University, Nanjing 21095, China.
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 21095, China.
| |
Collapse
|
2
|
Bánfalvi Z, Kalapos B, Hamow KÁ, Jose J, Éva C, Odgerel K, Karsai-Rektenwald F, Villányi V, Sági L. Transcriptome, hormonal, and secondary metabolite changes in leaves of DEFENSE NO DEATH 1 (DND1) silenced potato plants. Sci Rep 2024; 14:20601. [PMID: 39232097 PMCID: PMC11375208 DOI: 10.1038/s41598-024-71380-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
DEFENSE NO DEATH 1 (DND1) is a cyclic nucleotide-gated ion channel protein. Earlier, it was shown that the silencing of DND1 in the potato (Solanum tuberosum L.) leads to resistance to late blight, powdery mildew, and gray mold diseases. At the same time, however, it can reduce plant growth and cause leaf necrosis. To obtain knowledge of the molecular events behind the pleiotropic effect of DND1 downregulation in the potato, metabolite and transcriptome analyses were performed on three DND1 silenced lines of the cultivar 'Désirée.' A massive increase in the salicylic acid content of leaves was detected. Concentrations of jasmonic acid and chlorogenic acid and their derivatives were also elevated. Expression of 1866 genes was altered in the same way in all three DND1 silenced lines, including those related to the synthesis of secondary metabolites. The activation of several alleles of leaf rust, late blight, and other disease resistance genes, as well as the induction of pathogenesis-related genes, was detected. WRKY and NAC transcription factor families were upregulated, whereas bHLHs were downregulated, indicating their central role in transcriptome changes. These results suggest that the maintenance of the constitutive defense state leads to the reduced growth of DND1 silenced potato plants.
Collapse
Affiliation(s)
- Zsófia Bánfalvi
- Department of Plant Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary.
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Martonvásár, Hungary.
| | - Balázs Kalapos
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Kamirán Áron Hamow
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Martonvásár, Hungary
| | - Jeny Jose
- Department of Plant Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Martonvásár, Hungary
| | - Csaba Éva
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Martonvásár, Hungary
| | - Khongorzul Odgerel
- Department of Plant Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Martonvásár, Hungary
| | - Flóra Karsai-Rektenwald
- Department of Plant Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Martonvásár, Hungary
| | - Vanda Villányi
- Department of Plant Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Martonvásár, Hungary
| | - László Sági
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Martonvásár, Hungary
| |
Collapse
|
3
|
Pérez-Llorca M, Müller M. Unlocking Nature's Rhythms: Insights into Secondary Metabolite Modulation by the Circadian Clock. Int J Mol Sci 2024; 25:7308. [PMID: 39000414 PMCID: PMC11241833 DOI: 10.3390/ijms25137308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Plants, like many other living organisms, have an internal timekeeper, the circadian clock, which allows them to anticipate photoperiod rhythms and environmental stimuli to optimally adjust plant growth, development, and fitness. These fine-tuned processes depend on the interaction between environmental signals and the internal interactive metabolic network regulated by the circadian clock. Although primary metabolites have received significant attention, the impact of the circadian clock on secondary metabolites remains less explored. Transcriptome analyses revealed that many genes involved in secondary metabolite biosynthesis exhibit diurnal expression patterns, potentially enhancing stress tolerance. Understanding the interaction mechanisms between the circadian clock and secondary metabolites, including plant defense mechanisms against stress, may facilitate the development of stress-resilient crops and enhance targeted management practices that integrate circadian agricultural strategies, particularly in the face of climate change. In this review, we will delve into the molecular mechanisms underlying circadian rhythms of phenolic compounds, terpenoids, and N-containing compounds.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Biology, Health and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Maren Müller
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Prashant SP, Bhawana M. An update on biotechnological intervention mediated by plant tissue culture to boost secondary metabolite production in medicinal and aromatic plants. PHYSIOLOGIA PLANTARUM 2024; 176:e14400. [PMID: 38945697 DOI: 10.1111/ppl.14400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024]
Abstract
Since prehistoric times, medicinal and aromatic plants (MAPs) have been employed for various therapeutic purposes due to their varied array of pharmaceutically relevant bioactive compounds, i.e. secondary metabolites. However, when secondary metabolites are isolated directly from MAPs, there is occasionally very poor yield and limited synthesis of secondary metabolites from particular tissues and certain developmental stages. Moreover, many MAPs species are in danger of extinction, especially those used in pharmaceuticals, as their natural populations are under pressure from overharvesting due to the excess demand for plant-based herbal remedies. The extensive use of these metabolites in a number of industrial and pharmaceutical industries has prompted a call for more research into increasing the output via optimization of large-scale production using plant tissue culture techniques. The potential of plant cells as sources of secondary metabolites can be exploited through a combination of product recovery technology research, targeted metabolite production, and in vitro culture establishment. The plant tissue culture approach provides low-cost, sustainable, continuous, and viable secondary metabolite production that is not affected by geographic or climatic factors. This study covers recent advancements in the induction of medicinally relevant metabolites, as well as the conservation and propagation of plants by advanced tissue culture technologies.
Collapse
Affiliation(s)
- Shera Pandit Prashant
- Department of Environmental Sciences, Central University of Himachal Pradesh (CUHP), Kangra, Shahpur, Himachal Pradesh
| | - Mishra Bhawana
- Department of Environmental Sciences, Central University of Himachal Pradesh (CUHP), Kangra, Shahpur, Himachal Pradesh
| |
Collapse
|
5
|
Guo X, Yan X, Li Y. Genome-wide identification and expression analysis of the WRKY gene family in Rhododendron henanense subsp. lingbaoense. PeerJ 2024; 12:e17435. [PMID: 38827309 PMCID: PMC11143974 DOI: 10.7717/peerj.17435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
Background This work explored the characteristics of the WRKY transcription factor family in Rhododendron henanense subsp. lingbaoense (Rhl) and the expression patterns of these genes under abiotic stress by conducting bioinformatics and expression analyses. Methods RhlWRKY genes were identified from a gene library of Rhl. Various aspects of these genes were analyzed, including genetic structures, conserved sequences, physicochemical properties, cis-acting elements, and chromosomal location. RNA-seq was employed to analyze gene expression in five different tissues of Rhl: roots, stems, leaves, flowers, and hypocotyls. Additionally, qRT-PCR was used to detect changes in the expression of five RhlWRKY genes under abiotic stress. Result A total of 65 RhlWRKY genes were identified and categorized into three subfamilies based on their structural characteristics: Groups I, II, and III. Group II was further divided into five subtribes, with shared similar genetic structures and conserved motifs among members of the same subtribe. The physicochemical properties of these proteins varied, but the proteins are generally predicted to be hydrophilic. Most proteins are predicted to be in the cell nucleus, and distributed across 12 chromosomes. A total of 84 cis-acting elements were discovered, with many related to responses to biotic stress. Among the identified RhlWRKY genes, there were eight tandem duplicates and 97 segmental duplicates. The majority of duplicate gene pairs exhibited Ka/Ks values <1, indicating purification under environmental pressure. GO annotation analysis indicated that WRKY genes regulate biological processes and participate in a variety of molecular functions. Transcriptome data revealed varying expression levels of 66.15% of WRKY family genes in all five tissue types (roots, stems, leaves, flowers, and hypocotyls). Five RhlWRKY genes were selected for further characterization and there were changes in expression levels for these genes in response to various stresses. Conclusion The analysis identified 65 RhlWRKY genes, among which the expression of WRKY_42 and WRKY_17 were mainly modulated by the drought and MeJA, and WRKY_19 was regulated by the low-temperature and high-salinity conditions. This insight into the potential functions of certain genes contributes to understanding the growth regulatory capabilities of Rhl.
Collapse
Affiliation(s)
- Xiangmeng Guo
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Xinyu Yan
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Yonghui Li
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| |
Collapse
|
6
|
Zhang M, Yang B, Wang Y, Yu F. CrJAT1 Regulates Endogenous JA Signaling for Modulating Monoterpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus. Genes (Basel) 2024; 15:324. [PMID: 38540383 PMCID: PMC10970522 DOI: 10.3390/genes15030324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 06/14/2024] Open
Abstract
Many monoterpenoid indole alkaloids (MIAs) produced in Catharanthus roseus have demonstrated biological activities and clinical potential. However, their complex biosynthesis pathway in plants leads to low accumulation, limiting therapeutic applications. Efforts to elucidate the MIA biosynthetic regulatory mechanism have focused on improving accumulation levels. Previous studies revealed that jasmonic acid (JA), an important plant hormone, effectively promotes MIA accumulation by inducing the expression of MIA biosynthesis and transport genes. Nevertheless, excessive JA signaling can strongly inhibit plant growth, decreasing MIA productivity in C. roseus. Therefore, identifying key components balancing growth and MIA production in the JA signaling pathway is imperative for effective pharmaceutical production. Here, we identify a homolog of the jasmonate transporter 1, CrJAT1, through co-expression and phylogenetic analyses. Further investigation demonstrated that CrJAT1 can activate JA signaling to promote MIA accumulation without compromising growth. The potential role of CrJAT1 in redistributing intra/inter-cellular JA and JA-Ile may calibrate signaling to avoid inhibition, representing a promising molecular breeding target in C. roseus to optimize the balance between growth and specialized metabolism for improved MIA production.
Collapse
Affiliation(s)
- Mengxia Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (M.Z.); (B.Y.); (Y.W.)
| | - Bingrun Yang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (M.Z.); (B.Y.); (Y.W.)
| | - Yanyan Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (M.Z.); (B.Y.); (Y.W.)
| | - Fang Yu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (M.Z.); (B.Y.); (Y.W.)
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
7
|
Xiong R, Peng Z, Zhou H, Xue G, He A, Yao X, Weng W, Wu W, Ma C, Bai Q, Ruan J. Genome-wide identification, structural characterization and gene expression analysis of the WRKY transcription factor family in pea (Pisum sativum L.). BMC PLANT BIOLOGY 2024; 24:113. [PMID: 38365619 PMCID: PMC10870581 DOI: 10.1186/s12870-024-04774-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND The WRKY gene family is one of the largest families of transcription factors in higher plants, and WRKY transcription factors play important roles in plant growth and development as well as in response to abiotic stresses; however, the WRKY gene family in pea has not been systematically reported. RESULTS In this study, 89 pea WRKY genes were identified and named according to the random distribution of PsWRKY genes on seven chromosomes. The gene family was found to have nine pairs of tandem duplicates and 19 pairs of segment duplicates. Phylogenetic analyses of the PsWRKY and 60 Arabidopsis WRKY proteins were performed to determine their homology, and the PsWRKYs were classified into seven subfamilies. Analysis of the physicochemical properties, motif composition, and gene structure of pea WRKYs revealed significant differences in the physicochemical properties within the PsWRKY family; however, their gene structure and protein-conserved motifs were highly conserved among the subfamilies. To further investigate the evolutionary relationships of the PsWRKY family, we constructed comparative syntenic maps of pea with representative monocotyledonous and dicotyledonous plants and found that it was most recently homologous to the dicotyledonous WRKY gene families. Cis-acting element analysis of PsWRKY genes revealed that this gene family can respond to hormones, such as abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellin (GA), methyl jasmonate (MeJA), and salicylic acid (SA). Further analysis of the expression of 14 PsWRKY genes from different subfamilies in different tissues and fruit developmental stages, as well as under five different hormone treatments, revealed differences in their expression patterns in the different tissues and fruit developmental stages, as well as under hormone treatments, suggesting that PsWRKY genes may have different physiological functions and respond to hormones. CONCLUSIONS In this study, we systematically identified WRKY genes in pea for the first time and further investigated their physicochemical properties, evolution, and expression patterns, providing a theoretical basis for future studies on the functional characterization of pea WRKY genes during plant growth and development.
Collapse
Affiliation(s)
- Ruiqi Xiong
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Zhonghua Peng
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Hui Zhou
- Sichuan Province Seed Station, Chengdu, Sichuan, 610041, China
| | - Guoxing Xue
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Ailing He
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Xin Yao
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Wenfeng Weng
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Weijiao Wu
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Chao Ma
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Qing Bai
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China.
| |
Collapse
|
8
|
Soltani N, Firouzabadi FN, Shafeinia A, Shirali M, Sadr AS. De Novo transcriptome assembly and differential expression analysis of catharanthus roseus in response to salicylic acid. Sci Rep 2022; 12:17803. [PMID: 36280677 PMCID: PMC9592577 DOI: 10.1038/s41598-022-20314-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/12/2022] [Indexed: 01/19/2023] Open
Abstract
The anti-cancer vinblastine and vincristine alkaloids can only be naturally found in periwinkle (Catharanthus roseus). Both of these alkaloids' accumulations are known to be influenced by salicylic acid (SA). The transcriptome data to reveal the induction effect (s) of SA, however, seem restricted at this time. In this study, the de novo approach of transcriptome assembly was performed on the RNA-Sequencing (RNA-Seq) data in C. roseus. The outcome demonstrated that SA treatment boosted the expression of all the genes in the Terpenoid Indole Alkaloids (TIAs) pathway that produces the vinblastine and vincristine alkaloids. These outcomes supported the time-course measurements of vincristine alkaloid, the end product of the TIAs pathway, and demonstrated that SA spray had a positive impact on transcription and alkaloid synthesis. Additionally, the abundance of transcription factor families including bHLH, C3H, C2H2, MYB, MYB-related, AP2/ ERF, NAC, bZIP, and WRKY suggests a role for a variety of transcription families in response to the SA stimuli. Di-nucleotide and tri-nucleotide SSRs were the most prevalent SSR markers in microsatellite analyses, making up 39% and 34% of all SSR markers, respectively, out of the 77,192 total SSRs discovered.
Collapse
Affiliation(s)
- Narges Soltani
- Production Engineering and Plant Genetics Department, Faculty of Agriculture and Natural Resources, Lorestan University, P.O. Box 465, Khorramabad, Iran
| | - Farhad Nazarian Firouzabadi
- Production Engineering and Plant Genetics Department, Faculty of Agriculture and Natural Resources, Lorestan University, P.O. Box 465, Khorramabad, Iran.
| | - Alireza Shafeinia
- Department of Plant Production & Genetics, Faculty of Agriculture, Agricultural Sciences & Natural Resources, University of Khuzestan, Mollasani, Iran
| | - Masoud Shirali
- Agri-Food and Biosciences Institute, Hillsborough, BT26 6DR, UK
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5AJ, UK
| | - Ayeh Sadat Sadr
- South of Iran Aquaculture Research Institute (SIARI), Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Ahvaz, Iran.
| |
Collapse
|
9
|
Godbole RC, Pable AA, Singh S, Barvkar VT. Interplay of transcription factors orchestrating the biosynthesis of plant alkaloids. 3 Biotech 2022; 12:250. [PMID: 36051988 PMCID: PMC9424429 DOI: 10.1007/s13205-022-03316-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Plants produce a range of secondary metabolites primarily as defence molecules. A plant has to invest considerable energy to synthesise alkaloids, and sometimes they are even toxic to themselves. Hence, the biosynthesis of alkaloids is a spatiotemporally regulated process under quantitative feedback regulation which is accomplished by the signal reception, transcriptional/translational regulation, transport, storage and accumulation. The transcription factors (TFs) initiate the biosynthesis of alkaloids after appropriate cues. The present study recapitulates last decade understanding of the role of TFs in alkaloid biosynthesis. The present review discusses TF families, viz. AP2/ERF, bHLH, WRKY, MYB involved in the biosynthesis of various types of alkaloids. It also highlights the role of the jasmonic acid cascade and post-translational modifications of TF proteins. A thorough understanding of TFs will help us to decide a strategy to facilitate successful pathway manipulation and in vitro production.
Collapse
Affiliation(s)
- Rucha C. Godbole
- Department of Botany, Savitribai Phule Pune University, Pune, 411007 India
| | - Anupama A. Pable
- Department of Microbiology, Savitribai Phule Pune University, Pune, 411007 India
| | - Sudhir Singh
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre (BARC), Mumbai, 400085 India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 India
| | - Vitthal T. Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, 411007 India
| |
Collapse
|
10
|
Rahman FU, Zhang Y, Khan IA, Liu R, Sun L, Wu Y, Jiang J, Fan X, Liu C. The Promoter Analysis of VvPR1 Gene: A Candidate Gene Identified through Transcriptional Profiling of Methyl Jasmonate Treated Grapevine (Vitis vinifera L.). PLANTS 2022; 11:plants11121540. [PMID: 35736691 PMCID: PMC9227488 DOI: 10.3390/plants11121540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Methyl jasmonate (MeJA) plays a vital role in plant disease resistance and also induces the expression of disease resistance genes in plants. In this study, a transcriptome analysis was performed on grapevine leaves after 12, 24 and 48 h of MeJA-100 μM treatment. A total of 1242 differentially expressed genes (DEGs) were identified from the transcriptome data, and the analysis of the DEGs showed that genes related to phytohormone signal transduction, jasmonic acid-mediated defense, Mitogen-activated protein kinase (MAPK), and flavonoid biosynthetic pathways were upregulated. As Pathogenesis-related gene 1 (PR1) is an important marker gene in plant defense also upregulated by MeJA treatment in RNA-seq data, the VvPR1 gene was selected for a promoter analysis with β-glucuronidase (GUS) through transient expression in tobacco leaves against abiotic stress. The results showed that the region from −1837 bp to −558 bp of the VvPR1 promoter is the key region in response to hormone and wound stress. In this study, we extended the available knowledge about induced defense by MeJA in a grapevine species that is susceptible to different diseases and identified the molecular mechanisms by which this defense might be mediated.
Collapse
|
11
|
Mall M, Shanker K, Samad A, Kalra A, Sundaresan V, Shukla AK. Stress responsiveness of vindoline accumulation in Catharanthus roseus leaves is mediated through co-expression of allene oxide cyclase with pathway genes. PROTOPLASMA 2022; 259:755-773. [PMID: 34459997 DOI: 10.1007/s00709-021-01701-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Vindoline is an important alkaloid produced in Catharanthus roseus leaves. It is the more important monomer of the scarce and costly anticancer bisindole alkaloids, vincristine, and vinblastine, as unlike catharanthine (the other monomer), its biosynthesis is restricted to the leaves. Here, biotic (bacterial endophyte, phytoplasma, virus) and abiotic (temperature, salinity, SA, MeJa) factors were studied for their effect on vindoline accumulation in C. roseus. Variations in vindoline pathway-related gene expression were reflected in changes in vindoline content. Since allene oxide cyclase (CrAOC) is involved in jasmonate biosynthesis and MeJa modulates many vindoline pathway genes, the correlation between CrAOC expression and vindoline content was studied. It was taken up for full-length cloning, tissue-specific expression profiling, in silico analyses, and upstream genomic region analysis for cis-regulatory elements. Co-expression analysis of CrAOC with vindoline metabolism-related genes under the influence of aforementioned abiotic/biotic factors indicated its stronger direct correlation with the tabersonine-to-vindoline genes (t16h, omt, t3o, t3r, nmt, d4h, dat) as compared to the pre-tabersonine genes (tdc, str, sgd). Its expression was inversely related to that of downstream-acting peroxidase (prx) (except under temperature stress). Direct/positive relationship of CrAOC expression with vindoline content established it as a key gene modulating vindoline accumulation in C. roseus.
Collapse
Affiliation(s)
- Maneesha Mall
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, UP, India
| | - Karuna Shanker
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, UP, India
| | - Abdul Samad
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, UP, India
| | - Alok Kalra
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, UP, India
| | - Velusamy Sundaresan
- CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Allalasandra, GKVK Post, Bengaluru, 560065, Karnataka, India
| | - Ashutosh K Shukla
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, UP, India.
| |
Collapse
|
12
|
Qiu H, Su L, Wang H, Zhang Z. Chitosan elicitation of saponin accumulation in Psammosilene tunicoides hairy roots by modulating antioxidant activity, nitric oxide production and differential gene expression. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:115-127. [PMID: 34098155 DOI: 10.1016/j.plaphy.2021.05.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Elicitation is one of the most effective strategies for enhancing plant bioactive compounds, such as triterpenoid saponins. Chitosan gained worldwide attention for biostimulant activity, but little is known about its roles in the elicitation of triterpenoid saponin in medicinal plants. Here, we explored the regulatory network of chitosan on saponin accumulation in hairy root cultures of Psammosilene tunicoides, a valuable medicinal herb known for its pain-relieving properties endemic to China. Compared with control, the highest total saponin accumulation exhibited a 4.55-fold enhancement in hairy roots elicited by 200 mg L-1 chitosan for nine days. High-performance liquid chromatography (HPLC) revealed the yields of quillaic acid, gypsogenin and gypsogenin-3-O-β-D-glucuronopyranoside were significantly increased after chitosan treatments. Moreover, exogenous chitosan application dramatically triggered the reactive oxygen species (ROS) scavenging enzyme activities and nitric oxide (NO) content in hairy roots. Comparative transcriptome analysis from chitosan-treated (1 and 9 d) or control groups revealed that differentially expressed genes (DEGs) were greatly enriched in plant-pathogen interaction and metabolic processes. The transcriptions of candidate DEGs involved in chitosan-elicited saponin metabolism were increased, especially genes encoding antioxidant enzymes (SOD, POD and GR), stress-responsive transcription factors (WRKYs and NACs) and terpenoid biosynthetic enzymes (DXS, GPPS and SE). Taken together, these results indicate that chitosan elicitor promotes triterpenoid saponin biosynthesis by enhancing antioxidant activities, NO production and differential gene expression in P. tunicoides hairy roots.
Collapse
Affiliation(s)
- Hanhan Qiu
- School of Biology Engineering, Dalian Polytechnic University, Dalian, China; Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China.
| | - Lingye Su
- Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China.
| | - Hongfeng Wang
- Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China.
| | - Zongshen Zhang
- School of Biology Engineering, Dalian Polytechnic University, Dalian, China.
| |
Collapse
|
13
|
Yamada Y, Nishida S, Shitan N, Sato F. Genome-Wide Profiling of WRKY Genes Involved in Benzylisoquinoline Alkaloid Biosynthesis in California Poppy ( Eschscholzia californica). FRONTIERS IN PLANT SCIENCE 2021; 12:699326. [PMID: 34220919 PMCID: PMC8248504 DOI: 10.3389/fpls.2021.699326] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Transcription factors of the WRKY family play pivotal roles in plant defense responses, including the biosynthesis of specialized metabolites. Based on the previous findings of WRKY proteins regulating benzylisoquinoline alkaloid (BIA) biosynthesis, such as CjWRKY1-a regulator of berberine biosynthesis in Coptis japonica-and PsWRKY1-a regulator of morphine biosynthesis in Papaver somniferum-we performed genome-wide characterization of the WRKY gene family in Eschscholzia californica (California poppy), which produces various BIAs. Fifty WRKY genes were identified by homology search and classified into three groups based on phylogenetic, gene structure, and conserved motif analyses. RNA sequencing showed that several EcWRKY genes transiently responded to methyl jasmonate, a known alkaloid inducer, and the expression patterns of these EcWRKY genes were rather similar to those of BIA biosynthetic enzyme genes. Furthermore, tissue expression profiling suggested the involvement of a few subgroup IIc EcWRKYs in the regulation of BIA biosynthesis. Transactivation analysis using luciferase reporter genes harboring the promoters of biosynthetic enzyme genes indicated little activity of subgroup IIc EcWRKYs, suggesting that the transcriptional network of BIA biosynthesis constitutes multiple members. Finally, we investigated the coexpression patterns of EcWRKYs with some transporter genes and discussed the diversified functions of WRKY genes based on a previous finding that CjWRKY1 overexpression in California poppy cells enhanced BIA secretion into the medium.
Collapse
Affiliation(s)
- Yasuyuki Yamada
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe, Japan
| | - Shohei Nishida
- Department of Plant Gene and Totipotency, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Nobukazu Shitan
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe, Japan
| | - Fumihiko Sato
- Department of Plant Gene and Totipotency, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
14
|
Chen Q, Lu X, Guo X, Xu M, Tang Z. A source-sink model explains the difference in the metabolic mechanism of mechanical damage to young and senescing leaves in Catharanthus roseus. BMC PLANT BIOLOGY 2021; 21:154. [PMID: 33771114 PMCID: PMC7995597 DOI: 10.1186/s12870-021-02934-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 03/18/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Mechanical damage is an unavoidable threat to the growth and survival of plants. Although a wound to senescing (lower) leaves improves plant vitality, a wound to younger (upper) leaves often causes damage to or death of the whole plant. Source-sink models are often used to explain how plants respond to biotic or abiotic stresses. In this study, a source-sink model was used to explain the difference in the metabolic mechanism of mechanical damage to young and senescing leaves of Catharanthus roseus. RESULTS In our study, GC-MS and LC-QTOF-MS metabolomics techniques were used to explore the differences in source-sink allocation and metabolic regulation in different organs of Catharanthus roseus after mechanical damage to the upper/lower leaves (WUL/WLL). Compared with that of the control group, the energy supplies of the WUL and WLL groups were increased and delivered to the secondary metabolic pathway through the TCA cycle. The two treatment groups adopted different secondary metabolic response strategies. The WLL group increased the input to the defense response after damage by increasing the accumulation of phenolics. A source-sink model was applied to the defensive responses to local (damaged leaves) and systemic (whole plant) damage. In the WUL group, the number of sinks increased due to damage to young leaves, and the tolerance response was emphasized. CONCLUSION The accumulation of primary and secondary metabolites was significantly different between the two mechanical damage treatments. Catharanthus roseus uses different trade-offs between tolerance (repair) and defense to respond to mechanical damage. Repairing damage and chemical defenses are thought to be more energetically expensive than growth development, confirming the trade-offs and allocation of resources seen in this source-sink model.
Collapse
Affiliation(s)
- Qi Chen
- School of Life Sciences Nantong University, Nantong, 226010, P. R. China
| | - Xueyan Lu
- Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xiaorui Guo
- Northeast Forestry University, Harbin, 150040, P. R. China
| | - Mingyuan Xu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, P. R. China.
| | - Zhonghua Tang
- Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
15
|
Šķipars V, Ruņģis D. Transcript Dynamics in Wounded and Inoculated Scots Pine. Int J Mol Sci 2021; 22:ijms22041505. [PMID: 33546141 PMCID: PMC7913219 DOI: 10.3390/ijms22041505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 11/16/2022] Open
Abstract
Comparative transcriptome analysis provides a useful tool for the exploration of plant-pathogen interaction by allowing in-depth comparison of gene expression between unaffected, inoculated and wounded organisms. Here we present the results of comparative transcriptome analysis in genetically identical one-year-old Scots pine ramets after wounding and inoculation with Heterobasidion annosum. We identified 230 genes that were more than 2-fold upregulated in inoculated samples (compared to controls) and 116 downregulated genes. Comparison of inoculated samp les with wounded samples identified 32 differentially expressed genes (30 were upregulated after inoculation). Several of the genes upregulated after inoculation are involved in protection from oxidative stress, while genes involved in photosynthesis, water transport and drought stress tolerance were downregulated. An NRT3 family protein was the most upregulated transcript in response to both inoculation and wounding, while a U-box domain-containing protein gene was the most upregulated gene comparing inoculation to wounding. The observed transcriptome dynamics suggest involvement of auxin, ethylene, jasmonate, gibberellin and reactive oxygen species pathways and cell wall modification regulation in response to H. annosum infection. The results are compared to methyl jasmonate induced transcriptome dynamics.
Collapse
|
16
|
Xiao Y, Feng J, Li Q, Zhou Y, Bu Q, Zhou J, Tan H, Yang Y, Zhang L, Chen W. IiWRKY34 positively regulates yield, lignan biosynthesis and stress tolerance in Isatis indigotica. Acta Pharm Sin B 2020; 10:2417-2432. [PMID: 33354511 PMCID: PMC7745056 DOI: 10.1016/j.apsb.2019.12.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/14/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022] Open
Abstract
Yield potential, pharmaceutical compounds production and stress tolerance capacity are 3 classes of traits that determine the quality of medicinal plants. The autotetraploid Isatis indigotica has greater yield, higher bioactive lignan accumulation and enhanced stress tolerance compared with its diploid progenitor. Here we show that the transcription factor IiWRKY34, with higher expression levels in tetraploid than in diploid I. indigotica, has large pleiotropic effects on an array of traits, including biomass growth rates, lignan biosynthesis, as well as salt and drought stress tolerance. Integrated analysis of transcriptome and metabolome profiling demonstrated that IiWRKY34 expression had far-reaching consequences on both primary and secondary metabolism, reprograming carbon flux towards phenylpropanoids, such as lignans and flavonoids. Transcript–metabolite correlation analysis was applied to construct the regulatory network of IiWRKY34 for lignan biosynthesis. One candidate target Ii4CL3, a key rate-limiting enzyme of lignan biosynthesis as indicated in our previous study, has been demonstrated to indeed be activated by IiWRKY34. Collectively, the results indicate that the differentially expressed IiWRKY34 has contributed significantly to the polyploidy vigor of I. indigotica, and manipulation of this gene will facilitate comprehensive improvements of I. indigotica herb.
Collapse
|
17
|
Li C, Yuan X, Li N, Wang J, Yu S, Zeng H, Zhang J, Wu Q, Ding Y. Isolation and Characterization of Bacillus cereus Phage vB_BceP-DLc1 Reveals the Largest Member of the Φ29-Like Phages. Microorganisms 2020; 8:E1750. [PMID: 33171789 PMCID: PMC7695010 DOI: 10.3390/microorganisms8111750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Bacillus phage φ29 and its relatives have been considered as one of the most important model organisms for DNA replication, transcription, morphogenesis, DNA packaging studies, and nanotechnology applications. Here, we isolated and characterized a new member of the φ29-like phage, named Bacillus cereus phage vB_BceP-DLc1. This phage, with a unique inserted gene cluster, has the largest genome among known φ29-like phages. DLc1 can use the surface carbohydrate structures of the host cell as receptors and only infects the most related B. cereus strains, showing high host-specificity. The adsorption rate constant and life cycle of DLc1 under experimental conditions were also determined. Not only stable under temperatures below 55 °C and pH range from 5 to 11, the new phage also showed tolerance to high concentrations of NaCl, 75% ethanol, chloroform, and mechanical vortex, which is preferable for practical use in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Chun Li
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; (C.L.); (X.Y.); (N.L.)
| | - Xiaoming Yuan
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; (C.L.); (X.Y.); (N.L.)
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.Y.); (H.Z.); (J.Z.); (Q.W.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Na Li
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; (C.L.); (X.Y.); (N.L.)
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.Y.); (H.Z.); (J.Z.); (Q.W.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Shubo Yu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.Y.); (H.Z.); (J.Z.); (Q.W.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Haiyan Zeng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.Y.); (H.Z.); (J.Z.); (Q.W.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.Y.); (H.Z.); (J.Z.); (Q.W.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.Y.); (H.Z.); (J.Z.); (Q.W.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; (C.L.); (X.Y.); (N.L.)
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.Y.); (H.Z.); (J.Z.); (Q.W.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
18
|
Jadaun JS, Kushwaha AK, Sangwan NS, Narnoliya LK, Mishra S, Sangwan RS. WRKY1-mediated regulation of tryptophan decarboxylase in tryptamine generation for withanamide production in Withania somnifera (Ashwagandha). PLANT CELL REPORTS 2020; 39:1443-1465. [PMID: 32789542 DOI: 10.1007/s00299-020-02574-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
WsWRKY1-mediated transcriptional modulation of Withania somnifera tryptophan decarboxylase gene (WsTDC) helps to regulate fruit-specific tryptamine generation for production of withanamides. Withania somnifera is a highly valued medicinal plant. Recent demonstration of novel indolyl metabolites called withanamides in its fruits (berries) prompted us to investigate its tryptophan decarboxylase (TDC), as tryptophan is invariably a precursor for indole moiety. TDC catalyzes conversion of tryptophan into tryptamine, and the catalytic reaction constitutes a committed metabolic step for synthesis of an array of indolyl metabolites. The TDC gene (WsTDC) was cloned from berries of the plant and expressed in E. coli. The recombinant enzyme was purified and characterized for its catalytic attributes. Catalytic and structural aspects of the enzyme indicated its regulatory/rate-limiting significance in generation of the indolyl metabolites. Novel tissue-wise and developmentally differential abundance of WsTDC transcripts reflected its preeminent role in withanamide biogenesis in the fruits. Transgenic lines overexpressing WsTDC gene showed accumulation of tryptamine at significantly higher levels, while lines silenced for WsTDC exhibited considerably depleted levels of tryptamine. Cloning and sequence analysis of promoter of WsTDC revealed the presence of W-box in it. Follow-up studies on isolation of WsWRKY1 transcription factor and its overexpression in W. somnifera revealed that WsTDC expression was substantially induced by WsWRKY1 resulting in overproduction of tryptamine. The study invokes a key role of TDC in regulating the indolyl secondary metabolites through enabling elevated flux/supply of tryptamine at multiple levels from gene expression to catalytic attributes overall coordinated by WsWRKY1. This is the first biochemical, molecular, structural, physiological and regulatory description of a fruit-functional TDC.
Collapse
Affiliation(s)
- Jyoti Singh Jadaun
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Amit Kumar Kushwaha
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Neelam S Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India.
| | - Lokesh Kumar Narnoliya
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Smrati Mishra
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Rajender Singh Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
19
|
Kang G, Yan D, Chen X, Li Y, Yang L, Zeng R. Molecular characterization and functional analysis of a novel WRKY transcription factor HbWRKY83 possibly involved in rubber production of Hevea brasiliensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:483-493. [PMID: 32827873 DOI: 10.1016/j.plaphy.2020.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
WRKY transcription factors play important roles in plant growth and developmental processes and various stress responses, and are also associated with jasmonic acid (JA) signaling in the regulation of secondary metabolite biosynthesis in plants. The regulatory networks mediated by WRKY proteins in the latex production of Hevea brasiliensis (the Pará rubber tree) are poorly understood. In this study, one novel WRKY gene (designated HbWRKY83) was identified from the latex of H. brasiliensis, and its functions were characterized via gene expression analysis in both the latex and HbWRKY83-overexpressing transgenic Arabidopsis. HbWRKY83 gene contains an open reading frame (ORF) of 921 bp encoding a 306-amino-acid protein which is clustered with group IIc WRKY TF. HbWRKY83 is a nuclear-localized protein with transcriptional activity. Real-time quantitative PCR analysis demonstrated that the transcription level of HbWRKY83 was up-regulated by exogenous methyl jasmonate, Ethrel (ethylene releaser) stimulation, and bark tapping (mechanical wounding). Compared with the wild-type plants, overexpression of HbWRKY83 improved the tolerance of transgenic Arabidopsis lines to drought and salt stresses by enhancing the expression levels of ethylene-insensitive3 transcription factors (EIN3s) and several stress-responsive genes, including Cu/Zn superoxide dismutases CSD1 (Cu/Zn-SOD1) and CSD2 (Cu/Zn-SOD2), related to reactive oxygen species scavenging. Additionally, these genes were also significantly up-regulated by bark tapping. In combination, these results suggest that HbWRKY83 might act as a positive regulator of rubber production by activating the expression of JA-, ethylene-, and wound-responsive genes in the laticiferous cells of rubber trees.
Collapse
Affiliation(s)
- Guijuan Kang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Dong Yan
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Xiaoli Chen
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Yu Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Lifu Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Rizhong Zeng
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China.
| |
Collapse
|
20
|
Soltani N, Nazarian-Firouzabadi F, Shafeinia A, Sadr AS, Shirali M. The expression of Terpenoid Indole Alkaloid (TIAs) pathway genes in Catharanthus roseus in response to salicylic acid treatment. Mol Biol Rep 2020; 47:7009-7016. [PMID: 32886329 DOI: 10.1007/s11033-020-05759-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/28/2020] [Indexed: 01/22/2023]
Abstract
Vinblastine and vincristine are two important anti-cancer drugs that are synthesized by the Terpenoid Indole Alkaloids (TIAs) pathway in periwinkle (Catharanthus roseus). The major challenge in the pharmaceutical industry is the low production rate of these Alkaloids. TIA pathway is affected by elicitors, such as salicylic acid (SA). This study aimed to investigate the expression pattern of some key genes in TIAs pathway under SA treatment. Foliar application of SA (0.01 and 0.1 mM) was used and leaves samples were taken at 0, 12, 18, 24 and 48 h after the treatment. qRT-PCR was used to investigate the expression pattern of Chorismate mutase (Cm), tryptophan decarboxylase (Tdc), Geraniol-10-hydroxylase (G10h), Secologanin synthase (Sls), Strictosidine synthase (Str), Desacetoxyvindoline-4-hydroxylase (D4h) and Deacetylvindoline-4-O-acetyltransferase (Dat) genes, following the SA treatment. The results of this experiment showed that transcript levels of Tdc, G10h, Sls, Str, D4h and Dat genes were significantly up-regulated in both SA concentration treatments. Furthermore, the highest transcript levels of Dat was observed after 48 h of the SA treatments. qRT-PCR results suggests that SA induces transcription of major genes involved in Alkaloids biosynthesis in Catharanthus roseus. It can be concluded that up-regulation of Tdc, G10h, Sls, Str, D4h and Dat genes can result in a higher production rate of Vinblastine and vincristine Alkaloids.
Collapse
Affiliation(s)
- Narges Soltani
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, P.O. Box 465, Khorramabad, Iran
| | - Farhad Nazarian-Firouzabadi
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, P.O. Box 465, Khorramabad, Iran.
| | - Alireza Shafeinia
- Production Engineering and Plant Genetics Department, Ramin Agriculture and Natural Resource University of Khuzestan, Mollasani, Iran
| | - Ayeh Sadat Sadr
- Aquaculture Research Center-South of Iran, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Ahvaz, Iran
| | - Masoud Shirali
- Agri-Food and Biosciences Institute, Hillsborough, BT26 6DR, UK
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5AJ, UK
| |
Collapse
|
21
|
Schluttenhofer C. Origin and evolution of jasmonate signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110542. [PMID: 32771155 DOI: 10.1016/j.plantsci.2020.110542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 05/15/2023]
Abstract
Jasmonate (JA) signaling is a key mediator of plant development and defense which arose during plants transition from an aqueous to terrestrial environment. Elucidating the evolution of JA signaling is important for understanding plant development, defense, and production of specialized metabolites. The lineage of key protein domains characterizing JA signaling factors was traced to identify the origins of CORONITINE INSENSITIVE 1 (COI1), JASMONATE ZIM-DOMAIN (JAZ), NOVEL INTERACTOR OF JAZ, MYC2, TOPLESS, and MEDIATOR SUBUNIT 25. Charophytes do not possess genes encoding key JA signaling components, including COI1, JAZ, MYC2, and the JAZ-interacting bHLH factors, yet their orthologs are present in bryophytes. TIFY family genes were found in charophyta and chlorophya algae. JAZs evolved from ZIM genes of the TIFY family through changes to several key amino acids. Dating placed the origin of JA signaling 515 to 473 million years ago during the middle Cambrian to early Ordovician periods. This time is known for rapid biodiversification and mass extinction events. An increased predation from the diversifying and changing fauna may have driven evolution of JA signaling and plant defense.
Collapse
Affiliation(s)
- Craig Schluttenhofer
- Agriculture Research and Development Program, 1400 Brush Row Road, Wilberforce OH, 45384, USA.
| |
Collapse
|
22
|
Zhang W, Gao T, Li P, Tian C, Song A, Jiang J, Guan Z, Fang W, Chen F, Chen S. Chrysanthemum CmWRKY53 negatively regulates the resistance of chrysanthemum to the aphid Macrosiphoniella sanborni. HORTICULTURE RESEARCH 2020; 7:109. [PMID: 32637137 PMCID: PMC7327015 DOI: 10.1038/s41438-020-0334-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 05/07/2023]
Abstract
Chrysanthemum is frequently attacked by aphids, which greatly hinders the growth and ornamental value of this plant species. WRKY transcription factors play an important role in the response to biotic stresses such as pathogen and insect stresses. Here, chrysanthemum CmWRKY53 was cloned, and its expression was induced by aphid infestation. To verify the role of CmWRKY53 in resistance to aphids, CmWRKY53 transgenic chrysanthemum was generated. CmWRKY53 was found to mediate the susceptibility of chrysanthemum to aphids. The expression levels of secondary metabolite biosynthesis genes, such as peroxidase- and polyphenol oxidase-encoding genes, decreased in CmWRKY53-overexpressing (CmWRKY53-Oe) plants but dramatically increased in chimeric dominant repressor (CmWRKY53-SRDX) plants, suggesting that CmWRKY53 contributes to the susceptibility of chrysanthemum to aphids, possibly due to its role in the regulation of secondary metabolites.
Collapse
Affiliation(s)
- Wanwan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tianwei Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Peiling Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- College of Horticulture, Xinyang Agricultural and Forestry University, Xinyang, Henan China
| | - Chang Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
23
|
Thakur V, Bains S, Pathania S, Sharma S, Kaur R, Singh K. Comparative transcriptomics reveals candidate transcription factors involved in costunolide biosynthesis in medicinal plant-Saussurea lappa. Int J Biol Macromol 2020; 150:52-67. [DOI: 10.1016/j.ijbiomac.2020.01.312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 01/01/2023]
|
24
|
Wang X, Li J, Guo J, Qiao Q, Guo X, Ma Y. The WRKY transcription factor PlWRKY65 enhances the resistance of Paeonia lactiflora (herbaceous peony) to Alternaria tenuissima. HORTICULTURE RESEARCH 2020; 7:57. [PMID: 32284869 PMCID: PMC7113260 DOI: 10.1038/s41438-020-0267-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 05/14/2023]
Abstract
In this study, the disease resistance gene PlWRKY65 was isolated from the leaves of Paeonia lactiflora and analyzed by bioinformatics methods, and the localization of the encoded protein was explored. Quantitative real-time PCR (qRT-PCR) was also used to explore the response of this gene to Alternaria tenuissima. The results showed that the gene sequence contained multiple cis-acting elements involved in the response to hormone signaling molecules belonging to the IIe subgroup of the WRKY family, and the encoded proteins were located in the nucleus. The PlWRKY65 gene has a positive regulatory effect on A. tenuissima infection. After silencing the PlWRKY65 gene via virus-induced gene silencing (VIGS), it was found that the gene-silenced plants were more sensitive to A. tenuissima infection than the wild plants, exhibiting more severe infection symptoms and different degrees of changes in the expression of the pathogenesis-related (PR) genes. In addition, we showed that the endogenous jasmonic acid (JA) content of P. lactiflora was increased in response to A. tenuissima infection, whereas the salicylic acid (SA) content decreased. After PlWRKY65 gene silencing, the levels of the two hormones changed accordingly, indicating that PlWRKY65, acting as a disease resistance-related transcriptional activator, exerts a regulatory effect on JA and SA signals. This study lays the foundation for functional research on WRKY genes in P. lactiflora and for the discovery of candidate disease resistance genes.
Collapse
Affiliation(s)
- Xue Wang
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Road, 271018 Tai’an, Shandong China
| | - Junjie Li
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Road, 271018 Tai’an, Shandong China
| | - Jing Guo
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Road, 271018 Tai’an, Shandong China
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscapes, 271018 Tai’an, Shandong China
| | - Qian Qiao
- Shandong Institute of Pomology, 271000 Tai’an, Shandong China
| | - Xianfeng Guo
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Road, 271018 Tai’an, Shandong China
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscapes, 271018 Tai’an, Shandong China
| | - Yan Ma
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Road, 271018 Tai’an, Shandong China
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscapes, 271018 Tai’an, Shandong China
| |
Collapse
|
25
|
Zhou Y, Zeng L, Hou X, Liao Y, Yang Z. Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2172-2185. [PMID: 31900491 PMCID: PMC7242085 DOI: 10.1093/jxb/erz570] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 12/31/2019] [Indexed: 05/02/2023]
Abstract
Plants have to cope with various environmental stress factors which significantly impact plant physiology and secondary metabolism. Individual stresses, such as low temperature, are known to activate plant volatile compounds as a defense. However, less is known about the effect of multiple stresses on plant volatile formation. Here, the effect of dual stresses (wounding and low temperature) on volatile compounds in tea (Camellia sinensis) plants and the underlying signalling mechanisms were investigated. Indole, an insect resistance volatile, was maintained at a higher content and for a longer time under dual stresses compared with wounding alone. CsMYC2a, a jasmonate (JA)-responsive transcription factor, was the major regulator of CsTSB2, a gene encoding a tryptophan synthase β-subunit essential for indole synthesis. During the recovery phase after tea wounding, low temperature helped to maintain a higher JA level. Further study showed that CsICE2 interacted directly with CsJAZ2 to relieve inhibition of CsMYC2a, thereby promoting JA biosynthesis and downstream expression of the responsive gene CsTSB2 ultimately enhancing indole biosynthesis. These findings shed light on the role of low temperature in promoting plant damage responses and advance knowledge of the molecular mechanisms by which multiple stresses coordinately regulate plant responses to the biotic and abiotic environment.
Collapse
Affiliation(s)
- Ying Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
| | - Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Correspondence:
| |
Collapse
|
26
|
Boba A, Kostyn K, Kozak B, Wojtasik W, Preisner M, Prescha A, Gola EM, Lysh D, Dudek B, Szopa J, Kulma A. Fusarium oxysporum infection activates the plastidial branch of the terpenoid biosynthesis pathway in flax, leading to increased ABA synthesis. PLANTA 2020; 251:50. [PMID: 31950395 DOI: 10.1007/s00425-020-03339-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/07/2020] [Indexed: 05/07/2023]
Abstract
Upregulation of the terpenoid pathway and increased ABA content in flax upon Fusarium infection leads to activation of the early plant's response (PR genes, cell wall remodeling, and redox status). Plants have developed a number of defense strategies against the adverse effects of fungi such as Fusarium oxysporum. One such defense is the production of antioxidant secondary metabolites, which fall into two main groups: the phenylpropanoids and the terpenoids. While functions and biosynthesis of phenylpropanoids have been extensively studied, very little is known about the genes controlling the terpenoid synthesis pathway in flax. They can serve as antioxidants, but are also substrates for a plethora of different compounds, including those of regulatory functions, like ABA. ABA's function during pathogen attack remains obscure and often depends on the specific plant-pathogen interactions. In our study we showed that in flax the non-mevalonate pathway is strongly activated in the early hours of pathogen infection and that there is a redirection of metabolites towards ABA synthesis. The elevated synthesis of ABA correlates with flax resistance to F. oxysporum, thus we suggest ABA to be a positive regulator of the plant's early response to the infection.
Collapse
Affiliation(s)
- Aleksandra Boba
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.
| | - Kamil Kostyn
- Department of Genetics, Plant Breeding and Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Plant Sciences, Plac Grunwaldzki 24A, 53-363, Wrocław, Poland
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding and Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Plant Sciences, Plac Grunwaldzki 24A, 53-363, Wrocław, Poland
| | - Wioleta Wojtasik
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Marta Preisner
- Department of Genetics, Plant Breeding and Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Plant Sciences, Plac Grunwaldzki 24A, 53-363, Wrocław, Poland
| | - Anna Prescha
- Department of Food Science and Nutrition, Wroclaw Medical University, ul. Borowska 211, 50-556, Wrocław, Poland
| | - Edyta M Gola
- Deptartment of Plant Developmental Biology, Faculty of Biological Sciences, Institute of Experimental Biology, University of Wrocław, Kanonia 6/8, 50-328, Wrocław, Poland
| | - Dzmitry Lysh
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Barbara Dudek
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Jan Szopa
- Department of Genetics, Plant Breeding and Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Plant Sciences, Plac Grunwaldzki 24A, 53-363, Wrocław, Poland
| | - Anna Kulma
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.
| |
Collapse
|
27
|
Mortensen S, Weaver JD, Sathitloetsakun S, Cole LF, Rizvi NF, Cram EJ, Lee‐Parsons CWT. The regulation of ZCT1, a transcriptional repressor of monoterpenoid indole alkaloid biosynthetic genes in Catharanthus roseus. PLANT DIRECT 2019; 3:e00193. [PMID: 31909362 PMCID: PMC6937483 DOI: 10.1002/pld3.193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/13/2019] [Accepted: 12/02/2019] [Indexed: 05/19/2023]
Abstract
Cys2/His2-type (C2H2) zinc finger proteins, such as ZCT1, are an important class of transcription factors involved in growth, development, and stress responses in plants. In the medicinal plant Catharanthus roseus, the zinc finger Catharanthus transcription factor (ZCT) family represses monoterpenoid indole alkaloid (MIA) biosynthetic gene expression. Here, we report the analysis of the ZCT1 promoter, which contains several hormone-responsive elements. ZCT1 is responsive to not only jasmonate, as was previously known, but is also induced by the synthetic auxin, 1-naphthalene acetic acid (1-NAA). Through promoter deletion analysis, we show that an activation sequence-1-like (as-1-like)-motif and other motifs contribute significantly to ZCT1 expression in seedlings. We also show that the activator ORCA3 does not transactivate the expression of ZCT1 in seedlings, but ZCT1 represses its own promoter, suggesting a feedback mechanism by which the expression of ZCT1 can be limited.
Collapse
Affiliation(s)
| | | | - Suphinya Sathitloetsakun
- Department of BiologyNortheastern UniversityBostonMAUSA
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMAUSA
| | - Lauren F. Cole
- Department of BioengineeringNortheastern UniversityBostonMAUSA
| | - Noreen F. Rizvi
- Department of Chemical EngineeringNortheastern UniversityBostonMAUSA
| | - Erin J. Cram
- Department of BiologyNortheastern UniversityBostonMAUSA
| | - Carolyn W. T. Lee‐Parsons
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMAUSA
- Department of Chemical EngineeringNortheastern UniversityBostonMAUSA
| |
Collapse
|
28
|
Yang B, Chen M, Wang T, Chen X, Li Y, Wang X, Zhu W, Xia L, Hu X, Tian J. A metabolomic strategy revealed the role of JA and SA balance in Clematis terniflora DC. Response to UVB radiation and dark. PHYSIOLOGIA PLANTARUM 2019; 167:232-249. [PMID: 30467852 DOI: 10.1111/ppl.12883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Clematis terniflora DC. is a valuable resource with potential high pharmaceutical value. Proteomic, transcriptomic and metabolomic analyses of C. terniflora that has been exposed to high levels of UVB irradiation and dark conditions (HUVB + D) have revealed the mechanisms underlying its medicinal potential. However, the signal transduction pathways and the mechanisms of regulation for the accumulation of secondary metabolites remain unclear. In this study, we show that the jasmonic acid (JA) and salicylic acid (SA) signals were activated in C. terniflora in response to HUVB + D. Metabolomic analysis demonstrated that the perturbation in JA and SA balance led to additional reallocation of carbon and nitrogen resources. Evaluating the fold change ratios of differentially changed metabolites proved that JA signal enhanced the transformation of nitrogen to carbon through the 4-aminobutyric acid (GABA) shunt pathway, which increased the carbon reserve to be utilized in the production of secondary metabolites. However, SA signal induced the synthesis of proline, while avoiding the accumulation of secondary metabolites. Over all, the results indicate that the co-increase of JA and SA reconstructed the dynamic stability of transformation from nitrogen to carbon, which effectively enhanced the oxidative defense to HUVB + D in C. terniflora by increasing the secondary metabolites.
Collapse
Affiliation(s)
- Bingxian Yang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Meng Chen
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Tantan Wang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xi Chen
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yaohan Li
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xin Wang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Wei Zhu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Li'an Xia
- Benxi Hi-tech Industrial Development Zone, Benxi, China
| | - Xingjiang Hu
- Research Center for Clinical Pharmacy, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
- Education Ministry Key Laboratory for Biomedical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Neller KCM, Diaz CA, Platts AE, Hudak KA. De novo Assembly of the Pokeweed Genome Provides Insight Into Pokeweed Antiviral Protein (PAP) Gene Expression. FRONTIERS IN PLANT SCIENCE 2019; 10:1002. [PMID: 31447869 PMCID: PMC6691146 DOI: 10.3389/fpls.2019.01002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/17/2019] [Indexed: 05/21/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are RNA glycosidases thought to function in defense against pathogens. These enzymes remove purine bases from RNAs, including rRNA; the latter activity decreases protein synthesis in vitro, which is hypothesized to limit pathogen proliferation by causing host cell death. Pokeweed antiviral protein (PAP) is a RIP synthesized by the American pokeweed plant (Phytolacca americana). PAP inhibits virus infection when expressed in crop plants, yet little is known about the function of PAP in pokeweed due to a lack of genomic tools for this non-model species. In this work, we de novo assembled the pokeweed genome and annotated protein-coding genes. Sequencing comprised paired-end reads from a short-insert library of 83X coverage, and our draft assembly (N50 = 42.5 Kb) accounted for 74% of the measured pokeweed genome size of 1.3 Gb. We obtained 29,773 genes, 73% of which contained known protein domains, and identified several PAP isoforms. Within the gene models of each PAP isoform, a long 5' UTR intron was discovered, which was validated by RT-PCR and sequencing. Presence of the intron stimulated reporter gene expression in tobacco. To gain further understanding of PAP regulation, we complemented this genomic resource with expression profiles of pokeweed plants subjected to stress treatments [jasmonic acid (JA), salicylic acid, polyethylene glycol, and wounding]. Cluster analysis of the top differentially expressed genes indicated that some PAP isoforms shared expression patterns with genes involved in terpenoid biosynthesis, JA-mediated signaling, and metabolism of amino acids and carbohydrates. The newly sequenced promoters of all PAP isoforms contained cis-regulatory elements associated with diverse biotic and abiotic stresses. These elements mediated response to JA in tobacco, based on reporter constructs containing promoter truncations of PAP-I, the most abundant isoform. Taken together, this first genomic resource for the Phytolaccaceae plant family provides new insight into the regulation and function of PAP in pokeweed.
Collapse
Affiliation(s)
| | | | - Adrian E. Platts
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
| | | |
Collapse
|
30
|
Markulin L, Corbin C, Renouard S, Drouet S, Durpoix C, Mathieu C, Lopez T, Auguin D, Hano C, Lainé É. Characterization of LuWRKY36, a flax transcription factor promoting secoisolariciresinol biosynthesis in response to Fusarium oxysporum elicitors in Linum usitatissimum L. hairy roots. PLANTA 2019; 250:347-366. [PMID: 31037486 DOI: 10.1007/s00425-019-03172-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/22/2019] [Indexed: 05/26/2023]
Abstract
The involvement of a WRKY transcription factor in the regulation of lignan biosynthesis in flax using a hairy root system is described. Secoisolariciresinol is the main flax lignan synthesized by action of LuPLR1 (pinoresinol-lariciresinol reductase 1). LuPLR1 gene promoter deletion experiments have revealed a promoter region containing W boxes potentially responsible for the response to Fusarium oxysporum. W boxes are bound by WRKY transcription factors that play a role in the response to stress. A candidate WRKY transcription factor, LuWRKY36, was isolated from both abscisic acid and Fusarium elicitor-treated flax cell cDNA libraries. This transcription factors contains two WRKY DNA-binding domains and is a homolog of AtWRKY33. Different approaches confirmed LuWRKY36 binding to a W box located in the LuPLR1 promoter occurring through a unique direct interaction mediated by its N-terminal WRKY domain. Our results propose that the positive regulator action of LuWRKY36 on the LuPLR1 gene regulation and lignan biosynthesis in response to biotic stress is positively mediated by abscisic acid and inhibited by ethylene. Additionally, we demonstrate a differential Fusarium elicitor response in susceptible and resistant flax cultivars, seen as a faster and stronger LuPLR1 gene expression response accompanied with higher secoisolariciresinol accumulation in HR of the resistant cultivar.
Collapse
Affiliation(s)
- Lucija Markulin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, EA 1207, INRA USC 1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 Rue de Loigny la Bataille, 28000, Chartres, France
| | - Cyrielle Corbin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, EA 1207, INRA USC 1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 Rue de Loigny la Bataille, 28000, Chartres, France
| | - Sullivan Renouard
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, EA 1207, INRA USC 1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 Rue de Loigny la Bataille, 28000, Chartres, France
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, EA 1207, INRA USC 1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 Rue de Loigny la Bataille, 28000, Chartres, France
| | - Charlène Durpoix
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, EA 1207, INRA USC 1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 Rue de Loigny la Bataille, 28000, Chartres, France
| | - Charlotte Mathieu
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, EA 1207, INRA USC 1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 Rue de Loigny la Bataille, 28000, Chartres, France
| | - Tatiana Lopez
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, EA 1207, INRA USC 1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 Rue de Loigny la Bataille, 28000, Chartres, France
| | - Daniel Auguin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, EA 1207, INRA USC 1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 Rue de Loigny la Bataille, 28000, Chartres, France
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, EA 1207, INRA USC 1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 Rue de Loigny la Bataille, 28000, Chartres, France
| | - Éric Lainé
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, EA 1207, INRA USC 1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 Rue de Loigny la Bataille, 28000, Chartres, France.
| |
Collapse
|
31
|
Mohana Kumara P, Uma Shaanker R, Pradeep T. UPLC and ESI-MS analysis of metabolites of Rauvolfia tetraphylla L. and their spatial localization using desorption electrospray ionization (DESI) mass spectrometric imaging. PHYTOCHEMISTRY 2019; 159:20-29. [PMID: 30562679 DOI: 10.1016/j.phytochem.2018.11.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 05/22/2023]
Abstract
Rauvolfia tetraphylla L. (family Apocynaceae), often referred to as the wild snakeroot plant, is an important medicinal plant and produces a number of indole alkaloids in its seeds and roots. The plant is often used as a substitute for Ravuolfia serpentine (L.) Benth. ex Kurz known commonly as the Indian snakeroot plant or sarphagandha in the preparation of Ayurvedic formulations for a range of diseases including hypertension. In this study, we examine the spatial localization of the various indole alkaloids in developing fruits and plants of R. tetraphylla using desorption electrospray ionization mass spectrometry imaging (DESI-MSI). A semi-quantitative analysis of the various indole alkaloids was performed using UPLC-ESI/MS. DESI-MS images showed that the distribution of ajmalcine, yohimbine, demethyl serpentine and mitoridine are largely localized in the fruit coat while that for ajmaline is restricted to mesocarp of the fruit. At a whole plant level, the ESI-MS intensities of many of the ions were highest in the roots and lesser in the shoot region. Within the root tissue, except sarpagine and ajmalcine, all other indole alkaloids occurred in the epidermal and cortex tissues. In leaves, only serpentine, ajmalcine, reserpiline and yohimbine were present. Serpentine was restricted to the petiolar region of leaves. Principal component analysis based on the presence of the indole alkaloids, clearly separated the four tissues (stem, leaves, root and fruits) into distinct clusters. In summary, the DESI-MSI results indicated a clear tissue localization of the various indole alkaloids, in fruits, leaves and roots of R. tetraphylla. While it is not clear of how such localization is attained, we discuss the possible pathways of indole alkaloid biosynthesis and translocation during fruit and seedling development in R. tetraphylla. We also briefly discuss the functional significance of the spatial patterns in distribution of metabolites.
Collapse
Affiliation(s)
- P Mohana Kumara
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India; Center for Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, 560064, India.
| | - R Uma Shaanker
- School of Ecology and Conservation, Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, India
| | - T Pradeep
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
32
|
Sun WJ, Zhan JY, Zheng TR, Sun R, Wang T, Tang ZZ, Bu TL, Li CL, Wu Q, Chen H. The jasmonate-responsive transcription factor CbWRKY24 regulates terpenoid biosynthetic genes to promote saponin biosynthesis in Conyza blinii H. Lév. J Genet 2018; 97:1379-1388. [PMID: 30555086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Conyza blinii H. Lév., the most effective component is saponin, is a biennial medicinal material that needs to be overwintered. WRKY transcription factors family is a large protein superfamily that plays a predominant role in plant secondary metabolism, but their characteristics and functions have not been identified in C. blinii. The CbWRKY24 sequence was selectedfrom the transcriptome database of the C. blinii leaves constructed in our laboratory. Phylogenetic tree analysis revealed that it was associated with AaWRKY1 which can regulate artemisinin synthesis in Artemisia annua. Expression analysis in C. blinii revealed that CbWRKY24 was mainly induced by methyl jasmonate (MeJA) and cold treatments. Transcriptional activity assay showed that it had an independent biological activity. Overexpression of CbWRKY24 in transient transformed C. blinii resulted in improved totalsaponins content, which was attributed to upregulate the expression level of keys genes from mevalonate (MVA) pathway in transient transformed plants compared to wild type (WT) plants. Meanwhile, overexpression the CbWRKY24 in transient transformed tomato fruits showed that the transcript level of related genes in lycopene pathway decreased significantly when compared to WT tomatofruits. Additionally, the MeJA-response-element was found in the promoter regions of CbWRKY24 and the histochemical staining experiments showed that promoter had GUS activity in transiently transformed tobacco leaves. In summary, our results indicated that we may have found a transcription factor that can regulate the biosynthesis of terpenoids in C. blinii.
Collapse
Affiliation(s)
- Wen-Jun Sun
- College of life Science, Sichuan Agricultural University, No. 46, XinKang Road, Ya'an 625014, Sichuan, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
The jasmonate-responsive transcription factor CbWRKY24 regulates terpenoid biosynthetic genes to promote saponin biosynthesis in Conyza blinii H. Lév. J Genet 2018. [DOI: 10.1007/s12041-018-1026-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Qi X, Fang H, Yu X, Xu D, Li L, Liang C, Lu H, Li W, Chen Y, Chen Z. Transcriptome Analysis of JA Signal Transduction, Transcription Factors, and Monoterpene Biosynthesis Pathway in Response to Methyl Jasmonate Elicitation in Mentha canadensis L. Int J Mol Sci 2018; 19:ijms19082364. [PMID: 30103476 PMCID: PMC6121529 DOI: 10.3390/ijms19082364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 11/16/2022] Open
Abstract
Mentha canadensis L. has important economic value for its abundance in essential oils. Menthol is the main component of M. canadensis essential oils, which is certainly the best-known monoterpene for its simple structure and wide applications. However, the regulation of menthol biosynthesis remains elusive in M. canadensis. In this study, transcriptome sequencing of M. canadensis with MeJA treatment was applied to illustrate the transcriptional regulation of plant secondary metabolites, especially menthol biosynthesis. Six sequencing libraries were constructed including three replicates for both control check (CK) and methyl jasmonate (MeJA) treatment and at least 8 Gb clean bases was produced for each library. After assembly, a total of 81,843 unigenes were obtained with an average length of 724 bp. Functional annotation indicated that 64.55% of unigenes could be annotated in at least one database. Additionally, 4430 differentially expressed genes (DEGs) with 2383 up-regulated and 2047 down-regulated transcripts were identified under MeJA treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment indicated that "Monoterpenoid biosynthesis" was one of the most significantly enriched pathways in metabolism. Subsequently, DEGs involved in JA signal transduction, transcription factors, and monoterpene biosynthesis were analyzed. 9 orthologous genes involved in menthol biosynthesis were also identified. This is the first report of a transcriptome study of M. canadensis and will facilitate the studies of monoterpene biosynthesis in the genus Mentha.
Collapse
Affiliation(s)
- Xiwu Qi
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China.
| | - Hailing Fang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Xu Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Dongbei Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Li Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Chengyuan Liang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Hongfei Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China.
| | - Weilin Li
- College of Forest, Nanjing Forestry University, Nanjing 210037, China.
| | - Yin Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Zequn Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
35
|
Coactivation of MEP-biosynthetic genes and accumulation of abietane diterpenes in Salvia sclarea by heterologous expression of WRKY and MYC2 transcription factors. Sci Rep 2018; 8:11009. [PMID: 30030474 PMCID: PMC6054658 DOI: 10.1038/s41598-018-29389-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022] Open
Abstract
Plant abietane diterpenoids (e.g. aethiopinone, 1- oxoaethiopinone, salvipisone and ferruginol), synthesized in the roots of several Salvia spp, have antibacterial, antifungal, sedative and anti-proliferative properties. Recently we have reported that content of these compounds in S. sclarea hairy roots is strongly depending on transcriptional regulation of genes belonging to the plastidial MEP-dependent terpenoid pathway, from which they mostly derive. To boost the synthesis of this interesting class of compounds, heterologous AtWRKY18, AtWRKY40, and AtMYC2 TFs were overexpressed in S. sclarea hairy roots and proved to regulate in a coordinated manner the expression of several genes encoding enzymes of the MEP-dependent pathway, especially DXS, DXR, GGPPS and CPPS. The content of total abietane diterpenes was enhanced in all overexpressing lines, although in a variable manner due to a negative pleiotropic effect on HR growth. Interestingly, in the best performing HR lines overexpressing the AtWRKY40 TF induced a significant 4-fold increase in the final yield of aethiopinone, for which we have reported an interesting anti-proliferative activity against resistant melanoma cells. The present results are also informative and instrumental to enhance the synthesis of abietane diterpenes derived from the plastidial MEP-derived terpenoid pathway in other Salvia species.
Collapse
|
36
|
Yu H, Guo W, Yang D, Hou Z, Liang Z. Transcriptional Profiles of SmWRKY Family Genes and Their Putative Roles in the Biosynthesis of Tanshinone and Phenolic Acids in Salvia miltiorrhiza. Int J Mol Sci 2018; 19:ijms19061593. [PMID: 29843472 PMCID: PMC6032325 DOI: 10.3390/ijms19061593] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 02/03/2023] Open
Abstract
Salvia miltiorrhiza Bunge is a Chinese traditional herb for treating cardiovascular and cerebrovascular diseases, and tanshinones and phenolic acids are the dominated medicinal and secondary metabolism constituents of this plant. WRKY transcription factors (TFs) can function as regulators of secondary metabolites biosynthesis in many plants. However, studies on the WRKY that regulate tanshinones and phenolics biosynthesis are limited. In this study, 69 SmWRKYs were identified in the transcriptome database of S. miltiorrhiza, and phylogenetic analysis indicated that some SmWRKYs had closer genetic relationships with other plant WRKYs, which were involved in secondary metabolism. Hairy roots of S. miltiorrhiza were treated by methyl jasmonate (MeJA) to detect the dynamic change trend of SmWRKY, biosynthetic genes, and medicinal ingredients accumulation. Base on those date, a correlation analysis using Pearson’s correlation coefficient was performed to construct gene-to-metabolite network and identify 9 SmWRKYs (SmWRKY1, 7, 19, 29, 45, 52, 56, 58, and 68), which were most likely to be involved in tanshinones and phenolic acids biosynthesis. Taken together, this study has provided a significant resource that could be used for further research on SmWRKY in S. miltiorrhiza and especially could be used as a cue for further investigating SmWRKY functions in secondary metabolite accumulation.
Collapse
Affiliation(s)
- Haizheng Yu
- Institute of Soil and Water Conservation, Chinese Academy of Sciences (CAS) & Ministry of Water Resources (MWR), Yangling 712100, China.
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, Zhejiang Sci-Tech University, Hangzhou 310018, China.
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wanli Guo
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, Zhejiang Sci-Tech University, Hangzhou 310018, China.
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Dongfeng Yang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, Zhejiang Sci-Tech University, Hangzhou 310018, China.
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Zhuoni Hou
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, Zhejiang Sci-Tech University, Hangzhou 310018, China.
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Zongsuo Liang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences (CAS) & Ministry of Water Resources (MWR), Yangling 712100, China.
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, Zhejiang Sci-Tech University, Hangzhou 310018, China.
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
37
|
Tian L, Shi S, Nasir F, Chang C, Li W, Tran LSP, Tian C. Comparative analysis of the root transcriptomes of cultivated and wild rice varieties in response to Magnaporthe oryzae infection revealed both common and species-specific pathogen responses. RICE (NEW YORK, N.Y.) 2018; 11:26. [PMID: 29679239 PMCID: PMC5910329 DOI: 10.1186/s12284-018-0211-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/20/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Magnaporthe oryzae, the causal fungus of rice blast disease, negatively impacts global rice production. Wild rice (Oryza rufipogon), a relative of cultivated rice (O. sativa), possesses unique attributes that enable it to resist pathogen invasion. Although wild rice represents a major resource for disease resistance, relative to current cultivated rice varieties, no prior studies have compared the immune and transcriptional responses in the roots of wild and cultivated rice to M. oryzae. RESULTS In this study, we showed that M. oryzae could act as a typical root-infecting pathogen in rice, in addition to its common infection of leaves, and wild rice roots were more resistant to M. oryzae than cultivated rice roots. Next, we compared the differential responses of wild and cultivated rice roots to M. oryzae using RNA-sequencing (RNA-seq) to unravel the molecular mechanisms underlying the enhanced resistance of the wild rice roots. Results indicated that both common and genotype-specific mechanisms exist in both wild and cultivated rice that are associated with resistance to M. oryzae. In wild rice, resistance mechanisms were associated with lipid metabolism, WRKY transcription factors, chitinase activities, jasmonic acid, ethylene, lignin, and phenylpropanoid and diterpenoid metabolism; while the pathogen responses in cultivated rice were mainly associated with phenylpropanoid, flavone and wax metabolism. Although modulations in primary metabolism and phenylpropanoid synthesis were common to both cultivated and wild rice, the modulation of secondary metabolism related to phenylpropanoid synthesis was associated with lignin synthesis in wild rice and flavone synthesis in cultivated rice. Interestingly, while the expression of fatty acid and starch metabolism-related genes was altered in both wild and cultivated rice in response to the pathogen, changes in lipid acid synthesis and lipid acid degradation were dominant in cultivated and wild rice, respectively. CONCLUSIONS The response mechanisms to M. oryzae were more complex in wild rice than what was observed in cultivated rice. Therefore, this study may have practical implications for controlling M. oryzae in rice plantings and will provide useful information for incorporating and assessing disease resistance to M. oryzae in rice breeding programs.
Collapse
Affiliation(s)
- Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shaohua Shi
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
| | - Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- School of Life Sciences, Northeast Normal University, Changchun City, Jilin China
| | - Chunling Chang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Weiqiang Li
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam; Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
| |
Collapse
|
38
|
Patra B, Pattanaik S, Schluttenhofer C, Yuan L. A network of jasmonate-responsive bHLH factors modulate monoterpenoid indole alkaloid biosynthesis in Catharanthus roseus. THE NEW PHYTOLOGIST 2018; 217:1566-1581. [PMID: 29178476 DOI: 10.1111/nph.14910] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/21/2017] [Indexed: 05/07/2023]
Abstract
The pharmaceutically valuable monoterpene indole alkaloids (MIAs) in Catharanthus roseus are derived from the indole and iridoid pathways that respond to jasmonate (JA) signaling. Two classes of JA-responsive bHLH transcription factor (TF), CrMYC2 and BIS1/BIS2, are known to regulate the indole and iridoid pathways, respectively. However, upregulation of either one of the TF genes does not lead to increased MIA accumulation. Moreover, little is known about the interconnection between the CrMYC2 and BIS transcriptional cascades and the hierarchical position of BIS1/BIS2 in JA signaling. Here, we report that a newly identified bHLH factor, Repressor of MYC2 Targets 1 (RMT1), is activated by CrMYC2 and BIS1, and acts as a repressor of the CrMYC2 targets. In addition, we isolated and functionally characterized the core C. roseus JA signaling components, including CORONATINE INSENSITIVE 1 (COI1) and JASMONATE ZIM domain (JAZ) proteins. CrMYC2 and BIS1 are repressed by the JAZ proteins in the absence of JA, but de-repressed by the SCFCOI1 complex on perception of JA. Our findings suggest that the repressors, JAZs and RMT1, mediate crosstalk between the CrMYC2 and BIS regulatory cascades to balance the metabolic flux in MIA biosynthesis.
Collapse
Affiliation(s)
- Barunava Patra
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY, 40546, USA
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY, 40546, USA
| | - Craig Schluttenhofer
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY, 40546, USA
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY, 40546, USA
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
39
|
Chen J, Hu L, Sun L, Lin B, Huang K, Zhuo K, Liao J. A novel Meloidogyne graminicola effector, MgMO237, interacts with multiple host defence-related proteins to manipulate plant basal immunity and promote parasitism. MOLECULAR PLANT PATHOLOGY 2018; 19:1942-1955. [PMID: 29485753 PMCID: PMC6638000 DOI: 10.1111/mpp.12671] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 05/04/2023]
Abstract
Plant-parasitic nematodes can secrete effector proteins into the host tissue to facilitate their parasitism. In this study, we report a novel effector protein, MgMO237, from Meloidogyne graminicola, which is exclusively expressed within the dorsal oesophageal gland cell and markedly up-regulated in parasitic third-/fourth-stage juveniles of M. graminicola. Transient expression of MgMO237 in protoplasts from rice roots showed that MgMO237 was localized in the cytoplasm and nucleus of the host cells. Rice plants overexpressing MgMO237 showed an increased susceptibility to M. graminicola. In contrast, rice plants expressing RNA interference vectors targeting MgMO237 showed an increased resistance to M. graminicola. In addition, yeast two-hybrid and co-immunoprecipitation assays showed that MgMO237 interacted specifically with three rice endogenous proteins, i.e. 1,3-β-glucan synthase component (OsGSC), cysteine-rich repeat secretory protein 55 (OsCRRSP55) and pathogenesis-related BetvI family protein (OsBetvI), which are all related to host defences. Moreover, MgMO237 can suppress host defence responses, including the expression of host defence-related genes, cell wall callose deposition and the burst of reactive oxygen species. These results demonstrate that the effector MgMO237 probably promotes the parasitism of M. graminicola by interacting with multiple host defence-related proteins and suppressing plant basal immunity in the later parasitic stages of nematodes.
Collapse
Affiliation(s)
- Jiansong Chen
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhou510642China
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhou510642China
| | - Lili Hu
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhou510642China
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhou510642China
| | - Longhua Sun
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhou510642China
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhou510642China
| | - Borong Lin
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhou510642China
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhou510642China
| | - Kun Huang
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhou510642China
| | - Kan Zhuo
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhou510642China
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhou510642China
| | - Jinling Liao
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhou510642China
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhou510642China
- Department of Eco‐engineering, Guangdong Eco‐Engineering PolytechnicGuangzhou510520China
| |
Collapse
|
40
|
He X, Wang H, Yang J, Deng K, Wang T. RNA sequencing on Amomum villosum Lour. induced by MeJA identifies the genes of WRKY and terpene synthases involved in terpene biosynthesis. Genome 2018; 61:91-102. [DOI: 10.1139/gen-2017-0142] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amomum villosum Lour. is an important Chinese medicinal plant that has diverse medicinal functions, and mainly contains volatile terpenes. This study aims to explore the WRKY transcription factors (TFs) and terpene synthase (TPS) unigenes that might be involved in terpene biosynthesis in A. villosum, and thus providing some new information on the regulation of terpenes in plants. RNA sequencing of A. villosum induced by methyl jasmonate (MeJA) revealed that the WRKY family was the second largest TF family in the transcriptome. Thirty-six complete WRKY domain sequences were expressed in response to MeJA. Further, six WRKY unigenes were highly correlated with eight deduced TPS unigenes. Ultimately, we combined the terpene abundance with the expression of candidate WRKY TFs and TPS unigenes to presume a possible model wherein AvWRKY61, AvWRKY28, and AvWRKY40 might coordinately trans-activate the AvNeoD promoter. We propose an approach to further investigate TF unigenes that might be involved in terpenoid biosynthesis, and identified four unigenes for further analyses.
Collapse
Affiliation(s)
- Xueying He
- Guangzhou University of Chinese Medicine, Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou, Guangdong, 510006, China; Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou, Guangdong, 510006, China
- Guangzhou University of Chinese Medicine, Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou, Guangdong, 510006, China; Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou, Guangdong, 510006, China
| | - Huan Wang
- Guangzhou University of Chinese Medicine, Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou, Guangdong, 510006, China; Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou, Guangdong, 510006, China
- Guangzhou University of Chinese Medicine, Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou, Guangdong, 510006, China; Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou, Guangdong, 510006, China
| | - Jinfen Yang
- Guangzhou University of Chinese Medicine, Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou, Guangdong, 510006, China; Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou, Guangdong, 510006, China
- Guangzhou University of Chinese Medicine, Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou, Guangdong, 510006, China; Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou, Guangdong, 510006, China
| | - Ke Deng
- Guangzhou University of Chinese Medicine, Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou, Guangdong, 510006, China; Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou, Guangdong, 510006, China
- Guangzhou University of Chinese Medicine, Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou, Guangdong, 510006, China; Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou, Guangdong, 510006, China
| | - Teng Wang
- Guangzhou University of Chinese Medicine, Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou, Guangdong, 510006, China; Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou, Guangdong, 510006, China
- Guangzhou University of Chinese Medicine, Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou, Guangdong, 510006, China; Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
41
|
Wu B, Li MY, Xu ZS, Wang F, Xiong AS. Genome-wide analysis of WRKY transcription factors and their response to abiotic stress in celery (Apium graveolens L.). BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1413954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Bei Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Olericulture, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Meng-Yao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Olericulture, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Olericulture, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Olericulture, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Olericulture, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
42
|
Abouzeid S, Beutling U, Surup F, Abdel Bar FM, Amer MM, Badria FA, Yahyazadeh M, Brönstrup M, Selmar D. Treatment of Vinca minor Leaves with Methyl Jasmonate Extensively Alters the Pattern and Composition of Indole Alkaloids. JOURNAL OF NATURAL PRODUCTS 2017; 80:2905-2909. [PMID: 29131648 DOI: 10.1021/acs.jnatprod.7b00424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Alkaloids extracted from mature Vinca minor leaves were fractionated by preparative HPLC. By means of HRMS and NMR data, the main alkaloids were identified as vincamine, strictamine, 10-hydroxycathofoline, and vincadifformine. Upon treatment with methyl jasmonate (MeJA), the pattern and composition of the indole alkaloids changed extensively. While 10-hydroxycathofoline and strictamine concentrations remained unaltered, vincamine and vincadifformine levels showed a dramatic reduction. Upon MeJA treatment, four other indole alkaloids were detected in high quantities. Three of these alkaloids have been identified as minovincinine, minovincine, and 9-methoxyvincamine. Whereas minovincinine and minovincine are known to occur in trace amounts in V. minor, 9-methoxyvincamine represents a novel natural product. Based on the high similarities of vincamine and 9-methoxyvincamine and their inverse changes in concentrations, it is postulated that vincamine is a precursor of 9-methoxyvincamine. Similarly, vincadifformine seems to be converted first to minovincinine and finally to minovincine. Because MeJA treatment greatly altered the alkaloidal composition of V. minor, it could be used as a potential elicitor of alkaloids that are not produced under normal conditions.
Collapse
Affiliation(s)
- Sara Abouzeid
- Institute for Plant Biology, TU Braunschweig , 38106 Braunschweig, Germany
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University , Mansoura 35516, Egypt
| | | | | | - Fatma M Abdel Bar
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University , Mansoura 35516, Egypt
| | - Mohamed M Amer
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University , Mansoura 35516, Egypt
| | - Farid A Badria
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University , Mansoura 35516, Egypt
| | - Mahdi Yahyazadeh
- Institute for Plant Biology, TU Braunschweig , 38106 Braunschweig, Germany
| | | | - Dirk Selmar
- Institute for Plant Biology, TU Braunschweig , 38106 Braunschweig, Germany
| |
Collapse
|
43
|
De novo Transcriptome Sequencing of MeJA-Induced Taraxacum koksaghyz Rodin to Identify Genes Related to Rubber Formation. Sci Rep 2017; 7:15697. [PMID: 29146946 PMCID: PMC5691164 DOI: 10.1038/s41598-017-14890-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 10/18/2017] [Indexed: 01/07/2023] Open
Abstract
Increase in the consumption of natural rubber (NR) has necessitated the identification of alternative sources of NR. The quality of NR produced by Taraxacum koksaghyz Rodin (TKS) is comparable to that from Hevea brasiliensis (H.brasiliensis), and therefore, TKS is being considered as an alternative source of NR. Here, we sequenced the TKS root transcriptome after wild TKS seedlings were treated with methyl jasmonate (MeJA) for 0, 6, and 24 h. The clean reads generated for each experimental line were assembled into 127,833 unigenes. The Kyoto encyclopedia of genes and genomes pathway prediction suggested that methyl jasmonate regulated secondary metabolism in TKS. Differential expression analysis showed that the expression of HMGCR, FPPS, IDI, GGPPS, and REF/SRPP increased with methyl jasmonate treatment. Interestingly, differential expression analysis of the jasmonate (JA)-related transcription factors (TFs), indicated that certain genes encoding these transcription factors (namely, bHLH, MYB, AP2/EREBP, and WRKY) showed the same expression pattern in the lines treated for 6 h and 24 h. Moreover, HMGCR was up-regulated in the transgenic seedlings overexpressing DREB. We predicted that methyl jasmonate regulated secondary metabolism and affected rubber biosynthesis via the interaction of the JA-related TFs with genes associated with rubber biosynthesis in TKS.
Collapse
|
44
|
Rahnamaie-Tajadod R, Loke KK, Goh HH, Noor NM. Differential Gene Expression Analysis in Polygonum minus Leaf upon 24 h of Methyl Jasmonate Elicitation. FRONTIERS IN PLANT SCIENCE 2017; 8:109. [PMID: 28220135 PMCID: PMC5292430 DOI: 10.3389/fpls.2017.00109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/19/2017] [Indexed: 05/06/2023]
Abstract
Polygonum minus is an herbal plant that grows in Southeast Asian countries and traditionally used as medicine. This plant produces diverse secondary metabolites such as phenolic compounds and their derivatives, which are known to have roles in plant abiotic and biotic stress responses. Methyl jasmonate (MeJA) is a plant signaling molecule that triggers transcriptional reprogramming in secondary metabolism and activation of defense responses against many biotic and abiotic stresses. However, the effect of MeJA elicitation on the genome-wide expression profile in the leaf tissue of P. minus has not been well-studied due to the limited genetic information. Hence, we performed Illumina paired-end RNA-seq for de novo reconstruction of P. minus leaf transcriptome to identify differentially expressed genes (DEGs) in response to MeJA elicitation. A total of 182,111 unique transcripts (UTs) were obtained by de novo assembly of 191.57 million paired-end clean reads using Trinity analysis pipeline. A total of 2374 UTs were identified to be significantly up-/down-regulated 24 h after MeJA treatment. These UTs comprising many genes related to plant secondary metabolite biosynthesis, defense and stress responses. To validate our sequencing results, we analyzed the expression of 21 selected DEGs by quantitative real-time PCR and found a good correlation between the two analyses. The single time-point analysis in this work not only provides a useful genomic resource for P. minus but also gives insights on molecular mechanisms of stress responses in P. minus.
Collapse
|
45
|
Huang Y, Tan H, Yu J, Chen Y, Guo Z, Wang G, Zhang Q, Chen J, Zhang L, Diao Y. Stable Internal Reference Genes for Normalizing Real-Time Quantitative PCR in Baphicacanthus cusia under Hormonal Stimuli and UV Irradiation, and in Different Plant Organs. FRONTIERS IN PLANT SCIENCE 2017; 8:668. [PMID: 28515733 PMCID: PMC5413499 DOI: 10.3389/fpls.2017.00668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 04/11/2017] [Indexed: 05/16/2023]
Abstract
Baphicacanthus cusia (Nees) Bremek, the plant source for many kinds of drugs in traditional Chinese medicine, is widely distributed in South China, especially in Fujian. Recent studies about B. cusia mainly focus on its chemical composition and pharmacological effects, but further analysis of the plant's gene functions and expression is required to better understand the synthesis of its effective compounds. Real-time quantitative polymerase chain reaction (RT-qPCR) is a powerful method for gene expression analysis. It is necessary to select a suitable reference gene for expression normalization to ensure the accuracy of RT-qPCR results. Ten candidate reference genes were selected from the transcriptome datasets of B. cusia in this study, and the expression stability was assessed across 60 samples representing different tissues and organs under various conditions, including ultraviolet (UV) irradiation, hormonal stimuli (jasmonic acid methyl ester and abscisic acid), and in different plant organs. By employing different algorithms, such as geNorm, NormFinder, and BestKeeper, which are complementary approaches based on different statistical procedures, 18S rRNA was found to be the most stable gene under UV irradiation and hormonal stimuli, whereas ubiquitin-conjugating enzyme E2 was the best suitable gene for different plant organs. This novel study aimed to screen for suitable reference genes and corresponding primer pairs specifically designed for gene expression studies in B. cusia, in particular for RT-qPCR analyses.
Collapse
Affiliation(s)
- Yuxiang Huang
- School of Biomedical Sciences, Huaqiao UniversityQuanzhou, China
- School of Pharmacy, Quanzhou Medical CollegeQuanzhou, China
- School of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Hexin Tan
- School of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Jian Yu
- School of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Yue Chen
- School of Biomedical Sciences, Huaqiao UniversityQuanzhou, China
- School of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Zhiying Guo
- School of Biomedical Sciences, Huaqiao UniversityQuanzhou, China
- School of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Guoquan Wang
- School of Biomedical Sciences, Huaqiao UniversityQuanzhou, China
| | - Qinglei Zhang
- School of Biomedical Sciences, Huaqiao UniversityQuanzhou, China
- School of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Junfeng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Lei Zhang
- School of Pharmacy, Second Military Medical UniversityShanghai, China
- *Correspondence: Lei Zhang
| | - Yong Diao
- School of Biomedical Sciences, Huaqiao UniversityQuanzhou, China
- Yong Diao
| |
Collapse
|
46
|
Pal S, Yadav AK, Singh AK, Rastogi S, Gupta MM, Verma RK, Nagegowda DA, Pal A, Shasany AK. Nitrogen treatment enhances sterols and withaferin A through transcriptional activation of jasmonate pathway, WRKY transcription factors, and biosynthesis genes in Withania somnifera (L.) Dunal. PROTOPLASMA 2017; 254:389-399. [PMID: 26971099 DOI: 10.1007/s00709-016-0959-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/01/2016] [Indexed: 05/11/2023]
Abstract
The medicinal plant Withania somnifera is researched extensively to increase the quantity of withanolides and specifically withaferin A, which finds implications in many pharmacological activities. Due to insufficient knowledge on biosynthesis and unacceptability of transgenic approach, it is preferred to follow alternative physiological methods to increase the yield of withanolides. Prior use of elicitors like salicylic acid, methyl jasmonate, fungal extracts, and even mechanical wounding have shown to increase the withanolide biosynthesis with limited success; however, the commercial viability and logistics of application are debatable. In this investigation, we tested the simple nitrogeneous fertilizers pertaining to the enhancement of withaferin A biosynthesis. Application of ammonium sulfate improved the sterol contents required for the withanolide biosynthesis and correlated to higher expression of pathway genes like FPPS, SMT1, SMT2, SMO1, SMO2, and ODM. Increased expression of a gene homologous to allene oxide cyclase, crucial in jasmonic acid biosynthetic pathway, suggested the involvement of jasmonate signaling. High levels of WRKY gene transcripts indicated transcriptional regulation of the pathway genes. Increase in transcript level could be correlated with a corresponding increase in the protein levels for WsSMT1 and WsWRKY1. The withaferin A increase was also demonstrated in the potted plants growing in the glasshouse and in the open field. These results implicated simple physiological management of nitrogen fertilizer signal to improve the yield of secondary metabolite through probable involvement of jasmonate signal and WRKY transcription factor for the first time, in W. somnifera besides improving the foliage.
Collapse
Affiliation(s)
- Shaifali Pal
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Akhilesh Kumar Yadav
- Analytical Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
| | - Anup Kumar Singh
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
| | - Shubhra Rastogi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
| | - Madan Mohan Gupta
- Analytical Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
| | - Rajesh Kumar Verma
- Soil Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
| | - Dinesh A Nagegowda
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
| | - Anirban Pal
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
| | - Ajit Kumar Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
47
|
Duraisamy GS, Mishra AK, Kocabek T, Matoušek J. Identification and characterization of promoters and cis-regulatory elements of genes involved in secondary metabolites production in hop (Humulus lupulus. L). Comput Biol Chem 2016; 64:346-352. [DOI: 10.1016/j.compbiolchem.2016.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/07/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022]
|
48
|
Huang Y, Tan H, Guo Z, Wu X, Zhang Q, Zhang L, Diao Y. The biosynthesis and genetic engineering of bioactive indole alkaloids in plants. JOURNAL OF PLANT BIOLOGY 2016. [PMID: 0 DOI: 10.1007/s12374-016-0032-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|
49
|
Song H, Wang P, Lin JY, Zhao C, Bi Y, Wang X. Genome-Wide Identification and Characterization of WRKY Gene Family in Peanut. FRONTIERS IN PLANT SCIENCE 2016; 7:534. [PMID: 27200012 PMCID: PMC4845656 DOI: 10.3389/fpls.2016.00534] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/04/2016] [Indexed: 05/18/2023]
Abstract
WRKY, an important transcription factor family, is widely distributed in the plant kingdom. Many reports focused on analysis of phylogenetic relationship and biological function of WRKY protein at the whole genome level in different plant species. However, little is known about WRKY proteins in the genome of Arachis species and their response to salicylic acid (SA) and jasmonic acid (JA) treatment. In this study, we identified 77 and 75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches. Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and A. ipaënsis chromosome B3, while the least number of WRKY genes was found in chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis chromosomes were highly syntenic. Our analysis indicated that segmental duplication events played a major role in AdWRKY and AiWRKY genes, and strong purifying selection was observed in gene duplication pairs. Furthermore, we translate the knowledge gained from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to reveal that gene activities of specific cultivated peanut WRKY gene were changed due to SA and JA treatment. Peanut WRKY7, 8 and 13 genes were down-regulated, whereas WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could provide valuable information for peanut improvement.
Collapse
Affiliation(s)
- Hui Song
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural SciencesJinan, China
| | - Pengfei Wang
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural SciencesJinan, China
| | - Jer-Young Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos Angeles, CA, USA
| | - Chuanzhi Zhao
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural SciencesJinan, China
| | - Yuping Bi
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural SciencesJinan, China
| | - Xingjun Wang
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural SciencesJinan, China
| |
Collapse
|
50
|
Xiu H, Nuruzzaman M, Guo X, Cao H, Huang J, Chen X, Wu K, Zhang R, Huang Y, Luo J, Luo Z. Molecular Cloning and Expression Analysis of Eight PgWRKY Genes in Panax ginseng Responsive to Salt and Hormones. Int J Mol Sci 2016; 17:319. [PMID: 26959011 PMCID: PMC4813182 DOI: 10.3390/ijms17030319] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/03/2016] [Accepted: 02/22/2016] [Indexed: 12/11/2022] Open
Abstract
Despite the importance of WRKY genes in plant physiological processes, little is known about their roles in Panax ginseng C.A. Meyer. Forty-eight unigenes on this species were previously reported as WRKY transcripts using the next-generation sequencing (NGS) technology. Subsequently, one gene that encodes PgWRKY1 protein belonging to subgroup II-d was cloned and functionally characterized. In this study, eight WRKY genes from the NGS-based transcriptome sequencing dataset designated as PgWRKY2-9 have been cloned and characterized. The genes encoding WRKY proteins were assigned to WRKY Group II (one subgroup II-c, four subgroup II-d, and three subgroup II-e) based on phylogenetic analysis. The cDNAs of the cloned PgWRKYs encode putative proteins ranging from 194 to 358 amino acid residues, each of which includes one WRKYGQK sequence motif and one C2H2-type zinc-finger motif. Quantitative real-time PCR (qRT-PCR) analysis demonstrated that the eight analyzed PgWRKY genes were expressed at different levels in various organs including leaves, roots, adventitious roots, stems, and seeds. Importantly, the transcription responses of these PgWRKYs to methyl jasmonate (MeJA) showed that PgWRKY2, PgWRKY3, PgWRKY4, PgWRKY5, PgWRKY6, and PgWRKY7 were downregulated by MeJA treatment, while PgWRKY8 and PgWRKY9 were upregulated to varying degrees. Moreover, the PgWRKY genes increased or decreased by salicylic acid (SA), abscisic acid (ABA), and NaCl treatments. The results suggest that the PgWRKYs may be multiple stress–inducible genes responding to both salt and hormones.
Collapse
Affiliation(s)
- Hao Xiu
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| | - Mohammed Nuruzzaman
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| | - Xiangqian Guo
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| | - Hongzhe Cao
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| | - Jingjia Huang
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| | - Xianghui Chen
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| | - Kunlu Wu
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| | - Ru Zhang
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| | - Yuzhao Huang
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| | - Junli Luo
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| | - Zhiyong Luo
- Molecular Biology Research Center, State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| |
Collapse
|