1
|
Biswal JK, Ranjan R, Mohapatra JK, Sahoo NR, Singh RP. Pan-serotype reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay targeting 2B-NSP coding region for colorimetric detection of foot-and-mouth disease virus in clinical samples. Virus Genes 2025:10.1007/s11262-025-02158-y. [PMID: 40285984 DOI: 10.1007/s11262-025-02158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease of even-toed animals. Rapid, early, and accurate diagnosis of the disease is important for the swift control of FMD. Although PCR-based assays are being used routinely for the effective diagnosis of FMD, these assays require sophisticated equipment, dedicated manpower, and complex procedures for the detection of amplified viral-genome. Colorimetric isothermal amplification assay with a sharp contrast in colour changes for the positive amplification of viral-genome would be qualified for quick and simple diagnosis of FMDV in both laboratory and field. Here, we report the development and evaluation of FMDV 2B-NSP coding region-based colorimetric RT-LAMP assay for pan-serotypic detection of viral-genome. Addition of 1 mg/ml of bovine serum albumin (BSA) as an additive, could reduce the detection time of the RT-LAMP assay from 60 to 30 min/reaction. Analytical sensitivity test showed that the RT-LAMP assay can detect up to 1000 copies of FMDV genome/reaction, simultaneously, the assay was found specific for the detection of FMDV genome as revealed on testing with serotypes O, A and Asia1 circulating in India during the last two decades. In addition, analysis of 312 clinical samples from various field outbreaks of FMDV in the country showed that RT-LAMP assay exhibited a sensitivity of 96.07%, and a specificity of 100% with an overall accuracy of 97.12%. Therefore, owing to the naked eye distinct visualization of amplified product (pink to yellow colour change), the RT-LAMP assay may facilitate rapid screening of FMD-suspected clinical samples without the use of hazardous DNA-binding dyes and simultaneously prevents aerosolization of amplified product, and subsequent carry over contamination in the diagnostic laboratory.
Collapse
Affiliation(s)
- Jitendra K Biswal
- ICAR-National Institute on Foot-and-Mouth Disease, Arugul, Bhubaneswar, Odisha, 752050, India.
| | - Rajeev Ranjan
- ICAR-National Institute on Foot-and-Mouth Disease, Arugul, Bhubaneswar, Odisha, 752050, India
| | - Jajati K Mohapatra
- ICAR-National Institute on Foot-and-Mouth Disease, Arugul, Bhubaneswar, Odisha, 752050, India
| | - Nihar Ranjan Sahoo
- ICAR-National Institute on Foot-and-Mouth Disease, Arugul, Bhubaneswar, Odisha, 752050, India
| | - Rabindra Prasad Singh
- ICAR-National Institute on Foot-and-Mouth Disease, Arugul, Bhubaneswar, Odisha, 752050, India
| |
Collapse
|
2
|
Elbehiry A, Marzouk E, Abalkhail A, Abdelsalam MH, Mostafa MEA, Alasiri M, Ibrahem M, Ellethy AT, Almuzaini A, Aljarallah SN, Abu-Okail A, Marzook N, Alhadyan S, Edrees HM. Detection of antimicrobial resistance via state-of-the-art technologies versus conventional methods. Front Microbiol 2025; 16:1549044. [PMID: 40071214 PMCID: PMC11893576 DOI: 10.3389/fmicb.2025.1549044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Antimicrobial resistance (AMR) is recognized as one of the foremost global health challenges, complicating the treatment of infectious diseases and contributing to increased morbidity and mortality rates. Traditionally, microbiological culture and susceptibility testing methods, such as disk diffusion and minimum inhibitory concentration (MIC) assays, have been employed to identify AMR bacteria. However, these conventional techniques are often labor intensive and time consuming and lack the requisite sensitivity for the early detection of resistance. Recent advancements in molecular and genomic technologies-such as next-generation sequencing (NGS), matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), lateral flow immunoassays (LFIAs), PCR-based diagnostic methods, and CRISPR-based diagnostics-have revolutionized the diagnosis of AMR. These innovative approaches provide increased sensitivity, reduced turnaround times, and the ability to identify genetic resistance mechanisms. This review seeks to examine the advantages and disadvantages of both emerging technologies and traditional methods for detecting AMR, emphasizing the potential benefits and limitations inherent to each. By understanding the strengths and limitations of these technologies, stakeholders, including researchers, healthcare professionals, regulatory agencies, health authorities, financial managers, and patients, can make informed decisions aimed at preventing the emergence and dissemination of antibiotic-resistant strains, thereby ultimately increasing patient safety.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Eman Marzouk
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | | | - Mohamed E. A. Mostafa
- Department of Anatomy, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Mazen Alasiri
- Department of Pharmacy, Armed Forces Hospital, King Abdul Aziz Naval base in Jubail, Jubail, Saudi Arabia
| | - Mai Ibrahem
- Department of Public Health, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Abousree T. Ellethy
- Division of Biochemistry, Department of Basic Oral Sciences and Dental Education, College of Dentistry, Qassim University, Buraydah, Saudi Arabia
| | - Abdulaziz Almuzaini
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Sahar N. Aljarallah
- Department of Pharmacy sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Akram Abu-Okail
- Department of Pathology and Laboratory Diagnosis, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Naif Marzook
- Department of Emergency Medicine, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Satam Alhadyan
- Department of Environmental Health Administration, Health Services, Ministry of Defense, Riyadh, Saudi Arabia
| | - Husam M. Edrees
- Department of Physiology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
3
|
Shiluli C, Kamath S, Kanoi BN, Kimani R, Oduor B, M. Abkallo H, Maina M, Waweru H, Kamita M, Pamme N, Dupaty J, Klapperich CM, Lolabattu SR, Gitaka J. Highly sensitive molecular assay based on Identical Multi-Repeat Sequence (IMRS) algorithm for the detection of Trichomonas vaginalis infection. PLoS One 2025; 20:e0317958. [PMID: 39919090 PMCID: PMC11805422 DOI: 10.1371/journal.pone.0317958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
INTRODUCTION Annually, approximately 174 million people globally are affected by Trichomonas vaginalis (T. vaginalis) infection. Half of these infections occur in resource-limited regions. Untreated T. vaginalis infections are associated with complications such as pelvic inflammatory disease and adverse pregnancy outcomes mostly seen in women. In resource-limited regions, the World Health Organization (WHO) advocates for syndromic case management. However, this can lead to unnecessary treatment. Accurate diagnosis of T. vaginalis is required for effective and prompt treatment. Molecular tests such as Polymerase Chain Reaction (PCR) have the advantage of having a short turn-around time and allow the use of non-invasive specimens such as urine and vaginal swabs. However, these diagnostic techniques have numerous disadvantages such as high infrastructure costs, false negative and positive results, and interstrain variation among others. This study aimed to evaluate the use of identical multi-repeat sequences (IMRS) as amplification primers for developing ultrasensitive diagnostic for T. vaginalis. METHODS We used genome-mining approaches based on identical multi-repeat sequences (IMRS) algorithm to identify sequences distributed on the T. vaginalis genome to design a primer pair that targets a total of 69 repeat sequences. Genomic T. vaginalis DNA was diluted from 5.8×102 to 5.8×10-4 genome copies/μl and used as a template in the IMRS-based amplification assay. For performance comparison, 18S rRNA PCR assay was employed. RESULTS The T. vaginalis -IMRS primers offered a higher test sensitivity of 0.03 fg/μL compared to the 18S rRNA PCR (0.714 pg/μL). The limit of detection for the Isothermal assay was 0.58 genome copies/mL. Using real-time PCR, the analytical sensitivity of the T. vaginalis -IMRS primers was <0.01 pg/μL, equivalent to less than one genome copy/μL. CONCLUSION De novo genome mining of T. vaginalis IMRS as amplification primers serves as a platform for developing ultrasensitive diagnostics for Trichomoniasis and a wide range of infectious pathogens.
Collapse
Affiliation(s)
- Clement Shiluli
- Centre for Research in Infectious Diseases, College of Graduate Studies and Research, Mount Kenya University, Thika, Kenya
| | - Shwetha Kamath
- Division of Research and Development, Jigsaw Bio Solutions Private Limited, Bangalore, India
| | - Bernard N. Kanoi
- Centre for Research in Infectious Diseases, College of Graduate Studies and Research, Mount Kenya University, Thika, Kenya
| | - Racheal Kimani
- Centre for Research in Infectious Diseases, College of Graduate Studies and Research, Mount Kenya University, Thika, Kenya
| | - Bernard Oduor
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - Hussein M. Abkallo
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - Michael Maina
- Centre for Research in Infectious Diseases, College of Graduate Studies and Research, Mount Kenya University, Thika, Kenya
| | - Harrison Waweru
- Centre for Research in Infectious Diseases, College of Graduate Studies and Research, Mount Kenya University, Thika, Kenya
| | - Moses Kamita
- Centre for Research in Infectious Diseases, College of Graduate Studies and Research, Mount Kenya University, Thika, Kenya
| | - Nicole Pamme
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Joshua Dupaty
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Catherine M. Klapperich
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | | | - Jesse Gitaka
- Centre for Research in Infectious Diseases, College of Graduate Studies and Research, Mount Kenya University, Thika, Kenya
| |
Collapse
|
4
|
Jiang F, Ding X, Wang X, Fu K, Jia Z, Liang L, Guo W. Rapid and Sensitive On-Site Nucleic Acid Detection of Three Main Fusarium Pathogens of Maize Stalk Rot Based on RPA-CRISPR/Cas12a. PLANT DISEASE 2025; 109:289-296. [PMID: 39342963 DOI: 10.1094/pdis-08-24-1678-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Maize stalk rot is a soilborne disease that poses a serious threat to maize production worldwide, with the most significant cause being fungal stalk rot. The development of a visual and rapid detection method for the maize stalk rot pathogen is significant for its prompt and accurate identification, enhancing agricultural production efficiency, and implementing timely preventive measures. These measures will help safeguard the maize yield and quality, ultimately reducing agricultural losses. In this study, we aimed to develop an efficient method to detect maize stalk rot pathogens. We focused on three pathogenic fungi commonly found in maize-producing regions worldwide: Fusarium verticillioides, F. proliferatum, and F. graminearum. Based on translation elongation factor 1-α, we developed a rapid detection technique using recombinase polymerase amplification-CRISPR/Cas12a, combined with test strips to develop an on-site rapid visual detection test for these pathogens. The method showed detection sensitivity for F. verticillioides, F. proliferatum, and F. graminearum within 20 min at concentrations of 7.8 pg/μl, 0.11 ng/μl, and 0.13 ng/μl, respectively. The sensitivity increased with increasing reaction time. Testing of field disease samples indicated that the method is effective in detecting nucleic acids obtained through crude extraction methods. In conclusion, we developed a visually rapid detection technology that does not rely on complex instruments and equipment for the on-site early detection of F. verticillioides, F. proliferatum, and F. graminearum in the field to implement effective control measures, ensuring stable and high maize yields.
Collapse
Affiliation(s)
- Fan Jiang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Xinjiang Key Laboratory of Agricultural Bio-safety, Ürümqi 830091, China
- CAIQ Center for Biosafety, Sanya, Hainan 572025, China
| | - Xinhua Ding
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Xinjiang Key Laboratory of Agricultural Bio-safety, Ürümqi 830091, China
| | - Xiaowu Wang
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Xinjiang Key Laboratory of Agricultural Bio-safety, Ürümqi 830091, China
| | - Kaiyun Fu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Xinjiang Key Laboratory of Agricultural Bio-safety, Ürümqi 830091, China
| | - Zunzun Jia
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Xinjiang Key Laboratory of Agricultural Bio-safety, Ürümqi 830091, China
| | - Liang Liang
- Academy of Agricultural Planning and Engineering, MARA, Beijing 100125, China
| | - Wenchao Guo
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Xinjiang Key Laboratory of Agricultural Bio-safety, Ürümqi 830091, China
| |
Collapse
|
5
|
Lapointe V, Roy M, Rose S, Boutin Y, Couture F. Conception and Optimization of Extraction-Free Loop-Mediated Isothermal Amplification Detection of Dry Rot Fungus Serpula lacrymans. ACS OMEGA 2024; 9:45080-45089. [PMID: 39554464 PMCID: PMC11561609 DOI: 10.1021/acsomega.4c05509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024]
Abstract
The use of nucleic acid-based detection tools for microorganisms and fungi has become a gold standard. This is particularly the case for wood-decaying fungi like Serpula lacrymans, which are hard to discriminate based on macroscopic and microscopic observations. This dry rot is important to detect as it is particularly destructive in an infested building, which requires immediate action to prevent spreading and significant damage to structural elements. Through the development and optimization of loop-mediated isothermal amplification against S. lacrymans-specific rDNA internal transcribed spacer region, we demonstrate that it is possible to achieve rapid and specific amplification without nonspecific self-amplification in a similar range as real-time quantitative PCR without any necessary DNA isolation using a colorimetric detection assay. Through a combined set of self-amplification minimization along with hand-held sample homogenization, the LAMP assay was optimized to provide a femtogram-range assay capable of confirming identification in a real field sample either predominantly composed of S. lacrymans or containing the fungus while remaining negative when tested on different types of fungi found in basement-collected samples.
Collapse
Affiliation(s)
| | - Myriam Roy
- TransBIOTech, 201 Mgr Bourget, Lévis, Québec G6V 6Z3, Canada
| | - Stéphanie Rose
- Air-Diagnostic, 152
des Optimistes, Amqui, Québec G5J 2S3, Canada
| | - Yvan Boutin
- TransBIOTech, 201 Mgr Bourget, Lévis, Québec G6V 6Z3, Canada
- Institute
of Nutraceuticals and Functional Foods (INAF), Université Laval, Québec City, Québec G1K 7P4, Canada
| | - Frédéric Couture
- TransBIOTech, 201 Mgr Bourget, Lévis, Québec G6V 6Z3, Canada
- Institute
of Nutraceuticals and Functional Foods (INAF), Université Laval, Québec City, Québec G1K 7P4, Canada
- Centre
Intégré de Santé et de Services Sociaux de Chaudière-Appalaches, Lévis, Québec G6E 3E2, Canada
| |
Collapse
|
6
|
Wang Y, Zhou Y, Lu J, Yu H, Wang Y. A novel, rapid, ultrasensitive diagnosis platform for detecting Candida albicans using restriction endonuclease-mediated real-time loop-mediated isothermal amplification. Front Cell Infect Microbiol 2024; 14:1450199. [PMID: 39588507 PMCID: PMC11586279 DOI: 10.3389/fcimb.2024.1450199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction Candida albicans (C. albicans, CA) is an essential invasive fungus in clinical diagnosis. Although several detection methods exist, none meet the need for early diagnosis. A rapid, sensitive, and specific diagnostic tool is crucial for effective prevention and control of C. albicans infections. Methods This study aimed to develop a new, rapid, and ultrasensitive diagnostic tool for C. albicans detection based on restriction endonuclease-mediated real-time loop-mediated isothermal amplification (ERT-LAMP-CA). The ERT-LAMP-CA technology combines LAMP amplification, restriction endonuclease cleavage, and real-time fluorescence detection in a single reaction tube, which can complete a diagnosis of C. albicans in a short time (approximately 1 h). Results Herein, we developed the primer sequences required for ERT-LAMP-CA based on the ITS2 gene of C. albicans and found that ERT-LAMP-CA limit of detection was approximately 500 ag/μL genomic DNA and can present negative results for non-C. albicans templates. We tested sputum samples from 64 patients with suspected C. albicans infections to validate ERT-LAMP-CA applicability in clinical sample testing and found that ERT-LAMP-CA was consistent with multiplex PCR-capillary electrophoresis. Discussion In conclusion, ERT-LAMP-CA is a rapid, accurate, and sensitive assay with excellent potential for clinical and basic laboratory diagnosis and an efficient screening strategy.
Collapse
Affiliation(s)
| | | | | | | | - Yu Wang
- Department of Clinical Laboratory, The First People’s Hospital of Guiyang, Guiyang, Guizhou, China
| |
Collapse
|
7
|
Nuro G, Tolossa K, Arage M, Giday M. Medicinal plants diversity among the oromo community in heban-arsi district of Ethiopia used to manage human and livestock ailments. Front Pharmacol 2024; 15:1455126. [PMID: 39372211 PMCID: PMC11450779 DOI: 10.3389/fphar.2024.1455126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction Medicinal plants are commonly employed mainly due their accessibility, affordability and potency. However, medicinal plants and the associated knowledge are disappearing at an alarming rate due to natural and anthropogenic causes and thus a need for their proper documentation conservation. This study was performed to document traditional knowledge related to use of medicinal plants in Heban-Arsi district, West-Arsi Zone, Oromia Regional State, Ethiopia. Methods Interviews were conducted with 185 informants to identify medicinal plants used in traditional therapies in the study area. Informant consensus factor (ICF), rank order priority (ROP) values were computed, and preference ranking exercises were performed to assess the relative importance of medicinal plants. Descriptive and inferential statistics were used to measure and compare medicinal plants knowledge between social groups. Results A total of 120 medicinal plants were identified for being used to treat different human and animal illnesses in the study area. Most of the medicinal plants (76.4%) were uncultivated ones obtained from different habitats. Leaf was the most frequently used plant part constituting 62.6% of preparations. Oral was the most commonly used route of remedy administration (46%) in treating diseases. Gastrointestinal ailments category had the highest ICF value (0.83). In the study area, the highest rank order priority (ROP) values were recorded for Dombeya torrida (J.F. Gmel.), Artemisia absinthium L., Balanites aegyptiaca (L.) Del., Combretum pisoniiflorum Klotzsch) Engl., Celtis africana Burm. f, Ocimum gratissimum L. and Lagenaria sp. for their uses against snake poison, tuberculosis, liver disorder, stomachache, tuberculosis, febrile illness and liver disorder, respectively, each scoring a value of 100. Significant differences in medicinal plant use knowledge were recorded between male and female informants of different educational level, age and experience. Anthropogenic factors were the primary threats to medicinal plants in the area. Conclusion The study area was found to be rich in medicinal plants that are useful in treating a wide range of human and animal illnesses. In future pharmacological and phytochemical investigations, priority needs to be given to medicinal plants of the highest ROP values and those that were reported against ailment categories scoring the highest ICF values.
Collapse
Affiliation(s)
| | | | | | - Mirutse Giday
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Li R, Cao W, Yuan J, Li L, Zhou Y, Wang F, Wang Z, Tian X. Development of a visual detection method of porcine deltacoronavirus using loop-mediated isothermal amplification. Front Microbiol 2024; 15:1465923. [PMID: 39351303 PMCID: PMC11439776 DOI: 10.3389/fmicb.2024.1465923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The emergence of porcine deltacoronavirus (PDCoV) presents a significant threat to both human and animal health due to its ability to cause highly contagious enteric diseases. This underscores the crucial need for timely and accurate diagnosis to facilitate effective epidemiological investigation and clinical management. This research aimed to establish a visual detection method based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) for PDCoV testing. In this study, six pairs of primers were designed according to the conserved sequences of PDCoV ORF1a/b genes. The primer sets and parameters that affect LAMP reaction were optimized. The visual RT-LAMP method was developed by incorporating methyl red into the optimized reaction system, it exclusively detected PDCoV without cross-reactivity with other viruses and the detection limits for PDCoV could reach 10 copies/μL. In comparison with RT-PCR for testing 132 clinical samples, the relative specificity and sensitivity of the visual RT-LAMP were found to be 99.2 and 100%, respectively, with a concordance rate of 99.2% and a kappa value of 0.959, indicating that the visual RT-LAMP is a reliable method for the application of PDCoV detection in clinical samples.
Collapse
Affiliation(s)
- Renfeng Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Wenyan Cao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jiakang Yuan
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Linyue Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yanlin Zhou
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Fangyu Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ziliang Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiangqin Tian
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
9
|
Arruda VDO, Filho LRG, Neves AF. Aptamer-associated colorimetric reverse transcription loop-mediated isothermal amplification assay for detection of dengue virus. Microbiol Spectr 2024; 12:e0358323. [PMID: 39046260 PMCID: PMC11370242 DOI: 10.1128/spectrum.03583-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/21/2024] [Indexed: 07/25/2024] Open
Abstract
Current diagnostic methods for dengue, such as serological tests, have limitations in terms of cross-reactivity with other viruses. To address this issue, we explored the potential of combining the loop-mediated isothermal amplification (LAMP) technique with the affinity of aptamers to develop point-of-care testing. In this study, we utilized 60 serum samples. An aptamer capable of binding to the dengue virus was employed as a platform for capturing genetic material, and its performance was compared to a commercial kit. Dengue virus was detected through RT-PCR and colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP), allowing visual observation of the results without the need for equipment. In the context of the aptamer LAMP assay, our analysis revealed the detection of the dengue virus in 38 out of 60 samples, with 95% sensitivity and 100% specificity compared to RT-PCR and/or APTA-RT-PCR. Importantly, we observed no cross-reaction when assessing samples positive for the zika virus, underscoring the assay's selectivity. This innovative aptameric capture of the viral RNA in combination with the RT-LAMP (APTA-RT-LAMP) method has the potential to offer valuable molecular insights into neglected infectious diseases in a simpler and faster manner. IMPORTANCE Dengue is a neglected tropical disease of significant epidemiological importance in tropical and subtropical countries. Current diagnostics for this infection present challenges, such as cross-reactivity in serological tests. Finding ways to enhance the diagnosis of this disease is crucial, given the absence of specific treatments. An accurate, simple, and effective diagnosis contributes to the improved management of infected individuals. In this context, our work combines molecular biology techniques, such as isothermal loop amplification, with aptamers to detect the dengue virus in biological samples. Our method produces colorimetric results based on a color change, with outcomes available in less than 2 hours. Moreover, it requires simpler equipment compared to molecular PCR tests.
Collapse
|
10
|
Gupta S, Kaur R, Sohal JS, Singh SV, Das K, Sharma MK, Singh J, Sharma S, Dhama K. Countering Zoonotic Diseases: Current Scenario and Advances in Diagnostics, Monitoring, Prophylaxis and Therapeutic Strategies. Arch Med Res 2024; 55:103037. [PMID: 38981342 DOI: 10.1016/j.arcmed.2024.103037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/24/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Human life and health have interacted reciprocally with the surrounding environment and animal fauna for ages. This relationship is evident in developing nations, where human life depends more on the animal population for food, transportation, clothing, draft power, and fuel sources, among others. This inseparable link is a potent source of public health issues, especially in outbreaks of zoonotic diseases transmitted from animals to humans. Zoonotic diseases are referred to as diseases that are naturally transmitted between vertebrate animals and humans. Among the globally emerging diseases in the last decade, 75% are of animal origin, most of which are life-threatening. Since most of them are caused by potent new pathogens capable of long-distance transmission, the impact is widespread and has serious public health and economic consequences. Various other factors also contribute to the transmission, spread, and outbreak of zoonotic diseases, among which industrialization-led globalization followed by ecological disruption and climate change play a critical role. In this regard, all the possible strategies, including advances in rapid and confirmatory disease diagnosis and surveillance/monitoring, immunization/vaccination, therapeutic approaches, appropriate prevention and control measures to be adapted, and awareness programs, need to be adopted collaboratively among different health sectors in medical, veterinary, and concerned departments to implement the necessary interventions for the effective restriction, minimization, and timely control of zoonotic threats. The present review focuses on the current scenario of zoonotic diseases and their counteracting approaches to safeguard their health impact on humans.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Chaumuhan, Uttar Pradesh, India.
| | - Rasanpreet Kaur
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Chaumuhan, Uttar Pradesh, India
| | - Jagdip Singh Sohal
- Centre for Vaccine and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shoor Vir Singh
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Chaumuhan, Uttar Pradesh, India
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, West Bengal, India
| | - Manish Kumar Sharma
- Department of Biotechnology, Dr. Rammanohar Lohia Avadh University, Uttar Pradesh, India
| | - Jitendra Singh
- Department of Translational Medicine, All India Institute of Medical Sciences, Saket Nagar, Madhya Pradesh, India
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, LUVAS, Hisar, Haryana, India; Division of Veterinary Physiology and Biochemistry, SKUAST-J, Jammu, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
11
|
Marpaung DSS, Sinaga AOY, Damayanti D, Taharuddin T. Bridging biological samples to functional nucleic acid biosensor applications: current enzymatic-based strategies for single-stranded DNA generation. ANAL SCI 2024; 40:1225-1237. [PMID: 38607600 DOI: 10.1007/s44211-024-00566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
The escalating threat of emerging diseases, often stemming from contaminants and lethal pathogens, has precipitated a heightened demand for sophisticated diagnostic tools. Within this landscape, the functional nucleic acid (FNA) biosensor, harnessing the power of single-stranded DNA (ssDNA), has emerged as a preeminent choice for target analyte detection. However, the dependence on ssDNA has raised difficulties in realizing it in biological samples. Therefore, the production of high-quality ssDNA from biological samples is critical. This review aims to discuss strategies for generating ssDNA from biological samples for integration into biosensors. Several innovative strategies for ssDNA generation have been deployed, encompassing techniques, such as asymmetric PCR, Exonuclease-PCR, isothermal amplification, biotin-streptavidin PCR, transcription-reverse transcription, ssDNA overhang generation, and urea denaturation PAGE. These approaches have been seamlessly integrated with biosensors for biological sample analysis, ushering in a new era of disease detection and monitoring. This amalgamation of ssDNA generation techniques with biosensing applications holds significant promise, not only in improving the speed and accuracy of diagnostic processes but also in fortifying the global response to deadly diseases, thereby underlining the pivotal role of cutting-edge biotechnology in public health and disease prevention.
Collapse
Affiliation(s)
- David Septian Sumanto Marpaung
- Department of Biosystems Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia.
| | - Ayu Oshin Yap Sinaga
- Department of Biology, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia
| | - Damayanti Damayanti
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia
| | - Taharuddin Taharuddin
- Department of Chemical Engineering, University of Lampung, Jl. Prof. Dr. Ir. Sumantri Brojonegoro No.1, Gedong Meneng, Kec. Rajabasa, Kota Bandar Lampung, Lampung, 35141, Indonesia
| |
Collapse
|
12
|
Roy SD, Ramasamy S, Obbineni JM. An evaluation of nucleic acid-based molecular methods for the detection of plant viruses: a systematic review. Virusdisease 2024; 35:357-376. [PMID: 39071869 PMCID: PMC11269559 DOI: 10.1007/s13337-024-00863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/15/2024] [Indexed: 07/30/2024] Open
Abstract
Precise and timely diagnosis of plant viruses is a prerequisite for the implementation of efficient management strategies, considering factors like globalization of trade and climate change facilitating the spread of viruses that lead to agriculture yield losses of billions yearly worldwide. Symptomatic diagnosis alone may not be reliable due to the diverse symptoms and confusion with plant abiotic stresses. It is crucial to detect plant viruses accurately and reliably and do so with little time. A complete understanding of the various detection methods is necessary to achieve this. Enzyme-linked immunosorbent assay (ELISA), has become more popular as a method for detecting viruses but faces limitations such as antibody availability, cost, sample volume, and time. Advanced techniques like polymerase chain reaction (PCR) have surpassed ELISA with its various sensitive variants. Over the last decade, nucleic acid-based molecular methods have gained popularity and have quickly replaced other techniques, such as serological techniques for detecting plant viruses due to their specificity and accuracy. Hence, this review enables the reader to understand the strengths and weaknesses of each molecular technique starting with PCR and its variations, along with various isothermal amplification followed by DNA microarrays, and next-generation sequencing (NGS). As a result of the development of new technologies, NGS is becoming more and more accessible and cheaper, and it looks possible that this approach will replace others as a favoured approach for carrying out regular diagnosis. NGS is also becoming the method of choice for identifying novel viruses. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00863-0.
Collapse
Affiliation(s)
- Subha Deep Roy
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | | | - Jagan M. Obbineni
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu India
| |
Collapse
|
13
|
Jang WS, Park S, Bae JH, Yoon SY, Lim CS, Cho MC. Development of a multiplex Loop-Mediated Isothermal Amplification (LAMP) for the diagnosis of bacterial periprosthetic joint infection. PLoS One 2024; 19:e0302783. [PMID: 38753660 PMCID: PMC11098349 DOI: 10.1371/journal.pone.0302783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Periprosthetic joint infection (PJI) is one of the most serious and debilitating complications that can occur after total joint arthroplasty. Therefore, early diagnosis and appropriate treatment are important for a good prognosis. Recently, molecular diagnostic methods have been widely used to detect the causative microorganisms of PJI sensitively and rapidly. The Multiplex Loop-Mediated Isothermal Amplification (LAMP) method eliminates the complex temperature cycling and delays caused by temperature transitions seen in polymerase chain reaction (PCR) methods, making it faster and easier to perform compared to PCR-based assays. Therefore, this study developed a multiplex LAMP assay for diagnosing bacterial PJI using LAMP technology and evaluated its analytical and clinical performance. METHODS We developed a multiplex LAMP assay for the detection of five bacteria: Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus agalactiae, Pseudomonas aeruginosa, and Escherichia coli, frequently observed to be the causative agents of PJI. The method of analytical sensitivity and cross-reactivity were determined by spiking standard strains into the joint synovial fluid. The analytical sensitivity of the multiplex LAMP assay was compared with that of a quantitative real-time PCR (qPCR) assay. Clinical performance was evaluated using 20 joint synovial fluid samples collected from patients suspected of having bacterial PJI. RESULTS The analytical sensitivity of the gram-positive bacterial multiplex LAMP assay and qPCR were 105/104 CFU/mL, 103/103 CFU/mL, and 105/104 CFU/mL against S. agalactiae, S. epidermidis, and S. aureus, respectively. For P. aeruginosa and E. coli, the analytical sensitivity of the multiplex LAMP and qPCR assays were 105/104 and 106/104 CFU/mL, respectively. The multiplex LAMP assay detects target bacteria without cross-reacting with other bacteria, and exhibited 100% sensitivity and specificity in clinical performance evaluation. CONCLUSIONS This multiplex LAMP assay can rapidly detect five high-prevalence bacterial species causing bacterial PJI, with excellent sensitivity and specificity, in less than 1 h, and it may be useful for the early diagnosis of PJI.
Collapse
Affiliation(s)
- Woong Sik Jang
- Department of Emergency Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seoyeon Park
- Department of Laboratory Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ji Hoon Bae
- Department of Orthopaedic Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soo Young Yoon
- Department of Laboratory Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Chae Seung Lim
- Department of Laboratory Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Min-Chul Cho
- Department of Laboratory Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Rastmanesh A, Boruah JS, Lee MS, Park S. On-Site Bioaerosol Sampling and Airborne Microorganism Detection Technologies. BIOSENSORS 2024; 14:122. [PMID: 38534229 PMCID: PMC10968652 DOI: 10.3390/bios14030122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
Bioaerosols are small airborne particles composed of microbiological fragments, including bacteria, viruses, fungi, pollens, and/or by-products of cells, which may be viable or non-viable wherever applicable. Exposure to these agents can cause a variety of health issues, such as allergic and infectious diseases, neurological disorders, and cancer. Therefore, detecting and identifying bioaerosols is crucial, and bioaerosol sampling is a key step in any bioaerosol investigation. This review provides an overview of the current bioaerosol sampling methods, both passive and active, as well as their applications and limitations for rapid on-site monitoring. The challenges and trends for detecting airborne microorganisms using molecular and immunological methods are also discussed, along with a summary and outlook for the development of prompt monitoring technologies.
Collapse
Affiliation(s)
| | | | | | - Seungkyung Park
- Complex Fluids Laboratory, School of Mechanical Engineering, Korea University of Technology and Education, Cheonan 31253, Chungnam, Republic of Korea
| |
Collapse
|
15
|
Trippa D, Scalenghe R, Basso MF, Panno S, Davino S, Morone C, Giovino A, Oufensou S, Luchi N, Yousefi S, Martinelli F. Next-generation methods for early disease detection in crops. PEST MANAGEMENT SCIENCE 2024; 80:245-261. [PMID: 37599270 DOI: 10.1002/ps.7733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 08/22/2023]
Abstract
Plant pathogens are commonly identified in the field by the typical disease symptoms that they can cause. The efficient early detection and identification of pathogens are essential procedures to adopt effective management practices that reduce or prevent their spread in order to mitigate the negative impacts of the disease. In this review, the traditional and innovative methods for early detection of the plant pathogens highlighting their major advantages and limitations are presented and discussed. Traditional techniques of diagnosis used for plant pathogen identification are focused typically on the DNA, RNA (when molecular methods), and proteins or peptides (when serological methods) of the pathogens. Serological methods based on mainly enzyme-linked immunosorbent assay (ELISA) are the most common method used for pathogen detection due to their high-throughput potential and low cost. This technique is not particularly reliable and sufficiently sensitive for many pathogens detection during the asymptomatic stage of infection. For non-cultivable pathogens in the laboratory, nucleic acid-based technology is the best choice for consistent pathogen detection or identification. Lateral flow systems are innovative tools that allow fast and accurate results even in field conditions, but they have sensitivity issues to be overcome. PCR assays performed on last-generation portable thermocyclers may provide rapid detection results in situ. The advent of portable instruments can speed pathogen detection, reduce commercial costs, and potentially revolutionize plant pathology. This review provides information on current methodologies and procedures for the effective detection of different plant pathogens. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Daniela Trippa
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Riccardo Scalenghe
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | | | - Stefano Panno
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Salvatore Davino
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Chiara Morone
- Regione Piemonte - Phytosanitary Division, Torino, Italy
| | - Antonio Giovino
- Council for Agricultural Research and Economics (CREA)-Research Centre for Plant Protection and Certification (CREA-DC), Palermo, Italy
| | - Safa Oufensou
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy
| | - Nicola Luchi
- National Research Council, Institute for Sustainable Plant Protection, (CNR-IPSP), Florence, Italy
| | - Sanaz Yousefi
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan, Iran
| | - Federico Martinelli
- Department of Biology, University of Florence, Florence, Italy
- National Research Council, Institute for Sustainable Plant Protection, (CNR-IPSP), Florence, Italy
| |
Collapse
|
16
|
Mustafa FH, Ismail I, Ahmad Munawar AAZ, Abdul Basir B, Shueb RH, Irekeola AA, Wan Ismail WZ, Jamaludin J, Balakrishnan SR, Sahrim M, Yusof NY. A review on current diagnostic tools and potential optical absorption spectroscopy for HFMD detection. Anal Biochem 2023; 683:115368. [PMID: 37890549 DOI: 10.1016/j.ab.2023.115368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
Hand, Foot, and Mouth Disease (HFMD) is an outbreak infectious disease that can easily spread among children under the age of five. The most common causative agents of HFMD are enterovirus 71 (EV71) and coxsackievirus A16 (CVA16), but infection caused by EV71 is more associated with fatalities due to severe neurological disorders. The present diagnosis methods rely on physical examinations by the doctors and further confirmation by laboratories detection methods such as viral culture and polymerase chain reaction. Clinical signs of HFMD infection and other childhood diseases such as chicken pox, and allergies are similar, yet the genetics and pathogenicity of the viruses are substantially different. Thus, there is an urgent need for an early screening of HFMD using an inexpensive and user-friendly device that can directly detect the causative agents of the disease. This paper reviews current HFMD diagnostic methods based on various target types, such as nucleic acid, protein, and whole virus. This was followed by a thorough discussion on the emerging sensing technologies for HFMD detection, including surface plasmon resonance, electrochemical sensor, and surface enhanced Raman spectroscopy. Lastly, optical absorption spectroscopic method was critically discussed and proposed as a promising technology for HFMD screening and detection.
Collapse
Affiliation(s)
- Fatin Hamimi Mustafa
- Department of Electronic & Computer Engineering, Faculty of Electrical Engineering, University Teknologi Malaysia, Johor Bharu, 81310, Johor, Malaysia; Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia.
| | - Irneza Ismail
- Department of Electrical & Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia.
| | - Ahmad Aiman Zuhaily Ahmad Munawar
- Department of Electrical & Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Basmah Abdul Basir
- Department of Electrical & Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Rafidah Hanim Shueb
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia; Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia; Microbiology Unit, Department of Biological Sciences, College of Natural and Applied Sciences, Summit University Offa, PMB 4412, Offa Kwara State, Nigeria
| | - Wan Zakiah Wan Ismail
- Department of Electrical & Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Juliza Jamaludin
- Department of Electrical & Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Sharma Rao Balakrishnan
- Department of Electrical & Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Mus'ab Sahrim
- Department of Electrical & Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| |
Collapse
|
17
|
Kim HR, Kim JM, Baek JS, Park J, Kim WI, Ku BK, Jeoung HY, Lee KK, Park CK. An Advanced Multiplex Real-Time Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Rapid and Reliable Detection of Porcine Epidemic Diarrhea Virus and Porcine Internal Positive Control. Viruses 2023; 15:2204. [PMID: 38005882 PMCID: PMC10674262 DOI: 10.3390/v15112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
For rapid and reliable detection of porcine epidemic diarrhea virus (PEDV) from pig clinical samples, a multiplex, real-time, reverse transcription loop-mediated isothermal amplification (mqRT-LAMP) was developed using two sets of primers and assimilating probes specific to the PEDV N gene and the Sus scrofa β-actin gene, which was used as an endogenous internal positive control (EIPC) to avoid false-negative results. The assay specifically amplified both target genes of PEDV and EIPC in a single reaction without any interference but did not amplify other porcine viral nucleic acids. The limit of detection was 10 copies/μL, 100-fold lower than that of a reverse transcription-polymerase chain reaction (RT-PCR) and equivalent to that of quantitative/real-time RT-PCR (qRT-PCR). This assay has high repeatability and reproducibility with coefficients of variation < 4.0%. The positive signal of the mqRT-LAMP assay was generated within 25 min, demonstrating advantages in rapid detection of PEDV over RT-PCR or qRT-PCR assay, which require at least 2 h turnaround times. In clinical evaluation, the detection rate of PEDV by mqRT-LAMP assay (77.3%) was higher than that of RT-PCR assay (69.7%), and comparable to qRT-PCR (76.8%) with almost 100% concordance (kappa value 0.98). The developed mqRT-LAMP assay can serve as an advanced alternative method for PEDV diagnosis because it has high sensitivity and specificity, rapidity, and reliability even in resource-limited laboratories.
Collapse
Affiliation(s)
- Hye-Ryung Kim
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-R.K.); (J.-M.K.); (J.-S.B.); (J.P.)
| | - Jong-Min Kim
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-R.K.); (J.-M.K.); (J.-S.B.); (J.P.)
| | - Ji-Su Baek
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-R.K.); (J.-M.K.); (J.-S.B.); (J.P.)
| | - Jonghyun Park
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-R.K.); (J.-M.K.); (J.-S.B.); (J.P.)
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea;
| | - Bok Kyung Ku
- Animal and Plant Quarantine Agency, Gyeongsangbuk-do, Gimcheon 39660, Republic of Korea; (B.K.K.); (H.-Y.J.); (K.-K.L.)
| | - Hye-Young Jeoung
- Animal and Plant Quarantine Agency, Gyeongsangbuk-do, Gimcheon 39660, Republic of Korea; (B.K.K.); (H.-Y.J.); (K.-K.L.)
| | - Kyoung-Ki Lee
- Animal and Plant Quarantine Agency, Gyeongsangbuk-do, Gimcheon 39660, Republic of Korea; (B.K.K.); (H.-Y.J.); (K.-K.L.)
| | - Choi-Kyu Park
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-R.K.); (J.-M.K.); (J.-S.B.); (J.P.)
| |
Collapse
|
18
|
Luna-Callejas B, Oropeza-Ramos L, Ramón-Gallegos E. Comparative genomic analysis of Mycoplasma related to cell culture for infB gene-based loop-mediated isothermal amplification. World J Microbiol Biotechnol 2023; 39:355. [PMID: 37878143 DOI: 10.1007/s11274-023-03794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
Mycoplasma contamination in cell culture affects the properties of cell lines. Gold standard detection by microbiological culture takes days and requires specialists. The polymerase chain reaction and loop-mediated isothermal amplification (LAMP) are fast molecular options, but LAMP only requires one heating block for DNA amplification. This study presents a comparative genomic analysis of Mycoplasma species to identify common target genes different from the rrsA gene, which encodes 16 S rRNA. The aim is to implement a LAMP assay to detect Mycoplasma species, reducing the time and specialized equipment required for detection. We performed a comparative genomic analysis through Mauve software and the GView server and selected infB and clpB genes as target candidates for designing LAMP primers. We evaluated both genes by multiple sequence alignment (MSA). The infB gene presented the best score MSA assessment with lower odd-log values (5,480,281) than other genes. We selected the infB gene to design LAMP primers specific to Mycoplasma spp. We used these primers to implement LAMP at 63 °C for 30 min, which showed 100% positive amplifications for detecting Mycoplasma spp. In conclusion, we present a methodology utilizing the infB gene-based LAMP assay to detect three of the six most prevalent Mycoplasma species in cell culture.
Collapse
Affiliation(s)
- Benjamín Luna-Callejas
- Facultad de Ingeniería, Universidad Nacional Autónoma de México, 04510, Mexico City, México
- Department of Morphology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 07738, Mexico City, México
| | - Laura Oropeza-Ramos
- Facultad de Ingeniería, Universidad Nacional Autónoma de México, 04510, Mexico City, México
| | - Eva Ramón-Gallegos
- Department of Morphology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 07738, Mexico City, México.
| |
Collapse
|
19
|
Zhao F, Hu Y, Fan Z, Huang B, Wei L, Xie Y, Huang Y, Mei S, Wang L, Wang L, Ai B, Fang J, Liang C, Xu F, Tan W, Guo F. Rapid and sensitive one-tube detection of mpox virus using RPA-coupled CRISPR-Cas12 assay. CELL REPORTS METHODS 2023; 3:100620. [PMID: 37848032 PMCID: PMC10626268 DOI: 10.1016/j.crmeth.2023.100620] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/19/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023]
Abstract
Mpox is caused by a zoonotic virus belonging to the Orthopoxvirus genus and the Poxviridae family. In this study, we develop a recombinase polymerase amplification (RPA)-coupled CRISPR-Cas12a detection assay for the mpox virus. We design and test a series of CRISPR-derived RNAs(crRNAs) targeting the conserved D6R and E9L genes for orthopoxvirus and the unique N3R and N4R genes for mpox viruses. D6R crRNA-1 exhibits the most robust activity in detecting orthopoxviruses, and N4R crRNA-2 is able to distinguish the mpox virus from other orthopoxviruses. The Cas12a/crRNA assay alone presents a detection limit of 108 copies of viral DNA, whereas coupling RPA increases the detection limit to 1-10 copies. The one-tube RPA-Cas12a assay can, therefore, detect viral DNA as low as 1 copy within 30 min and holds the promise of providing point-of-care detection for mpox viral infection.
Collapse
Affiliation(s)
- Fei Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Yamei Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Zhangling Fan
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Baoying Huang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Liang Wei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Yu Xie
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Yu Huang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Shan Mei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Liming Wang
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Lingwa Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Bin Ai
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Jugao Fang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Fengwen Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China.
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China.
| | - Fei Guo
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China.
| |
Collapse
|
20
|
Yamin D, Uskoković V, Wakil AM, Goni MD, Shamsuddin SH, Mustafa FH, Alfouzan WA, Alissa M, Alshengeti A, Almaghrabi RH, Fares MAA, Garout M, Al Kaabi NA, Alshehri AA, Ali HM, Rabaan AA, Aldubisi FA, Yean CY, Yusof NY. Current and Future Technologies for the Detection of Antibiotic-Resistant Bacteria. Diagnostics (Basel) 2023; 13:3246. [PMID: 37892067 PMCID: PMC10606640 DOI: 10.3390/diagnostics13203246] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Antibiotic resistance is a global public health concern, posing a significant threat to the effectiveness of antibiotics in treating bacterial infections. The accurate and timely detection of antibiotic-resistant bacteria is crucial for implementing appropriate treatment strategies and preventing the spread of resistant strains. This manuscript provides an overview of the current and emerging technologies used for the detection of antibiotic-resistant bacteria. We discuss traditional culture-based methods, molecular techniques, and innovative approaches, highlighting their advantages, limitations, and potential future applications. By understanding the strengths and limitations of these technologies, researchers and healthcare professionals can make informed decisions in combating antibiotic resistance and improving patient outcomes.
Collapse
Affiliation(s)
- Dina Yamin
- Al-Karak Public Hospital, Karak 61210, Jordan;
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
| | - Vuk Uskoković
- TardigradeNano LLC., Irvine, CA 92604, USA;
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | - Abubakar Muhammad Wakil
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri 600104, Borno, Nigeria
| | - Mohammed Dauda Goni
- Public Health and Zoonoses Research Group, Faculty of Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia;
| | - Shazana Hilda Shamsuddin
- Department of Pathology, School of Medical Sciences, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Fatin Hamimi Mustafa
- Department of Electronic & Computer Engineering, Faculty of Electrical Engineering, University Teknologi Malaysia, Johor Bharu 81310, Johor, Malaysia;
| | - Wadha A. Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia;
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Rana H. Almaghrabi
- Pediatric Department, Prince Sultan Medical Military City, Riyadh 12233, Saudi Arabia;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia;
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Nawal A. Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi 51900, United Arab Emirates
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Hamza M. Ali
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia;
| | - Ali A. Rabaan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | | | - Chan Yean Yean
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
21
|
Zhou Y, Chen Z. Mpox: a review of laboratory detection techniques. Arch Virol 2023; 168:221. [PMID: 37543543 PMCID: PMC10404179 DOI: 10.1007/s00705-023-05848-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/04/2023] [Indexed: 08/07/2023]
Abstract
Mpox (formerly monkeypox) is a zoonotic disease caused by monkeypox virus (MPXV), which, like smallpox, is characterised by skin rashes. While the world is currently grappling with the coronavirus disease 2019 pandemic, the appearance of MPXV has presented a global threat and raised concerns worldwide. Since May 2022, MPXV has spread rapidly in non-endemic mpox areas. As of 27 June 2023, the virus has spread to more than 112 countries and regions, with over 88,060 laboratory-confirmed cases and 147 deaths. Thus, measures to control the mpox epidemic are urgently needed. As the principal methods for identifying and monitoring mpox, laboratory detection techniques play an important role in mpox diagnosis. This review summarises the currently-used laboratory techniques for MPXV detection, discusses progress in improving these methods, and compares the benefits and limitations of various diagnostic detection methods. Currently, nucleic acid amplification tests, such as the polymerase chain reaction, are the most commonly used. Immunological methods have also been applied to diagnose the disease, which can help us discover new features of MPXV, improve diagnostic accuracy, track epidemic trends, and guide future prevention and control strategies, which are also vital for controlling mpox epidemics. This review provides a resource for the scientific community and should stimulate more research and development in alternative diagnostics to be applied to this and future public health crises.
Collapse
Affiliation(s)
- Yunfan Zhou
- School of Medicine, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, China.
| | - Zixin Chen
- School of Medicine, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, China
| |
Collapse
|
22
|
Kim JM, Kim HR, Baek JS, Kwon OK, Kang HE, Shin YK, Park CK. Simple and Rapid Colorimetric Detection of Canine Parainfluenza Virus 5 ( Orthorubulavirus mammalis) Using a Reverse-Transcription Loop-Mediated Isothermal Amplification Assay. Pathogens 2023; 12:921. [PMID: 37513767 PMCID: PMC10384626 DOI: 10.3390/pathogens12070921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Despite its many advantages, a reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay has yet to be developed for canine parainfluenza virus 5 (CPIV5). In this study, a visual RT-LAMP (vRT-LAMP) assay was developed for the rapid detection of CPIV5 in clinical samples. At a constant reaction temperature of 62 °C, the assay was completed within 40 min, and the results could be directly detected with the naked eye using a hydroxynaphthol blue (HNB) metal indicator without any additional detection apparatuses. The assay specifically amplified CPIV5 RNA with a limit of detection of 10 RNA copies/reaction, which was 10-fold more sensitive than the previously reported conventional reverse-transcription polymerase chain reaction (cRT-PCR) assay and was comparable to the previously reported real-time RT-PCR (qRT-PCR) assay. In a clinical evaluation using 267 nasopharyngeal swab samples collected from hospitalized dogs with respiratory symptoms, the CPIV5 detection rate using the vRT-LAMP assay was 5.24% (14/267), which was higher than that of the cRT-PCR assay (4.49%, 12/267) and consistent with that of the qRT-PCR assay, demonstrating 100% concordance with a kappa coefficient value (95% confidence interval) of 1 (1.00-1.00). The discrepancies in the results of the assays were confirmed to be attributed to the low sensitivity of the cRT-PCR assay. Owing to the advantages of a high specificity, rapidity, and simplicity, the developed vRT-LAMP assay using an HNB metal indicator will be a valuable diagnostic tool for the detection of CPIV5 in canine clinical samples, even in resource-limited laboratories.
Collapse
Affiliation(s)
- Jong-Min Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hye-Ryung Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
- DIVA Bio Incorporation, Daegu 41519, Republic of Korea
| | - Ji-Su Baek
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Oh-Kyu Kwon
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Hae-Eun Kang
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Yeun-Kyung Shin
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
23
|
Kim HN, Lee J, Yoon SY, Jang WS, Lim CS. Rapid Detection of Mycobacterium Tuberculosis Using a Novel Point-of-Care BZ TB/NTM NALF Assay: Integrating LAMP and LFIA Technologies. Diagnostics (Basel) 2023; 13:diagnostics13081497. [PMID: 37189598 DOI: 10.3390/diagnostics13081497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Tuberculosis (TB) is one of the leading causes of infectious mortality from a single infectious agent, Mycobacterium tuberculosis (MTB). This study evaluated the performance of the newly developed BZ TB/NTM NALF assay, which integrated loop-mediated isothermal amplification and lateral flow immunochromatographic assay technologies, for the detection of MTB. A total of 80 MTB-positive samples and 115 MTB-negative samples were collected, all of which were confirmed by TB real-time PCR (RT-PCR) using either AdvanSureTM TB/NTM RT-PCR Kit or Xpert® MTB/RIF Assay. The performance of the BZ TB/NTM NALF assay was evaluated by calculating its sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) in comparison to those of the RT-PCR methods. Compared to the RT-PCR, the sensitivity, specificity, PPV, and NPV of BZ TB/NTM NALF assay were 98.7%, 99.1%, 98.7%, and 99.1%, respectively. The concordance rate between BZ TB/NTM NALF and RT-PCR was 99.0%. Rapid and simple detection of MTB is essential for global case detection and further elimination of TB. The performance of the BZ TB/NTM NALF Assay is acceptable with a high concordance with RT-PCR, indicating that it is reliable for use in a low-resource environment.
Collapse
Affiliation(s)
- Ha Nui Kim
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Junmin Lee
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Soo-Young Yoon
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Woong Sik Jang
- Emergency Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Chae Seung Lim
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| |
Collapse
|
24
|
Khan MJR, Bhuiyan MA, Tabassum S, Munshi SU. Use of whole blood and dried blood spot for detection of HIV-1 nucleic acids using reverse transcription loop-mediated isothermal amplification. J Virol Methods 2023; 312:114642. [PMID: 36375538 DOI: 10.1016/j.jviromet.2022.114642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/15/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
For monitoring viral load (VL) or Early Infant Diagnosis (EID) of HIV-1, real-time Polymerase Chain Reaction (qPCR) is used to perform on plasma or Dried Blood Spot (DBS) sample. The qPCR method is expensive and requires sophisticated equipment. Therefore, there is a requirement for newer and cheaper technology for VL measurement or EID. In this analytical study, a Reverse Transcription-Loop-Mediated Isothermal Amplification (RT-LAMP) assay was optimized and applied for amplification of HIV nucleic acids (NA) extracted from plasma, heat-treated plasma, heat-treated whole blood and lysis buffer-treated dried blood spot (DBS). The amplified product of RT-LAMP assay was detected by color change of Hydroxy naphthol blue (HNB) dye, step ladder pattern band on agarose gel after electrophoresis and sigmoid-shaped curve in the real-time thermal cycler. Comparing the results from RT-LAMP testing of all conditions with the results obtained by RT-qPCR results, viewed as the gold standard; a relative analytical sensitivity and specificity of RT-LAMP was calculated as 100 % and 90 % respectively. The corresponding positive predictive value (PPV) and negative predictive value (NPV) were 93.75 % and 100 %, respectively. The percentage of agreement between the RT-LAMP and RT-qPCR was 88.46% and Cohen's kappa value was 0.75 shows a substantial agreement between the two tests. This study suggests that whole blood or DBS may be useful specimens for analysis by HIV-1 specific RT-LAMP, to provide a cost effective alternative to RT-qPCR for the detection of HIV-1 nucleic acid at the point of care, or in early infant diagnoses.
Collapse
|
25
|
Giantini A, Suhaeri M, Kusumaningrum A, Prasetyo DS, Sahar W, Hidayat R, Putra MA, Hermawan. Evaluation of loop-mediated isothermal amplification for detecting COVID-19. JOURNAL OF CLINICAL VIROLOGY PLUS 2023; 3:100132. [PMID: 36594046 PMCID: PMC9798669 DOI: 10.1016/j.jcvp.2022.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/01/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
The emergence of SARS-CoV-2 has caused worldwide pandemic of COVID-19. Infection is difficult to diagnose early as some patients remain asymptomatic and may carry this virus to other people. Currently, qRT-PCR is the widely accepted mode for detection. However, the need for sophisticated instrument and trained personnel may hinder its application, especially in remote and facility-lacking areas. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) may serve as a potential approach for detection of SARS-CoV-2 as the resources needed in its application is far less complex than those of qRT-PCR. Herein, we evaluated RT-LAMP based analytical method (COVIDNow), relative to qRT-PCR, in detecting SARS-CoV-2 by using 63 clinical respiratory samples. Based on our finding, COVIDNow exhibited sensitivity and specificity values of 87.5% and 80.6%, respectively. Taken together, RT-LAMP based detection of SARS-CoV-2 by utilizing COVIDNow might serves as a valuable diagnostic tool in the management of global COVID-19 pandemic condition.
Collapse
Affiliation(s)
- Astuti Giantini
- Universitas Indonesia Hospital, Universitas Indonesia, Depok 16424, Indonesia,Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Muhammad Suhaeri
- Unit of Education, Research, and Training, Universitas Indonesia Hospital, Universitas Indonesia, Depok 16424, Indonesia
| | - Ardiana Kusumaningrum
- Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia,Biomolecular Laboratory, Universitas Indonesia Hospital, Universitas Indonesia, Depok 16424, Indonesia
| | - Dimas Seto Prasetyo
- Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia,Biomolecular Laboratory, Universitas Indonesia Hospital, Universitas Indonesia, Depok 16424, Indonesia
| | - Windy Sahar
- Unit of Education, Research, and Training, Universitas Indonesia Hospital, Universitas Indonesia, Depok 16424, Indonesia
| | - Rakhmad Hidayat
- Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia,Medical Service Unit, Universitas Indonesia Hospital, Universitas Indonesia, Depok 16424, Indonesia
| | - Muhammad Arza Putra
- Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia,Medical Service Unit, Universitas Indonesia Hospital, Universitas Indonesia, Depok 16424, Indonesia
| | - Hermawan
- Medical Service Unit, Universitas Indonesia Hospital, Universitas Indonesia, Depok 16424, Indonesia
| |
Collapse
|
26
|
Li Y, Kim H, Ju Y, Park Y, Kang T, Yong D, Park HG. Ultrasensitive Isothermal Detection of SARS-CoV-2 Based on Self-Priming Hairpin-Utilized Amplification of the G-Rich Sequence. Anal Chem 2022; 94:17448-17455. [PMID: 36480911 PMCID: PMC9743493 DOI: 10.1021/acs.analchem.2c03442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
The outbreak of the novel coronavirus disease 2019 (COVID-19) pandemic induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of fatalities all over the world. Unquestionably, the effective and timely testing for infected individuals is the most imperative for the prevention of the ongoing pandemic. Herein, a new method was established for detecting SARS-CoV-2 based on the self-priming hairpin-utilized isothermal amplification of the G-rich sequence (SHIAG). In this strategy, the target RNA binding to the hairpin probe (HP) was uniquely devised to lead to the self-priming-mediated extension followed by the continuously repeated nicking and extension reactions, consequently generating abundant G-rich sequences from the intended reaction capable of producing fluorescence signals upon specifically interacting with thioflavin T (ThT). Based on the unique isothermal design concept, we successfully identified SARS-CoV-2 genomic RNA (gRNA) as low as 0.19 fM with excellent selectivity by applying only a single HP and further verified its practical diagnostic capability by reliably testing a total of 100 clinical specimens for COVID-19 with 100% clinical sensitivity and specificity. This study would provide notable insights into the design and evolution of new isothermal strategies for the sensitive and facile detection of SARS-CoV-2 under resource constraints.
Collapse
Affiliation(s)
- Yan Li
- Department of Chemical and Biomolecular Engineering
(BK21 Four), Korea Advanced Institute of Science and Technology
(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of
Korea
| | - Hansol Kim
- Department of Chemical and Biomolecular Engineering
(BK21 Four), Korea Advanced Institute of Science and Technology
(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of
Korea
| | - Yong Ju
- Department of Chemical and Biomolecular Engineering
(BK21 Four), Korea Advanced Institute of Science and Technology
(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of
Korea
| | - Yeonkyung Park
- Department of Chemical and Biomolecular Engineering
(BK21 Four), Korea Advanced Institute of Science and Technology
(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of
Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea
Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu,
Daejeon34141, Republic of Korea
- School of Pharmacy, Sungkyunkwan
University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do16419,
Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and
Research Institute of Bacterial Resistance, Yonsei University College of
Medicine, Seoul03722, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering
(BK21 Four), Korea Advanced Institute of Science and Technology
(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of
Korea
| |
Collapse
|
27
|
Kua JM, Azizi MMF, Abdul Talib MA, Lau HY. Adoption of analytical technologies for verification of authenticity of halal foods - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1906-1932. [PMID: 36252206 DOI: 10.1080/19440049.2022.2134591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Halal authentication has become essential in the food industry to ensure food is free from any prohibited ingredients according to Islamic law. Diversification of food origin and adulteration issues have raised concerns among Muslim consumers. Therefore, verification of food constituents and their quality is paramount. From conventional methods based on physical and chemical properties, various diagnostic methods have emerged relying on protein or DNA measurements. Protein-based methods that have been used in halal detection including electrophoresis, chromatographic-based methods, molecular spectroscopy and immunoassays. Polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) are DNA-based techniques that possess better accuracy and sensitivity. Biosensors are miniatured devices that operate by converting biochemical signals into a measurable quantity. CRISPR-Cas is one of the latest novel emerging nucleic acid detection tools in halal food analysis as well as quantification of stable isotopes method for identification of animal species. Within this context, this review provides an overview of the various techniques in halal detection along with their advantages and limitations. The future trend and growth of detection technologies are also discussed in this review.
Collapse
Affiliation(s)
- Jay Mie Kua
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Mohd Afendy Abdul Talib
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Persiaran MARDI-UPM, Serdang, Selangor, Malaysia
| | - Han Yih Lau
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Persiaran MARDI-UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
28
|
Ganesh PS, Kim SY. A comparison of conventional and advanced electroanalytical methods to detect SARS-CoV-2 virus: A concise review. CHEMOSPHERE 2022; 307:135645. [PMID: 35817176 PMCID: PMC9270057 DOI: 10.1016/j.chemosphere.2022.135645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Respiratory viruses are a serious threat to human wellbeing that can cause pandemic disease. As a result, it is critical to identify virus in a timely, sensitive, and precise manner. The present novel coronavirus-2019 (COVID-19) disease outbreak has increased these concerns. The research of developing various methods for COVID-19 virus identification is one of the most rapidly growing research areas. This review article compares and addresses recent improvements in conventional and advanced electroanalytical approaches for detecting COVID-19 virus. The popular conventional methods such as polymerase chain reaction (PCR), loop mediated isothermal amplification (LAMP), serology test, and computed tomography (CT) scan with artificial intelligence require specialized equipment, hours of processing, and specially trained staff. Many researchers, on the other hand, focused on the invention and expansion of electrochemical and/or bio sensors to detect SARS-CoV-2, demonstrating that they could show a significant role in COVID-19 disease control. We attempted to meticulously summarize recent advancements, compare conventional and electroanalytical approaches, and ultimately discuss future prospective in the field. We hope that this review will be helpful to researchers who are interested in this interdisciplinary field and desire to develop more innovative virus detection methods.
Collapse
Affiliation(s)
- Pattan-Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education (KoreaTech), Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education (KoreaTech), Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| |
Collapse
|
29
|
Changtor P, Gupta YM, Yimtragool N. Optimization and application of loop-mediated isothermal amplification technique for sex identification in red-whiskered bulbul ( Pycnonotus jocosus). Ecol Evol 2022; 12:e9401. [PMID: 36225838 PMCID: PMC9534725 DOI: 10.1002/ece3.9401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022] Open
Abstract
The red-whiskered bulbul (Pycnonotus jocosus) is a popular avian species in Thailand and many other countries. The red-whiskered bulbul has a high economic value, but breeding is challenging since sex identification is difficult. The PCR method is now used for sex identification. However, PCR amplification and post-PCR analysis necessitate the use of a laboratory equipped with specialized scientific instruments, which is inconvenient for field operations. This research describes a method for amplification of DNA samples using the loop-mediated isothermal amplification (LAMP) approach, which is a molecular biology methodology for isothermal amplification that is extremely sensitive, fast, and easy for post-LAMP product visualization. Herein, total of 23 blood samples were collected and DNA was extracted. Two sets of LAMP primers were designed for CHD-Z and CHD-W genes. The colorimetric assay was used to investigate the best conditions for LAMP reactions and post-LAMP product visualization. LAMP reactions for sex identification were compared to traditional PCR in terms of sensitivity and specificity. LAMP reactions were found to be 10-fold more sensitive than PCR at 1 ng of DNA. When compared to electrophoresis analysis, the visualization with colorimetric assay using GelRed® and SYTO™ 9 was 100% accurate. The optimal LAMP condition tested simple DNA extracted from bird feathers using the HotSHOT technique. The result showed that the optimal condition could distinguish the sex of red-whiskered bulbuls totally and accurately. A powerful method for red-whiskered bulbul sex identification is demonstrated in this study, which can be used in field studies because it is quick and easy to perform, has high sensitivity, and does not require advanced scientific equipment.
Collapse
Affiliation(s)
- Phanupong Changtor
- Department of Biology, Faculty of ScienceNaresuan UniversityPhitsanulokThailand
| | - Yash Munnalal Gupta
- Department of Biology, Faculty of ScienceNaresuan UniversityPhitsanulokThailand
| | - Nonglak Yimtragool
- Department of Biology, Faculty of ScienceNaresuan UniversityPhitsanulokThailand
| |
Collapse
|
30
|
Jankelow AM, Lee H, Wang W, Hoang TH, Bacon A, Sun F, Chae S, Kindratenko V, Koprowski K, Stavins RA, Ceriani DD, Engelder ZW, King WP, Do MN, Bashir R, Valera E, Cunningham BT. Smartphone clip-on instrument and microfluidic processor for rapid sample-to-answer detection of Zika virus in whole blood using spatial RT-LAMP. Analyst 2022; 147:3838-3853. [PMID: 35726910 PMCID: PMC9399074 DOI: 10.1039/d2an00438k] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rapid, simple, inexpensive, accurate, and sensitive point-of-care (POC) detection of viral pathogens in bodily fluids is a vital component of controlling the spread of infectious diseases. The predominant laboratory-based methods for sample processing and nucleic acid detection face limitations that prevent them from gaining wide adoption for POC applications in low-resource settings and self-testing scenarios. Here, we report the design and characterization of an integrated system for rapid sample-to-answer detection of a viral pathogen in a droplet of whole blood comprised of a 2-stage microfluidic cartridge for sample processing and nucleic acid amplification, and a clip-on detection instrument that interfaces with the image sensor of a smartphone. The cartridge is designed to release viral RNA from Zika virus in whole blood using chemical lysis, followed by mixing with the assay buffer for performing reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP) reactions in six parallel microfluidic compartments. The battery-powered handheld detection instrument uniformly heats the compartments from below, and an array of LEDs illuminates from above, while the generation of fluorescent reporters in the compartments is kinetically monitored by collecting a series of smartphone images. We characterize the assay time and detection limits for detecting Zika RNA and gamma ray-deactivated Zika virus spiked into buffer and whole blood and compare the performance of the same assay when conducted in conventional PCR tubes. Our approach for kinetic monitoring of the fluorescence-generating process in the microfluidic compartments enables spatial analysis of early fluorescent "bloom" events for positive samples, in an approach called "Spatial LAMP" (S-LAMP). We show that S-LAMP image analysis reduces the time required to designate an assay as a positive test, compared to conventional analysis of the average fluorescent intensity of the entire compartment. S-LAMP enables the RT-LAMP process to be as short as 22 minutes, resulting in a total sample-to-answer time in the range of 17-32 minutes to distinguish positive from negative samples, while demonstrating a viral RNA detection as low as 2.70 × 102 copies per μl, and a gamma-irradiated virus of 103 virus particles in a single 12.5 μl droplet blood sample.
Collapse
Affiliation(s)
- Aaron M Jankelow
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Nick Holonyak Jr Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hankeun Lee
- Nick Holonyak Jr Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Weijing Wang
- Nick Holonyak Jr Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Trung-Hieu Hoang
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Amanda Bacon
- Nick Holonyak Jr Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Fu Sun
- Nick Holonyak Jr Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Seol Chae
- Nick Holonyak Jr Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Victoria Kindratenko
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Nick Holonyak Jr Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Katherine Koprowski
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Nick Holonyak Jr Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Robert A Stavins
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | - William P King
- Nick Holonyak Jr Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Minh N Do
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Nick Holonyak Jr Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Genomic Diagnostics, Woese Institute for Genomic Biology, Urbana, IL 61801, USA
| | - Enrique Valera
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Nick Holonyak Jr Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brian T Cunningham
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Nick Holonyak Jr Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Genomic Diagnostics, Woese Institute for Genomic Biology, Urbana, IL 61801, USA
| |
Collapse
|
31
|
Kim HR, Suh SM, Kang HB, Shin SW, Kim HY. Duplex loop-mediated isothermal amplification assay for peanut (Arachis hypogaea) and almond (Prunus dulcis) detection of allergen coding genes. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Demeekul K, Sukumolanan P, Panprom C, Thaisakun S, Roytrakul S, Petchdee S. Echocardiography and MALDI-TOF Identification of Myosin-Binding Protein C3 A74T Gene Mutations Involved Healthy and Mutated Bengal Cats. Animals (Basel) 2022; 12:ani12141782. [PMID: 35883329 PMCID: PMC9312240 DOI: 10.3390/ani12141782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to identify the potential peptide candidates and expected proteins associated with MYBPC3-A74T gene mutations in Bengal cats and determine if peptidome profiles differ between healthy controls and cats with MYBPC3-A74T gene mutations. All animals were evaluated using echocardiography. DNA was isolated and followed by the screening test of MYBPC3 gene mutation. The MALDI-TOF mass spectrometry was conducted for analyzing the targeted peptide and protein patterns. The expected protein candidates were searched for within the NCBI database. Our results demonstrated that the MYBPC3-A74T gene mutation was dominant in Bengal cats but not in domestic shorthair cats. Correlations between baseline characteristics and echocardiographic parameters were discovered in Bengal cats. Mass spectrometry profiles of the candidate proteins were suspected to accompany the cat with the MYBPC3-A74T gene mutation, involving integral protein–membrane, organization of nucleus, DNA replication, and ATP-binding protein. Therefore, MYBPC3-A74T gene mutations occur frequently in Bengal cat populations. The high incidence of homozygotes for the mutation supports the causal nature of the MYBPC3-A74T mutation. In addition, peptidomics analysis was established for the first time under this condition to promise a complementary technique for the future clinical diagnosis of the MYBPC3-A74T mutation associated with physiological variables and cardiac morphology in cats.
Collapse
Affiliation(s)
- Kanokwan Demeekul
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand;
| | - Pratch Sukumolanan
- Veterinary Clinical Studies Program, Graduate School, Kasetsart University, Nakorn Pathom 73140, Thailand;
| | - Chattida Panprom
- Kasetsart University Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom 73140, Thailand;
| | - Siriwan Thaisakun
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand; (S.T.); (S.R.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand; (S.T.); (S.R.)
| | - Soontaree Petchdee
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Nakorn Pathom 73140, Thailand
- Correspondence: ; Tel.: +66-34-351-901-3
| |
Collapse
|
33
|
Selim K, Adel A, Eid S, Shahein M. Development of real time reverse transcription loop-mediated isothermal amplification assay for rapid detection of genotype VII of Newcastle disease viruses. Br Poult Sci 2022; 63:864-870. [DOI: 10.1080/00071668.2022.2094219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Karim Selim
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, P.O. Box 264-Dokki, Giza 12618, Egypt
| | - Amany Adel
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, P.O. Box 264-Dokki, Giza 12618, Egypt
| | - Samah Eid
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, P.O. Box 264-Dokki, Giza 12618, Egypt
| | - Momtaz Shahein
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, P.O. Box 264-Dokki, Giza 12618, Egypt
| |
Collapse
|
34
|
Application of Loop-Mediated Isothermal Amplification (LAMP) in Sex Identification of Parrots Bred in Egypt. BIOLOGY 2022; 11:biology11040565. [PMID: 35453764 PMCID: PMC9029760 DOI: 10.3390/biology11040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/16/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
Over 400 of the 3800 tropical avian species are endangered or threatened. One of many solutions to conserve animal biodiversity is breeding animals in zoos or private animal farms. Animal breeding programs are difficult to implement in species with sexual monomorphism, such as parrots. Molecular biology methods offer a solution to determine the sex of these species. Therefore, in this study, we aimed to test the performance of PCR and LAMP techniques on sex identification for 21 parrot species belonging to three families, i.e., Psittacidae, Cacatuidae, and Psittaculidae. We established a protocol for DNA isolation from feathers in our laboratory and found optimal conditions for PCR and LAMP. We showed that the LAMP method with the use of the PSI-W primers set, developed by Centeno-Cuadros, functions in 17 previously untested species. Moreover, we found that further improvements are required in universal LAMP primers for the detection of parrot DNA, which are necessary for confirmation of the male sex. The LAMP method also proved to be more sensitive for female sex identification in contrast to the reference PCR test. Therefore, we conclude that LAMP is a suitable method for the routine diagnostic sex identification of parrots.
Collapse
|
35
|
Suther C, Stoufer S, Zhou Y, Moore MD. Recent Developments in Isothermal Amplification Methods for the Detection of Foodborne Viruses. Front Microbiol 2022; 13:841875. [PMID: 35308332 PMCID: PMC8930189 DOI: 10.3389/fmicb.2022.841875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 11/15/2022] Open
Abstract
Foodborne and enteric viruses continue to impose a significant public health and economic burden globally. As many of these viruses are highly transmissible, the ability to detect them portably, sensitively, and rapidly is critical to reduce their spread. Although still considered a gold standard for detection of these viruses, real time polymerase chain reaction (PCR)-based technologies have limitations such as limited portability, need for extensive sample processing/extraction, and long time to result. In particular, the limitations related to the susceptibility of real time PCR methods to potential inhibitory substances present in food and environmental samples is a continuing challenge, as the need for extensive nucleic acid purification prior to their use compromises the portability and rapidity of such methods. Isothermal amplification methods have been the subject of much investigation for these viruses, as these techniques have been found to be comparable to or better than established PCR-based methods in portability, sensitivity, specificity, rapidity, and simplicity of sample processing. The purpose of this review is to survey and compare reports of these isothermal amplification methods developed for foodborne and enteric viruses, with a special focus on the performance of these methods in the presence of complex matrices.
Collapse
Affiliation(s)
- Cassandra Suther
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Sloane Stoufer
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, United States
| | - Yanjiao Zhou
- Department of Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Matthew D. Moore
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
36
|
Poirier AC, Kuang D, Siedler BS, Borah K, Mehat JW, Liu J, Tai C, Wang X, van Vliet AHM, Ma W, Jenkins DR, Clark J, La Ragione RM, Qu J, McFadden J. Development of Loop-Mediated Isothermal Amplification Rapid Diagnostic Assays for the Detection of Klebsiella pneumoniae and Carbapenemase Genes in Clinical Samples. Front Mol Biosci 2022; 8:794961. [PMID: 35223985 PMCID: PMC8864245 DOI: 10.3389/fmolb.2021.794961] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022] Open
Abstract
Klebsiella pneumoniae is an important pathogenic bacterium commonly associated with human healthcare and community-acquired infections. In recent years, K. pneumoniae has become a significant threat to global public and veterinary health, because of its high rates of antimicrobial resistance (AMR). Early diagnosis of K. pneumoniae infection and detection of any associated AMR would help to accelerate directed therapy and reduce the risk of the emergence of multidrug-resistant isolates. In this study, we identified three target genes (yhaI, epsL, and xcpW) common to K. pneumoniae isolates from both China and Europe and designed loop-mediated isothermal amplification (LAMP) assays for the detection of K. pneumoniae in clinical samples. We also designed LAMP assays for the detection of five AMR genes commonly associated with K. pneumoniae. The LAMP assays were validated on a total of 319 type reference strains and clinical isolates of diverse genetic backgrounds, in addition to 40 clinical human sputum samples, and were shown to be reliable, highly specific, and sensitive. For the K. pneumoniae-specific LAMP assay, the calculated sensitivity, specificity, and positive and negative predictive values (comparison with culture and matrix-assisted laser desorption/ionization-time of flight mass spectrometry) were all 100% on clinical isolates and, respectively, of 100%, 91%, and 90%, and 100% when tested on clinical sputum samples, while being significantly faster than the reference methods. For the bla KPC and other carbapenemases' LAMP assays, the concordance between the LAMP results and the references methods (susceptibility tests) was 100%, on both pure cultures (n = 125) and clinical samples (n = 18). In conclusion, we developed highly sensitive and specific LAMP assays for the clinical identification of K. pneumoniae and detection of carbapenem resistance.
Collapse
Affiliation(s)
- Aurore C. Poirier
- Department of Pathology and Infectious Diseases, Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Dai Kuang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, School of Medicine, Institute of Respiratory Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Bianca S. Siedler
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Khushboo Borah
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Jai W. Mehat
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
- Centre for Microbial Genomics and Animal Microbiome Research, Department of Pathology and Infectious Diseases, Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Jialin Liu
- Department of Critical Care Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cui Tai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoli Wang
- Department of Critical Care Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Arnoud H. M. van Vliet
- Department of Pathology and Infectious Diseases, Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
- Centre for Microbial Genomics and Animal Microbiome Research, Department of Pathology and Infectious Diseases, Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Wei Ma
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - David R. Jenkins
- Department of Medical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - John Clark
- Department of Medical Microbiology, Epsom and St Helier University Hospitals NHS Trust, Carshalton, United Kingdom
| | - Roberto M. La Ragione
- Department of Pathology and Infectious Diseases, Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, School of Medicine, Institute of Respiratory Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Johnjoe McFadden
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
37
|
Aziz TA, Lafta IJ. Developing multiplex PCR for the rapid and simultaneous detection of Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella pneumoniae associated with sheep respiratory tract infections. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01019-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Erber AC, Sandler PJ, de Avelar DM, Swoboda I, Cota G, Walochnik J. Diagnosis of visceral and cutaneous leishmaniasis using loop-mediated isothermal amplification (LAMP) protocols: a systematic review and meta-analysis. Parasit Vectors 2022; 15:34. [PMID: 35073980 PMCID: PMC8785018 DOI: 10.1186/s13071-021-05133-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Sensitive, reliable and fast diagnostic tools that are applicable in low-resource settings, at the point of care (PoC), are seen as crucial in the fight against visceral leishmaniasis (VL) and cutaneous leishmaniasis (CL). Addressing the need for a PoC test, several diagnostic tests, including serological and molecular methods, have been developed and evaluated in the past. One promising molecular method, already implemented for diagnosis of a range of diseases, is the loop-mediated isothermal amplification (LAMP) protocol. In this systematic review and meta-analysis, using a comprehensive search strategy, we focus on studies evaluating the performance of LAMP for the diagnosis of leishmaniasis in humans and other mammals such as dogs, compared with microscopy and/or any other molecular diagnostic method. A meta-analysis, pooling sensitivity and specificity rates and calculating areas under the curve (AUCs) in summary receiver operating characteristic (SROC) plots, was conducted on datasets extracted from studies, grouped by clinical condition and sample type. We found high sensitivity and specificity for LAMP when compared with microscopy and PCR using blood samples, with pooled estimate values of > 90% for all subgroups, corresponding to calculated AUC values > 0.96, except for LAMP compared to microscopy for diagnosis of CL. However, only a limited number of studies were truly comparable. Most of the observed heterogeneity is likely based on true differences between the studies rather than sampling error only. Due to simple readout methods and low laboratory equipment requirements for sample preparation compared to other molecular methods, LAMP is a promising candidate for a molecular (near-)PoC diagnostic method for VL and CL.
Collapse
Affiliation(s)
- Astrid Christine Erber
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Kinderspitalgasse 15, 1st floor, 1090, Vienna, Austria. .,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, New Richards Building, Old Road Campus, Roosevelt Drive, Oxford, OX3 7LG, UK.
| | - Peter Julian Sandler
- Department of Applied Life Sciences, FH Campus Wien University of Applied Sciences, Helmut-Qualtinger Gasse 2, 1030, Vienna, Austria
| | - Daniel Moreira de Avelar
- Pesquisa Clínica e Políticas Públicas em Doenças Infecciosas e Parasitárias, Instituto René Rachou-Fundação Oswaldo Cruz, Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Ines Swoboda
- Department of Applied Life Sciences, FH Campus Wien University of Applied Sciences, Helmut-Qualtinger Gasse 2, 1030, Vienna, Austria
| | - Gláucia Cota
- Pesquisa Clínica e Políticas Públicas em Doenças Infecciosas e Parasitárias, Instituto René Rachou-Fundação Oswaldo Cruz, Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| |
Collapse
|
39
|
De Falco M, De Felice M, Rota F, Zappi D, Antonacci A, Scognamiglio V. Next-generation diagnostics: augmented sensitivity in amplification-powered biosensing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Nie Y, Liang Z, Wang P, Ma Q, Su X. MXene-Derived Quantum Dot@Gold Nanobones Heterostructure-Based Electrochemiluminescence Sensor for Triple-Negative Breast Cancer Diagnosis. Anal Chem 2021; 93:17086-17093. [PMID: 34914874 DOI: 10.1021/acs.analchem.1c04184] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MXene material has been gradually studied in recent years due to its fascinating characteristics. This work developed a novel MXene-derived quantum dots (MQDs) @gold nanobones (Au NBs) heterostructure as the electrochemiluminescence (ECL) sensor. First, MXene and MQDs were synthesized via the green preparation process, which avoided the harm of hydrofluoric acid to humans and the environment. There was a strong ECL signal enhancement in the MQD@Au NBs heterostructure. On the one hand, Au NBs with surface plasmon resonance (SPR) effect acted as an "electronic regulator" that can transfer electrons to itself to control over-injection of electrons into the conduction band of MQDs. The luminous signal of MQDs can be efficiently generated and significantly amplified in the ECL sensing process. On the other hand, the work function of MQDs with excellent conductivity was relatively close to that of Au NBs in the heterostructure. So, ECL quenching caused by short-distance electron transfer between luminophore and Au nanomaterial has been effectively suppressed. The MQD@Au NBs heterostructure-based ECL sensing system was applied to determine miRNA-26a in the serum of patients with triple-negative breast cancer. It not only provides ideas for the green synthesis of MXene but also provides a guide for the application of MQD@Au NBs heterostructure in the field of ECL sensing.
Collapse
Affiliation(s)
- Yixin Nie
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zihui Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
41
|
Saar M, Beissner M, Gültekin F, Maman I, Herbinger KH, Bretzel G. RLEP LAMP for the laboratory confirmation of leprosy: towards a point-of-care test. BMC Infect Dis 2021; 21:1186. [PMID: 34823479 PMCID: PMC8620619 DOI: 10.1186/s12879-021-06882-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Nucleic acid-based amplification tests (NAAT), above all (q)PCR, have been applied for the detection of Mycobacterium leprae in leprosy cases and household contacts with subclinical infection. However, their application in the field poses a range of technical challenges. Loop-mediated isothermal amplification (LAMP), as a promising point-of-care NAAT does not require sophisticated laboratory equipment, is easy to perform, and is applicable for decentralized diagnosis at the primary health care level. Among a range of gene targets, the M. leprae specific repetitive element RLEP is regarded as highly sensitive and specific for diagnostic applications. METHODS: Our group developed and validated a dry-reagent-based (DRB) RLEP LAMP, provided product specifications for customization of a ready-to-use kit (intended for commercial production) and compared it against the in-house prototype. The assays were optimized for application on a Genie® III portable fluorometer. For technical validation, 40 "must not detect RLEP" samples derived from RLEP qPCR negative exposed and non-exposed individuals, as well as from patients with other conditions and a set of closely related mycobacterial cultures, were tested together with 25 "must detect RLEP" samples derived from qPCR confirmed leprosy patients. For clinical validation, 150 RLEP qPCR tested samples were analyzed, consisting of the following categories: high-positive samples of multibacillary (MB) leprosy patients (> 10.000 bacilli/extract), medium-positive samples of MB leprosy patients (1.001-10.000 bacilli/extract), low-positive samples of MB leprosy patients (1-1.000 bacilli/extract), endemic controls and healthy non-exposed controls; each n = 30. RESULTS: Technical validation: both LAMP formats had a limit of detection of 1.000 RLEP copies, i.e. 43-27 bacilli, a sensitivity of 92% (in-house protocol)/100% (ready-to-use protocol) and a specificity of 100%. Reagents were stable for at least 1 year at 22 °C. Clinical validation: Both formats showed a negativity rate of 100% and a positivity rate of 100% for high-positive samples and 93-100% for medium positive samples, together with a positive predictive value of 100% and semi-quantitative results. The positivity rate for low-positive samples was 77% (in-house protocol)/43% (ready-to-use protocol) and differed significantly between both formats. CONCLUSIONS: The ready-to-use RLEP DRB LAMP assay constitutes an ASSURED test ready for field-based evaluation trials aiming for routine diagnosis of leprosy at the primary health care level.
Collapse
Affiliation(s)
- Malkin Saar
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Leopoldstrasse 5, 80802, Munich, Germany.
| | - Marcus Beissner
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Leopoldstrasse 5, 80802, Munich, Germany
| | - Fatih Gültekin
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Leopoldstrasse 5, 80802, Munich, Germany
| | - Issaka Maman
- Ministère de la Santé, Institut National d'Hygiène (INH), Lomé, Togo
| | - Karl-Heinz Herbinger
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Leopoldstrasse 5, 80802, Munich, Germany
| | - Gisela Bretzel
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Leopoldstrasse 5, 80802, Munich, Germany
| |
Collapse
|
42
|
Yao K, Peng D, Jiang C, Zhao W, Li G, Huang W, Kong L, Gao H, Zheng J, Peng H. Rapid and Visual Detection of Heterodera schachtii Using Recombinase Polymerase Amplification Combined with Cas12a-Mediated Technology. Int J Mol Sci 2021; 22:12577. [PMID: 34830457 PMCID: PMC8618885 DOI: 10.3390/ijms222212577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/26/2022] Open
Abstract
Heterodera schachtii is a well-known cyst nematode that causes serious economic losses in sugar beet production every year. Rapid and visual detection of H. schachtii is essential for more effective prevention and control. In this study, a species-specific recombinase polymerase amplification (RPA) primer was designed from a specific H. schachtii sequence-characterized amplified region (SCAR) marker. A band was obtained in reactions with DNA from H. schachtii, but absent from nontarget cyst nematodes. The RPA results could be observed by the naked eye, using a lateral flow dipstick (LFD). Moreover, we combined CRISPR technology with RPA to identify positive samples by fluorescence detection. Sensitivity analysis indicated that 10-4 single cysts and single females, 4-3 single second-stage juveniles, and a 0.001 ng genomic DNA template could be detected. The sensitivity of the RPA method for H. schachtii detection is not only higher than that of PCR and qPCR, but can also provide results in <1 h. Consequently, the RPA assay is a practical and useful diagnostic tool for early diagnosis of plant tissues infested by H. schachtii. Sugar beet nematodes were successfully detected in seven of 15 field sugar beet root samples using the RPA assay. These results were consistent with those achieved by conventional PCR, indicating 100% accuracy of the RPA assay in field samples. The RPA assay developed in the present study has the potential for use in the direct detection of H. schachtii infestation in the field.
Collapse
Affiliation(s)
- Ke Yao
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100089, China; (D.P.); (C.J.); (W.Z.); (W.H.); (L.K.)
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100089, China; (D.P.); (C.J.); (W.Z.); (W.H.); (L.K.)
| | - Chen Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100089, China; (D.P.); (C.J.); (W.Z.); (W.H.); (L.K.)
| | - Wei Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100089, China; (D.P.); (C.J.); (W.Z.); (W.H.); (L.K.)
| | - Guangkuo Li
- Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Scientific Observing and Experimental Station of Korla, Urumqi 830091, China; (G.L.); (H.G.)
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100089, China; (D.P.); (C.J.); (W.Z.); (W.H.); (L.K.)
| | - Lingan Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100089, China; (D.P.); (C.J.); (W.Z.); (W.H.); (L.K.)
| | - Haifeng Gao
- Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Scientific Observing and Experimental Station of Korla, Urumqi 830091, China; (G.L.); (H.G.)
| | - Jingwu Zheng
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100089, China; (D.P.); (C.J.); (W.Z.); (W.H.); (L.K.)
- Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Scientific Observing and Experimental Station of Korla, Urumqi 830091, China; (G.L.); (H.G.)
| |
Collapse
|
43
|
Kim DY, Kim HR, Park JH, Kwon NY, Kim JM, Kim JK, Park JH, Lee KK, Kim SH, Kim WI, Lyoo YS, Park CK. Detection of a novel porcine circovirus 4 in Korean pig herds using a loop-mediated isothermal amplification assay. J Virol Methods 2021; 299:114350. [PMID: 34748817 DOI: 10.1016/j.jviromet.2021.114350] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 01/19/2023]
Abstract
A novel porcine circovirus 4 has been recently identified in China and Korea. A sensitive and specific diagnostic method is urgently required to detect the virus in field samples. We developed a loop-mediated isothermal amplification (LAMP) the assay for the visual detection of PCV4 and evaluated its sensitivity, specificity, and applicability in clinical samples. This assay's results can be directly visualized by the naked eye using hydroxynaphthol blue after incubation for 40 min at 64 °C. The assay specifically amplified PCV4 DNA and no other viral nucleic acids. The sensitivity of the assay was <50 DNA copies/reaction, which was 10 times more sensitive than conventional polymerase chain reaction (cPCR) and comparable to real-time PCR (qPCR). Clinical evaluation revealed that the PCV4 detection rate in individual pig samples and at the farm level was 39.3 % (57/145) and 45.7 % (32/70), respectively, which were higher than cPCR (46 samples, 24 farms) and qPCR (52 samples, 29 farms) results. Cumulatively, owing to the advantages of high sensitivity and specificity, direct visual monitoring of the results, no possibility for cross-contamination, and being a low-cost equipment, the developed LAMP assay will be a valuable tool for the detection of the novel PCV4 in clinical samples, even in resource-limited laboratories.
Collapse
Affiliation(s)
- Da-Young Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hye-Ryung Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jong-Hyun Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea; DIVA Bio Incorporation, Daegu, 41519, Republic of Korea
| | - Na-Young Kwon
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jong-Min Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jae-Kyeom Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji-Hoon Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyoung-Ki Lee
- Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Seong-Hee Kim
- Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Young S Lyoo
- College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
44
|
Kim JK, Kim HR, Kim DY, Kim JM, Kwon NY, Park JH, Park JY, Kim SH, Lee KK, Lee C, Joo HD, Lyoo YS, Park CK. A simple colorimetric detection of porcine epidemic diarrhea virus by reverse transcription loop-mediated isothermal amplification assay using hydroxynaphthol blue metal indicator. J Virol Methods 2021; 298:114289. [PMID: 34536488 DOI: 10.1016/j.jviromet.2021.114289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/11/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022]
Abstract
A simple reverse transcription loop-mediated isothermal amplification combined with visual detection method (vRT-LAMP) assay was developed for rapid and specific detection of porcine epidemic diarrhea virus (PEDV) in this study, which overcomes the shortcomings of previously described RT-LAMP assays that require additional detection steps or pose a risk of cross-contamination. The assay results can be directly detected by the naked eye using hydroxynaphthol blue after incubating for 40 min at 62 °C. The assay specifically amplified PEDV RNA and no other viral nucleic acids. The limit of detection of the assay was less than 50 RNA copies per reaction, which was 100 times more sensitive than conventional reverse transcription polymerase chain reaction (RT-PCR) and comparable to real-time RT-PCR (RRT-PCR). In the clinical evaluation, the PEDV detection rate of vRT-LAMP was higher than that of RRT-PCR, showing 99 % concordance, with a kappa value (95 % confidence interval) of 0.97 (0.93-1.01). Considering the advantages of high sensitivity and specificity, simple and direct visual monitoring of the results, no possibility for cross-contamination, and being able to be used as low-cost equipment, the developed vRT-LAMP assay will be a valuable tool for detecting PEDV from clinical samples, even in resource-limited laboratories.
Collapse
Affiliation(s)
- Jae-Kyeom Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hye-Ryung Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea; DIVA Bio Incorporation, Daegu, 41519, Republic of Korea
| | - Da-Young Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jong-Min Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Na-Young Kwon
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji-Hoon Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji-Young Park
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Seong-Hee Kim
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Kyoung-Ki Lee
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Changhee Lee
- Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hoo-Don Joo
- DIVA Bio Incorporation, Daegu, 41519, Republic of Korea
| | - Young S Lyoo
- College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
45
|
Jamwal VL, Kumar N, Bhat R, Jamwal PS, Singh K, Dogra S, Kulkarni A, Bhadra B, Shukla MR, Saran S, Dasgupta S, Vishwakarma RA, Gandhi SG. Optimization and validation of RT-LAMP assay for diagnosis of SARS-CoV2 including the globally dominant Delta variant. Virol J 2021; 18:178. [PMID: 34461941 PMCID: PMC8404189 DOI: 10.1186/s12985-021-01642-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/12/2021] [Indexed: 01/12/2023] Open
Abstract
Background Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19 pandemic, has infected more than 179 million people worldwide. Testing of infected individuals is crucial for identification and isolation, thereby preventing further spread of the disease. Presently, Taqman™ Reverse Transcription Real Time PCR is considered gold standard, and is the most common technique used for molecular testing of COVID-19, though it requires sophisticated equipments, expertise and is also relatively expensive. Objective Development and optimization of an alternate molecular testing method for the diagnosis of COVID-19, through a two step Reverse Transcription Loop-mediated isothermal AMPlification (RT-LAMP). Results Primers for LAMP were carefully designed for discrimination from other closely related human pathogenic coronaviruses. Care was also taken that primer binding sites are present in conserved regions of SARS-CoV2. Our analysis shows that the primer binding sites are well conserved in all the variants of concern (VOC) and variants of interest (VOI), notified by World Health Organization (WHO). These lineages include B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.427/B.1.429, P.2, B.1.525, P.3, B.1.526 and B.1.617.1. Various DNA polymerases with strand displacement activity were evaluated and conditions were optimized for LAMP amplification and visualization. Different LAMP primer sets were also evaluated using synthetic templates as well as patient samples. Conclusion In a double blind study, the RT-LAMP assay was validated on more than 150 patient samples at two different sites. The RT-LAMP assay appeared to be 89.2% accurate when compared to the Taqman™ rt-RT-PCR assay. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01642-9.
Collapse
Affiliation(s)
- Vijay Lakshmi Jamwal
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Natish Kumar
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Rahul Bhat
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Piyush Singh Jamwal
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Kaurab Singh
- Higher Education Department, Union Territory of Jammu and Kashmir, Jammu, India
| | - Sandeep Dogra
- Department of Microbiology, Government Medical College, Jammu, 180001, India
| | - Abhishek Kulkarni
- A2O - Biology, Reliance Technology Group, Reliance Industries Limited, RCP, Navi Mumbai, 400701, India
| | - Bhaskar Bhadra
- A2O - Biology, Reliance Technology Group, Reliance Industries Limited, RCP, Navi Mumbai, 400701, India
| | - Manish R Shukla
- A2O - Biology, Reliance Technology Group, Reliance Industries Limited, RCP, Navi Mumbai, 400701, India
| | - Saurabh Saran
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Santanu Dasgupta
- A2O - Biology, Reliance Technology Group, Reliance Industries Limited, RCP, Navi Mumbai, 400701, India
| | - Ram A Vishwakarma
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Sumit G Gandhi
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
46
|
Soroka M, Wasowicz B, Rymaszewska A. Loop-Mediated Isothermal Amplification (LAMP): The Better Sibling of PCR? Cells 2021; 10:1931. [PMID: 34440699 PMCID: PMC8393631 DOI: 10.3390/cells10081931] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022] Open
Abstract
In 1998, when the PCR technique was already popular, a Japanese company called Eiken Chemical Co., Ltd. designed a method known as the loop-mediated isothermal amplification of DNA (LAMP). The method can produce up to 109 copies of the amplified DNA within less than an hour. It is also highly specific due to the use of two to three pairs of primers (internal, external, and loop), which recognise up to eight specific locations on the DNA or RNA targets. Furthermore, the Bst DNA polymerase most used in LAMP shows a high strand displacement activity, which eliminates the DNA denaturation stage. One of the most significant advantages of LAMP is that it can be conducted at a stable temperature, for instance, in a dry block heater or an incubator. The products of LAMP can be detected much faster than in standard techniques, sometimes only requiring analysis with the naked eye. The following overview highlights the usefulness of LAMP and its effectiveness in various fields; it also considers the superiority of LAMP over PCR and presents RT-LAMP as a rapid diagnostic tool for SARS-CoV-2.
Collapse
Affiliation(s)
| | - Barbara Wasowicz
- Department of Genetics and Genomics, Institute of Biology, University of Szczecin, 3c Felczaka St., 71-412 Szczecin, Poland; (M.S.); (A.R.)
| | | |
Collapse
|
47
|
Diao M, Lang L, Feng J, Li R. Molecular detections of coronavirus: current and emerging methodologies. Expert Rev Anti Infect Ther 2021; 20:199-210. [PMID: 34225540 DOI: 10.1080/14787210.2021.1949986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Seven coronavirus species have been identified that can infect humans. While human coronavirus infections had been historically associated with only mild respiratory symptoms similar to the common cold, three coronaviruses identified since 2003, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and SARS-CoV-2, cause life-threatening severe respiratory syndromes. The coronavirus disease 2019 (COVID-19) caused by the highly transmissible SARS-CoV-2 has triggered a worldwide health emergency. Due to the lack of effective drugs and vaccination, rapid and reliable detection is of vital importance to control coronavirus epidemics/pandemics.Area covered: A literature search was performed in Pubmed covering the detections and diagnostics of SARS, MERS and SARS-CoV-2. This review summarized the current knowledge of established and emerging methods for coronavirus detection. The characteristics of different diagnostic approaches were described, and the strengths and weaknesses of each method were analyzed and compared. In addition, future trends in the field of coronavirus detection were also discussed.Expert opinion: Nucleic acid-based RT-PCR is the current golden-standard of coronavirus detection, while immunoassays provide history of coronavirus infection besides diagnostic information. Integrated high-throughput system holds the great potential and is the trend of future detection and diagnosis of virus infection.
Collapse
Affiliation(s)
- Mingkun Diao
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Lang Lang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Juan Feng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Rongsong Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
48
|
Phillips DE, Mee PT, Lynch SE, da Conceição F, Bendita da Costa Jong J, Rawlin GT. Use of Field Based Loop Mediated Isothermal Amplification (LAMP) Technology for a Prevalence Survey and Proof of Freedom Survey for African Swine Fever in Timor-Leste in 2019. Front Vet Sci 2021; 8:672048. [PMID: 34235203 PMCID: PMC8255686 DOI: 10.3389/fvets.2021.672048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
African Swine Fever (ASF) has been spreading in numerous southeast Asian countries since a major incursion in mainland China in 2018. Timor-Leste confirmed an outbreak of ASF in September 2019 which resulted in high mortalities in affected pigs. Pigs in Timor-Leste are the second most common type of livestock kept by villagers and represent a traditionally important source of income and prestige for householders. In order to understand the extent of ASF infected villages in Timor-Leste a prevalence survey was designed and conducted in November-December 2019. Timor-Leste has limited laboratory facilities and access to qPCR diagnostic tests. Therefore, a loop mediated isothermal amplification (LAMP) assay was used to detect ASF positive blood samples collected during the prevalence survey. The LAMP assay was proven to be a robust, highly specific and sensitive laboratory test for ASF suitable for use in the field and where there are limited laboratory facilities. The results of the prevalence survey allowed the extent of the ASF incursion to be delineated and the introduction of a disease response strategy to limit the spread of ASF and assist in the recovery of the pig population in Timor-Leste.
Collapse
Affiliation(s)
- Dianne E Phillips
- Agriculture Victoria, Biosecurity and Agriculture Services, Bairnsdale, VIC, Australia
| | - Peter T Mee
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Stacey E Lynch
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, VIC, Australia
| | | | | | - Grant T Rawlin
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, VIC, Australia
| |
Collapse
|
49
|
Castle LM, Schuh DA, Reynolds EE, Furst AL. Electrochemical Sensors to Detect Bacterial Foodborne Pathogens. ACS Sens 2021; 6:1717-1730. [PMID: 33955227 DOI: 10.1021/acssensors.1c00481] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial foodborne pathogens cause millions of illnesses each year and disproportionately impact those in developing countries. To combat these diseases and their spread, effective monitoring of foodborne pathogens is needed. Technologies to detect these microbes must be deployable at the point-of-contamination, often in nonideal environments. Electrochemical sensors are uniquely suited for field-deployable monitoring, as they are quantitative, rapid, and do not require expensive instrumentation. When combined with the inherent recognition capabilities of biomolecules, electrochemistry is unmatched for quantitative biological measurements with minimal equipment requirements. This Review is centered on recent advances in electrochemical sensors for the detection of bacterial foodborne pathogens with a specific emphasis on field-deployable platforms, as this is a key requirement of any technology that could effectively halt the spread of foodborne diseases. Innovative electrochemical sensing strategies are highlighted that demonstrate the ability of these technologies to achieve high sensitivity and large detection ranges with rapid readout. Sensing strategies are categorized on the basis of whether they incorporate biological pretreatments or biorecognition elements, and their key advantages and disadvantages are summarized. As this class of sensors continues to mature, methods to incorporate device specificity and to detect targets from complex solutions will enable the translation of these platforms from laboratory prototypes to real-world implementation.
Collapse
Affiliation(s)
- Lauren M. Castle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daena A. Schuh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Erin E. Reynolds
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ariel L. Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
50
|
Cassedy A, Parle-McDermott A, O’Kennedy R. Virus Detection: A Review of the Current and Emerging Molecular and Immunological Methods. Front Mol Biosci 2021; 8:637559. [PMID: 33959631 PMCID: PMC8093571 DOI: 10.3389/fmolb.2021.637559] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Viruses are ubiquitous in the environment. While many impart no deleterious effects on their hosts, several are major pathogens. This risk of pathogenicity, alongside the fact that many viruses can rapidly mutate highlights the need for suitable, rapid diagnostic measures. This review provides a critical analysis of widely used methods and examines their advantages and limitations. Currently, nucleic-acid detection and immunoassay methods are among the most popular means for quickly identifying viral infection directly from source. Nucleic acid-based detection generally offers high sensitivity, but can be time-consuming, costly, and require trained staff. The use of isothermal-based amplification systems for detection could aid in the reduction of results turnaround and equipment-associated costs, making them appealing for point-of-use applications, or when high volume/fast turnaround testing is required. Alternatively, immunoassays offer robustness and reduced costs. Furthermore, some immunoassay formats, such as those using lateral-flow technology, can generate results very rapidly. However, immunoassays typically cannot achieve comparable sensitivity to nucleic acid-based detection methods. Alongside these methods, the application of next-generation sequencing can provide highly specific results. In addition, the ability to sequence large numbers of viral genomes would provide researchers with enhanced information and assist in tracing infections.
Collapse
Affiliation(s)
- A. Cassedy
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | - R. O’Kennedy
- School of Biotechnology, Dublin City University, Dublin, Ireland
- Hamad Bin Khalifa University, Doha, Qatar
- Qatar Foundation, Doha, Qatar
| |
Collapse
|