1
|
Nemati M, Hosseinzadeh Z, Nemati F, Koohpeyma F. Improvement effects of transplanting pancreatic islet that previously incubated with biomaterials on the diabetic nephropathy in STZ- diabetic rats. BMC Nephrol 2024; 25:156. [PMID: 38724923 PMCID: PMC11080158 DOI: 10.1186/s12882-024-03572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 04/05/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Islet transplantation is an effective treatment for diabetes or even its complications. Aim of this study is to investigate efficacy of biomaterial treated islet transplantation on treating diabetic nephropathy. METHODS Male rats were randomly divided into 6 groups; Control, diabetic control, diabetic transplanted with untreated islets, with platelet rich plasma treated islets, with pancreatic islets homogenate treated islets, or with these biomaterials combination treated islets. Islets cultured with biomaterials and transplanted to diabetic rats. After 60 days, biochemical, oxidative stress, and stereological parameters were assessed. RESULTS Serum albumin and BUN concentration, decreased and increased respectively, Oxidative stress of kidney impaired, kidney weight, volume of kidney, cortex, medulla, glomerulus, proximal and distal tubules, collecting ducts, vessels, inflammatory, necrotic and fibrotic tissue in diabetic group increased compared to control group (p < 0.001). In treated groups, especially pancreatic islets homogenate treated islets transplanting animals, there was significant changes in kidney weight, and volume of kidney, proximal and distal tubules, Henle's loop and collecting ducts compared with diabetic group (p = 0.013 to p < 0.001). Combination treated islets animals showed significant increase in vessel volume compared to diabetic group (p < 0.001). Necrotic and fibrotic tissue significantly decreased in islets treated than untreated islet animals, it was higher in pancreatic islets homogenate, and combination treated islets groups (p = 0.001). CONCLUSIONS Biomaterials treated islets transplanting could improve diabetic nephropathy. Improvement of oxidative stress followed by controlling glucose level, and effects of growth factors presenting in biomaterials can be considered as capable underlying mechanism of ameliorating inflammatory, necrotic and fibrotic tissue volume.
Collapse
Affiliation(s)
- Marzieh Nemati
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zahra Hosseinzadeh
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Nemati
- School of Dentistry, Shiraz University of Medical Science, Shiraz, Iran
| | - Farhad Koohpeyma
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Hong S, Kim KS, Han K, Park CY. A cohort study found a high risk of end-stage kidney disease associated with acromegaly. Kidney Int 2023; 104:820-827. [PMID: 37490954 DOI: 10.1016/j.kint.2023.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/04/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
Acromegaly is a chronic systemic disease caused by excess levels of growth hormone and insulin-like growth factor-1 and is associated with numerous complications. Significantly, there is a lack of longitudinal data on kidney complications in patients with acromegaly. As such, we investigated the risk of end-stage kidney disease (ESKD) (stage 5D, 5T) in these patients with nationwide data obtained from the National Health Information Database of the National Health Insurance Service in Republic of Korea. A retrospective cohort study was conducted of 2.187 patients with acromegaly and 10,935 age- and sex-matched (1:5) control subjects without acromegaly over a mean follow-up period of 6.51 years. The study outcomes were analyzed using Cox proportional hazards regression analysis controlling for age, sex, household income, residential area, type 2 diabetes, hypertension, dyslipidemia, urolithiasis, congestive heart failure, myocardial infarction, stroke, and atrial fibrillation. The incidence (per 1,000 person-years) ESKD was 2.00 among patients with acromegaly but only 0.46 among controls, (hazard ratio 4.35 (95% confidence interval 2.63-7.20)) implicating a significantly higher risk. After adjustment for covariates, the risk of ESKD (2.36 (1.36-4.12)) was still significantly higher in patients with acromegaly than that in controls. Among the covariates, diabetes and hypertension were significant facilitators between acromegaly and ESKD in mediation analysis. Pituitary surgery and somatostatin analogues did not significantly change these associations. Thus, acromegaly may be linked with a higher risk for ESKD both independently and through mediators such as diabetes and hypertension.
Collapse
Affiliation(s)
- Sangmo Hong
- Department of Internal Medicine, Guri Hospital, Hanyang University, College of Medicine, Seoul, Republic of Korea
| | - Kyung-Soo Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Cheol-Young Park
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Guo R, Wang P, Zheng X, Cui W, Shang J, Zhao Z. SGLT2 inhibitors suppress epithelial-mesenchymal transition in podocytes under diabetic conditions via downregulating the IGF1R/PI3K pathway. Front Pharmacol 2022; 13:897167. [PMID: 36225569 PMCID: PMC9550168 DOI: 10.3389/fphar.2022.897167] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023] Open
Abstract
Loss of podocyte is a characteristic pathological change of diabetic nephropathy (DN) which is associated with increased proteinuria. Many studies have shown that novel inhibitors of sodium-glucose cotransporter 2 (SGLT2-is), such as dapagliflozin, exert nephroprotective effect on delaying DN progression. However, the mechanisms underlying SGLT2-associated podocyte injury are still not fully elucidated. Here, we generated streptozotocin-induced DN models and treated them with dapagliflozin to explore the possible mechanisms underlying SGLT2 regulation. Compared to mice with DN, dapagliflozin-treated mice exhibited remission of pathological lesions, including glomerular sclerosis, thickening of the glomerular basement membrane (GBM), podocyte injury in the glomeruli, and decreased nephrotoxin levels accompanied by decreased SGLT2 expression. The mRNA expression profiles of these treated mice revealed the significance of the insulin-like growth factor-1 receptor (IGF1R)/PI3K regulatory axis in glomerular injury. KEGG analysis confirmed that the phosphatidylinositol signaling system and insulin signaling pathway were enriched. Western blotting showed that SGLT2-is inhibited the increase of mesenchymal markers (α-SMA, SNAI-1, and ZEB2) and the loss of podocyte markers (nephrin and E-cad). Additionally, SGLT2, IGF1R, phosphorylated PI3K, α-SMA, SNAI-1, and ZEB2 protein levels were increased in high glucose-stimulated human podocytes (HPC) and significantly decreased in dapagliflozin-treated (50 nM and 100 nM) or OSI-906-treated (inhibitor of IGF1R, 60 nM) groups. However, the use of both inhibitors did not enhance this protective effect. Next, we analyzed urine and plasma samples from a cohort consisting of 13 healthy people and 19 DN patients who were administered with (n = 9) or without (n = 10) SGLT2 inhibitors. ELISA results showed decreased circulating levels of IGF1 and IGF2 in SGLT2-is-treated DN patients compared with DN patients. Taken together, our study reported the key role of SGLT2/IGF1R/PI3K signaling in regulating podocyte epithelial-mesenchymal transition (EMT). Modulating IGF1R expression may be a novel approach for DN therapy.
Collapse
Affiliation(s)
- Ruixue Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Zhengzhou University, Zhengzhou, China
| | - Peipei Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Zhengzhou University, Zhengzhou, China
| | - Xuejun Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Zhengzhou University, Zhengzhou, China
| | - Wen Cui
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Zhengzhou University, Zhengzhou, China
| | - Jin Shang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Laboratory of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Laboratory Animal Platform of Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China,*Correspondence: Zhanzheng Zhao, ; Jin Shang,
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Laboratory of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Laboratory Animal Platform of Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China,*Correspondence: Zhanzheng Zhao, ; Jin Shang,
| |
Collapse
|
4
|
Zhao X, Li B, Xiong Y, Xia Z, Hu S, Sun Z, Wang H, Ao Y. Prenatal caffeine exposure induced renal developmental toxicity and transgenerational effect in rat offspring. Food Chem Toxicol 2022; 165:113082. [PMID: 35537649 DOI: 10.1016/j.fct.2022.113082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/24/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
Epidemiological studies revealed that prenatal caffeine exposure (PCE) is associated with adverse gestational outcomes and susceptibility to chronic diseases in offspring, yet the effects of PCE on glomerulosclerosis susceptibility in adult female offspring and its intergenerational transmission remain to be further investigated. Here, we found that PCE caused fetal kidney dysplasia and glomerulosclerosis of the female offspring. Besides, the kidney of F1 offspring in PCE group exhibited the "low expressional programming of AT2R" and "GC-IGF1 programming" alteration. Intergenerational genetic studies revealed that the renal defect and GC-IGF1 programming alteration was inherited to F2 adult female offspring derived from the female germ line, but Low expression of AT2R did not extend to the F2 female offspring. Taken together, PCE caused renal dysplasia and adult glomerulosclerosis in the F1 female offspring, which might be mediated by renal AT2R low expressional programming and GC-IGF1 axis alteration. Furthermore, PCE induced transgenerational toxicity on kidney, and GC-IGF1 programming alteration might be the potential molecular mechanism. This study provided experimental evidence for the mechanism study of the intergenerational inheritance of kidney developmental toxicity caused by PCE.
Collapse
Affiliation(s)
- Xiaoqi Zhao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Bin Li
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ying Xiong
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Zhiping Xia
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Shuangshuang Hu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Zhaoxia Sun
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan, 430071, China
| | - Ying Ao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan, 430071, China.
| |
Collapse
|
5
|
Matrix Metalloproteinases in Diabetic Kidney Disease. J Clin Med 2020; 9:jcm9020472. [PMID: 32046355 PMCID: PMC7073625 DOI: 10.3390/jcm9020472] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 12/11/2022] Open
Abstract
Around the world diabetic kidney disease (DKD) is the main cause of chronic kidney disease (CKD), which is characterized by mesangial expansion, glomerulosclerosis, tubular atrophy, and interstitial fibrosis. The hallmark of the pathogenesis of DKD is an increased extracellular matrix (ECM) accumulation causing thickening of the glomerular and tubular basement membranes, mesangial expansion, sclerosis, and tubulointerstitial fibrosis. The matrix metalloproteases (MMPs) family are composed of zinc-dependent enzymes involved in the degradation and hydrolysis of ECM components. Several MMPs are expressed in the kidney; nephron compartments, vasculature and connective tissue. Given their important role in DKD, several studies have been performed in patients with DKD proposing that the measurement of their activity in serum or in urine may become in the future markers of early DKD. Studies from diabetic nephropathy experimental models suggest that a balance between MMPs levels and their inhibitors is needed to maintain renal homeostasis. This review focuses in the importance of the MMPs within the kidney and their modifications at the circulation, kidney and urine in patients with DKD. We also cover the most important studies performed in experimental models of diabetes in terms of MMPs levels, renal expression and its down-regulation effect.
Collapse
|
6
|
Methionine restriction delays aging-related urogenital diseases in male Fischer 344 rats. GeroScience 2019; 42:287-297. [PMID: 31728897 DOI: 10.1007/s11357-019-00129-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/21/2019] [Indexed: 01/11/2023] Open
Abstract
Dietary methionine restriction (MR) has been found to enhance longevity across many species. We hypothesized that MR might enhance longevity in part by delaying or inhibiting age-related disease processes. To this end, male Fischer 344 rats were fed control (CF, 0.86% methionine) or MR (0.17% methionine) diets throughout their life until sacrifice at approximately 30 months of age, and histopathology was performed to identify the incidence and progression of two important aging-related pathologies, namely, chronic progressive nephropathy (CPN) and testicular tumorigenesis. Although kidney pathology was observed in 87% CF rats and CPN in 62% of CF animals, no evidence of kidney disease was observed in MR rats. Consistent with the absence of renal pathology, urinary albumin levels were lower in the MR group compared to controls throughout the study, with over a six-fold difference between the groups at 30 months of age. Biomarkers associated with renal disease, namely, clusterin, cystatin C, and β-2 microglobulin, were reduced following 18 months of MR. A reduction in testicular tumor incidence from 88% in CF to 22% in MR rats was also observed. These results suggest that MR may lead to metabolic and cellular changes providing protection against age-related diseases.
Collapse
|
7
|
He H, Xiong Y, Li B, Zhu Y, Chen H, Ao Y, Wang H. Intrauterine programming of the glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis mediates glomerulosclerosis in female adult offspring rats induced by prenatal ethanol exposure. Toxicol Lett 2019; 311:17-26. [PMID: 31039417 DOI: 10.1016/j.toxlet.2019.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/06/2019] [Accepted: 04/21/2019] [Indexed: 10/26/2022]
Abstract
Prenatal ethanol exposure (PEE) causes intrauterine growth retardation (IUGR), and the occurrence of glomerulosclerosis is closely related to IUGR. This study aimed to confirm the kidney toxic effect of PEE and explore its intrauterine programming mechanism in female offspring. The Wistar female fetuses on gestational day (GD) 20 and the adult offspring at postnatal week 24 were anesthetized and decapitated. The adult offspring kidneys in the PEE group displayed glomerular hyperplasia and glomerulosclerosis. Blood urea nitrogen (BUN) and the BUN / Serum creatinine (Scr) concentration ratio in the PEE group was increased significantly compared to the control group (P<0.01, P<0.05). Meanwhile, the renal glucocorticoid-activation system was inhibited, whereas the insulin-like growth factor 1 (IGF1) signaling pathway was activated in the female adult offspring of the PEE group. In the fetal kidney of the PEE group, pathological observation showed kidney dysplasia, and the gene expression of the glial-cell-line-derived neurotrophic factor/tyrosine kinase receptor (GDNF/c-Ret) signaling pathway was reduced compared to that of the control group. Moreover, the glucocorticoid-activation system was activated, whereas the IGF1 signaling pathway was inhibited in the fetal kidneys of the PEE group. In conclusion, PEE caused fetal kidney dysplasia and adult glomerulosclerosis in the female offspring rats, and the intrauterine programming alteration of glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis might be involved in fetal-originated glomerulosclerosis.
Collapse
Affiliation(s)
- Hangyuan He
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ying Xiong
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Bin Li
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yanan Zhu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Haiyun Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Ying Ao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
8
|
Jaikumkao K, Pongchaidecha A, Chueakula N, Thongnak LO, Wanchai K, Chatsudthipong V, Chattipakorn N, Lungkaphin A. Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats. Diabetes Obes Metab 2018; 20:2617-2626. [PMID: 29923295 DOI: 10.1111/dom.13441] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/05/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022]
Abstract
AIM To evaluate the renoprotective roles of dapagliflozin in prediabetic rats in order to elucidate the effects of this sodium-glucose co-transporter-2 (SGLT2) inhibitor on the renal complications associated with metabolic dysfunction in diet-induced obesity. METHODS Obesity was induced by feeding a high-fat diet (HFD) to male Wistar rats for 16 weeks. HFD-fed rats were treated with dapagliflozin (1 mg/kg/d) or metformin (30 mg/kg/d) by oral gavage for 4 weeks after insulin resistance had been established. The metabolic characteristics and renal function associated with lipid accumulation, inflammation, fibrosis, endoplasmic reticulum (ER) stress and apoptosis in the renal tissue were examined. RESULTS The results showed that HFD-fed rats developed both obesity and impaired renal function, along with increased renal triglyceride accumulation. Importantly, dapagliflozin had greater efficacy in improving renal function and reducing both body weight and visceral fat accumulation than metformin treatment. Dapagliflozin and metformin were found to have similar effects regarding the suppression of renal triglycerides, superoxide dismutase (SOD) expression and malondialdehyde (MDA) levels, subsequently leading to a decrease in renal inflammation and fibrosis. Renal ER stress and apoptosis were increased in HFD-fed rats and were effectively reduced after administration of dapagliflozin. The expression of renal SGLT2 was not affected by administration of dapagliflozin or metformin. CONCLUSION Collectively, these findings indicate that dapagliflozin exerts renoprotective effects by alleviating obesity-induced renal inflammation, fibrosis, ER stress, apoptosis and lipid accumulation in the prediabetic condition.
Collapse
Affiliation(s)
- Krit Jaikumkao
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anchalee Pongchaidecha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttawud Chueakula
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - La-Ongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Keerati Wanchai
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | | | - Nipon Chattipakorn
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Centre, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Centre for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
9
|
Wei L, Fu R, Liu X, Wang L, Wang M, Yu Q, Tian T, Niu D, Jin T, Dai Z, Gao J. Rs1520220 and Rs2195239 Polymorphisms of IGF-1 Gene Associated with Histopathological Grades in IgA Nephropathy in Northwestern Chinese Han Population. Kidney Blood Press Res 2018; 43:80-87. [PMID: 29402846 DOI: 10.1159/000486914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 01/18/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Insulin-like growth factor-1 (IGF-1) plays important roles in cellular proliferation, differentiation, and growth. Previous studies showed that single-nucleotide polymorphisms (SNPs) of IGF-1 are associated with various diseases. This case-control study aimed to examine the relationship between IGF-1 polymorphisms and IgA nephropathy (IgAN) risk in a Chinese Han population. METHODS We recruited 351 IgAN patients and 310 healthy controls from Northwestern China. Sequenom MassARRAY was utilized to examine the genotypes of two common IGF-1 SNPs (rs1520220 and rs2195239). Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated by the Chi square test to evaluate the associations between IGF-1 and IgAN. RESULTS Our study demonstrated that IGF-1 gene rs1520220 and rs2195239 polymorphisms did not confer susceptibility to IgAN. We found no correlation between gender, blood pressure, proteinuria, eGFR, and IgAN in both SNPs. However, the rs1520220 and rs2195239 variants were correlated with M1 and E1 in patients with IgAN (M0/M1: CC vs. CG+GG: OR = 1.62, P = 0.04; E0/E1: CC vs. CG+GG: OR = 1.95, P = 0.004; GG vs. GC+CC: OR = 1.90, P = 0.004, respectively). CONCLUSION These results indicate that IGF-1 gene polymorphisms play crucial roles in the histopathological progression of IgAN in the Chinese Han population.
Collapse
Affiliation(s)
- Linting Wei
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rongguo Fu
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinghan Liu
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Wang
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Wang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiaoling Yu
- Department of Pathology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tian Tian
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dan Niu
- Department of Nephrology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tianbo Jin
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi'an, China
| | - Zhijun Dai
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Gao
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Whaley-Connell A, Sowers JR. Obesity and kidney disease: from population to basic science and the search for new therapeutic targets. Kidney Int 2017; 92:313-323. [DOI: 10.1016/j.kint.2016.12.034] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/22/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022]
|
11
|
Spoto B, Pisano A, Zoccali C. Insulin resistance in chronic kidney disease: a systematic review. Am J Physiol Renal Physiol 2016; 311:F1087-F1108. [DOI: 10.1152/ajprenal.00340.2016] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/28/2016] [Indexed: 01/07/2023] Open
Abstract
Insulin resistance (IR) is an early metabolic alteration in chronic kidney disease (CKD) patients, being apparent when the glomerular filtration rate is still within the normal range and becoming almost universal in those who reach the end stage of kidney failure. The skeletal muscle represents the primary site of IR in CKD, and alterations at sites beyond the insulin receptor are recognized as the main defect underlying IR in this condition. Estimates of IR based on fasting insulin concentration are easier and faster but may not be adequate in patients with CKD because renal insufficiency reduces insulin catabolism. The hyperinsulinemic euglycemic clamp is the gold standard for the assessment of insulin sensitivity because this technique allows a direct measure of skeletal muscle sensitivity to insulin. The etiology of IR in CKD is multifactorial in nature and may be secondary to disturbances that are prominent in renal diseases, including physical inactivity, chronic inflammation, oxidative stress, vitamin D deficiency, metabolic acidosis, anemia, adipokine derangement, and altered gut microbiome. IR contributes to the progression of renal disease by worsening renal hemodynamics by various mechanisms, including activation of the sympathetic nervous system, sodium retention, and downregulation of the natriuretic peptide system. IR has been solidly associated with intermediate mechanisms leading to cardiovascular (CV) disease in CKD including left ventricular hypertrophy, vascular dysfunction, and atherosclerosis. However, it remains unclear whether IR is an independent predictor of mortality and CV complications in CKD. Because IR is a modifiable risk factor and its reduction may lower CV morbidity and mortality, unveiling the molecular mechanisms responsible for the pathogenesis of CKD-related insulin resistance is of importance for the identification of novel therapeutic targets aimed at reducing the high CV risk of this condition.
Collapse
Affiliation(s)
- Belinda Spoto
- Consiglio Nazionale delle Ricerche-Istituto di Fisiologia Clinica, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Reggio di Calabria, Italy
| | - Anna Pisano
- Consiglio Nazionale delle Ricerche-Istituto di Fisiologia Clinica, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Reggio di Calabria, Italy
| | - Carmine Zoccali
- Consiglio Nazionale delle Ricerche-Istituto di Fisiologia Clinica, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Reggio di Calabria, Italy
| |
Collapse
|
12
|
Jeng CJ, Hsieh YT, Yang CM, Yang CH, Lin CL, Wang IJ. Diabetic Retinopathy in Patients with Diabetic Nephropathy: Development and Progression. PLoS One 2016; 11:e0161897. [PMID: 27564383 PMCID: PMC5001700 DOI: 10.1371/journal.pone.0161897] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/12/2016] [Indexed: 12/13/2022] Open
Abstract
The purpose of current study aims to investigate the development and progression of diabetic retinopathy (DR) in patients with diabetic nephropathy (DN) in a nationwide population-based cohort in Taiwan. Newly diagnosed DN patients and age- and sex-matched controls were identified from the Taiwanese Longitudinal Health Insurance Database from 2000 to 2010. We studied the effects of age, sex, hypertension, dyslipidemia, diabetic polyneuropathy (DPN), and medications on the development of nonproliferative DR (NPDR), proliferative DR (PDR), and diabetic macular edema (DME) in patients with DN. Cox proportional hazard regression analyses were used to estimate the adjusted hazard ratios (HRs) of the development of DR. Our results show that the adjusted HRs of NPDR and PDR were 5.01 (95% confidence interval (CI) = 4.68-5.37) and 9.7 (95% CI = 8.15-11.5), respectively, in patients with DN as compared with patients in the non-DN cohort. At 5-year follow-up, patients with DN showed an increased HR of NPDR progression to PDR (HR = 2.26, 95% CI = 1.68-3.03), and the major comorbidities were hypertension (HR = 1.23, 95% CI = 1.10-1.38 with NPDR; HR = 1.33, 95% CI = 1.02-1.72 with PDR) and DPN (HR = 2.03, 95% CI = 1.72-2.41 in NPDR; HR = 2.95, 95% CI = 2.16-4.03 in PDR). Dyslipidemia increased the HR of developing NPDR but not PDR or DME. Moreover, DN did not significantly affect DME development (HR = 1.47, 95% CI = 0.87-2.48) or progression (HR = 0.37, 95% CI = 0.11-1.20). We concluded that DN was an independent risk factor for DR development and progression; however, DN did not markedly affect DME development in this study, and the potential association between these disorders requires further investigation.
Collapse
Affiliation(s)
- Chi-Juei Jeng
- Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu City, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, School of Medicine, Taipei, Taiwan
| | - Yi-Ting Hsieh
- Department of Ophthalmology, National Taiwan University Hospital, School of Medicine, Taipei, Taiwan
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, School of Medicine, Taipei, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, School of Medicine, Taipei, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University, Taichung, Taiwan
- * E-mail: (CLL); (IJW)
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, School of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- * E-mail: (CLL); (IJW)
| |
Collapse
|
13
|
Kong YL, Shen Y, Ni J, Shao DC, Miao NJ, Xu JL, Zhou L, Xue H, Zhang W, Wang XX, Lu LM. Insulin deficiency induces rat renal mesangial cell dysfunction via activation of IGF-1/IGF-1R pathway. Acta Pharmacol Sin 2016; 37:217-27. [PMID: 26775660 DOI: 10.1038/aps.2015.128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/02/2015] [Indexed: 12/17/2022]
Abstract
AIM Diabetic nephropathy is one of the major complications of diabetes and the major cause of end-stage renal disease. In this study we investigated the insulin deficiency (ID) induced changes in renal mesangial cells (MCs) and in the kidney of STZ-induced diabetic rats. METHODS Cultured rat renal MCs were incubated in ID media. Cell proliferation was analyzed using BrdU incorporation assay. The expression of insulin receptor (IR), insulin-like growth factor-1 receptor (IGF-1R), phosphorylated IGF-1R, fibronectin, and collagen IV was determined with Western blot analysis. STZ-induced diabetic rats were treated with an IGF-1R antagonist picropodophyllin (PPP, 20 mg·kg(-1)·d(-1), po) for 8 weeks. After the rats were euthanized, plasma and kidneys were collected. IGF-1 levels in renal cortex were measured with RT-PCR or ELISA. The morphological changes in the kidneys were also examined. RESULTS Incubation in ID media significantly increased cell proliferation, the synthesis of fibronectin and collagen IV, and the expression of IGF-1 and IGF-1R and phosphorylated IGF-1R in renal MCs. Pretreatment of the cells with PPP (50 nmol/L) blocked ID-induced increases in cell proliferation and the synthesis of fibronectin and collagen IV; knockdown of IGF-1R showed a similar effect as PPP did. In contrast, treatment of the cells with IGF-1 (50 ng/mL) exacerbated ID-induced increases in cell proliferation. In the kidneys of diabetic rats, the expression of IGF-1, IGF-1R and phosphorylated IGF-1R were significantly elevated. Treatment of diabetic rats with PPP did not lower the blood glucose levels, but significantly suppressed the expression of TGF-β, fibronectin and collagen IV in the kidneys, the plasma levels of urinary nitrogen and creatinine, and the urinary protein excretion. CONCLUSION Insulin deficiency increases the expression of IGF-1 and IGF-1R in renal MCs and the kidney of diabetic rats, which contributes to the development of diabetic nephropathy.
Collapse
|
14
|
Zhang L, Zhang L, Li Y, Guo XF, Liu XS. Biotransformation effect of Bombyx Mori L. may play an important role in treating diabetic nephropathy. Chin J Integr Med 2015; 22:872-879. [DOI: 10.1007/s11655-015-2128-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Indexed: 10/22/2022]
|
15
|
Navaneethan SD, Fealy CE, Scelsi AC, Arrigain S, Malin SK, Kirwan JP. A Trial of Lifestyle Modification on Cardiopulmonary, Inflammatory, and Metabolic Effects among Obese with Chronic Kidney Disease. Am J Nephrol 2015; 42:274-81. [PMID: 26495987 DOI: 10.1159/000441155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/16/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND The feasibility and benefits of lifestyle intervention in chronic kidney disease (CKD) patients who are obese has not been well studied. We examined the early effects of an exercise plus weight loss intervention on body composition, exercise capacity, metabolic parameters and kidney function in obese subjects with CKD. METHODS Nine subjects (median age 57 years, body mass index (BMI) 43.9) underwent a lifestyle intervention program that included supervised aerobic exercise (i.e. ∼85% maximum heart rate) and dietary counseling (500 kcal reduction in daily caloric intake). Body composition (iDXA), exercise capacity (maximal oxygen consumption), quality of life, insulin resistance (Matsuda index), inflammation (high sensitivity C-reactive protein), adipokines (leptin and total adiponectin) and kidney function (iothalamate glomerular filtration rate) were measured at baseline and after 12 weeks of the intervention. Changes in parameters were compared using the Wilcoxon signed-rank test. RESULTS After 12 weeks of intervention, there was a significant decrease in BMI and fat mass (median -4.9 kg (25th-75th percentile -5.9 to -3.0)). There was a significant increase in exercise capacity (3.7 ml/kg/min (3.0-4.7)), along with improvements in insulin sensitivity (0.55 (0.43-1.2)), total adiponectin (780.9 μg/ml (262.1-1,497.1)) and leptin (-5.1 ng/ml (-14.5 to -3.3)). There were improvements in biomarkers of kidney disease very quality of life measures, but kidney function remained unchanged. CONCLUSION Lifestyle modification is feasible in obese patients with CKD and produces weight loss that is related to improvements in exercise capacity, insulin resistance and adipokines. Whether lifestyle-induced weight loss and fitness can be sustained and whether it will mediate improvements in kidney function over time merits further investigation.
Collapse
Affiliation(s)
- Sankar D Navaneethan
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Tex., USA
| | | | | | | | | | | |
Collapse
|
16
|
Bach LA, Hale LJ. Insulin-like growth factors and kidney disease. Am J Kidney Dis 2014; 65:327-36. [PMID: 25151409 DOI: 10.1053/j.ajkd.2014.05.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/03/2014] [Indexed: 11/11/2022]
Abstract
Insulin-like growth factors (IGF-1 and IGF-2) are necessary for normal growth and development. They are related structurally to proinsulin and promote cell proliferation, differentiation, and survival, as well as insulin-like metabolic effects, in most cell types and tissues. In particular, IGFs are important for normal pre- and postnatal kidney development. IGF-1 mediates many growth hormone actions, and both growth hormone excess and deficiency are associated with perturbed kidney function. IGFs affect renal hemodynamics both directly and indirectly by interacting with the renin-angiotensin system. In addition to the IGF ligands, the IGF system includes receptors for IGF-1, IGF-2/mannose-6-phosphate, and insulin, and a family of 6 high-affinity IGF-binding proteins that modulate IGF action. Disordered regulation of the IGF system has been implicated in a number of kidney diseases. IGF activity is enhanced in early diabetic nephropathy and polycystic kidneys, whereas IGF resistance is found in chronic kidney failure. IGFs have a potential role in enhancing stem cell repair of kidney injury. Most IGF actions are mediated by the tyrosine kinase IGF-1 receptor, and inhibitors recently have been developed. Further studies are needed to determine the optimal role of IGF-based therapies in kidney disease.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne, Victoria, Australia; Department of Medicine (Alfred), Monash University, Melbourne, Victoria, Australia.
| | - Lorna J Hale
- Baker-IDI Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Cheng H, Chen C, Wang S. Effects of uPA on mesangial matrix changes in the kidney of diabetic rats. Ren Fail 2014; 36:1322-7. [PMID: 25010090 DOI: 10.3109/0886022x.2014.934694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To investigate the effect of urokinase-type plasminogen activator (uPA) on mesangial matrix in the kidney of diabetic rats and its related mechanisms. METHODS Diabetic Sprague-Dawley (SD) rats induced by intraperitoneal injection of streptozotocin (STZ) were randomly and evenly divided into two groups: DM + vehicle, and DM + uPA (2500 U kg(-1) uPA via tail vein once a day for four weeks). The normal SD rats without diabetes were considered as control group. Rats in the three groups were executed and the heart blood was sampled for determination of blood glucose and serum creatinine. Meanwhile, kidney tissues of rats were also harvest for measurement of glomerular area, volume, and mesangial area by periodic acid silver methenamine (PASA) staining. The expression of urokinase-type plasminogen activator receptor (uPAR), plasminogen activator inhibitor-1 (PAI-1), and collagen IV in renal tissues was tested with immunohistochemistry. RESULTS Compared with control, the DM rats had obvious albuminuria, significantly (p < 0.01) increased glomerular volume and mesangial matrix area, and significantly (p < 0.05) higher expression of uPAR, PAI-1 and collagen IV in mesangial matrix, significantly up-regulated (p < 0.05) glomerular uPAR, PAI-1, and collagen IV expression. After treated with uPA, the diabetic rats had significantly (p < 0.05) reduced albuminuria, significantly (p < 0.01) improved glomerular volume and mesangial matrix, significantly (p < 0.05) down-regulated PAI-1 and collagen IV expression in mesangial matrix. However, the uPAR expression in renal tissues were unchangeable (p > 0.05) and PAI-1 and collagen IV expression were significantly (p < 0.05) reduced when diabetic rats were treated with uPA. CONCLUSION uPA can down-regulate glomerular PAI-1 expression in the DM rats but not significantly influence uPAR expression, suggesting that uPA might regulate the mesangial cell (MC) and its matrix expression and improve diseased diabetic mesangial matrix via its combination with uPAR to uptake PAI-1 and accelerate its degradation.
Collapse
Affiliation(s)
- Hui Cheng
- Division of Nephrology, Wuhan University, Renmin Hospital , Wuhan , People's Republic of China
| | | | | |
Collapse
|
18
|
Abstract
An intact microcirculation is vital for diffusion of oxygen and nutrients and for removal of toxins of every organ and system in the human body. The functional and/or anatomical loss of microvessels is known as rarefaction, which can compromise the normal organ function and have been suggested as a possible starting point of several diseases. The purpose of this overview is to discuss the potential underlying mechanisms leading to renal microvascular rarefaction, and the potential consequences on renal function and on the progression of renal damage. Although the kidney is a special organ that receives much more blood than its metabolic needs, experimental and clinical evidence indicates that renal microvascular rarefaction is associated to prevalent cardiovascular diseases such as diabetes, hypertension, and atherosclerosis, either as cause or consequence. On the other hand, emerging experimental evidence using progenitor cells or angiogenic cytokines supports the feasibility of therapeutic interventions capable of modifying the progressive nature of microvascular rarefaction in the kidney. This overview will also attempt to discuss the potential renoprotective mechanisms of the therapeutic targeting of the renal microcirculation.
Collapse
Affiliation(s)
- Alejandro R Chade
- The Department of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, Mississippi, USA.
| |
Collapse
|
19
|
Mader JR, Resch ZT, McLean GR, Mikkelsen JH, Oxvig C, Marler RJ, Conover CA. Mice deficient in PAPP-A show resistance to the development of diabetic nephropathy. J Endocrinol 2013; 219:51-8. [PMID: 23881937 PMCID: PMC3820014 DOI: 10.1530/joe-13-0167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We investigated pregnancy-associated plasma protein-A (PAPP-A) in diabetic nephropathy. Normal human kidney showed specific staining for PAPP-A in glomeruli, and this staining was markedly increased in diabetic kidney. To assess the possible contribution of PAPP-A in the development of diabetic nephropathy, we induced diabetes with streptozotocin in 14-month-old WT and Papp-A knockout (KO) mice. Renal histopathology was evaluated after 4 months of stable hyperglycemia. Kidneys from diabetic WT mice showed multiple abnormalities including thickening of Bowman's capsule (100% of mice), increased glomerular size (80% of mice), tubule dilation (80% of mice), and mononuclear cell infiltration (90% of mice). Kidneys of age-matched non-diabetic WT mice had similar evidence of tubule dilation and mononuclear cell infiltration to those of diabetic WT mice, indicating that these changes were predominantly age-related. However, thickened Bowman's capsule and increased glomerular size appeared specific for the experimental diabetes. Kidneys from diabetic Papp-A KO mice had significantly reduced or no evidence of changes in Bowman's capsule thickening and glomerular size. There was also a shift to larger mesangial area and increased macrophage staining in diabetic WT mice compared with Papp-A KO mice. In summary, elevated PAPP-A expression in glomeruli is associated with diabetic nephropathy in humans and absence of PAPP-A is associated with resistance to the development of indicators of diabetic nephropathy in mice. These data suggest PAPP-A as a potential therapeutic target for diabetic nephropathy.
Collapse
Affiliation(s)
- Jessica R. Mader
- Division of Endocrinology, Endocrine Research Unit, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | - Zachary T. Resch
- Division of Endocrinology, Endocrine Research Unit, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | - Gary R. McLean
- Cellular and Molecular Immunology Research Centre, London Metropolitan University, London, United Kingdom
| | - Jakob H. Mikkelsen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Ronald J. Marler
- Department of Comparative Medicine, Mayo Clinic, Collaborative Research Building, 13400 E Shea Blvd, Scottsdale, AZ 85259
| | - Cheryl A. Conover
- Division of Endocrinology, Endocrine Research Unit, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| |
Collapse
|
20
|
SDF-1α reduces fibronectin expression in rat mesangial cells induced by TGF-β1 and high glucose through PI3K/Akt pathway. Exp Cell Res 2013; 319:1796-1803. [DOI: 10.1016/j.yexcr.2013.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/04/2013] [Accepted: 03/28/2013] [Indexed: 01/31/2023]
|
21
|
Interaction Effects of the Leu162Val PPAR α and Pro12Ala PPAR γ 2 Gene Variants with Renal Function in Metabolic Syndrome Population. PPAR Res 2013; 2013:329862. [PMID: 23690758 PMCID: PMC3649708 DOI: 10.1155/2013/329862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 02/04/2013] [Accepted: 03/08/2013] [Indexed: 02/03/2023] Open
Abstract
Leu162Val PPARα and Pro12Ala PPARγ2 were investigated for their individual and their interactive impact on MS and renal functionality (RF). 522 subjects were investigated for biochemical and anthropometric measurements. The diagnosis of MS was based on the IDF definition (2009). The HOMA 2 was used to determine HOMA-β, HOMA-S and HOMA-IR from FPG and FPI concentrations. RF was assessed by estimating the GFR. PCR-RFLP was performed for DNA genotyping. Allele frequencies were 0.845 for Pro and 0.155 for Ala, and were 0.915 for Leu and 0.085 for Val. We showed that carriers of the PPARα Val 162 allele had lower urea, UA and higher GFR compared to those homozygous for the Leu162 allele. Subjects carried by PPARγ2Ala allele had similar results. They also had reduced FPG, FPI and HOMA-IR, and elevated HOMA-β and HOMA-S compared to those homozygous for the Pro allele. Subjects were divided into 4 groups according to the combinations of genetic alleles of the 2 polymorphisms. Subjects carrying the Leu/Val with an Ala allele had lower FPG, PPI, HOMA-IR, urea, UA levels, higher HOMA-β, HOMA-S and GFR than different genotype combinations. Leu162Val PPARα and Pro12Ala PPARγ2 can interact with each other to modulate glucose and insulin homeostasis and expand their association with overall better RF.
Collapse
|
22
|
Hale LJ, Welsh GI, Perks CM, Hurcombe JA, Moore S, Hers I, Saleem MA, Mathieson PW, Murphy AJ, Jeansson M, Holly JM, Hardouin SN, Coward RJ. Insulin-like growth factor-II is produced by, signals to and is an important survival factor for the mature podocyte in man and mouse. J Pathol 2013; 230:95-106. [PMID: 23299523 DOI: 10.1002/path.4165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 12/03/2012] [Accepted: 12/26/2012] [Indexed: 01/10/2023]
Abstract
Podocytes are crucial for preventing the passage of albumin into the urine and, when lost, are associated with the development of albuminuria, renal failure and cardiovascular disease. Podocytes have limited capacity to regenerate, therefore pro-survival mechanisms are critically important. Insulin-like growth factor-II (IGF-II) is a potent survival and growth factor; however, its major function is thought to be in prenatal development, when circulating levels are high. IGF-II has only previously been reported to continue to be expressed in discrete regions of the brain into adulthood in rodents, with systemic levels being undetectable. Using conditionally immortalized human and ex vivo adult mouse cells of the glomerulus, we demonstrated the podocyte to be the major glomerular source and target of IGF-II; it signals to this cell via the IGF-I receptor via the PI3 kinase and MAPK pathways. Functionally, a reduction in IGF signalling causes podocyte cell death in vitro and glomerular disease in vivo in an aged IGF-II transgenic mouse that produces approximately 60% of IGF-II due to a lack of the P2 promoter of this gene. Collectively, this work reveals the fundamental importance of IGF-II in the mature podocyte for glomerular health across mammalian species.
Collapse
Affiliation(s)
- L J Hale
- Academic and Children's Renal Unit, University of Bristol, Learning and Research, Southmead Hospital, Bristol, BS10 5NB, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bondar' IA, Klimontov VV. The role of matrix metalloproteinases and their inhibitors in the development of renal fibrosis in the patients with diabetes mellitus. ACTA ACUST UNITED AC 2012. [DOI: 10.14341/probl201258139-44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The accumulation of components of extracellular matrix in the glomerular and interstitial compartments of the kidneys is a characteristic feature of diabetic nephropathy. The leading role in the extracellular matrix catabolism is played by matrix metalloproteinases (MMP). The activity of these enzymes is regulated by a group of inhibitors including tissue metalloproteinase inhibitors, plasminogen activator inhibitor-1, etc. Both in vivo and in vitro studies have demonstrated that a reduction of MMP activities and/or an increase of expression of MMP tissue inhibitors in the glomerular and tubular cells result in the suppression of catabolism of the components of extracellular matrix under the hyperglycemic conditions. Both circulating and urinary MMP as well as their inhibitors are considered to be new potential markers of renal fibrosis associated with diabetes mellitus. It is concluded that the directed activation of MMP and neutralization of their inhibitors provide a promising tool for the treatment of diabetic nephropathy.
Collapse
|
24
|
|
25
|
Kishi S, Abe H, Akiyama H, Tominaga T, Murakami T, Mima A, Nagai K, Kishi F, Matsuura M, Matsubara T, Iehara N, Ueda O, Fukushima N, Jishage KI, Doi T. SOX9 protein induces a chondrogenic phenotype of mesangial cells and contributes to advanced diabetic nephropathy. J Biol Chem 2011; 286:32162-9. [PMID: 21795715 DOI: 10.1074/jbc.m111.244541] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diabetic nephropathy (DN) is the most important chronic kidney disease. We previously reported that Smad1 transcriptionally regulates the expression of extracellular matrix in DN. Phenotypic change in mesangial cells (MCs) is a key pathologic event in the progression of DN. The aim of this study is to investigate a novel mechanism underlying chondrogenic phenotypic change in MCs that results in the development of DN. MCs showed chondrogenic potential in a micromass culture, and BMP4 induced the expression of chondrocyte markers (SRY-related HMG Box 9 (SOX9) and type II collagen (COL2)). Advanced glycation end products induced the expression of chondrocyte marker proteins downstream from the BMP4-Smad1 signaling pathway in MCs. In addition, hypoxia also induced the expression of BMP4, hypoxia-inducible factor-1α (HIF-1α), and chondrocyte markers. Overexpression of SOX9 caused ectopic expression of proteoglycans and COL2 in MCs. Furthermore, forced expression of Smad1 induced chondrocyte markers as well. Dorsomorphin inhibited these inductions. Glomerular expressions of HIF-1α, BMP4, and chondrocyte markers were observed in diabetic nephropathy mice. These positive stainings were observed in mesangial sclerotic lesions. SOX9 was partially colocalized with HIF-1α and BMP4 in diabetic glomeruli. BMP4 knock-in transgenic mice showed not only similar pathological lesions to DN, but also the induction of chondrocyte markers in the sclerotic lesions. Here we demonstrate that HIF-1α and BMP4 induce SOX9 expression and subsequent chondrogenic phenotype change in DN. The results suggested that the transdifferentiation of MCs into chondrocyte-like cells in chronic hypoxic stress may result in irreversible structural change in DN.
Collapse
Affiliation(s)
- Seiji Kishi
- Department of Nephrology, Graduate School of Medicine, Health-Bioscience Institute, University of Tokushima, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Furuichi K, Hisada Y, Shimizu M, Okumura T, Kitagawa K, Yoshimoto K, Iwata Y, Yokoyama H, Kaneko S, Wada T. Matrix metalloproteinase-2 (MMP-2) and membrane-type 1 MMP (MT1-MMP) affect the remodeling of glomerulosclerosis in diabetic OLETF rats. Nephrol Dial Transplant 2011; 26:3124-31. [PMID: 21414971 DOI: 10.1093/ndt/gfr125] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND We reported previously that diabetic glomerular nodular-like lesions were formed during the reconstruction process of mesangiolysis. However, the precise mechanism has yet to be elucidated. Here, we investigated the roles of matrix metalloproteinase (MMP)-2, which is activated from proMMP-2 by membrane-type (MT)-MMP in the sclerotic and endothelial cell injury process of a type II diabetic model, Otsuka Long-Evans Tokushima Fatty (OLETF) rats. METHODS Monocrotaline (MCT) or saline only was injected three times every 4 weeks in 36-week-old OLETF rats and control Long-Evans Tokushima Otsuka rats. Glomerular expression and enzymatic activity of MMP-2 and MT1-MMP were assessed by immunohistochemistry, gelatin zymography of cultured glomerular supernatants, in situ enzymatic detection and reverse transcription-polymerase chain reaction. RESULTS Mesangial matrix increased in OLETF rats. In addition, mesangiolysis and nodular-like mesangial expansion were observed only in MCT-injected endothelial injured OLETF rats. MMP-2 and MT1-MMP proteins increased in the expanded mesangial lesions in OLETF rats. Gelatin zymography revealed an increase in 62-kDa activated MMP-2 in the culture supernatants of isolated glomeruli from OLETF rats. In situ enzymatic activity of MMP in the mesangial areas was also detected in 50-week-old MCT-injected OLETF rats. CONCLUSION These results suggest that MMP-2 and MT1-MMP are produced and activated in glomeruli through the progression of diabetic nephropathy and may have some effect on the remodeling of the glomerular matrix in diabetic nephropathy.
Collapse
Affiliation(s)
- Kengo Furuichi
- Division of Blood Purification, Kanazawa University Hospital, Kanazawa Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Raimundo M, Lopes JA. Metabolic syndrome, chronic kidney disease, and cardiovascular disease: a dynamic and life-threatening triad. Cardiol Res Pract 2011; 2011:747861. [PMID: 21403897 PMCID: PMC3043294 DOI: 10.4061/2011/747861] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/06/2010] [Accepted: 12/24/2010] [Indexed: 01/19/2023] Open
Abstract
The metabolic syndrome (MS) and chronic kidney disease (CKD) have both become global public health problems, with increasing social and economic impact due to their high prevalence and remarkable impact on morbidity and mortality. The causality between MS and CKD, and its clinical implications, still does remain not completely understood. Moreover, prophylactic and therapeutic interventions do need to be properly investigated in this field. Herein, we critically review the existing clinical evidence that associates MS with renal disease and cardiovascular disease, as well as the associated pathophysiologic mechanisms and actual treatment options.
Collapse
Affiliation(s)
- Mário Raimundo
- Department of Nephrology and Renal Transplantation, Centro Hospitalar Lisboa Norte, EPE, Hospital de Santa Maria, Avenida Professor Egas Moniz, 1649-035 Lisboa, Portugal
| | - José António Lopes
- Department of Nephrology and Renal Transplantation, Centro Hospitalar Lisboa Norte, EPE, Hospital de Santa Maria, Avenida Professor Egas Moniz, 1649-035 Lisboa, Portugal
| |
Collapse
|
28
|
Hahn WH, Suh JS, Cho BS. Polymorphisms of insulin-like growth factor-1 (IGF-1) and IGF-1 receptor (IGF-1R) contribute to pathologic progression in childhood IgA nephropathy. Growth Factors 2011; 29:8-13. [PMID: 21047277 DOI: 10.3109/08977194.2010.532126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Previous studies have suggested that insulin-like growth factor-1 (IGF-1) signaling might play an important role in renal fibrosis and regulation of the proliferation of mesangial cells and podocytes. We conducted the present study to investigate association between single nucleotide polymorphisms (SNPs) of IGF-1 (IGF-1) and IGF-1 receptor (IGF-1R) genes and childhood immunoglobulin (Ig) A nephropathy (IgAN). We analyzed five SNPs of IGF-1 and IGF-1R in 188 pediatric IgAN patients and in 263 healthy controls. We compared variations in SNPs in several sets of IgAN subgroups that were designated based on the presence of nephrotic range proteinuria (>40 mg/m2 per h), podocyte foot process effacement, and pathological progression. Genotyping of IgAN patients and controls revealed differences in IGF-1R rs2229765. Moreover, the rs2195239, rs978458, and rs1520220 SNPs of IGF-1 showed significant association with pathological progression. Thus, in the present study, we observed associations between the IGF-1/1R pathway, susceptibility to IgAN, and the pathologic progression of IgAN.
Collapse
Affiliation(s)
- Won-Ho Hahn
- Department of Pediatrics, School of Medicine, Kyung Hee University, Hoegi-dong #1, Dongdaemun-gu, Seoul, Korea
| | | | | |
Collapse
|
29
|
Phillips LM, Wang Y, Dai T, Feldman DL, LaPage J, Adler SG. The renin inhibitor aliskiren attenuates high-glucose induced extracellular matrix synthesis and prevents apoptosis in cultured podocytes. Nephron Clin Pract 2011; 118:e49-59. [PMID: 21228599 DOI: 10.1159/000322242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 10/13/2010] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND/AIMS Altered extracellular matrix (ECM) remodeling and podocyte apoptosis are characteristic features of diabetic nephropathy (DN). Aliskiren (ALI) inhibits the renin-catalyzed conversion of angiotensinogen to angiotensin I. This study tested ALI's effect on podocyte ECM accretion and survival in a high-glucose environment in vitro. METHODS Conditionally immortalized mouse podocytes were incubated in normal glucose (NG; 5.5 mM) or high glucose (HG; 40 mM) for 24-48 h with and without ALI (20 nM). Real-time RT-PCR was performed for fibronectin (FN), collagen α5(type IV) (Cola5IV), matrix metalloproteinases 2 and 9 (MMP2 and MMP9), and tissue inhibitor of metalloproteinases 1 and 2 (TIMP1 and TIMP2). Western blots were performed for FN, Cola5IV, MMP2, MMP9, TIMP1 and cleaved (activated) caspase-3. RESULTS ALI significantly reduced the mRNA and protein levels of FN, Cola5IV and TIMP1, and the mRNA of TIMP2 and cleaved caspase-3. ALI had no effect on MMP2 mRNA or protein or MMP9 mRNA tested under HG conditions. Under NG conditions, ALI had no effect on FN, Cola5IV, MMP2, MMP9 and activated caspase-3 proteins. ALI decreased the activated caspase-3 protein and evidence of apoptosis by TUNEL staining observed in podocytes cultured under HG conditions. CONCLUSION These results show for the first time that renin inhibition with ALI mitigates the profibrotic and apoptotic effects of HG in cultured podocytes. These data strengthen the therapeutic rationale for renin inhibition with ALI beyond its hemodynamic effects.
Collapse
Affiliation(s)
- Lynetta M Phillips
- Division of Nephrology, Los Angeles Biomedical Research Institute/Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The prevalence of metabolic syndrome (MetS) is increasing worldwide in both developing and developed countries. Experimental and clinical studies have revealed that MetS plays an important role in the development of chronic kidney disease (CKD), which leads to end-stage renal disease. Emerging evidence also suggests that CKD may actually cause MetS since the kidney is an important organ of glucose and lipid homeostasis. Although multiple mechanisms have been shown to be involved in the pathogenesis of MetS, insulin resistance appears to be a central pathophysiological factor contributing to MetS. In this review we will discuss the association of MetS with insulin resistance and CKD, and the renal pathophysiological changes associated with MetS.
Collapse
Affiliation(s)
- Xiongzhong Ruan
- Centre for Lipid Research, Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
31
|
Li S, Zhang D, Yang L, Burnier JV, Wang N, Lin R, Lee ER, Glazer RI, Brodt P. The IGF-I receptor can alter the matrix metalloproteinase repertoire of tumor cells through transcriptional regulation of PKC-{alpha}. Mol Endocrinol 2009; 23:2013-25. [PMID: 19855090 DOI: 10.1210/me.2009-0197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The IGF-I receptor (IGF-IR) was identified as a tumor progression factor, but its role in invasion and metastasis has been the subject of some controversy. Previously we reported that in murine lung carcinoma M-27 cells, overexpression of IGF-IR increased the synthesis and activation of matrix metalloproteinase (MMP)-2 via Akt/phosphatidylinositol 3-kinase signaling. In contrast, we show here that in these and other cells, IGF-IR overexpression reduced the constitutive and phorbol 12-myristate 13-acetate (PMA)-inducible expression of three protein kinase C (PKC)-regulated metalloproteinases, MMP-3, MMP-9, and MMP-13, in cultured cells as well as in vivo in sc tumors. To elucidate the underlying mechanism, we analyzed the effect of IGF-IR on PKC expression and activity using wild-type and IGF-IR-overexpressing (M-27(IGFIR)) tumor cells. Our results show that overexpression and activation of IGF-IR reduced PKC-alpha expression, PKC activity, and downstream ERK1/2 signaling, and these effects were reversed in cells expressing kinase (Y(1131,1135,1136)F) or C-terminal (Y(1250/51)F) domain mutants of IGF-IR. This reduction was due to transcriptional down-regulation of PKC-alpha as evidenced by reduced PKC-alpha mRNA expression in a phosphatidylinositol 3-kinase-dependent manner and a blockade of PKC-alpha promoter activation as revealed by a reporter gene assay. Finally, reconstitution of PKC-alpha levels could restore MMP-9 expression levels in these cells. Collectively, these results show that IGF-IR can inhibit PKC-alpha gene transcription and thereby block the synthesis of PMA-regulated MMPs, suggesting that within the same cells, IGF-IR can act as both a positive and negative regulator of MMP expression and function.
Collapse
Affiliation(s)
- Shun Li
- Department of Medicine, McGill University Health Center, Royal Victoria Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wu J, Mei C, Vlassara H, Striker GE, Zheng F. Oxidative stress-induced JNK activation contributes to proinflammatory phenotype of aging diabetic mesangial cells. Am J Physiol Renal Physiol 2009; 297:F1622-31. [PMID: 19776174 DOI: 10.1152/ajprenal.00078.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chronic inflammation and increased oxidative stress (OS) play an important role in diabetic nephropathy progression. Herein, we show that mesangial cells from streptozotocin-induced aging diabetic mice, a model of progressive diabetic nephropathy, exhibited increased OS and a proinflammatory phenotype characterized by elevated chemokines and ICAM-1 expression. This phenotypic change was consistent with the extensive inflammatory lesions present in aging diabetic kidneys and was not found in mesangial cells from old and young controls or young diabetic mice. Activation of the c-Jun NH(2)-terminal kinase (JNK) pathway was a likely contributor to the proinflammatory phenotype of aging diabetic mesangial cells since 1) phosphorylated JNK levels and JNK kinase activity were increased in these cells, 2) suppression of JNK significantly decreased monocyte chemoattractant protein-1 (MCP-1) production in these cells, and 3) activation of JNK in normal mesangial cells induced inflammation. Elevated OS in aging diabetic mesangial cells may be a cause of JNK activation and inflammation, because antioxidant treatment decreased JNK phosphorylation and MCP-1 production. Additionally, decreased expression of mitogen-activated protein kinase phosphatase 5 (MKP5) may also contribute to increased JNK and inflammation in aging diabetic mesangial cells since overexpression of MKP5 in these cells normalized phosphorylated JNK levels and reversed the proinflammatory phenotype. Moreover, knocking down of MKP5 expression in old control mesangial cells resulted in JNK activation and MCP-1 production, a phenotype seen in aging diabetic mesangial cells. Interestingly, MKP5 phosphatase activity was diminished by free radicals in vitro. Thus, OS may induce inflammation in mesangial cells by activating JNK through either a direct activation of JNK or indirectly by suppression of MKP5 activity. Proinflammatory phenotype of mesangial cells may contribute to chronic inflammatory lesions and disease progression of aging diabetic mice.
Collapse
Affiliation(s)
- Jin Wu
- Divison of Experimental Diabetes and Aging, Department of Geriatrics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
BACKGROUND Obesity, hypertension and Type 2 diabetes are major contributing factors to the increase in the number of patients that have chronic kidney disease. The clustering of visceral obesity and cardiovascular risk factors has been designated metabolic syndrome or cardiometabolic syndrome. Cardiometabolic syndrome is associated with a complex systemic inflammatory state that has been implicated in medically important complications, including endothelial dysfunction. Inflammation, endothelial dysfunction and insulin resistance are interrelated and have reciprocal relationships that link cardiovascular and metabolic diseases. Ultimately, cardiometabolic syndrome increases the risk for cardiovascular events and end-organ damage. Although the number of patients with cardiometabolic syndrome is escalating, therapeutic approaches have not been developed that provide protection to the kidney. OBJECTIVE The objective of this review is to provide an overview of the contribution of eicosanoids to renal damage in cardiometabolic syndrome. RESULTS/CONCLUSION Eicosanoids are altered in cardiometabolic syndrome and contribute to the progression of renal injury. The antihypertensive and anti-inflammatory actions of epoxides and soluble epoxide hydrolase inhibitors make these attractive eicosanoid therapeutic targets for chronic kidney disease in patients with cardiometabolic syndrome.
Collapse
Affiliation(s)
- John D Imig
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912, USA.
| |
Collapse
|
34
|
Van Linthout S, Seeland U, Riad A, Eckhardt O, Hohl M, Dhayat N, Richter U, Fischer JW, Böhm M, Pauschinger M, Schultheiss HP, Tschöpe C. Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 2008; 103:319-27. [PMID: 18347835 DOI: 10.1007/s00395-008-0715-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To evaluate the regulation of matrix metalloproteinase (MMP)-2 in diabetic cardiomyopathy. METHODS Left ventricle (LV) function was determined by a micro-tip catheter in streptozotocin (STZ)-induced diabetic rats, 2 or 6 weeks (w) after STZ-application. LV total collagen, collagen type I and III content were immunohistologically analyzed and quantified by digital image analysis. LV collagen type I, III and MMP-2 mRNA expression was quantified by real-time RT-PCR. LV pro- and active MMP-2 levels were analyzed by zymography; Smad 7, membrane type (MT)1-MMP and tissue inhibitor metalloproteinase (TIMP)-2 protein levels by Western Blot. RESULTS STZ-induced diabetes was associated with a time-dependent impairment of LV diastolic and systolic function. This was paralleled by a time-dependent increase in LV total collagen content, despite reduced LV collagen type I and III mRNA levels, indicating a role of post-transcriptional/post-translational changes of extracellular matrix regulation. Six weeks (w) after STZ-injection, MMP-2 mRNA expression and pro-MMP-2 levels were 2.7-fold (P < 0.005) and 1.3-fold (P < 0.05) reduced versus controls, respectively, whereas active MMP-2 was decreased to undetectable levels 6 w post-STZ. Concomitantly, Smad 7 and TIMP-2 protein levels were 1.3-fold (P < 0.05) and 10-fold (P < 0.005) increased in diabetics versus controls, respectively, whereas the 45 kDa form of MT1-MMP was undetectable in diabetics. CONCLUSION Under STZ-diabetic conditions, cardiac fibrosis is associated with a dysregulation in extracellular matrix degradation. This condition is featured by reduced MMP-2 activity, concomitant with increased Smad 7 and TIMP-2 and decreased MT1-MMP protein expression, which differs from mechanisms involved in dilated and ischemic heart disease.
Collapse
Affiliation(s)
- Sophie Van Linthout
- Dept. of Cardiology and Pneumology, Charité-University Medicine Berlin, Campus Benjamin Franklin Hindenburgdamm 30, 12200, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yerram P, Karuparthi PR, Saab G, Whaley-Connell A. The cardiometabolic syndrome and chronic kidney disease. CURRENT CARDIOVASCULAR RISK REPORTS 2008. [DOI: 10.1007/s12170-008-0019-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Effect of angiotensin II receptor blocker on glucose-induced mRNA expressions of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in rat mesangial cells. Chin Med J (Engl) 2007. [DOI: 10.1097/00029330-200711010-00006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
37
|
|
38
|
Allard J, Buléon M, Cellier E, Renaud I, Pecher C, Praddaude F, Conti M, Tack I, Girolami JP. ACE inhibitor reduces growth factor receptor expression and signaling but also albuminuria through B2-kinin glomerular receptor activation in diabetic rats. Am J Physiol Renal Physiol 2007; 293:F1083-92. [PMID: 17596523 DOI: 10.1152/ajprenal.00401.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy (DN) is associated with increased oxidative stress, overexpression and activation of growth factor receptors, including those for transforming growth factor-β1 (TGF-β-RII), platelet-derived growth factor (PDGF-R), and insulin-like growth factor (IGF1-R). These pathways are believed to represent pathophysiological determinants of DN. Beyond perfect glycemic control, angiotensin-converting enzyme inhibitors (ACEI) are the most efficient treatment to delay glomerulosclerosis. Since their mechanisms of action remain uncertain, we investigated the effect of ACEI on the glomerular expression of these growth factor pathways in a model of streptozotocin-induced diabetes in rats. The early phase of diabetes was found to be associated with an increase in glomerular expression of IGF1-R, PDGF-R, and TGF-β-RII and activation of IRS1, Erk 1/2, and Smad 2/3. These changes were significantly reduced by ACEI treatment. Furthermore, ACEI stimulated glutathione peroxidase activity, suggesting a protective role against oxidative stress. ACEI decreased ANG II production but also increased bradykinin bioavailability by reducing its degradation. Thus the involvement of the bradykinin pathway was investigated using coadministration of HOE-140, a highly specific nonpeptidic B2-kinin receptor antagonist. Almost all the previously described effects of ACEI were abolished by HOE-140, as was the increase in glutathione peroxidase activity. Moreover, the well-established ability of ACEI to reduce albuminuria was also prevented by HOE-140. Taken together, these data demonstrate that, in the early phase of diabetes, ACEI reverse glomerular overexpression and activation of some critical growth factor pathways and increase protection against oxidative stress and that these effects involve B2-kinin receptor activation.
Collapse
Affiliation(s)
- Julien Allard
- Institut National de la Santé et de la Recherche Médicale U858 eq 5, Louis Bugnard Institute, Toulouse Cedex 4, France
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Karuparthi PR, Yerram P, Saab G, McFarlane SI, Whaley-Connell A. Obesity and chronic kidney disease: therapeutic implications. ACTA ACUST UNITED AC 2007. [DOI: 10.2217/14750708.4.5.585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Ninomiya T, Kiyohara Y. Albuminuria and chronic kidney disease in association with the metabolic syndrome. ACTA ACUST UNITED AC 2007; 2:104-7. [PMID: 17684460 DOI: 10.1111/j.1559-4564.2007.05734.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chronic kidney disease is a worldwide public health problem because it is an important risk factor for cardiovascular disease and premature death. The metabolic syndrome, which is characterized by abdominal obesity, high blood pressure, impaired glucose tolerance, and dyslipidemia, is also an increasingly common disorder and a major risk factor for diabetes and cardiovascular disease. A close association has been found between the metabolic syndrome and the risk for developing renal impairment, clinically expressed in the form of microalbuminuria or chronic kidney disease. Several potential mechanisms, including insulin resistance, renal atherosclerosis, and inflammation, induce the deterioration of renal function. Despite the close association between the metabolic syndrome and renal impairment, it is still unclear whether and to what extent treating the metabolic syndrome will prevent renal impairment. A clinical trial is needed to clarify whether the effect of preventing and treating metabolic syndrome components will result in improved renal prognosis.
Collapse
Affiliation(s)
- Toshiharu Ninomiya
- Department of Environmental Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | |
Collapse
|
41
|
Tessari P, Puricelli L, Iori E, Arrigoni G, Vedovato M, James P, Coracina A, Millioni R. Altered chaperone and protein turnover regulators expression in cultured skin fibroblasts from type 1 diabetes mellitus with nephropathy. J Proteome Res 2007; 6:976-86. [PMID: 17330940 DOI: 10.1021/pr060443n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In type-1 diabetes mellitus (T1DM) with diabetic nephropathy (DN), accumulation of abnormal proteins in the kidney and other tissues may derive from constitutive alterations of intracellular protein recognition, assembly, and turnover. We characterized the proteins involved in these functions in cultured skin fibroblasts from long-term T1DM patients with [DN+] or without [DN-] nephropathy but similar metabolic control, and from matched healthy subjects. 2-D gel electrophoresis and MS-MALDI analysis were employed. The [DN+] T1DM patients, compared with the two other groups, exhibited increased abundance of a high-molecular weight isoform of protein disulphide-isomerase A3 and a decrease of two low-molecular weight isoforms. They also had increased levels of heat shock protein (HSP) 60 kDa isoform #A4, of HSP71 kDa isoform #A30, and of HSP27 kDa isoform #6, whereas the HSP27 kDa isoforms #A90 and #A71 were decreased. Cathepsin beta-2 (#40), the cation-independent mannose 6-phosphate receptor binding protein 1 (CIMPR) (#A27), and annexin 2 (#A9) were also decreased in the [DN+] T1DM patients, whereas the RNA-binding protein regulatory subunity (#38) and the translationally-controlled tumor protein (TCTP) (#A45) were increased. These changes of chaperone-like proteins in fibroblasts may highlight those of the kidney and be patho-physiologically related to the development of nephropathy in T1DM.
Collapse
Affiliation(s)
- Paolo Tessari
- Department of Clinical and Experimental Medicine, Chair of Metabolism, University of Padova, Padova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Samani AA, Yakar S, LeRoith D, Brodt P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev 2007; 28:20-47. [PMID: 16931767 DOI: 10.1210/er.2006-0001] [Citation(s) in RCA: 730] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IGF-I receptor (IGF-IR) signaling and functions are mediated through the activities of a complex molecular network of positive (e.g., type I IGF) and negative (e.g., the type II IGF receptor, IGF-IIR) effectors. Under normal physiological conditions, the balance between the expression and activities of these molecules is tightly controlled. Changes in this delicate balance (e.g., overexpression of one effector) may trigger a cascade of molecular events that can ultimately lead to malignancy. In recent years, evidence has been mounting that the IGF axis may be involved in human cancer progression and can be targeted for therapeutic intervention. Here we review old and more recent evidence on the role the IGF system in malignancy and highlight experimental and clinical studies that provide novel insights into the complex mechanisms that contribute to its oncogenic potential. Controversies arising from conflicting evidence on the relevance of IGF-IR and its ligands to human cancer are discussed. Our review highlights the importance of viewing the IGF axis as a complex multifactorial system and shows that changes in the expression levels of any one component of the axis, in a given malignancy, should be interpreted with caution and viewed in a wider context that takes into account the expression levels, state of activation, accessibility, and functionality of other interacting components. Because IGF targeting for anticancer therapy is rapidly becoming a clinical reality, an understanding of this complexity is timely because it is likely to have an impact on the design, mode of action, and clinical outcomes of newly developed drugs.
Collapse
Affiliation(s)
- Amir Abbas Samani
- Department of Medicine, McGill University Health Center, Royal Victoria Hospital, Room H6.25687, Pine Avenue West, Montreal, Québec, Canada H3A 1A1
| | | | | | | |
Collapse
|
43
|
Singh LP, Jiang Y, Cheng DW. Proteomic identification of 14-3-3zeta as an adapter for IGF-1 and Akt/GSK-3beta signaling and survival of renal mesangial cells. Int J Biol Sci 2006; 3:27-39. [PMID: 17200689 PMCID: PMC1657082 DOI: 10.7150/ijbs.3.27] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 10/25/2006] [Indexed: 01/18/2023] Open
Abstract
Recently we demonstrated that IGF-1 expression is increased in the diabetic kidney and that it may involve in renal hypertrophy and extracellular matrix protein (ECM) accumulation in mesangial cells as seen in diabetic glomerulopathy. The present study investigates the molecular mechanism(s) of IGF-1 and Akt/glycogen synthase kinase-3beta (GSK-3beta) signaling pathway in the regulation of fibronectin and cyclin D1 expression and survival of renal mesangial cells. A proteomic approach is also employed to identify protein targets of IGF-1 signaling via GSK-3beta inhibition in mesangial cells. We show that IGF-1 (100 ng/ml) significantly increases the protein kinase Akt/PKB activity (1.5-2-fold, p<0.05) within 1-5 minutes, which is completely blocked by the presence of 100 nM Wortmannin (phosphatidyl-inositol 3-kinase inhibitor). Akt activation is coupled with Ser9 phosphorylation and inactivation of its down-stream target GSK-3beta. IGF-1 increases the cyclic AMP-responsive element (CRE) binding transcription factor CREB phosphorylation at Ser 133 and CRE-binding activity in mesangial cells, which parallels cyclin D1 and fibronectin expressions. Both proteins are known to have CRE-sequences in their promoter regions upstream of the transcription start site. Suppression of GSK-3beta by SB216763 (100 nM) increases CREB phosphorylation, cyclin D1 and fibronectin levels. Two dimensional gel electrophoresis followed by MALDI-TOF mass spectrometric analysis of mesangial proteins reveals that IGF-1 treatment or an inhibition of GSK-3beta increases the expression of the phosphorylated Ser/Thr binding signal adapter protein 14-3-3zeta. Immuno-precipitation of 14-3-3zeta followed by Western blotting validates the association of phosphorylated GSK-3beta with 14-3-3zeta in renal mesangial cells. Stable expression of a constitutively active GSK-3beta(Ser9Ala) induces cell death while overexpression of HA-tagged 14-3-3zeta increases cell viability as measured by MTT assays. These results indicate that the Akt/GSK-3beta pathway and the adapter protein 14-3-3zeta may play an important role in IGF-1 signaling and survival of mesangial cells in diabetic nephropathy.
Collapse
Affiliation(s)
- Lalit P Singh
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
44
|
Sarafidis PA, Ruilope LM. Insulin resistance, hyperinsulinemia, and renal injury: mechanisms and implications. Am J Nephrol 2006; 26:232-44. [PMID: 16733348 DOI: 10.1159/000093632] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 04/24/2006] [Indexed: 12/11/2022]
Abstract
Most of the basic components of the metabolic syndrome, namely type 2 diabetes mellitus, hypertension, obesity, or low high-density lipoprotein cholesterol levels, apart from being major risk factors for cardiovascular disease have been also associated with an increased risk of chronic kidney disease. However, several epidemiologic studies conducted over the past years suggest that the central component of the syndrome, insulin resistance, as well as compensatory hyperinsulinemia are independently associated with an increased prevalence of chronic kidney disease. In addition, background studies support the existence of several pathways linking insulin resistance and hyperinsulinemia with kidney damage. Insulin per se promotes the proliferation of renal cells and stimulates the production of other important growth factors such as insulin-like growth factor-1 and transforming growth factor beta. Insulin also upregulates the expression of angiotensin II type 1 receptor in mesangial cells, thus enhancing the deleterious effects of angiotensin II in the kidney, and stimulates production and renal action of endothelin-1. Moreover, insulin resistance and hyperinsulinemia are associated with decreased endothelial production of nitric oxide and increased oxidative stress which have been also implicated in the progression of diabetic nephropathy. This review analyzes the above and other potential mechanisms, through which insulin resistance and hyperinsulinemia can contribute to renal injury.
Collapse
Affiliation(s)
- Pantelis A Sarafidis
- Hypertension/Clinical Research Center, Department of Preventive Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| | | |
Collapse
|
45
|
Lee MPS, Sweeney G. Insulin increases gelatinase activity in rat glomerular mesangial cells via ERK- and PI-3 kinase-dependent signalling. Diabetes Obes Metab 2006; 8:281-8. [PMID: 16634987 DOI: 10.1111/j.1463-1326.2005.00502.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Diabetic nephropathy is associated with increased accumulation of the extracellular matrix (ECM) in the kidney, which ultimately leads to kidney failure. This may occur due to excessive synthesis of ECM components or reduced degradation, a process primarily mediated by matrix metalloproteinases (MMPs). The direct effect of insulin on ECM synthesis and degradation in glomerular mesangial cells (GMCs) is unclear. Here, we show an increased gelatinase activity in conditioned media from insulin-treated rat GMCs, determined by gelatin zymography. Furthermore, we show using the specific inhibitors LY294002 and PD98059 that insulin induced increased gelatinase activity via an intracellular signalling mechanism involving phosphatidylinositol-3 kinase (PI-3K) and the extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinases (MAPKs) respectively. In addition, we demonstrate that PI-3 kinase and ERK1/2 MAPK are activated by insulin in GMCs. The appearance of protease activity at approximately 72 kDa suggested that MMP-2 activity may be induced by insulin, however, we did not detect an increase in MMP-2 expression by Western blotting. In summary, our results suggest that insulin can induce gelatinase activity in GMCs, and it is possible that loss of this input in insulin-resistant type 2 diabetic individuals may contribute to ECM accumulation and the development of nephropathy.
Collapse
Affiliation(s)
- M P S Lee
- Department of Biology, York University, Toronto, Canada
| | | |
Collapse
|
46
|
Thrailkill KM, Moreau CS, Cockrell G, Simpson P, Goel R, North P, Fowlkes JL, Bunn RC. Physiological matrix metalloproteinase concentrations in serum during childhood and adolescence, using Luminex Multiplex technology. Clin Chem Lab Med 2006; 43:1392-9. [PMID: 16309379 PMCID: PMC2239010 DOI: 10.1515/cclm.2005.238] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Matrix metalloproteinases are a family of zinc-dependent proteinases which are involved in the breakdown and remodeling of extracellular matrix. As children grow and adolescents reach pubescence, their bodies undergo changes that require age-related morphogenesis of the extracellular matrix, possibly requiring unique patterns of matrix metalloproteinase (MMP) expression during periods of rapid tissue growth (i.e., childhood) or accelerated tissue remodeling and expansion (i.e., adolescence). Therefore, we have characterized age-specific and gender-specific differences in circulating concentrations of MMPs (specifically MMP-1, -2, -3, -8 and -9) in 189 serum samples obtained from healthy subjects, aged 2-18 years. MMP concentrations were measured using Fluorokine MultiAnalyte Profiling kits and a Luminex Bioanalyzer, as well as by commercial ELISA. Serum levels of MMP-1, -2, -3, -8, and -9 in healthy pediatric subjects represent log-normal distributions. MMP-2 was significantly negatively correlated with age (r=-0.29; p<0.001), while MMP-3 was significantly positively correlated with age (r=0.38; p<0.001). Although plasma, not serum, is considered the appropriate blood sample for measurement of MMP-8 and -9, serum levels of MMP-8 and -9 were also found to be highly positively correlated with each other (r=0.76; p<0.01). MMP results obtained by Fluorokin MultiAnalyte Profiling methods correlated well with conventional ELISA methods and use of this technology provided several advantages over ELISA.
Collapse
Affiliation(s)
- Kathryn M Thrailkill
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ding HL, Xu MT, Guo Y, Chen L, Zhang SL, Li F, Fu ZZ. Effect of losartan on the mRNA expressions of MT3-MMP and TIMP-2 in diabetic kidneys. Rev Diabet Stud 2006; 2:216-20. [PMID: 17491697 PMCID: PMC1783568 DOI: 10.1900/rds.2005.2.216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The renin-angiotensin system plays a critical role in circulatory homoeostasis. Evidence has emerged that suggests a pathologic role for angiotensin II in patients with kidney disease. Losartan is an antagonist of angiotensin II and blocks the angiotensin II type-1 receptor. Thus it may reduce proteinuria and delay the progression of renal disease in diabetic nephropathy. We investigated the effects of losartan on the mRNA expressions of membrane-type3 matrix metalloproteinases (MT3-MMP) and the tissue inhibitor of metalloproteinase-2 (TIMP-2) in diabetic kidneys in order to evaluate degradation and remodeling of the extracellular matrix. METHODS Male Wistar rats were divided into 3 groups. Group A was the control group containing healthy rats (n = 11), group B comprised diabetic rats without any therapy (n = 11), and group C consisted of diabetic rats treated with losartan (n = 9). 24-hr urine samples were collected in order to measure urinary albumin excretion (UAE). After a period of 18 weeks, the kidneys were extracted from all rats in order to measure the mRNA expressions of MT3-MMP, TIMP-2 and transforming growth factor-beta1 (TGF-beta1) by RT-PCR. We also examined the glomerular basement membrane thickening and the mesangial matrix (MM) density (MM area/mesangial area). RESULTS The expression of renal MT3-MMP mRNA in group B (1.37 +/- 0.96) was significantly higher than that in group A (0.75 +/- 0.34, p < 0.05), but also significantly higher than in group C (0.75 +/- 0.30, p < 0.05). Similarly, the mRNA expression of renal TIMP-2 in group B (0.73 +/- 0.37) was significantly increased compared to that in group A (0.32 +/- 0.19, p < 0.05), but also higher than in group C (0.34 +/- 0.17, p < 0.05). In addition, subjects in group B showed abundant TGF-beta1 mRNA expression and UAE compared to groups A and C, as well as significantly higher glomerular basement membrane thickening and MM density (all p < 0.05). CONCLUSIONS We conclude that MT3-MMP and TIMP-2 production in the renal cortex of diabetic kidneys is increased. Losartan can prevent the development of diabetic nephropathy by decreasing MT3-MMP and TIMP2 production in diabetic kidneys.
Collapse
Affiliation(s)
- He-Lin Ding
- Department of Endocrinology, The Second Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | | | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Stephen S Rich
- Department of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
49
|
Varelias A, Cowin AJ, Adams D, Harries RHC, Cooter RD, Belford DA, Fitridge RA, Rayner, PhD TE. Mitogenic bovine whey extract modulates matrix metalloproteinase-2, -9, and tissue inhibitor of matrix metalloproteinase-2 levels in chronic leg ulcers. Wound Repair Regen 2006. [DOI: 10.1111/j.1524-475x.2005.00085.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Tayebjee MH, Lip GYH, MacFadyen RJ. What role do extracellular matrix changes contribute to the cardiovascular disease burden of diabetes mellitus? Diabet Med 2005; 22:1628-35. [PMID: 16401304 DOI: 10.1111/j.1464-5491.2005.01675.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Matrix metalloproteinases (MMP) and their inhibitors (TIMP) are central factors in the control of extracellular matrix turnover. They are important in normal physiology and also during a range of pathological states. In this review, we have systematically identified clinical articles relevant to cardiovascular disease in diabetes from the last 10 years. Our aim was to outline the structure, function and regulation of metalloproteinases and their key roles in cardiomyopathy and vasculopathy in diabetes. We also explore the effects of drug intervention on both human subjects with diabetes and experimental animal models. The modulation of MMP and TIMP activity using drugs that affect the expression and function of these proteins may provide us with new ways to treat this serious and disabling disease, and we explore potential mechanisms and treatments.
Collapse
Affiliation(s)
- M H Tayebjee
- Haemostasis Thrombosis and Vascular Biology Unit, University Department of Medicine, City Hospital, Birmingham, UK
| | | | | |
Collapse
|