1
|
Kordana N, Johnson A, Quinn K, Obar JJ, Cramer RA. Recent developments in Aspergillus fumigatus research: diversity, drugs, and disease. Microbiol Mol Biol Rev 2025; 89:e0001123. [PMID: 39927770 PMCID: PMC11948498 DOI: 10.1128/mmbr.00011-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
SUMMARYAdvances in modern medical therapies for many previously intractable human diseases have improved patient outcomes. However, successful disease treatment outcomes are often prevented due to invasive fungal infections caused by the environmental mold Aspergillus fumigatus. As contemporary antifungal therapies have not experienced the same robust advances as other medical therapies, defining mechanisms of A. fumigatus disease initiation and progression remains a critical research priority. To this end, the World Health Organization recently identified A. fumigatus as a research priority human fungal pathogen and the Centers for Disease Control has highlighted the emergence of triazole-resistant A. fumigatus isolates. The expansion in the diversity of host populations susceptible to aspergillosis and the complex and dynamic A. fumigatus genotypic and phenotypic diversity call for a reinvigorated assessment of aspergillosis pathobiological and drug-susceptibility mechanisms. Here, we summarize recent advancements in the field and discuss challenges in our understanding of A. fumigatus heterogeneity and its pathogenesis in diverse host populations.
Collapse
Affiliation(s)
- Nicole Kordana
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Angus Johnson
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Katherine Quinn
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Joshua J. Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
2
|
Salamzade R, Kalan LR. Context matters: assessing the impacts of genomic background and ecology on microbial biosynthetic gene cluster evolution. mSystems 2025; 10:e0153824. [PMID: 39992097 PMCID: PMC11915812 DOI: 10.1128/msystems.01538-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
Encoded within many microbial genomes, biosynthetic gene clusters (BGCs) underlie the synthesis of various secondary metabolites that often mediate ecologically important functions. Several studies and bioinformatics methods developed over the past decade have advanced our understanding of both microbial pangenomes and BGC evolution. In this minireview, we first highlight challenges in broad evolutionary analysis of BGCs, including delineation of BGC boundaries and clustering of BGCs across genomes. We further summarize key findings from microbial comparative genomics studies on BGC conservation across taxa and habitats and discuss the potential fitness effects of BGCs in different settings. Afterward, recent research showing the importance of genomic context on the production of secondary metabolites and the evolution of BGCs is highlighted. These studies draw parallels to recent, broader, investigations on gene-to-gene associations within microbial pangenomes. Finally, we describe mechanisms by which microbial pangenomes and BGCs evolve, ranging from the acquisition or origination of entire BGCs to micro-evolutionary trends of individual biosynthetic genes. An outlook on how expansions in the biosynthetic capabilities of some taxa might support theories that open pangenomes are the result of adaptive evolution is also discussed. We conclude with remarks about how future work leveraging longitudinal metagenomics across diverse ecosystems is likely to significantly improve our understanding on the evolution of microbial genomes and BGCs.
Collapse
Affiliation(s)
- Rauf Salamzade
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lindsay R Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Seo HW, Bok JW, Keller NP. Gene regulatory network resource aids in predicting trans-acting regulators of biosynthetic gene clusters in Aspergillus fumigatus. mBio 2025; 16:e0387424. [PMID: 39964163 PMCID: PMC11898546 DOI: 10.1128/mbio.03874-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/21/2025] [Indexed: 03/14/2025] Open
Abstract
The field of secondary metabolism has greatly benefitted from computational advances in recent years. This has been particularly true for fungal natural product studies. Strides in genome mining have led to the identification of an extraordinary number of secondary metabolite biosynthetic gene clusters (BGCs) across the fungal Kingdom and metabologenomic platforms can group BGCs into gene cluster families and link them to initial chemical structures. Missing are computational applications focused on identifying BGC regulatory networks. Here, we applied the new online gene regulatory network resource, GRAsp (Gene Regulation of Aspergillus fumigatus), to identify unknown and unpredictable BGC trans-acting transcriptional/metabolite production modules. GRAsp correctly predicted a two-component regulatory module composed of the transcription factors (TFs), RogA (regulation of gliotoxin) and HsfA, which negatively regulate the gliotoxin BGC and are also involved in gliotoxin self-protection. RogA functions through the repression of gliZ, the pathway-specific gliotoxin TF, and HsfA functions by activating rogA expression. Furthermore, GRAsp identified TFs that regulate the production of two BGCs lacking pathway-specific TFs, the helvolic acid and fumitremorgin BGCs, respectively. Finally, the known TF, NsdD, was predicted and found to regulate the hexadehydroastechrome BGC. These advances highlight the power of inference algorithms to uncover unpredictable networks in specialized metabolite synthesis.IMPORTANCEToxic secondary metabolites are virulence factors of the opportunistic fungal pathogen Aspergillus fumigatus, yet the transcriptional networks regulating secondary metabolite production remain elusive. Uncovering novel regulators without any prior information is challenging. Computational programs have gained prominence in the field of secondary metabolite research due to their accuracy and ability to handle vast amounts of data, including DNA, RNA, and protein data. In this study, a newly developed online computer platform, Gene Regulation of A. fumigatus, was used to identify five regulators involved in the production of several A. fumigatus toxins, including gliotoxin, helvolic acid, fumitremorgin, and hexadehydroastechrome. This work illustrates the potential for discovering new trans-acting regulators and mechanisms of secondary metabolite regulation through the examination of computational gene regulatory networks.
Collapse
Affiliation(s)
- Hye-won Seo
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Alves V, Zamith-Miranda D, Frases S, Nosanchuk JD. Fungal Metabolomics: A Comprehensive Approach to Understanding Pathogenesis in Humans and Identifying Potential Therapeutics. J Fungi (Basel) 2025; 11:93. [PMID: 39997385 PMCID: PMC11856446 DOI: 10.3390/jof11020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Metabolomics has emerged as a transformative tool in the study of microbes, including pathogenic fungi, facilitating the identification of unique metabolic profiles that elucidate their pathogenic mechanisms, host interactions, and treatment resistance. This review highlights key applications of metabolomics in understanding fungal metabolites essential for human virulence, such as mycotoxins produced by various fungal species, including Aspergillus fumigatus (gliotoxin, fumagillins) and Candida species (phenylethyl alcohol, TCA cycle metabolites), and secondary metabolites that contribute to pathogenicity. It also explores the metabolic adaptations of fungi in relation to drug resistance and biofilm formation, revealing alterations in key metabolic pathways during infection, as seen in C. albicans and C. auris. Furthermore, metabolomics aids in deciphering host-pathogen interactions, showcasing how fungi like Cryptococcus neoformans and Candida modify host metabolism to promote survival and evade immune responses. The study of antifungal resistance mechanisms has also benefited from metabolomic approaches, identifying specific metabolite patterns that signify resistance, such as in Candida albicans and Candidozyma (Candida) auris, and informing new therapeutic strategies. The integration of metabolomics with other omics technologies is paving the way for a comprehensive understanding of fungal biology and pathogenesis. Such multi-omics approaches are crucial for discovering new therapeutic targets and developing innovative antifungal treatments. Thus, the purpose of this review is to provide an overview of how metabolomics is revolutionizing our understanding of fungal pathogenesis, drug resistance, and host interactions, and to highlight its potential for identifying new therapeutic targets and improving antifungal strategies.
Collapse
Affiliation(s)
- Vinicius Alves
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Daniel Zamith-Miranda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro—FAPERJ, Rio de Janeiro 21040-360, Brazil
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
5
|
Pinzan CF, Valero C, de Castro PA, da Silva JL, Earle K, Liu H, Horta MAC, Kniemeyer O, Krüger T, Pschibul A, Cömert DN, Heinekamp T, Brakhage AA, Steenwyk JL, Mead ME, Hermsdorf N, Filler SG, da Rosa-Garzon NG, Delbaje E, Bromley MJ, Cabral H, Diehl C, Angeli CB, Palmisano G, Ibrahim AS, Rinker DC, Sauters TJC, Steffen K, Gumilang A, Rokas A, Gago S, Dos Reis TF, Goldman GH. Aspergillus fumigatus conidial surface-associated proteome reveals factors for fungal evasion and host immunity modulation. Nat Microbiol 2024; 9:2710-2726. [PMID: 39191887 PMCID: PMC11699518 DOI: 10.1038/s41564-024-01782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 07/10/2024] [Indexed: 08/29/2024]
Abstract
Aspergillus fumigatus causes aspergillosis and relies on asexual spores (conidia) for initiating host infection. There is scarce information about A. fumigatus proteins involved in fungal evasion and host immunity modulation. Here we analysed the conidial surface proteome of A. fumigatus, two closely related non-pathogenic species, Aspergillus fischeri and Aspergillus oerlinghausenensis, as well as pathogenic Aspergillus lentulus, to identify such proteins. After identifying 62 proteins exclusively detected on the A. fumigatus conidial surface, we assessed null mutants for 42 genes encoding these proteins. Deletion of 33 of these genes altered susceptibility to macrophage, epithelial cells and cytokine production. Notably, a gene that encodes a putative glycosylasparaginase, modulating levels of the host proinflammatory cytokine IL-1β, is important for infection in an immunocompetent murine model of fungal disease. These results suggest that A. fumigatus conidial surface proteins are important for evasion and modulation of the immune response at the onset of fungal infection.
Collapse
Affiliation(s)
- Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Jefferson Luiz da Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Kayleigh Earle
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hong Liu
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Annica Pschibul
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Derya Nur Cömert
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Matthew E Mead
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Nico Hermsdorf
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Scott G Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Endrews Delbaje
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Michael J Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Antimicrobial Resistance Network, University of Manchester, Manchester, UK
| | - Hamilton Cabral
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Diehl
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Claudia B Angeli
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ashraf S Ibrahim
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - David C Rinker
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Thomas J C Sauters
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Karin Steffen
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Adiyantara Gumilang
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Antonis Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
| | - Sara Gago
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Thaila F Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil.
| |
Collapse
|
6
|
Steenwyk JL, Knowles S, Bastos RW, Balamurugan C, Rinker D, Mead ME, Roberts CD, Raja HA, Li Y, Colabardini AC, de Castro PA, Dos Reis TF, Gumilang A, Almagro-Molto M, Alanio A, Garcia-Hermoso D, Delbaje E, Pontes L, Pinzan CF, Schreiber AZ, Canóvas D, Sanchez Luperini R, Lagrou K, Torrado E, Rodrigues F, Oberlies NH, Zhou X, Goldman GH, Rokas A. Evolutionary origin and population diversity of a cryptic hybrid pathogen. Nat Commun 2024; 15:8412. [PMID: 39333551 PMCID: PMC11436853 DOI: 10.1038/s41467-024-52639-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Cryptic fungal pathogens pose disease management challenges due to their morphological resemblance to known pathogens. Here, we investigated the genomes and phenotypes of 53 globally distributed isolates of Aspergillus section Nidulantes fungi and found 30 clinical isolates-including four isolated from COVID-19 patients-were A. latus, a cryptic pathogen that originated via allodiploid hybridization. Notably, all A. latus isolates were misidentified. A. latus hybrids likely originated via a single hybridization event during the Miocene and harbor substantial genetic diversity. Transcriptome profiling of a clinical isolate revealed that both parental subgenomes are actively expressed and respond to environmental stimuli. Characterizing infection-relevant traits-such as drug resistance and growth under oxidative stress-revealed distinct phenotypic profiles among A. latus hybrids compared to parental and closely related species. Moreover, we identified four features that could aid A. latus taxonomic identification. Together, these findings deepen our understanding of the origin of cryptic pathogens.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, USA
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
| | - Sonja Knowles
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, USA
| | - Rafael W Bastos
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Department of Microbiology and Parasitology, Bioscience Center, Federal University of Rio Grande do Norte, Natal-RN, Brazil
| | - Charu Balamurugan
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
| | - David Rinker
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
| | - Matthew E Mead
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
- Ginkgo Bioworks, 27 Drydock Avenue, 8th Floor, Boston, USA
| | - Christopher D Roberts
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, USA
| | - Huzefa A Raja
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, USA
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Ana Cristina Colabardini
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Adiyantara Gumilang
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
| | - María Almagro-Molto
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Alexandre Alanio
- Institut Pasteur, Paris Cité University, National Reference Center for Invasives Mycoses and Antifungals, Translational Mycology Research Group, Mycology Department, Paris, France
- Laboratoire de parasitologie-mycologie, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Dea Garcia-Hermoso
- Institut Pasteur, Paris Cité University, National Reference Center for Invasives Mycoses and Antifungals, Translational Mycology Research Group, Mycology Department, Paris, France
| | - Endrews Delbaje
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Laís Pontes
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - David Canóvas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Clinical Microbiology Unit. Synlab Laboratory at Viamed Sta. Ángela de la Cruz Hospital, Seville, Spain
| | - Rafael Sanchez Luperini
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Centre for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4715-495 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4715-495 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Nicholas H Oberlies
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, USA
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Gustavo H Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.
- National Institute of Science and Technology in Human Pathogenic, Fungi, Brazil.
| | - Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA.
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA.
| |
Collapse
|
7
|
Rinker DC, Sauters TJC, Steffen K, Gumilang A, Raja HA, Rangel-Grimaldo M, Pinzan CF, de Castro PA, Dos Reis TF, Delbaje E, Houbraken J, Goldman GH, Oberlies NH, Rokas A. Strain heterogeneity in a non-pathogenic Aspergillus fungus highlights factors associated with virulence. Commun Biol 2024; 7:1082. [PMID: 39232082 PMCID: PMC11374809 DOI: 10.1038/s42003-024-06756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Fungal pathogens exhibit extensive strain heterogeneity, including variation in virulence. Whether closely related non-pathogenic species also exhibit strain heterogeneity remains unknown. Here, we comprehensively characterized the pathogenic potentials (i.e., the ability to cause morbidity and mortality) of 16 diverse strains of Aspergillus fischeri, a non-pathogenic close relative of the major pathogen Aspergillus fumigatus. In vitro immune response assays and in vivo virulence assays using a mouse model of pulmonary aspergillosis showed that A. fischeri strains varied widely in their pathogenic potential. Furthermore, pangenome analyses suggest that A. fischeri genomic and phenotypic diversity is even greater. Genomic, transcriptomic, and metabolic profiling identified several pathways and secondary metabolites associated with variation in virulence. Notably, strain virulence was associated with the simultaneous presence of the secondary metabolites hexadehydroastechrome and gliotoxin. We submit that examining the pathogenic potentials of non-pathogenic close relatives is key for understanding the origins of fungal pathogenicity.
Collapse
Affiliation(s)
- David C Rinker
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Thomas J C Sauters
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Karin Steffen
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Adiyantara Gumilang
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Manuel Rangel-Grimaldo
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Camila Figueiredo Pinzan
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Endrews Delbaje
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Jos Houbraken
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Gustavo H Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Antonis Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
8
|
Katsoulis O, Pitts OR, Singanayagam A. The airway mycobiome and interactions with immunity in health and chronic lung disease. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae009. [PMID: 39206335 PMCID: PMC11357796 DOI: 10.1093/oxfimm/iqae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
The existence of commensal fungi that reside within the respiratory tract, termed the airway mycobiome, has only recently been discovered. Studies are beginning to characterize the spectrum of fungi that inhabit the human upper and lower respiratory tract but heterogeneous sampling and analysis techniques have limited the generalizability of findings to date. In this review, we discuss existing studies that have examined the respiratory mycobiota in healthy individuals and in those with inflammatory lung conditions such as asthma, chronic obstructive pulmonary disease and cystic fibrosis. Associations between specific fungi and features of disease pathogenesis are emerging but the precise functional consequences imparted by mycobiota upon the immune system remain poorly understood. It is imperative that further research is conducted in this important area as a more detailed understanding could facilitate the development of novel approaches to manipulating the mycobiome for therapeutic benefit.
Collapse
Affiliation(s)
- Orestis Katsoulis
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
| | - Oliver R Pitts
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
| | - Aran Singanayagam
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
- National Heart and Lung Institute, Imperial College London, London SW7 2DD, UK
| |
Collapse
|
9
|
Brown A, Steenwyk JL, Rokas A. Genome-wide patterns of noncoding and protein-coding sequence variation in the major fungal pathogen Aspergillus fumigatus. G3 (BETHESDA, MD.) 2024; 14:jkae091. [PMID: 38696662 PMCID: PMC11228837 DOI: 10.1093/g3journal/jkae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024]
Abstract
Aspergillus fumigatus is a deadly fungal pathogen, responsible for >400,000 infections/year and high mortality rates. A. fumigatus strains exhibit variation in infection-relevant traits, including in their virulence. However, most A. fumigatus protein-coding genes, including those that modulate its virulence, are shared between A. fumigatus strains and closely related nonpathogenic relatives. We hypothesized that A. fumigatus genes exhibit substantial genetic variation in the noncoding regions immediately upstream to the start codons of genes, which could reflect differences in gene regulation between strains. To begin testing this hypothesis, we identified 5,812 single-copy orthologs across the genomes of 263 A. fumigatus strains. In general, A. fumigatus noncoding regions showed higher levels of sequence variation compared with their corresponding protein-coding regions. Focusing on 2,482 genes whose protein-coding sequence identity scores ranged between 75 and 99%, we identified 478 total genes with signatures of positive selection only in their noncoding regions and 65 total genes with signatures only in their protein-coding regions. Twenty-eight of the 478 noncoding regions and 5 of the 65 protein-coding regions under selection are associated with genes known to modulate A. fumigatus virulence. Noncoding region variation between A. fumigatus strains included single-nucleotide polymorphisms and insertions or deletions of at least a few nucleotides. These results show that noncoding regions of A. fumigatus genes harbor greater sequence variation than protein-coding regions, raising the hypothesis that this variation may contribute to A. fumigatus phenotypic heterogeneity.
Collapse
Affiliation(s)
- Alec Brown
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Department of Molecular and Cell Biology, Howards Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
10
|
Na H, Zheng YY, Jia Y, Feng J, Huang J, Huang J, Wang CY, Yao G. Screening and genetic engineering of marine-derived Aspergillus terreus for high-efficient production of lovastatin. Microb Cell Fact 2024; 23:134. [PMID: 38724934 PMCID: PMC11084141 DOI: 10.1186/s12934-024-02396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Lovastatin has widespread applications thanks to its multiple pharmacological effects. Fermentation by filamentous fungi represents the major way of lovastatin production. However, the current lovastatin productivity by fungal fermentation is limited and needs to be improved. RESULTS In this study, the lovastatin-producing strains of Aspergillus terreus from marine environment were screened, and their lovastatin productions were further improved by genetic engineering. Five strains of A. terreus were isolated from various marine environments. Their secondary metabolites were profiled by metabolomics analysis using Ultra Performance Liquid Chromatography-Mass spectrometry (UPLC-MS) with Global Natural Products Social Molecular Networking (GNPS), revealing that the production of secondary metabolites was variable among different strains. Remarkably, the strain of A. terreus MJ106 could principally biosynthesize the target drug lovastatin, which was confirmed by High Performance Liquid Chromatography (HPLC) and gene expression analysis. By one-factor experiment, lactose was found to be the best carbon source for A. terreus MJ106 to produce lovastatin. To improve the lovastatin titer in A. terreus MJ106, genetic engineering was applied to this strain. Firstly, a series of strong promoters was identified by transcriptomic and green fluorescent protein reporter analysis. Then, three selected strong promoters were used to overexpress the transcription factor gene lovE encoding the major transactivator for lov gene cluster expression. The results revealed that compared to A. terreus MJ106, all lovE over-expression mutants exhibited significantly more production of lovastatin and higher gene expression. One of them, LovE-b19, showed the highest lovastatin productivity at a titer of 1512 mg/L, which represents the highest production level reported in A. terreus. CONCLUSION Our data suggested that combination of strain screen and genetic engineering represents a powerful tool for improving the productivity of fungal secondary metabolites, which could be adopted for large-scale production of lovastatin in marine-derived A. terreus.
Collapse
Affiliation(s)
- Han Na
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (the Ministry of Education of China), Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yao-Yao Zheng
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (the Ministry of Education of China), Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yaoning Jia
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (the Ministry of Education of China), Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Jingzhao Feng
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jizi Huang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jihao Huang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (the Ministry of Education of China), Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Guangshan Yao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
- School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
11
|
Balamurugan C, Steenwyk JL, Goldman GH, Rokas A. The evolution of the gliotoxin biosynthetic gene cluster in Penicillium fungi. G3 (BETHESDA, MD.) 2024; 14:jkae063. [PMID: 38507596 PMCID: PMC11075534 DOI: 10.1093/g3journal/jkae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 12/27/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Fungi biosynthesize diverse secondary metabolites, small organic bioactive molecules with key roles in fungal ecology. Fungal secondary metabolites are often encoded by physically clustered genes known as biosynthetic gene clusters (BGCs). Fungi in the genus Penicillium produce a cadre of secondary metabolites, some of which are useful (e.g. the antibiotic penicillin and the cholesterol-lowering drug mevastatin) and others harmful (e.g. the mycotoxin patulin and the immunosuppressant gliotoxin) to human affairs. Fungal genomes often also encode resistance genes that confer protection against toxic secondary metabolites. Some Penicillium species, such as Penicillium decumbens, are known to produce gliotoxin, a secondary metabolite with known immunosuppressant activity. To investigate the evolutionary conservation of homologs of the gliotoxin BGC and of genes involved in gliotoxin resistance in Penicillium, we analyzed 35 Penicillium genomes from 23 species. Homologous, lesser fragmented gliotoxin BGCs were found in 12 genomes, mostly fragmented remnants of the gliotoxin BGC were found in 21 genomes, whereas the remaining 2 Penicillium genomes lacked the gliotoxin BGC altogether. In contrast, broad conservation of homologs of resistance genes that reside outside the BGC across Penicillium genomes was observed. Evolutionary rate analysis revealed that BGCs with higher numbers of genes evolve slower than BGCs with few genes, suggestive of constraint and potential functional significance or more recent decay. Gene tree-species tree reconciliation analyses suggested that the history of homologs in the gliotoxin BGC across the genus Penicillium likely involved multiple duplications, losses, and horizontal gene transfers. Our analyses suggest that genes encoded in BGCs can have complex evolutionary histories and be retained in genomes long after the loss of secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Charu Balamurugan
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN 37235, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN 37235, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Gustavo H Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo CEP 14040-903, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN 37235, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
12
|
Jorge JMP, Martins C, Domingos P, Martins TM, Hartmann DO, Goldman GH, Silva Pereira C. NmrB ( AN9181) expression is activated under oxidative stress conditions acting as a metabolic repressor of Aspergillus nidulans. Front Microbiol 2024; 15:1373469. [PMID: 38699477 PMCID: PMC11063244 DOI: 10.3389/fmicb.2024.1373469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Aspergilli comprise a diversity of species that have been extensively studied due to their catabolic diversity, biotechnological and ecological value, and pathogenicity. An impressive level of structural and functional conservation has been shown for aspergilli, regardless of many (yet) cryptic genomic elements. We have hypothesized the existence of conserved genes responsive to stress in aspergilli. To test the hypothesis of such conserved stress regulators in aspergilli, a straightforward computational strategy integrating well-established bioinformatic tools was used as the starting point. Specifically, five transcriptome-based datasets on exposure to organic compounds were used, covering three distinct Aspergillus species. Among the identified up-regulated genes, only one gene showed the same response in all conditions, AN9181. This gene encodes a protein containing a phenylcoumaran benzylic ether reductase-like domain and a Nitrogen metabolite repressor regulator domain (NmrA). Deletion of this gene caused significant phenotypic alterations compared to that of the parental strain across diverse conditions. Specifically, the deletion of AN9181 raised the mutant's metabolic activity in different nitrogen sources. The acquired data supports that AN9181 acts by repressing (slowing down) A. nidulans growth when exposed to aromatic compounds in a concentration dependent manner. The same phenotype was observed for amphotericin B. Finally, AN9181 underwent differential upregulation under oxidative stress conditions. Collectively, the data suggest that AN9181, herein assigned as NmrB (Nitrogen Metabolite Repression Regulator B), builds up the genetic machinery of perception of oxidative stress by negatively regulating growth under such conditions.
Collapse
Affiliation(s)
- João M. P. Jorge
- Instituto de Tecnologia Química e Biológica António Xavier, NOVA University Lisbon, Av. da República, Oeiras, Portugal
| | - Celso Martins
- Instituto de Tecnologia Química e Biológica António Xavier, NOVA University Lisbon, Av. da República, Oeiras, Portugal
| | - Patrícia Domingos
- Instituto de Tecnologia Química e Biológica António Xavier, NOVA University Lisbon, Av. da República, Oeiras, Portugal
| | - Tiago M. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, NOVA University Lisbon, Av. da República, Oeiras, Portugal
| | - Diego O. Hartmann
- Instituto de Tecnologia Química e Biológica António Xavier, NOVA University Lisbon, Av. da República, Oeiras, Portugal
| | - Gustavo H. Goldman
- Instituto de Tecnologia Química e Biológica António Xavier, NOVA University Lisbon, Av. da República, Oeiras, Portugal
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, NOVA University Lisbon, Av. da República, Oeiras, Portugal
| |
Collapse
|
13
|
Steenwyk JL, Balamurugan C, Raja HA, Gonçalves C, Li N, Martin F, Berman J, Oberlies NH, Gibbons JG, Goldman GH, Geiser DM, Houbraken J, Hibbett DS, Rokas A. Phylogenomics reveals extensive misidentification of fungal strains from the genus Aspergillus. Microbiol Spectr 2024; 12:e0398023. [PMID: 38445873 PMCID: PMC10986620 DOI: 10.1128/spectrum.03980-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/18/2024] [Indexed: 03/07/2024] Open
Abstract
Modern taxonomic classification is often based on phylogenetic analyses of a few molecular markers, although single-gene studies are still common. Here, we leverage genome-scale molecular phylogenetics (phylogenomics) of species and populations to reconstruct evolutionary relationships in a dense data set of 710 fungal genomes from the biomedically and technologically important genus Aspergillus. To do so, we generated a novel set of 1,362 high-quality molecular markers specific for Aspergillus and provided profile Hidden Markov Models for each, facilitating their use by others. Examining the resulting phylogeny helped resolve ongoing taxonomic controversies, identified new ones, and revealed extensive strain misidentification (7.59% of strains were previously misidentified), underscoring the importance of population-level sampling in species classification. These findings were corroborated using the current standard, taxonomically informative loci. These findings suggest that phylogenomics of species and populations can facilitate accurate taxonomic classifications and reconstructions of the Tree of Life.IMPORTANCEIdentification of fungal species relies on the use of molecular markers. Advances in genomic technologies have made it possible to sequence the genome of any fungal strain, making it possible to use genomic data for the accurate assignment of strains to fungal species (and for the discovery of new ones). We examined the usefulness and current limitations of genomic data using a large data set of 710 publicly available genomes from multiple strains and species of the biomedically, agriculturally, and industrially important genus Aspergillus. Our evolutionary genomic analyses revealed that nearly 8% of publicly available Aspergillus genomes are misidentified. Our work highlights the usefulness of genomic data for fungal systematic biology and suggests that systematic genome sequencing of multiple strains, including reference strains (e.g., type strains), of fungal species will be required to reduce misidentification errors in public databases.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Charu Balamurugan
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Carla Gonçalves
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Ningxiao Li
- Department of Plant Pathology, University of California, Davis, California, USA
- USDA-ARS, Salinas, California, USA
| | | | - Judith Berman
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - John G. Gibbons
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - Gustavo H. Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - David M. Geiser
- Department of Plant Pathology and Environmental Microbiology, Penn State University, University Park, Pennsylvania, USA
| | - Jos Houbraken
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - David S. Hibbett
- Biology Department, Clark University, Worcester, Massachusetts, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg, Heidelberg, Germany
| |
Collapse
|
14
|
Seo HW, Wassano NS, Amir Rawa MS, Nickles GR, Damasio A, Keller NP. A Timeline of Biosynthetic Gene Cluster Discovery in Aspergillus fumigatus: From Characterization to Future Perspectives. J Fungi (Basel) 2024; 10:266. [PMID: 38667937 PMCID: PMC11051388 DOI: 10.3390/jof10040266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
In 1999, the first biosynthetic gene cluster (BGC), synthesizing the virulence factor DHN melanin, was characterized in Aspergillus fumigatus. Since then, 19 additional BGCs have been linked to specific secondary metabolites (SMs) in this species. Here, we provide a comprehensive timeline of A. fumigatus BGC discovery and find that initial advances centered around the commonly expressed SMs where chemical structure informed rationale identification of the producing BGC (e.g., gliotoxin, fumigaclavine, fumitremorgin, pseurotin A, helvolic acid, fumiquinazoline). Further advances followed the transcriptional profiling of a ΔlaeA mutant, which aided in the identification of endocrocin, fumagillin, hexadehydroastechrome, trypacidin, and fumisoquin BGCs. These SMs and their precursors are the commonly produced metabolites in most A. fumigatus studies. Characterization of other BGC/SM pairs required additional efforts, such as induction treatments, including co-culture with bacteria (fumicycline/neosartoricin, fumigermin) or growth under copper starvation (fumivaline, fumicicolin). Finally, four BGC/SM pairs were discovered via overexpression technologies, including the use of heterologous hosts (fumicycline/neosartoricin, fumihopaside, sphingofungin, and sartorypyrone). Initial analysis of the two most studied A. fumigatus isolates, Af293 and A1160, suggested that both harbored ca. 34-36 BGCs. However, an examination of 264 available genomes of A. fumigatus shows up to 20 additional BGCs, with some strains showing considerable variations in BGC number and composition. These new BGCs present a new frontier in the future of secondary metabolism characterization in this important species.
Collapse
Affiliation(s)
- Hye-Won Seo
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
| | - Natalia S. Wassano
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo 13083-970, Brazil;
| | - Mira Syahfriena Amir Rawa
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
| | - Grant R. Nickles
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo 13083-970, Brazil;
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
15
|
Rinker DC, Sauters TJC, Steffen K, Gumilang A, Raja HA, Rangel-Grimaldo M, Pinzan CF, de Castro PA, dos Reis TF, Delbaje E, Houbraken J, Goldman GH, Oberlies NH, Rokas A. Strain heterogeneity in a non-pathogenic fungus highlights factors contributing to virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.583994. [PMID: 38496489 PMCID: PMC10942418 DOI: 10.1101/2024.03.08.583994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Fungal pathogens exhibit extensive strain heterogeneity, including variation in virulence. Whether closely related non-pathogenic species also exhibit strain heterogeneity remains unknown. Here, we comprehensively characterized the pathogenic potentials (i.e., the ability to cause morbidity and mortality) of 16 diverse strains of Aspergillus fischeri, a non-pathogenic close relative of the major pathogen Aspergillus fumigatus. In vitro immune response assays and in vivo virulence assays using a mouse model of pulmonary aspergillosis showed that A. fischeri strains varied widely in their pathogenic potential. Furthermore, pangenome analyses suggest that A. fischeri genomic and phenotypic diversity is even greater. Genomic, transcriptomic, and metabolomic profiling identified several pathways and secondary metabolites associated with variation in virulence. Notably, strain virulence was associated with the simultaneous presence of the secondary metabolites hexadehydroastechrome and gliotoxin. We submit that examining the pathogenic potentials of non-pathogenic close relatives is key for understanding the origins of fungal pathogenicity.
Collapse
Affiliation(s)
- David C. Rinker
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Thomas J. C. Sauters
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Karin Steffen
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Adiyantara Gumilang
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Manuel Rangel-Grimaldo
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Camila Figueiredo Pinzan
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Endrews Delbaje
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Jos Houbraken
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Gustavo H. Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Antonis Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Riedling O, Walker AS, Rokas A. Predicting fungal secondary metabolite activity from biosynthetic gene cluster data using machine learning. Microbiol Spectr 2024; 12:e0340023. [PMID: 38193680 PMCID: PMC10846162 DOI: 10.1128/spectrum.03400-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Fungal secondary metabolites (SMs) contribute to the diversity of fungal ecological communities, niches, and lifestyles. Many fungal SMs have one or more medically and industrially important activities (e.g., antifungal, antibacterial, and antitumor). The genes necessary for fungal SM biosynthesis are typically located right next to each other in the genome and are known as biosynthetic gene clusters (BGCs). However, whether fungal SM bioactivity can be predicted from specific attributes of genes in BGCs remains an open question. We adapted machine learning models that predicted SM bioactivity from bacterial BGC data with accuracies as high as 80% to fungal BGC data. We trained our models to predict the antibacterial, antifungal, and cytotoxic/antitumor bioactivity of fungal SMs on two data sets: (i) fungal BGCs (data set comprised of 314 BGCs) and (ii) fungal (314 BGCs) and bacterial BGCs (1,003 BGCs). We found that models trained on fungal BGCs had balanced accuracies between 51% and 68%, whereas training on bacterial and fungal BGCs had balanced accuracies between 56% and 68%. The low prediction accuracy of fungal SM bioactivities likely stems from the small size of the data set; this lack of data, coupled with our finding that including bacterial BGC data in the training data did not substantially change accuracies currently limits the application of machine learning approaches to fungal SM studies. With >15,000 characterized fungal SMs, millions of putative BGCs in fungal genomes, and increased demand for novel drugs, efforts that systematically link fungal SM bioactivity to BGCs are urgently needed.IMPORTANCEFungi are key sources of natural products and iconic drugs, including penicillin and statins. DNA sequencing has revealed that there are likely millions of biosynthetic pathways in fungal genomes, but the chemical structures and bioactivities of >99% of natural products produced by these pathways remain unknown. We used artificial intelligence to predict the bioactivities of diverse fungal biosynthetic pathways. We found that the accuracies of our predictions were generally low, between 51% and 68%, likely because the natural products and bioactivities of only very few fungal pathways are known. With >15,000 characterized fungal natural products, millions of putative biosynthetic pathways present in fungal genomes, and increased demand for novel drugs, our study suggests that there is an urgent need for efforts that systematically identify fungal biosynthetic pathways, their natural products, and their bioactivities.
Collapse
Affiliation(s)
- Olivia Riedling
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Allison S. Walker
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
17
|
Brown A, Steenwyk JL, Rokas A. Genome-wide patterns of non-coding sequence variation in the major fungal pathogen Aspergillus fumigatus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574724. [PMID: 38260267 PMCID: PMC10802510 DOI: 10.1101/2024.01.08.574724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A.fumigatus is a deadly fungal pathogen, responsible for >400,000 infections/year and high mortality rates. A. fumigatus strains exhibit variation in infection-relevant traits, including in their virulence. However, most A. fumigatus protein-coding genes, including those that modulate its virulence, are shared between A. fumigatus strains and closely related non-pathogenic relatives. We hypothesized that A. fumigatus genes exhibit substantial genetic variation in the non-coding regions immediately upstream to the start codons of genes, which could reflect differences in gene regulation between strains. To begin testing this hypothesis, we identified 5,812 single-copy orthologs across the genomes of 263 A. fumigatus strains. A. fumigatus non-coding regions showed higher levels of sequence variation compared to their corresponding protein-coding regions. Specifically, we found that 1,274 non-coding regions exhibited <75% nucleotide sequence similarity (compared to 928 protein-coding regions) and 3,721 non-coding regions exhibited between 75% and 99% similarity (compared to 2,482 protein-coding regions) across strains. Only 817 non-coding regions exhibited ≥99% sequence similarity compared to 2,402 protein-coding regions. By examining 2,482 genes whose protein-coding sequence identity scores ranged between 75% and 99%, we identified 478 total genes with signatures of positive selection only in their non-coding regions and 65 total genes with signatures only in their protein-coding regions. 28 of the 478 non-coding regions and 5 of the 65 protein-coding regions under selection are associated with genes known to modulate A. fumigatus virulence. Non-coding region variation between A. fumigatus strains included single nucleotide polymorphisms and insertions or deletions of at least a few nucleotides. These results show that non-coding regions of A. fumigatus genes harbor greater sequence variation than protein-coding regions, raising the hypothesis that this variation may contribute to A. fumigatus phenotypic heterogeneity.
Collapse
Affiliation(s)
- Alec Brown
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
18
|
Alves de Castro P, Figueiredo Pinzan C, Dos Reis TF, Valero C, Van Rhijn N, Menegatti C, de Freitas Migliorini IL, Bromley M, Fleming AB, Traynor AM, Sarikaya-Bayram Ö, Bayram Ö, Malavazi I, Ebel F, Barbosa JCJ, Fill T, Pupo MT, Goldman GH. Aspergillus fumigatus mitogen-activated protein kinase MpkA is involved in gliotoxin production and self-protection. Nat Commun 2024; 15:33. [PMID: 38167253 PMCID: PMC10762094 DOI: 10.1038/s41467-023-44329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Aspergillus fumigatus is a saprophytic fungus that can cause a variety of human diseases known as aspergillosis. Mycotoxin gliotoxin (GT) production is important for its virulence and must be tightly regulated to avoid excess production and toxicity to the fungus. GT self-protection by GliT oxidoreductase and GtmA methyltransferase activities is related to the subcellular localization of these enzymes and how GT can be sequestered from the cytoplasm to avoid increased cell damage. Here, we show that GliT:GFP and GtmA:GFP are localized in the cytoplasm and in vacuoles during GT production. The Mitogen-Activated Protein kinase MpkA is essential for GT production and self-protection, interacts physically with GliT and GtmA and it is necessary for their regulation and subsequent presence in the vacuoles. The sensor histidine kinase SlnASln1 is important for modulation of MpkA phosphorylation. Our work emphasizes the importance of MpkA and compartmentalization of cellular events for GT production and self-defense.
Collapse
Affiliation(s)
- Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Norman Van Rhijn
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Carla Menegatti
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Michael Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alastair B Fleming
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Aimee M Traynor
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | - Özgür Bayram
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Frank Ebel
- Institut für Infektionsmedizin und Zoonosen, Medizinische Fakultät, LMU, 80539, München, Germany
| | | | - Taícia Fill
- Instituto de Química, Universidade Estadual de Campinas, Campinas, Brazil
| | - Monica Tallarico Pupo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
19
|
Liu H, Lin J, Phan QT, Gravelat FN, Sheppard DC, Filler SG. Use of a human small airway epithelial cell line to study the interactions of Aspergillus fumigatus with pulmonary epithelial cells. mSphere 2023; 8:e0031423. [PMID: 37578262 PMCID: PMC10597448 DOI: 10.1128/msphere.00314-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 08/15/2023] Open
Abstract
During the initiation of invasive aspergillosis, inhaled Aspergillus fumigatus conidia are deposited on the epithelial cells lining the bronchi, terminal bronchioles, and alveoli. While the interactions of A. fumigatus with bronchial and type II alveolar cell lines have been investigated in vitro, little is known about the interactions of this fungus with terminal bronchiolar epithelial cells. Using the HSAEC1-KT human small airway epithelial (HSAE) cell line, we developed an in vitro model to study the interaction of two strains of A. fumigatus with these cells. We then compared the interactions of A. fumigatus with the A549 type II alveolar epithelial cell line and the HSAE cell line. We found that A. fumigatus conidia were poorly endocytosed by A549 cells, but avidly endocytosed by HSAE cells. A. fumigatus germlings invaded both cell types by induced endocytosis, but not by active penetration. A549 cell endocytosis of A. fumigatus was independent of fungal viability, more dependent on host microfilaments than microtubules, and induced by A. fumigatus CalA interacting with host cell integrin α5β1. By contrast, HSAE cell endocytosis required fungal viability, was more dependent on microtubules than microfilaments, and did not require CalA or integrin α5β1. HSAE cells were more susceptible than A549 cells to damage caused by direct contact with killed A. fumigatus germlings and by secreted fungal products. In response to A. fumigatus infection, A549 cells secreted a broader profile of cytokines and chemokines than HSAE cells. Taken together, these results demonstrate that studies of HSAE cells provide complementary data to A549 cells and thus represent a useful model for probing the interactions of A. fumigatus with bronchiolar epithelial cells in vitro. Importance During the initiation of invasive aspergillosis, Aspergillus fumigatus interacts with the epithelial cells that line the airways and alveoli. Previous studies of A. fumigatus-epithelial cell interactions in vitro used either large airway epithelial cell lines or the A549 type II alveolar epithelial cell line; the interactions of fungi with terminal bronchiolar epithelial cells were not investigated. Using the TERT-immortalized human small airway epithelial HSAEC1-KT (HSAE) cell line, we developed an in vitro model of the interactions of A. fumigatus with bronchiolar epithelial cells. We discovered that A. fumigatus invades and damages A549 and HSAE cell lines by distinct mechanisms. Also, the proinflammatory responses of the cell lines to A. fumigatus are different. These results provide insight into how A. fumigatus interacts with different types of epithelial cells during invasive aspergillosis and demonstrate that HSAE cells are useful in vitro model for investigating the interactions of this fungus with bronchiolar epithelial cells.
Collapse
Affiliation(s)
- Hong Liu
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jianfeng Lin
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Quynh T. Phan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Fabrice N. Gravelat
- Department of Medicine, Infectious Diseases, and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Donald C. Sheppard
- Department of Medicine, Infectious Diseases, and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Scott G. Filler
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
20
|
Gwinn KD, Leung MCK, Stephens AB, Punja ZK. Fungal and mycotoxin contaminants in cannabis and hemp flowers: implications for consumer health and directions for further research. Front Microbiol 2023; 14:1278189. [PMID: 37928692 PMCID: PMC10620813 DOI: 10.3389/fmicb.2023.1278189] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
Medicinal and recreational uses of Cannabis sativa, commonly known as cannabis or hemp, has increased following its legalization in certain regions of the world. Cannabis and hemp plants interact with a community of microbes (i.e., the phytobiome), which can influence various aspects of the host plant. The fungal composition of the C. sativa phytobiome (i.e., mycobiome) currently consists of over 100 species of fungi, which includes phytopathogens, epiphytes, and endophytes, This mycobiome has often been understudied in research aimed at evaluating the safety of cannabis products for humans. Medical research has historically focused instead on substance use and medicinal uses of the plant. Because several components of the mycobiome are reported to produce toxic secondary metabolites (i.e., mycotoxins) that can potentially affect the health of humans and animals and initiate opportunistic infections in immunocompromised patients, there is a need to determine the potential health risks that these contaminants could pose for consumers. This review discusses the mycobiome of cannabis and hemp flowers with a focus on plant-infecting and toxigenic fungi that are most commonly found and are of potential concern (e.g., Aspergillus, Penicillium, Fusarium, and Mucor spp.). We review current regulations for molds and mycotoxins worldwide and review assessment methods including culture-based assays, liquid chromatography, immuno-based technologies, and emerging technologies for these contaminants. We also discuss approaches to reduce fungal contaminants on cannabis and hemp and identify future research needs for contaminant detection, data dissemination, and management approaches. These approaches are designed to yield safer products for all consumers.
Collapse
Affiliation(s)
- Kimberly D. Gwinn
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | - Maxwell C. K. Leung
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| | - Ariell B. Stephens
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| | - Zamir K. Punja
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
21
|
Lin SY, Oakley CE, Jenkinson CB, Chiang YM, Lee CK, Jones CG, Seidler PM, Nelson HM, Todd RB, Wang CCC, Oakley BR. A heterologous expression platform in Aspergillus nidulans for the elucidation of cryptic secondary metabolism biosynthetic gene clusters: discovery of the Aspergillus fumigatus sartorypyrone biosynthetic pathway. Chem Sci 2023; 14:11022-11032. [PMID: 37860661 PMCID: PMC10583710 DOI: 10.1039/d3sc02226a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/26/2023] [Indexed: 10/21/2023] Open
Abstract
Aspergillus fumigatus is a serious human pathogen causing life-threatening Aspergillosis in immunocompromised patients. Secondary metabolites (SMs) play an important role in pathogenesis, but the products of many SM biosynthetic gene clusters (BGCs) remain unknown. In this study, we have developed a heterologous expression platform in Aspergillus nidulans, using a newly created genetic dereplication strain, to express a previously unknown BGC from A. fumigatus and determine its products. The BGC produces sartorypyrones, and we have named it the spy BGC. Analysis of targeted gene deletions by HRESIMS, NMR, and microcrystal electron diffraction (MicroED) enabled us to identify 12 products from the spy BGC. Seven of the compounds have not been isolated previously. We also individually expressed the polyketide synthase (PKS) gene spyA and demonstrated that it produces the polyketide triacetic acid lactone (TAL), a potentially important biorenewable platform chemical. Our data have allowed us to propose a biosynthetic pathway for sartorypyrones and related natural products. This work highlights the potential of using the A. nidulans heterologous expression platform to uncover cryptic BGCs from A. fumigatus and other species, despite the complexity of their secondary metabolomes.
Collapse
Affiliation(s)
- Shu-Yi Lin
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| | - Cory B Jenkinson
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei 11031 Taiwan
| | - Christopher G Jones
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Paul M Seidler
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - Hosea M Nelson
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Richard B Todd
- Department of Plant Pathology, Kansas State University Manhattan KS 66506 USA
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
- Department of Chemistry, University of Southern California Los Angeles CA 90089 USA
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| |
Collapse
|
22
|
Goldman G, Valero C, Pinzan C, de Castro P, van Rhijn N, Earle K, Liu H, Horta MA, Kniemeyer O, Kruger T, Pschibul A, Coemert D, Heinekamp T, Brakhage A, Steenwyk J, Mead M, Rokas A, Filler S, da Rosa-Garzon N, Delbaje E, Bromley M, Angeli C, Palmisano G, Ibrahim A, Gago S, Does Reis T. A phylogenetic approach to explore the Aspergillus fumigatus conidial surface-associated proteome and its role in pathogenesis. RESEARCH SQUARE 2023:rs.3.rs-3306535. [PMID: 37790311 PMCID: PMC10543367 DOI: 10.21203/rs.3.rs-3306535/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Aspergillus fumigatus, an important pulmonary fungal pathogen causing several diseases collectively called aspergillosis, relies on asexual spores (conidia) for initiating host infection. Here, we used a phylogenomic approach to compare proteins in the conidial surface of A. fumigatus, two closely related non-pathogenic species, Aspergillus fischeri and Aspergillus oerlinghausenensis, and the cryptic pathogen Aspergillus lentulus. After identifying 62 proteins uniquely expressed on the A. fumigatus conidial surface, we assessed null mutants for 42 genes encoding conidial proteins. Deletion of 33 of these genes altered susceptibility to macrophage killing, penetration and damage to epithelial cells, and cytokine production. Notably, a gene that encodes glycosylasparaginase, which modulates levels of the host pro-inflammatory cytokine IL-1β, is important for infection in an immunocompetent murine model of fungal disease. These results suggest that A. fumigatus conidial surface proteins and effectors are important for evasion and modulation of the immune response at the onset of fungal infection.
Collapse
Affiliation(s)
- Gustavo Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Bloco Q, Universidade de São Paulo
| | | | - Camila Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Bloco Q, Universidade de São Paulo
| | - Patrícia de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo
| | | | - Kayleigh Earle
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester
| | - Hong Liu
- The Lundquist Institute for Biomedical Innovation
| | | | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology (HKI)
| | | | - Annica Pschibul
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University
| | - Derya Coemert
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University
| | | | | | | | | | - Scott Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center
| | | | | | | | | | | | - Ashraf Ibrahim
- The Lundquist Institute at Harbor-University of California Los Angeles Medical Center
| | | | | |
Collapse
|
23
|
Riedling O, Walker AS, Rokas A. Predicting fungal secondary metabolite activity from biosynthetic gene cluster data using machine learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557468. [PMID: 37745539 PMCID: PMC10515863 DOI: 10.1101/2023.09.12.557468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Fungal secondary metabolites (SMs) play a significant role in the diversity of ecological communities, niches, and lifestyles in the fungal kingdom. Many fungal SMs have medically and industrially important properties including antifungal, antibacterial, and antitumor activity, and a single metabolite can display multiple types of bioactivities. The genes necessary for fungal SM biosynthesis are typically found in a single genomic region forming biosynthetic gene clusters (BGCs). However, whether fungal SM bioactivity can be predicted from specific attributes of genes in BGCs remains an open question. We adapted previously used machine learning models for predicting SM bioactivity from bacterial BGC data to fungal BGC data. We trained our models to predict antibacterial, antifungal, and cytotoxic/antitumor bioactivity on two datasets: 1) fungal BGCs (dataset comprised of 314 BGCs), and 2) fungal (314 BGCs) and bacterial BGCs (1,003 BGCs); the second dataset was our control since a previous study using just the bacterial BGC data yielded prediction accuracies as high as 80%. We found that the models trained only on fungal BGCs had balanced accuracies between 51-68%, whereas training on bacterial and fungal BGCs yielded balanced accuracies between 61-74%. The lower accuracy of the predictions from fungal data likely stems from the small number of BGCs and SMs with known bioactivity; this lack of data currently limits the application of machine learning approaches in studying fungal secondary metabolism. However, our data also suggest that machine learning approaches trained on bacterial and fungal data can predict SM bioactivity with good accuracy. With more than 15,000 characterized fungal SMs, millions of putative BGCs present in fungal genomes, and increased demand for novel drugs, efforts that systematically link fungal SM bioactivity to BGCs are urgently needed.
Collapse
Affiliation(s)
- Olivia Riedling
- Department of Biological Science, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Allison S Walker
- Department of Biological Science, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Antonis Rokas
- Department of Biological Science, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
24
|
Valero C, Pinzan CF, de Castro PA, van Rhijn N, Earle K, Liu H, Horta MAC, Kniemeyer O, Krüger T, Pschibul A, Coemert DN, Heinekamp T, Brakhage AA, Steenwyk JL, Mead ME, Rokas A, Filler SG, da Rosa-Garzon NG, Cabral H, Deljabe E, Bromley MJ, Angeli CB, Palmisano G, Ibrahim AS, Gago S, Dos Reis TF, Goldman GH. A phylogenetic approach to explore the Aspergillus fumigatus conidial surface-associated proteome and its role in pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.553365. [PMID: 37662192 PMCID: PMC10473670 DOI: 10.1101/2023.08.22.553365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Aspergillus fumigatus , an important pulmonary fungal pathogen causing several diseases collectively called aspergillosis, relies on asexual spores or conidia for initiating host infection. Here, we used a phylogenomic approach to compare proteins in the conidial surface of A. fumigatus , two closely related non-pathogenic species, Aspergillus fischeri and Aspergillus oerlinghausenensis , and the cryptic pathogen Aspergillus lentulus . After identifying 62 proteins uniquely expressed on the A. fumigatus conidial surface, we deleted 42 genes encoding conidial proteins. We found deletion of 33 of these genes altered susceptibility to macrophage killing, penetration and damage to epithelial cells, and cytokine production. Notably, a gene that encodes glycosylasparaginase, which modulates levels of the host pro-inflammatory cytokine IL-1β, is important for infection in an immunocompetent murine model of fungal disease. These results suggest that A. fumigatus conidial surface proteins and effectors are important for evasion and modulation of the immune response at the onset of fungal infection.
Collapse
|
25
|
Steenwyk JL, Knowles S, Bastos RW, Balamurugan C, Rinker D, Mead ME, Roberts CD, Raja HA, Li Y, Colabardini AC, de Castro PA, dos Reis TF, Canóvas D, Sanchez RL, Lagrou K, Torrado E, Rodrigues F, Oberlies NH, Zhou X, Goldman GH, Rokas A. Evolutionary origin, population diversity, and diagnostics for a cryptic hybrid pathogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547508. [PMID: 37461539 PMCID: PMC10350022 DOI: 10.1101/2023.07.03.547508] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Cryptic fungal pathogens pose significant identification and disease management challenges due to their morphological resemblance to known pathogenic species while harboring genetic and (often) infectionrelevant trait differences. The cryptic fungal pathogen Aspergillus latus, an allodiploid hybrid originating from Aspergillus spinulosporus and an unknown close relative of Aspergillus quadrilineatus within section Nidulantes, remains poorly understood. The absence of accurate diagnostics for A. latus has led to misidentifications, hindering epidemiological studies and the design of effective treatment plans. We conducted an in-depth investigation of the genomes and phenotypes of 44 globally distributed isolates (41 clinical isolates and three type strains) from Aspergillus section Nidulantes. We found that 21 clinical isolates were A. latus; notably, standard methods of pathogen identification misidentified all A. latus isolates. The remaining isolates were identified as A. spinulosporus (8), A. quadrilineatus (1), or A. nidulans (11). Phylogenomic analyses shed light on the origin of A. latus, indicating one or two hybridization events gave rise to the species during the Miocene, approximately 15.4 to 8.8 million years ago. Characterizing the A. latus pangenome uncovered substantial genetic diversity within gene families and biosynthetic gene clusters. Transcriptomic analysis revealed that both parental genomes are actively expressed in nearly equal proportions and respond to environmental stimuli. Further investigation into infection-relevant chemical and physiological traits, including drug resistance profiles, growth under oxidative stress conditions, and secondary metabolite biosynthesis, highlight distinct phenotypic profiles of the hybrid A. latus compared to its parental and closely related species. Leveraging our comprehensive genomic and phenotypic analyses, we propose five genomic and phenotypic markers as diagnostics for A. latus species identification. These findings provide valuable insights into the evolutionary origin, genomic outcome, and phenotypic implications of hybridization in a cryptic fungal pathogen, thus enhancing our understanding of the underlying processes contributing to fungal pathogenesis. Furthermore, our study underscores the effectiveness of extensive genomic and phenotypic analyses as a promising approach for developing diagnostics applicable to future investigations of cryptic and emerging pathogens.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Vanderbilt University, Department of Biological Sciences, VU Station B #35–1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Sonja Knowles
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Rafael W. Bastos
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Department of Microbiology and Parasitology, Bioscience Center, Federal University of Rio Grande do Norte, Natal-RN, Brazil
| | - Charu Balamurugan
- Vanderbilt University, Department of Biological Sciences, VU Station B #35–1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - David Rinker
- Vanderbilt University, Department of Biological Sciences, VU Station B #35–1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Matthew E. Mead
- Vanderbilt University, Department of Biological Sciences, VU Station B #35–1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Christopher D. Roberts
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Huzefa A. Raja
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Ana Cristina Colabardini
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - David Canóvas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Rafael Luperini Sanchez
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Department of Laboratory Medicine and National Reference Centre for Mycosis, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4715-495 Braga, Portugal; ICVS/3B’s-PT Government Associate Laboratory, 4715-495 Braga, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4715-495 Braga, Portugal; ICVS/3B’s-PT Government Associate Laboratory, 4715-495 Braga, Portugal
| | - Nicholas H. Oberlies
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Gustavo H. Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, VU Station B #35–1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
26
|
Pan X, Hao L, Yang C, Lin H, Wu D, Chen X, Zhang M, Ma D, Wang Y, Fu W, Yao Y, Wang S, Zhuang Z. SWD1 epigenetically chords fungal morphogenesis, aflatoxin biosynthesis, metabolism, and virulence of Aspergillus flavus. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131542. [PMID: 37172387 DOI: 10.1016/j.jhazmat.2023.131542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 05/14/2023]
Abstract
As the main producer of aflatoxins, Aspergillus flavus is also one of the most important causes of invasive and non-invasive aspergillosis. Therefore, it is crucial to unravel the regulatory mechanisms of growth, metabolism, and pathogenicity of A. flavus. SWD1 is highly conserved across species for maintaining COMPASS methyltransferase activity, but the bio-function of SWD1 in A. flavus has not been explored. Through genetic analysis, this study revealed that SWD1 is involved in fungal morphogenesis and AFB1 biosynthesis by regulating the orthodox pathways through H3K4me1-3. Stresses sensitivity and crop models analysis revealed that SWD1 is a key regulator for the resistance of A. flavus to adapt to extreme adverse environments and to colonize crop kernels. It also revealed that the WD40 domain and 25 aa highly conserved sequence are indispensable for SWD1 in the regulation of mycotoxin bio-synthesis and fungal virulence. Metabolomic analysis inferred that SWD1 is crucial for the biosynthesis of numerous primary and secondary metabolites, regulates biological functions by reshaping the whole metabolic process, and may inhibit fungal virulence by inducing the apoptosis of mycelia through the inducer sphingosine. This study elucidates the epigenetic mechanism of SWD1 in regulating fungal pathogenicity and mycotoxin biosynthesis, and provides a potential novel target for controlling the virulence of A. flavus.
Collapse
Affiliation(s)
- Xiaohua Pan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Key Laboratory of Propagated Sensation along Meridian, Fujian Academy of Chinese Medical Sciences, Fuzhou 350003, China
| | - Ling Hao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chi Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Hong Lin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dandan Wu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuan Chen
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengjuan Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongmei Ma
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wangzhuo Fu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanfang Yao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
27
|
Liu H, Lin J, Phan QT, Gravelat FN, Sheppard DC, Filler SG. Use of a human small airway epithelial cell line to study the interactions of Aspergillus fumigatus with pulmonary epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537379. [PMID: 37131584 PMCID: PMC10153395 DOI: 10.1101/2023.04.18.537379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
During the initiation of invasive aspergillosis, inhaled Aspergillus fumigatus conidia are deposited on the epithelial cells lining the bronchi, terminal bronchioles, and alveoli. While the interactions of A. fumigatus with bronchial and type II alveolar cell lines have been investigated in vitro , little is known about the interactions of this fungus with terminal bronchiolar epithelial cells. We compared the interactions of A. fumigatus with the A549 type II alveolar epithelial cell line and the HSAEC1-KT human small airway epithelial (HSAE) cell line. We found that A. fumigatus conidia were poorly endocytosed by A549 cells, but avidly endocytosed by HSAE cells. A. fumigatus germlings invaded both cell types by induced endocytosis, but not by active penetration. A549 cell endocytosis of A. fumigatus was independent of fungal viability, more dependent on host microfilaments than microtubules, and induced by A. fumigatus CalA interacting with host cell integrin α5β1. By contrast, HSAE cell endocytosis required fungal viability, was more dependent on microtubules than microfilaments, and did not require CalA or integrin α5β1. HSAE cells were more susceptible than A549 cells to damage caused by direct contact with killed A. fumigatus germlings and by secreted fungal products. In response to A. fumigatus infection, A549 cells secreted a broader profile of cytokines and chemokines than HSAE cells. Taken together, these results demonstrate that studies of HSAE cells provide complementary data to A549 cells and thus represent a useful model for probing the interactions of A. fumigatus with bronchiolar epithelial cells in vitro . Importance During the initiation of invasive aspergillosis, Aspergillus fumigatus invades, damages, and stimulates the epithelial cells that line the airways and alveoli. Previous studies of A. fumigatus - epithelial cell interactions in vitro have used either large airway epithelial cell lines or the A549 type II alveolar epithelial cell line. The interactions of fungi with terminal bronchiolar epithelial cells have not been investigated. Here, we compared the interactions of A. fumigatus with A549 cells and the Tert-immortalized human small airway epithelial HSAEC1-KT (HSAE) cell line. We discovered that A. fumigatus invades and damages these two cell lines by distinct mechanisms. Also, the proinflammatory responses of the cell lines to A. fumigatus are different. These results provide insight into how A. fumigatus interacts with different types of epithelial cells during invasive aspergillosis and demonstrate that HSAE cells are useful in vitro model for investigating the interactions of this fungus with bronchiolar epithelial cells.
Collapse
|
28
|
Lofgren LA, Ross BS, Cramer RA, Stajich JE. The pan-genome of Aspergillus fumigatus provides a high-resolution view of its population structure revealing high levels of lineage-specific diversity driven by recombination. PLoS Biol 2022; 20:e3001890. [PMID: 36395320 PMCID: PMC9714929 DOI: 10.1371/journal.pbio.3001890] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/01/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Aspergillus fumigatus is a deadly agent of human fungal disease where virulence heterogeneity is thought to be at least partially structured by genetic variation between strains. While population genomic analyses based on reference genome alignments offer valuable insights into how gene variants are distributed across populations, these approaches fail to capture intraspecific variation in genes absent from the reference genome. Pan-genomic analyses based on de novo assemblies offer a promising alternative to reference-based genomics with the potential to address the full genetic repertoire of a species. Here, we evaluate 260 genome sequences of A. fumigatus including 62 newly sequenced strains, using a combination of population genomics, phylogenomics, and pan-genomics. Our results offer a high-resolution assessment of population structure and recombination frequency, phylogenetically structured gene presence-absence variation, evidence for metabolic specificity, and the distribution of putative antifungal resistance genes. Although A. fumigatus disperses primarily via asexual conidia, we identified extraordinarily high levels of recombination with the lowest linkage disequilibrium decay value reported for any fungal species to date. We provide evidence for 3 primary populations of A. fumigatus, with recombination occurring only rarely between populations and often within them. These 3 populations are structured by both gene variation and distinct patterns of gene presence-absence with unique suites of accessory genes present exclusively in each clade. Accessory genes displayed functional enrichment for nitrogen and carbohydrate metabolism suggesting that populations may be stratified by environmental niche specialization. Similarly, the distribution of antifungal resistance genes and resistance alleles were often structured by phylogeny. Altogether, the pan-genome of A. fumigatus represents one of the largest fungal pan-genomes reported to date including many genes unrepresented in the Af293 reference genome. These results highlight the inadequacy of relying on a single-reference genome-based approach for evaluating intraspecific variation and the power of combined genomic approaches to elucidate population structure, genetic diversity, and putative ecological drivers of clinically relevant fungi.
Collapse
Affiliation(s)
- Lotus A. Lofgren
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, United States of America
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Brandon S. Ross
- Dartmouth Geisel School of Medicine in the Department of Microbiology and Immunology, Dartmouth, Hanover, New Hampshire, United States of America
| | - Robert A. Cramer
- Dartmouth Geisel School of Medicine in the Department of Microbiology and Immunology, Dartmouth, Hanover, New Hampshire, United States of America
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
29
|
Genome-wide association mapping reveals genes underlying population-level metabolome diversity in a fungal crop pathogen. BMC Biol 2022; 20:224. [PMID: 36209159 PMCID: PMC9548119 DOI: 10.1186/s12915-022-01422-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/27/2022] [Indexed: 11/12/2022] Open
Abstract
Background Fungi produce a wide range of specialized metabolites (SMs) involved in biotic interactions. Pathways for the production of SMs are often encoded in clusters of tightly arranged genes identified as biosynthetic gene clusters. Such gene clusters can undergo horizontal gene transfers between species and rapid evolutionary change within species. The acquisition, rearrangement, and deletion of gene clusters can generate significant metabolome diversity. However, the genetic basis underlying variation in SM production remains poorly understood. Results Here, we analyzed the metabolite production of a large population of the fungal pathogen of wheat, Zymoseptoria tritici. The pathogen causes major yield losses and shows variation in gene clusters. We performed untargeted ultra-high performance liquid chromatography-high resolution mass spectrometry to profile the metabolite diversity among 102 isolates of the same species. We found substantial variation in the abundance of the detected metabolites among isolates. Integrating whole-genome sequencing data, we performed metabolite genome-wide association mapping to identify loci underlying variation in metabolite production (i.e., metabolite-GWAS). We found that significantly associated SNPs reside mostly in coding and gene regulatory regions. Associated genes encode mainly transport and catalytic activities. The metabolite-GWAS identified also a polymorphism in the 3′UTR region of a virulence gene related to metabolite production and showing expression variation. Conclusions Taken together, our study provides a significant resource to unravel polymorphism underlying metabolome diversity within a species. Integrating metabolome screens should be feasible for a range of different plant pathogens and help prioritize molecular studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01422-z.
Collapse
|
30
|
Becchimanzi A, Nicoletti R. Aspergillus-bees: A dynamic symbiotic association. Front Microbiol 2022; 13:968963. [PMID: 36160228 PMCID: PMC9489833 DOI: 10.3389/fmicb.2022.968963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Besides representing one of the most relevant threats of fungal origin to human and animal health, the genus Aspergillus includes opportunistic pathogens which may infect bees (Hymenoptera, Apoidea) in all developmental stages. At least 30 different species of Aspergillus have been isolated from managed and wild bees. Some efficient behavioral responses (e.g., diseased brood removal) exerted by bees negatively affect the chance to diagnose the pathology, and may contribute to the underestimation of aspergillosis importance in beekeeping. On the other hand, bee immune responses may be affected by biotic and abiotic stresses and suffer from the loose co-evolutionary relationships with Aspergillus pathogenic strains. However, if not pathogenic, these hive mycobiota components can prove to be beneficial to bees, by affecting the interaction with other pathogens and parasites and by detoxifying xenobiotics. The pathogenic aptitude of Aspergillus spp. likely derives from the combined action of toxins and hydrolytic enzymes, whose effects on bees have been largely overlooked until recently. Variation in the production of these virulence factors has been observed among strains, even belonging to the same species. Toxigenic and non-toxigenic strains/species may co-exist in a homeostatic equilibrium which is susceptible to be perturbed by several external factors, leading to mutualistic/antagonistic switch in the relationships between Aspergillus and bees.
Collapse
Affiliation(s)
- Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, Caserta, Italy
| |
Collapse
|
31
|
Zhang X, Noberini R, Bonaldi T, Collemare J, Seidl MF. The histone code of the fungal genus Aspergillus uncovered by evolutionary and proteomic analyses. Microb Genom 2022; 8. [PMID: 36129736 PMCID: PMC9676040 DOI: 10.1099/mgen.0.000856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemical modifications of DNA and histone proteins impact the organization of chromatin within the nucleus. Changes in these modifications, catalysed by different chromatin-modifying enzymes, influence chromatin organization, which in turn is thought to impact the spatial and temporal regulation of gene expression. While combinations of different histone modifications, the histone code, have been studied in several model species, we know very little about histone modifications in the fungal genus Aspergillus, whose members are generally well studied due to their importance as models in cell and molecular biology as well as their medical and biotechnological relevance. Here, we used phylogenetic analyses in 94 Aspergilli as well as other fungi to uncover the occurrence and evolutionary trajectories of enzymes and protein complexes with roles in chromatin modifications or regulation. We found that these enzymes and complexes are highly conserved in Aspergilli, pointing towards a complex repertoire of chromatin modifications. Nevertheless, we also observed few recent gene duplications or losses, highlighting Aspergillus species to further study the roles of specific chromatin modifications. SET7 (KMT6) and other components of PRC2 (Polycomb Repressive Complex 2), which is responsible for methylation on histone H3 at lysine 27 in many eukaryotes including fungi, are absent in Aspergilli as well as in closely related Penicillium species, suggesting that these lost the capacity for this histone modification. We corroborated our computational predictions by performing untargeted MS analysis of histone post-translational modifications in Aspergillus nidulans. This systematic analysis will pave the way for future research into the complexity of the histone code and its functional implications on genome architecture and gene regulation in fungi.
Collapse
Affiliation(s)
- Xin Zhang
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.,Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy.,Department of Oncology and Haematology-Oncology, University of Milano, Via Santa Sofia 9/1, 20122 Milano, Italy
| | - Jerome Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Michael F Seidl
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
32
|
Horta MAC, Steenwyk JL, Mead ME, dos Santos LHB, Zhao S, Gibbons JG, Marcet-Houben M, Gabaldón T, Rokas A, Goldman GH. Examination of Genome-Wide Ortholog Variation in Clinical and Environmental Isolates of the Fungal Pathogen Aspergillus fumigatus. mBio 2022; 13:e0151922. [PMID: 35766381 PMCID: PMC9426589 DOI: 10.1128/mbio.01519-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus is both an environmental saprobe and an opportunistic human fungal pathogen. Knowledge of genomic variation across A. fumigatus isolates is essential for understanding the evolution of pathogenicity, virulence, and resistance to antifungal drugs. Here, we investigated 206 A. fumigatus isolates (133 clinical and 73 environmental isolates), aiming to identify genes with variable presence across isolates and test whether this variation was related to the clinical or environmental origin of isolates. The PanOrtho genome of A. fumigatus consists of 13,085 ortholog groups, of which 7,773 (59.4%) are shared by all isolates (core groups) and 5,312 (40.6%) vary in their gene presence across isolates (accessory groups plus singletons). Despite differences in the distribution of orthologs across all isolates, no significant differences were observed among clinical versus environmental isolates when phylogeny was accounted for. Orthologs that differ in their distribution across isolates tend to occur at low frequency and/or be restricted to specific isolates; thus, the degree of genomic conservation between orthologs of A. fumigatus is high. These results suggest that differences in the distribution of orthologs within A. fumigatus cannot be associated with the clinical or environmental origin of isolates. IMPORTANCE Aspergillus fumigatus is a cosmopolitan species of fungus responsible for thousands of cases of invasive disease annually. Clinical and environmental isolates of A. fumigatus exhibit extensive phenotypic differences, including differences related to virulence and antifungal drug resistance. A comprehensive survey of the genomic diversity present in A. fumigatus and its relationship to the clinical or environmental origin of isolates can contribute to the prediction of the mechanisms of evolution and infection of the species. Our results suggest that there is no significant variation in ortholog distribution between clinical and environmental isolates when accounting for evolutionary history. The work supports the hypothesis that environmental and clinical isolates of A. fumigatus do not differ in their gene contents.
Collapse
Affiliation(s)
- Maria Augusta C. Horta
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Jacob L. Steenwyk
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthew E. Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Shu Zhao
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - John G. Gibbons
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - Marina Marcet-Houben
- Barcelona Supercomputing Centre, Barcelona, Spain
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre, Barcelona, Spain
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
33
|
Knowles SL, Raja HA, Roberts CD, Oberlies NH. Fungal-fungal co-culture: a primer for generating chemical diversity. Nat Prod Rep 2022; 39:1557-1573. [PMID: 35137758 PMCID: PMC9384855 DOI: 10.1039/d1np00070e] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 01/25/2023]
Abstract
Covering: 2002 to 2020In their natural environment, fungi must compete for resources. It has been hypothesized that this competition likely induces the biosynthesis of secondary metabolites for defence. In a quest to discover new chemical diversity from fungal cultures, a growing trend has been to recapitulate this competitive environment in the laboratory, essentially growing fungi in co-culture. This review covers fungal-fungal co-culture studies beginning with the first literature report in 2002. Since then, there has been a growing number of new secondary metabolites reported as a result of fungal co-culture studies. Specifically, this review discusses and provides insights into (1) rationale for pairing fungal strains, (2) ways to grow fungi for co-culture, (3) different approaches to screening fungal co-cultures for chemical diversity, (4) determining the secondary metabolite-producing strain, and (5) final thoughts regarding the fungal-fungal co-culture approach. Our goal is to provide a set of practical strategies for fungal co-culture studies to generate unique chemical diversity that the natural products research community can utilize.
Collapse
Affiliation(s)
- Sonja L Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Christopher D Roberts
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| |
Collapse
|
34
|
Kuhnert E, Collemare J. A genomic journey in the secondary metabolite diversity of fungal plant and insect pathogens: from functional to population genomics. Curr Opin Microbiol 2022; 69:102178. [PMID: 35870224 DOI: 10.1016/j.mib.2022.102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 11/03/2022]
Abstract
Fungal pathogens produce a broad array of secondary metabolites (SMs), which allow the fungus to thrive in its natural habitat and gain competitive advantage. Analysis of the genetically encoded blueprints for SM assembly highlighted that only a small portion of the SMs these fungi are capable of producing are known, and even fewer have been investigated for their natural function. Using molecular tools, a lot of progress has been made recently in identifying the blueprint products and linking them to their ecological purpose such as the peptide virulence factor fusaoctaxin A released by Fusarium graminearum during infection of wheat or the F. oxysporum polyketide bikaverin that provides competitive advantage against bacteria in tomato. In addition, population genomics have given particularly important insights into the species-specific plasticity of the SM blueprint arsenal, showcasing the ongoing evolution and adaptation of fungal pathogens. This approach holds promise in inferring roles in pathogenicity of many more fungal SMs.
Collapse
Affiliation(s)
- Eric Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany.
| | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
35
|
Brown A, Mead ME, Steenwyk JL, Goldman GH, Rokas A. Extensive non-coding sequence divergence between the major human pathogen Aspergillus fumigatus and its relatives. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:802494. [PMID: 36866034 PMCID: PMC9977105 DOI: 10.3389/ffunb.2022.802494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/09/2022] [Indexed: 11/13/2022]
Abstract
Invasive aspergillosis is a deadly fungal disease; more than 400,000 patients are infected worldwide each year and the mortality rate can be as high as 50-95%. Of the ~450 species in the genus Aspergillus only a few are known to be clinically relevant, with the major pathogen Aspergillus fumigatus being responsible for ~50% of all invasive mold infections. Genomic comparisons between A. fumigatus and other Aspergillus species have historically focused on protein-coding regions. However, most A. fumigatus genes, including those that modulate its virulence, are also present in other pathogenic and non-pathogenic closely related species. Our hypothesis is that differential gene regulation - mediated through the non-coding regions upstream of genes' first codon - contributes to A. fumigatus pathogenicity. To begin testing this, we compared non-coding regions upstream of the first codon of single-copy orthologous genes from the two A. fumigatus reference strains Af293 and A1163 and eight closely related Aspergillus section Fumigati species. We found that these non-coding regions showed extensive sequence variation and lack of homology across species. By examining the evolutionary rates of both protein-coding and non-coding regions in a subset of orthologous genes with highly conserved non-coding regions across the phylogeny, we identified 418 genes, including 25 genes known to modulate A. fumigatus virulence, whose non-coding regions exhibit a different rate of evolution in A. fumigatus. Examination of sequence alignments of these non-coding regions revealed numerous instances of insertions, deletions, and other types of mutations of at least a few nucleotides in A. fumigatus compared to its close relatives. These results show that closely related Aspergillus species that vary greatly in their pathogenicity exhibit extensive non-coding sequence variation and identify numerous changes in non-coding regions of A. fumigatus genes known to contribute to virulence.
Collapse
Affiliation(s)
- Alec Brown
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, United States
| | - Matthew E. Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, United States
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, United States
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
36
|
Rokas A. Evolution of the human pathogenic lifestyle in fungi. Nat Microbiol 2022; 7:607-619. [PMID: 35508719 PMCID: PMC9097544 DOI: 10.1038/s41564-022-01112-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
Abstract
Fungal pathogens cause more than a billion human infections every year, resulting in more than 1.6 million deaths annually. Understanding the natural history and evolutionary ecology of fungi is helping us understand how disease-relevant traits have repeatedly evolved. Different types and mechanisms of genetic variation have contributed to the evolution of fungal pathogenicity and specific genetic differences distinguish pathogens from non-pathogens. Insights into the traits, genetic elements, and genetic and ecological mechanisms that contribute to the evolution of fungal pathogenicity are crucial for developing strategies to both predict emergence of fungal pathogens and develop drugs to combat them.
Collapse
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
37
|
De Miccolis Angelini RM, Landi L, Raguseo C, Pollastro S, Faretra F, Romanazzi G. Tracking of Diversity and Evolution in the Brown Rot Fungi Monilinia fructicola, Monilinia fructigena, and Monilinia laxa. Front Microbiol 2022; 13:854852. [PMID: 35356516 PMCID: PMC8959702 DOI: 10.3389/fmicb.2022.854852] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Monilinia species are among the most devastating fungi worldwide as they cause brown rot and blossom blight on fruit trees. To understand the molecular bases of their pathogenic lifestyles, we compared the newly assembled genomes of single strains of Monilinia fructicola, M. fructigena and M. laxa, with those of Botrytis cinerea and Sclerotinia sclerotiorum, as the closest species within Sclerotiniaceae. Phylogenomic analysis of orthologous proteins and syntenic investigation suggest that M. laxa is closer to M. fructigena than M. fructicola, and is closest to the other investigated Sclerotiniaceae species. This indicates that M. laxa was the earliest result of the speciation process. Distinct evolutionary profiles were observed for transposable elements (TEs). M. fructicola and M. laxa showed older bursts of TE insertions, which were affected (mainly in M. fructicola) by repeat-induced point (RIP) mutation gene silencing mechanisms. These suggested frequent occurrence of the sexual process in M. fructicola. More recent TE expansion linked with low RIP action was observed in M. fructigena, with very little in S. sclerotiorum and B. cinerea. The detection of active non-syntenic TEs is indicative of horizontal gene transfer and has resulted in alterations in specific gene functions. Analysis of candidate effectors, biosynthetic gene clusters for secondary metabolites and carbohydrate-active enzymes, indicated that Monilinia genus has multiple virulence mechanisms to infect host plants, including toxins, cell-death elicitor, putative virulence factors and cell-wall-degrading enzymes. Some species-specific pathogenic factors might explain differences in terms of host plant and organ preferences between M. fructigena and the other two Monilinia species.
Collapse
Affiliation(s)
| | - Lucia Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Celeste Raguseo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Faretra
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
38
|
Colabardini AC, Wang F, Dong Z, Pardeshi L, Rocha MC, Costa JH, dos Reis TF, Brown A, Jaber QZ, Fridman M, Fill T, Rokas A, Malavazi I, Wong KH, Goldman GH. Heterogeneity in the transcriptional response of the human pathogen Aspergillus fumigatus to the antifungal agent caspofungin. Genetics 2022; 220:iyab183. [PMID: 34718550 PMCID: PMC8733440 DOI: 10.1093/genetics/iyab183] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/07/2021] [Indexed: 01/11/2023] Open
Abstract
Aspergillus fumigatus is the main causative agent of invasive pulmonary aspergillosis (IPA), a severe disease that affects immunosuppressed patients worldwide. The fungistatic drug caspofungin (CSP) is the second line of therapy against IPA but has increasingly been used against clinical strains that are resistant to azoles, the first line antifungal therapy. In high concentrations, CSP induces a tolerance phenotype with partial reestablishment of fungal growth called CSP paradoxical effect (CPE), resulting from a change in the composition of the cell wall. An increasing number of studies has shown that different isolates of A. fumigatus exhibit phenotypic heterogeneity, including heterogeneity in their CPE response. To gain insights into the underlying molecular mechanisms of CPE response heterogeneity, we analyzed the transcriptomes of two A. fumigatus reference strains, Af293 and CEA17, exposed to low and high CSP concentrations. We found that there is a core transcriptional response that involves genes related to cell wall remodeling processes, mitochondrial function, transmembrane transport, and amino acid and ergosterol metabolism, and a variable response related to secondary metabolite (SM) biosynthesis and iron homeostasis. Specifically, we show here that the overexpression of a SM pathway that works as an iron chelator extinguishes the CPE in both backgrounds, whereas iron depletion is detrimental for the CPE in Af293 but not in CEA17. We next investigated the function of the transcription factor CrzA, whose deletion was previously shown to result in heterogeneity in the CPE response of the Af293 and CEA17 strains. We found that CrzA constitutively binds to and modulates the expression of several genes related to processes involved in CSP tolerance and that crzA deletion differentially impacts the SM production and growth of Af293 and CEA17. As opposed to the ΔcrzACEA17 mutant, the ΔcrzAAf293 mutant fails to activate cell wall remodeling genes upon CSP exposure, which most likely severely affects its macrostructure and extinguishes its CPE. This study describes how heterogeneity in the response to an antifungal agent between A. fumigatus strains stems from heterogeneity in the function of a transcription factor and its downstream target genes.
Collapse
Affiliation(s)
- Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo CEP 14040-903, Brazil
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Fang Wang
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Zhiqiang Dong
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Lakhansing Pardeshi
- Faculty of Health Sciences, University of Macau, Macau 999078, China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau, 999078, China
| | - Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos CEP 13565-905, Brazil
| | - Jonas Henrique Costa
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo CEP 13083-970, Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo CEP 14040-903, Brazil
| | - Alec Brown
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Qais Z Jaber
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Micha Fridman
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Taicia Fill
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo CEP 13083-970, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos CEP 13565-905, Brazil
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau 999078, China
- Faculty of Health Sciences, Institute of Translational Medicine, University of Macau, Macau 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo CEP 14040-903, Brazil
| |
Collapse
|
39
|
de Castro PA, Colabardini AC, Moraes M, Horta MAC, Knowles SL, Raja HA, Oberlies NH, Koyama Y, Ogawa M, Gomi K, Steenwyk JL, Rokas A, Gonçales RA, Duarte-Oliveira C, Carvalho A, Ries LNA, Goldman GH. Regulation of gliotoxin biosynthesis and protection in Aspergillus species. PLoS Genet 2022; 18:e1009965. [PMID: 35041649 PMCID: PMC8797188 DOI: 10.1371/journal.pgen.1009965] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023] Open
Abstract
Aspergillus fumigatus causes a range of human and animal diseases collectively known as aspergillosis. A. fumigatus possesses and expresses a range of genetic determinants of virulence, which facilitate colonisation and disease progression, including the secretion of mycotoxins. Gliotoxin (GT) is the best studied A. fumigatus mycotoxin with a wide range of known toxic effects that impair human immune cell function. GT is also highly toxic to A. fumigatus and this fungus has evolved self-protection mechanisms that include (i) the GT efflux pump GliA, (ii) the GT neutralising enzyme GliT, and (iii) the negative regulation of GT biosynthesis by the bis-thiomethyltransferase GtmA. The transcription factor (TF) RglT is the main regulator of GliT and this GT protection mechanism also occurs in the non-GT producing fungus A. nidulans. However, the A. nidulans genome does not encode GtmA and GliA. This work aimed at analysing the transcriptional response to exogenous GT in A. fumigatus and A. nidulans, two distantly related Aspergillus species, and to identify additional components required for GT protection. RNA-sequencing shows a highly different transcriptional response to exogenous GT with the RglT-dependent regulon also significantly differing between A. fumigatus and A. nidulans. However, we were able to observe homologs whose expression pattern was similar in both species (43 RglT-independent and 11 RglT-dependent). Based on this approach, we identified a novel RglT-dependent methyltranferase, MtrA, involved in GT protection. Taking into consideration the occurrence of RglT-independent modulated genes, we screened an A. fumigatus deletion library of 484 transcription factors (TFs) for sensitivity to GT and identified 15 TFs important for GT self-protection. Of these, the TF KojR, which is essential for kojic acid biosynthesis in Aspergillus oryzae, was also essential for virulence and GT biosynthesis in A. fumigatus, and for GT protection in A. fumigatus, A. nidulans, and A. oryzae. KojR regulates rglT, gliT, gliJ expression and sulfur metabolism in Aspergillus species. Together, this study identified conserved components required for GT protection in Aspergillus species. A. fumigatus secretes mycotoxins that are essential for its virulence and pathogenicity. Gliotoxin (GT) is a sulfur-containing mycotoxin, which is known to impair several aspects of the human immune response. GT is also toxic to different fungal species, which have evolved several GT protection strategies. To further decipher these responses, we used transcriptional profiling aiming to compare the response to GT in the GT producer A. fumigatus and the GT non-producer A. nidulans. This analysis allowed us to identify additional genes with a potential role in GT protection. We also identified 15 transcription factors (TFs) encoded in the A. fumigatus genome that are important for conferring resistance to exogenous gliotoxin. One of these TFs, KojR, which is essential for A. oryzae kojic acid production, is also important for virulence in A. fumigatus and GT protection in A. fumigatus, A. nidulans and A. oryzae. KojR regulates the expression of genes important for gliotoxin biosynthesis and protection, and sulfur metabolism. Together, this work identified conserved components required for gliotoxin protection in Aspergillus species.
Collapse
Affiliation(s)
- Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Maísa Moraes
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Sonja L. Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina United States of America
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina United States of America
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina United States of America
| | - Yasuji Koyama
- Noda Institute for Scientific Research, 338 Noda, Chiba, Japan
| | - Masahiro Ogawa
- Noda Institute for Scientific Research, 338 Noda, Chiba, Japan
| | - Katsuya Gomi
- Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Relber A. Gonçales
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Cláudio Duarte-Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Laure N. A. Ries
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
- * E-mail: (LNAR); (GHG)
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- * E-mail: (LNAR); (GHG)
| |
Collapse
|
40
|
Bader O. Phylogenetic Distribution of csp1 Types in Aspergillus fumigatus and Their Correlates to Azole Antifungal Drug Resistance. Microbiol Spectr 2021; 9:e0121421. [PMID: 34787484 PMCID: PMC8597649 DOI: 10.1128/spectrum.01214-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 11/20/2022] Open
Abstract
In Aspergillus fumigatus, the repetitive region of the csp1 gene is one of the most frequently used loci for intraspecies typing of this human pathogenic mold. Using PCR amplification and Sanger sequencing of only a single marker, csp1 typing is readily available to most laboratories and highly reproducible. Here, I evaluate the usefulness of the csp1 marker for resistance detection and epidemiologic stratification among A. fumigatus isolates. After resolving nomenclature conflicts from published studies and adding novel csp1 types, the number of known types now adds up to 38. Their distribution mostly correlates with A. fumigatus population structure, and they are also meaningful for narrowly defined cases of azole resistance phenotypes. Isolates carrying the pandemic resistance allele TR34/L98H show signs of interclade crossing of strains with t02 or t04A, into the t11 clade. Furthermore, absolute differences in voriconazole MIC values between t02/t04B versus t11 TR34/L98H isolates indicate that the genetic background of resistance mutations may have a pivotal role in cross-resistance phenotypes and, thus, clinical outcome and environmental selection. Despite the general genetic similarity of isolates with identical csp1 types, outcrossing into other clades is also observed. The csp1 type alone, therefore, does not sufficiently discriminate genetic clades to be used as the sole marker in epidemiologic studies. IMPORTANCE Aspergillus fumigatus is a ubiquitously distributed saprophytic mold and a leading cause of invasive aspergillosis in human hosts. Pandemic azole-resistant strains have emerged on a global scale, which are thought to be propagated through use of azole-based fungicides in agriculture. To perform epidemiologic studies, genetic typing of large cohorts is key. Here, I evaluate the usefulness of the frequently used csp1 marker for resistance detection and epidemiologic stratification among A. fumigatus isolates. The phylogenetic distribution of csp1 types mostly correlates with A. fumigatus population structure and is also meaningful for narrowly defined cases of azole resistance phenotypes. Nevertheless, outcrossing of csp1 into other clades is also observed. The csp1 type alone, therefore, does not sufficiently discriminate genetic clades and should not be used as the sole marker in epidemiologic studies.
Collapse
Affiliation(s)
- Oliver Bader
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
41
|
Barber AE, Sae-Ong T, Kang K, Seelbinder B, Li J, Walther G, Panagiotou G, Kurzai O. Aspergillus fumigatus pan-genome analysis identifies genetic variants associated with human infection. Nat Microbiol 2021; 6:1526-1536. [PMID: 34819642 DOI: 10.1038/s41564-021-00993-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022]
Abstract
Aspergillus fumigatus is an environmental saprobe and opportunistic human fungal pathogen. Despite an estimated annual occurrence of more than 300,000 cases of invasive disease worldwide, a comprehensive survey of the genomic diversity present in A. fumigatus-including the relationship between clinical and environmental isolates and how this genetic diversity contributes to virulence and antifungal drug resistance-has been lacking. In this study we define the pan-genome of A. fumigatus using a collection of 300 globally sampled genomes (83 clinical and 217 environmental isolates). We found that 7,563 of the 10,907 unique orthogroups (69%) are core and present in all isolates and the remaining 3,344 show presence/absence of variation, representing 16-22% of the genome of each isolate. Using this large genomic dataset of environmental and clinical samples, we found an enrichment for clinical isolates in a genetic cluster whose genomes also contain more accessory genes, including genes coding for transmembrane transporters and proteins with iron-binding activity, and genes involved in both carbohydrate and amino-acid metabolism. Finally, we leverage the power of genome-wide association studies to identify genomic variation associated with clinical isolates and triazole resistance as well as characterize genetic variation in known virulence factors. This characterization of the genomic diversity of A. fumigatus allows us to move away from a single reference genome that does not necessarily represent the species as a whole and better understand its pathogenic versatility, ultimately leading to better management of these infections.
Collapse
Affiliation(s)
- Amelia E Barber
- Research Group Fungal Septomics, Leibniz Institute of Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany.,Junior Research Group Fungal Informatics, Leibniz Institute of Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Tongta Sae-Ong
- Research Group Systems Biology and Bioinformatics, Leibniz Institute of Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Kang Kang
- Research Group Systems Biology and Bioinformatics, Leibniz Institute of Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Bastian Seelbinder
- Research Group Systems Biology and Bioinformatics, Leibniz Institute of Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China.,School of Data Science, City University of Hong Kong, Hong Kong, China
| | - Grit Walther
- National Reference Center for Invasive Fungal Infections (NRZMyk), Leibniz Institute of Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Gianni Panagiotou
- Research Group Systems Biology and Bioinformatics, Leibniz Institute of Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany. .,Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China.
| | - Oliver Kurzai
- Research Group Fungal Septomics, Leibniz Institute of Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany. .,National Reference Center for Invasive Fungal Infections (NRZMyk), Leibniz Institute of Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany. .,Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
42
|
Caesar LK, Montaser R, Keller NP, Kelleher NL. Metabolomics and genomics in natural products research: complementary tools for targeting new chemical entities. Nat Prod Rep 2021; 38:2041-2065. [PMID: 34787623 PMCID: PMC8691422 DOI: 10.1039/d1np00036e] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: 2010 to 2021Organisms in nature have evolved into proficient synthetic chemists, utilizing specialized enzymatic machinery to biosynthesize an inspiring diversity of secondary metabolites. Often serving to boost competitive advantage for their producers, these secondary metabolites have widespread human impacts as antibiotics, anti-inflammatories, and antifungal drugs. The natural products discovery field has begun a shift away from traditional activity-guided approaches and is beginning to take advantage of increasingly available metabolomics and genomics datasets to explore undiscovered chemical space. Major strides have been made and now enable -omics-informed prioritization of chemical structures for discovery, including the prospect of confidently linking metabolites to their biosynthetic pathways. Over the last decade, more integrated strategies now provide researchers with pipelines for simultaneous identification of expressed secondary metabolites and their biosynthetic machinery. However, continuous collaboration by the natural products community will be required to optimize strategies for effective evaluation of natural product biosynthetic gene clusters to accelerate discovery efforts. Here, we provide an evaluative guide to scientific literature as it relates to studying natural product biosynthesis using genomics, metabolomics, and their integrated datasets. Particular emphasis is placed on the unique insights that can be gained from large-scale integrated strategies, and we provide source organism-specific considerations to evaluate the gaps in our current knowledge.
Collapse
Affiliation(s)
- Lindsay K Caesar
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Rana Montaser
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology and Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
43
|
Christiansen JV, Isbrandt T, Petersen C, Sondergaard TE, Nielsen MR, Pedersen TB, Sørensen JL, Larsen TO, Frisvad JC. Fungal quinones: diversity, producers, and applications of quinones from Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. Appl Microbiol Biotechnol 2021; 105:8157-8193. [PMID: 34625822 DOI: 10.1007/s00253-021-11597-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Quinones represent an important group of highly structurally diverse, mainly polyketide-derived secondary metabolites widely distributed among filamentous fungi. Many quinones have been reported to have important biological functions such as inhibition of bacteria or repression of the immune response in insects. Other quinones, such as ubiquinones are known to be essential molecules in cellular respiration, and many quinones are known to protect their producing organisms from exposure to sunlight. Most recently, quinones have also attracted a lot of industrial interest since their electron-donating and -accepting properties make them good candidates as electrolytes in redox flow batteries, like their often highly conjugated double bond systems make them attractive as pigments. On an industrial level, quinones are mainly synthesized from raw components in coal tar. However, the possibility of producing quinones by fungal cultivation has great prospects since fungi can often be grown in industrially scaled bioreactors, producing valuable metabolites on cheap substrates. In order to give a better overview of the secondary metabolite quinones produced by and shared between various fungi, mainly belonging to the genera Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium, this review categorizes quinones into families such as emodins, fumigatins, sorbicillinoids, yanuthones, and xanthomegnins, depending on structural similarities and information about the biosynthetic pathway from which they are derived, whenever applicable. The production of these quinone families is compared between the different genera, based on recently revised taxonomy. KEY POINTS: • Quinones represent an important group of secondary metabolites widely distributed in important fungal genera such as Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. • Quinones are of industrial interest and can be used in pharmacology, as colorants and pigments, and as electrolytes in redox flow batteries. • Quinones are grouped into families and compared between genera according to the revised taxonomy.
Collapse
Affiliation(s)
- J V Christiansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - T Isbrandt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - C Petersen
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - T E Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - M R Nielsen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T B Pedersen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - J L Sørensen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - J C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
44
|
dos Santos RAC, Mead ME, Steenwyk JL, Rivero-Menéndez O, Alastruey-Izquierdo A, Goldman GH, Rokas A. Examining Signatures of Natural Selection in Antifungal Resistance Genes Across Aspergillus Fungi. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:723051. [PMID: 37744093 PMCID: PMC10512362 DOI: 10.3389/ffunb.2021.723051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 09/26/2023]
Abstract
Certain Aspergillus fungi cause aspergillosis, a set of diseases that typically affect immunocompromised individuals. Most cases of aspergillosis are caused by Aspergillus fumigatus, which infects millions of people annually. Some closely related so-called cryptic species, such as Aspergillus lentulus, can also cause aspergillosis, albeit at lower frequencies, and they are also clinically relevant. Few antifungal drugs are currently available for treating aspergillosis and there is increasing worldwide concern about the presence of antifungal drug resistance in Aspergillus species. Furthermore, isolates from both A. fumigatus and other Aspergillus pathogens exhibit substantial heterogeneity in their antifungal drug resistance profiles. To gain insights into the evolution of antifungal drug resistance genes in Aspergillus, we investigated signatures of positive selection in 41 genes known to be involved in drug resistance across 42 susceptible and resistant isolates from 12 Aspergillus section Fumigati species. Using codon-based site models of sequence evolution, we identified ten genes that contain 43 sites with signatures of ancient positive selection across our set of species. None of the sites that have experienced positive selection overlap with sites previously reported to be involved in drug resistance. These results identify sites that likely experienced ancient positive selection in Aspergillus genes involved in resistance to antifungal drugs and suggest that historical selective pressures on these genes likely differ from any current selective pressures imposed by antifungal drugs.
Collapse
Affiliation(s)
- Renato Augusto Corrêa dos Santos
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Matthew E. Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Olga Rivero-Menéndez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Alastruey-Izquierdo
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Gustavo Henrique Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
45
|
Steenwyk JL, Mead ME, de Castro PA, Valero C, Damasio A, dos Santos RAC, Labella AL, Li Y, Knowles SL, Raja HA, Oberlies NH, Zhou X, Cornely OA, Fuchs F, Koehler P, Goldman GH, Rokas A. Genomic and Phenotypic Analysis of COVID-19-Associated Pulmonary Aspergillosis Isolates of Aspergillus fumigatus. Microbiol Spectr 2021; 9:e0001021. [PMID: 34106569 PMCID: PMC8552514 DOI: 10.1128/spectrum.00010-21] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
The ongoing global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for coronavirus disease 2019 (COVID-19), first described in Wuhan, China. A subset of COVID-19 patients has been reported to have acquired secondary infections by microbial pathogens, such as opportunistic fungal pathogens from the genus Aspergillus. To gain insight into COVID-19-associated pulmonary aspergillosis (CAPA), we analyzed the genomes and characterized the phenotypic profiles of four CAPA isolates of Aspergillus fumigatus obtained from patients treated in the area of North Rhine-Westphalia, Germany. By examining the mutational spectrum of single nucleotide polymorphisms, insertion-deletion polymorphisms, and copy number variants among 206 genes known to modulate A. fumigatus virulence, we found that CAPA isolate genomes do not exhibit significant differences from the genome of the Af293 reference strain. By examining a number of factors, including virulence in an invertebrate moth model, growth in the presence of osmotic, cell wall, and oxidative stressors, secondary metabolite biosynthesis, and the MIC of antifungal drugs, we found that CAPA isolates were generally, but not always, similar to A. fumigatus reference strains Af293 and CEA17. Notably, CAPA isolate D had more putative loss-of-function mutations in genes known to increase virulence when deleted. Moreover, CAPA isolate D was significantly more virulent than the other three CAPA isolates and the A. fumigatus reference strains Af293 and CEA17, but similarly virulent to two other clinical strains of A. fumigatus. These findings expand our understanding of the genomic and phenotypic characteristics of isolates that cause CAPA. IMPORTANCE The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), has already killed millions of people. COVID-19 patient outcome can be further complicated by secondary infections, such as COVID-19-associated pulmonary aspergillosis (CAPA). CAPA is caused by Aspergillus fungal pathogens, but there is little information about the genomic and phenotypic characteristics of CAPA isolates. We conducted genome sequencing and extensive phenotyping of four CAPA isolates of Aspergillus fumigatus from Germany. We found that CAPA isolates were often, but not always, similar to other reference strains of A. fumigatus across 206 genetic determinants of infection-relevant phenotypes, including virulence. For example, CAPA isolate D was more virulent than other CAPA isolates and reference strains in an invertebrate model of fungal disease, but similarly virulent to two other clinical strains. These results expand our understanding of COVID-19-associated pulmonary aspergillosis.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthew E. Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - André Damasio
- Institute of Biology, University of Campinas (UNICAMP), Campinas-SP, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas-SP, Brazil
| | - Renato A. C. dos Santos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Abigail L. Labella
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Yuanning Li
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Sonja L. Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Oliver A. Cornely
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- ZKS Köln, Clinical Trials Centre Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn‐Cologne, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Frieder Fuchs
- Faculty of Medicine, Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Philipp Koehler
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
46
|
Arastehfar A, Carvalho A, Houbraken J, Lombardi L, Garcia-Rubio R, Jenks J, Rivero-Menendez O, Aljohani R, Jacobsen I, Berman J, Osherov N, Hedayati M, Ilkit M, Armstrong-James D, Gabaldón T, Meletiadis J, Kostrzewa M, Pan W, Lass-Flörl C, Perlin D, Hoenigl M. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud Mycol 2021; 100:100115. [PMID: 34035866 PMCID: PMC8131930 DOI: 10.1016/j.simyco.2021.100115] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in CYP 51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type CYP 51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - A. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - L. Lombardi
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - R. Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - J.D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, 92093, USA
| | - O. Rivero-Menendez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, 28222, Spain
| | - R. Aljohani
- Department of Infectious Diseases, Imperial College London, London, UK
| | - I.D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - J. Berman
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
| | - N. Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, 69978, Israel
| | - M.T. Hedayati
- Invasive Fungi Research Center/Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M. Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | | | - T. Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, Barcelona, 08034, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - J. Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - W. Pan
- Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - C. Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
47
|
Cowen LE, Heitman J. Showcasing Fungal Genetics & Genomics with the Genetics Society of America. Genetics 2021; 217:6128394. [PMID: 33724422 DOI: 10.1093/genetics/iyaa034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, M5G 1M1, Canada
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, 27710, USA
| |
Collapse
|
48
|
Chacón-Vargas K, McCarthy CO, Choi D, Wang L, Yu JH, Gibbons JG. Comparison of Two Aspergillus oryzae Genomes From Different Clades Reveals Independent Evolution of Alpha-Amylase Duplication, Variation in Secondary Metabolism Genes, and Differences in Primary Metabolism. Front Microbiol 2021; 12:691296. [PMID: 34326825 PMCID: PMC8313989 DOI: 10.3389/fmicb.2021.691296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/22/2021] [Indexed: 12/02/2022] Open
Abstract
Microbes (bacteria, yeasts, molds), in addition to plants and animals, were domesticated for their roles in food preservation, nutrition and flavor. Aspergillus oryzae is a domesticated filamentous fungal species traditionally used during fermentation of Asian foods and beverage, such as sake, soy sauce, and miso. To date, little is known about the extent of genome and phenotypic variation of A. oryzae isolates from different clades. Here, we used long-read Oxford Nanopore and short-read Illumina sequencing to produce a highly accurate and contiguous genome assemble of A. oryzae 14160, an industrial strain from China. To understand the relationship of this isolate, we performed phylogenetic analysis with 90 A. oryzae isolates and 1 isolate of the A. oryzae progenitor, Aspergillus flavus. This analysis showed that A. oryzae 14160 is a member of clade A, in comparison to the RIB 40 type strain, which is a member of clade F. To explore genome variation between isolates from distinct A. oryzae clades, we compared the A. oryzae 14160 genome with the complete RIB 40 genome. Our results provide evidence of independent evolution of the alpha-amylase gene duplication, which is one of the major adaptive mutations resulting from domestication. Synteny analysis revealed that both genomes have three copies of the alpha-amylase gene, but only one copy on chromosome 2 was conserved. While the RIB 40 genome had additional copies of the alpha-amylase gene on chromosomes III, and V, 14160 had a second copy on chromosome II and an third copy on chromosome VI. Additionally, we identified hundreds of lineage specific genes, and putative high impact mutations in genes involved in secondary metabolism, including several of the core biosynthetic genes. Finally, to examine the functional effects of genome variation between strains, we measured amylase activity, proteolytic activity, and growth rate on several different substrates. RIB 40 produced significantly higher levels of amylase compared to 14160 when grown on rice and starch. Accordingly, RIB 40 grew faster on rice, while 14160 grew faster on soy. Taken together, our analyses reveal substantial genome and phenotypic variation within A. oryzae.
Collapse
Affiliation(s)
- Katherine Chacón-Vargas
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States.,Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Colin O McCarthy
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Dasol Choi
- Deapertment of Food Science, University of Wisconsin-Madison, Madison, WI, United States.,Department of Bacteriology, and Food Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jae-Hyuk Yu
- Department of Bacteriology, and Food Research Institute, University of Wisconsin-Madison, Madison, WI, United States.,Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - John G Gibbons
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States.,Department of Food Science, University of Massachusetts, Amherst, MA, United States.,Organismic & Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
49
|
Mead ME, Steenwyk JL, Silva LP, de Castro PA, Saeed N, Hillmann F, Goldman GH, Rokas A. An evolutionary genomic approach reveals both conserved and species-specific genetic elements related to human disease in closely related Aspergillus fungi. Genetics 2021; 218:6263860. [PMID: 33944921 DOI: 10.1093/genetics/iyab066] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/20/2021] [Indexed: 11/12/2022] Open
Abstract
Aspergillosis is an important opportunistic human disease caused by filamentous fungi in the genus Aspergillus. Roughly 70% of infections are caused by Aspergillus fumigatus, with the rest stemming from approximately a dozen other Aspergillus species. Several of these pathogens are closely related to A. fumigatus and belong in the same taxonomic section, section Fumigati. Pathogenic species are frequently most closely related to nonpathogenic ones, suggesting Aspergillus pathogenicity evolved multiple times independently. To understand the repeated evolution of Aspergillus pathogenicity, we performed comparative genomic analyses on 18 strains from 13 species, including 8 species in section Fumigati, which aimed to identify genes, both ones previously connected to virulence as well as ones never before implicated, whose evolution differs between pathogens and nonpathogens. We found that most genes were present in all species, including approximately half of those previously connected to virulence, but a few genes were section- or species-specific. Evolutionary rate analyses identified over 1700 genes whose evolutionary rate differed between pathogens and nonpathogens and dozens of genes whose rates differed between specific pathogens and the rest of the taxa. Functional testing of deletion mutants of 17 transcription factor-encoding genes whose evolution differed between pathogens and nonpathogens identified eight genes that affect either fungal survival in a model of phagocytic killing, host survival in an animal model of fungal disease, or both. These results suggest that the evolution of pathogenicity in Aspergillus involved both conserved and species-specific genetic elements, illustrating how an evolutionary genomic approach informs the study of fungal disease.
Collapse
Affiliation(s)
- Matthew E Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Lilian P Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia A de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Nauman Saeed
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Falk Hillmann
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
50
|
Takahashi H, Umemura M, Ninomiya A, Kusuya Y, Shimizu M, Urayama SI, Watanabe A, Kamei K, Yaguchi T, Hagiwara D. Interspecies Genomic Variation and Transcriptional Activeness of Secondary Metabolism-Related Genes in Aspergillus Section Fumigati. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:656751. [PMID: 37744138 PMCID: PMC10512231 DOI: 10.3389/ffunb.2021.656751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/23/2021] [Indexed: 09/26/2023]
Abstract
Filamentous fungi produce various bioactive compounds that are biosynthesized by sets of proteins encoded in biosynthesis gene clusters (BGCs). For an unknown reason, many BGCs are transcriptionally silent in laboratory conditions, which has hampered the discovery of novel fungal compounds. The transcriptional reactiveness of fungal secondary metabolism is not fully understood. To gain the comprehensive view, we conducted comparative genomic and transcriptomic analyses of nine closely-related species of Aspergillus section Fumigati (A. fumigatus, A. fumigatiaffinis, A. novofumigatus, A. thermomutatus, A. viridinutans, A. pseudoviridinutans, A. lentulus, A. udagawae, and Neosartorya fischeri). For expanding our knowledge, we newly sequenced genomes of A. viridinutans and A. pseudoviridinutans, and reassembled and reannotated the previously released genomes of A. lentulus and A. udagawae. Between 34 and 84 secondary metabolite (SM) backbone genes were identified in the genomes of these nine respective species, with 8.7-51.2% being unique to the species. A total of 247 SM backbone gene types were identified in the nine fungi. Ten BGCs are shared by all nine species. Transcriptomic analysis using A. fumigatus, A. lentulus, A. udagawae, A. viridinutans, and N. fischeri was conducted to compare expression levels of all SM backbone genes in four different culture conditions; 32-83% of SM backbone genes in these species were not expressed in the tested conditions, which reconfirmed that large part of fungal SM genes are hard to be expressed. The species-unique SM genes of the five species were expressed with lower frequency (18.8% in total) than the SM genes that are conserved in all five species (56%). These results suggest that the expression tendency of BGCs is correlated with their interspecies distribution pattern. Our findings increase understanding of the evolutionary processes associated with the regulation of fungal secondary metabolism.
Collapse
Affiliation(s)
- Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
- Molecular Chirality Research Center, Chiba University, Chiba, Japan
- Plant Molecular Science Center, Chiba University, Chiba, Japan
| | - Maiko Umemura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Akihiro Ninomiya
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoko Kusuya
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Masaaki Shimizu
- Department of Biology, Faculty of Science, Chiba University, Chiba, Japan
| | - Syun-ichi Urayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Akira Watanabe
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|