1
|
Daniels RD, Bertke SJ, Kelly-Reif K, Richardson DB, Haylock R, Laurier D, Leuraud K, Moissonnier M, Thierry-Chef I, Kesminiene A, Schubauer-Berigan MK. Updated findings on temporal variation in radiation-effects on cancer mortality in an international cohort of nuclear workers (INWORKS). Eur J Epidemiol 2024; 39:1277-1286. [PMID: 39576361 DOI: 10.1007/s10654-024-01178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
The International Nuclear Workers Study (INWORKS) contributes knowledge on the dose-response association between predominantly low dose, low dose rate occupational exposures to penetrating forms of ionizing radiation and cause-specific mortality. By extending follow-up of 309,932 radiation workers from France (1968-2014), the United Kingdom (1955-2012), and the United States (1944-2016) we increased support for analyses of temporal variation in radiation-cancer mortality associations. Here, we examine whether age at exposure, time since exposure, or attained age separately modify associations between radiation and mortality from all solid cancers, solid cancers excluding lung cancer, lung cancer, and lymphohematopoietic cancers. Multivariable Poisson regression was used to fit general relative rate models that describe modification of the linear excess relative rate per unit organ absorbed dose. Given indication of greater risk per unit dose for solid cancer mortality among workers hired in more recent calendar years, sensitivity analyses considering the impact of year of hire on results were performed. Findings were reasonably compatible with those from previous pooled and country-specific analyses within INWORKS showing temporal patterns of effect measure modification that varied among cancers, with evidence of persistent radiation-associated excess cancer risk decades after exposure, although statistically significant temporal modification of the radiation effect was not observed. Analyses stratified by hire period (< 1958, 1958+) showed temporal patterns that varied; however, these analyses did not suggest that this was due to differences in distribution of these effect measure modifiers by hire year.
Collapse
Affiliation(s)
- Robert D Daniels
- National Institute for Occupational Safety and Health (NIOSH), 1090 Tusculum Avenue, Mailstop 12, Cincinnati, OH, 45226, USA.
| | - Stephen J Bertke
- National Institute for Occupational Safety and Health (NIOSH), 1090 Tusculum Avenue, Mailstop 12, Cincinnati, OH, 45226, USA
| | - Kaitlin Kelly-Reif
- National Institute for Occupational Safety and Health (NIOSH), 1090 Tusculum Avenue, Mailstop 12, Cincinnati, OH, 45226, USA
| | - David B Richardson
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA
| | | | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Klervi Leuraud
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | | | | | | | | |
Collapse
|
2
|
Lee S, Kim HY, Lee KH, Cho J, Lee C, Kim KP, Hwang J, Park JH. Risk of hematologic malignant neoplasms from head CT radiation in children and adolescents presenting with minor head trauma: a nationwide population-based cohort study. Eur Radiol 2024; 34:5934-5943. [PMID: 38358528 DOI: 10.1007/s00330-024-10646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/06/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
OBJECTIVES The carcinogenic risks of CT radiation in children and adolescents remain debated. We aimed to assess the carcinogenic risk of CTs performed in children and adolescents with minor head trauma. METHODS In this nationwide population-based cohort study, we included 2,411,715 patients of age 0-19 with minor head trauma from 2009 to 2017. We excluded patients with elevated cancer risks or substantial past medical radiation exposure. Patients were categorized into CT-exposed or CT-unexposed group according to claim codes for head CT. The primary outcome was development of hematologic malignant neoplasms. Secondary outcomes included development of malignant solid neoplasms and benign neoplasms in the brain. We measured the incidence rate ratio (IRR) and incidence rate difference (IRD) using G-computation with Poisson regression adjusting for age, sex, hospital setting, and the type of head trauma. RESULTS Hematologic malignant neoplasms developed in 100 of 216,826 patients during 1,303,680 person-years in the CT-exposed group and in 808 of 2,194,889 patients during 13,501,227 person-years in the CT-unexposed group. For hematologic malignant neoplasms, the IRR was 1.29 (95% CI, 1.03-1.60) and the IRD was 1.71 (95% CI, 0.04-3.37) per 100,000 person-years at risk. The majority of excess hematologic malignant neoplasms were leukemia (IRR, 1.40 [98.3% CI, 1.05-1.87]; IRD, 1.59 [98.3% CI, 0.02-3.16] per 100,000 person-years at risk). There were no between-group differences for secondary outcomes. CONCLUSIONS Radiation exposure from head CTs in children and adolescents with minor head trauma was associated with an increased incidence of hematologic malignant neoplasms. CLINICAL RELEVANCE STATEMENT Our study provides a quantitative grasp of the risk conferred by CT examinations in children and adolescents, thereby providing the basis for cost-benefit analyses and evidence-driven guidelines for patient triaging in head trauma. KEY POINTS • This nationwide population-based cohort study showed that radiation exposure from head CTs in children and adolescents was associated with a higher incidence of hematologic malignant neoplasms. • The incidence rate of hematologic malignant neoplasms in the CT-exposed group was 29% higher than that in the CT-unexposed group (IRR, 1.29 [95% CI, 1.03-1.60]), and there were approximately 1.7 excess neoplasms per 100,000 person-years at risk in the CT-exposed group (IRD, 1.71 [0.04-3.37]). • Our study provides a quantified grasp of the risk conferred by CT examinations in children and adolescents, while controlling for biases observed in previous studies via specifying CT indication and excluding patients with predisposing conditions for cancer development.
Collapse
Affiliation(s)
- Seungjae Lee
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-Si, Gyeonggi-Do, South Korea
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Hae Young Kim
- Department of Radiology, Asan Medical Center, Seoul, South Korea
| | - Kyung Hee Lee
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-Si, Gyeonggi-Do, South Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam-Si, 13620, Gyeonggi-Do, South Korea
| | - Jungheum Cho
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-Si, Gyeonggi-Do, South Korea
| | - Choonsik Lee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kwang Pyo Kim
- Department of Nuclear Engineering, Kyung Hee University, Seoul, Gyeonggi-Do, South Korea
| | - Jinhee Hwang
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-Si, Gyeonggi-Do, South Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Ji Hoon Park
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-Si, Gyeonggi-Do, South Korea.
- Department of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam-Si, 13620, Gyeonggi-Do, South Korea.
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.
- Department of Medical Device Development, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
3
|
Sado T, Cart JB, Lee CL. Mechanisms Underlying the Development of Murine T-Cell Lymphoblastic Lymphoma/Leukemia Induced by Total-Body Irradiation. Cancers (Basel) 2024; 16:2224. [PMID: 38927929 PMCID: PMC11201593 DOI: 10.3390/cancers16122224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Exposure to ionizing radiation is associated with an increased risk of hematologic malignancies in myeloid and lymphoid lineages in humans and experimental mice. Given that substantial evidence links radiation exposure with the risk of hematologic malignancies, it is imperative to deeply understand the mechanisms underlying cellular and molecular changes during the latency period between radiation exposure and the emergence of fully transformed malignant cells. One experimental model widely used in the field of radiation and cancer biology to study hematologic malignancies induced by radiation exposure is mouse models of radiation-induced thymic lymphoma. Murine radiation-induced thymic lymphoma is primarily driven by aberrant activation of Notch signaling, which occurs frequently in human precursor T-cell lymphoblastic lymphoma (T-LBL) and T-cell lymphoblastic leukemia (T-ALL). Here, we summarize the literature elucidating cell-autonomous and non-cell-autonomous mechanisms underlying cancer initiation, progression, and malignant transformation in the thymus following total-body irradiation (TBI) in mice.
Collapse
Affiliation(s)
- Toshihiko Sado
- National Institute of Radiological Sciences, Chiba 263-0024, Japan
| | - John B. Cart
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chang-Lung Lee
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
4
|
Casey DL, Vogelius IR, Brodin NP, Roberts KB, Avanzo M, Moni J, Owens C, Ronckers CM, Constine LS, Bentzen SM, Olch A. Risk of Subsequent Neoplasms in Childhood Cancer Survivors After Radiation Therapy: A PENTEC Comprehensive Review. Int J Radiat Oncol Biol Phys 2024; 119:640-654. [PMID: 37777927 DOI: 10.1016/j.ijrobp.2023.07.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 10/02/2023]
Abstract
PURPOSE A Pediatric Normal Tissue Effects in the Clinic (PENTEC) analysis of published investigations of central nervous system (CNS) subsequent neoplasms (SNs), subsequent sarcomas, and subsequent lung cancers in childhood cancer survivors who received radiation therapy (RT) was performed to estimate the effect of RT dose on the risk of SNs and the modification of this risk by host and treatment factors. METHODS AND MATERIALS A systematic literature review was performed to identify data published from 1975 to 2022 on SNs after prior RT in childhood cancer survivors. After abstract review, usable quantitative and qualitative data were extracted from 83 studies for CNS SNs, 118 for subsequent sarcomas, and 10 for lung SNs with 4 additional studies (3 for CNS SNs and 1 for lung SNs) later added. The incidences of SNs, RT dose, age, sex, primary cancer diagnosis, chemotherapy exposure, and latent time from primary diagnosis to SNs were extracted to assess the factors influencing risk for SNs. The excess relative ratio (ERR) for developing SNs as a function of dose was analyzed using inverse-variance weighted linear regression, and the ERR/Gy was estimated. Excess absolute risks were also calculated. RESULTS The ERR/Gy for subsequent meningiomas was estimated at 0.44 (95% CI, 0.19-0.68); for malignant CNS neoplasms, 0.15 (95% CI, 0.11-0.18); for sarcomas, 0.045 (95% CI, 0.023-0.067); and for lung cancer, 0.068 (95% CI, 0.03-0.11). Younger age at time of primary diagnosis was associated with higher risk of subsequent meningioma and sarcoma, whereas no significant effect was observed for age at exposure for risk of malignant CNS neoplasm, and insufficient data were available regarding age for lung cancer. Females had a higher risk of subsequent meningioma (odds ratio, 1.46; 95% CI, 1.22-1.76; P < .0001) relative to males, whereas no statistically significant sex difference was seen in risk of malignant CNS neoplasms, sarcoma SNs, or lung SNs. There was an association between chemotherapy receipt (specifically alkylating agents and anthracyclines) and subsequent sarcoma risk, whereas there was no clear association between specific chemotherapeutic agents and risk of CNS SNs and lung SNs. CONCLUSIONS This PENTEC systematic review shows a significant radiation dose-response relationship for CNS SNs, sarcomas, and lung SNs. Given the linear dose response, improved conformality around the target volume that limits the high dose volume might be a promising strategy for reducing the risk of SNs after RT. Other host- and treatment-related factors such as age and chemotherapy play a significant contributory role in the development of SNs and should be considered when estimating the risk of SNs after RT among childhood cancer survivors.
Collapse
Affiliation(s)
- Dana L Casey
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
| | - Ivan R Vogelius
- Department of Oncology, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - N Patrik Brodin
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Kenneth B Roberts
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Michele Avanzo
- Division of Medical Physics, Centro di Riferimento Oncologico Aviano IRCCS, Aviano, Italy
| | - Janaki Moni
- Department of Radiation Oncology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Constance Owens
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cécile M Ronckers
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Louis S Constine
- Departments of Radiation Oncology and Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Soren M Bentzen
- Division of Biostatistics and Bioinformatics, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Arthur Olch
- Radiation Oncology Department, University of Southern California, Los Angeles, California; Children's Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
5
|
Heijboer RRO, Heemskerk JL, Vorrink SNW, Kempen DHR. The Prevalence of Cancer in Dutch Female Patients with Idiopathic Scoliosis Compared with the General Population. J Clin Med 2024; 13:2616. [PMID: 38731145 PMCID: PMC11084711 DOI: 10.3390/jcm13092616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/13/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Background and Objectives: Epidemiological studies have demonstrated the potential oncogenic effects of cumulative radiation exposure, particularly during childhood. One group experiencing repeated exposure to radiation at an early age for multiple years is patients treated for idiopathic scoliosis (IS). This study aimed to determine the relationship between childhood radiological exposure and adult cancer prevalence in children treated for IS. Materials and Methods: Data from 337 predominantly female patients treated at our hospital between January 1981 and January 1995 were gathered and compared to the Dutch national cancer rates. The standardized prevalence ratios for cancer in IS patients were compared with the cancer prevalence rates from the general Dutch population. Results: The overall cancer prevalence in women was 5.0%, with no significant difference compared to the general population (p = 0.425). The results of this study do not suggest that female patients treated for idiopathic scoliosis during childhood have an increased risk of cancer later in life. Conclusion: Despite being the largest recent study in its field, the modest participant number limits its ability to draw conclusions. However, the detailed data collected over a long observation period, alongside data from a period with comparable radiation rates, contributes to refining clinical practice and laying the groundwork for future systematic reviews.
Collapse
Affiliation(s)
- Reinout R. O. Heijboer
- Department of Orthopedic Surgery, OLVG, 1091 AC Amsterdam, The Netherlands (S.N.W.V.); (D.H.R.K.)
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, 1012 WP Amsterdam, The Netherlands
| | - Johan L. Heemskerk
- Department of Orthopedic Surgery, OLVG, 1091 AC Amsterdam, The Netherlands (S.N.W.V.); (D.H.R.K.)
| | - Sigrid N. W. Vorrink
- Department of Orthopedic Surgery, OLVG, 1091 AC Amsterdam, The Netherlands (S.N.W.V.); (D.H.R.K.)
| | - Diederik H. R. Kempen
- Department of Orthopedic Surgery, OLVG, 1091 AC Amsterdam, The Netherlands (S.N.W.V.); (D.H.R.K.)
- Department of Orthopedic Surgery, Amsterdam University Medical Center, 1012 WP Amsterdam, The Netherlands
| |
Collapse
|
6
|
Averbeck D. Low-Dose Non-Targeted Effects and Mitochondrial Control. Int J Mol Sci 2023; 24:11460. [PMID: 37511215 PMCID: PMC10380638 DOI: 10.3390/ijms241411460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Non-targeted effects (NTE) have been generally regarded as a low-dose ionizing radiation (IR) phenomenon. Recently, regarding long distant abscopal effects have also been observed at high doses of IR) relevant to antitumor radiation therapy. IR is inducing NTE involving intracellular and extracellular signaling, which may lead to short-ranging bystander effects and distant long-ranging extracellular signaling abscopal effects. Internal and "spontaneous" cellular stress is mostly due to metabolic oxidative stress involving mitochondrial energy production (ATP) through oxidative phosphorylation and/or anaerobic pathways accompanied by the leakage of O2- and other radicals from mitochondria during normal or increased cellular energy requirements or to mitochondrial dysfunction. Among external stressors, ionizing radiation (IR) has been shown to very rapidly perturb mitochondrial functions, leading to increased energy supply demands and to ROS/NOS production. Depending on the dose, this affects all types of cell constituents, including DNA, RNA, amino acids, proteins, and membranes, perturbing normal inner cell organization and function, and forcing cells to reorganize the intracellular metabolism and the network of organelles. The reorganization implies intracellular cytoplasmic-nuclear shuttling of important proteins, activation of autophagy, and mitophagy, as well as induction of cell cycle arrest, DNA repair, apoptosis, and senescence. It also includes reprogramming of mitochondrial metabolism as well as genetic and epigenetic control of the expression of genes and proteins in order to ensure cell and tissue survival. At low doses of IR, directly irradiated cells may already exert non-targeted effects (NTE) involving the release of molecular mediators, such as radicals, cytokines, DNA fragments, small RNAs, and proteins (sometimes in the form of extracellular vehicles or exosomes), which can induce damage of unirradiated neighboring bystander or distant (abscopal) cells as well as immune responses. Such non-targeted effects (NTE) are contributing to low-dose phenomena, such as hormesis, adaptive responses, low-dose hypersensitivity, and genomic instability, and they are also promoting suppression and/or activation of immune cells. All of these are parts of the main defense systems of cells and tissues, including IR-induced innate and adaptive immune responses. The present review is focused on the prominent role of mitochondria in these processes, which are determinants of cell survival and anti-tumor RT.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France
| |
Collapse
|
7
|
Shen C, Zhang K, Yang J, Shi J, Yang C, Sun Y, Yang W. Association between metal(loid)s in serum and leukemia: a systematic review and meta-analysis. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:201-213. [PMID: 37159736 PMCID: PMC10163180 DOI: 10.1007/s40201-023-00853-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 05/11/2023]
Abstract
Purpose Heavy metals and metalloids are recognized as environmental threats, which are considered highly toxic and carcinogenic. Epidemiologically, their association with leukemia is under debate. We aim to clarify the association between the heavy metal(loid)s in serum and leukemia via a systematic review and meta-analysis. Methods We searched PubMed, Embase, Google Scholar, and CNKI (China National Knowledge Infrastructure) databases for all related articles. The standardized mean difference and its 95% confidence interval was used to evaluate the association of leukemia with heavy metal(loid)s in serum. The statistical heterogeneity among studies was assessed with the Q-test and I 2 statistics. Results Among 4,119 articles related to metal(loid)s and leukemia, 21 studies met our inclusion criteria, which are all cross-sectional studies. These 21 studies involved 1,316 cases and 1,310 controls, based on which we evaluate the association of heavy metals/metalloids in serum with leukemia. Our results indicated positive differences for serum chromium, nickel, and mercury in leukemia patients, while a negative difference for serum manganese in acute lymphocytic leukemia (ALL). Conclusion Our results suggested an elevated trend of serum chromium, nickel, and mercury concentrations in leukemia patients while descending trend of serum manganese concentration in ALL patients. The result of sensitivity analysis between lead, cadmium, and leukemia and publication bias of association between chromium and leukemia also needed attention. Future research work may focus on the dose-response relationship between any of these elements and the leukemia risks, and further elucidation of how these elements are related to leukemia may shed light on the prevention and treatment of leukemia. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-023-00853-2.
Collapse
Affiliation(s)
- Chengchen Shen
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, Sichuan People’s Republic of China
| | - Kui Zhang
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, Sichuan People’s Republic of China
| | - Jingxuan Yang
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, Sichuan People’s Republic of China
| | - Jingyi Shi
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, Sichuan People’s Republic of China
| | - Chan Yang
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, Sichuan People’s Republic of China
| | - Yanan Sun
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, Sichuan People’s Republic of China
| | - Wenxing Yang
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, Sichuan People’s Republic of China
| |
Collapse
|
8
|
Rump A, Hermann C, Lamkowski A, Popp T, Port M. A comparison of the chemo- and radiotoxicity of thorium and uranium at different enrichment grades. Arch Toxicol 2023; 97:1577-1598. [PMID: 37022444 PMCID: PMC10182955 DOI: 10.1007/s00204-023-03484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/02/2023] [Indexed: 04/07/2023]
Abstract
Uranium and thorium are heavy metals, and all of their isotopes are radioactive, so it is impossible to study chemical effects entirely independent of the radiation effects. In the present study, we tried to compare the chemo- and radiotoxicity of both metals, taking into account deterministic radiation damages reflected by acute radiation sickness and stochastic radiation damages leading to long-term health impairments (e.g., tumor induction). We made at first a literature search on acute median lethal doses that may be expected to be caused by chemical effects, as even acute radiation sickness as a manifestation of acute radiotoxicity occurs with latency. By simulations based on the biokinetic models of the International Commission on Radiological Protection and using the Integrated Modules for Bioassay Analysis software, we determined the amounts of uranium at different enrichment grades and thorium-232 leading to a short-term red bone marrow equivalent dose of 3.5 Sv considered to cause 50% lethality in humans. Different intake pathways for incorporation were considered, and values were compared to the mean lethal doses by chemotoxicity. To assess stochastic radiotoxicity, we calculated the uranium and thorium amounts leading to a committed effective dose of 200 mSv that is often considered critical. Mean lethal values for uranium and thorium are in the same order of magnitude so that the data do not give evidence for substantial differences in acute chemical toxicity. When comparing radiotoxicity, the reference units (activity in Bq or weight in g) must always be taken into account. The mean lethal equivalent dose to the red bone marrow of 3.5 Sv is reached by lower activities of thorium compared to uranium in soluble compounds. However, for uranium as well as thorium-232, acute radiation sickness is expected only after incorporation of amounts exceeding the mean lethal doses by chemotoxicity. Thus, acute radiation sickness is not a relevant clinical issue for either metal. Concerning stochastic radiation damages, thorium-232 is more radiotoxic than uranium if incorporating the same activities. Using weight units for comparison show that for soluble compounds, thorium-232 is more radiotoxic than low-enriched uranium in the case of ingestion but even more toxic than high-enriched uranium after inhalation or intravenous administration. For insoluble compounds, the situation differs as the stochastic radiotoxicity of thorium-232 ranges between depleted and natural uranium. For acute effects, the chemotoxicity of uranium, even at high enrichment grades, as well as thorium-232 exceeds deterministic radiotoxicity. Simulations show that thorium-232 is more radiotoxic than uranium expressed in activity units. If the comparison is based on weight units, the rankings depend on the uranium enrichment grades and the route of intake.
Collapse
Affiliation(s)
- A Rump
- Bundeswehr Institute of Radiobiology, Neuherberg Str. 11, 80937, Munich, Germany.
| | - C Hermann
- Bundeswehr Institute of Radiobiology, Neuherberg Str. 11, 80937, Munich, Germany
| | - A Lamkowski
- Bundeswehr Institute of Radiobiology, Neuherberg Str. 11, 80937, Munich, Germany
| | - T Popp
- Bundeswehr Institute of Radiobiology, Neuherberg Str. 11, 80937, Munich, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology, Neuherberg Str. 11, 80937, Munich, Germany
| |
Collapse
|
9
|
Akwe J, Hall MAK. Primary Care Considerations for Elderly U.S. Veterans of World War II and the Korean War: A Narrative Review. Cureus 2023; 15:e37309. [PMID: 37182054 PMCID: PMC10166705 DOI: 10.7759/cureus.37309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2023] [Indexed: 05/16/2023] Open
Abstract
Many of the United States' more than 18 million veterans obtain healthcare through the Department of Veterans Affairs' (VA) Veterans Health Administration system; however, recent legislative changes have expanded veterans' access to non-VA care in their communities, particularly for those who do not live near VA medical centers. Veterans are seen by physicians in outpatient practice across the United States and are admitted to non-VA hospitals; this is particularly salient for older veterans, who may require a more frequent and high level of care. We present a review of characteristics of U.S. veterans from two conflicts: World War II (WWII) and the Korean War. While non-VA clinicians are well equipped to provide care for patients of all different ages, veterans of armed conflicts have a unique constellation of exposures and cultural considerations that must be accounted for when providing them care. In this review, we describe characteristics of the generations of American veterans who served in WWII and the Korean War conflicts in a brief historical context. We then note conflict-specific exposures and potential long-term sequelae to watch for during physical examinations and to monitor thereafter, age-specific health and emotional concerns, and best practices for providing care to this cohort of veterans.
Collapse
Affiliation(s)
- Joyce Akwe
- Hospital Medicine, Atlanta Veterans Affairs Medical Center, Atlanta, USA
| | | |
Collapse
|
10
|
Stouten S, Balkenende B, Roobol L, Lunel SV, Badie C, Dekkers F. Hyper-radiosensitivity affects low-dose acute myeloid leukemia incidence in a mathematical model. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:361-373. [PMID: 35864346 PMCID: PMC9334435 DOI: 10.1007/s00411-022-00981-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
In vitro experiments show that the cells possibly responsible for radiation-induced acute myeloid leukemia (rAML) exhibit low-dose hyper-radiosensitivity (HRS). In these cells, HRS is responsible for excess cell killing at low doses. Besides the endpoint of cell killing, HRS has also been shown to stimulate the low-dose formation of chromosomal aberrations such as deletions. Although HRS has been investigated extensively, little is known about the possible effect of HRS on low-dose cancer risk. In CBA mice, rAML can largely be explained in terms of a radiation-induced Sfpi1 deletion and a point mutation in the remaining Sfpi1 gene copy. The aim of this paper is to present and quantify possible mechanisms through which HRS may influence low-dose rAML incidence in CBA mice. To accomplish this, a mechanistic rAML CBA mouse model was developed to study HRS-dependent AML onset after low-dose photon irradiation. The rAML incidence was computed under the assumptions that target cells: (1) do not exhibit HRS; (2) HRS only stimulates cell killing; or (3) HRS stimulates cell killing and the formation of the Sfpi1 deletion. In absence of HRS (control), the rAML dose-response curve can be approximated with a linear-quadratic function of the absorbed dose. Compared to the control, the assumption that HRS stimulates cell killing lowered the rAML incidence, whereas increased incidence was observed at low doses if HRS additionally stimulates the induction of the Sfpi1 deletion. In conclusion, cellular HRS affects the number of surviving pre-leukemic cells with an Sfpi1 deletion which, depending on the HRS assumption, directly translates to a lower/higher probability of developing rAML. Low-dose HRS may affect cancer risk in general by altering the probability that certain mutations occur/persist.
Collapse
Affiliation(s)
- Sjors Stouten
- Center for Environmental Safety and Security, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Mathematics, Utrecht University, Utrecht, The Netherlands
| | - Ben Balkenende
- Department of Mathematics, Utrecht University, Utrecht, The Netherlands
| | - Lars Roobol
- Center for Environmental Safety and Security, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Christophe Badie
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Chilton, Didcot, Oxon, OX11 0RQ UK
| | - Fieke Dekkers
- Center for Environmental Safety and Security, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Mathematics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
Gu Y, Wang J, Wang Y, Xu C, Liu Y, Du L, Wang Q, Ji K, He N, Zhang M, Song H, Sun X, Wang J, Kitahara CM, de Gonzalez AB, Niu K, Liu Q. Low-dose ionizing radiation exposure and risk of leukemia: results from 1950-1995 Chinese medical X-ray workers' cohort study and meta-analysis. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:90-97. [PMID: 39034957 PMCID: PMC11256586 DOI: 10.1016/j.jncc.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/14/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022] Open
Abstract
Background It has been well-established that acute radiation exposures increase the risk of leukemia. However, it is still unknown whether these leukemia risk estimates could be extrapolated to occupational populations who receive repeated low-dose radiation exposure. The purpose of this study was to estimate quantified associations between low-dose radiation exposures and leukemia. Methods The Chinese medical X-ray worker study (CMXW) included 27,011 medical X-ray workers employed at major hospitals in 24 provinces in China from 1950 to 1980, and a control population of 25,782 physicians matched by hospital, who were unexposed to X-ray equipment. Poisson regression models were used to estimate the excess relative risk (ERR) and excess absolute risk (EAR) for the incidence of leukemia associated with cumulative doses. A meta-analysis of the published literature on low-dose occupational radiation exposure and leukemia risk was also conducted. Results The incidence rates of leukemia in X-ray workers and the control group were 6.70 and 3.39 per 100,000 person-years, respectively. Among X-ray workers, the average cumulative red bone marrow dose was 0.046 Gy. We found a positive relationship between 2-year lagged cumulative red bone marrow dose and risk of leukemia excluding chronic lymphocytic leukemia (CLL) (ERR = 0.66 per 100 mGy, 90% CI: 0.09, 1.53; EAR = 0.29 per 104 PY-100 mGy, 90% CI: 0.07, 0.56). The excess risk was largely driven by myeloid leukemia (ERR = 1.06 per 100 mGy, 90% CI: 0.22, 2.51). Based on the meta-analysis, the pooled ERR at 100 mGy was 0.19 (95% CI: 0.08, 0.31). Conclusion This study provides strong evidence of a positive and linear doseresponse relationship between cumulative red bone marrow dose and the incidence of non-CLL leukemia.
Collapse
Affiliation(s)
- Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jinhan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Chang Xu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Liqing Du
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qin Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Kaihua Ji
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ningning He
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Manman Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Huijuan Song
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaohui Sun
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jixian Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Cari M. Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Amy Berrington de Gonzalez
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Kaijun Niu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
12
|
Sunaoshi M, Blyth BJ, Shang Y, Tsuruoka C, Morioka T, Shinagawa M, Ogawa M, Shimada Y, Tachibana A, Iizuka D, Kakinuma S. Post-Irradiation Thymic Regeneration in B6C3F1 Mice Is Age Dependent and Modulated by Activation of the PI3K-AKT-mTOR Pathway. BIOLOGY 2022; 11:biology11030449. [PMID: 35336821 PMCID: PMC8945464 DOI: 10.3390/biology11030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022]
Abstract
Simple Summary Because children have a long life expectancy relative to adults and their tissues and organs are growing and developing rapidly, the risk of radiation carcinogenesis for children is considered higher than that for adults. However, the underlying mechanism(s) is unclear. To uncover the mechanism, we previously revealed that principal causative genes in mouse thymic lymphomas arising in irradiated infants or adults as Pten or Ikzf1, respectively, suggesting that cells with mutation in these genes might be the origin of lymphomas arising after irradiation depending on age at exposure. Here, we clarified the age-dependent differences in thymus-cell dynamics in mice during the initial post-irradiation period. Our results demonstrate that the dynamics of thymocytes during the post-irradiation period depends on the age at exposure. For irradiated infants in particular, the number of proliferating cells increase dramatically, and this correlate with activation of the PI3K-AKT-mTOR pathway. Thus, we conclude that the PI3K-AKT-mTOR pathway in infants contributed, at least in part, to thymus-cell dynamics through the modification of cell proliferation and survival after irradiation, which may be associated with the risk of Pten mutation-associated thymic lymphoma. Abstract The risk of radiation-induced carcinogenesis depends on age at exposure. We previously reported principal causative genes in lymphomas arising after infant or adult exposure to 4-fractionated irradiation as Pten or Ikzf1, respectively, suggesting that cells with mutation in these genes might be the origin of lymphomas arising after irradiation depending on age at exposure. Here, we clarified the age-dependent differences in thymus-cell dynamics in mice during the initial post-irradiation period. The thymocyte number initially decreased, followed by two regeneration phases. During the first regeneration, the proportion of phosphorylated-AKT-positive (p-AKT+) cells in cell-cycle phases S+G2/M of immature CD4−CD8− and CD4+CD8+ thymocytes and in phases G0/G1 of mature CD4+CD8− and CD4−CD8+ thymocytes was significantly greater in irradiated infants than in irradiated adults. During the second regeneration, the proportion of p-AKT+ thymocytes in phases G0/G1 increased in each of the three populations other than CD4−CD8− thymocytes more so than during the first regeneration. Finally, PI3K-AKT-mTOR signaling in infants contributed, at least in part, to biphasic thymic regeneration through the modification of cell proliferation and survival after irradiation, which may be associated with the risk of Pten mutation-associated thymic lymphoma.
Collapse
Affiliation(s)
- Masaaki Sunaoshi
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Benjamin J. Blyth
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Yi Shang
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Chizuru Tsuruoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Takamitsu Morioka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Mayumi Shinagawa
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Mari Ogawa
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Yoshiya Shimada
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Akira Tachibana
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Japan;
| | - Daisuke Iizuka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
- Correspondence: ; Tel.: +81-43-206-3160
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| |
Collapse
|
13
|
Onyije FM, Olsson A, Baaken D, Erdmann F, Stanulla M, Wollschläger D, Schüz J. Environmental Risk Factors for Childhood Acute Lymphoblastic Leukemia: An Umbrella Review. Cancers (Basel) 2022; 14:382. [PMID: 35053543 PMCID: PMC8773598 DOI: 10.3390/cancers14020382] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Leukemia is the most common type of cancer among children and adolescents worldwide. The aim of this umbrella review was (1) to provide a synthesis of the environmental risk factors for the onset of childhood acute lymphoblastic leukemia (ALL) by exposure window, (2) evaluate their strength of evidence and magnitude of risk, and as an example (3) estimate the prevalence in the German population, which determines the relevance at the population level. Relevant systematic reviews and pooled analyses were identified and retrieved through PubMed, Web of Science databases and lists of references. Only two risk factors (low doses of ionizing radiation in early childhood and general pesticide exposure during maternal preconception/pregnancy) were convincingly associated with childhood ALL. Other risk factors including extremely low frequency electromagnetic field (ELF-MF), living in proximity to nuclear facilities, petroleum, benzene, solvent, and domestic paint exposure during early childhood, all showed some level of evidence of association. Maternal consumption of coffee (high consumption/>2 cups/day) and cola (high consumption) during pregnancy, paternal smoking during the pregnancy of the index child, maternal intake of fertility treatment, high birth weight (≥4000 g) and caesarean delivery were also found to have some level of evidence of association. Maternal folic acid and vitamins intake, breastfeeding (≥6 months) and day-care attendance, were inversely associated with childhood ALL with some evidence. The results of this umbrella review should be interpreted with caution; as the evidence stems almost exclusively from case-control studies, where selection and recall bias are potential concerns, and whether the empirically observed association reflect causal relationships remains an open question. Hence, improved exposure assessment methods including accurate and reliable measurement, probing questions and better interview techniques are required to establish causative risk factors of childhood leukemia, which is needed for the ultimate goal of primary prevention.
Collapse
Affiliation(s)
- Felix M. Onyije
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (A.O.); (F.E.); (J.S.)
| | - Ann Olsson
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (A.O.); (F.E.); (J.S.)
| | - Dan Baaken
- Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany; (D.B.); (D.W.)
| | - Friederike Erdmann
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (A.O.); (F.E.); (J.S.)
- Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany; (D.B.); (D.W.)
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany;
| | - Daniel Wollschläger
- Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany; (D.B.); (D.W.)
| | - Joachim Schüz
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (A.O.); (F.E.); (J.S.)
| |
Collapse
|
14
|
Schmidt JA, Hornhardt S, Erdmann F, Sánchez-García I, Fischer U, Schüz J, Ziegelberger G. Risk Factors for Childhood Leukemia: Radiation and Beyond. Front Public Health 2021; 9:805757. [PMID: 35004601 PMCID: PMC8739478 DOI: 10.3389/fpubh.2021.805757] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Childhood leukemia (CL) is undoubtedly caused by a multifactorial process with genetic as well as environmental factors playing a role. But in spite of several efforts in a variety of scientific fields, the causes of the disease and the interplay of possible risk factors are still poorly understood. To push forward the research on the causes of CL, the German Federal Office for Radiation Protection has been organizing recurring international workshops since 2008 every two to three years. In November 2019 the 6th International Workshop on the Causes of CL was held in Freising and brought together experts from diverse disciplines. The workshop was divided into two main parts focusing on genetic and environmental risk factors, respectively. Two additional special sessions addressed the influence of natural background radiation on the risk of CL and the progress in the development of mouse models used for experimental studies on acute lymphoblastic leukemia, the most common form of leukemia worldwide. The workshop presentations highlighted the role of infections as environmental risk factor for CL, specifically for acute lymphoblastic leukemia. Major support comes from two mouse models, the Pax5+/- and Sca1-ETV6-RUNX1 mouse model, one of the major achievements made in the last years. Mice of both predisposed models only develop leukemia when exposed to common infections. These results emphasize the impact of gene-environment-interactions on the development of CL and warrant further investigation of such interactions - especially because genetic predisposition is detected with increasing frequency in CL. This article summarizes the workshop presentations and discusses the results in the context of the international literature.
Collapse
Affiliation(s)
- Janine-Alison Schmidt
- Department of Effects and Risks of Ionizing and Non-ionizing Radiation, Federal Office for Radiation Protection (BfS), Neuherberg, Germany
| | - Sabine Hornhardt
- Department of Effects and Risks of Ionizing and Non-ionizing Radiation, Federal Office for Radiation Protection (BfS), Neuherberg, Germany
| | - Friederike Erdmann
- Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer, World Health Organization (IARC/WHO), Lyon, France
| | - Isidro Sánchez-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Joachim Schüz
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer, World Health Organization (IARC/WHO), Lyon, France
| | - Gunde Ziegelberger
- Department of Effects and Risks of Ionizing and Non-ionizing Radiation, Federal Office for Radiation Protection (BfS), Neuherberg, Germany
| |
Collapse
|
15
|
Prajapati S, Locatelli M, Sawyer C, Holmes J, Bonin K, Black P, Vidi PA. Characterization and implementation of a miniature X-ray system for live cell microscopy. Mutat Res 2021; 824:111772. [PMID: 34923215 DOI: 10.1016/j.mrfmmm.2021.111772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/03/2021] [Accepted: 12/07/2021] [Indexed: 11/19/2022]
Abstract
The study of radiation effects on biological tissues is a diverse field of research with direct applications to improve human health, in particular in the contexts of radiation therapy and space exploration. Understanding the DNA damage response following radiation exposure, which is a key determinant for mutagenesis, requires reproducible methods for delivering known doses of ionizing radiation (IR) in a controlled environment. Multiple IR sources, including research X-ray and gamma-ray irradiators are routinely used in basic and translational research with cell and animal models. These systems are however not ideal when a high temporal resolution is needed, for example to study early DNA damage responses with live cell microscopy. Here, we characterize the dose rate and beam properties of a commercial, miniature, affordable, and versatile X-ray source (Mini-X). We describe how to use Mini-X on the stage of a fluorescence microscope to deliver high IR dose rates (up to 29 Gy/min) or lower dose rates (≤ 0.1 Gy/min) in live cell imaging experiments. This article provides a blueprint for radiation biology applications with high temporal resolution, with a step-by-step guide to implement a miniature X-ray system on an imaging platform, and the information needed to characterize the system.
Collapse
Affiliation(s)
- Surendra Prajapati
- Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Maëlle Locatelli
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Caleb Sawyer
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Julia Holmes
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Keith Bonin
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, USA; Comprehensive Cancer Center of Wake Forest University, USA
| | - Paul Black
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA; Comprehensive Cancer Center of Wake Forest University, USA.
| | - Pierre-Alexandre Vidi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA; Institut de Cancérologie de l'Ouest, 49055, Angers, France; Comprehensive Cancer Center of Wake Forest University, USA.
| |
Collapse
|
16
|
Estimation of radiation-induced health hazards from a "dirty bomb" attack with radiocesium under different assault and rescue conditions. Mil Med Res 2021; 8:65. [PMID: 34879871 PMCID: PMC8656004 DOI: 10.1186/s40779-021-00349-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 10/14/2021] [Indexed: 01/23/2023] Open
Abstract
In the case of a terrorist attack by a "dirty bomb", blast injuries, external irradiation and the incorporation of radioactivity are to be expected. Departing from information about the radiological attack scenario with cesium-137 in the U.S. National Scenario Planning Guide, we estimated the radiological doses absorbed. Similar calculations were performed for a smaller plume size and a detonation in a subway. For conditions as described in the U.S. scenario, the committed effective dose amounted to a maximum of 848 mSv, even for very unfavorable conditions. Red bone marrow equivalent doses are insufficient to induce acute radiation sickness (ARS). In the case of a smaller plume size, the ARS threshold may be exceeded in some cases. In a subway bombing, doses are much higher and the occurrence of ARS should be expected. The health hazards from a dirty bomb attack will depend on the location and the explosive device. The derived Haddon matrix indicates that preparing for such an event includes education of all the medical staff about radiation effects, the time lines of radiation damages and the treatment priorities. Further determinants of the outcome include rapid evacuation even from difficult locations, the availability of a specific triage tool to rapidly identify victims at risk for ARS, the availability of an antidote stockpile and dedicated hospital beds to treat seriously irradiated victims.
Collapse
|
17
|
Meier B, Volkova NV, Wang B, González-Huici V, Bertolini S, Campbell PJ, Gerstung M, Gartner A. C. elegans genome-wide analysis reveals DNA repair pathways that act cooperatively to preserve genome integrity upon ionizing radiation. PLoS One 2021; 16:e0258269. [PMID: 34614038 PMCID: PMC8494335 DOI: 10.1371/journal.pone.0258269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
Ionizing radiation (IR) is widely used in cancer therapy and accidental or environmental exposure is a major concern. However, little is known about the genome-wide effects IR exerts on germ cells and the relative contribution of DNA repair pathways for mending IR-induced lesions. Here, using C. elegans as a model system and using primary sequencing data from our recent high-level overview of the mutagenic consequences of 11 genotoxic agents, we investigate in detail the genome-wide mutagenic consequences of exposing wild-type and 43 DNA repair and damage response defective C. elegans strains to a Caesium (Cs-137) source, emitting γ-rays. Cs-137 radiation induced single nucleotide variants (SNVs) at a rate of ~1 base substitution per 3 Gy, affecting all nucleotides equally. In nucleotide excision repair mutants, this frequency increased 2-fold concurrently with increased dinucleotide substitutions. As observed for DNA damage induced by bulky DNA adducts, small deletions were increased in translesion polymerase mutants, while base changes decreased. Structural variants (SVs) were augmented with dose, but did not arise with significantly higher frequency in any DNA repair mutants tested. Moreover, 6% of all mutations occurred in clusters, but clustering was not significantly altered in any DNA repair mutant background. Our data is relevant for better understanding how DNA repair pathways modulate IR-induced lesions.
Collapse
Affiliation(s)
- Bettina Meier
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Nadezda V. Volkova
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Bin Wang
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Víctor González-Huici
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Simone Bertolini
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Peter J. Campbell
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Anton Gartner
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
18
|
Amare DE, Dagne H. Knowledge and Associated Factors of Medical Students Regarding Radiation Exposure from Common Diagnostic Imaging Procedures at the University of Gondar, Ethiopia. Ethiop J Health Sci 2021; 30:589-598. [PMID: 33897219 PMCID: PMC8054455 DOI: 10.4314/ejhs.v30i4.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Physicians’ knowledge about radiation exposure and risks was previously reported as inadequate. Therefore, the aim of this study was to assess knowledge and associated factors regarding radiation exposure among medical students from common diagnostic imaging procedures at the University of Gondar. Methods A cross-sectional study was conducted to assess knowledge and associated factors regarding radiation exposure among medical students. A total of 473 medical students (first through sixth years of study) completed a structured questionnaire. Univariate and multi-variable binary logistic regression was used to see the factors associated with knowledge of medical students on radiation sources, exposure and risks. Variables with p-value <0.2 during the bivariable binary logistic regression were tested in the multivariable binary logistic regression. P-value<0.05 was used to declare significant association at the final model. Result Response rate was 100%. Two hundred fifteen (45.5% 95% confidence interval (CI )(41.0%–50.3%)) participants had good knowledge regarding radiation exposure from diagnostic imaging procedures. Only 177(37.4%) participants correctly knew that Computer Tomography (CT) use X-ray. However, subjects incorrectly named magnetic resonance imaging (MRI) as if it used x-ray (12.1%) and source of ionizing radiation (19.5%). Being female [Adjusted-odds-ratio (AOR)=1.57,95% CI(1.05,2.36)], 18-20 years of age [AOR=2.18, 95% CI(1.26, 3.76)], and 1st to 3rd year of study [AOR=3.64, 95% CI(2.23,5.95)] were predictors of knowledge identified. Conclusion The results highlight that medical students need to be trained well with sufficient radiological education that enable them later to adhere to safe practices.
Collapse
Affiliation(s)
- Dagnachew Eyachew Amare
- Department of Environmental and Occupational Health & Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, P.O. Box, 196, Gondar, Ethiopia
| | - Henok Dagne
- Department of Environmental and Occupational Health & Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, P.O. Box, 196, Gondar, Ethiopia
| |
Collapse
|
19
|
Patterson AM, Sellamuthu R, Plett PA, Sampson CH, Chua HL, Fisher A, Vemula S, Feng H, Katz BP, Tudor G, Miller SJ, MacVittie TJ, Booth C, Orschell CM. Establishing Pediatric Mouse Models of the Hematopoietic Acute Radiation Syndrome and the Delayed Effects of Acute Radiation Exposure. Radiat Res 2021; 195:307-323. [PMID: 33577641 DOI: 10.1667/rade-20-00259.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/19/2021] [Indexed: 11/03/2022]
Abstract
Medical countermeasures (MCMs) for hematopoietic acute radiation syndrome (H-ARS) should be evaluated in well-characterized animal models, with consideration of at-risk populations such as pediatrics. We have developed pediatric mouse models of H-ARS and delayed effects of acute radiation exposure (DEARE) for efficacy testing of MCMs against radiation. Male and female C57BL/6J mice aged 3, 4, 5, 6, 7 and 8 weeks old (±1 day) were characterized for baseline hematopoietic and gastrointestinal parameters, radiation response, efficacy of a known MCM, and DEARE at six and 12 months after total-body irradiation (TBI). Weanlings (age 3 weeks) were the most radiosensitive age group with an estimated LD50/30 of 712 cGy, while mice aged 4 to 8 weeks were more radioresistant with an estimated LD50/30 of 767-787 cGy. Female weanlings were more radiosensitive than males at 3 and 4 weeks old but became significantly more radioresistant after the pubertal age of 5 weeks. The most dramatic increase in body weight, RBC counts and intestinal circumference length occurred from 3 to 5 weeks of age. The established radiomitigator Neulasta® (pegfilgrastim) significantly increased 30-day survival in all age groups, validating these models for MCM efficacy testing. Analyses of DEARE among pediatric survivors revealed depressed weight gain in males six months post-TBI, and increased blood urea nitrogen at 12 months post-TBI which was more severe in females. Hematopoietic DEARE at six months post-TBI appeared to be less severe in survivors from the 3- and 4-week-old groups but was equally severe in all age groups by 12 months of age. Similar to our other acute radiation mouse models, there was no appreciable effect of Neulasta used as an H-ARS MCM on the severity of DEARE. In summary, these data characterize a pediatric mouse model useful for assessing the efficacy of MCMs against ARS and DEARE in children.
Collapse
Affiliation(s)
- Andrea M Patterson
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Rajendran Sellamuthu
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - P Artur Plett
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Carol H Sampson
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hui Lin Chua
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alexa Fisher
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sasidhar Vemula
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hailin Feng
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Barry P Katz
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Steven J Miller
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Thomas J MacVittie
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Christie M Orschell
- Department of a Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
20
|
Stouten S, Verduyn Lunel S, Finnon R, Badie C, Dekkers F. Modeling low-dose radiation-induced acute myeloid leukemia in male CBA/H mice. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:49-60. [PMID: 33221961 PMCID: PMC7902600 DOI: 10.1007/s00411-020-00880-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
The effect of low-dose ionizing radiation exposure on leukemia incidence remains poorly understood. Possible dose-response curves for various forms of leukemia are largely based on cohorts of atomic bomb survivors. Animal studies can contribute to an improved understanding of radiation-induced acute myeloid leukemia (rAML) in humans. In male CBA/H mice, incidence of rAML can be described by a two-hit model involving a radiation-induced deletion with Sfpi1 gene copy loss and a point mutation in the remaining Sfpi1 allele. In the present study (historical) mouse data were used and these processes were translated into a mathematical model to study photon-induced low-dose AML incidence in male CBA/H mice following acute exposure. Numerical model solutions for low-dose rAML incidence and diagnosis times could respectively be approximated with a model linear-quadratic in radiation dose and a normal cumulative distribution function. Interestingly, the low-dose incidence was found to be proportional to the modeled number of cells carrying the Sfpi1 deletion present per mouse following exposure. After making only model-derived high-dose rAML estimates available to extrapolate from, the linear-quadratic model could be used to approximate low-dose rAML incidence calculated with our mouse model. The accuracy in estimating low-dose rAML incidence when extrapolating from a linear model using a low-dose effectiveness factor was found to depend on whether a data transformation was used in the curve fitting procedure.
Collapse
Affiliation(s)
- Sjors Stouten
- Netherlands National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
- Mathematical Institute, Utrecht University, Utrecht, 3508 TA, The Netherlands.
| | | | - Rosemary Finnon
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, OX11 ORQ, UK
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, OX11 ORQ, UK
| | - Fieke Dekkers
- Netherlands National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Mathematical Institute, Utrecht University, Utrecht, 3508 TA, The Netherlands
| |
Collapse
|
21
|
Leuraud K, Richardson DB, Cardis E, Daniels RD, Gillies M, Haylock R, Moissonnier M, Schubauer-Berigan MK, Thierry-Chef I, Kesminiene A, Laurier D. Risk of cancer associated with low-dose radiation exposure: comparison of results between the INWORKS nuclear workers study and the A-bomb survivors study. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:23-39. [PMID: 33479781 PMCID: PMC7902587 DOI: 10.1007/s00411-020-00890-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/19/2020] [Indexed: 05/21/2023]
Abstract
The Life Span Study (LSS) of Japanese atomic bomb survivors has served as the primary basis for estimates of radiation-related disease risks that inform radiation protection standards. The long-term follow-up of radiation-monitored nuclear workers provides estimates of radiation-cancer associations that complement findings from the LSS. Here, a comparison of radiation-cancer mortality risk estimates derived from the LSS and INWORKS, a large international nuclear worker study, is presented. Restrictions were made, so that the two study populations were similar with respect to ages and periods of exposure, leading to selection of 45,625 A-bomb survivors and 259,350 nuclear workers. For solid cancer, excess relative rates (ERR) per gray (Gy) were 0.28 (90% CI 0.18; 0.38) in the LSS, and 0.29 (90% CI 0.07; 0.53) in INWORKS. A joint analysis of the data allowed for a formal assessment of heterogeneity of the ERR per Gy across the two studies (P = 0.909), with minimal evidence of curvature or of a modifying effect of attained age, age at exposure, or sex in either study. There was evidence in both cohorts of modification of the excess absolute risk (EAR) of solid cancer by attained age, with a trend of increasing EAR per Gy with attained age. For leukemia, under a simple linear model, the ERR per Gy was 2.75 (90% CI 1.73; 4.21) in the LSS and 3.15 (90% CI 1.12; 5.72) in INWORKS, with evidence of curvature in the association across the range of dose observed in the LSS but not in INWORKS; the EAR per Gy was 3.54 (90% CI 2.30; 5.05) in the LSS and 2.03 (90% CI 0.36; 4.07) in INWORKS. These findings from different study populations may help understanding of radiation risks, with INWORKS contributing information derived from cohorts of workers with protracted low dose-rate exposures.
Collapse
Affiliation(s)
- Klervi Leuraud
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France.
| | - David B Richardson
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Elisabeth Cardis
- Center for Research in Environmental Epidemiology, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Ciber Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Robert D Daniels
- National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OH, USA
| | - Michael Gillies
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE-CRCE), Chilton, UK
| | - Richard Haylock
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE-CRCE), Chilton, UK
| | | | | | - Isabelle Thierry-Chef
- Center for Research in Environmental Epidemiology, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Ciber Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Dominique Laurier
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|
22
|
Wang S, Maxwell CA, Akella NM. Diet as a Potential Moderator for Genome Stability and Immune Response in Pediatric Leukemia. Cancers (Basel) 2021; 13:cancers13030413. [PMID: 33499176 PMCID: PMC7865408 DOI: 10.3390/cancers13030413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Pediatric acute lymphoblastic leukemia (ALL) is the most prevalent cancer affecting children in developed societies. Here, we review the role of diet in control of the incidence and progression of childhood ALL. Prenatally, ALL risk is associated with higher birthweights of newborns, suggesting that ALL begins to evolve in-utero. Indeed, maternal diet influences the fetal genome and immune development. Postnatally, breastfeeding associates with decreased risk of ALL development. Finally, for the ALL-affected child, certain dietary regimens that impact the hormonal environment may impede disease progression. Improved understanding of the dietary regulation of hormones and immunity may inform better approaches to predict, protect, and ultimately save children afflicted with pediatric leukemia. Abstract Pediatric leukemias are the most prevalent cancers affecting children in developed societies, with childhood acute lymphoblastic leukemia (ALL) being the most common subtype. As diet is a likely modulator of many diseases, this review focuses on the potential for diet to influence the incidence and progression of childhood ALL. In particular, the potential effect of diets on genome stability and immunity during the prenatal and postnatal stages of early childhood development are discussed. Maternal diet plays an integral role in shaping the bodily composition of the newborn, and thus may influence fetal genome stability and immune system development. Indeed, higher birth weights of newborns are associated with increased risk of ALL, which suggests in-utero biology may shape the evolution of preleukemic clones. Postnatally, the ingestion of maternal breastmilk both nourishes the infant, and provides essential components that strengthen and educate the developing immune system. Consistently, breast-feeding associates with decreased risk of ALL development. For children already suffering from ALL, certain dietary regimens have been proposed. These regimens, which have been validated in both animals and humans, alter the internal hormonal environment. Thus, hormonal regulation by diet may shape childhood metabolism and immunity in a manner that is detrimental to the evolution or expansion of preleukemic and leukemic ALL clones.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3V4, Canada;
| | - Christopher A. Maxwell
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3V4, Canada;
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital, Vancouver, BC V5Z 4H4, Canada
- Correspondence: (C.A.M.); (N.M.A.)
| | - Neha M. Akella
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3V4, Canada;
- Correspondence: (C.A.M.); (N.M.A.)
| |
Collapse
|
23
|
Li B, Tang H, Cheng Z, Zhang Y, Xiang H. The Current Situation and Future Trend of Leukemia Mortality by Sex and Area in China. Front Public Health 2020; 8:598215. [PMID: 33363091 PMCID: PMC7759534 DOI: 10.3389/fpubh.2020.598215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/23/2020] [Indexed: 11/18/2022] Open
Abstract
Leukemia is one of the most common cancers. We conducted this study to comprehensively analyze the temporal trends of leukemia mortality during 2003–2017 and project the trends until 2030. We extracted national-level data on annual leukemia mortality from China Health Statistics Yearbooks (2003–2017). We applied the Joinpoint regression model to assess leukemia mortality trends in urban and rural China by sex during 2003–2017. We also produced sex-specific leukemia mortality using the adjusted Global Burden Disease (GBD) 2016 projection model. In urban areas, age-standardized leukemia mortality decreased significantly among females during 2003–2017 (APC = −0.9%; 95% CI: −1.7, −0.1%). In rural areas, significant decreases of age-standardized leukemia mortality were both found among males (APC = −1.7%; 95% CI: −2.9, −0.5%) and females (APC = −1.6%; 95% CI: −2.6, −0.7%) from 2008 to 2017. Rural-urban and sex disparities of leukemia mortality will continue to exist until the year 2030. According to projection, the leukemia mortality rates of males and rural populations are higher than that of females and urban populations. In 2030, leukemia mortality is projected to decrease to 3.03/100,000 and 3.33/100,000 among the males in urban and rural areas, respectively. In females, leukemia mortality will decrease to 1.87/100,000 and 2.26/100,000 among urban and rural areas, respectively. Our study suggests that more precautionary measures to reduce leukemia mortality are need, and more attention should be paid to rural residents and males in primary prevention of leukemia in China.
Collapse
Affiliation(s)
- Baojing Li
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China.,Global Health Institute, Wuhan University, Wuhan, China
| | - Hong Tang
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China.,Global Health Institute, Wuhan University, Wuhan, China
| | - Zilu Cheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Yuxiao Zhang
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China.,Global Health Institute, Wuhan University, Wuhan, China
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China.,Global Health Institute, Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Linet MS, Little MP, Kitahara CM, Cahoon EK, Doody MM, Simon SL, Alexander BH, Preston DL. Occupational radiation and haematopoietic malignancy mortality in the retrospective cohort study of US radiologic technologists, 1983-2012. Occup Environ Med 2020; 77:822-831. [PMID: 32967989 PMCID: PMC8527846 DOI: 10.1136/oemed-2019-106346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/27/2020] [Accepted: 06/07/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To evaluate cumulative occupational radiation dose response and haematopoietic malignancy mortality risks in the US radiologic technologist cohort. METHODS Among 110 297 radiologic technologists (83 655 women, 26 642 men) who completed a baseline questionnaire sometime during 1983-1998, a retrospective cohort study was undertaken to assess cumulative, low-to-moderate occupational radiation dose and haematopoietic malignancy mortality risks during 1983-2012. Cumulative bone marrow dose (mean 8.5 mGy, range 0-430 mGy) was estimated based on 921 134 badge monitoring measurements during 1960-1997, work histories and historical data; 35.4% of estimated doses were based on badge measurements. Poisson regression was used to estimate excess relative risk of haematopoietic cancers per 100 milligray (ERR/100 mGy) bone-marrow absorbed dose, adjusting for attained age, sex and birth year. RESULTS Deaths from baseline questionnaire completion through 2012 included 133 myeloid neoplasms, 381 lymphoid neoplasms and 155 leukaemias excluding chronic lymphocytic leukaemia (CLL). Based on a linear dose-response, no significant ERR/100 mGy occurred for acute myeloid leukaemia (ERR=0.0002, 95% CI <-0.02 to 0.24, p-trend>0.5, 85 cases) or leukaemia excluding CLL (ERR=0.05, 95% CI <-0.09 to 0.24, p-trend=0.21, 155 cases). No significant dose-response trends were observed overall for CLL (ERR<-0.023, 95% CI <-0.025 to 0.18, p-trend=0.45, 32 cases), non-Hodgkin lymphoma (ERR=0.03, 95% CI <-0.2 to 0.18, p-trend=0.4, 201 cases) or multiple myeloma (ERR=0.003, 95% CI -0.02 to 0.16, p-trend>0.5, 112 cases). Findings did not differ significantly by demographic factors, smoking or specific radiological procedures performed. CONCLUSION After follow-up averaging 22 years, there was little evidence of a relationship between occupational radiation exposure and myeloid or lymphoid haematopoietic neoplasms.
Collapse
Affiliation(s)
- Martha S Linet
- National Cancer Institute Division of Cancer Epidemiology and Genetics, Bethesda, Maryland, USA
| | - Mark P Little
- National Cancer Institute Division of Cancer Epidemiology and Genetics, Bethesda, Maryland, USA
| | - Cari M Kitahara
- National Cancer Institute Division of Cancer Epidemiology and Genetics, Bethesda, Maryland, USA
| | - Elizabeth K Cahoon
- National Cancer Institute Division of Cancer Epidemiology and Genetics, Bethesda, Maryland, USA
| | - Michele M Doody
- National Cancer Institute Division of Cancer Epidemiology and Genetics, Bethesda, Maryland, USA
| | - Steven L Simon
- National Cancer Institute Division of Cancer Epidemiology and Genetics, Bethesda, Maryland, USA
| | - Bruce H Alexander
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dale L Preston
- self-employed at Hirosoft International, Eureka, California, USA
| |
Collapse
|
25
|
Zhukovsky M, Onishchenko A. CALCULATION OF DOSE CONVERSION FACTORS BASED ON THE RESULTS OF GEOMETRIC MIXTURE MODELS FOR RISK ASSESSMENT OF RADON EXPOSURE. RADIATION PROTECTION DOSIMETRY 2020; 191:181-187. [PMID: 33103192 DOI: 10.1093/rpd/ncaa145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
The results of the geometric mixture model by Tomasek (2011, 2013) were applied for the calculation of radiation risk at radon exposure at the assessment of dose conversion factors (DCF; mSv/WLM) from radon exposure to the effective dose-by-dose conversion convention approach for cohorts with different smoking status. It is shown that the use of a geometric mixture model results in a better agreement between DCF values for men and women.
Collapse
Affiliation(s)
- Michael Zhukovsky
- Institute of Industrial Ecology UB RAS, 620990, Sophy Kovalevskoy St, 20, Ekaterinburg, Russia
| | - Aleksandra Onishchenko
- Institute of Industrial Ecology UB RAS, 620990, Sophy Kovalevskoy St, 20, Ekaterinburg, Russia
| |
Collapse
|
26
|
Tachibana H, Morioka T, Daino K, Shang Y, Ogawa M, Fujita M, Matsuura A, Nogawa H, Shimada Y, Kakinuma S. Early induction and increased risk of precursor B-cell neoplasms after exposure of infant or young-adult mice to ionizing radiation. JOURNAL OF RADIATION RESEARCH 2020; 61:648-656. [PMID: 32808021 PMCID: PMC7482158 DOI: 10.1093/jrr/rraa055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Epidemiological studies of atomic-bomb survivors have revealed an increased risk of lymphoid neoplasm (i.e. acute lymphoblastic leukemia) associated with radiation exposure. In particular, children are more susceptible to radiation-induced precursor lymphoid neoplasm than adults. Although ~75% of human lymphoid tumors are B-cell neoplasms, the carcinogenic risk associated with each stage of differentiation of B-cells after radiation exposure is poorly understood. Therefore, we irradiated mice at infancy or in young adulthood to investigate the effect of age at exposure on the risk of developing B-cell neoplasms. Histopathology was used to confirm the presence of lymphoid neoplasms, and the population of B-cell neoplasms was classified into the precursor B-cell (pro-B and pre-B cell) type and mature B-cell type, according to immunophenotype. The data revealed that precursor B-cell neoplasms were induced soon after radiation exposure in infancy or young adulthood, resulting in a greater risk of developing the neoplasms. This was particularly the case for the pro-B cell type after young adult exposure. Our findings suggest that exposure to radiation at young age increases the risk of developing precursor B-cell neoplasms in humans.
Collapse
Affiliation(s)
- Hirotaka Tachibana
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Yi Shang
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Mari Ogawa
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Misuzu Fujita
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Akira Matsuura
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Hiroyuki Nogawa
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | | | - Shizuko Kakinuma
- Corresponding author. Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba, 263-8555, Japan. Tel: +81-43-206-3200; Fax: +81-43-206-4138;
| |
Collapse
|
27
|
Bispo JAB, Pinheiro PS, Kobetz EK. Epidemiology and Etiology of Leukemia and Lymphoma. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a034819. [PMID: 31727680 DOI: 10.1101/cshperspect.a034819] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Available evidence suggests that the incidence of leukemia and lymphoma tends to be higher in highly developed regions of the world and among Whites in the United States. Temporal trends in incidence are dynamic and multifactorial; for instance, the incidence of non-Hodgkin's lymphoma increased around the turn of the century, in part because of the acquired immune deficiency syndrome (AIDS) epidemic. Most leukemias and lymphomas are sporadic and the specific etiology remains elusive. Still, research shows that these malignancies often develop in the context of genetic abnormalities, immunosuppression, and exposure to risk factors like ionizing radiation, carcinogenic chemicals, and oncogenic viruses. The prognosis varies by subtype, with poorer survival outcomes for acute leukemias among adults, and more favorable outcomes for Hodgkin's lymphoma. At a time when specific prevention efforts targeting these malignancies are nonexistent, there is a great need to ensure equitable access to diagnostic services and treatments worldwide.
Collapse
Affiliation(s)
- Jordan A Baeker Bispo
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Paulo S Pinheiro
- Sylvester Comprehensive Cancer Center and Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Erin K Kobetz
- Sylvester Comprehensive Cancer Center and Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| |
Collapse
|
28
|
Paediatric computed tomography and subsequent risk of leukaemia, intracranial malignancy and lymphoma: a nationwide population-based cohort study. Sci Rep 2020; 10:7759. [PMID: 32385396 PMCID: PMC7210298 DOI: 10.1038/s41598-020-64805-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 04/20/2020] [Indexed: 02/06/2023] Open
Abstract
Red bone marrow and brain tissue are highly radiosensitive in children. We investigate the relationship between childhood computed tomography (CT) exposure and leukaemia, intracranial malignancy and lymphoma. All participants in the study were aged less than 16 years. A total of 1,479 patients in the leukaemia group, 976 patients in the intracranial malignancy group and 301 patients in the lymphoma group were extracted from the Catastrophic Illness Certificate Database in Taiwan as the disease group. In total, 126,677 subjects were extracted from the Longitudinal Health Insurance Database 2010 of the Taiwan National Health Insurance Research Database as the non-disease group. The odds ratios (ORs) and 95% confidence intervals (CIs) for childhood CT exposure and times of childhood CT were estimated. Childhood CT exposure was correlated to the intracranial malignancy group in both one-year (OR = 1.95, 95% CI 1.40-2.71, p < 0.001) and two-year (OR = 1.56, 95% CI 1.04-2.33, p = 0.031) exclusion periods. The time of childhood CT was also correlated to intracranial malignancy in both one-year (OR = 1.69, 95% CI 1.34-2.13, p < 0.001) and two-year (OR = 1.55, 95% CI 1.17-2.04, p = 0.002) exclusion periods. The results indicated that childhood CT exposure was correlated with an increased risk of future intracranial malignancy.
Collapse
|
29
|
Mazzei-Abba A, Folly CL, Coste A, Wakeford R, Little MP, Raaschou-Nielsen O, Kendall G, Hémon D, Nikkilä A, Spix C, Auvinen A, Spycher BD. Epidemiological studies of natural sources of radiation and childhood cancer: current challenges and future perspectives. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2020; 40:R1-R23. [PMID: 31751953 PMCID: PMC10654695 DOI: 10.1088/1361-6498/ab5a38] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The empirical estimation of cancer risks in children associated with low-dose ionising radiation (<100 mSv) remains a challenge. The main reason is that the required combination of large sample sizes with accurate and comprehensive exposure assessment is difficult to achieve. An international scientific workshop, 'Childhood cancer and background radiation', organised by the Institute of Social and Preventive Medicine of the University of Bern, brought together researchers in this field to evaluate how epidemiological studies of background radiation and childhood cancer can best improve our understanding of the effects of low-dose ionising radiation. This review summarises and evaluates the findings of these studies with regard to their methodological differences, identifies key limitations and challenges, and proposes ways to move forward. Large childhood cancer registries, such as those in Great Britain, France and Germany, now permit the conducting of studies that should have sufficient statistical power to detect the effects predicted by standard risk models. Nevertheless, larger studies or pooled studies will be needed to investigate disease subgroups. The main challenge is to accurately assess children's individual exposure to radiation from natural sources and from other sources, as well as potentially confounding non-radiation exposures, in such large study populations. For this, the study groups should learn from each other to improve exposure estimation and develop new ways to validate exposure models with personal dosimetry.
Collapse
Affiliation(s)
- Antonella Mazzei-Abba
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hirofuji Y. [13. Basic Concept of Protection Quantities in Health Risk]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2020; 76:755-760. [PMID: 32684569 DOI: 10.6009/jjrt.2020_jjrt_76.7.755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Yoshiaki Hirofuji
- Cent-Medical Associates LLC
- Faculty of Medicine, University of Tsukuba
| |
Collapse
|
31
|
Gillies M, Haylock R, Hunter N, Zhang W. Risk of Leukemia Associated with Protracted Low-Dose Radiation Exposure: Updated Results from the National Registry for Radiation Workers Study. Radiat Res 2019; 192:527-537. [PMID: 31449440 DOI: 10.1667/rr15358.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
While the link between risk of leukemia and acute radiation exposure is well established for large doses received acutely, uncertainty remains around the translation of these risk estimates to occupational exposure scenarios where the doses are low and accumulated over time, possibly over many years. We present leukemia incidence and mortality radiation risk estimates derived from the National Registry for Radiation Workers, which is a large cohort of occupationally exposed workers from the United Kingdom (UK). The cohort comprised 173,081 workers from the UK who were monitored for occupational exposure to radiation. The cohort was followed for a total of 5.3 million person-years and the incidence and mortality due to leukemia was identified through to the end of follow-up in 2011. Poisson regression was used to investigate the relationship between cumulative radiation dose and leukemia mortality and incidence rates using excess relative risk (ERR) and excess additive risk (EAR) models. The results of this work showed a collective dose of 4,414 person-Sv accumulated by the cohort with an average cumulative dose of 25.5 mSv. Among male workers both the ERR and EAR models showed evidence of increased leukemia risk (excluding chronic lymphatic leukemia) associated with increasing cumulative dose. The ERR was 1.38 per Sv (90% CI: 0.04; 3.24) and EAR was 1.33 per 10,000 person-year-Sv (90% CI: 0.04; 2.89) when a linear model was used. These excess risks were driven by increased risks for chronic myeloid leukemia [ERR/Sv = 6.77 (90% CI: 2.14; 15.44)]. In conclusion, this study provides further evidence that leukemia risks may be increased by low-dose and protracted external radiation exposure. The risks are generally consistent with those observed in the atomic bomb survivor studies, as well as with risk coefficients on which international radiation safety standards, including the dose limits and constraints used to control exposures, are based.
Collapse
Affiliation(s)
- Michael Gillies
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE-CRCE), Chilton, United Kingdom
| | - Richard Haylock
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE-CRCE), Chilton, United Kingdom
| | - Nezhat Hunter
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE-CRCE), Chilton, United Kingdom
| | - Wei Zhang
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE-CRCE), Chilton, United Kingdom
| |
Collapse
|
32
|
Aßenmacher M, Kaiser JC, Zaballa I, Gasparrini A, Küchenhoff H. Exposure-lag-response associations between lung cancer mortality and radon exposure in German uranium miners. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:321-336. [PMID: 31218403 DOI: 10.1007/s00411-019-00800-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Exposure-lag-response associations shed light on the duration of pathogenesis for radiation-induced diseases. To investigate such relations for lung cancer mortality in the German uranium miners of the Wismut company, we apply distributed lag non-linear models (DLNMs) which offer a flexible description of the lagged risk response to protracted radon exposure. Exposure-lag functions are implemented with B-Splines in Cox models of proportional hazards. The DLNM approach yielded good agreement of exposure-lag-response surfaces for the German cohort and for the previously studied cohort of American Colorado miners. For both cohorts, a minimum lag of about 2 year for the onset of risk after first exposure explained the data well, but possibly with large uncertainty. Risk estimates from DLNMs were directly compared with estimates from both standard radio-epidemiological models and biologically based mechanistic models. For age > 45 year, all models predict decreasing estimates of the Excess Relative Risk (ERR). However, at younger age, marked differences appear as DLNMs exhibit ERR peaks, which are not detected by the other models. After comparing exposure-responses for biological processes in mechanistic risk models with exposure-responses for hazard ratios in DLNMs, we propose a typical period of 15 year for radon-related lung carcinogenesis. The period covers the onset of radiation-induced inflammation of lung tissue until cancer death. The DLNM framework provides a view on age-risk patterns supplemental to the standard radio-epidemiological approach and to biologically based modeling.
Collapse
Affiliation(s)
- Matthias Aßenmacher
- Department of Statistics, Ludwig-Maximilians-Universität, 80539, Munich, Germany.
| | - Jan Christian Kaiser
- Institute of Radiation Medicine, Helmholtz Zentrum München, 85764, Oberschleißheim, Germany
| | | | - Antonio Gasparrini
- Department of Social and Environmental Health Research, London School of Hygiene and Tropical Medicine, 15-17 Tavistock Place, London, WC1H 9SH, UK
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Centre for Statistical Methodology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Helmut Küchenhoff
- Department of Statistics, Ludwig-Maximilians-Universität, 80539, Munich, Germany
| |
Collapse
|
33
|
Jiang Y, Miao Z, Wang J, Chen J, Lv Y, Xing D, Wang X, Wang Y, Cao Z, Zhao Z. Clinical characteristics and prognosis associated with multiple primary malignant tumors in non-Hodgkin lymphoma patients. TUMORI JOURNAL 2019; 105:474-482. [PMID: 30945608 DOI: 10.1177/0300891619839475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Patients with non-Hodgkin lymphoma (NHL) occasionally present with multiple primary malignant tumors (MPMTs). This study aimed to determine the clinical characteristics, survival, and risk factors of these patients. METHODS The median follow-up of 92 patients was 13.5 months (range 0.3-72). Overall, 21 patients had synchronous MPMTs and 71 had metachronous MPMTs. We classified patients in the latter group into metachronous first group (n=27) and metachronous second group (n=44). RESULTS Diffuse large B-cell lymphoma was the most frequent histologic lymphoma type. The digestive system was the commonest site affected by the solid cancer. The 1- and 2-year survival rates were 86.5% and 70.5%, respectively. The overall survival (OS) rates were 67.9% and 36.2% at 2 and 3 years, respectively, in the metachronous first group; 73.8% and 73.8%, respectively, in the metachronous second group; and 68.1% and 56.7%, respectively, in the synchronous tumor group. There was no difference in the survival rate among the 3 groups before 2 years, but after 2 years, a shorter OS rate was observed in the metachronous first group than in the metachronous second group and synchronous tumor group. For all patients, age >60 years, male sex, and ⩾3 involved nodal sites were considered independent prognostic factors associated with survival. CONCLUSIONS OS time was shorter in patients with NHL who developed a second tumor than in those who were diagnosed with solid cancer synchronously and second neoplasm after previous solid tumors. Long-term follow-up and effective treatment should be provided to these patients.
Collapse
Affiliation(s)
- Yanan Jiang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhaoyi Miao
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jinhuan Wang
- Department of Oncology, Second Hospital of Tianjin Medical University, Institute of Urology Tianjin, China
| | - Jing Chen
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yangyang Lv
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Donghui Xing
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaofang Wang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yafei Wang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zeng Cao
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhigang Zhao
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
34
|
Ozasa K, Cullings HM, Ohishi W, Hida A, Grant EJ. Epidemiological studies of atomic bomb radiation at the Radiation Effects Research Foundation. Int J Radiat Biol 2019; 95:879-891. [PMID: 30676179 DOI: 10.1080/09553002.2019.1569778] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Epidemiological studies of people who were exposed to atomic bomb radiation and their children who were conceived after parental exposure to radiation (F1) have investigated late health effects of atomic bomb radiation and its transgenerational effects. Those studies were initiated by the Atomic Bomb Casualty Commission (ABCC) in the 1950s. ABCC was reorganized to the Radiation Effects Research Foundation (RERF) in 1975, which continued the work of the ABCC. Follow-up of vital status and cause of death is performed for all RERF cohorts, including the atomic bomb survivors (the Life Span Study: LSS), in utero survivors, and the children of the survivors (F1). Cancer incidence is investigated for accessible subpopulations of the cohorts. Health examinations for subcohorts of the LSS and in utero survivors are conducted as the Adult Health Study (AHS); a program of health examinations for a subcohort of the F1 study is called the F1 Offspring Clinical Study (FOCS). Participants of all clinical programs are asked to donate their blood and urine for storage and future biomedical investigations. Epidemiological studies have observed increased radiation risks for malignant diseases among survivors including those exposed in utero, and possible risks for some noncancer diseases. No increased risks due to parental exposure to radiation have been observed for malignancies or other diseases in F1, but continuing investigations are required.
Collapse
Affiliation(s)
- Kotaro Ozasa
- a Department of Epidemiology , Radiation Effects Research Foundation , Hiroshima , Japan
| | - Harry M Cullings
- b Department of Statistics , Radiation Effects Research Foundation , Hiroshima , Japan
| | - Waka Ohishi
- c Department of Clinical Studies , Radiation Effects Research Foundation , Hiroshima , Japan
| | - Ayumi Hida
- d Department of Clinical Studies , Radiation Effects Research Foundation , Nagasaki , Japan
| | - Eric J Grant
- e Associate Chief of Research, Radiation Effects Research Foundation , Hiroshima , Japan
| |
Collapse
|
35
|
Fukunaga H, Prise KM. Non-uniform radiation-induced biological responses at the tissue level involved in the health risk of environmental radiation: a radiobiological hypothesis. Environ Health 2018; 17:93. [PMID: 30630478 PMCID: PMC6329136 DOI: 10.1186/s12940-018-0444-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The conventional concept of radiation protection is based on epidemiological studies of radiation that support a positive correlation between dose and response. However, there is a remarkable difference in biological responses at the tissue level, depending on whether radiation is delivered as a uniform or non-uniform spatiotemporal distribution due to tissue sparing effects (TSE). From the point of view of radiation micro-dosimetry, environmental radiation is delivered as a non-uniform distribution, and radiation-induced biological responses at the tissue level, such as TSE, would be implicated in individual risk following exposure to environmental radiation. HYPOTHESIS We hypothesize that the health risks of non-uniform radiation exposure are lower than the same dose at a uniform exposure, due to TSE following irradiation. Testing the hypothesis requires both radiobiological studies using high-precision microbeams and the epidemiological data of environmental radiation-induced effects. The implications of the hypothesis will lead to more personalized approaches in the field of environmental radiation protection. CONCLUSION The detection of spatiotemporal dose distribution could be of scientific importance for more accurate individual risk assessment of exposure to environmental radiation. Further radiobiological studies on non-uniform radiation-induced biological responses at the tissue level are expected.
Collapse
Affiliation(s)
- Hisanori Fukunaga
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE UK
| | - Kevin M. Prise
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE UK
| |
Collapse
|
36
|
Oliveira PD. Leukaemia prevalence worldwide: raising aetiology questions. LANCET HAEMATOLOGY 2018; 5:e2-e3. [PMID: 29304323 DOI: 10.1016/s2352-3026(17)30231-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 11/29/2022]
|
37
|
Ariyoshi K, Miura T, Kasai K, Akifumi N, Fujishima Y, Yoshida MA. Age Dependence of Radiation-Induced Genomic Instability in Mouse Hematopoietic Stem Cells. Radiat Res 2018; 190:623. [PMID: 30311845 DOI: 10.1667/rr15113.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Age at exposure is a critical factor that influences the risk of radiation-induced leukemia. Accumulating evidence suggests that ionizing radiation can induce genomic instability and promote leukemogenesis in hematopoietic stem cells (HSCs); however, the influence of age on this phenomenon has not been elucidated. In this study, infant (1-week-old) or adult (14-week-old) C3H/He mice received sham or 4 Gy whole-body irradiation, and bone marrow cells were transplanted to recipients at day 1 or 60 postirradiation. Twelve days after bone marrow transplant, we analyzed the radiation-induced genomic instability by scoring the frequency of DNA damage and micronucleus formation in colony-forming units-spleen (CFU-Ss). We observed significant increases in DNA damage and micronucleus formation in CFU-Ss of the 4 Gy irradiated adult cells transplanted at day 1 or 60 postirradiation. However, the frequency of DNA damage focus and micronucleus formation in CFU-Ss of 4 Gy irradiated infant cells transplanted at day 1 or 60 postirradiation was relatively decreased. Quantitative differences in the reactive oxygen species and cells expressing inducible nitric oxide synthase in CFU-Ss suggested that age-dependent radiation-induced genomic instability may result from chronic oxidative stress by pro-inflammatory states in HSC descendants after radiation exposure.
Collapse
Affiliation(s)
- Kentaro Ariyoshi
- a Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki 036-8564, Japan
| | - Tomisato Miura
- b Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan
| | - Kosuke Kasai
- b Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan
| | - Nakata Akifumi
- c Department of Basic Pharmacy, Hokkaido Pharmaceutical University School of Pharmacy, Otaru, 047-0264, Japan
| | - Yohei Fujishima
- b Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan
| | - Mitsuaki A Yoshida
- a Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki 036-8564, Japan
| |
Collapse
|
38
|
Cuttler JM. Evidence of a Dose Threshold for Radiation-Induced Leukemia. Dose Response 2018; 16:1559325818811537. [PMID: 30479588 PMCID: PMC6247492 DOI: 10.1177/1559325818811537] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/09/2018] [Indexed: 12/29/2022] Open
Abstract
In 1958, Neil Wald presented data on the incidence of leukemia among the Hiroshima atomic bomb survivors. These data, which suggested a dose-response threshold for radiation-induced leukemia, were included in the first UNSCEAR report (1958). However, this evidence of a threshold was not recognized. It was obfuscated and concealed. In 2010, Zbigniew Jaworowski identified these data as evidence of radiation hormesis. A letter to the editor in 2014 and 2 articles in 2014 and 2015 presented a graph of these UNSCEAR 1958 data, which revealed a threshold at about 500 mSv. Since the blood-forming stem cells of bone marrow are more radiosensitive than most other cell types, it is reasonable to expect thresholds for inducing other types of cancer by ionizing radiation-their thresholds are likely higher than 500 mSv. A careful examination of the Wald data reveals the suprisingly low incidence of radiogenic leukemia, only 0.5% of the survivors who were in the high radiation zone. Many articles on radiation risk have been published since 2015 by other authors, but none makes reference to this evidence of a threshold, either to challenge or endorse it. In this commentary, the author addresses the comments from a colleague.
Collapse
|
39
|
Kocher DC, Apostoaei AI, Hoffman FO, Trabalka JR. Probability Distribution of Dose and Dose-Rate Effectiveness Factor for use in Estimating Risks of Solid Cancers From Exposure to Low-Let Radiation. HEALTH PHYSICS 2018; 114:602-622. [PMID: 29697512 PMCID: PMC5922807 DOI: 10.1097/hp.0000000000000838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
This paper presents an analysis to develop a subjective state-of-knowledge probability distribution of a dose and dose-rate effectiveness factor for use in estimating risks of solid cancers from exposure to low linear energy transfer radiation (photons or electrons) whenever linear dose responses from acute and chronic exposure are assumed. A dose and dose-rate effectiveness factor represents an assumption that the risk of a solid cancer per Gy at low acute doses or low dose rates of low linear energy transfer radiation, RL, differs from the risk per Gy at higher acute doses, RH; RL is estimated as RH divided by a dose and dose-rate effectiveness factor, where RH is estimated from analyses of dose responses in Japanese atomic-bomb survivors. A probability distribution to represent uncertainty in a dose and dose-rate effectiveness factor for solid cancers was developed from analyses of epidemiologic data on risks of incidence or mortality from all solid cancers as a group or all cancers excluding leukemias, including (1) analyses of possible nonlinearities in dose responses in atomic-bomb survivors, which give estimates of a low-dose effectiveness factor, and (2) comparisons of risks in radiation workers or members of the public from chronic exposure to low linear energy transfer radiation at low dose rates with risks in atomic-bomb survivors, which give estimates of a dose-rate effectiveness factor. Probability distributions of uncertain low-dose effectiveness factors and dose-rate effectiveness factors for solid cancer incidence and mortality were combined using assumptions about the relative weight that should be assigned to each estimate to represent its relevance to estimation of a dose and dose-rate effectiveness factor. The probability distribution of a dose and dose-rate effectiveness factor for solid cancers developed in this study has a median (50th percentile) and 90% subjective confidence interval of 1.3 (0.47, 3.6). The harmonic mean is 1.1, which implies that the arithmetic mean of an uncertain estimate of the risk of a solid cancer per Gy at low acute doses or low dose rates of low linear energy transfer radiation is only about 10% less than the mean risk per Gy at higher acute doses. Data were also evaluated to define a low acute dose or low dose rate of low linear energy transfer radiation, i.e., a dose or dose rate below which a dose and dose-rate effectiveness factor should be applied in estimating risks of solid cancers.
Collapse
Affiliation(s)
- David C Kocher
- *Oak Ridge Center for Risk Analysis, Inc., 102 Donner Drive, Oak Ridge, TN 37830; †Deceased
| | | | | | | |
Collapse
|
40
|
Miranda-Filho A, Piñeros M, Ferlay J, Soerjomataram I, Monnereau A, Bray F. Epidemiological patterns of leukaemia in 184 countries: a population-based study. Lancet Haematol 2018; 5:e14-e24. [PMID: 29304322 DOI: 10.1016/s2352-3026(17)30232-6] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Leukaemia is a heterogeneous group of haemopoietic cancers that comprises a number of diverse and biologically distinct subgroups. We examine the leukaemia burden worldwide and highlight the distinct incidence patterns in order to elucidate explanatory factors that may support preventive measures and health resource planning. We aimed to estimate the global burden of leukaemia incidence according to the four major subtypes stratified by age and sex. METHODS In this population-based study, we assessed leukaemia incidence for the major subtypes using the Cancer Incidence in Five Continents Volume X (CI5-X), which includes data from 290 cancer registries in 68 countries covering the diagnostic period 2003-07, for all ages and both sexes. We then extracted counts and incidence rates in 184 countries for the year 2012 from IARC's GLOBOCAN database of national estimates. We calculated age-specific incidence rates per 100 000 person-years and age-standardised rates (ASRs) using the world standard population by country, sex, age group, and where applicable, by major subtypes. We excluded from all analyses registries for which the total number of leukaemia cases was less than 100 or the proportion of microscopically verified (MV%) cases was less than 80% (2572 cases). FINDINGS 717 863 cases between 2003-07 were included in this analysis. More than 350 000 new leukaemia cases were estimated in 2012. We observed substantial variation in incidence between and within world regions. The highest leukaemia incidence rates for both sexes were estimated in Australia and New Zealand (ASR per 100 000 11·3 in males and 7·2 in females), Northern America (10·5 in males and 7·2 in females), and western Europe (9·6 in males and 6·0 in females), and the lowest was in in western Africa (1·4 in males and 1·2 in females). Rates were generally higher in males than females with an overall male to female ratio of 1·4. In children, acute lymphoblastic leukaemia was the main subtype in all studied countries in both sexes, and characterised by a bimodal age-specific pattern. The subtype distribution was more diverse in adults, with a relatively higher proportion of chronic lymphocytic leukaemia in most European and North American countries, whereas rates of acute lymphoblastic leukaemia remained relatively high among adults in selected South American, Caribbean, Asian, and African populations. INTERPRETATION Geographical disparities in leukaemia might partly be explained by quality of, and access to, health systems linked to resource levels, although there is probably a role for aetiological factors, including gene-environment interactions. The observed bimodal pattern could be due to different risk factors affecting different ages, and might include a genetic component. FUNDING European Commission's FP-7 Marie Curie Actions-People-COFUND.
Collapse
Affiliation(s)
| | - Marion Piñeros
- Section of Cancer Surveillance, International Agency for Research on Cancer, Lyon, France
| | - Jacques Ferlay
- Section of Cancer Surveillance, International Agency for Research on Cancer, Lyon, France
| | - Isabelle Soerjomataram
- Section of Cancer Surveillance, International Agency for Research on Cancer, Lyon, France
| | - Alain Monnereau
- Hematological Malignancies Registry of Gironde, Bergonie Institute, Comprehensive Cancer Centre, Bordeaux France; University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Bordeaux, France
| | - Freddie Bray
- Section of Cancer Surveillance, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
41
|
Loss of BIM augments resistance of ATM-deficient thymocytes to DNA damage-induced apoptosis but does not accelerate lymphoma development. Cell Death Differ 2017; 24:1987-1988. [PMID: 28885618 DOI: 10.1038/cdd.2017.138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
42
|
Daniels RD, Bertke SJ, Richardson DB, Cardis E, Gillies M, O'Hagan JA, Haylock R, Laurier D, Leuraud K, Moissonnier M, Thierry-Chef I, Kesminiene A, Schubauer-Berigan MK. Examining temporal effects on cancer risk in the international nuclear workers' study. Int J Cancer 2017; 140:1260-1269. [PMID: 27914102 PMCID: PMC5286034 DOI: 10.1002/ijc.30544] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/16/2016] [Indexed: 11/12/2022]
Abstract
The paper continues the series of publications from the International Nuclear Workers Study cohort that comprises 308,297 workers from France, the United Kingdom and the United States, providing 8.2 million person-years of observation from a combined follow-up period (at earliest 1944 to at latest 2005). These workers' external radiation exposures were primarily to photons, resulting in an estimated average career absorbed dose to the colon of 17.4 milligray. The association between cumulative ionizing radiation dose and cancer mortality was evaluated in general relative risk models that describe modification of the excess relative risk (ERR) per gray (Gy) by time since exposure and age at exposure. Methods analogous to a nested-case control study using conditional logistic regression of sampled risks sets were used. Outcomes included: all solid cancers, lung cancer, leukemias excluding chronic lymphocytic, acute myeloid leukemia, chronic myeloid leukemia, multiple myeloma, Hodgkin lymphoma and non-Hodgkin lymphoma. Significant risk heterogeneity was evident in chronic myeloid leukemia with time since exposure, where we observed increased ERR per Gy estimates shortly after exposure (2-10 year) and again later (20-30 years). We observed delayed effects for acute myeloid leukemia although estimates were not statistically significant. Solid cancer excess risk was restricted to exposure at age 35+ years and also diminished for exposure 30 years prior to attained age. Persistent or late effects suggest additional follow-up may inform on lifetime risks. However, cautious interpretation of results is needed due to analytical limitations and a lack of confirmatory results from other studies.
Collapse
Affiliation(s)
- Robert D. Daniels
- National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio, USA
| | - Stephen J. Bertke
- National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio, USA
| | - David B. Richardson
- Department of Epidemiology. University of North Carolina. Chapel Hill, NC, USA
| | - Elisabeth Cardis
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Michael Gillies
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE-CRCE), Chilton, UK
| | - Jacqueline A. O'Hagan
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE-CRCE), Chilton, UK
| | - Richard Haylock
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE-CRCE), Chilton, UK
| | - Dominique Laurier
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN). Fontenay-aux-Roses, France
| | - Klervi Leuraud
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN). Fontenay-aux-Roses, France
| | | | | | | | | |
Collapse
|
43
|
Harbron R. What do recent epidemiological studies tell us about the risk of cancer from radiation doses typical of diagnostic radiography? Radiography (Lond) 2016. [DOI: 10.1016/j.radi.2016.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Kreuzer M, Sobotzki C, Fenske N, Marsh JW, Schnelzer M. Leukaemia mortality and low-dose ionising radiation in the WISMUT uranium miner cohort (1946–2013). Occup Environ Med 2016; 74:252-258. [DOI: 10.1136/oemed-2016-103795] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/08/2016] [Accepted: 10/08/2016] [Indexed: 12/30/2022]
|
45
|
Sasaki MS, Endo S, Hoshi M, Nomura T. Neutron relative biological effectiveness in Hiroshima and Nagasaki atomic bomb survivors: a critical review. JOURNAL OF RADIATION RESEARCH 2016; 57:583-595. [PMID: 27614201 PMCID: PMC5137296 DOI: 10.1093/jrr/rrw079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/09/2016] [Accepted: 06/12/2016] [Indexed: 06/06/2023]
Abstract
The calculated risk of cancer in humans due to radiation exposure is based primarily on long-term follow-up studies, e.g. the life-span study (LSS) on atomic bomb (A-bomb) survivors in Hiroshima and Nagasaki. Since A-bomb radiation consists of a mixture of γ-rays and neutrons, it is essential that the relative biological effectiveness (RBE) of neutrons is adequately evaluated if a study is to serve as a reference for cancer risk. However, the relatively small neutron component hampered the direct estimation of RBE in LSS data. To circumvent this problem, several strategies have been attempted, including dose-independent constant RBE, dose-dependent variable RBE, and dependence on the degrees of dominance of intermingled γ-rays. By surveying the available literature, we tested the chromosomal RBE of neutrons as the biological endpoint for its equivalence to the microdosimetric quantities obtained using a tissue-equivalent proportional counter (TEPC) in various neutron fields. The radiation weighting factor, or quality factor, Qn, of neutrons as expressed in terms of the energy dependence of the maximum RBE, RBEm, was consistent with that predicted by the TEPC data, indicating that the chromosomally measured RBE was independent of the magnitude of coexisting γ-rays. The obtained neutron RBE, which varied with neutron dose, was confirmed to be the most adequate RBE system in terms of agreement with the cancer incidence in A-bomb survivors, using chromosome aberrations as surrogate markers. With this RBE system, the cancer risk in A-bomb survivors as expressed in unit dose of reference radiation is equally compatible with Hiroshima and Nagasaki cities, and may be potentially applicable in other cases of human radiation exposure.
Collapse
Affiliation(s)
- Masao S Sasaki
- Kyoto University and National Institute of Biomedical Innovation, Health and Nutrition, 17-12 Shironosato, Nagaokakyo-shi, Kyoto 617-0835, Japan
| | - Satoru Endo
- Quantum Energy Application, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8527, Japan
| | - Masaharu Hoshi
- Institute for Peace Science, Hiroshima University, 1-1-89 Higashisenda, Naka-ku, Hiroshima 730-0053, Japan
| | - Taisei Nomura
- National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki-shi, Osaka 567-0086, Japan
| |
Collapse
|
46
|
Kutanzi KR, Lumen A, Koturbash I, Miousse IR. Pediatric Exposures to Ionizing Radiation: Carcinogenic Considerations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13111057. [PMID: 27801855 PMCID: PMC5129267 DOI: 10.3390/ijerph13111057] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022]
Abstract
Children are at a greater risk than adults of developing cancer after being exposed to ionizing radiation. Because of their developing bodies and long life expectancy post-exposure, children require specific attention in the aftermath of nuclear accidents and when radiation is used for diagnosis or treatment purposes. In this review, we discuss the carcinogenic potential of pediatric exposures to ionizing radiation from accidental, diagnostic, and therapeutic modalities. Particular emphasis is given to leukemia and thyroid cancers as consequences of accidental exposures. We further discuss the evidence of cancers that arise as a result of radiotherapy and conclude the review with a summary on the available literature on the links between computer tomography (CT) and carcinogenesis. Appropriate actions taken to mitigate or minimize the negative health effects of pediatric exposures to ionizing radiation and future considerations are discussed.
Collapse
Affiliation(s)
- Kristy R Kutanzi
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Annie Lumen
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| | - Igor Koturbash
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Isabelle R Miousse
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
47
|
Hamasaki K, Landes RD, Noda A, Nakamura N, Kodama Y. Irradiation at Different Fetal Stages Results in Different Translocation Frequencies in Adult Mouse Thyroid Cells. Radiat Res 2016; 186:360-366. [PMID: 27626827 DOI: 10.1667/rr14385.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
While it is generally believed that fetuses are at high risk of developing cancers, including leukemia, after low doses of radiation, it has been reported that atomic bomb survivors exposed in utero did not show a dose response for translocations in blood T lymphocytes when they were examined at approximately 40 years of age. Subsequent mouse studies confirmed that animals irradiated during the fetal stage did not show evidence of radiation effects in lymphocytes and bone marrow cells when they were examined after reaching adulthood. However, in a study of rat mammary epithelial cells, radiation effects were clearly observed after fetal irradiation. These results indicate that the fate of chromosome aberrations induced in a fetus could vary among different tissues. Here we report on translocation frequencies in mouse thyroid cells, which were irradiated at different stages of fetal development. Cytogenetic examination was conducted using fluorescence n situ hybridization (FISH) painting of chromosomes 1 and 3. Adult mice, 2 Gy X-ray irradiated at 15.5-day-old fetuses (E15.5), showed a higher translocation frequency (30/1,155 or 25.3 × 10-3) than nonirradiated adult controls (0/1,007 or 0.1 × 10-3), and was near that experienced by irradiated mothers and non-pregnant adult females (43/1,244 or 33.7 × 10-3). These results are consistent with those seen in rat mammary cells. However, when fetuses were irradiated at an earlier stage of development (E6.5) before thyroid organogenesis, the resulting observed translocation frequency was much lower (3/502 or 5.8 × 10-3) than that in E15.5 mice. These results suggest that after fetal irradiation, tissue stem cells record radiation effects primarily when the exposure occurs in cells that have been integrated into tissue. Embryonic stem cells that have been damaged prior to integration into the niche may undergo negative selection due to apoptosis, mitotic death or stem cell-niche cell interactions. The implications of these results in interpreting cancer risks after fetal irradiation are also discussed.
Collapse
Affiliation(s)
- K Hamasaki
- Department of aMolecular Biosciences and
| | - R D Landes
- b Statistics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan; and.,c Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - A Noda
- Department of aMolecular Biosciences and
| | - N Nakamura
- Department of aMolecular Biosciences and
| | - Y Kodama
- Department of aMolecular Biosciences and
| |
Collapse
|
48
|
Niwa O, Barcellos-Hoff MH, Globus RK, Harrison JD, Hendry JH, Jacob P, Martin MT, Seed TM, Shay JW, Story MD, Suzuki K, Yamashita S. ICRP Publication 131: Stem Cell Biology with Respect to Carcinogenesis Aspects of Radiological Protection. Ann ICRP 2016; 44:7-357. [PMID: 26637346 DOI: 10.1177/0146645315595585] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This report provides a review of stem cells/progenitor cells and their responses to ionising radiation in relation to issues relevant to stochastic effects of radiation that form a major part of the International Commission on Radiological Protection's system of radiological protection. Current information on stem cell characteristics, maintenance and renewal, evolution with age, location in stem cell 'niches', and radiosensitivity to acute and protracted exposures is presented in a series of substantial reviews as annexes concerning haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin, and bone. This foundation of knowledge of stem cells is used in the main text of the report to provide a biological insight into issues such as the linear-no-threshold (LNT) model, cancer risk among tissues, dose-rate effects, and changes in the risk of radiation carcinogenesis by age at exposure and attained age. Knowledge of the biology and associated radiation biology of stem cells and progenitor cells is more developed in tissues that renew fairly rapidly, such as haematopoietic tissue, intestinal mucosa, and epidermis, although all the tissues considered here possess stem cell populations. Important features of stem cell maintenance, renewal, and response are the microenvironmental signals operating in the niche residence, for which a well-defined spatial location has been identified in some tissues. The identity of the target cell for carcinogenesis continues to point to the more primitive stem cell population that is mostly quiescent, and hence able to accumulate the protracted sequence of mutations necessary to result in malignancy. In addition, there is some potential for daughter progenitor cells to be target cells in particular cases, such as in haematopoietic tissue and in skin. Several biological processes could contribute to protecting stem cells from mutation accumulation: (a) accurate DNA repair; (b) rapidly induced death of injured stem cells; (c) retention of the DNA parental template strand during divisions in some tissue systems, so that mutations are passed to the daughter differentiating cells and not retained in the parental cell; and (d) stem cell competition, whereby undamaged stem cells outcompete damaged stem cells for residence in the niche. DNA repair mainly occurs within a few days of irradiation, while stem cell competition requires weeks or many months depending on the tissue type. The aforementioned processes may contribute to the differences in carcinogenic radiation risk values between tissues, and may help to explain why a rapidly replicating tissue such as small intestine is less prone to such risk. The processes also provide a mechanistic insight relevant to the LNT model, and the relative and absolute risk models. The radiobiological knowledge also provides a scientific insight into discussions of the dose and dose-rate effectiveness factor currently used in radiological protection guidelines. In addition, the biological information contributes potential reasons for the age-dependent sensitivity to radiation carcinogenesis, including the effects of in-utero exposure.
Collapse
|
49
|
Ozasa K. Epidemiological research on radiation-induced cancer in atomic bomb survivors. JOURNAL OF RADIATION RESEARCH 2016; 57 Suppl 1:i112-i117. [PMID: 26976124 PMCID: PMC4990102 DOI: 10.1093/jrr/rrw005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/11/2015] [Indexed: 05/13/2023]
Abstract
The late effects of exposure to atomic bomb radiation on cancer occurrence have been evaluated by epidemiological studies on three cohorts: a cohort of atomic bomb survivors (Life Span Study; LSS), survivors exposed IN UTERO : , and children of atomic bomb survivors (F1). The risk of leukemia among the survivors increased remarkably in the early period after the bombings, especially among children. Increased risks of solid cancers have been evident since around 10 years after the bombings and are still present today. The LSS has clarified the dose-response relationships of radiation exposure and risk of various cancers, taking into account important risk modifiers such as sex, age at exposure, and attained age. Confounding by conventional risk factors including lifestyle differences is not considered substantial because people were non-selectively exposed to the atomic bomb radiation. Uncertainty in risk estimates at low-dose levels is thought to be derived from various sources, including different estimates of risk at background levels, uncertainty in dose estimates, residual confounding and interaction, strong risk factors, and exposure to residual radiation and/or medical radiation. The risk of cancer in subjects exposed IN UTERO : is similar to that in LSS subjects who were exposed in childhood. Regarding hereditary effects of radiation exposure, no increased risk of cancers associated with parental exposure to radiation have been observed in the F1 cohort to date. In addition to biological and pathogenetic interpretations of the present results, epidemiological investigations using advanced technology should be used to further analyze these cohorts.
Collapse
Affiliation(s)
- Kotaro Ozasa
- Department of Epidemiology, Radiation Effects Research Foundation, 5-2 Hjiyama-koen, Minami-ku, Hiroshima, 732-0815, Japan
| |
Collapse
|
50
|
Vandevoorde C, Vral A, Vandekerckhove B, Philippé J, Thierens H. Radiation Sensitivity of Human CD34+Cells Versus Peripheral Blood T Lymphocytes of Newborns and Adults: DNA Repair and Mutagenic Effects. Radiat Res 2016; 185:580-90. [DOI: 10.1667/rr14109.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|