1
|
Young K, Shi WY, Xu-Monette Z, Jia Y, Tzankov A, Go H, Li L, Ponzoni M, Wang Y, Zhai Q, Perry A, Wang S, Wang X, Chiu A, Xu M, Visco C, Dybkaer K, Withers H, Long M, Yuan A, Miao Y, Li J, Macias E, Shuai W, Wang B, Bhagat G, Zu Y, Pan Z, Choi W, Montes-Moreno S, Chen W, van Krieken JH, Møller M, Zhan F, Parsons B, Zhang S, Hsi E, Sohani A, Abramson J, Ferreri A, Xu B, Li Y. Prognostic gene expression and microRNA profiling signatures and genetic alterations in primary testicular diffuse large B-cell lymphoma. RESEARCH SQUARE 2025:rs.3.rs-5732026. [PMID: 39866884 PMCID: PMC11760253 DOI: 10.21203/rs.3.rs-5732026/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Primary testicular diffuse large B-cell lymphoma (PT-DLBCL) is a rare and aggressive lymphoma with molecular heterogeneity not well characterize. In this study, we performed next-generation sequencing analysis for a large number of DNA and RNA samples from patients with PT-DLBCL. DNA sequencing analysis identified ≥ 3 chromosomes with copy number variations (CNVs) and microsatellite instability as prognostic biomarkers, rather than MYD88 mutations and genetic subtypes. Remarkably, targeted RNA-seq analysis in 195 patients revealed that TP53 mutations with a ≥ 40% variant allele frequency had significantly adverse prognostic impact, and that a 150-gene expression signature subdivided PT-DLBCL into two distinct clusters, termed as testicular lymphoma tumor (TLT) and microenvironment (ME) subtypes. The TLT subtype featured upregulation of genes involved in B-cell receptor signaling, cell cycle, DNA damage and repair, higher frequencies of CNVs and MYD88 mutations, elder ages, larger tumor sizes, and significantly poorer survival. Genomic microRNA profiling analysis identified significantly differentially expressed microRNAs between 113 PT-DLBCL and 180 systemic DLBCL patients, and further subdivided the PT-DLBCL cohort by microRNA signatures. The subcohort with upregulation of 16 microRNAs associated with PT-DLBCL and testicular tissue expression had significantly better survival. This study revealed characteristic genetic, gene expression, and microRNA profiles and heterogeneity in PT-DLBCL.
Collapse
Affiliation(s)
- Ken Young
- Duke University Medical Center and Duke Cancer Institute
| | | | | | | | | | - Heounjeong Go
- Asan Medical Center, University of Ulsan College of Medicine
| | - Ling Li
- First Affiliated Hospital of Zhengzhou University
| | | | | | | | | | - Shi Wang
- National University Hospital, Singapore
| | | | | | | | | | | | | | - Mark Long
- Roswell Park Comprehensive Cancer Center
| | | | - Yi Miao
- First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital
| | - Jianyong Li
- First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Personalized Cancer Medicine
| | | | | | | | | | | | | | | | | | | | | | | | - Fenghuang Zhan
- Myeloma Center, University of Arkansas for Medical Sciences
| | | | | | | | | | | | | | - Bing Xu
- The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University
| | | |
Collapse
|
2
|
Yamada S, Satou A, Tsuyuki Y, Iba S, Okumura Y, Ishikawa E, Ito H, Kogure Y, Goto N, Tanikawa M, Shimada K, Tsukamoto T, Karube K, Yokoo H, Kataoka K, Tomita A, Mase M, Nakamura S. Primary large B-cell lymphoma of the central nervous system: A reappraisal of CD5-positive cases based on clinical, pathological, and molecular evaluation. Pathol Int 2025; 75:11-20. [PMID: 39660959 DOI: 10.1111/pin.13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
CD5 expression is seen in 5%-10% of de novo diffuse large B-cell lymphomas (DLBCLs). Primary large B-cell lymphoma of the central nervous system (PCNS-LBCL) also exhibits CD5 expression in a minority of cases, however, clinicopathological and molecular features remain largely unclarified. Here we present the clinical, molecular, and pathological features of 11 CD5-positive (+) PCNS-LBCL cases, occupying 6.7% of all 165 PCNS-LBCLs diagnosed in our institutions. While CD5+ systemic DLBCL has been recognized as a distinctive subgroup showing an aggressive clinical course, no obvious differences were found between CD5+ and CD5-negative subgroups among the present CNS patients clinically. MYD88 p.L265P and CD79B p.Y196 mutations were detected in eight (73%) and seven (64%) cases, respectively, supporting previous reports. Notably, the microenvironmental immune cells were universally PD-L1/CD274-positive, and the higher levels tended to present favorable overall survival, as already evidenced in the PCNS-LBCL series. In contrast, neoplastic PD-L1/CD274 expression was undetectable in all cases. Indeed, no structural variations or copy number alterations involving PD-1 ligands were detected by targeted-capture sequencing and fluorescence in situ hybridization. While further studies are warranted, we may have confirmed similarity between PCNS-LBCLs and intravascular large B-cell lymphomas from a molecular standpoint.
Collapse
Affiliation(s)
- Seiji Yamada
- Division of Analytical Pathology, Oncology Innovation Center, Research Promotion Headquarters, Fujita Health University School of Medicine, Toyoake, Japan
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Yuta Tsuyuki
- Center for Clinical Pathology, Fujita Health University Hospital, Toyoake, Japan
| | - Sachiko Iba
- Department of Hematology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yuka Okumura
- Department of Pathology and Laboratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eri Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideaki Ito
- Department of Pathology, Aichi Medical University, Nagakute, Japan
| | - Yasunori Kogure
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Naoe Goto
- Department of Hematology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Motoki Tanikawa
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazuyuki Shimada
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Tsukamoto
- Division of Analytical Pathology, Oncology Innovation Center, Research Promotion Headquarters, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Akihiro Tomita
- Department of Hematology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Mitsuhito Mase
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shigeo Nakamura
- Department of Pathology and Laboratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Dan A, Aricak O, Rounis K, Montero-Fernandez MA, Guijarro R, Ekman S, Ortiz-Villalón C, De Petris L. PD-1 expression in tumor infiltrating lymphocytes as a prognostic marker in early-stage non-small cell lung cancer. Front Oncol 2024; 14:1414900. [PMID: 39391244 PMCID: PMC11464330 DOI: 10.3389/fonc.2024.1414900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Programmed death ligand - 1 (PD-L1) expression is a well-established predictive biomarker for immunotherapy in non-small cell lung cancer (NSCLC). Programmed death - 1 (PD-1) serves as the target protein to PD-L1 and their interaction serves as a crucial pathway for immune evasion. This study aimed to investigate the expression pattern of PD-1 on Tumor-infiltrating lymphocytes (TILs) in early-stage NSCLC, and its potential role as prognostic biomarker. Materials & methods PD-1 was evaluated in 474 surgical resected early-stage NSCLC specimens, using Tissue microarray and immunohistochemical staining. Expression was scored as negative (<1%) or positive. Positive PD-1 expression was further divided into low (<10%) and high (≥10%). None of the patients had received treatment with PD-1/PD-L1 inhibitors. Results PD-1 expression ≥1% in TILs was observed in 83.5% of cases and was associated with pT stage (p=0.02), grade 3 (p=0.004), and adenocarcinoma subtype (p=0.05). Individuals with high PD-1 expression (≥10%) experienced reduced 10-year overall survival (Log-Rank test = 0.005). In addition, high PD-1 expression emerged as an independent factor associated with reduced survival on multivariate analysis (HR: 1.328 (95% CI: 1.074-1.641). Conclusions Patients with early-stage NSCLC who exhibited PD-1 expression of ≥10% on TILs had an unfavorable 10-year OS rate. These findings indicate that elevated PD-1 expression on TILs can be associated with immune evasion during the early stages of malignancy evolution in the NSCLC setting and further research is required to further delineate the role of PD-1/PD-L1 pathway on tumor immune senescence. These results underline the potential role of PD-1/PD-L1 inhibitors in the treatment of early-stage NSCLC.
Collapse
Affiliation(s)
- Asaf Dan
- Department of Oncology-Pathology (Onkpat), Karolinska Institutet, Stockholm, Sweden
- Thoracic Oncology Center, Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Ozan Aricak
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Huddinge, Sweden
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Huddinge, Sweden
| | - Konstantinos Rounis
- Department of Oncology-Pathology (Onkpat), Karolinska Institutet, Stockholm, Sweden
- Thoracic Oncology Center, Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - M. Angeles Montero-Fernandez
- Department of Cellular Pathology, Royal Liverpool University Hospital National Health Service Foundation Trust (NHS FT), Liverpool, United Kingdom
| | - Ricardo Guijarro
- Department of Thoracic Surgery, Valencia University, Valencia, Spain
| | - Simon Ekman
- Department of Oncology-Pathology (Onkpat), Karolinska Institutet, Stockholm, Sweden
- Thoracic Oncology Center, Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | | | - Luigi De Petris
- Department of Oncology-Pathology (Onkpat), Karolinska Institutet, Stockholm, Sweden
- Thoracic Oncology Center, Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| |
Collapse
|
4
|
Li P, Zhong Y, Zhang M, Zheng Y, Peng W. The expression of programmed cell death ligand 1 (PD-L1) involves in the clinicopathologic characteristics and prognostic implications of testicular germ cell tumor (TGCT): a systematic review and meta-analysis. Transl Cancer Res 2024; 13:3944-3959. [PMID: 39262473 PMCID: PMC11385796 DOI: 10.21037/tcr-23-2302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/09/2024] [Indexed: 09/13/2024]
Abstract
Background Testicular germ cell tumor (TGCT) is a type of tumor with relatively lower incidence but being more prevalent in young men. The expression of programmed cell death ligand 1 (PD-L1) serves as a potential biomarker for predicting the survival outcomes of other tumors. Some studies discovered higher prevalence of PD-L1 in TGCT patients who achieved favorable treatment outcomes, while other studies showed lower or absent expression of PD-L1 in TGCT with the better prognosis as well. Therefore, in order to address this controversy and clarify the association between the expression of PD-L1 and pathological features and prognosis of TGCT, this meta-analysis was conducted. Methods A comprehensive literature search was performed using following search terms: "testis", "testicle", "testicular", "cancer", "carcinoma", "tumor", "neoplasm", "programmed cell death ligand 1", "programmed death ligand 1", "PD-L1", "PDL1", "B7 homolog 1", "B7-H1", "B7H1" and "CD274". Relevant studies were retrieved according to the inclusion criteria from reputable databases including PubMed, Embase, Web of Science, Cochrane Library and China National Knowledge Infrastructure (CNKI). These studies investigated the expression of PD-L1 in both tumor cells and tumor infiltrating immune cells (TIICs) in TGCT. The overall proportion of PD-L1 positivity was assessed using R programming. Pooled hazard ratio (HR) and odds ratio (OR) with corresponding 95% confidence interval (CI) were calculated using Revman software to evaluate the involvement of PD-L1 expression in TGCT. The Newcastle-Ottawa Scale (NOS) was used to evaluate the quality assessment of included studies. Sensitivity analysis and publication bias evaluation were subsequently performed. Results A total of eight eligible studies compromising 1,589 patients diagnosed with TGCT were finally included in this study. PD-L1 positivity was detected in 31% and 41% of TGCT patients' tumor cells and TIICs, respectively. The pooled data demonstrated a significant association between elevated PD-L1 expression levels in TIICs and a favorable prognosis characterized by the reduced disease progression and relapse events (HR =0.21, 95% CI: 0.13-0.33). Furthermore, PD-L1+ TIICs exhibited higher prevalence rates in seminoma (OR =2.11, 95% CI: 1.57-2.84) and embryonal carcinoma (OR =6.23, 95% CI: 2.42-16.02) patients. Notably, PD-L1 expression in TIICs displayed a tendency to increase in TGCT patients with lower stages or without lymph node metastasis. Conclusions PD-L1 expression was observed in choriocarcinoma tumor cells, while yolk sac tumor and teratoma tumor cells exhibited lower or absent expression of PD-L1. Conversely, PD-L1 expression in TIICs was associated with seminoma and embryonal carcinoma, which was more commonly observed in TGCT patients with lower stages and better prognosis, thereby providing a theoretical foundation for the application of immunotherapy in relapsed/refractory TGCT patients.
Collapse
Affiliation(s)
- Peifeng Li
- Department of Urology, The Sixth People's Hospital of Huizhou, Huizhou, China
- Department of Urology, Affiliated Huiyang Hospital of Southern Medical University, Huizhou, China
| | - Yuwei Zhong
- Department of Urology, The Sixth People's Hospital of Huizhou, Huizhou, China
- Department of Urology, Affiliated Huiyang Hospital of Southern Medical University, Huizhou, China
| | - Miaotao Zhang
- Department of Urology, The Sixth People's Hospital of Huizhou, Huizhou, China
- Department of Urology, Affiliated Huiyang Hospital of Southern Medical University, Huizhou, China
| | - Yonghong Zheng
- Department of Urology, The Sixth People's Hospital of Huizhou, Huizhou, China
- Department of Urology, Affiliated Huiyang Hospital of Southern Medical University, Huizhou, China
| | - Wei Peng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, China
| |
Collapse
|
5
|
Hua X, Xu Q, Wu R, Sun W, Gu Y, Zhu S, Liu X, Lv T, Song Y. ALKBH5 promotes non-small cell lung cancer progression and susceptibility to anti-PD-L1 therapy by modulating interactions between tumor and macrophages. J Exp Clin Cancer Res 2024; 43:164. [PMID: 38872221 PMCID: PMC11177518 DOI: 10.1186/s13046-024-03073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/19/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Understanding the mechanisms that mediate the interaction between tumor and immune cells may provide therapeutic benefit to patients with cancer. The N6-methyladenosine (m6A) demethylase, ALKBH5 (alkB homolog 5), is overexpressed in non-small cell lung cancer. However, its role in the tumor microenvironment is unknown. METHODS Datasets and tissue samples were used to determine the relationship between ALKBH5 expression and immunotherapy efficacy. Bioinformatic analysis, colorimetric assay to determine m6A RNA methylation, dual luciferase reporter assay, RNA/m6A-modified RNA immunoprecipitation, RNA stability assay, and RNA sequencing were used to investigate the regulatory mechanism of ALKBH5 in non-small cell lung cancer. In vitro and in vivo assays were performed to determine the contribution of ALKBH5 to the development of non-small cell lung cancer. RESULTS ALKBH5 was upregulated in primary non-small cell lung cancer tissues. ALKBH5 was positively correlated with programmed death-ligand 1 expression and macrophage infiltration and was associated with immunotherapy response. JAK2 was identified as a target of ALKBH5-mediated m6A modification, which activates the JAK2/p-STAT3 pathway to promote non-small cell lung cancer progression. ALKBH5 was found to recruit programmed death-ligand 1-positive tumor-associated macrophages and promote M2 macrophage polarization by inducing the secretion of CCL2 and CXCL10. ALKBH5 and tumor-associated macrophage-secreted IL-6 showed a synergistic effect to activate the JAK2/p-STAT3 pathway in cancer cells. CONCLUSIONS ALKBH5 promotes non-small cell lung cancer progression by regulating cancer and tumor-associated macrophage behavior through the JAK2/p-STAT3 pathway and the expression of CCL2 and CXCL10, respectively. These findings suggest that targeting ALKBH5 is a promising strategy of enhancing the anti-tumor immune response in patients with NSCLC and that identifying ALKBH5 status could facilitate prediction of clinical response to anti-PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Xin Hua
- Medical School of Southeast University, Nanjing, 210003, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Qiuli Xu
- Medical School of Southeast University, Nanjing, 210003, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Ranpu Wu
- Medical School of Southeast University, Nanjing, 210003, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Wei Sun
- Medical School of Southeast University, Nanjing, 210003, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Yanli Gu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Xin Liu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Tangfeng Lv
- Medical School of Southeast University, Nanjing, 210003, China.
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Yong Song
- Medical School of Southeast University, Nanjing, 210003, China.
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
6
|
He J, Li L, Wang S, Wu S, Xiao W, Li L, Dong L, Ge A, Xie K, Wang J. Abnormal methylation of HOXA11 promoter promotes tumor progression in testicular germ cell tumor. Am J Transl Res 2024; 16:1660-1668. [PMID: 38883380 PMCID: PMC11170575 DOI: 10.62347/hjki7733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/19/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVE To investigate the methylation of HOXA11 gene promoter in testicular germ cell tumor (GCT). METHOD The clinicopathological data of 63 patients with primary testicular GCT who underwent surgery during Apr. 2019 to Mar. 2021, were retrospectively analyzed. Their GCT tissue and paraneoplastic testicular tissue were obtained, and genomic DNA was extracted from both. The methylation of HOXA11 gene promoter region was detected by methylation-specific PCR (MSP). The incidence of HOXA11 methylation in testicular GCT and adjacent tissues was compared, and the connection between methylation level in testicular GCT and clinicopathologic features of patients was statistically analyzed. Testicular GCT cells were treated with methylated transferase inhibitor 5-Aza-dC in vitro, and HOXA11 mRNA expression was detected by real-time PCR. RESULTS The positive rate of HOXA11 promoter methylation in testicular GCT tissues was notably higher than that of paired adjacent tissues (P<0.05). The abnormal methylation of HOXA11 gene promoter was correlated with lymph node metastasis and TNM stage in patients (P<0.05). HOXA11 mRNA expression in testicular GCT cells treated with 5-Aza-dC was increased (P<0.05). CONCLUSION Abnormal methylation of HOXA11 gene promoter in testicular germ cell tumor tissue inhibits transcription and expression of HOXA11 gene. The abnormal methylation of HOXA11 promoter region is tightly associated with lymph node metastasis and TNM staging in testicular germ cell tumors.
Collapse
Affiliation(s)
- Juan He
- Department of Pathology, The Institutes of Shanxi Bethune Hospital Taiyuan 030032, Shanxi, China
| | - Liang Li
- Institutes of Biomedical Sciences, Shanxi University Taiyuan 030006, Shanxi, China
| | - Shengxin Wang
- Institutes of Biomedical Sciences, Shanxi University Taiyuan 030006, Shanxi, China
| | - Shan Wu
- Department of Radiology, The Institutes of Shanxi Bethune Hospital Taiyuan 030032, Shanxi, China
| | - Wenli Xiao
- Department of Ultrasonography, The Institutes of Shanxi Bethune Hospital Taiyuan 030032, Shanxi, China
| | - Li Li
- Department of Pathology, The Institutes of Shanxi Bethune Hospital Taiyuan 030032, Shanxi, China
| | - Li Dong
- Institutes of Biomedical Sciences, Shanxi University Taiyuan 030006, Shanxi, China
| | - An Ge
- Institutes of Biomedical Sciences, Shanxi University Taiyuan 030006, Shanxi, China
| | - Kaikai Xie
- Institutes of Biomedical Sciences, Shanxi University Taiyuan 030006, Shanxi, China
| | - Jiaomin Wang
- Department of Foreign Language, Shanxi Medical University Taiyuan 030006, Shanxi, China
| |
Collapse
|
7
|
Zhang W, Yang P, Yang Y, Liu S, Xu Y, Wu C, Wang J, Liu C, Liu H, Li S, Huang W, Jing H. Genomic landscape and distinct molecular subtypes of primary testicular lymphoma. J Transl Med 2024; 22:414. [PMID: 38693538 PMCID: PMC11064289 DOI: 10.1186/s12967-024-05140-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/28/2024] [Indexed: 05/03/2024] Open
Abstract
Primary testicular lymphoma (PTL) is a rare lymphoma predominantly occurring in the elderly male population. It is characterized by a limited response to treatment and a heightened tendency towards relapse. Histologically, approximately 90% of PTL cases are classified as diffuse large B-cell lymphomas (DLBCL). Genetic features of PTL were delineated in a limited scope within several independent studies. Some of the articles which analyzed the genetic characterization of DLBCL have incorporated PTL samples, but these have been constrained by small sample sizes. In addition, there have been an absence of independent molecular typing studies of PTL. This report summarizes the common mutational features, copy number variations (CNVs) and molecular typing of PTL patients, based on whole-exome sequencing (WES) conducted on a cohort of 25 PTL patients. Among them, HLA, CDKN2A and MYD88 had a high mutation frequency. In addition, we found two core mutational characteristics in PTL including mutation in genes linked to genomic instability (TP53 and CDKN2A) and mutation in immune-related genes (HLA, MYD88, CD79B). We performed molecular typing of 25 PTL patients into C1 subtype with predominantly TP53 mutations and C2 subtype with predominantly HLA mutations. Notably, mutations in the TP53 gene predicted a poor outcome in most types of lymphomas. However, the C1 subtype, dominated by TP53 mutations, had a better prognosis compared to the C2 subtype in PTL. C2 subtype exhibited a worse prognosis, aligning with our finding that the mechanism of immune escape in PTL was primarily the deletions of HLA rather than PD-L1/PD-L2 alterations, a contrast to other DLBCLs. Moreover, we calculated the tumor mutation burden (TMB) and identified that TMB can predict prognosis and recurrence rate in PTL. Our study underscores the significance of molecular typing in PTL based on mutational characteristics, which plays a crucial role in prognostication and guiding therapeutic strategies for patients.
Collapse
Affiliation(s)
- Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Ping Yang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Yaru Yang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Shuozi Liu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Yongdeng Xu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Chaoling Wu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Jing Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Cuiling Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hui Liu
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Beijing, 100005, China
| | | | - Wei Huang
- MyGenostics Inc, Beijing, 101300, China
| | - Hongmei Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
8
|
Zhang W, Liu M, Li W, Song Y. Immune cells in the B-cell lymphoma microenvironment: From basic research to clinical applications. Chin Med J (Engl) 2024; 137:776-790. [PMID: 38269619 PMCID: PMC10997228 DOI: 10.1097/cm9.0000000000002919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Indexed: 01/26/2024] Open
Abstract
ABSTRACT B-cell lymphoma is a group of hematological malignancies characterized by variable genetic and biological features and clinical behaviors. The tumor microenvironment (TME) is a complex network in tumors, which consists of surrounding blood vessels, extracellular matrix, immune and non-immune cells, and signaling molecules. Increasing evidence has shown that the TME, especially immune cells within, is a double-edged sword, acting either as a tumor killer or as a promoter of tumor progression. These pro-tumor activities are driven by subpopulations of immune cells that express typical markers but have unique transcriptional characteristics, making tumor-associated immune cells good targets for human anti-cancer therapy by ablating immunosuppressive cells or enhancing immune-activated cells. Thus, exploring the role of immune cells in the TME provides distinct insights for immunotherapy in B-cell lymphoma. In this review, we elucidated the interaction between immune cells and tumor cells and their function in the initiation, progression, and prognosis of B-cell lymphoma, from preclinical experiments to clinical trials. Furthermore, we outlined potential therapeutic approaches and discussed the potential clinical value and future perspectives of targeting immune cells in patients with B-cell lymphoma.
Collapse
Affiliation(s)
- Wenli Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, Henan 450000, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mengmeng Liu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, Henan 450000, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, Henan 450000, China
| |
Collapse
|
9
|
Zhao S, Hu X, Zhou P, Li A, Chen L, Wang D, He J, Jiang Y. Molecular profiles of different PD-L1 expression in patients with esophageal squamous cell carcinoma. Cancer Biol Ther 2023; 24:2256927. [PMID: 38032149 PMCID: PMC10515684 DOI: 10.1080/15384047.2023.2256927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/05/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND PD-1/PD-L1 inhibitors are approved treatments for patients with esophageal squamous cell carcinoma (ESCC). The present investigation aspired to explore the interrelation between molecular phenotype and PD-L1 expression in ESCC. METHODS PD-L1 testing and targeted next-generation sequencing (NGS) were performed on tumoral tissues from 139 ESCC patients. Tumor-infiltrating lymphocytes (TILs) were scrutinized using a tyramide signal amplification system combined with immunohistochemistry. RESULTS Among enrolled patients, 36.7% displayed high PD-L1 expression (combined positive score [CPS] ≥10). BRCA1 and NF1 gene mutations were significantly associated with high PD-L1 expression (p < .05) while TGFβ pathway alterations were linked to low PD-L1 expression (p = .02). High copy number instability (CNI) and copy number alterations (CNA) were correlated with low PD-L1 expression. Patients with CDKN2A deletion exhibited higher PD-L1 expression. Varying types of TILs were observed across different PD-L1 expression groups. The ratio of CD8+PD-L1+ T cells and CD8+PD-1+ T cells to CD8+ T cells remained comparable in both tumoral and stromal regions, but the ratio of CD68+PD-L1+ macrophages to CD68+ macrophages was higher than the ratio of CD68+PD-1+ macrophages to CD68+ macrophages. CPS was significantly correlated with PD-L1+ lymphocytes and CD68+ macrophages in the tumoral region. CD8+ T cell infiltration was positively correlated with PD-1+ cells in both tumoral and stromal regions. CONCLUSION In this study, we presented the prevalence rates of PD-L1 expression in Chinese ESCC patients. The association of genetic profiles with PD-L1 expression levels also provide the clue that genomic phenotype may interact with the immunologic phenotype in ESCC.
Collapse
Affiliation(s)
- Songchen Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xintong Hu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Peiwen Zhou
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Ang Li
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Liguo Chen
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Duo Wang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Jiaxue He
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Yanfang Jiang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Feng Y, Wang S, Xie J, Ding B, Wang M, Zhang P, Mi P, Wang C, Liu R, Zhang T, Yu X, Yuan D, Zhang C. Spatial transcriptomics reveals heterogeneity of macrophages in the tumor microenvironment of granulomatous slack skin. J Pathol 2023; 261:105-119. [PMID: 37550813 DOI: 10.1002/path.6151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/30/2023] [Accepted: 06/01/2023] [Indexed: 08/09/2023]
Abstract
Granulomatous slack skin (GSS) is an extremely rare subtype of cutaneous T-cell lymphoma accompanied by an abundant number of macrophages and is clinically characterized by the development of pendulous skin folds. However, the characteristics of these macrophages in GSS remain unclear. Here, we conducted a spatial transcriptomic study on one frozen GSS sample and drew transcriptomic maps of GSS for the first time. Gene expression analysis revealed the enrichment of three clusters with macrophage transcripts, each exhibiting distinct characteristics suggesting that their primary composition consists of different subpopulations of macrophages. The CD163+ /CD206+ cluster showed a tumor-associated macrophage (TAM) M2-like phenotype and highly expressed ZFP36, CCL2, TNFAIP6, and KLF2, which are known to be involved in T-cell interaction and tumor progression. The APOC1+ /APOE+ cluster presented a non-M1 or -M2 phenotype and may be related to lipid metabolism. The CD11c+ /LYZ+ cluster exhibited an M1-like phenotype. Notably, these cells strongly expressed MMP9, MMP12, CHI3L1, CHIT1, COL1A1, TIMP1, and SPP1, which are responsible for extracellular matrix (ECM) degradation and tissue remodeling. This may partially explain the symptoms of cutaneous relaxation in GSS. Further immunohistochemistry on four GSS cases demonstrated that CD11c predominantly marked granulomas and multinucleated giant cells, whereas CD163 was mainly expressed on scattered macrophages, appearing as a mutually exclusive pattern. The expression pattern of MMP9 overlapped with that of CD11c, implying that CD11c+ macrophages may be a source of MMP9. Our data shed light on the characteristics of macrophages in the GSS microenvironment and provide a theoretical basis for the application of MMP9 inhibitors to prevent cutaneous relaxation of GSS. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Yawei Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Shiguan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Jianjun Xie
- Department of Pathology, Qingdao Chengyang People's Hospital, Qingdao, PR China
| | - Bin Ding
- Department of Pathology, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, PR China
| | - Min Wang
- Department of Pathology, The Second People's Hospital of Liaocheng, Linqing, PR China
| | - Peng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Ping Mi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Chunxue Wang
- Institute of Pathology and Pathophysiology, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Ruirui Liu
- Institute of Pathology and Pathophysiology, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Tingguo Zhang
- Institute of Pathology and Pathophysiology, Cheeloo College of Medicine, Shandong University, Jinan, PR China
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, PR China
| | - Xiaojing Yu
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, PR China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, Cheeloo College of Medicine, Shandong University, Jinan, PR China
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, PR China
| |
Collapse
|
11
|
Brunner A, Willenbacher E, Willenbacher W, Zelger B, Zelger P, Huck CW, Pallua JD. Visible- and near-infrared hyperspectral imaging for the quantitative analysis of PD-L1+ cells in human lymphomas: Comparison with fluorescent multiplex immunohistochemistry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121940. [PMID: 36208576 DOI: 10.1016/j.saa.2022.121940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION We analyzed the expression of PD-L1 in human lymphomas using hyperspectral imaging (HSI) compared to visual assessment (VA) and conventional digital image analysis (DIA) to strengthen further the value of HSI as a tool for the evaluation of brightfield-based immunohistochemistry (IHC). In addition, fluorescent multiplex immunohistochemistry (mIHC) was used as a second detection method to analyze the impact of a different detection method. MATERIAL AND METHODS 18 cases (6 follicular lymphomas and 12 diffuse large B-cell lymphomas) were stained for PD-L1 by IHC and for PD-L1, CD3, and CD8 by fluorescent mIHC. The percentage of positively stained cells was evaluated with VA, HSI, and DIA for IHC and VA and DIA for mIHC. Results were compared between the different methods of detection and analysis. RESULTS An overall high concordance was found between VA, HSI, and DIA in IHC (Cohens Kappa = 0.810VA/HSI, 0.710 VA/DIA, and 0.516 HSI/DIA) and for VAmIHCversus DIAmIHC (Cohens Kappa = 0.894). Comparing IHC and mIHC general agreement differed depending on the methods compared but reached at most a moderate agreement (Coheńs Kappa between 0.250 and 0.483). This is reflected by the significantly higher percentage of PD-L1+ cells found with mIHC (pFriedman = 0.014). CONCLUSION Our study shows a good concordance for the different analysis methods. Compared to VA and DIA, HSI proved to be a reliable tool for assessing IHC. Understanding the regulation of PD-L1 expression will further enlighten the role of PD-L1 as a biomarker. Therefore it is necessary to develop an instrument, such as HSI, which can offer a reliable and objective evaluation of PD-L1 expression.
Collapse
Affiliation(s)
- A Brunner
- Innsbruck Medical University, Institute of Pathology, Neuropathology and Molecular Pathology, Innsbruck, Austria
| | - E Willenbacher
- Innsbruck Medical University, Internal Medicine. V, Hematology & Oncology, Innsbruck, Austria
| | - W Willenbacher
- Innsbruck Medical University, Internal Medicine. V, Hematology & Oncology, Innsbruck, Austria; Syndena GmbH, Connect to Cure, Karl-Kapferer-Straße 5, 6020 Innsbruck, Austria
| | - B Zelger
- Innsbruck Medical University, Institute of Pathology, Neuropathology and Molecular Pathology, Innsbruck, Austria
| | - P Zelger
- Innsbruck Medical University, University Clinic for Hearing, Voice and Speech Disorders, Anichstrasse 35, Innsbruck, Austria
| | - C W Huck
- University of Innsbruck, Institute of Analytical Chemistry and Radiochemistry, Innsbruck, Austria
| | - J D Pallua
- Innsbruck Medical University, Department of Traumatology and Orthopaedics, Innsbruck, Austria.
| |
Collapse
|
12
|
Falini B, Martino G, Lazzi S. A comparison of the International Consensus and 5th World Health Organization classifications of mature B-cell lymphomas. Leukemia 2023; 37:18-34. [PMID: 36460764 PMCID: PMC9883170 DOI: 10.1038/s41375-022-01764-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022]
Abstract
Several editions of the World Health Organization (WHO) classifications of lympho-hemopoietic neoplasms in 2001, 2008 and 2017 served as the international standard for diagnosis. Since the 4th WHO edition, here referred as WHO-HAEM4, significant clinico-pathological, immunophenotypic and molecular advances have been made in the field of lymphomas, contributing to refining diagnostic criteria of several diseases, to upgrade entities previously defined as provisional and to identify new entities. This process has resulted in two recent classifying proposals of lymphoid neoplasms, the International Consensus Classification (ICC) and the 5th edition of the WHO classification (WHO-HAEM5). In this paper, we review and compare the two classifications in terms of diagnostic criteria and entity definition, with focus on mature B-cell neoplasms. The main aim is to provide a tool to facilitate the work of pathologists, hematologists and researchers involved in the diagnosis and treatment of lymphomas.
Collapse
Affiliation(s)
- Brunangelo Falini
- Institute of Hematology and CREO, University of Perugia, Perugia, Italy.
| | - Giovanni Martino
- Institute of Hematology and CREO, University of Perugia, Perugia, Italy
| | - Stefano Lazzi
- Institute of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| |
Collapse
|
13
|
Wen Y, Wang X, Meng W, Guo W, Duan C, Cao J, Kang L, Guo N, Lin Q, Lv P, Zhang R, Xing L, Zhang X, Shen H. TNF-α-dependent lung inflammation upregulates PD-L1 in monocyte-derived macrophages to contribute to lung tumorigenesis. FASEB J 2022; 36:e22595. [PMID: 36205325 DOI: 10.1096/fj.202200434rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/20/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022]
Abstract
Chronic inflammation, which is dominated by macrophage-involved inflammatory responses, is an instigator of cancer initiation. Macrophages are the most abundant immune cells in healthy lungs, and associated with lung tumor development and promotion. PD-L1 is a negative molecule in macrophages and correlated with an immunosuppressive function in tumor environment. Macrophages expressing PD-L1, rather than tumor cells, exhibits a critical role in tumor growth and progression. However, whether and how PD-L1 in macrophages contributes to inflammation-induced lung tumorigenesis requires further elucidation. Here, we found that higher expression of PD-L1 in CD11b+ CD206+ macrophages was positively correlated with tumor progression and PD-1+ CD8+ T cells population in human adenocarcinoma patients. In the urethane-induced inflammation-driven lung adenocarcinoma (IDLA) mouse model, the infiltration of circulating CD11bhigh F4/80+ monocyte-derived macrophages (MoMs) was increased in pro-tumor inflamed lung tissues and lung adenocarcinoma. PD-L1 was mainly upregulated in MoMs associated with enhanced T cells exhaustion in lung tissues. Anti-PD-L1 treatment can reduce T cells exhaustion at pro-tumor inflammatory stage, and then inhibit tumorigenesis in IDLA. The pro-tumor lung inflammation depended on TNF-α to upregulate PD-L1 and CSN6 expression in MoMs, and induced cytokines production by alveolar type-II cells (AT-II). Furthermore, inflammatory AT-II cells could secret TNF-α to upregulate PD-L1 expression in bone-marrow driven macrophages (BM-M0). Inhibition of CSN6 decreased PD-L1 expression in TNF-α-activated macrophage in vitro, suggesting a critical role of CSN6 in PD-L1 upregulation. Thus, pro-tumor inflammation can depend on TNF-α to upregulate PD-L1 in recruited MoMs, which may be essential for lung tumorigenesis.
Collapse
Affiliation(s)
- Yue Wen
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
- Department of Ultrasound, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiuqing Wang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research (CMCR), Hebei Medical University, Shijiazhuang, China
| | - Wei Meng
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research (CMCR), Hebei Medical University, Shijiazhuang, China
| | - Wenli Guo
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Chenyang Duan
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research (CMCR), Hebei Medical University, Shijiazhuang, China
| | - Jingjing Cao
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research (CMCR), Hebei Medical University, Shijiazhuang, China
| | - Lifei Kang
- Department of Pathology, Hebei Chest Hospital, Shijiazhuang, China
| | - Ningfei Guo
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Qiang Lin
- Department of Oncology, North China Petroleum Bureau General Hospital of Hebei Medical University, Renqiu, China
| | - Ping Lv
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Lingxiao Xing
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research (CMCR), Hebei Medical University, Shijiazhuang, China
| | - Xianghong Zhang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research (CMCR), Hebei Medical University, Shijiazhuang, China
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Haitao Shen
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research (CMCR), Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
14
|
Caldwell TM, Kaufman MD, Wise SC, Mi Ahn Y, Hood MM, Lu WP, Patt WC, Samarakoon T, Vogeti L, Vogeti S, Yates KM, Bulfer SL, Le Bourdonnec B, Smith BD, Flynn DL. Discovery of acyl ureas as highly selective small molecule CSF1R kinase inhibitors. Bioorg Med Chem Lett 2022; 74:128929. [PMID: 35961461 DOI: 10.1016/j.bmcl.2022.128929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/02/2022]
Abstract
Based on the structure of an early lead identified in Deciphera's proprietary compound collection of switch control kinase inhibitors and using a combination of medicinal chemistry guided structure activity relationships and structure-based drug design, a novel series of potent acyl urea-based CSF1R inhibitors was identified displaying high selectivity for CSF1R versus the other members of the Type III receptor tyrosine kinase (RTK) family members (KIT, PDGFR-α, PDGFR-β, and FLT3), VEGFR2 and MET. Based on in vitro biology, in vitro ADME and in vivo PK/PD studies, compound 10 was selected as an advanced lead for Deciphera's CSF1R research program.
Collapse
Affiliation(s)
| | | | - Scott C Wise
- Deciphera Pharmaceuticals, LLC, Waltham, MA 02451, United States
| | - Yu Mi Ahn
- Deciphera Pharmaceuticals, LLC, Waltham, MA 02451, United States
| | - Molly M Hood
- Deciphera Pharmaceuticals, LLC, Waltham, MA 02451, United States
| | - Wei-Ping Lu
- Deciphera Pharmaceuticals, LLC, Waltham, MA 02451, United States
| | - William C Patt
- Deciphera Pharmaceuticals, LLC, Waltham, MA 02451, United States
| | | | | | - Subha Vogeti
- Deciphera Pharmaceuticals, LLC, Waltham, MA 02451, United States
| | - Karen M Yates
- Deciphera Pharmaceuticals, LLC, Waltham, MA 02451, United States
| | - Stacie L Bulfer
- Deciphera Pharmaceuticals, LLC, Waltham, MA 02451, United States
| | | | - Bryan D Smith
- Deciphera Pharmaceuticals, LLC, Waltham, MA 02451, United States
| | - Daniel L Flynn
- Deciphera Pharmaceuticals, LLC, Waltham, MA 02451, United States.
| |
Collapse
|
15
|
Shao X, Hua S, Feng T, Ocansey DKW, Yin L. Hypoxia-Regulated Tumor-Derived Exosomes and Tumor Progression: A Focus on Immune Evasion. Int J Mol Sci 2022; 23:ijms231911789. [PMID: 36233088 PMCID: PMC9570495 DOI: 10.3390/ijms231911789] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor cells express a high quantity of exosomes packaged with unique cargos under hypoxia, an important characteristic feature in solid tumors. These hypoxic tumor-derived exosomes are, crucially, involved in the interaction of cancer cells with their microenvironment, facilitating not only immune evasion, but increased cell growth and survival, enhanced angiogenesis, epithelial–mesenchymal transition (EMT), therapeutic resistance, autophagy, pre-metastasis, and metastasis. This paper explores the tumor microenvironment (TME) remodeling effects of hypoxic tumor-derived exosome towards facilitating the tumor progression process, particularly, the modulatory role of these factors on tumor cell immune evasion through suppression of immune cells, expression of surface recognition molecules, and secretion of antitumor soluble factor. Tumor-expressed exosomes educate immune effector cells, including macrophages, monocytes, T cells, natural killer (NK) cells, dendritic cells (DCs), γδ T lymphocytes, regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), mast cells, and B cells, within the hypoxic TME through the release of factors that regulate their recruitment, phenotype, and function. Thus, both hypoxia and tumor-derived exosomes modulate immune cells, growth factors, cytokines, receptor molecules, and other soluble factors, which, together, collaborate to form the immune-suppressive milieu of the tumor environment. Exploring the contribution of exosomal cargos, such as RNAs and proteins, as indispensable players in the cross-talk within the hypoxic tumor microenvironmental provides a potential target for antitumor immunity or subverting immune evasion and enhancing tumor therapies.
Collapse
|
16
|
Association of CD206 Protein Expression with Immune Infiltration and Prognosis in Patients with Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14194829. [PMID: 36230752 PMCID: PMC9564167 DOI: 10.3390/cancers14194829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Triple-negative breast cancers (TNBCs) have a worse prognosis, but might respond to immunotherapies. Macrophages are plastic cells that can adopt various phenotypes and functions. Although they are a major immune population in TNBCs, the relationship between tumor-associated macrophages (TAMs) and TNBC progression has been rarely explored, with controversial results. Methods: We evaluated the prognostic impact of TAMs, quantified by immunohistochemistry with anti-CD68, -IRF8, -CD163, and -CD206 antibodies, in a well-described cohort of 285 patients with non-metastatic TNBC. Results: CD68 (p = 0.008), IRF8 (p = 0.001), and CD163 (p < 0.001) expression positively correlated with higher tumor grade, while CD206 was associated with smaller tumor size (p < 0.001). All macrophage markers were associated with higher tumor-infiltrating lymphocyte numbers and PD-L1 expression. Univariate survival analyses reported a significant positive correlation between CD163+ or CD206+ TAMs and relapse-free survival (respectively: HR = 0.52 [0.28−0.97], p = 0.027, and HR = 0.51 [0.31−0.82], p = 0.005), and between CD206+ TAMs and overall survival (HR = 0.54 [0.35−0.83], p = 0.005). In multivariate analysis, there was a trend for an association between CD206+ TAMs and relapse-free survival (HR = 0.63 [0.33−1.04], p = 0.073). Conclusions: These data suggest that CD206 expression defines a TAM subpopulation potentially associated with favorable outcomes in patients with TNBC. CD206 expression might identify an immune TNBC subgroup with specific therapeutic options.
Collapse
|
17
|
Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, Zou Y, Wang JX, Wang Z, Yu T. Lactate metabolism in human health and disease. Signal Transduct Target Ther 2022; 7:305. [PMID: 36050306 PMCID: PMC9434547 DOI: 10.1038/s41392-022-01151-3] [Citation(s) in RCA: 482] [Impact Index Per Article: 160.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/17/2022] [Accepted: 08/09/2022] [Indexed: 12/29/2022] Open
Abstract
The current understanding of lactate extends from its origins as a byproduct of glycolysis to its role in tumor metabolism, as identified by studies on the Warburg effect. The lactate shuttle hypothesis suggests that lactate plays an important role as a bridging signaling molecule that coordinates signaling among different cells, organs and tissues. Lactylation is a posttranslational modification initially reported by Professor Yingming Zhao’s research group in 2019. Subsequent studies confirmed that lactylation is a vital component of lactate function and is involved in tumor proliferation, neural excitation, inflammation and other biological processes. An indispensable substance for various physiological cellular functions, lactate plays a regulatory role in different aspects of energy metabolism and signal transduction. Therefore, a comprehensive review and summary of lactate is presented to clarify the role of lactate in disease and to provide a reference and direction for future research. This review offers a systematic overview of lactate homeostasis and its roles in physiological and pathological processes, as well as a comprehensive overview of the effects of lactylation in various diseases, particularly inflammation and cancer.
Collapse
Affiliation(s)
- Xiaolu Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaotong Lin
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266555, China
| | - Yulin Zou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Jian-Xun Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| |
Collapse
|
18
|
Xie Y, Yang H, Yang C, He L, Zhang X, Peng L, Zhu H, Gao L. Role and Mechanisms of Tumor-Associated Macrophages in Hematological Malignancies. Front Oncol 2022; 12:933666. [PMID: 35875135 PMCID: PMC9301190 DOI: 10.3389/fonc.2022.933666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Mounting evidence has revealed that many nontumor cells in the tumor microenvironment, such as fibroblasts, endothelial cells, mesenchymal stem cells, and leukocytes, are strongly involved in tumor progression. In hematological malignancies, tumor-associated macrophages (TAMs) are considered to be an important component that promotes tumor growth and can be polarized into different phenotypes with protumor or antitumor roles. This Review emphasizes research related to the role and mechanisms of TAMs in hematological malignancies. TAMs lead to poor prognosis by influencing tumor progression at the molecular level, including nurturing cancer stem cells and laying the foundation for metastasis. Although detailed molecular mechanisms have not been clarified, TAMs may be a new therapeutic target in hematological disease treatment.
Collapse
|
19
|
Yin Y, Liu B, Cao Y, Yao S, Liu Y, Jin G, Qin Y, Chen Y, Cui K, Zhou L, Bian Z, Fei B, Huang S, Huang Z. Colorectal Cancer-Derived Small Extracellular Vesicles Promote Tumor Immune Evasion by Upregulating PD-L1 Expression in Tumor-Associated Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:2102620. [PMID: 35356153 PMCID: PMC8948581 DOI: 10.1002/advs.202102620] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/19/2021] [Indexed: 05/21/2023]
Abstract
Tumor-associated macrophages (TAMs) are one of the most abundant cell types in colorectal cancer (CRC) tumor microenvironment (TME). Recent studies observed complicated "cross-talks" between cancer cells and macrophages in TME. However, the underlying mechanisms are still poorly elucidated. Here, PD-L1 levels are very low in CRC cells but highly abundant in TAMs, and a specific PD-L1+CD206+ macrophage subpopulation are identified, which is induced by tumor cells and associated with a poor prognosis. Mechanistic investigations reveal that CRC cells can secrete small extracellular vesicles (sEVs) taken up by macrophages that induce M2 like polarization and PD-L1 expression, resulting in increased PD-L1+CD206+ macrophage abundance and decreased T cell activity in CRC TME. sEV-derived miR-21-5p and miR-200a are identified as key signaling molecules mediating the regulatory effects of CRC on macrophages. Further studies reveal that CRC-derived miR-21-5p and miR-200a synergistically induces macrophage M2 like polarization and PD-L1 expression by regulating the PTEN/AKT and SCOS1/STAT1 pathways, resulting in decreased CD8+ T cell activity and increased tumor growth. This study suggests that inhibiting the secretion of specific sEV-miRNAs from CRC and targeting PD-L1 in TAMs may serve as novel methods for CRC treatment as well as a sensitization method for anti-PD-L1 therapy in CRC.
Collapse
Affiliation(s)
- Yuan Yin
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi214062China
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Bingxin Liu
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi214062China
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Yulin Cao
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi214062China
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Surui Yao
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi214062China
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Yuhang Liu
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi214062China
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Guoying Jin
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi214062China
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Yan Qin
- Department of PathologyAffiliated Hospital of Jiangnan UniversityWuxiJiangsu214062China
| | - Ying Chen
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi214062China
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Kaisa Cui
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi214062China
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Leyuan Zhou
- Department of Radiation OncologyAffiliated Hospital of Jiangnan UniversityWuxi214062China
| | - Zehua Bian
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi214062China
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Bojian Fei
- Department of Gastrointestinal SurgeryAffiliated Hospital of Jiangnan UniversityWuxi214062China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| | - Zhaohui Huang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi214062China
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxi214122China
| |
Collapse
|
20
|
Lee S, Lee A, Lim J, Lim JS. Regulation of tumor-associated macrophage (TAM) differentiation by NDRG2 expression in breast cancer cells. BMB Rep 2022. [PMID: 34743782 PMCID: PMC8891626 DOI: 10.5483/bmbrep.2022.55.2.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Macrophages are a major cellular component of innate immunity and are mainly known to have phagocytic activity. In the tumor microenvironment (TME), they can be differentiated into tumor-associated macrophages (TAMs). As the most abundant immune cells in the TME, TAMs promote tumor progression by enhancing angiogenesis, suppressing T cells and increasing immunosuppressive cytokine production. N-myc downstream-regulated gene 2 (NDRG2) is a tumor suppressor gene, whose expression is down-regulated in various cancers. However, the effect of NDRG2 on the differentiation of macrophages into TAMs in breast cancer remains elusive. In this study, we investigated the effect of NDRG2 expression in breast cancer cells on the differentiation of macrophages into TAMs. Compared to tumor cell-conditioned medium (TCCM) from 4T1-mock cells, TCCM from NDRG2-overexpressing 4T1 mouse breast cancer cells did not significantly change the morphology of RAW 264.7 cells. However, TCCM from 4T1-NDRG2 cells reduced the mRNA levels of TAM-related genes, including MR1, IL-10, ARG1 and iNOS, in RAW 264.7 cells. In addition, TCCM from 4T1-NDRG2 cells reduced the expression of TAM-related surface markers, such as CD206, in peritoneal macrophages (PEM). The mRNA expression of TAM-related genes, including IL-10, YM1, FIZZ1, MR1, ARG1 and iNOS, was also downregulated by TCCM from 4T1-NDRG2 cells. Remarkably, TCCM from 4T1-NDRG2 cells reduced the expression of PD-L1 and Fra-1 as well as the production of GM-CSF, IL-10 and ROS, leading to the attenuation of T cell-inhibitory activity of PEM. These data showed that compared with TCCM from 4T1-mock cells, TCCM from 4T1-NDRG2 cells suppressed the TAM differentiation and activation. Collectively, these results suggest that NDRG2 expression in breast cancer may reduce the differentiation of macrophages into TAMs in the TME.
Collapse
Affiliation(s)
- Soyeon Lee
- Department of Biological Science and the Cellular Heterogeneity Research Center, Sookmyung Women’s University, Seoul 04310, Korea
| | - Aram Lee
- Department of Biological Science and the Cellular Heterogeneity Research Center, Sookmyung Women’s University, Seoul 04310, Korea
| | - Jihyun Lim
- Department of Biological Science and the Cellular Heterogeneity Research Center, Sookmyung Women’s University, Seoul 04310, Korea
| | - Jong-Seok Lim
- Department of Biological Science and the Cellular Heterogeneity Research Center, Sookmyung Women’s University, Seoul 04310, Korea
| |
Collapse
|
21
|
Lv W, Cheng K, Li X, Feng L, Li H, Li J, Chang C, Cao D. Case Report: Favorable Response and Manageable Toxicity to the Combination of Camrelizumab, Oxaliplatin, and Oral S-1 in a Patient With Advanced Epstein-Barr Virus-Associated Gastric Cancer. Front Oncol 2022; 11:759652. [PMID: 35096571 PMCID: PMC8791849 DOI: 10.3389/fonc.2021.759652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/20/2021] [Indexed: 02/05/2023] Open
Abstract
Some pertinent studies have demonstrated that Epstein-Barr virus-associated gastric cancer (EBVaGC) patients showed a favorable clinical outcome to immunotherapy and Epstein-Barr virus (EBV)-positive status might be a potential biomarker for immunotherapy in gastric cancer (GC). However, knowledge of given exposure to EBVaGC to the first-line immunotherapy is largely inadequate. Moreover, whether camrelizumab can be as effective as other PD-1 inhibitors in the treatment of advanced EBVaGC has not been reported. We report a case of advanced EBVaGC patient with a positive expression of PD-L1, enriched PD-L1+CD68+macrophages, and high TMB who had a long-term partial response and manageable toxicity to the combined approach of camrelizumab (a novel PD-1 inhibitor) and oxaliplatin plus oral S-1 (SOX). As the first-line treatment of advanced EBVaGC patients, camrelizumab combined with SOX regimen may provide a novel combined approach with favorable response and manageable safety. Combination of multiple biomarkers could have a higher effective predictive capacity to immunotherapy. Integrated treatment (chemo-immunotherapy and radiotherapy) might be the optimal strategy for patients with oligometastasis. It deserves prospective research to further validate the efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dan Cao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Yan Z, Yao S, Wang Y, Liu Y, Yao Z. Primary Testicular Lymphoma with Central Nervous System Relapse Was Successfully Treated by a Chemo-Free Regimen: A Case Report and Literature Review. Cancer Manag Res 2022; 13:9489-9500. [PMID: 35002326 PMCID: PMC8725687 DOI: 10.2147/cmar.s341342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Primary testicular lymphoma (PTL) is a rare malignancy of testis. Although the multimodality treatment (including orchiectomy, systemic chemotherapy, scrotal radiotherapy, and preventive central nervous system (CNS)-targeted treatment) is widely used to treat PTL, recurrence, especially CNS recurrence, occurred frequently. Patients with relapsed PTL have a dismal prognosis and limited treatment options. In this report, we described the case of a 63-year-old man with early-stage PTL. The patient received the multimodality treatment, but CNS relapse occurred 3 months following the front-line therapy. We gave him a combined chemo-free regimen treatment, including rituximab, ibrutinib, and lenalidomide (RIL), based on the tumor's gene mutation profile and the patient's preference. A complete response was achieved after the first cycle of treatment. Whole-brain radiotherapy was delivered as consolidative treatment following three more cycles of RIL. Thereafter, ibrutinib and lenalidomide continued as maintenance treatment. As of the submission of this manuscript, the response has lasted for more than 16 months. Based on the case, we believe chemo-free regimen RIL might be a favorable approach for PTL patients with CNS relapse, especially those frail elderly patients, when alternative treatments are not available.
Collapse
Affiliation(s)
- Zheng Yan
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Shuna Yao
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yuanyuan Wang
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yanyan Liu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zhihua Yao
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
23
|
Moradinasab S, Pourbagheri-Sigaroodi A, Ghaffari SH, Bashash D. Targeting macrophage-mediated tumor cell phagocytosis: An overview of phagocytosis checkpoints blockade, nanomedicine intervention, and engineered CAR-macrophage therapy. Int Immunopharmacol 2021; 103:108499. [PMID: 34972068 DOI: 10.1016/j.intimp.2021.108499] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/05/2022]
Abstract
Immunotherapy has been developing at an unprecedented speed with promising therapeutic outcomes in the wide spectrum of cancers. Up until now, most immunotherapies have focused on adaptive immunity; however, investigating the potential of macrophage phagocytosis and consequent adaptive immune cross-priming has led to a growing interest in exploiting macrophages in cancer therapy. In light of the positive evidence from preclinical studies and early clinical data, targeting macrophage phagocytosis has become a promising therapeutic strategy. Here, we review therapies based on harnessing and amplifying macrophage phagocytosis, such as blocking phagocytosis checkpoints and exploiting nanoparticles as efficient approaches in elevating macrophages-mediated phagocytosis. The present study introduces CAR-macrophage as the state-of-the-art modality serving as the bridge between the innate and adaptive immune system to mount a superior anti-tumor response in the treatment of cancer. We also take a look at the recent reports of therapies based on CAR-engineered macrophages with the hope of providing a future research direction for expanding the application of CAR-macrophage therapy.
Collapse
Affiliation(s)
- Susan Moradinasab
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Perincheri S. Tumor Microenvironment of Lymphomas and Plasma Cell Neoplasms: Broad Overview and Impact on Evaluation for Immune Based Therapies. Front Oncol 2021; 11:719140. [PMID: 34956859 PMCID: PMC8692247 DOI: 10.3389/fonc.2021.719140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
Lymphomas and plasma cell neoplasms are a heterogenous group of malignancies derived from lymphocytes. They are a significant cause of patient morbidity and mortality. Advances in morphologic, immunophenotypic and molecular techniques have led to better understanding of the pathogenesis and diagnosis of these neoplasms. Advances in treatment, particularly immune-based therapies, increasingly allow for targeted therapies of these diseases. Mechanistic studies using animal models and clinical trials have revealed the importance of the tumor microenvironment on disease pathogenesis, progression, and response to therapy in these malignancies. Simultaneous progress in diagnostic techniques has made it feasible to generate high-resolution, high-throughput data from the tumor microenvironment with spatial context. As the armamentarium of targeted therapies and diagnostic techniques grows, there is potential to harness these advances to better stratify patients for targeted therapies, including immune-based therapies, in hematologic malignancies.
Collapse
Affiliation(s)
- Sudhir Perincheri
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
25
|
Ramesh A, Malik V, Ranjani HA, Smith H, Kulkarni AA. Rational combination of an immune checkpoint inhibitor with CSF1R inhibitor-loaded nanoparticle enhances anticancer efficacy. Drug Deliv Transl Res 2021; 11:2317-2327. [PMID: 34365577 DOI: 10.1007/s13346-021-01040-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Since the advent of immune checkpoint inhibitors, rapid strides have been made in the realm of cancer immunotherapy. Of the abundance of infiltrating immune cells in the tumor microenvironment (TME), macrophages contribute a significant portion and make up to 50% of the tumor mass. In addition to this, the relative plasticity of macrophages makes it an attractive target to modulate macrophage functions to initiate an anti-tumor response. However, many challenges hinder this strategy. Macrophage colony-stimulating factor (MCSF) secreted by cancer cells binds to the colony-stimulating factor receptor present on macrophages and negatively influences macrophage functions. MCSF, along with a cocktail of immunosuppressive cytokines present in the TME, polarizes macrophages to an immunosuppressive pro-tumorigenic M2-like phenotype. M2-like macrophages dampen tumor response and are known to be associated with increased tumor progression and metastasis. Indeed, clinical interventions aimed to reprogram macrophage response from an M2-like tumor aiding phenotype to an M1-like tumor-killing phenotype using small-molecule inhibitors of the CSF1R axis have gathered much attention in the recent past. However, poor response and systemic toxicities observed in these therapies necessitate alternative therapeutic strategies. Furthermore, another key signaling pathway that has been recently implicated in aiding the CSF1R signaling in TAMs is the PDL1 signaling axis. Hence, in this study, we designed a self-assembled lipid nanoparticle system encompassing a potent small-molecule inhibitor of the CSF1R signaling axis, while the surface of the nanoparticle was tethered with anti-PDL1 mAb. The purpose of this is twofold; the nanoparticles can deliver the cargo in a targeted manner to PDL1 expressing M2-like macrophages while simultaneously blocking the receptor. The resulting nanoparticle system termed α-PDL1-CSF-LNP showed enhanced repolarization of M2 like macrophages in vitro while also upregulating the phagocytic index. Furthermore, suboptimal dose administration of α-PDL1-CSF-LNP in an aggressive melanoma mouse model resulted in superior anti-tumor efficacy with minimal toxicities. These results were validated by ex vivo mechanistic analysis showing that TAMs have successfully been repolarized to a predominantly M1-like phenotype. This, along with increased tumor infiltration of CD8+ T cells, worked in synergy to provide an effective anti-tumor strategy.
Collapse
Affiliation(s)
- Anujan Ramesh
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
- Depatment of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Vaishali Malik
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Hayat Anu Ranjani
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Harriet Smith
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Ashish A Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA.
- Depatment of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
26
|
Sun X, Wang C, Chen C, Huang J, Wu X, Wang Y, He X, Cao J, Jiang W, Sun P, Li Z. Combined tumor-associated macrophages biomarker predicting extremely poor outcome of patients with primary central nervous system lymphoma. Hematol Oncol 2021; 39:625-638. [PMID: 34543472 DOI: 10.1002/hon.2926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/11/2022]
Abstract
Primary central nervous system lymphoma (PCNSL) is an aggressive and rare malignancy with poor prognosis. However, there are no reliable prognostic biomarkers for PCNSL in clinical practice. Here, we aimed to identify a reliable prognostic biomarker for predicting the survival of PCNSL patients. In this study, multiplex immunofluorescence and digital imaging analysis were used to characterize tumor-associated macrophages (TAMs) immunophenotypes and the expression of programmed cell death ligand 1 on TAMs, with regard to prognosis from diagnostic tumor tissue samples of 59 PCNSL patients. We found that the M2-to-M1 ratio was a more reliable prognostic biomarker for PCNSL than M1-like or M2-like macrophage infiltration. In addition, the combination of programmed death-ligand 1 (PD-L1) expression on TAMs and the M2-to-M1 ratio in PCNSL demonstrated improved performance in prognostic discrimination than PD-L1-positive TAMs or M2-to-M1 ratio. To validate the prognostic significance of the combined TAMs associated biomarkers, they were integrated into the International Extranodal Lymphoma Study Group (IELSG) index and termed as IELSG-M index. Kaplan-Meier plots showed that the IELSG-M index could discriminate patients into low-, intermediate- or high-risk subgroups, better than IELSG, in terms of prognosis. The areas under the receiver operating characteristic curves of IELSG-M was 0.844 for overall survival; superior to the IELSG model (0.580). Taken together, this study's findings showed that the combination of PD-L1 on TAMs and the M2-to-M1 ratio could be strong prognostic predictive biomarkers for PCNSL and the IELSG-M index had improved prognostic significance than the IELSG index.
Collapse
Affiliation(s)
- Xiaoqing Sun
- Department of Intensive Care Unit, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Caiqin Wang
- Department of Medical Oncology, Sun Yat-sen University Sixth Affiliated Hospital, Guangzhou, China
| | - Cui Chen
- Department of Medical Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiajia Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xianqiu Wu
- Department of Hepatobiliary Surgery, Southern Medical University, Nanfang Hospital, Guangzhou, China
| | - Yu Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiaohua He
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jianghua Cao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wenqi Jiang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Peng Sun
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhiming Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
27
|
Li P, Yuan J, Ahmed FS, McHenry A, Fu K, Yu G, Cheng H, Xu ML, Rimm DL, Pan Z. High Counts of CD68+ and CD163+ Macrophages in Mantle Cell Lymphoma Are Associated With Inferior Prognosis. Front Oncol 2021; 11:701492. [PMID: 34527580 PMCID: PMC8435777 DOI: 10.3389/fonc.2021.701492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Background Lymphoma-associated macrophages (LAMs) are key components in the lymphoma microenvironment, which may impact disease progression and response to therapy. There are two major subtypes of LAMs, CD68+ M1 and CD163+ M2. M2 LAMs can be transformed from M1 LAMs, particularly in certain diffuse large B-cell lymphomas (DLBCL). While mantle cell lymphoma (MCL) is well-known to contain frequent epithelioid macrophages, LAM characterization within MCL has not been fully described. Herein we evaluate the immunophenotypic subclassification, the expression of immune checkpoint molecule PD-L1, and the prognostic impact of LAMs in MCL. Materials and Methods A total of 82 MCL cases were collected and a tissue microarray block was constructed. Immunohistochemical staining was performed using CD68 and CD163, and the positive cells were recorded manually in four representative 400× fields for each case. Multiplexed quantitative immunofluorescence assays were carried out to determine PD-L1 expression on CD68+ M1 LAMs and CD163+ M2 LAMs. In addition, we assessed Ki67 proliferation rate of MCL by an automated method using the QuPath digital imaging analysis. The cut-off points of optimal separation of overall survival (OS) were analyzed using the X-Tile software, the SPSS version 26 was used to construct survival curves, and the log-rank test was performed to calculate the p-values. Results MCL had a much higher count of M1 LAMs than M2 LAMs with a CD68:CD163 ratio of 3:1. Both M1 and M2 LAMs were increased in MCL cases with high Ki67 proliferation rates (>30%), in contrast to those with low Ki67 (<30%). Increased number of M1 or M2 LAMs in MCL was associated with an inferior OS. Moreover, high expression of PD-L1 on M1 LAMs had a slightly better OS than the cases with low PD-L1 expression, whereas low expression of PD-L1 on M2 LAMs had a slightly improved OS, although both were not statistically significant. Conclusions In contrast to DLBCL, MCL had a significantly lower rate of M1 to M2 polarization, and the high levels of M1 and M2 LAMs were associated with poor OS. Furthermore, differential PD-L1 expressions on LAMs may partially explain the different functions of tumor-suppressing or tumor-promoting of M1 and M2 LAMs, respectively.
Collapse
Affiliation(s)
- Philippa Li
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Ji Yuan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Fahad Shabbir Ahmed
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States.,Department of Pathology, Wayne State University, Detroit, MI, United States
| | - Austin McHenry
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Kai Fu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Pathology and Laboratory Medicine, Roswell Park Cancer Center, Buffalo, NY, United States
| | - Guohua Yu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Pathology, Yantai Yuhuangding Hospital, Yantai, China
| | - Hongxia Cheng
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mina L Xu
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - David L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Zenggang Pan
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
28
|
Liu Y, Zhou X, Wang X. Targeting the tumor microenvironment in B-cell lymphoma: challenges and opportunities. J Hematol Oncol 2021; 14:125. [PMID: 34404434 PMCID: PMC8369706 DOI: 10.1186/s13045-021-01134-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
B-cell lymphoma is a group of hematological malignancies with high clinical and biological heterogeneity. The pathogenesis of B-cell lymphoma involves a complex interaction between tumor cells and the tumor microenvironment (TME), which is composed of stromal cells and extracellular matrix. Although the roles of the TME have not been fully elucidated, accumulating evidence implies that TME is closely relevant to the origination, invasion and metastasis of B-cell lymphoma. Explorations of the TME provide distinctive insights for cancer therapy. Here, we epitomize the recent advances of TME in B-cell lymphoma and discuss its function in tumor progression and immune escape. In addition, the potential clinical value of targeting TME in B-cell lymphoma is highlighted, which is expected to pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Yingyue Liu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
29
|
Pollari M, Leivonen SK, Leppä S. Testicular Diffuse Large B-Cell Lymphoma-Clinical, Molecular, and Immunological Features. Cancers (Basel) 2021; 13:cancers13164049. [PMID: 34439203 PMCID: PMC8392512 DOI: 10.3390/cancers13164049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Testicular diffuse large B-cell lymphoma (T-DLBCL) is a rare and aggressive lymphoma entity that mainly affects elderly men. It has a high relapse rate with especially the relapses of the central nervous system associating with dismal outcome. T-DLBCL has a unique biology with distinct genetic characteristics and clinical presentation, and the increasing knowledge on the tumor microenvironment of T-DLBCL highlights the significance of the host immunity and immune escape in this rare lymphoma, presenting in an immune-privileged site of the testis. This review provides an update on the latest progress made in T-DLBCL research and summarizes the clinical perspectives in T-DLBCL. Abstract Primary testicular lymphoma is a rare lymphoma entity, yet it is the most common testicular malignancy among elderly men. The majority of the cases represent non-germinal center B-cell-like (non-GCB) diffuse large B-cell lymphoma (DLBCL) with aggressive clinical behavior and a relatively high relapse rate. Due to the rareness of the disease, no randomized clinical trials have been conducted and the currently recognized standard of care is based on retrospective analyses and few phase II trials. During recent years, the tumor microenvironment (TME) and tumor-related immunity have been the focus of many tumor biology studies, and the emergence of targeted therapies and checkpoint inhibitors has significantly modulated the field of cancer therapies. Testicular DLBCL (T-DLBCL) is presented in an immune-privileged site of the testis, and the roles of NF-κB pathway signaling, 9p24.1 aberrations, and tumor-infiltrating immune cells, especially immune checkpoint expressing lymphocytes and macrophages, seem to be unique compared to other lymphoma entities. Preliminary data on the use of immune checkpoint inhibitors in the treatment of T-DLBCL are promising and more studies are ongoing.
Collapse
Affiliation(s)
- Marjukka Pollari
- Research Program Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.-K.L.); (S.L.)
- Department of Oncology, Tays Cancer Center, Tampere University Hospital, 33521 Tampere, Finland
- Correspondence:
| | - Suvi-Katri Leivonen
- Research Program Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.-K.L.); (S.L.)
- Department of Oncology, Comprehensive Cancer Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Sirpa Leppä
- Research Program Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.-K.L.); (S.L.)
- Department of Oncology, Comprehensive Cancer Center, Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
30
|
Chen X, Du Z, Huang M, Wang D, Fong WP, Liang J, Fan L, Wang Y, Yang H, Chen Z, Hu M, Xu R, Li Y. Circulating PD-L1 is associated with T cell infiltration and predicts prognosis in patients with CRLM following hepatic resection. Cancer Immunol Immunother 2021; 71:661-674. [PMID: 34322779 DOI: 10.1007/s00262-021-03021-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Exosomal PD-L1 (exoPD-L1) could induce immunosuppression functionally, thus impairing patients' survival in melanoma, NSCLC, and gastric cancer. However, no evidence demonstrates the feasibility of circulating exoPD-L1 and soluble PD-L1 (sPD-L1) as biomarkers for prognosis and early recurrence in colorectal liver metastasis (CRLM) patients following hepatectomy or their association with T cell infiltration at liver metastases. METHODS In cohort 1, exoPD-L1 and sPD-L1 were preoperatively tested using ELISA. CD3, CD8, granzyme B (GB) and PD1 expressed at liver metastases were evaluated using immunohistochemistry. In cohort 2, exoPD-L1 and sPD-L1 were detected at baseline, before hepatectomy, after hepatectomy, and after disease progression. RESULTS In cohort 1, higher preoperative exoPD-L1 or sPD-L1 significantly impaired RFS (exoPD-L1, P = 0.0043; sPD-L1, P = 0.0041) and OS (exoPD-L1, P = 0.0034; sPD-L1, P = 0.0061). Furthermore, preoperative exoPD-L1 was negatively correlated with CD3 + T-lymphocytes infiltrated at tumor center (CT), and GB and PD1 were expressed at tumor invasive margin (IM). Preoperative sPD-L1 was negatively correlated with CD3 + and CD8 + T-lymphocytes' infiltration at IM and CT, GB and PD1 expression at IM. In cohort 2, exoPD-L1 and sPD-L1 levels decreased following hepatectomy but increased when tumor progressed. Moreover, higher postoperative exoPD-L1 and sPD-L1 or a small reduction in exoPD-L1 and sPD-L1 levels after hepatectomy suggested higher early recurrence rate. CONCLUSIONS Both preoperative exoPD-L1 and sPD-L1 had promising prognostic values and were associated with T cell infiltration at liver metastases in CRLM patients following hepatectomy. Dynamically tracking exoPD-L1 and sPD-L1 levels could monitor disease status and detect early recurrence.
Collapse
Affiliation(s)
- Xiuxing Chen
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651# Dongfeng Road East, Guangzhou, 510060, People's Republic of China.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Oncology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ziming Du
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651# Dongfeng Road East, Guangzhou, 510060, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China.,Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Mayan Huang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651# Dongfeng Road East, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Deshen Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651# Dongfeng Road East, Guangzhou, 510060, People's Republic of China.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - William Pat Fong
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651# Dongfeng Road East, Guangzhou, 510060, People's Republic of China.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jieying Liang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651# Dongfeng Road East, Guangzhou, 510060, People's Republic of China.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Lei Fan
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, People's Republic of China
| | - Yun Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651# Dongfeng Road East, Guangzhou, 510060, People's Republic of China.,Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Hui Yang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651# Dongfeng Road East, Guangzhou, 510060, People's Republic of China.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Zhigang Chen
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651# Dongfeng Road East, Guangzhou, 510060, People's Republic of China.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Mingtao Hu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651# Dongfeng Road East, Guangzhou, 510060, People's Republic of China.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ruihua Xu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651# Dongfeng Road East, Guangzhou, 510060, People's Republic of China. .,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.
| | - Yuhong Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, 651# Dongfeng Road East, Guangzhou, 510060, People's Republic of China. .,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.
| |
Collapse
|
31
|
Dou A, Fang J. Heterogeneous Myeloid Cells in Tumors. Cancers (Basel) 2021; 13:3772. [PMID: 34359674 PMCID: PMC8345207 DOI: 10.3390/cancers13153772] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating studies highlight a critical role of myeloid cells in cancer biology and therapy. The myeloid cells constitute the major components of tumor microenvironment (TME). The most studied tumor-associated myeloid cells (TAMCs) include monocytes, tumor-associated macrophages (TAMs), dendritic cells (DCs), cancer-related circulating neutrophils, tumor-associated neutrophils (TANs), and myeloid-derived suppressor cells (MDSCs). These heterogenous myeloid cells perform pro-tumor or anti-tumor function, exerting complex and even opposing effects on all stages of tumor development, such as malignant clonal evolution, growth, survival, invasiveness, dissemination and metastasis of tumor cells. TAMCs also reshape TME and tumor vasculature to favor tumor development. The main function of these myeloid cells is to modulate the behavior of lymphocytes, forming immunostimulatory or immunosuppressive TME cues. In addition, TAMCs play a critical role in modulating the response to cancer therapy. Targeting TAMCs is vigorously tested as monotherapy or in combination with chemotherapy or immunotherapy. This review briefly introduces the TAMC subpopulations and their function in tumor cells, TME, angiogenesis, immunomodulation, and cancer therapy.
Collapse
Affiliation(s)
| | - Jing Fang
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA;
| |
Collapse
|
32
|
Chen Z, Deng X, Ye Y, Zhang W, Liu W, Zhao S. Flow Cytometry-Assessed PD1/PDL1 Status in Tumor-Infiltrating Lymphocytes: A Link With the Prognosis of Diffuse Large B-Cell Lymphoma. Front Oncol 2021; 11:687911. [PMID: 34211855 PMCID: PMC8239303 DOI: 10.3389/fonc.2021.687911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
The PD1/PDL1 status of tumor-infiltrating lymphocytes (TILs) in diffuse large B-cell lymphoma (DLBCL) reflects immune function. However, the previously reported methods for evaluating this status are complex and may not be widely used in clinical practice. In addition, these studies did not introduce healthy controls to designate the cut-off when evaluating the prognostic value of the status. In this study, we retrospectively evaluated the PD1/PDL1 status in TILs of 24 DLBCL tissue samples and normal immune cells in 61 demographically matched healthy controls (tissue samples from patients with reactive hyperplasia [RH]) by flow cytometry. We investigated the prognostic value of the PD1/PDL1 status in TILs by precisely determining the cut-off value and assessing the reliability of flow cytometry. The mean fluorescence intensity (MFI) of PD1 in TIL-T-cells (TIL-Ts; median, 110) and CD8+TIL-Ts (median, 64) was significantly higher than that of CD3+T-cells (median, 64) and CD8+ T-cells (median, 34) in RH. The cut-off values of PD1/PDL1 status for analyzing prognostic values were defined considering the PD1/PDL1 status of samples from both patients with DLBCL and healthy controls. High MFI of PD1 in TIL-Ts (MFI >108, P = 0.022), high proportion of PD1+CD4+TIL-Ts (>1.1% of CD4+TIL-Ts, P = 0.049), high proportion of PD1+CD8+TIL-Ts (>2% of CD8+TIL-Ts, P = 0.025), and high MFI of PDL1 in TIL-Ts (MFI >83, P = 0.023) were risk factors for inferior prognosis of DLBCL. Our results indicate that flow cytometry is a reliable and convenient method for evaluating the immune-checkpoint status of TILs, which probably holds major implications in clinical practice.
Collapse
Affiliation(s)
- Zihang Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xueqin Deng
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yunxia Ye
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyan Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Weiping Liu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Sha Zhao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Ou X, Ma Q, Yin W, Ma X, He Z. CRISPR/Cas9 Gene-Editing in Cancer Immunotherapy: Promoting the Present Revolution in Cancer Therapy and Exploring More. Front Cell Dev Biol 2021; 9:674467. [PMID: 34095145 PMCID: PMC8172808 DOI: 10.3389/fcell.2021.674467] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/16/2021] [Indexed: 02/05/2023] Open
Abstract
In recent years, immunotherapy has showed fantastic promise in pioneering and accelerating the field of cancer therapy and embraces unprecedented breakthroughs in clinical practice. The clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (CRISPR-Cas9) system, as a versatile gene-editing technology, lays a robust foundation to efficiently innovate cancer research and cancer therapy. Here, we summarize recent approaches based on CRISPR/Cas9 system for construction of chimeric antigen receptor T (CAR-T) cells and T cell receptor T (TCR-T) cells. Besides, we review the applications of CRISPR/Cas9 in inhibiting immune checkpoint signaling pathways and highlight the feasibility of CRISPR/Cas9 based engineering strategies to screen novel cancer immunotherapy targets. Conclusively, we discuss the perspectives, potential challenges and possible solutions in this vivid growing field.
Collapse
Affiliation(s)
- Xuejin Ou
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Qizhi Ma
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Yin
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyao He
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Rasmussen RK, Etzerodt A. Therapeutic targeting of tumor-associated macrophages. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:185-211. [PMID: 34099108 DOI: 10.1016/bs.apha.2021.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tumor-associated macrophages are among the most abundant non-cancerous cells in the tumor microenvironment and in many cancers macrophage infiltration into the tumor is associated with poor prognosis. Macrophages contribute to tumor development by promoting angiogenesis and immune suppression, and display remarkable phenotypic heterogeneity in the tumor microenvironment. Therapeutic strategies targeting macrophages that currently are in clinical development are mainly focused on a general depletion of tumor-associated macrophages, either by targeting the CSF-1/CSF-1R axis or by inhibiting macrophage recruitment by blocking CCR2/CCL2 signaling. Despite good pre-clinical response rates the treatment strategies focusing on general macrophage targeting have only shown limited clinical success and new approaches that target specific subsets of tumo-associated macrophages are emerging. This chapter will briefly present the functions and heterogeneity of tumor-associated macrophages and provide an overview of the current state of clinical development for pan-targeting strategies as well as discuss new strategies for targeting specific macrophage subsets for future anti-tumor immunotherapies.
Collapse
Affiliation(s)
| | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
35
|
Tobin JWD, Bednarska K, Campbell A, Keane C. PD-1 and LAG-3 Checkpoint Blockade: Potential Avenues for Therapy in B-Cell Lymphoma. Cells 2021; 10:cells10051152. [PMID: 34068762 PMCID: PMC8151045 DOI: 10.3390/cells10051152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
The dependence of cancer on an immunotolerant tumor microenvironment (TME) is well established. Immunotherapies that overcome tumor-induced immune suppression have been central to recent advancements in oncology. This is highlighted by the success of agents that interrupt PD-1 mediated immune suppression in a range of cancers. However, while PD-1 blockade has been paradigm-shifting in many malignancies, the majority of cancers show high rates of primary resistance to this approach. This has led to a rapid expansion in therapeutic targeting of other immune checkpoint molecules to provide combination immune checkpoint blockade (ICB), with one such promising approach is blockade of Lymphocyte Activation Gene 3 (LAG-3). Clinically, lymphoproliferative disorders show a wide spectrum of responses to ICB. Specific subtypes including classical Hodgkin lymphoma have demonstrated striking efficacy with anti-PD-1 therapy. Conversely, early trials of ICB have been relatively disappointing in common subtypes of Non-Hodgkin lymphoma. In this review, we describe the TME of common lymphoma subtypes with an emphasis on the role of prominent immune checkpoint molecules PD-1 and LAG3. We will also discuss current clinical evidence for ICB in lymphoma and highlight key areas for further investigation where synergistic dual checkpoint blockade of LAG-3 and PD-1 could be used to overcome ICB resistance.
Collapse
Affiliation(s)
- Joshua W. D. Tobin
- Mater Research Institute, University of Queensland, Brisbane, QLD 4102, Australia; (J.W.D.T.); (K.B.)
- Department of Haematology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia;
| | - Karolina Bednarska
- Mater Research Institute, University of Queensland, Brisbane, QLD 4102, Australia; (J.W.D.T.); (K.B.)
| | - Ashlea Campbell
- Department of Haematology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia;
| | - Colm Keane
- Mater Research Institute, University of Queensland, Brisbane, QLD 4102, Australia; (J.W.D.T.); (K.B.)
- Department of Haematology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia;
- Correspondence: ; Tel.: +617-3443-7912
| |
Collapse
|
36
|
Pęksa R, Kunc M, Popęda M, Piątek M, Bieńkowski M, Żok J, Starzyńska A, Perdyan A, Sowa M, Duchnowska R, Biernat W. Combined Assessment of Immune Checkpoint Regulator VISTA on Tumor-Associated Immune Cells and Platelet-to-Lymphocyte Ratio Identifies Advanced Germ Cell Tumors with Higher Risk of Unfavorable Outcomes. Cancers (Basel) 2021; 13:cancers13081750. [PMID: 33916925 PMCID: PMC8067539 DOI: 10.3390/cancers13081750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Testicular germ cell tumors (GCTs) are the most common malignancies in young males. The current treatment regimens are usually highly effective and curative. Nevertheless, a portion of patients presents with recurrence or succumbs due to the disease. There is an undoubtful necessity to investigate new prognostic markers to stratify the risk of such events. The current study aimed to evaluate the prognostic significance of markers of the tumor microenvironment and systemic inflammation markers in GCTs. We found that low expression of immune checkpoint proteins VISTA (V-domain Ig suppressor of T cell activation) and PD-L1 (programmed death-ligand 1) on tumor-associated immune cells and elevated inflammatory marker platelet-to-lymphocyte ratio are associated with a higher risk of events in testicular GCTs. It indicates a role of both local anti-tumor immune response and systemic inflammation in these tumors. Abstract In the current study, we aimed to investigate whether expression of immune checkpoint proteins (V-domain Ig suppressor of T cell activation (VISTA) and programmed death-ligand 1 (PD-L1)) and markers of systemic inflammation could predict progression/relapse and death in the cohort of 180 patients with testicular germ-cell tumors (GCTs). Expression of PD-L1 and VISTA was assessed by immunohistochemistry utilizing tissue microarrays. To estimate systemic inflammation neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), and platelet-to-lymphocyte ratio (PLR) were calculated. We found high PD-L1 and VISTA expression on tumor-associated immune cells (TAICs) in 89 (49.44%) and 63 (37.22%) of GCTs, respectively, whereas tumor cells besides trophoblastic elements were almost uniformly negative. High PD-L1 was associated with seminomatous histology and lower stage. Relapses in stage I patients occurred predominantly in cases with low numbers of PD-L1 and VISTA-expressing TAICs. In stage II/III disease, the combination of low VISTA-expressing TAICs and high PLR was identified as predictor of shorter event-free survival (HR 4.10; 1.48–11.36, p = 0.006) and overall survival (HR 15.56, 95% CI 1.78–135.51, p = 0.001) independently of tumor histology and location of metastases. We demonstrated that the assessment of immune checkpoint proteins on TAICs may serve as a valuable prognostic factor in patients with high-risk testicular GCTs. Further study is warranted to explore the predictive utility of these biomarkers in GCTs.
Collapse
Affiliation(s)
- Rafał Pęksa
- Department of Pathomorphology, Medical University of Gdansk, 80214 Gdansk, Poland; (M.K.); (M.B.); (W.B.)
- Correspondence: ; Tel.: +48-58-349-3750
| | - Michał Kunc
- Department of Pathomorphology, Medical University of Gdansk, 80214 Gdansk, Poland; (M.K.); (M.B.); (W.B.)
| | - Marta Popęda
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80211 Gdansk, Poland;
| | - Michał Piątek
- Department of Clinical Oncology/Chemotherapy, St Barbara Regional Specialist Hospital No 5, 41200 Sosnowiec, Poland;
| | - Michał Bieńkowski
- Department of Pathomorphology, Medical University of Gdansk, 80214 Gdansk, Poland; (M.K.); (M.B.); (W.B.)
| | - Jolanta Żok
- Department of Oncology, Regional Oncology Center in Gdansk, 80219 Gdansk, Poland;
| | - Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdansk, 80211 Gdansk, Poland;
| | - Adrian Perdyan
- Student Scientific Circle of Pathomorphology, Medical University of Gdansk, 80214 Gdansk, Poland;
| | - Marek Sowa
- Department of Urology, Medical University of Gdansk, 80214 Gdansk, Poland;
| | - Renata Duchnowska
- Department of Oncology, Military Institute in Warsaw, 01755 Warsaw, Poland;
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdansk, 80214 Gdansk, Poland; (M.K.); (M.B.); (W.B.)
| |
Collapse
|
37
|
de With M, Hurkmans DP, Oomen-de Hoop E, Lalouti A, Bins S, El Bouazzaoui S, van Brakel M, Debets R, Aerts JGJV, van Schaik RHN, Mathijssen RHJ, van der Veldt AAM. Germline Variation in PDCD1 Is Associated with Overall Survival in Patients with Metastatic Melanoma Treated with Anti-PD-1 Monotherapy. Cancers (Basel) 2021; 13:cancers13061370. [PMID: 33803602 PMCID: PMC8002987 DOI: 10.3390/cancers13061370] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 01/14/2023] Open
Abstract
A substantial number of melanoma patients do not benefit from therapy with anti-PD-1. Therefore, we investigated the predictive value of single nucleotide polymorphisms (SNPs) in genes related to the PD-1 axis in patients with metastatic melanoma. From 119 consecutive melanoma patients who were treated with pembrolizumab or nivolumab monotherapy, blood samples were genotyped for 11 SNPs in nine genes. Associations between SNPs and OS were tested using Cox regression analysis and internally validated by bootstrapping. For SNPs with a statistical significance, an expression quantitative trait loci (eQTL) analysis was performed. In a subset of patients, immunophenotyping was performed. Patients with a SNP in PDCD1 (804C > T; rs2227981) had a significantly poorer OS with a 3-year OS rate of 51.8%, as compared to 71% in wild type patients (hazard ratio [HR] 2.37; 95% CI: 1.11-5.04; p = 0.026). eQTL analysis showed that this SNP was associated with decreased gene expression. In addition, PDCD1 804C > T carriers had a reduced fraction of peripheral PD-1+CD4+ T cells. No other associations between SNPs and OS were found. PDCD1 804C > T is associated with poorer OS after anti-PD-1 monotherapy in patients with metastatic melanoma. This SNP may affect clinical benefit from ICIs by decreasing transcription initiation and expression of PD-1 in T cells.
Collapse
Affiliation(s)
- Mirjam de With
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (M.d.W.); (E.O.-d.H.); (A.L.); (S.B.); (M.v.B.); (R.D.); (R.H.J.M.); (A.A.M.v.d.V.)
- Department of Clinical Chemistry, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (S.E.B.); (R.H.N.v.S.)
| | - Daan P. Hurkmans
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (M.d.W.); (E.O.-d.H.); (A.L.); (S.B.); (M.v.B.); (R.D.); (R.H.J.M.); (A.A.M.v.d.V.)
- Department of Pulmonology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands;
- Correspondence: ; Tel.: +31-10-704-11-12
| | - Esther Oomen-de Hoop
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (M.d.W.); (E.O.-d.H.); (A.L.); (S.B.); (M.v.B.); (R.D.); (R.H.J.M.); (A.A.M.v.d.V.)
| | - Ayoub Lalouti
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (M.d.W.); (E.O.-d.H.); (A.L.); (S.B.); (M.v.B.); (R.D.); (R.H.J.M.); (A.A.M.v.d.V.)
| | - Sander Bins
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (M.d.W.); (E.O.-d.H.); (A.L.); (S.B.); (M.v.B.); (R.D.); (R.H.J.M.); (A.A.M.v.d.V.)
| | - Samira El Bouazzaoui
- Department of Clinical Chemistry, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (S.E.B.); (R.H.N.v.S.)
| | - Mandy van Brakel
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (M.d.W.); (E.O.-d.H.); (A.L.); (S.B.); (M.v.B.); (R.D.); (R.H.J.M.); (A.A.M.v.d.V.)
| | - Reno Debets
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (M.d.W.); (E.O.-d.H.); (A.L.); (S.B.); (M.v.B.); (R.D.); (R.H.J.M.); (A.A.M.v.d.V.)
| | - Joachim G. J. V. Aerts
- Department of Pulmonology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands;
| | - Ron H. N. van Schaik
- Department of Clinical Chemistry, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (S.E.B.); (R.H.N.v.S.)
| | - Ron H. J. Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (M.d.W.); (E.O.-d.H.); (A.L.); (S.B.); (M.v.B.); (R.D.); (R.H.J.M.); (A.A.M.v.d.V.)
| | - Astrid A. M. van der Veldt
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (M.d.W.); (E.O.-d.H.); (A.L.); (S.B.); (M.v.B.); (R.D.); (R.H.J.M.); (A.A.M.v.d.V.)
- Department of Radiology & Nuclear Medicine, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
38
|
Khalique H, Baugh R, Dyer A, Scott EM, Frost S, Larkin S, Lei-Rossmann J, Seymour LW. Oncolytic herpesvirus expressing PD-L1 BiTE for cancer therapy: exploiting tumor immune suppression as an opportunity for targeted immunotherapy. J Immunother Cancer 2021; 9:e001292. [PMID: 33820820 PMCID: PMC8026026 DOI: 10.1136/jitc-2020-001292] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Programmed death-ligand 1 (PD-L1) is an important immune checkpoint protein that can be regarded as a pan-cancer antigen expressed by multiple different cell types within the tumor. While antagonizing PD-L1 is well known to relieve PD-1/PD-L1-mediated T cell suppression, here we have combined this approach with an immunotherapy strategy to target T cell cytotoxicity directly toward PD-L1-expressing cells. We developed a bi-specific T cell engager (BiTE) crosslinking PD-L1 and CD3ε and demonstrated targeted cytotoxicity using a clinically relevant patient-derived ascites model. This approach represents an immunological 'volte-face' whereby a tumor immunological defense mechanism can be instantly transformed into an Achilles' heel for targeted immunotherapy. METHODS The PD-L1 targeting BiTE comprises an anti-PD-L1 single-chain variable fragment (scFv) or nanobody (NB) domain and an anti-CD3 scFv domain in a tandem repeat. The ability to activate T cell cytotoxicity toward PD-L1-expressing cells was established using human carcinoma cells and PD-L1-expressing human ('M2') macrophages in the presence of autologous T cells. Furthermore, we armed oncolytic herpes simplex virus-1 (oHSV-1) with PD-L1 BiTE and demonstrated successful delivery and targeted cytotoxicity in unpurified cultures of malignant ascites derived from different cancer patients. RESULTS PD-L1 BiTE crosslinks PD-L1-positive cells and CD3ε on T cells in a 'pseudo-synapse' and triggers T cell activation and release of proinflammatory cytokines such as interferon-gamma (IFN-γ), interferon gamma-induced protein 10 (IP-10) and tumour necrosis factor-α (TNF-α). Activation of endogenous T cells within ascites samples led to significant lysis of tumor cells and M2-like macrophages (CD11b+CD64+ and CD206+/CD163+). The survival of CD3+ T cells (which can also express PD-L1) was unaffected. Intriguingly, ascites fluid that appeared particularly immunosuppressive led to higher expression of PD-L1 on tumor cells, resulting in improved BiTE-mediated T cell activation. CONCLUSIONS The study reveals that PD-L1 BiTE is an effective immunotherapeutic approach to kill PD-L1-positive tumor cells and macrophages while leaving T cells unharmed. This approach activates endogenous T cells within malignant ascites, generates a proinflammatory response and eliminates cells promoting tumor progression. Using an oncolytic virus for local expression of PD-L1 BiTE also prevents 'on-target off-tumor' systemic toxicities and harnesses immunosuppressive protumor conditions to augment immunotherapy in immunologically 'cold' clinical cancers.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/metabolism
- B7-H1 Antigen/immunology
- B7-H1 Antigen/metabolism
- CD3 Complex/immunology
- CD3 Complex/metabolism
- Cell Line, Tumor
- Chlorocebus aethiops
- Coculture Techniques
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- HEK293 Cells
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/metabolism
- Humans
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/therapy
- Neoplasms/virology
- Oncolytic Virotherapy
- Oncolytic Viruses/genetics
- Oncolytic Viruses/immunology
- Oncolytic Viruses/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Microenvironment
- Tumor-Associated Macrophages/immunology
- Tumor-Associated Macrophages/metabolism
- Vero Cells
Collapse
Affiliation(s)
- Hena Khalique
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Richard Baugh
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Arthur Dyer
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Eleanor M Scott
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Sally Frost
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Sarah Larkin
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | | | - Leonard W Seymour
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
39
|
Hayes C, Donohoe CL, Davern M, Donlon NE. The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment. Cancer Lett 2021; 500:75-86. [PMID: 33347908 DOI: 10.1016/j.canlet.2020.12.021] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
The tumour microenvironment is of critical importance in cancer development and progression and includes the surrounding stromal and immune cells, extracellular matrix, and the milieu of metabolites and signalling molecules in the intercellular space. To support sustained mitotic activity cancer cells must reconfigure their metabolic phenotype. Lactate is the major by-product of such metabolic alterations and consequently, accumulates in the tumour. Lactate actively contributes to immune evasion, a hallmark of cancer, by directly inhibiting immune cell cytotoxicity and proliferation. Furthermore, lactate can recruit and induce immunosuppressive cell types, such as regulatory T cells, tumour-associated macrophages, and myeloid-derived suppressor cells which further suppress anti-tumour immune responses. Given its roles in oncogenesis, measuring intratumoural and systemic lactate levels has shown promise as a both predictive and prognostic biomarker in several cancer types. The efficacies of many anti-cancer therapies are limited by an immunosuppressive TME in which lactate is a major contributor, therefore, targeting lactate metabolism is a priority. Developing inhibitors of key proteins in lactate metabolism such as GLUT1, hexokinase, LDH, MCT and HIF have shown promise in preclinical studies, however there is a corresponding lack of success in human trials so far. This may be explained by a weakness of preclinical models that fail to reproduce the complexities of metabolic interactions in natura. The future of these therapies may be as an adjunct to more conventional treatments.
Collapse
Affiliation(s)
- Conall Hayes
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St James' Cancer Institute, St James's Hospital Dublin, Ireland
| | - Claire L Donohoe
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St James' Cancer Institute, St James's Hospital Dublin, Ireland
| | - Maria Davern
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St James' Cancer Institute, St James's Hospital Dublin, Ireland
| | - Noel E Donlon
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St James' Cancer Institute, St James's Hospital Dublin, Ireland.
| |
Collapse
|
40
|
Breinholt MF, Oliveira DVNP, Klausen TW, Gang AO, Schejbel L, Pedersen MØ, Elbaek MV, Clasen-Linde E, Nielsen SL, Knudsen H, Høgdall E, Nørgaard P. High-grade B-cell lymphomas with MYC and BCL2 translocations lack tumor-associated macrophages and PD-L1 expression: A possible noninflamed subgroup. Hematol Oncol 2021; 39:284-292. [PMID: 33480087 DOI: 10.1002/hon.2839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/19/2020] [Accepted: 01/19/2021] [Indexed: 11/06/2022]
Abstract
We investigated the intratumoral source of PD-L1 expression and the infiltration of tumor-associated macrophages (TAMs) in large B-cell lymphomas (LBCLs) with or without MYC-translocation, as well as possible correlations to BCL2-and BCL6-translocations and cell of origin (COO). One-hundred and twenty-six patient samples were studied in a cohort enriched for MYC-translocated tumors with 34 samples carrying this translocation. Demonstration of intratumoral distribution and cellular source of PD-L1 was enabled by immunohistochemical (IHC) dual staining specifically highlighting PD-L1 expression in lymphoma B-cells with antibodies against PD-L1 and PAX5. Additional IHC with antibodies against CD68 and CD163 identified TAMs. We found that CD68-positive TAMs were the main source of PD-L1 protein expression in contrast to lymphoma B cells which rarely expressed PD-L1. Semiquantitative IHC demonstrated a significant correlation between CD68 and PD-L1 protein expression. Unsupervised hierarchical analysis of PD-L1, CD68, and CD163 IHC data subsequently demonstrated three potential clusters defined by expression of the three biomarkers. Cluster A consisted of patient samples with significantly lower expression of PD-L1, CD68, and CD163, but also significantly higher prevalence of BCL2-translocation and MYC-BCL2-double-hit (DH) compared to the other two clusters. In cluster C we found a significant accumulation of BCL6 translocated tumors. This cluster in contrast had the highest protein expression of PD-L1, CD68, and CD163. Cluster B tumors had an intermediate expression of the three biomarkers, but no accumulation of the specific genetic translocations. Our data, which were based on morphological analysis, immunophenotyping and genotyping by fluorescence in situ hybridization were in line with new concepts of LBCL taxonomy integrating genetic, phenotypical, and immunological characteristics with identification of new subgroups where MYC translocation and MYC-BCL2 DH may identify a noninflamed subtype. These findings may furthermore hold significant predictive value especially regarding immune checkpoint blockade therapy, but further molecular characterization should be done to substantiate this hypothesis.
Collapse
Affiliation(s)
- Marie F Breinholt
- Department of Patologi, Herlev og Gentofte Hospital, Herlev, Denmark
| | | | - Tobias W Klausen
- Department of Hematology, Herlev og Gentofte Hospital, Herlev, Denmark
| | - Anne O Gang
- Department of Hematology, Herlev og Gentofte Hospital, Herlev, Denmark
| | - Lone Schejbel
- Department of Patologi, Herlev og Gentofte Hospital, Herlev, Denmark
| | - Mette Ø Pedersen
- Department of Patologi, Herlev og Gentofte Hospital, Herlev, Denmark
| | | | | | - Signe L Nielsen
- Department of Patologi, Herlev og Gentofte Hospital, Herlev, Denmark
| | - Helle Knudsen
- Department of Patologi, Herlev og Gentofte Hospital, Herlev, Denmark
| | - Estrid Høgdall
- Department of Patologi, Herlev og Gentofte Hospital, Herlev, Denmark
| | - Peter Nørgaard
- Department of Patologi, Herlev og Gentofte Hospital, Herlev, Denmark
| |
Collapse
|
41
|
Fudaba H, Momii Y, Hirakawa T, Onishi K, Asou D, Matsushita W, Kawasaki Y, Sugita K, Fujiki M. Sialic acid-binding immunoglobulin-like lectin-15 expression on peritumoral macrophages is a favorable prognostic factor for primary central nervous system lymphoma patients. Sci Rep 2021; 11:1206. [PMID: 33441719 PMCID: PMC7806611 DOI: 10.1038/s41598-020-79742-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/11/2020] [Indexed: 11/30/2022] Open
Abstract
Sialic acid-binding immunoglobulin-like lectin-15 (Siglec-15) is a new immune checkpoint molecule and its role of primary central nervous system lymphoma (PCNSL) tumor microenvironment has been unclear. We explored the Siglec-15 and programed death-ligand 1 (PD-L1) expression in tumor tissues and analyzed the association between the expression of these molecules and overall survival in newly diagnosed PCNSL. A total of 60 patients diagnosed with diffuse large B-cell lymphoma in PCNSL were included in this study. The Siglec-15 and PD-L1 expression on tumor cells, intratumoral macrophages and peritumoral macrophages were immunohistochemically evaluated. The expression of Siglec-15 and PD-L1 was greater in macrophages than in tumor cells. Regarding peritumoral macrophages, the number of Siglec-15-positive samples (n = 24) was greater than the number of PD-L1-positive samples (n = 16). A multivariate Cox analysis showed that the Siglec-15 positivity of peritumoral macrophages and performance of high-dose methotrexate-based chemotherapy were independent predictors of overall survival (hazard ratio: 0.295 and 0.322, respectively). The Kaplan–Meier survival curves showed that patients with Siglec-15-positive peritumoral macrophages had longer overall survival than those with Siglec-15-negative peritumoral macrophages (median overall survival: 3018 days and 746 days, respectively; p = 0.0290). Our findings indicate that the expression of Siglec-15 on peritumoral macrophages induces a favorable outcome in PCNSL patients.
Collapse
Affiliation(s)
- Hirotaka Fudaba
- Department of Neurosurgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasamamachi, Yufu, 879-5593, Japan.
| | - Yasutomo Momii
- Department of Neurosurgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasamamachi, Yufu, 879-5593, Japan
| | - Taisei Hirakawa
- School of Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan
| | - Kouhei Onishi
- Department of Neurosurgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasamamachi, Yufu, 879-5593, Japan
| | - Daigo Asou
- Department of Neurosurgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasamamachi, Yufu, 879-5593, Japan
| | - Wataru Matsushita
- Department of Neurosurgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasamamachi, Yufu, 879-5593, Japan
| | - Yukari Kawasaki
- Department of Neurosurgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasamamachi, Yufu, 879-5593, Japan
| | - Kenji Sugita
- Department of Neurosurgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasamamachi, Yufu, 879-5593, Japan
| | - Minoru Fujiki
- Department of Neurosurgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasamamachi, Yufu, 879-5593, Japan
| |
Collapse
|
42
|
Yang SM, Wu M, Han FY, Sun YM, Yang JQ, Liu HX. Role of HPV status and PD-L1 expression in prognosis of laryngeal squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:107-115. [PMID: 33532028 PMCID: PMC7847499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
PURPOSE Human papillomavirus (HPV) infection has been recognized as a cause of head and neck squamous cell carcinomas (HNSCC). Laryngeal squamous cell carcinoma (LSCC) is one of the most common pathologic types of HNSCC. Clinical trials show that there are differences in response to immunotherapy according to HPV status. It was reported that a high level of programmed cell death-ligand 1 (PD-L1) is correlated with better survival in HPV-positive head and neck cancer. In this study, we investigated the expression of PD-L1 in HPV-positive and HPV-negative LSCC to determine its prevalence and prognostic value. METHODS 52 cases of LSCC were collected from Tangshan Head and Neck Disease Pathology Research Base. PCR-reverse dot blot hybridization and RNAscope in situ hybridization were used to detect HPV status. PD-L1 expression was evaluated by immunohistochemistry and all cases were followed up for survival. SPSS24.0 was used for data entry and statistical analysis. Kaplan-Meier method and Log-rank time series analysis were used for single factor analysis. Multivariate analysis was performed using Cox proportional hazard regression model, and HR and 95% CI were calculated. RESULTS Of the 52 LSCC patients, 32.7% (17/52) were HPV-positive by RNAscope in situ hybridization, and 51.9% (27/52) of patients were positive for PD-L1 expression by immunohistochemistry. Regression analysis showed that with a median follow-up period of 69 months, smoking and late stage were associated with poor overall survival (OS), whereas HPV positivity and PD-L1 expression showed a better overall survival outcome. CONCLUSION Smoking status, tumor stage, HPV status, and PD-L1 expression in tumor cells may represent useful prognostic biomarkers in patients with LSCC.
Collapse
Affiliation(s)
- Su-Mei Yang
- Department of Pneumology, Tangshan People’s HospitalTangshan, P. R. China
| | - Meng Wu
- Department of Pathology, Division of Basic Medicine, Tangshan Vocational and Technical CollegeTangshan, P. R. China
| | - Feng-Yan Han
- Department of Pathology, Tangshan Union HospitalTangshan, P. R. China
| | - Yu-Man Sun
- Department of Pathology, Tangshan Union HospitalTangshan, P. R. China
| | - Jun-Quan Yang
- Department of Radio-chemotherapy Oncology, Tangshan People’s HospitalTangshan, P. R. China
| | - Hong-Xia Liu
- Department of Pathology, Tangshan Union HospitalTangshan, P. R. China
| |
Collapse
|
43
|
Brück O, Lee MH, Turkki R, Uski I, Penttilä P, Paavolainen L, Kovanen P, Järvinen P, Bono P, Pellinen T, Mustjoki S, Kreutzman A. Spatial immunoprofiling of the intratumoral and peritumoral tissue of renal cell carcinoma patients. Mod Pathol 2021; 34:2229-2241. [PMID: 34215851 PMCID: PMC8592837 DOI: 10.1038/s41379-021-00864-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 01/02/2023]
Abstract
While the abundance and phenotype of tumor-infiltrating lymphocytes are linked with clinical survival, their spatial coordination and its clinical significance remain unclear. Here, we investigated the immune profile of intratumoral and peritumoral tissue of clear cell renal cell carcinoma patients (n = 64). We trained a cell classifier to detect lymphocytes from hematoxylin and eosin stained tissue slides. Using unsupervised classification, patients were further classified into immune cold, hot and excluded topographies reflecting lymphocyte abundance and localization. The immune topography distribution was further validated with The Cancer Genome Atlas digital image dataset. We showed association between PBRM1 mutation and immune cold topography, STAG1 mutation and immune hot topography and BAP1 mutation and immune excluded topography. With quantitative multiplex immunohistochemistry we analyzed the expression of 23 lymphocyte markers in intratumoral and peritumoral tissue regions. To study spatial interactions, we developed an algorithm quantifying the proportion of adjacent immune cell pairs and their immunophenotypes. Immune excluded tumors were associated with superior overall survival (HR 0.19, p = 0.02) and less extensive metastasis. Intratumoral T cells were characterized with pronounced expression of immunological activation and exhaustion markers such as granzyme B, PD1, and LAG3. Immune cell interaction occurred most frequently in the intratumoral region and correlated with CD45RO expression. Moreover, high proportion of peritumoral CD45RO+ T cells predicted poor overall survival. In summary, intratumoral and peritumoral tissue regions represent distinct immunospatial profiles and are associated with clinicopathologic characteristics.
Collapse
Affiliation(s)
- Oscar Brück
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland. .,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland. .,Hematology Research Unit Helsinki, University of Helsinki and Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland. .,Comprehensive Cancer Center, Department of Hematology, Helsinki University Hospital, Helsinki, Finland.
| | - Moon Hee Lee
- grid.7737.40000 0004 0410 2071Translational Immunology Research Program, University of Helsinki, Helsinki, Finland ,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland ,grid.15485.3d0000 0000 9950 5666Hematology Research Unit Helsinki, University of Helsinki and Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Riku Turkki
- grid.7737.40000 0004 0410 2071Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ilona Uski
- grid.7737.40000 0004 0410 2071Translational Immunology Research Program, University of Helsinki, Helsinki, Finland ,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland ,grid.15485.3d0000 0000 9950 5666Hematology Research Unit Helsinki, University of Helsinki and Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Patrick Penttilä
- grid.15485.3d0000 0000 9950 5666Abdominal Center, Urology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Lassi Paavolainen
- grid.7737.40000 0004 0410 2071Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Panu Kovanen
- grid.7737.40000 0004 0410 2071Department of Pathology, HUSLAB, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Petrus Järvinen
- grid.15485.3d0000 0000 9950 5666Abdominal Center, Urology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Petri Bono
- grid.15485.3d0000 0000 9950 5666Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Teijo Pellinen
- grid.7737.40000 0004 0410 2071Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Satu Mustjoki
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland. .,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland. .,Hematology Research Unit Helsinki, University of Helsinki and Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland. .,Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.
| | - Anna Kreutzman
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland. .,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland. .,Hematology Research Unit Helsinki, University of Helsinki and Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
44
|
Tsuyuki Y, Ishikawa E, Kohno K, Shimada K, Ohka F, Suzuki Y, Mabuchi S, Satou A, Takahara T, Kato S, Miyagi S, Ozawa H, Kawano T, Takagi Y, Hiraga J, Wakabayashi T, Nakamura S. Expression of programmed cell death ligand-1 by immune cells in the microenvironment is a favorable prognostic factor for primary diffuse large B-cell lymphoma of the central nervous system. Neuropathology 2020; 41:99-108. [PMID: 33269495 DOI: 10.1111/neup.12705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/28/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022]
Abstract
Primary diffuse large B-cell lymphoma (DLBCL) of the central nervous system (PCNS-DLBCL) is rare. Thirty-nine patients consecutively diagnosed as having PCNS-DLBCL were analyzed to highlight the prognostic value of the expression of programmed cell death ligand-1 (PD-L1) by neoplastic cells and immune cells in the microenvironment. They were positive for CD20 in all (100%), CD5 in two (5%), CD10 in nine (23%), BCL-2 in 27 (69%), BCL-6 in 34 (87%), and MUM-1 in 37 (95%). Only one case was positive for neoplastic PD-L1, with an unexpectedly long clinical course of 92 months. The remaining 38 cases were further divided into three groups based on the percentage of PD-L1+ cells among microenvironmental immune cells. Cutoffs of < 5%, 5-40%, and ≥ 40% successfully stratified mean prognoses with three-year overall survival (OS) of 21%, 63%, and 100% (P = 0.009), respectively. Progression-free survival (PFS) and OS were different between the groups with and without methotrexate (MTX)-containing chemotherapy (P = 0.007 and P < 0.001, respectively). Multivariate analysis identified three independent adverse factors of OS: PD-L1 negativity (< 5%) on microenvironmental immune cells (P = 0.027), deep structure involvement (P = 0.034), and performance status (PS) 2-4 (P = 0.009). The study showed that PD-L1 expression on immune cells in the microenvironment was associated with prognosis among patients with PCNS-DLBCL.
Collapse
Affiliation(s)
- Yuta Tsuyuki
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan.,Department of Diagnostic Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eri Ishikawa
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan.,Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kei Kohno
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Kazuyuki Shimada
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Suzuki
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Seiyo Mabuchi
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Seiichi Kato
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Shohei Miyagi
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Hiroyuki Ozawa
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Tasuku Kawano
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Yusuke Takagi
- Department of Hematology, Toyota Kosei Hospital, Toyota, Japan.,Department of Hematology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Junji Hiraga
- Department of Hematology, Toyota Kosei Hospital, Toyota, Japan
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shigeo Nakamura
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
45
|
Zhong L, Zhang Y, Li M, Song Y, Liu D, Yang X, Yang D, Qu H, Lai L, Wang Q, Chen Z. E3 ligase FBXW7 restricts M2-like tumor-associated macrophage polarization by targeting c-Myc. Aging (Albany NY) 2020; 12:24394-24423. [PMID: 33260160 PMCID: PMC7762499 DOI: 10.18632/aging.202293] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/24/2020] [Indexed: 06/12/2023]
Abstract
FBXW7 functions as an E3 ubiquitin ligase to mediate oncoprotein degradation via the ubiquitin-proteasome system in cancer cells, effectively inhibiting the growth and survival of tumor cells. However, little is known about the functions of FBXW7 in macrophages and the tumor immune microenvironment. In this study, we find that FBXW7 suppresses M2-like tumor-associated macrophage (TAM) polarization to limit tumor progression. We identified a significant increase in the proportion of M2-like TAMs and aggravated tumor growth in mice with myeloid FBXW7 deficiency by subcutaneous inoculation with Lewis lung carcinoma cells (LLCs). When stimulated with LLCs supernatant in vitro, FBXW7-knockout macrophages displayed increased M2 macrophage polarization and enhanced ability of supporting cancer cells growth. In mechanism, we confirmed that FBXW7 inhibited M2-like TAM polarization by mediating c-Myc degradation via the ubiquitin-proteasome system. These findings highlight the role of FBXW7 in M2-like TAM polarization and provide new insights into the potential targets for cancer immunotherapies.
Collapse
Affiliation(s)
- Lijia Zhong
- Department of Pulmonology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yuanyuan Zhang
- Department of Pulmonology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Mengyao Li
- Department of Pulmonology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yinjing Song
- Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Danhui Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin Yang
- Department of Pulmonology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Dehua Yang
- Department of Pulmonology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Hao Qu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhimin Chen
- Department of Pulmonology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
46
|
Menter T, Tzankov A, Dirnhofer S. The tumor microenvironment of lymphomas: Insights into the potential role and modes of actions of checkpoint inhibitors. Hematol Oncol 2020; 39:3-10. [PMID: 33105031 DOI: 10.1002/hon.2821] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment (TME) - a term comprising non-neoplastic cells and extracellular matrix as well as various cytokines, chemokines, growth factors, and other substances in the vicinity of tumor cells - is an integrative part of most tumors including lymphomas. Interactions between lymphoma cells and the TME are vital for survival and proliferation of the former. In addition, lymphoma cells often reprogram the TME to protect them from defense mechanisms of the host's immune system. In this review, we will introduce the role of the tumor microenvironment (TME) for lymphoma cells looking at direct cell-cell interactions as well as cytokine-related communications. The immunomodulative/immunosuppressive role of the TME is more and more coming into the focus of potential new targeted therapies, and thus a special attention will be given to the interactions of immune checkpoints such as programed cell death protein 1 and L1 (PD-1/PD-L1), T-cell immunoglobulin and mucin-domain containing protein-3 (TIM-3), lymphocyte-activation gene 3 (LAG-3), and cytotoxic T-lymphocyte-associated protein-4 (CTLA4) with the TME, as well as their expression by both lymphoma cells and cells of the TME. Aspects of the TME will be discussed for indolent and aggressive B-cell lymphomas, Hodgkin lymphomas, and T-cell lymphomas. In addition, the potential influence of other immunomodulators such as lenalidomide will be briefly touched. The complex role of the TME is in the focus of new therapeutic options. In order to exploit its full therapeutic potential, however, a thorough understanding of TME biology and interaction between lymphoma cells and the TME, as well as the host's immune system and the TME is necessary.
Collapse
Affiliation(s)
- Thomas Menter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stefan Dirnhofer
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
47
|
Apostolidis J, Sayyed A, Darweesh M, Kaloyannidis P, Al Hashmi H. Current Clinical Applications and Future Perspectives of Immune Checkpoint Inhibitors in Non-Hodgkin Lymphoma. J Immunol Res 2020; 2020:9350272. [PMID: 33178841 PMCID: PMC7647776 DOI: 10.1155/2020/9350272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/10/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer cells escape immune recognition by exploiting the programmed cell-death protein 1 (PD-1)/programmed cell-death 1 ligand 1 (PD-L1) immune checkpoint axis. Immune checkpoint inhibitors that target PD-1/PD-L1 unleash the properties of effector T cells that are licensed to kill cancer cells. Immune checkpoint blockade has dramatically changed the treatment landscape of many cancers. Following the cancer paradigm, preliminary results of clinical trials in lymphoma have demonstrated that immune checkpoint inhibitors induce remarkable responses in specific subtypes, most notably classical Hodgkin lymphoma and primary mediastinal B-cell lymphoma, while in other subtypes, the results vary considerably, from promising to disappointing. Lymphomas that respond to immune checkpoint inhibitors tend to exhibit tumor cells that reside in a T-cell-rich immune microenvironment and display constitutive transcriptional upregulation of genes that facilitate innate immune resistance, such as structural variations of the PD-L1 locus, collectively referred to as T-cell-inflamed lymphomas, while those lacking such characteristics are referred to as noninflamed lymphomas. This distinction is not necessarily a sine qua non of response to immune checkpoint inhibitors, but rather a framework to move the field forward with a more rational approach. In this article, we provide insights on our current understanding of the biological mechanisms of immune checkpoint evasion in specific subtypes of B-cell and T-cell non-Hodgkin lymphomas and summarize the clinical experience of using inhibitors that target immune checkpoints in these subtypes. We also discuss the phenomenon of hyperprogression in T-cell lymphomas, related to the use of such inhibitors when T cells themselves are the target cells, and consider future approaches to refine clinical trials with immune checkpoint inhibitors in non-Hodgkin lymphomas.
Collapse
Affiliation(s)
- John Apostolidis
- Department of Adult Hematology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Ayman Sayyed
- Department of Adult Hematology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Mohammed Darweesh
- Department of Adult Hematology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | | | - Hani Al Hashmi
- Department of Adult Hematology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
48
|
Younes S, Natkunam Y. FOXes at play in the lymphoma landscape. Leuk Lymphoma 2020; 62:5-7. [PMID: 33064049 DOI: 10.1080/10428194.2020.1834099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sheren Younes
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
49
|
Pollari M, Pellinen T, Karjalainen-Lindsberg ML, Kellokumpu-Lehtinen PL, Leivonen SK, Leppä S. Adverse prognostic impact of regulatory T-cells in testicular diffuse large B-cell lymphoma. Eur J Haematol 2020; 105:712-721. [PMID: 32632935 DOI: 10.1111/ejh.13484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Testicular diffuse large B-cell lymphoma (T-DLBCL) is a rare and aggressive extranodal lymphoma. We have previously shown that high content of tumor-infiltrating lymphocytes (TILs) and PD-1 expressing TILs associate with better survival in T-DLBCL. In this study, we have further characterized distinct TIL subtypes and their proportions in association with patient demographics and survival. METHODS We used multiplex immunohistochemistry to characterize TIL phenotypes, including cytotoxic T-cells (CTLs; CD8+ , OX40+ , Granzyme B+ , Ki-67+ , LAG-3+ , TIM-3+ , PD-1+ ), CD4+ T-cells (CD3+ , CD4+ , TIM-3+ , LAG-3+ ), regulatory T-cells (Tregs; CD3+ , CD4+ , FoxP3+ ), and T helper 1 cells (Th1; CD3+ , CD4+ , T-bet+ ) in 79 T-DLBCLs, and correlated the findings with patient demographics and outcome. RESULTS We observed a substantial variation in TIL phenotypes between the patients. The most prominent CD8+ TILs were Ki-67+ and TIM-3+ CTLs, whereas the most prominent CD4+ TILs were FoxP3+ Tregs. Despite the overall favorable prognostic impact of high TIL content, we found a subpopulation of T-bet+ FoxP3+ Tregs that had a significant adverse impact on survival. Lower content of CTLs with activated or exhausted phenotypes correlated with aggressive clinical features. CONCLUSIONS Our results demonstrate significant variation in TIL phenotypes and emphasize the adverse prognostic impact of Tregs in T-DLBCL.
Collapse
Affiliation(s)
- Marjukka Pollari
- Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Oncology, Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | | | - Pirkko-Liisa Kellokumpu-Lehtinen
- Department of Oncology, Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland
| | - Suvi-Katri Leivonen
- Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Oncology, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Sirpa Leppä
- Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Oncology, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland.,iCAN, Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| |
Collapse
|
50
|
Dufva O, Pölönen P, Brück O, Keränen MAI, Klievink J, Mehtonen J, Huuhtanen J, Kumar A, Malani D, Siitonen S, Kankainen M, Ghimire B, Lahtela J, Mattila P, Vähä-Koskela M, Wennerberg K, Granberg K, Leivonen SK, Meriranta L, Heckman C, Leppä S, Nykter M, Lohi O, Heinäniemi M, Mustjoki S. Immunogenomic Landscape of Hematological Malignancies. Cancer Cell 2020; 38:380-399.e13. [PMID: 32649887 DOI: 10.1016/j.ccell.2020.06.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 03/27/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022]
Abstract
Understanding factors that shape the immune landscape across hematological malignancies is essential for immunotherapy development. We integrated over 8,000 transcriptomes and 2,000 samples with multilevel genomics of hematological cancers to investigate how immunological features are linked to cancer subtypes, genetic and epigenetic alterations, and patient survival, and validated key findings experimentally. Infiltration of cytotoxic lymphocytes was associated with TP53 and myelodysplasia-related changes in acute myeloid leukemia, and activated B cell-like phenotype and interferon-γ response in lymphoma. CIITA methylation regulating antigen presentation, cancer type-specific immune checkpoints, such as VISTA in myeloid malignancies, and variation in cancer antigen expression further contributed to immune heterogeneity and predicted survival. Our study provides a resource linking immunology with cancer subtypes and genomics in hematological malignancies.
Collapse
MESH Headings
- Acute Disease
- Epigenesis, Genetic
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic
- Genomics/methods
- HLA Antigens/genetics
- Humans
- Immunotherapy/methods
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/immunology
- Leukemia, Myeloid/therapy
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Multiple Myeloma/genetics
- Multiple Myeloma/immunology
- Multiple Myeloma/therapy
- Mutation
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Olli Dufva
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center (HUH CCC), 00029 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki (UH), 00029 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Petri Pölönen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Oscar Brück
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center (HUH CCC), 00029 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki (UH), 00029 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Mikko A I Keränen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center (HUH CCC), 00029 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki (UH), 00029 Helsinki, Finland
| | - Jay Klievink
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center (HUH CCC), 00029 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki (UH), 00029 Helsinki, Finland
| | - Juha Mehtonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jani Huuhtanen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center (HUH CCC), 00029 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki (UH), 00029 Helsinki, Finland
| | - Ashwini Kumar
- Institute for Molecular Medicine Finland, UH, 00014 Helsinki, Finland
| | - Disha Malani
- Institute for Molecular Medicine Finland, UH, 00014 Helsinki, Finland
| | - Sanna Siitonen
- Department of Clinical Chemistry, UH and HUSLAB, HUH, 00029 Helsinki, Finland
| | - Matti Kankainen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center (HUH CCC), 00029 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki (UH), 00029 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Bishwa Ghimire
- Institute for Molecular Medicine Finland, UH, 00014 Helsinki, Finland
| | - Jenni Lahtela
- Institute for Molecular Medicine Finland, UH, 00014 Helsinki, Finland
| | - Pirkko Mattila
- Institute for Molecular Medicine Finland, UH, 00014 Helsinki, Finland
| | | | | | - Kirsi Granberg
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University (TU), 33014 Tampere, Finland
| | - Suvi-Katri Leivonen
- Department of Oncology, HUH CCC, 00029 Helsinki, Finland; Applied Tumor Genomics Research Program, Faculty of Medicine, UH, 00014 Helsinki, Finland
| | - Leo Meriranta
- Department of Oncology, HUH CCC, 00029 Helsinki, Finland; Applied Tumor Genomics Research Program, Faculty of Medicine, UH, 00014 Helsinki, Finland
| | - Caroline Heckman
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland; Institute for Molecular Medicine Finland, UH, 00014 Helsinki, Finland
| | - Sirpa Leppä
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland; Department of Oncology, HUH CCC, 00029 Helsinki, Finland; Applied Tumor Genomics Research Program, Faculty of Medicine, UH, 00014 Helsinki, Finland
| | - Matti Nykter
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University (TU), 33014 Tampere, Finland
| | - Olli Lohi
- Tampere Center for Child Health Research, TU and Tays Cancer Center, Tampere University Hospital, 33521 Tampere, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center (HUH CCC), 00029 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki (UH), 00029 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| |
Collapse
|