1
|
Renna M, Coppa M, Lussiana C, Le Morvan A, Gasco L, Rastello L, Claeys J, Maxin G. Low drying temperature has negligible impact but defatting increases in vitro rumen digestibility of insect meals, with minor changes on fatty acid biohydrogenation. J Anim Sci Biotechnol 2025; 16:64. [PMID: 40336112 PMCID: PMC12056994 DOI: 10.1186/s40104-025-01199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/23/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Insect meals have been identified as innovative and sustainable feedstuffs that could be used in ruminant nutrition. However, current research on the effects that their processing may have on rumen digestibility and fatty acid (FA) biohydrogenation is scant. This trial aims to investigate the effects (i) of drying temperature of full-fat Hermetia illucens (HI) and Tenebrio molitor (TM) meals, and (ii) of residual ether extract (EE) content of defatted HI and TM meals, on their fermentation characteristics and FA of rumen digesta after 24-h in vitro rumen incubation. METHODS The tested full-fat meals included four HI and four TM meals obtained applying drying temperatures ranging from 30 °C to 70 °C, while the tested defatted meals consisted of five HI and two TM meals containing a residual EE content ranging from 4.7 to 19.7 g EE/100 g dry matter (DM). The applied statistical models (GLM ANOVA) tested the effects of insect species, drying temperature (full-fat meals) or EE content (defatted meals), and their interaction. RESULTS Drying temperature had minor effects on in vitro ruminal digestibility and FA profile of rumen digesta. Irrespective of insect species, increasing the drying temperature led to a reduction of in vitro degradation of proteins from insect meals, as outlined by the significant decrease in ammonia production (-0.009 mmol/g DM and -0.126 g/100 g total N for each additional 1 °C). Irrespective of insect species, defatting increased total gas, volatile fatty acids (VFA) and CH4 productions, and the proportions of total saturated and branched-chain FA in rumen digesta (+0.038 mmol/g DM, +0.063 mmol/g DM, +12.9 µmol/g DM, +0.18 g/100 g FA, and +0.19 g/100 g FA for each reduced 1 g EE/100 g DM, respectively), and reduced the proportion of total PUFA (-0.12 g/100 g FA). CONCLUSIONS The applied drying temperatures of full-fat insect meals are too low to exert impactful effects on rumen digestibility and FA biohydrogenation. Fat lowered fermentation activity, probably because of an inhibitory effect on rumen microbiota. The increased ruminal digestibility of defatted insect meals suggests that they can be more suitable to be used in ruminant nutrition than full-fat ones.
Collapse
Affiliation(s)
- Manuela Renna
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, TO, Italy
| | - Mauro Coppa
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, TO, Italy
| | - Carola Lussiana
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, TO, Italy
| | - Aline Le Morvan
- UMR 1213 Herbivores, Université Clermont Auvergne, INRAE, VetAgro Sup, 63 122, Saint-Genès-Champanelle, France
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, TO, Italy.
| | - Lara Rastello
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, TO, Italy
| | - Jonas Claeys
- Insect Research Centre, Inagro, Ieperseweg 87, 8800, Rumbeke-Beitem, Belgium
| | - Gaëlle Maxin
- UMR 1213 Herbivores, Université Clermont Auvergne, INRAE, VetAgro Sup, 63 122, Saint-Genès-Champanelle, France
| |
Collapse
|
2
|
Khalil I, Bashir S, Saeed K, Alsulami T, Rafique H, Mukonzo EKL. Phytochemical and Structural Portrayal of Barley and Pearl Millet Through FTIR and SEM. Food Sci Nutr 2025; 13:e70120. [PMID: 40330203 PMCID: PMC12053003 DOI: 10.1002/fsn3.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 05/08/2025] Open
Abstract
In the present study, Pennisetum glaucum variety Shahansha (F1 bajra) and Hordeum vulgare variety Talbina-21 were tested for nutritional profiling, and results exhibited that pearl millet was rich in moisture, fat, carbohydrate, and ash content; whereas, barley had a copious amount of protein and fiber content. Mineral composition analysis showed barley had a plentiful quantity of calcium (43.97 ± 0.06 mg/100 g), phosphorus (350.58 ± 1.39 mg/100 g) and sodium (36.31 ± 0.95 mg/100 g); whereas, pearl millet had higher iron (7.81 ± 0.05 mg/100 g), potassium (306.33 ± 3.2 mg/100 g) and magnesium (135.61 ± 2.19 mg/100 g). Barley also had a high concentration of total phenolic content (204.73 ± 5.5 mg GAE/g) and total flavonoid contents (134.72 ± 4.71 mg QE/g). Antioxidant activity measured through FRAP, ABTS, and DPPH tests indicated distinct antioxidant activity in barley for DPPH (105.72 ± 0.02 mg GAE/g) and ABTS assay (272.08 ± 5.80 μmol TEAC/100 g), while pearl millet showed stronger activity for FRAP assay (5.22 ± 0.04 TE/g). Using Fourier Transform Infrared Spectroscopy (FTIR), functional groups in the flours were identified, and Scanning Electron Microscopy (SEM) revealed that barley had smaller, spherical granules with smooth edges, while pearl millet had a rough, wrinkled surface with hollow cylindrical morphology. The compositional analysis of the flours revealed the presence of various sugars, proteins, ferulic acid, uronic acid, and dietary fiber components (arabinoxylan & β-glucan). Conclusively, millet and barley possess pronounced phenolic composition, high antioxidant potential, and dietary fibers like arabinoxylan & β-glucan offer substantial biological efficacy in human health interventions.
Collapse
Affiliation(s)
- Iqra Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Shahid Bashir
- University Institute of Food Science and Technology, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Kanza Saeed
- Faculty of Food Technology and Nutrition SciencesUniversity of Biological and Applied SciencesLahorePakistan
| | - Tawfiq Alsulami
- Department of Food Science & NutritionCollege of Food and Agricultural Sciences, King Saud UniversityRiyadhSaudi Arabia
| | - Hamad Rafique
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
| | - Emery Kasongo Lenge Mukonzo
- Land Evaluation and Agro‐Metrology Research Unit, Department of Soil Science, Faculty of Agriculture ResearchUniversity of LubumbashiLubumbashiDemocratic Republic of the Congo
| |
Collapse
|
3
|
Yang S, Yang F, Yang Z, Hu W, Ding H, Yang F, Wan H, Liu Z, Lang T, Yang N, Zhang J, Jiang Y, Feng J, Tang H, Chen Q, Deng Q, Wang Y, Wu J, Xiao J, Fan X, Zhou Y, Li J. Identification and Specific KASP Marker Development for Durum Wheat T2DS-2AS.2AL Translocation Line YL-429 with Wax Inhibitor Gene IW2. PLANTS (BASEL, SWITZERLAND) 2025; 14:1077. [PMID: 40219145 PMCID: PMC11991211 DOI: 10.3390/plants14071077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/06/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
Non-glaucous wheat can reduce solar light reflection in low-light cultivation regions, enhancing photosynthetic efficiency and potentially increasing yield. In previous work, a non-glaucous cuticular line, YL-429, was discovered in derivatives of pentaploid hybrids by crossing the synthetic wheat LM/AT23 (non-glaucous cuticular) with its tetraploid donor parent LM (glaucous) and selfing to F7 generations. In the present study, multicolor fluorescence in situ hybridization was used to characterize the karyotype of the YL-429 line; genome resequencing was performed to identify the breakpoint of the 2D-2A chromosome translocation of YL-429; and bulk sequencing analysis was conducted to detect the SNP in the translocated fragment and accordingly develop specific kompetitive allele-specific PCR markers for use in breeding. The line YL-429 was preliminarily determined as a 2DS and 2AS translocation (LM T2DS-2AS.2AL) line through karyotyping. Genome alignment identified an approximately 13.8 Mb segment, including the wax inhibitor gene Iw2, in the telomeric region of the 2DS chromosome arm replacing an approximately 16.1 Mb segment in that of the 2AS chromosome arm. According to the bulk DNA sequencing data, 27 specific KASP markers were developed for detecting the translocated fragment from the 2DS of Aegilops tauschii. The LM T2DS-2AS.2AL translocation line YL-429 could be helpful in improving the photosynthesis of durum wheat cultivated in low-light cultivation regions. The developed markers can assist the screening of the T2DS-2AS.2AL translocation in breeding.
Collapse
Affiliation(s)
- Sujie Yang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (S.Y.); (F.Y.); (H.D.); (F.Y.); (T.L.); (J.Z.); (Y.J.); (J.F.); (Q.C.); (Q.D.); (Y.W.); (J.W.); (J.X.)
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Fan Yang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (S.Y.); (F.Y.); (H.D.); (F.Y.); (T.L.); (J.Z.); (Y.J.); (J.F.); (Q.C.); (Q.D.); (Y.W.); (J.W.); (J.X.)
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.W.); (Z.L.); (N.Y.); (H.T.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology, Chengdu 611731, China;
| | - Wenjing Hu
- Lixiahe Institute of Agricultural Sciences, Yangzhou 225007, China;
| | - Hongxia Ding
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (S.Y.); (F.Y.); (H.D.); (F.Y.); (T.L.); (J.Z.); (Y.J.); (J.F.); (Q.C.); (Q.D.); (Y.W.); (J.W.); (J.X.)
| | - Feiyang Yang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (S.Y.); (F.Y.); (H.D.); (F.Y.); (T.L.); (J.Z.); (Y.J.); (J.F.); (Q.C.); (Q.D.); (Y.W.); (J.W.); (J.X.)
| | - Hongshen Wan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.W.); (Z.L.); (N.Y.); (H.T.)
| | - Zehou Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.W.); (Z.L.); (N.Y.); (H.T.)
| | - Tao Lang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (S.Y.); (F.Y.); (H.D.); (F.Y.); (T.L.); (J.Z.); (Y.J.); (J.F.); (Q.C.); (Q.D.); (Y.W.); (J.W.); (J.X.)
| | - Ning Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.W.); (Z.L.); (N.Y.); (H.T.)
| | - Jie Zhang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (S.Y.); (F.Y.); (H.D.); (F.Y.); (T.L.); (J.Z.); (Y.J.); (J.F.); (Q.C.); (Q.D.); (Y.W.); (J.W.); (J.X.)
| | - Yun Jiang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (S.Y.); (F.Y.); (H.D.); (F.Y.); (T.L.); (J.Z.); (Y.J.); (J.F.); (Q.C.); (Q.D.); (Y.W.); (J.W.); (J.X.)
| | - Junyan Feng
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (S.Y.); (F.Y.); (H.D.); (F.Y.); (T.L.); (J.Z.); (Y.J.); (J.F.); (Q.C.); (Q.D.); (Y.W.); (J.W.); (J.X.)
| | - Hao Tang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.W.); (Z.L.); (N.Y.); (H.T.)
| | - Qian Chen
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (S.Y.); (F.Y.); (H.D.); (F.Y.); (T.L.); (J.Z.); (Y.J.); (J.F.); (Q.C.); (Q.D.); (Y.W.); (J.W.); (J.X.)
| | - Qian Deng
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (S.Y.); (F.Y.); (H.D.); (F.Y.); (T.L.); (J.Z.); (Y.J.); (J.F.); (Q.C.); (Q.D.); (Y.W.); (J.W.); (J.X.)
| | - Ying Wang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (S.Y.); (F.Y.); (H.D.); (F.Y.); (T.L.); (J.Z.); (Y.J.); (J.F.); (Q.C.); (Q.D.); (Y.W.); (J.W.); (J.X.)
| | - Jingyu Wu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (S.Y.); (F.Y.); (H.D.); (F.Y.); (T.L.); (J.Z.); (Y.J.); (J.F.); (Q.C.); (Q.D.); (Y.W.); (J.W.); (J.X.)
| | - Jun Xiao
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (S.Y.); (F.Y.); (H.D.); (F.Y.); (T.L.); (J.Z.); (Y.J.); (J.F.); (Q.C.); (Q.D.); (Y.W.); (J.W.); (J.X.)
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.W.); (Z.L.); (N.Y.); (H.T.)
| |
Collapse
|
4
|
Sahu B, Sahu MK, Baghel A, Sahu C, Bhoi H, Kumar A, Yadav M, Bhargav N. Exploring the Nutritional Excellence and Pharmacological Potentials of Millets: A Comprehensive Review. Chem Biodivers 2025:e202500280. [PMID: 40166891 DOI: 10.1002/cbdv.202500280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/02/2025]
Abstract
Millets, known as 'super grains', are recognised globally for their outstanding nutritional, phytochemical, and pharmacological benefits. This review highlights their various health-promoting properties, including antioxidant, anti-diabetic, anti-inflammatory, hypolipidemic, antimicrobial, neuroprotective, immunomodulatory, gastroprotective and anticancer activities. Rich in bioactive compounds like phenolics, flavonoids and dietary fibre, millets help manage lifestyle-related disorders and chronic diseases. They modulate oxidative stress, regulate glucose metabolism, and boost immune responses. Millets are also seen as a sustainable solution to global food security and dietary challenges, making them valuable in modern diets. Promoting millet consumption can lead to further research on their therapeutic benefits and encourage their inclusion in daily nutrition for better health and wellness.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Megha Yadav
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | | |
Collapse
|
5
|
Huang Y, Xu B. Critical review on the intervention effects of flavonoids from cereal grains and food legumes on lipid metabolism. Food Chem 2025; 464:141790. [PMID: 39509881 DOI: 10.1016/j.foodchem.2024.141790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/22/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Obesity, often caused by disorders of lipid metabolism, is a global health concern. Flavonoids from staple grains and legumes are expected as a safer and more cost-effective alternative for the future development of dietary flavonoid-based anti-obesity dietary supplements or drugs. This review systematically summarized their content variation, metabolism in the human body, effects and molecular mechanisms on lipid metabolism. These flavonoids intervene in lipid metabolism by inhibiting lipogenesis, promoting lipolysis, enhancing energy metabolism, reducing appetite, suppressing inflammation, enhancing insulin sensitivity, and improving the composition of the gut microbial. Fermentation and sprouting techniques enhance flavonoid content and these beneficial effects. The multidirectional intervention of lipid metabolism is mainly through regulating AMPK signaling pathway. This study provides potential improvement for challenges of application, including addressing high extraction costs and improving bioavailability, ensuring safety, filling clinical study gaps, and investigating potential synergistic effects between flavonoids in grains and legumes, and other components.
Collapse
Affiliation(s)
- Yin Huang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
6
|
Yang Y, Huang Z, Xie D, Luo J, Wang T, Xie L, Zhu X, Zhuang Q, Guo Y, Zhu X, Jin J, Liang L. Effects of different extraction methods on the chemical composition, antioxidant activity and flavor of bayberry (Myrica rubra Sieb. et Zucc.) kernel oil. J Food Sci 2025; 90:e70041. [PMID: 39929604 DOI: 10.1111/1750-3841.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/02/2025] [Accepted: 01/17/2025] [Indexed: 05/08/2025]
Abstract
Bayberry (Myrica rubra Sieb. et Zucc.) kernel is a by-products of bayberry processing and are rich in oil. This study investigates the effects of different processing methods on bayberry kernel oil (BKO) yield, including cold pressing (CP), direct solvent (n-hexane) extraction, ultrasound-assisted n-hexane extraction (UAE), steam explosion pretreatment to assist n-hexane extraction, aqueous enzyme extraction, and supercritical fluid extraction (SFE). The acid value, peroxide value, fatty acid composition, bioactive components content, and the antioxidant activity of the extracted BKO with six methods were compared. The results showed that the oil yield of bayberry kernel extracted by different methods was between 30.95% and 49.49%, and the oil yield of UAE was the highest. BKO samples extracted by different methods had lower acid value (0.39-0.59 mg KOH/g) and peroxide value (3.97-5.84 meq O2/kg), and were rich in unsaturated fatty acids (>85%), mainly including oleic (46.9%-47.9%) and linoleics (37.0%-39.5%). Meanwhile, BKO contained phytosterols (384.67-597.14 mg/100 g) and tocopherols (632.09-1227.62 µg/100 g), which was positively correlated with antioxidant activity. The volatile organic compounds (VOCs) of BKO varied on extraction methods. BKO extracted by CP and SFE showed more VOCs (25 in CP-BKO, 26 in SFE-BKO). The representative VOCs in BKO are alcohols and esters. The results provide references for further processing of BKO.
Collapse
Affiliation(s)
- Yunyun Yang
- School of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Zhaoxian Huang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Dan Xie
- School of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Jingru Luo
- School of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Taiwei Wang
- School of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Liangliang Xie
- School of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Xiping Zhu
- School of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Qibin Zhuang
- School of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Yubao Guo
- School of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Xiuling Zhu
- School of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Jun Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Mantovanelli GC, Silva AA, Ricardo LL, Kagami FL, de Almeida JD, Barbosa MC, Mito MS, Contesoto IDC, da Costa Menezes PVM, Stulp GF, Moreno BP, Pereira Valeze FA, de Oliveira Junior RS, Baldoqui DC, Ishii Iwamoto EL. Pearl Millet Cover Crop Extract Inhibits the Development of the Weed Ipomoea grandifolia by Inducing Oxidative Stress in Primary Roots and Affecting Photosynthesis Efficiency. PLANTS (BASEL, SWITZERLAND) 2025; 14:222. [PMID: 39861575 PMCID: PMC11769161 DOI: 10.3390/plants14020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
The cover crop Pennisetum glaucum (L.) R.Br. (pearl millet) reduces the emergence of weed species in the field through a mechanism that is not fully known. The identification of the allelopathic activity of pearl millet can contribute to the development of no-tillage techniques to produce crops without or with low doses of herbicides. This issue was investigated by testing the effects of extracts from the aerial parts of pearl millet on the germination and growth of the weeds Bidens pilosa L., Euphorbia heterophylla L., and Ipomoea grandifolia (Dammer) O'Donell under laboratory conditions. The ethyl acetate fraction (EAF) at a concentration of 2000 µg mL-1 was inactive on Bidens pilosa; it inhibited root length (-72%) and seedling fresh weight (-41%) of E. heterophylla, and in I. grandifolia the length of primary root and aerial parts and the fresh and dry weight of seedlings were reduced by 63%, 32%, 25%, and 12%, respectively. In roots of I. grandifolia seedlings, at the initial development stage, EAF induced oxidative stress and increased electrolyte leakage. At the juvenile vegetative stage, a lower concentration of EAF (250 µg mL-1) induced a stimulus in seedling growth (+60% in root length and +23% in aerial parts length) that was associated with increased photosynthetic efficiency. However, at higher concentrations (1000 µg mL-1), it induced the opposite effects, inhibiting the growth of root (-41%) and aerial parts (-25%), with reduced superoxide dismutase activity and photosynthetic efficiency. The stilbenoid pallidol was identified as the main compound in EAF. The allelopathic activity of pearl millet may be attributed, at least in part, to the impairment of energy metabolism and the induction of oxidative stress in weed seedlings, with pallidol possibly involved in this action. Such findings demonstrated that the application of the EAF extract from pearl millet can be a natural and renewable alternative tool for weed control.
Collapse
Affiliation(s)
- Gislaine Cristiane Mantovanelli
- Laboratory of Biological Oxidations, Department of Biochemistry, State University of Maringa, Maringa 87020-900, PR, Brazil; (G.C.M.); (F.L.K.); (J.D.d.A.); (M.C.B.); (M.S.M.); (I.d.C.C.); (P.V.M.d.C.M.); (G.F.S.)
| | - Adriano Antônio Silva
- Federal University of Southern Frontier, Realeza Campus, Realeza 85770-000, PR, Brazil;
| | | | - Fernanda Lima Kagami
- Laboratory of Biological Oxidations, Department of Biochemistry, State University of Maringa, Maringa 87020-900, PR, Brazil; (G.C.M.); (F.L.K.); (J.D.d.A.); (M.C.B.); (M.S.M.); (I.d.C.C.); (P.V.M.d.C.M.); (G.F.S.)
| | - Jéssica Dario de Almeida
- Laboratory of Biological Oxidations, Department of Biochemistry, State University of Maringa, Maringa 87020-900, PR, Brazil; (G.C.M.); (F.L.K.); (J.D.d.A.); (M.C.B.); (M.S.M.); (I.d.C.C.); (P.V.M.d.C.M.); (G.F.S.)
| | - Mauro Cezar Barbosa
- Laboratory of Biological Oxidations, Department of Biochemistry, State University of Maringa, Maringa 87020-900, PR, Brazil; (G.C.M.); (F.L.K.); (J.D.d.A.); (M.C.B.); (M.S.M.); (I.d.C.C.); (P.V.M.d.C.M.); (G.F.S.)
| | - Márcio Shigueaki Mito
- Laboratory of Biological Oxidations, Department of Biochemistry, State University of Maringa, Maringa 87020-900, PR, Brazil; (G.C.M.); (F.L.K.); (J.D.d.A.); (M.C.B.); (M.S.M.); (I.d.C.C.); (P.V.M.d.C.M.); (G.F.S.)
| | - Isabela de Carvalho Contesoto
- Laboratory of Biological Oxidations, Department of Biochemistry, State University of Maringa, Maringa 87020-900, PR, Brazil; (G.C.M.); (F.L.K.); (J.D.d.A.); (M.C.B.); (M.S.M.); (I.d.C.C.); (P.V.M.d.C.M.); (G.F.S.)
| | - Paulo Vinicius Moreira da Costa Menezes
- Laboratory of Biological Oxidations, Department of Biochemistry, State University of Maringa, Maringa 87020-900, PR, Brazil; (G.C.M.); (F.L.K.); (J.D.d.A.); (M.C.B.); (M.S.M.); (I.d.C.C.); (P.V.M.d.C.M.); (G.F.S.)
| | - Gabriel Felipe Stulp
- Laboratory of Biological Oxidations, Department of Biochemistry, State University of Maringa, Maringa 87020-900, PR, Brazil; (G.C.M.); (F.L.K.); (J.D.d.A.); (M.C.B.); (M.S.M.); (I.d.C.C.); (P.V.M.d.C.M.); (G.F.S.)
| | - Beatriz Pereira Moreno
- Laboratory of Synthesis and Natural Products, Department of Chemistry, State University of Maringa, Maringa 87020-900, PR, Brazil; (B.P.M.); (F.A.P.V.); (D.C.B.)
| | - Francielli Alana Pereira Valeze
- Laboratory of Synthesis and Natural Products, Department of Chemistry, State University of Maringa, Maringa 87020-900, PR, Brazil; (B.P.M.); (F.A.P.V.); (D.C.B.)
| | | | - Debora Cristina Baldoqui
- Laboratory of Synthesis and Natural Products, Department of Chemistry, State University of Maringa, Maringa 87020-900, PR, Brazil; (B.P.M.); (F.A.P.V.); (D.C.B.)
| | - Emy Luiza Ishii Iwamoto
- Laboratory of Biological Oxidations, Department of Biochemistry, State University of Maringa, Maringa 87020-900, PR, Brazil; (G.C.M.); (F.L.K.); (J.D.d.A.); (M.C.B.); (M.S.M.); (I.d.C.C.); (P.V.M.d.C.M.); (G.F.S.)
| |
Collapse
|
8
|
Alzahrani Y, Abdulbaki AS, Alsamadany H. Genotypic variability in stress responses of Sorghum bicolor under drought and salinity conditions. Front Genet 2025; 15:1502900. [PMID: 39845188 PMCID: PMC11750996 DOI: 10.3389/fgene.2024.1502900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Sorghum bicolor: widely cultivated in Asia and Africa, faces increasing challenges from climate change, specifically from abiotic stresses like drought and salinity. This study evaluates how different sorghum genotypes respond to separate and combined stresses of drought and salinity. Methods Carried out with three replications using a randomized complete block design, the experiment measured biochemical and physiological parameters, including stomatal conductance, chlorophyll content, and antioxidant enzyme activities. Molecular analysis focused on stress-responsive gene expression. Results Results indicated enhanced stress responses under combined conditions, with significant variation in antioxidant enzymatic activities among genotypes. Genotype-specific osmotic adjustments were observed through proline and glycine betaine accumulation. Physiological parameters such as chlorophyll content, cell membrane stability, stomatal conductance, and water potential were critical indicators of stress tolerance. Gene expression analysis revealed upregulation of stress-responsive genes, particularly under combined stress conditions. Discussion Correlation and principal component analysis analyses highlighted the interdependencies among traits, emphasizing their roles in oxidative stress mitigation. Samsorg-17 exhibited the highest resilience due to consistently high levels of catalase, superoxide dismutase, and glycine betaine, alongside superior physiological attributes. CRS-01 showed moderate resilience with the highest Na/K ratio and notable photosynthesis rate and relative water content, but was less consistent in biochemical markers under stress. Samsorg-42 demonstrated resilience under specific conditions but was generally less robust than Samsorg-17 across most indicators. These findings emphasize the importance of developing stress-resilient sorghum cultivars through targeted breeding programs to enhance tolerance to drought and salinity in sustainable agriculture.
Collapse
Affiliation(s)
- Yahya Alzahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulbaki Shehu Abdulbaki
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Plant Science and Biotechnology, Faculty of Life Sciences, Federal University Dutsinma, Dutsinma, Katsina State, Nigeria
| | - Hameed Alsamadany
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Jadhav HB. Changing the horizon of food frying from the use of liquid oil to semi-solid gel. Food Res Int 2024; 197:115290. [PMID: 39577938 DOI: 10.1016/j.foodres.2024.115290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/04/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
Deep fat frying is the most adopted process of producing fried food products; it involves mass and heat transfer to form fried products with good colour, crispiness, flavour, taste, and texture. However, frequent consumption of these products is a concern due to higher oil content that poses threats to human health. Hence, there is a need to find an alternative frying medium for deep fat frying of food products to obtain fried products having lower fat content. The structuring of liquid oil to convert it into semi-solid gel by the process of oleogelation forms oleogel. The use of oleogel as a frying medium gives fried products with good oxidative, textural, and sensory attributes. The Oleogelator used in the formulation of oleogel plays a significant role in maintaining the stability of oleogel. An increase in the oleo gelator concentration decreases the oil uptake in the fried product. The superior product quality and high consumer acceptance of oleogel fried products indicate that oleogel is a potential frying medium. The scope of the present review is to cover the heat and mass transfer perspective of the deep fat frying process, factors responsible for oil uptake in fried products, formulation and components of semi-solid system, discussion on various characteristics of semi-solid system as frying medium, comparative assessment of oil uptake in food fried in oleogel and conventional oil and finally covering specific examples showing the efficacy of liquid oil oleogel as a frying medium.
Collapse
Affiliation(s)
- Harsh B Jadhav
- Amity Institute of Biotechnology, Amity University Jaipur, Rajasthan, India.
| |
Collapse
|
10
|
Mazumder S, Bhattacharya D, Lahiri D, Moovendhan M, Sarkar T, Nag M. Harnessing the nutritional profile and health benefits of millets: a solution to global food security problems. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39434598 DOI: 10.1080/10408398.2024.2417801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
India is dealing with both nutritional and agricultural issues. The maximum area of agricultural land with irrigation capabilities has been largely utilized, while the amount of dry land is expanding. The influence is distinct on farmer's livelihoods and earnings, which ultimately affects nutritional security. In order to attain nutritional security and the goal of SDG (Sustainable Development Goals), millets are sustainable solutions, with respect to high nutritional content, bioactive and medicinal properties, and climate resilience. The nutrient profile of millet includes 60%-70% carbohydrate content, 3.5%-5.2% fat, and 7.52%-12.1% protein sources. A wide spectrum of amino acids, including cysteine, isoleucine, arginine, leucine, tryptophan, lysine, histidine, methionine, tyrosine, phenylalanine, threonine, and valine are generally present in millets. Mineral content in millets includes calcium, phosphorus, potassium, sodium, and magnesium. Additionally, millets are an excellent source of bioactive molecules such as polyphenol, phenolic acid, flavonoids, active peptides, and soluble fiber, which have a wide range of therapeutic applications, including the prevention of free radical damage, diabetes, anti-microbial, anti- biofilm, and anti-cancer effects. This review will focus on the nutritional profile and health benefits of millet considering the present-day food security problems.
Collapse
Affiliation(s)
- Saikat Mazumder
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata
- Department of Food Technology, Guru Nanak Institute of Technology, Kolkata
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata
| | - Dibyajit Lahiri
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata
| | - Meivelu Moovendhan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Moupriya Nag
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata
| |
Collapse
|
11
|
Conley MM, Hejl RW, Serba DD, Williams CF. Visualizing Plant Responses: Novel Insights Possible Through Affordable Imaging Techniques in the Greenhouse. SENSORS (BASEL, SWITZERLAND) 2024; 24:6676. [PMID: 39460157 PMCID: PMC11511021 DOI: 10.3390/s24206676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Efficient and affordable plant phenotyping methods are an essential response to global climatic pressures. This study demonstrates the continued potential of consumer-grade photography to capture plant phenotypic traits in turfgrass and derive new calculations. Yet the effects of image corrections on individual calculations are often unreported. Turfgrass lysimeters were photographed over 8 weeks using a custom lightbox and consumer-grade camera. Subsequent imagery was analyzed for area of cover, color metrics, and sensitivity to image corrections. Findings were compared to active spectral reflectance data and previously reported measurements of visual quality, productivity, and water use. Results confirm that Red-Green-Blue imagery effectively measures plant treatment effects. Notable correlations were observed for corrected imagery, including between yellow fractional area with human visual quality ratings (r = -0.89), dark green color index with clipping productivity (r = 0.61), and an index combination term with water use (r = -0.60). The calculation of green fractional area correlated with Normalized Difference Vegetation Index (r = 0.91), and its RED reflectance spectra (r = -0.87). A new chromatic ratio correlated with Normalized Difference Red-Edge index (r = 0.90) and its Red-Edge reflectance spectra (r = -0.74), while a new calculation correlated strongest to Near-Infrared (r = 0.90). Additionally, the combined index term significantly differentiated between the treatment effects of date, mowing height, deficit irrigation, and their interactions (p < 0.001). Sensitivity and statistical analyses of typical image file formats and corrections that included JPEG, TIFF, geometric lens distortion correction, and color correction were conducted. Findings highlight the need for more standardization in image corrections and to determine the biological relevance of the new image data calculations.
Collapse
Affiliation(s)
- Matthew M. Conley
- U.S. Arid-Land Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Maricopa, AZ 85138, USA; (R.W.H.); (D.D.S.); (C.F.W.)
| | | | | | | |
Collapse
|
12
|
Nagy K, Iacob BC, Bodoki E, Oprean R. Investigating the Thermal Stability of Omega Fatty Acid-Enriched Vegetable Oils. Foods 2024; 13:2961. [PMID: 39335890 PMCID: PMC11431109 DOI: 10.3390/foods13182961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigates the thermal stability of omega fatty acid-enriched vegetable oils, focusing on their behavior under high-temperature conditions commonly encountered during frying. This research aims to evaluate changes in fatty acid composition, particularly the degradation of essential omega-3, -6, and -9 fatty acids, and the formation of harmful compounds such as trans fatty acids (TFAs). Various commercially available vegetable oils labeled as containing omega-3, omega-6, and omega-9, including refined sunflower, high-oleic sunflower, rapeseed, and blends, were analyzed under temperatures from 180 °C to 230 °C for varying durations. The fatty acid profiles were determined using gas chromatography-mass spectrometry (GC-MS). The results indicated a significant degradation of polyunsaturated fatty acids (PUFAs) and an increase in saturated fatty acids (SFAs) and TFAs with prolonged heating. The findings highlight the varying degrees of thermal stability among different oils, with high-oleic sunflower and blended oils exhibiting greater resistance to thermal degradation compared to conventional sunflower oils. This study underscores the importance of selecting oils with favorable fatty acid compositions for high-temperature cooking to minimize adverse health effects associated with degraded oil consumption. Furthermore, it provides insights into optimizing oil blends to enhance thermal stability and maintain nutritional quality, crucial for consumer health and food industry practices.
Collapse
Affiliation(s)
- Katalin Nagy
- Analytical Chemistry Department, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur St., 400349 Cluj-Napoca, Romania
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Department, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur St., 400349 Cluj-Napoca, Romania
| | - Ede Bodoki
- Analytical Chemistry Department, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur St., 400349 Cluj-Napoca, Romania
| | - Radu Oprean
- Analytical Chemistry Department, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur St., 400349 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Latha Ravi J, Rana SS. Maximizing the Nutritional Benefits and Prolonging the Shelf Life of Millets through Effective Processing Techniques: A Review. ACS OMEGA 2024; 9:38327-38347. [PMID: 39310183 PMCID: PMC11411683 DOI: 10.1021/acsomega.4c03466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 09/25/2024]
Abstract
Maximizing the nutritional benefits and extending the shelf life of millets is essential due to their ancient significance, rich nutrient content, and potential health benefits, but challenges such as rapid rancidity in millet-based products underscore the need for effective processing techniques to enhance their preservation and global accessibility. In this comprehensive review, the impact of diverse processes and treatments such as mechanical processing, fermentation, germination, soaking, thermal treatments like microwave processing, infrared heating, radio frequency, nonthermal treatments like ultrasound processing, cold plasma, gamma irradiation, pulsed light processing, and high-pressure processing, on the nutritional value and the stability during storage of various millets has been examined. The review encompasses an exploration of their underlying principles, advantages, and disadvantages. The technologies highlighted in this review have demonstrated their effectiveness in maximizing and extending the shelf life of millet-based products. While traditional processes bring about alterations in nutritional and functional properties, prompting the search for alternatives, novel thermal and nonthermal techniques were identified for microbial decontamination and enzyme inactivation. Advancements in millet processing face challenges including nutrient loss, quality changes, resource intensiveness, consumer perception, environmental impact, standardization issues, regulatory compliance, and limited research on combined methods.
Collapse
Affiliation(s)
- Janani Latha Ravi
- School
of Biosciences and Technology, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| | - Sandeep Singh Rana
- School
of Biosciences and Technology, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
14
|
Zhang Z, Qu Y, Ma F, Lv Q, Zhu X, Guo G, Li M, Yang W, Que B, Zhang Y, He T, Qiu X, Deng H, Song J, Liu Q, Wang B, Ke Y, Bai S, Li J, Lv L, Li R, Wang K, Li H, Feng H, Huang J, Yang W, Zhou Y, Song CP. Integrating high-throughput phenotyping and genome-wide association studies for enhanced drought resistance and yield prediction in wheat. THE NEW PHYTOLOGIST 2024; 243:1758-1775. [PMID: 38992951 DOI: 10.1111/nph.19942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/19/2024] [Indexed: 07/13/2024]
Abstract
Drought, especially terminal drought, severely limits wheat growth and yield. Understanding the complex mechanisms behind the drought response in wheat is essential for developing drought-resistant varieties. This study aimed to dissect the genetic architecture and high-yielding wheat ideotypes under terminal drought. An automated high-throughput phenotyping platform was used to examine 28 392 image-based digital traits (i-traits) under different drought conditions during the flowering stage of a natural wheat population. Of the i-traits examined, 17 073 were identified as drought-related. A genome-wide association study (GWAS) identified 5320 drought-related significant single-nucleotide polymorphisms (SNPs) and 27 SNP clusters. A notable hotspot region controlling wheat drought tolerance was discovered, in which TaPP2C6 was shown to be an important negative regulator of the drought response. The tapp2c6 knockout lines exhibited enhanced drought resistance without a yield penalty. A haplotype analysis revealed a favored allele of TaPP2C6 that was significantly correlated with drought resistance, affirming its potential value in wheat breeding programs. We developed an advanced prediction model for wheat yield and drought resistance using 24 i-traits analyzed by machine learning. In summary, this study provides comprehensive insights into the high-yielding ideotype and an approach for the rapid breeding of drought-resistant wheat.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Yunfeng Qu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Feifei Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Qian Lv
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Xiaojing Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Guanghui Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Mengmeng Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Wei Yang
- School of Computer and Information Engineering, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Beibei Que
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Yun Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Tiantian He
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Xiaolong Qiu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Hui Deng
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Jingyan Song
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Baoqi Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Youlong Ke
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Shenglong Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Jingyao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Linlin Lv
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Ranzhe Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Kai Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Hao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Hui Feng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| |
Collapse
|
15
|
A Y K, E M, R B, E M, M D, L C, F D. Independent genetic factors control floret number and spikelet number in Triticum turgidum ssp. FRONTIERS IN PLANT SCIENCE 2024; 15:1390401. [PMID: 39253571 PMCID: PMC11381284 DOI: 10.3389/fpls.2024.1390401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024]
Abstract
Wheat grain yield is a complex trait resulting from a trade-off among many distinct components. During wheat evolution, domestication events and then modern breeding have strongly increased the yield potential of wheat plants, by enhancing spike fertility. To address the genetic bases of spike fertility in terms of spikelet number per spike and floret number per spikelet, a population of 110 recombinant inbred lines (RILS) obtained crossing a Triticum turgidum ssp. durum cultivar (Latino) and a T. dicoccum accession (MG5323) was exploited. Being a modern durum and a semi-domesticated genotype, respectively, the two parents differ for spike architecture and fertility, and thus the corresponding RIL population is the ideal genetic material to dissect genetic bases of yield components. The RIL population was phenotyped in four environments. Using a high-density SNP genetic map and taking advantage of several genome sequencing available for Triticeae, a total of 94 QTLs were identified for the eight traits considered; these QTLs were further reduced to 17 groups, based on their genetic and physical co-location. QTLs controlling floret number per spikelet and spikelet number per spike mapped in non-overlapping chromosomal regions, suggesting that independent genetic factors determine these fertility-related traits. The physical intervals of QTL groups were considered for possible co-location with known genes functionally involved in spike fertility traits and with yield-related QTLs previously mapped in tetraploid wheat. The most interesting result concerns a QTL group on chromosome 5B, associated with spikelet number per spike, since it could host genes still uncharacterized for their association to spike fertility. Finally, we identified two different regions where the trade-off between fertility related traits and kernel weight is overcome. Further analyses of these regions could pave the way for a future identification of new genetic loci contributing to fertility traits essential for yield improvement in durum wheat.
Collapse
Affiliation(s)
- Kiros A Y
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Mica E
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, Vercelli, Italy
| | - Battaglia R
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Mazzucotelli E
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Dell'Acqua M
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Cattivelli L
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Desiderio F
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| |
Collapse
|
16
|
Zhu X, Liu W, Wang B, Yang L. Molecular and physiological responses of two quinoa genotypes to drought stress. Front Genet 2024; 15:1439046. [PMID: 39184352 PMCID: PMC11341418 DOI: 10.3389/fgene.2024.1439046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Quinoa is an important economic food crop. However, quinoa seedlings are susceptible to drought stress, and the molecular mechanism of drought tolerance remains unclear. In this study, we compared transcriptomic and physiological analyses of drought-tolerant (L1) and susceptible (HZ1) genotypes exposed to 20% PEG for 3 and 9 days at seedling stage. Compared with HZ1, drought stress had less damage to photosynthetic system, and the contents of SOD, POD and CAT were higher and the contents of H2O2 and O2 -were lower in L1 leaves. Based on the RNA-seq method, we identified 2423, 11856, 1138 and 3903 (HZ1-C3-VS-T3, HZ1-C9-vs-T9, L1-C3-vs-T3 and L1-C9-vs-T9) annotated DEGs. Go enrichment was shown in terms of Biological Process: DEGs involved in biological processes such as metabolic process, cellular process, and single-organism process were most abundant in all four comparison treatments. In Molecular Function: the molecular functions of catalytic activity, binding and transporter activity have the most DEGs in all four processes. Cellular Component: membrane, membrane part, and cell have the most DEGs in each of the four processes. These DEGs include AP2/ERF, MYB, bHLH, b-ZIP, WRKY, HD-ZIP, NAC, C3h and MADS, which encode transcription factors. In addition, the MAPK pathway, starch and sucrose metabolism, phenylpropanoid biosynthesis and plant hormone signal transduction were significantly induced under drought stress, among them, G-hydrolases-66, G-hydrolases-81, G-hydrolases-78, Su-synthase-02, Su-synthase-04, Su-synthase-06, BRI1-20 and bHLH17 were all downregulated at two drought stress points in two genotypes, PP2C01, PP2C03, PP2C05-PP2C07, PP2C10, F-box01 and F-box02 were upregulated at two drought stress points in two genotypes. These results agree with the physiological responses and RNA-seq results. Collectively, these findings may lead to a better understanding of drought tolerance, and some of the important DEGs detected in this study could be targeted for future research. And our results will provide a comprehensive basis for the molecular network that mediates drought tolerance in quinoa seedlings and promote the breeding of drought-resistant quinoa varieties.
Collapse
Affiliation(s)
- Xiaolin Zhu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Wenyu Liu
- Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Baoqiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Ling Yang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| |
Collapse
|
17
|
Gain H, Patil RN, Malik K, Das A, Chakraborty S, Banerjee J. Image processing and impact analyses of terminal heat stress on yield of lentil. 3 Biotech 2024; 14:188. [PMID: 39091408 PMCID: PMC11289210 DOI: 10.1007/s13205-024-04031-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/14/2024] [Indexed: 08/04/2024] Open
Abstract
Abiotic factors, including heat stress, significantly impact the growth and development of lentil across the globe. Although these stresses impact the plant's phenotypic, genotypic, metabolic, and yield development, predicting those traits in lentil is challenging. This study aimed to construct a machine learning-based yield prediction model for lentil using various yield attributes under two different sowing conditions. Twelve genotypes were planted in open-field conditions, and images were captured 45 days after sowing (DAS) and 60 DAS to make predictions for agro-morphological traits with the assessment for the influence of high-temperature stress on lentil growth. Greening techniques like Excess Green, Modified Excess Green (ME × G), and Color Index of Plant Extraction (CIVE) were used to extract 35 vegetative indices from the crop image. Random forest (RF) regression and artificial neural network (ANN) models were developed for both the normal-sown and late-sown lentils. The ME × G-CIVE method with Otsu's thresholding provided superior performance in image segmentation, while the RF model showed the highest level of model generalization. This study demonstrated that yield per plant and number of pods per plant were the most significant attributes for early prediction of lentil production in both conditions using the RF models. After harvesting, various yield parameters of the selected genotypes were measured, showing significant reductions in most traits for the late-sown plants. Heat-tolerant genotypes like RLG-05, Kota Masoor-1, and Kota Masoor-2 depicted decreased yield and harvest index (HI) reduction than the heat-sensitive HUL-57. These findings warrant further study to correlate the data with more stress-modulating attributes. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04031-5.
Collapse
Affiliation(s)
- Hena Gain
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721301 India
| | - Ruturaj Nivas Patil
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721301 India
| | - Konduri Malik
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721301 India
| | - Arpita Das
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
| | - Somsubhra Chakraborty
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721301 India
| | - Joydeep Banerjee
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721301 India
| |
Collapse
|
18
|
Ebrahimi P, Bayram I, Lante A, Decker EA. Acid-hydrolyzed phenolic extract of parsley (Petroselinum crispum L.) leaves inhibits lipid oxidation in soybean oil-in-water emulsions. Food Res Int 2024; 187:114452. [PMID: 38763687 DOI: 10.1016/j.foodres.2024.114452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
The antioxidant activity of the natural phenolic extracts is limited in particular food systems due to the existence of phenolic compounds in glycoside form. Acid hydrolysis post-treatment could be a tool to convert the glycosidic polyphenols in the extracts to aglycones. Therefore, this research investigated the effects of an acid hydrolysis post-treatment on the composition and antioxidant activity of parsley extracts obtained by an ultrasound-assisted extraction method to delay lipid oxidation in a real food system (i.e., soybean oil-in-water emulsion). Acid hydrolysis conditions were varied to maximize total phenolic content (TPC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. When extracts were exposed to 0.6 M HCl for 2 h at 80 ℃, TPC was 716.92 ± 24.43 µmol gallic acid equivalent (GAE)/L, and DPPH radical scavenging activity was 66.89 ± 1.63 %. Not only did acid hydrolysis increase the concentrations of individual polyphenols, but it also resulted in the release of new phenolics such as myricetin and gallic acid. The extract's metal chelating and ferric-reducing activity increased significantly after acid hydrolysis. In soybean oil-in-water emulsion containing a TPC of 400 µmol GAE/L, the acid-hydrolyzed extract had an 11-day lag phase for headspace hexanal compared to the 6-day lag phase of unhydrolyzed extract. The findings indicated that the conversion of glycosidic polyphenols to aglycones in phenolic extracts can help extend the shelf-life of emulsion-based foods.
Collapse
Affiliation(s)
- Peyman Ebrahimi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment-DAFNAE, University of Padova, Viale dell'Università, 16, 35020 Legnaro, Italy
| | - Ipek Bayram
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Anna Lante
- Department of Agronomy, Food, Natural Resources, Animals, and Environment-DAFNAE, University of Padova, Viale dell'Università, 16, 35020 Legnaro, Italy.
| | - Eric A Decker
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
19
|
Yildiz AY, Echegaray N, Öztekin S, Lorenzo JM. Quality and stability of frying oils and fried foods in ultrasound and microwave-assisted frying processes and hybrid technologies. Compr Rev Food Sci Food Saf 2024; 23:e13405. [PMID: 39030791 DOI: 10.1111/1541-4337.13405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
Frying is a popular cooking method that produces delicious and crispy foods but can also lead to oil degradation and the formation of health-detrimental compounds in the dishes. Chemical reactions such as oxidation, hydrolysis, and polymerization contribute to these changes. In this context, emerging technologies like ultrasound-assisted frying (USF) and microwave (MW)-assisted frying show promise in enhancing the quality and stability of frying oils and fried foods. This review examines the impact of these innovative technologies, delving into the principles of these processes, their influence on the chemical composition of oils, and their implications for the overall quality of fried food products with a focus on reducing oil degradation and enhancing the nutritional and sensory properties of the fried food. Additionally, the article initially addresses the various reactions occurring in oils during the frying process and their influencing factors. The advantages and challenges of USF and MW-assisted frying are also highlighted in comparison to traditional frying methods, demonstrating how these innovative techniques have the potential to improve the quality and stability of oils and fried foods.
Collapse
Affiliation(s)
| | - Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Sebahat Öztekin
- Department of Food Engineering, Faculty of Engineering, Bayburt University, Bayburt, Turkey
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
20
|
Mahmood Ur Rehman M, Liu J, Nijabat A, Alsudays IM, Saleh MA, Alamer KH, Attia H, Ziaf K, Zaman QU, Amjad M. Seed priming with potassium nitrate alleviates the high temperature stress by modulating growth and antioxidant potential in carrot seeds and seedlings. BMC PLANT BIOLOGY 2024; 24:606. [PMID: 38926658 PMCID: PMC11201870 DOI: 10.1186/s12870-024-05292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Early season carrot (Daucus carota) production is being practiced in Punjab, Pakistan to meet the market demand but high temperature hampers the seed germination and seedling establishment which cause marked yield reduction. Seed priming with potassium nitrate breaks the seed dormancy and improves the seed germination and seedling growth potential but effects vary among the species and ecological conditions. The mechanism of KNO3 priming in high temperature stress tolerance is poorly understood yet. Thus, present study aimed to evaluate high temperature stress tolerance potential of carrot seeds primed with potassium nitrate and impacts on growth, physiological, and antioxidant defense systems. Carrot seeds of a local cultivar (T-29) were primed with various concentration of KNO3 (T0: unprimed (negative control), T1: hydroprimed (positive control), T2: 50 mM, T3:100mM, T4: 150 mM, T5: 200 mM, T6: 250 mM and T7: 300 mM) for 12 h each in darkness at 20 ± 2℃. Seed priming with 50 mM of KNO3 significantly enhanced the seed germination (36%), seedling growth (28%) with maximum seedling vigor (55%) and also exhibited 16.75% more carrot root biomass under high temperature stress as compared to respective control. Moreover, enzymatic activities including peroxidase, catalase, superoxidase dismutase, total phenolic contents, total antioxidants contents and physiological responses of plants were also improved in response to seed priming under high temperature stress. By increasing the level of KNO3, seed germination, growth and root biomass were reduced. These findings suggest that seed priming with 50 mM of KNO3 can be an effective strategy to improve germination, growth and yield of carrot cultivar (T-29) under high temperature stress in early cropping. This study also proposes that KNO3 may induces the stress memory by heritable modulations in chromosomal structure and methylation and acetylation of histones that may upregulate the hormonal and antioxidant activities to enhance the stress tolerance in plants.
Collapse
Affiliation(s)
- Muhammad Mahmood Ur Rehman
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China.
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Jizhan Liu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Aneela Nijabat
- Department of Botany, University of Mianwali, Mianwali, 42200, Pakistan
| | - Ibtisam M Alsudays
- Department of Biology, College of Science, Qassim University, Burydah, 52571, Saudi Arabia
| | - Muneera A Saleh
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Khalid H Alamer
- Biological Sciences Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| | - Houneida Attia
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Khurram Ziaf
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Qamar Uz Zaman
- Department of Environmental Sciences, The University of Lahore, Lahore, 54590, Pakistan.
| | - Muhammad Amjad
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| |
Collapse
|
21
|
Nayak N, Bhujle RR, Nanje-Gowda N, Chakraborty S, Siliveru K, Subbiah J, Brennan C. Advances in the novel and green-assisted techniques for extraction of bioactive compounds from millets: A comprehensive review. Heliyon 2024; 10:e30921. [PMID: 38784533 PMCID: PMC11112340 DOI: 10.1016/j.heliyon.2024.e30921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Millets are rich in nutritional and bioactive compounds, including polyphenols and flavonoids, and have the potential to combat malnutrition and various diseases. However, extracting these bioactive compounds can be challenging, as conventional methods are energy-intensive and can lead to thermal degradation. Green-assisted techniques have emerged as promising methods for sustainable and efficient extraction. This review explores recent trends in employing green-assisted techniques for extracting bioactive compounds from millets, and potential applications in the food and pharmaceutical industries. The objective is to evaluate and comprehend the parameters involved in different extraction methods, including energy efficiency, extraction yield, and the preservation of compound quality. The potential synergies achieved by integrating multiple extraction methods, and optimizing extraction efficiency for millet applications are also discussed. Among several, Ultrasound and Microwave-assisted extraction stand out for their rapidity, although there is a need for further research in the context of minor millets. Enzyme-assisted extraction, with its low energy input and ability to handle complex matrices, holds significant potential. Pulsed electric field-assisted extraction, despite being a non-thermal approach, requires further optimization for millet-specific applications, are few highlights. The review emphasizes the importance of considering specific compound characteristics, extraction efficiency, purity requirements, and operational costs when selecting an ideal technique. Ongoing research aims to optimize novel extraction processes for millets and their byproducts, offering promising applications in the development of millet-based nutraceutical food products. Therefore, the current study benefits researchers and industries to advance extraction research and develop efficient, sustainable, and scalable techniques to extract bioactive compounds from millets.
Collapse
Affiliation(s)
- Nidhi Nayak
- Department of Food Technology, Jain Deemed-to-be University, Bangalore, Karnataka, India
| | - Rohan Rajendraji Bhujle
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, India
| | - N.A. Nanje-Gowda
- Department of Food Science, University of Arkansas Division of Agriculture, AR, USA
| | - Snehasis Chakraborty
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
- Department of Food Engineering & Technology, Institute of Chemical Technology, Mumbai, India
| | - Kaliramesh Siliveru
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
| | - Jeyamkondan Subbiah
- Department of Food Science, University of Arkansas Division of Agriculture, AR, USA
| | - Charles Brennan
- STEM College, Royal Melbourne Institute of Technology, Melbourne, Australia
| |
Collapse
|
22
|
Bellec L, Hervé MR, Mercier AS, Lenal PA, Faure S, Cortesero AM. A protocol for increased throughput phenotyping of plant resistance to the pollen beetle. PEST MANAGEMENT SCIENCE 2024; 80:2235-2240. [PMID: 36309935 DOI: 10.1002/ps.7266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Improving crop resistance to insect herbivores is a major research objective in breeding programs. Although genomic technologies have increased the speed at which large populations can be genotyped, breeding programs still suffer from phenotyping constraints. The pollen beetle (Brassicogethes aeneus) is a major pest of oilseed rape for which no resistant cultivar is available to date, but previous studies have highlighted the potential of white mustard as a source of resistance and introgression of this resistance appears to be a promising strategy. Here we present a phenotyping protocol allowing mid-throughput (i.e., increased throughput compared to current methods) acquisition of resistance data, which could then be used for genetic mapping of QTLs. RESULTS Contrasted white mustard genotypes were selected from an initial field screening and then evaluated for their resistance under controlled conditions using a standard phenotyping method on entire plants. We then upgraded this protocol for mid-throughput phenotyping, by testing two alternative methods. We found that phenotyping on detached buds did not provide the same resistance contrasts as observed with the standard protocol, in contrast to the phenotyping protocol with miniaturized plants. This protocol was then tested on a large panel composed of hundreds of plants. A significant variation in resistance among genotypes was observed, which validates the large-scale application of this new phenotyping protocol. CONCLUSION The combination of this mid-throughput phenotyping protocol and white mustard as a source of resistance against the pollen beetle offers a promising avenue for breeding programs aiming to improve oilseed rape resistance. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Laura Bellec
- IGEPP-UMR 1349, INRAE, Institut Agro, Univ Rennes 1, Rennes, France
- Innolea, 6 Chemin de Panedautes, Mondonville, France
| | - Maxime R Hervé
- IGEPP-UMR 1349, INRAE, Institut Agro, Univ Rennes 1, Rennes, France
| | | | | | | | | |
Collapse
|
23
|
Vidhyalakshmi R, Prabhasankar P, Muthukumar SP, Prathima C, Meera MS. The impact of addition of pearl millet starch-germ complex in white bread on nutritional, textural, structural, and glycaemic response: Single blinded randomized controlled trial in healthy and pre-diabetic participants. Food Res Int 2024; 183:114186. [PMID: 38760125 DOI: 10.1016/j.foodres.2024.114186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 05/19/2024]
Abstract
The rise of pre-diabetes at the global level has created a significant interest in developing low glycaemic index food products. The pearl millet is a cheaper source of starch and its germ contains significant amount of protein and fat. The complexing of pearl millet starch and germ by dry heat treatment (PMSGH) resulted an increase in the resistant starch content upto 45.09 % due to formation of amylose-glutelin-linoleic acid complex. The resulting pearl millet starch germ complex was incorporated into wheat bread at 20, 25, and 30 %. The PMSGH incorporated into bread at 30 % reduced the glycaemic index to 52.31. The PMSGH incorporated bread had significantly (p < 0.05)increased in the hardness with a reduction in springiness and cohesiveness. The structural attributes of the 30 % PMSGH incorporated bread revealed a significant (p < 0.05)increase in 1040/1020 cm-1 ratio and relative crystallinity. The consumption of functional bread incorporated with pearl millet starch germ complex reduced blood glucose levels and in vivo glycaemic index in healthy and pre-diabetic participants when compared to white bread. Hence, the study showed that the incorporation of pearl millet starch-germ complex into food products could be a potential new and healthier approach for improving dietary options in pre-diabetes care.
Collapse
Affiliation(s)
- R Vidhyalakshmi
- Department of Grain Science and Technology, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pichan Prabhasankar
- Department of Flour Milling, Baking, and Confectionery Technology, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S P Muthukumar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - C Prathima
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, Karnataka 570015, India
| | - M S Meera
- Department of Grain Science and Technology, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
24
|
Tariq A, Sardans J, Zeng F, Graciano C, Hughes AC, Farré-Armengol G, Peñuelas J. Impact of aridity rise and arid lands expansion on carbon-storing capacity, biodiversity loss, and ecosystem services. GLOBAL CHANGE BIOLOGY 2024; 30:e17292. [PMID: 38634556 DOI: 10.1111/gcb.17292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
Drylands, comprising semi-arid, arid, and hyperarid regions, cover approximately 41% of the Earth's land surface and have expanded considerably in recent decades. Even under more optimistic scenarios, such as limiting global temperature rise to 1.5°C by 2100, semi-arid lands may increase by up to 38%. This study provides an overview of the state-of-the-art regarding changing aridity in arid regions, with a specific focus on its effects on the accumulation and availability of carbon (C), nitrogen (N), and phosphorus (P) in plant-soil systems. Additionally, we summarized the impacts of rising aridity on biodiversity, service provisioning, and feedback effects on climate change across scales. The expansion of arid ecosystems is linked to a decline in C and nutrient stocks, plant community biomass and diversity, thereby diminishing the capacity for recovery and maintaining adequate water-use efficiency by plants and microbes. Prolonged drought led to a -3.3% reduction in soil organic carbon (SOC) content (based on 148 drought-manipulation studies), a -8.7% decrease in plant litter input, a -13.0% decline in absolute litter decomposition, and a -5.7% decrease in litter decomposition rate. Moreover, a substantial positive feedback loop with global warming exists, primarily due to increased albedo. The loss of critical ecosystem services, including food production capacity and water resources, poses a severe challenge to the inhabitants of these regions. Increased aridity reduces SOC, nutrient, and water content. Aridity expansion and intensification exacerbate socio-economic disparities between economically rich and least developed countries, with significant opportunities for improvement through substantial investments in infrastructure and technology. By 2100, half the world's landmass may become dryland, characterized by severe conditions marked by limited C, N, and P resources, water scarcity, and substantial loss of native species biodiversity. These conditions pose formidable challenges for maintaining essential services, impacting human well-being and raising complex global and regional socio-political challenges.
Collapse
Affiliation(s)
- Akash Tariq
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
- Global Ecology Unit, CREAF-CSIC-UAB, CSIC, Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Jordi Sardans
- Global Ecology Unit, CREAF-CSIC-UAB, CSIC, Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Corina Graciano
- Instituto de Fisiología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Alice C Hughes
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Gerard Farré-Armengol
- Global Ecology Unit, CREAF-CSIC-UAB, CSIC, Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Josep Peñuelas
- Global Ecology Unit, CREAF-CSIC-UAB, CSIC, Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
25
|
Bernád V, Al-Tamimi N, Langan P, Gillespie G, Dempsey T, Henchy J, Harty M, Ramsay L, Houston K, Macaulay M, Shaw PD, Raubach S, Mcdonnel KP, Russell J, Waugh R, Khodaeiaminjan M, Negrão S. Unlocking the genetic diversity and population structure of the newly introduced two-row spring European HerItage Barley collecTion (ExHIBiT). FRONTIERS IN PLANT SCIENCE 2024; 15:1268847. [PMID: 38571708 PMCID: PMC10987740 DOI: 10.3389/fpls.2024.1268847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
In the last century, breeding programs have traditionally favoured yield-related traits, grown under high-input conditions, resulting in a loss of genetic diversity and an increased susceptibility to stresses in crops. Thus, exploiting understudied genetic resources, that potentially harbour tolerance genes, is vital for sustainable agriculture. Northern European barley germplasm has been relatively understudied despite its key role within the malting industry. The European Heritage Barley collection (ExHIBiT) was assembled to explore the genetic diversity in European barley focusing on Northern European accessions and further address environmental pressures. ExHIBiT consists of 363 spring-barley accessions, focusing on two-row type. The collection consists of landraces (~14%), old cultivars (~18%), elite cultivars (~67%) and accessions with unknown breeding history (~1%), with 70% of the collection from Northern Europe. The population structure of the ExHIBiT collection was subdivided into three main clusters primarily based on the accession's year of release using 26,585 informative SNPs based on 50k iSelect single nucleotide polymorphism (SNP) array data. Power analysis established a representative core collection of 230 genotypically and phenotypically diverse accessions. The effectiveness of this core collection for conducting statistical and association analysis was explored by undertaking genome-wide association studies (GWAS) using 24,876 SNPs for nine phenotypic traits, four of which were associated with SNPs. Genomic regions overlapping with previously characterised flowering genes (HvZTLb) were identified, demonstrating the utility of the ExHIBiT core collection for locating genetic regions that determine important traits. Overall, the ExHIBiT core collection represents the high level of untapped diversity within Northern European barley, providing a powerful resource for researchers and breeders to address future climate scenarios.
Collapse
Affiliation(s)
- Villő Bernád
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Nadia Al-Tamimi
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Patrick Langan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Gary Gillespie
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Timothy Dempsey
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Joey Henchy
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Mary Harty
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Luke Ramsay
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Kelly Houston
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Malcolm Macaulay
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Paul D. Shaw
- Department of Information and Computational Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Sebastian Raubach
- Department of Information and Computational Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Kevin P. Mcdonnel
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- School of Biosystems Engineering, University College Dublin, Dublin, Ireland
| | - Joanne Russell
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- Division of Plant Sciences, University of Dundee at The James Hutton Institute, Dundee, United Kingdom
| | | | - Sónia Negrão
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
26
|
Beltrão-Nunes AP, Pires M, Roy R, Azzouz A. Surface Basicity and Hydrophilic Character of Coal Ash-Derived Zeolite NaP1 Modified by Fatty Acids. Molecules 2024; 29:768. [PMID: 38398520 PMCID: PMC10891618 DOI: 10.3390/molecules29040768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Zeolite NaP1 was found to display the highest affinity for CO2 in preliminary modifications of coal fly ash-derived zeolites (4A, Y, NaP1 and X) by four amines (1,3-diaminopropane, N,N,N',N'-tetramethylethylenediamine, Tris(2-aminoethyl)amine and ethylenediamine). In the second step, different fatty acid loaded NaP1 samples were prepared using palmitic, oleic and lauric acids. CO2 and H2O thermal programmed desorption (TPD) revealed changes in intrinsic basicity and hydrophilic character, expressed in terms of CO2 and H2O retention capacity (CRC and WRC, respectively). Infrared spectroscopy (IR), N2 adsorption-desorption isotherms and scanning electron microscopy allowed for correlating these changes with the type of interactions between the incorporated species and the zeolite surface. The highest CRC values and the lowest CO2 desorption temperatures were registered for NaP1 with the optimum content in palmitic acid (PA) and were explained in terms of the shading effect of surface acidity by the rise of basic Na+-palmitate salt upon cation exchange. The amine/fatty acid combination was found to paradoxically mitigate this beneficial effect of PA incorporation. These results are of great interest because they demonstrate that fatty acid incorporation is an interesting strategy for reversible CO2 capture.
Collapse
Affiliation(s)
- Ana-Paola Beltrão-Nunes
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada; (A.-P.B.-N.); (R.R.)
- Graduation Program on Engineering and Technology of Materials, School of Technology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Marçal Pires
- Graduation Program on Engineering and Technology of Materials, School of Technology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - René Roy
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada; (A.-P.B.-N.); (R.R.)
| | - Abdelkrim Azzouz
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada; (A.-P.B.-N.); (R.R.)
- Station Expérimentale des Procédés Pilotes en Environnement, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada
| |
Collapse
|
27
|
Parasher M, Pandey DK, Manhas RK. Traditionally used anti-diabetic plants in Kathua district of Union Territory of Jammu and Kashmir, India. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117087. [PMID: 37683931 DOI: 10.1016/j.jep.2023.117087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Affiliation(s)
- Madhvi Parasher
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India; Department of Botany, Govt. Degree College, Marh, 181206, Jammu, JKUT, India.
| | - Devendra Kumar Pandey
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - R K Manhas
- Department of Botany, Govt. Degree College, Basohli, 184201, JKUT, India.
| |
Collapse
|
28
|
Singh S, Sharma H, Ramankutty R, Ramaswamy S. Review on Nutritional Potential of Underutilized Millets as a Miracle Grain. Curr Pharm Biotechnol 2024; 25:1082-1098. [PMID: 37861015 DOI: 10.2174/0113892010248721230921093208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 10/21/2023]
Abstract
The current situation, which includes changes in eating habits, an increasing population, and the unrestricted use of natural resources, has resulted in a lack of resources that could be used to provide nourishing food to everyone. Natural plant resources are quickly being depleted, so it is necessary to consider new alternatives. In addition to the staple grains of rice and wheat, many other crops are being consumed that need to be utilized to their full potential and have the potential to replace the staple crops. Millets are one of the most important underutilized crops that have the potential to be used as a nutricereal. Millets have a high nutritional value, do not produce acids, do not contain gluten, and can contribute to a healthy diet. Due to a lack of awareness regarding the nutritional value of millets, their consumption is still restricted to the population that adheres to conventional diets and is economically disadvantaged even though millets contain a significant amount of nutrients. Millets are becoming increasingly unpopular due to a lack of processing technologies, food subsidies, and the inconvenience of preparing food with millets. Millets are a Nutricereal rich in carbohydrates, dietary fibers, energy, essential fatty acids, proteins, vitamin B, and minerals such as calcium, iron, magnesium, potassium, and zinc. These nutrients help to protect against post-translational diseases such as diabetes, cancer, cardiovascular disease, and celiac disease, among others. Millets are beneficial for controlling blood pressure, blood sugar level, and thyroid function; however, despite these functional properties, millets consumption has declined. Utilizing millets and other staple food crops to develop alternative food sources has become a new area of focus for businesses in the food industry. In addition, millet consumption can help foster immunity and health, which is essential in strengthening our fight against malnutrition in children and adolescents. In this article, the authors examine the potential of millets in terms of their nutricereal qualities.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University Mathura, U.P: 281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications, GLA University Mathura, U.P: 281406, India
| | | | - Sarada Ramaswamy
- Datha Ayuryoga International Health Institute, D.O.O, Podgorica, Montenegro
| |
Collapse
|
29
|
Ramzan M, Jamshaid T, Ali L, Dawar K, Saba R, Jamshaid U, Fahad S, Salmen SH, Ansari MJ, Danish S, Hareem M, Saif H, Shahzad K. Modulation of sunflower growth via regulation of antioxidants, oil content and gas exchange by arbuscular mycorrhizal fungi and quantum dot biochar under chromium stress. BMC PLANT BIOLOGY 2023; 23:629. [PMID: 38062351 PMCID: PMC10704615 DOI: 10.1186/s12870-023-04637-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
Chromium (Cr) toxicity significantly threatens sunflower growth and productivity by interfering with enzymatic activity and generating reactive oxygen species (ROS). Zinc quantum dot biochar (ZQDB) and arbuscular mycorrhizal fungi (AMF) have become popular to resolve this issue. AMF can facilitate root growth, while biochar tends to minimize Cr mobility in soil. The current study aimed to explore AMF and ZQDB combined effects on sunflower plants in response to Cr toxicity. Four treatments were applied, i.e. NoAMF + NoZQDB, AMF + 0.40%ZQDB, AMF + 0.80%ZQDB, and AMF + 1.20%ZQDB, under different stress levels of Cr, i.e. no Cr (control), 150 and 200 mg Cr/kg soil. Results showed that AMF + 1.20%ZQDB was the treatment that caused the greatest improvement in plant height, stem diameter, head diameter, number of leaves per plant, achenes per head, 1000 achenes weight, achene yield, biological yield, transpiration rate, stomatal conductance, chlorophyll content and oleic acid, relative to the condition NoAMF + No ZQDB at 200 mg Cr/kg soil. A significant decline in peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) while improvement in ascorbate peroxidase (APx), oil content, and protein content further supported the effectiveness of AMF + 1.20%ZQDB against Cr toxicity. Our results suggest that the treatment AMF + 1.20%ZQDB can efficiently alleviate Cr stress in sunflowers.
Collapse
Affiliation(s)
- Musarrat Ramzan
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Talha Jamshaid
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Liaqat Ali
- Cholistan institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Khadim Dawar
- Department of Soil and Environmental Science, the University of Agriculture Peshawar, Peshawar, Pakistan
| | - Rabia Saba
- Department of Biological Science, University of Thal Bhakkar, Bhakkar, Pakistan
| | - Usama Jamshaid
- Faculty of Pharmacy, University Des Strasbourg, Strasbourg, France
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan.
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (MJP Rohilkhand University Bareilly), Moradabad, 244001, India
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Misbah Hareem
- Department of Environmental Sciences, The Woman University Multan, Multan, Punjab, Pakistan
| | - Hina Saif
- Department of Environmental Sciences, The Woman University Multan, Multan, Punjab, Pakistan
| | - Khurrum Shahzad
- Department of Soil Science, Water and Marine Sciences, Lasbela university of Agriculture, Uthal, Balochistan, Pakistan
| |
Collapse
|
30
|
Jabbour Y, Hakim MS, Al-Yossef A, Saleh MM, Shaaban ASAD, Kabbaj H, Zaïm M, Kleinerman C, Bassi FM. Genomic regions involved in the control of 1,000-kernel weight in wild relative-derived populations of durum wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1297131. [PMID: 38098797 PMCID: PMC10720367 DOI: 10.3389/fpls.2023.1297131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023]
Abstract
Terminal drought is one of the most common and devastating climatic stress factors affecting durum wheat (Triticum durum Desf.) production worldwide. The wild relatives of this crop are deemed a vast potential source of useful alleles to adapt to this stress. A nested association mapping (NAM) panel was generated using as a recurrent parent the Moroccan variety 'Nachit' derived from Triticum dicoccoides and known for its large grain size. This was recombined to three top-performing lines derived from T. dicoccoides, T. araraticum, and Aegilops speltoides, for a total of 426 inbred progenies. This NAM was evaluated across eight environments (Syria, Lebanon, and Morocco) experiencing different degrees of terminal moisture stress over two crop seasons. Our results showed that drought stress caused on average 41% loss in yield and that 1,000-kernel weight (TKW) was the most important trait for adaptation to it. Genotyping with the 25K TraitGenetics array resulted in a consensus map of 1,678 polymorphic SNPs, spanning 1,723 cM aligned to the reference 'Svevo' genome assembly. Kinship distinguished the progenies in three clades matching the parent of origin. A total of 18 stable quantitative trait loci (QTLs) were identified as controlling various traits but independent from flowering time. The most significant genomic regions were named Q.ICD.NAM-04, Q.ICD.NAM-14, and Q.ICD.NAM-16. Allelic investigation in a second germplasm panel confirmed that carrying the positive allele at all three loci produced an average TKW advantage of 25.6% when field-tested under drought conditions. The underlying SNPs were converted to Kompetitive Allele-Specific PCR (KASP) markers and successfully validated in a third germplasm set, where they explained up to 19% of phenotypic variation for TKW under moisture stress. These findings confirm the identification of critical loci for drought adaptation derived from wild relatives that can now be readily exploited via molecular breeding.
Collapse
Affiliation(s)
- Yaman Jabbour
- Field Crop Department, Faculty of Agriculture Engineering, Aleppo University, Aleppo, Syria
- General Commission for Scientific Agriculture Research (GCSAR), Field Crop Department, Aleppo, Syria
| | - Mohammad Shafik Hakim
- Field Crop Department, Faculty of Agriculture Engineering, Aleppo University, Aleppo, Syria
| | - Abdallah Al-Yossef
- General Commission for Scientific Agriculture Research (GCSAR), Field Crop Department, Aleppo, Syria
| | - Maysoun M. Saleh
- General Commission for Scientific Agriculture Research (GCSAR), Genetic Resources Department, Damascus, Syria
| | - Ahmad Shams Al-Dien Shaaban
- Biotechnology Engineering Department, Faculty of Technological Engineering, Aleppo University, Aleppo, Syria
| | - Hafssa Kabbaj
- International Center for Agricultural Research in the Dry Areas, Biodiversity and Crop Improvement, Rabat, Morocco
| | - Meryem Zaïm
- International Center for Agricultural Research in the Dry Areas, Biodiversity and Crop Improvement, Rabat, Morocco
| | - Charles Kleinerman
- International Center for Agricultural Research in the Dry Areas, Biodiversity and Crop Improvement, Rabat, Morocco
| | - Filippo M. Bassi
- International Center for Agricultural Research in the Dry Areas, Biodiversity and Crop Improvement, Rabat, Morocco
| |
Collapse
|
31
|
Leopold J, Prabutzki P, Engel KM, Schiller J. From Oxidized Fatty Acids to Dimeric Species: In Vivo Relevance, Generation and Methods of Analysis. Molecules 2023; 28:7850. [PMID: 38067577 PMCID: PMC10708296 DOI: 10.3390/molecules28237850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
The occurrence of free fatty acids (FFAs) and the generation of reactive oxygen species (ROS) such as hydroxyl radicals (HO●) or hypochlorous acid (HOCl) is characteristic of inflammatory diseases, for instance, rheumatoid arthritis. Unsaturated fatty acids react with ROS yielding a variety of important products such as peroxides and chlorohydrins as primary and chain-shortened compounds (e.g., aldehydes and carboxylic acids) as secondary products. These modified fatty acids are either released from phospholipids by phospholipases or oxidatively modified subsequent to their release. There is increasing evidence that oligomeric products are also generated upon these processes. Fatty acid esters of hydroxy fatty acids (FAHFAs) are considered as very important products, but chlorinated compounds may be converted into dimeric and (with smaller yields) oligomeric products, as well. Our review is structured as follows: first, the different types of FFA oligomers known so far and the mechanisms of their putative generation are explained. Industrially relevant products as well as compounds generated from the frying of vegetable oils are also discussed. Second, the different opinions on whether dimeric fatty acids are considered as "friends" or "foes" are discussed.
Collapse
Affiliation(s)
- Jenny Leopold
- Institute for Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany; (P.P.); (K.M.E.); (J.S.)
| | | | | | | |
Collapse
|
32
|
Pérez L, Pincay R, Salazar D, Flores N, Escolastico C. Evaluation of the Quality and Lipid Content of Artisan Sausages Produced in Tungurahua, Ecuador. Foods 2023; 12:4288. [PMID: 38231746 DOI: 10.3390/foods12234288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
The consumption of sausage worldwide increases every year; because of this increase, artisanal products have appeared and are intended to be perceived as natural and healthy. Obesity and cardiovascular diseases associated with consuming meat and meat derivatives have been estimated to be the leading cause of death in several countries. This study aimed to evaluate the nutritional quality, lipid content, and presence of saturated and unsaturated fatty acids, contributing to demonstrating the real nutritional value of artisanal sausages produced in Ecuador. Sausages from 10 factories in Ambato, Pelileo, and Píllaro, located in Tungurahua, Ecuador, were evaluated. The pH and acidity, color, proximal, sensory, microbiological, and lipid content were assessed. The pH and acidity showed a slight variation in all of the samples. Proximal analysis (moisture, protein, fat, and ash) established that the artisan sausages did not differ from the type of sausages reported in the literature. Microbiological analyses showed a good microbial quality, and there was no presence of Staphylococcus aureus, Enterobacteria, molds, or yeasts. The sensory attributes were similar for all of the sausages; the panelists did not notice any strange taste or odor. The lipid content showed that the artisanal sausages contained the highest percentage of palmitic, stearic, elaidic, and linolelaidic fatty acids. Unsaturated fatty acids were the most prevalent in all of the sausages collected from different locations. The results showed that the nutritional, microbiological, and sensory quality of the artisanal sausages did not show any parameter that would allow them to be classified as different or as having a better nutritional value.
Collapse
Affiliation(s)
- Lander Pérez
- International School of Doctorate, Sciences Doctorate, Universidad Nacional de Educación a Distancia (UNED), E-28040 Madrid, Spain
- G+ Biofood and Engineering Research Group, Food and Biotechnology Faculty, Technical University of Ambato (UTA), Av. Los Chasquis y Río Payamino, Ambato 180206, Ecuador
| | - Rosa Pincay
- G+ Biofood and Engineering Research Group, Food and Biotechnology Faculty, Technical University of Ambato (UTA), Av. Los Chasquis y Río Payamino, Ambato 180206, Ecuador
| | - Diego Salazar
- G+ Biofood and Engineering Research Group, Food and Biotechnology Faculty, Technical University of Ambato (UTA), Av. Los Chasquis y Río Payamino, Ambato 180206, Ecuador
| | - Nelly Flores
- Research and Development Directorate, Food and Biotechnology Faculty, Technical University of Ambato (UTA), Av. Los Chasquis y Río Payamino, Ambato 180206, Ecuador
| | - Consuelo Escolastico
- International School of Doctorate, Sciences Doctorate, Universidad Nacional de Educación a Distancia (UNED), E-28040 Madrid, Spain
| |
Collapse
|
33
|
Wan J, Shahid MS, Yuan J. The Comparative Effects of Supplementing Protease Combined with Carbohydrase Enzymes on the Performance and Egg n-3 Deposition of Laying Hens Fed with Corn-Flaxseed or Wheat-Flaxseed Diets. Animals (Basel) 2023; 13:3510. [PMID: 38003128 PMCID: PMC10668754 DOI: 10.3390/ani13223510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Flaxseed contains huge quantities of anti-nutritional factors (ANFs), which reduce the performance of livestock. Three different protease and multi-carbohydrase enzymes were included in wheat-flaxseed diets (WFD) and corn-flaxseed diets (CFD) to compare their effects on performance, egg n-3 deposition, and fatty acid transporter genes in laying hens. A total of 540, twenty-week-old, Nongda-3 laying hens (DW brown × Hy-line white) were randomly assigned to six dietary groups, including 10% WFD or 10% CFD plus (i) supplemental enzyme A (alkaline protease 40,000 and neutral protease 10,000 (U/g)), (ii) enzyme B (alkaline protease 40,000, neutral protease 10,000, and cellulase 4000 (U/g)), or iii) enzyme C (neutral protease 10,000, xylanase 35,000, β-mannanase 1500, β-glucanase 2000, cellulose 500, amylase 100, and pectinase 10,000 (U/g)). An interaction (p < 0.05) was found for egg mass, hen day of egg production, and feed conversion ratio on the 9-10th week of the experiment. The WFD with enzyme B was associated with the highest egg weight in the 9-10th week. The deposition of total n-3 was superior with WFD (468.22 mg/egg) compared to CFD (397.90 mg/egg), while addition of enzyme C (464.90 mg/egg) resulted in the deposition of more total n-3 compared to enzymes A and B (411.89 and 422.42 mg/egg). The WFD and enzyme C significantly (p < 0.001) enhanced docosahexaenoic acid (DHA) and reduced the n-6:n-3 ratio in egg yolk compared to the CFD. The hepatic mRNA expression of liver fatty acid binding protein (L-FABP) (p = 0.006), fatty acid desaturase 1 (FADS-1) (p < 0.001), elongase-2 (ELOV-2) (p < 0.001), fatty acid transport protein-1 (FATP1) (p < 0.001), and the intestinal mRNA expression of FATP and FABP genes were increased with WFD compared to CFD. In conclusion, WFD with enzyme C is favorable for optimal performance, results in the deposition of more n-3 and DHA, and increases the expression of fatty acid transporter genes, which helps in n-3 transport.
Collapse
Affiliation(s)
- Jinyi Wan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Muhammad Suhaib Shahid
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
34
|
Vurro F, Croci M, Impollonia G, Marchetti E, Gracia-Romero A, Bettelli M, Araus JL, Amaducci S, Janni M. Field Plant Monitoring from Macro to Micro Scale: Feasibility and Validation of Combined Field Monitoring Approaches from Remote to in Vivo to Cope with Drought Stress in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:3851. [PMID: 38005747 PMCID: PMC10674827 DOI: 10.3390/plants12223851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023]
Abstract
Monitoring plant growth and development during cultivation to optimize resource use efficiency is crucial to achieve an increased sustainability of agriculture systems and ensure food security. In this study, we compared field monitoring approaches from the macro to micro scale with the aim of developing novel in vivo tools for field phenotyping and advancing the efficiency of drought stress detection at the field level. To this end, we tested different methodologies in the monitoring of tomato growth under different water regimes: (i) micro-scale (inserted in the plant stem) real-time monitoring with an organic electrochemical transistor (OECT)-based sensor, namely a bioristor, that enables continuous monitoring of the plant; (ii) medium-scale (<1 m from the canopy) monitoring through red-green-blue (RGB) low-cost imaging; (iii) macro-scale multispectral and thermal monitoring using an unmanned aerial vehicle (UAV). High correlations between aerial and proximal remote sensing were found with chlorophyll-related indices, although at specific time points (NDVI and NDRE with GGA and SPAD). The ion concentration and allocation monitored by the index R of the bioristor during the drought defense response were highly correlated with the water use indices (Crop Water Stress Index (CSWI), relative water content (RWC), vapor pressure deficit (VPD)). A high negative correlation was observed with the CWSI and, in turn, with the RWC. Although proximal remote sensing measurements correlated well with water stress indices, vegetation indices provide information about the crop's status at a specific moment. Meanwhile, the bioristor continuously monitors the ion movements and the correlated water use during plant growth and development, making this tool a promising device for field monitoring.
Collapse
Affiliation(s)
- Filippo Vurro
- Istituto dei Materiali per l’Elettronica e il Magnetismo (IMEM-CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy; (F.V.); (M.B.)
| | - Michele Croci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (M.C.); (S.A.)
| | - Giorgio Impollonia
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (M.C.); (S.A.)
| | - Edoardo Marchetti
- Istituto dei Materiali per l’Elettronica e il Magnetismo (IMEM-CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy; (F.V.); (M.B.)
| | - Adrian Gracia-Romero
- Integrative Crop Ecophysiology Group, Agrotecnio—Center for Research in Agrotechnology, Plant Physiology Section, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (A.G.-R.); (J.L.A.)
- Field Crops Program, Institute for Food and Agricultural Research and Technology (IRTA), 251981 Lleida, Spain
| | - Manuele Bettelli
- Istituto dei Materiali per l’Elettronica e il Magnetismo (IMEM-CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy; (F.V.); (M.B.)
| | - José Luis Araus
- Integrative Crop Ecophysiology Group, Agrotecnio—Center for Research in Agrotechnology, Plant Physiology Section, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (A.G.-R.); (J.L.A.)
| | - Stefano Amaducci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (M.C.); (S.A.)
| | - Michela Janni
- Istituto dei Materiali per l’Elettronica e il Magnetismo (IMEM-CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy; (F.V.); (M.B.)
| |
Collapse
|
35
|
Esposito S, Vitale P, Taranto F, Saia S, Pecorella I, D'Agostino N, Rodriguez M, Natoli V, De Vita P. Simultaneous improvement of grain yield and grain protein concentration in durum wheat by using association tests and weighted GBLUP. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:242. [PMID: 37947927 DOI: 10.1007/s00122-023-04487-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
KEY MESSAGE Simultaneous improvement for GY and GPC by using GWAS and GBLUP suggested a significant application in durum wheat breeding. Despite the importance of grain protein concentration (GPC) in determining wheat quality, its negative correlation with grain yield (GY) is still one of the major challenges for breeders. Here, a durum wheat panel of 200 genotypes was evaluated for GY, GPC, and their derived indices (GPD and GYD), under eight different agronomic conditions. The plant material was genotyped with the Illumina 25 k iSelect array, and a genome-wide association study was performed. Two statistical models revealed dozens of marker-trait associations (MTAs), each explaining up to 30%. phenotypic variance. Two markers on chromosomes 2A and 6B were consistently identified by both models and were found to be significantly associated with GY and GPC. MTAs identified for phenological traits co-mapped to well-known genes (i.e., Ppd-1, Vrn-1). The significance values (p-values) that measure the strength of the association of each single nucleotide polymorphism marker with the target traits were used to perform genomic prediction by using a weighted genomic best linear unbiased prediction model. The trained models were ultimately used to predict the agronomic performances of an independent durum wheat panel, confirming the utility of genomic prediction, although environmental conditions and genetic backgrounds may still be a challenge to overcome. The results generated through our study confirmed the utility of GPD and GYD to mitigate the inverse GY and GPC relationship in wheat, provided novel markers for marker-assisted selection and opened new ways to develop cultivars through genomic prediction approaches.
Collapse
Affiliation(s)
- Salvatore Esposito
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, SS 673 Meters 25200, 71122, Foggia, Italy
| | - Paolo Vitale
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, SS 673 Meters 25200, 71122, Foggia, Italy
- Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Francesca Taranto
- Institute of Biosciences and Bioresources (CNR-IBBR), Via Amendola 165/A, 70126, Bari, Italy
| | - Sergio Saia
- Department of Veterinary Sciences, University of Pisa, 56129, Pisa, Italy
| | - Ivano Pecorella
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, SS 673 Meters 25200, 71122, Foggia, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Monica Rodriguez
- Department of Agriculture, University of Sassari, Viale Italia, 39, 07100, Sassari, Italy
| | - Vincenzo Natoli
- Genetic Services SRL, Contrada Catenaccio, snc, 71026, Deliceto, FG, Italy
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, SS 673 Meters 25200, 71122, Foggia, Italy.
| |
Collapse
|
36
|
Plaha NS, Kaushik N, Awasthi S, Singh M, Kaur V, Langyan S, Kumar A, Kalia S. Comparison of nutritional quality of fourteen wild Linum species based on fatty acid composition, lipid health indices, and chemometric approaches unravelling their nutraceutical potential. Heliyon 2023; 9:e21192. [PMID: 37928019 PMCID: PMC10623282 DOI: 10.1016/j.heliyon.2023.e21192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023] Open
Abstract
Fatty acid profiles of 14 Linum species was determined by GC-MS analysis to study the nutritional quality of Linum species based on fatty acid composition, lipid health indices, and chemometric approaches. L. lewisii and L. marginale found to have the highest content of ALA i.e., 65.38 % and 62.79 %, respectively, L. tenuifolium recorded the highest linoleic acid content (69.69 %), while, L. catharticum recorded highest oleic acid (27.03 %). Health indices viz. polyunsaturated fatty acids/saturated fatty acids ratio, n-6/n-3 fatty acids ratio, atherogenicity, thrombogenicity, oxidability, oxidative stability, hypocholesterolemic/hypercholesterolemic fatty acids, and peroxidisability calculated based on the fatty acid composition revealed that all the linseed species except L. aristatum, L. tenuifolium and L. hudsoniodes have healthy fatty acid composition. L. lewisii clearly emerges as a promising species followed by L. bienne with great values across multiple indices, making them as a potential candidate for dietary or nutritional interests. The lipid profile of Linum species could be well distinguished by two principal components by Principal Component Analysis (PCA).
Collapse
Affiliation(s)
- Navdeep Singh Plaha
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, UP, India
| | - Nutan Kaushik
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, UP, India
| | - Sumegha Awasthi
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, UP, India
| | - Mamta Singh
- Indian Council of Agricultural Research- National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Vikender Kaur
- Indian Council of Agricultural Research- National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Sapna Langyan
- Indian Council of Agricultural Research- National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Ashok Kumar
- Indian Council of Agricultural Research- National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Sanjay Kalia
- Department of Biotechnology, Government of India, New Delhi, India
| |
Collapse
|
37
|
Yadav SPS, Adhikari R, Paudel P, Shah B, Pokhrel S, Puri S, Adhikari R, Bhujel S. Effect of different chemical priming agents on physiological and morphological characteristics of rice ( Oryza sativa L.). Heliyon 2023; 9:e22389. [PMID: 38045128 PMCID: PMC10689947 DOI: 10.1016/j.heliyon.2023.e22389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
The research was conducted following a Completely Randomized Design (CRD) to investigate the effects of seed priming using various chemical treatments on the germination and growth parameters of two rice cultivars, BRRI Dhan-66 and IR 80991-B-330-U-1. Ten different priming agents, including H3BO3, CaCO3, CuSO4, DAP, FeCl2, MoP, PEG (5 %), PEG (10 %), Urea, and ZnSO4, were applied to treat the seeds, each treatment being replicated three times. A control group underwent hydro-priming. The seeds were soaked in the treatments for 24 h. After the priming treatments, the seeds were subjected to a redrying process at a temperature of 26 ± 2 °C until they regained their original weight before being transplanted onto blotting paper. Germination parameters such as germination percentage, germination speed, germination energy, and vigor index were recorded for seven consecutive days. Growth parameters including root length, shoot length, fresh seedling weight, and dry seedling weight were measured at 10, 20, and 30 days after sowing. The results indicate significant variations among the treatments for germination parameters (p ≤ 0.001). Similarly, significant variations were observed in growth parameters, including shoot length, fresh weight, and dry weight (p ≤ 0.001). Among the rice varieties, BRRI Dhan-66 exhibited better results for germination percentage (81.58 %), germination speed (62.78 %), germination energy (52.06 %), vigor index (1312), fresh weight (0.807g), and dry weight of seedlings (0.053g). In contrast, the FeCl2 treatment showed the best results, inducing respective increases of 25.19 %, 93.35 %, 94.95 %, and 29.07 % for germination percentage, speed, energy, and vigor index compared to the control, respectively. For growth parameters, the DAP and CuSO4 treatments demonstrated better results. Our findings highlight that improved germination of primed rice seedlings is associated with germination energy, speed, vigor index, and the fresh weight of the seedlings. Furthermore, Pearson's correlation coefficient revealed there is significant positive correlation between germination percentage, speed, energy and vigor index but the strongest correlation exists between germination speed and germination energy (R = 0.94***) followed by germination percentage and vigor index (R = 0.92***). Based on our findings, we propose that seed priming significantly enhances rice seedlings' germination and growth parameters. BRRI Dhan-66, along with seed treatment using FeCl2, can be effectively employed to achieve improved germination and growth in rice cultivation.
Collapse
Affiliation(s)
- Shubh Pravat Singh Yadav
- Faculty of Science and Technology, G. P. Koirala College of Agriculture and Research Center (GPCAR), Purbanchal University, Gothgaun, Morang, Nepal
| | - Riya Adhikari
- Faculty of Science and Technology, G. P. Koirala College of Agriculture and Research Center (GPCAR), Purbanchal University, Gothgaun, Morang, Nepal
| | - Prava Paudel
- Faculty of Science and Technology, G. P. Koirala College of Agriculture and Research Center (GPCAR), Purbanchal University, Gothgaun, Morang, Nepal
| | - Bibek Shah
- Faculty of Science and Technology, G. P. Koirala College of Agriculture and Research Center (GPCAR), Purbanchal University, Gothgaun, Morang, Nepal
| | - Shobha Pokhrel
- Department of Agriculture, Institute of Agriculture and Animal Sciences, Tribhuvan University, Paklihawa, Rupandehi, Nepal
| | - Suraj Puri
- Faculty of Science and Technology, G. P. Koirala College of Agriculture and Research Center (GPCAR), Purbanchal University, Gothgaun, Morang, Nepal
| | - Robin Adhikari
- Faculty of Science and Technology, G. P. Koirala College of Agriculture and Research Center (GPCAR), Purbanchal University, Gothgaun, Morang, Nepal
| | - Sangita Bhujel
- Department of Plant Breeding, G. P. Koirala College of Agriculture and Research Center (GPCAR), Purbanchal University, Gothgaun, Morang, Nepal
| |
Collapse
|
38
|
Fang J, Shi G, Wei S, Ma J, Zhang X, Wang J, Chen L, Liu Y, Zhao X, Lu Z. Drought Sensitivity of Spring Wheat Cultivars Shapes Rhizosphere Microbial Community Patterns in Response to Drought. PLANTS (BASEL, SWITZERLAND) 2023; 12:3650. [PMID: 37896113 PMCID: PMC10609721 DOI: 10.3390/plants12203650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Drought is the most important natural disaster affecting crop growth and development. Crop rhizosphere microorganisms can affect crop growth and development, enhance the effective utilization of nutrients, and resist adversity and hazards. In this paper, six spring wheat varieties were used as research material in the dry farming area of the western foot of the Greater Khingan Mountains, and two kinds of water control treatments were carried out: dry shed rain prevention (DT) and regulated water replenishment (CK). Phenotypic traits, including physiological and biochemical indices, drought resistance gene expression, soil enzyme activity, soil nutrient content, and the responses of potential functional bacteria and fungi under drought stress, were systematically analyzed. The results showed that compared with the control (CK), the leaf wilting, drooping, and yellowing of six spring wheat varieties were enhanced under drought (DT) treatment. The plant height, fresh weight (FW), dry weight (DW), net photosynthetic rate (Pn) and stomatal conductance (Gs), soil total nitrogen (TN), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), microbial biomass phosphorus (MBP), organic carbon (SOC), and soil alkaline phosphatase (S-ALP) contents were significantly decreased, among which, FW, Gs and MBC decreased by more than 7.84%, 17.43% and 11.31%, respectively. By contrast, the soil total phosphorus (TP), total potassium (TK), and soil catalase (S-CAT) contents were significantly increased (p < 0.05). TaWdreb2 and TaBADHb genes were highly expressed in T.D40, T.L36, and T.L33 and were expressed at low levels in T.N2, T.B12, and T.F5. Among them, the relative expression of the TaWdreb2 gene in T.L36 was significantly increased by 2.683 times compared with CK. Soil TN and TP are the most sensitive to drought stress and can be used as the characteristic values of drought stress. Based on this, a drought-tolerant variety (T.L36) and a drought-sensitive variety (T.B12) were selected to further analyze the changes in rhizosphere microorganisms. Drought treatment and cultivar differences significantly affected the composition of the rhizosphere microbial community. Drought caused a decrease in the complexity of the rhizosphere microbial network, and the structure of bacteria was more complex than that of fungi. The Shannon index and network modular number of bacteria in these varieties (T.L36) increased, with rich small-world network properties. Actinobacteria, Chloroflexi, Firmicutes, Basidiomycota, and Ascomycota were the dominant bacteria under drought treatment. The beneficial bacteria Bacillus, Penicillium, and Blastococcus were enriched in the rhizosphere of T.L36. Brevibacillus and Glycomyce were enriched in the rhizosphere of T.B12. In general, drought can inhibit the growth and development of spring wheat, and spring wheat can resist drought hazards by regulating the expression of drought-related genes, regulating physiological metabolites, and enriching beneficial microorganisms.
Collapse
Affiliation(s)
- Jing Fang
- School of Life Science, Inner Mongolia University, Hohhot 010020, China; (J.F.); (G.S.); (S.W.); (J.M.); (Y.L.)
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (X.Z.); (J.W.); (L.C.)
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot 010031, China
| | - Gongfu Shi
- School of Life Science, Inner Mongolia University, Hohhot 010020, China; (J.F.); (G.S.); (S.W.); (J.M.); (Y.L.)
| | - Shuli Wei
- School of Life Science, Inner Mongolia University, Hohhot 010020, China; (J.F.); (G.S.); (S.W.); (J.M.); (Y.L.)
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (X.Z.); (J.W.); (L.C.)
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot 010031, China
| | - Jie Ma
- School of Life Science, Inner Mongolia University, Hohhot 010020, China; (J.F.); (G.S.); (S.W.); (J.M.); (Y.L.)
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (X.Z.); (J.W.); (L.C.)
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot 010031, China
| | - Xiangqian Zhang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (X.Z.); (J.W.); (L.C.)
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot 010031, China
| | - Jianguo Wang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (X.Z.); (J.W.); (L.C.)
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot 010031, China
| | - Liyu Chen
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (X.Z.); (J.W.); (L.C.)
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot 010031, China
| | - Ying Liu
- School of Life Science, Inner Mongolia University, Hohhot 010020, China; (J.F.); (G.S.); (S.W.); (J.M.); (Y.L.)
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (X.Z.); (J.W.); (L.C.)
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot 010031, China
| | - Xiaoqing Zhao
- School of Life Science, Inner Mongolia University, Hohhot 010020, China; (J.F.); (G.S.); (S.W.); (J.M.); (Y.L.)
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (X.Z.); (J.W.); (L.C.)
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot 010031, China
| | - Zhanyuan Lu
- School of Life Science, Inner Mongolia University, Hohhot 010020, China; (J.F.); (G.S.); (S.W.); (J.M.); (Y.L.)
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (X.Z.); (J.W.); (L.C.)
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot 010031, China
| |
Collapse
|
39
|
Gracia-Romero A, Vatter T, Kefauver SC, Rezzouk FZ, Segarra J, Nieto-Taladriz MT, Aparicio N, Araus JL. Defining durum wheat ideotypes adapted to Mediterranean environments through remote sensing traits. FRONTIERS IN PLANT SCIENCE 2023; 14:1254301. [PMID: 37731983 PMCID: PMC10508639 DOI: 10.3389/fpls.2023.1254301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/03/2023] [Indexed: 09/22/2023]
Abstract
An acceleration of the genetic advances of durum wheat, as a major crop for the Mediterranean region, is required, but phenotyping still represents a bottleneck for breeding. This study aims to define durum wheat ideotypes under Mediterranean conditions by selecting the most suitable phenotypic remote sensing traits among different ones informing on characteristics related with leaf pigments/photosynthetic status, crop water status, and crop growth/green biomass. A set of 24 post-green revolution durum wheat cultivars were assessed in a wide set of 19 environments, accounted as the specific combinations of a range of latitudes in Spain, under different management conditions (water regimes and planting dates), through 3 consecutive years. Thus, red-green-blue and multispectral derived vegetation indices and canopy temperature were evaluated at anthesis and grain filling. The potential of the assessed remote sensing parameters alone and all combined as grain yield (GY) predictors was evaluated through random forest regression models performed for each environment and phenological stage. Biomass and plot greenness indicators consistently proved to be reliable GY predictors in all of the environments tested for both phenological stages. For the lowest-yielding environment, the contribution of water status measurements was higher during anthesis, whereas, for the highest-yielding environments, better predictions were reported during grain filling. Remote sensing traits measured during the grain filling and informing on pigment content and photosynthetic capacity were highlighted under the environments with warmer conditions, as the late-planting treatments. Overall, canopy greenness indicators were reported as the highest correlated traits for most of the environments and regardless of the phenological moment assessed. The addition of carbon isotope composition of mature kernels was attempted to increase the accuracies, but only a few were slightly benefited, as differences in water status among cultivars were already accounted by the measurement of canopy temperature.
Collapse
Affiliation(s)
- Adrian Gracia-Romero
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Barcelona, Spain and AGROTECNIO (Center for Research in Agrotechnology), Lleida, Spain
| | - Thomas Vatter
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Barcelona, Spain and AGROTECNIO (Center for Research in Agrotechnology), Lleida, Spain
| | - Shawn C. Kefauver
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Barcelona, Spain and AGROTECNIO (Center for Research in Agrotechnology), Lleida, Spain
| | - Fatima Zahra Rezzouk
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Barcelona, Spain and AGROTECNIO (Center for Research in Agrotechnology), Lleida, Spain
| | - Joel Segarra
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Barcelona, Spain and AGROTECNIO (Center for Research in Agrotechnology), Lleida, Spain
| | | | - Nieves Aparicio
- Agro-technological Institute of Castilla y León (ITACyL), Valladolid, Spain
| | - José Luis Araus
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Barcelona, Spain and AGROTECNIO (Center for Research in Agrotechnology), Lleida, Spain
| |
Collapse
|
40
|
Al-Taher F, Nemzer B. Effect of Germination on Fatty Acid Composition in Cereal Grains. Foods 2023; 12:3306. [PMID: 37685238 PMCID: PMC10487171 DOI: 10.3390/foods12173306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Sprouted grains are gaining popularity as functional food ingredients. This study aimed to evaluate the lipid and fatty acid composition of eight sprouted grains (millet, amaranth, quinoa, wheat, rye, barley, buckwheat, and oat). The method used was germination for up to 72 h at temperatures ranging from 19-23 °C. In general, the lipid content increased in the various grains sprouted, providing a rich source of polyunsaturated fatty acids. The % oil yield ranged from 1.17 ± 0.02% in sprouted rye to 5.71 ± 0.26% in sprouted amaranth. Germinated oat showed the greatest increase in fat content, 54.3%, compared to the control. Polyunsaturated fatty acids were more prevalent in whole grains (46.9-75.6%) than saturated fatty acids (10.1-25.9%) and increased with sprouting. The primary fatty acids detected in the grains, in order of abundance, were linoleic, oleic, palmitic, linolenic, and stearic acids. Millet sprouts contained the lowest total saturated fatty acids and the highest polyunsaturated fatty acids. Amaranth had the highest amount of saturated fatty acids, while buckwheat contained the lowest quantity of polyunsaturated fatty acids. The lowest omega-6/omega-3 ratio was 7 to 1 in sprouted rye and 8 to 1 in sprouted barley.
Collapse
Affiliation(s)
| | - Boris Nemzer
- VDF FutureCeuticals, Inc., Momence, IL 60954, USA;
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
41
|
Mulugeta B, Ortiz R, Geleta M, Hailesilassie T, Hammenhag C, Hailu F, Tesfaye K. Harnessing genome-wide genetic diversity, population structure and linkage disequilibrium in Ethiopian durum wheat gene pool. FRONTIERS IN PLANT SCIENCE 2023; 14:1192356. [PMID: 37546270 PMCID: PMC10400094 DOI: 10.3389/fpls.2023.1192356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
Yanyang Liu, Henan Academy of Agricultural Sciences (HNAAS), China; Landraces are an important genetic source for transferring valuable novel genes and alleles required to enhance genetic variation. Therefore, information on the gene pool's genetic diversity and population structure is essential for the conservation and sustainable use of durum wheat genetic resources. Hence, the aim of this study was to assess genetic diversity, population structure, and linkage disequilibrium, as well as to identify regions with selection signature. Five hundred (500) individuals representing 46 landraces, along with 28 cultivars were evaluated using the Illumina Infinium 25K wheat SNP array, resulting in 8,178 SNPs for further analysis. Gene diversity (GD) and the polymorphic information content (PIC) ranged from 0.13-0.50 and 0.12-0.38, with mean GD and PIC values of 0.34 and 0.27, respectively. Linkage disequilibrium (LD) revealed 353,600 pairs of significant SNPs at a cut-off (r2 > 0.20, P < 0.01), with an average r2 of 0.21 for marker pairs. The nucleotide diversity (π) and Tajima's D (TD) per chromosome for the populations ranged from 0.29-0.36 and 3.46-5.06, respectively, with genome level, mean π values of 0.33 and TD values of 4.43. Genomic scan using the Fst outlier test revealed 85 loci under selection signatures, with 65 loci under balancing selection and 17 under directional selection. Putative candidate genes co-localized with regions exhibiting strong selection signatures were associated with grain yield, plant height, host plant resistance to pathogens, heading date, grain quality, and phenolic content. The Bayesian Model (STRUCTURE) and distance-based (principal coordinate analysis, PCoA, and unweighted pair group method with arithmetic mean, UPGMA) methods grouped the genotypes into five subpopulations, where landraces from geographically non-adjoining environments were clustered in the same cluster. This research provides further insights into population structure and genetic relationships in a diverse set of durum wheat germplasm, which could be further used in wheat breeding programs to address production challenges sustainably.
Collapse
Affiliation(s)
- Behailu Mulugeta
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Sinana Agricultural Research Center, Oromia Agricultural Research Institute, Bale-Robe, Ethiopia
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Cecilia Hammenhag
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Faris Hailu
- Bio and Emerging Technology Institute, Addis Ababa, Ethiopia
| | - Kassahun Tesfaye
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Biology and Biotechnology, Wollo University, Dessie, Ethiopia
| |
Collapse
|
42
|
Taranto F, Esposito S, De Vita P. Genomics for Yield and Yield Components in Durum Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:2571. [PMID: 37447132 DOI: 10.3390/plants12132571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
In recent years, many efforts have been conducted to dissect the genetic basis of yield and yield components in durum wheat thanks to linkage mapping and genome-wide association studies. In this review, starting from the analysis of the genetic bases that regulate the expression of yield for developing new durum wheat varieties, we have highlighted how, currently, the reductionist approach, i.e., dissecting the yield into its individual components, does not seem capable of ensuring significant yield increases due to diminishing resources, land loss, and ongoing climate change. However, despite the identification of genes and/or chromosomal regions, controlling the grain yield in durum wheat is still a challenge, mainly due to the polyploidy level of this species. In the review, we underline that the next-generation sequencing (NGS) technologies coupled with improved wheat genome assembly and high-throughput genotyping platforms, as well as genome editing technology, will revolutionize plant breeding by providing a great opportunity to capture genetic variation that can be used in breeding programs. To date, genomic selection provides a valuable tool for modeling optimal allelic combinations across the whole genome that maximize the phenotypic potential of an individual under a given environment.
Collapse
Affiliation(s)
- Francesca Taranto
- Institute of Biosciences and Bioresources (CNR-IBBR), 70126 Bari, Italy
| | - Salvatore Esposito
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA-Council for Agricultural Research and Economics, 71122 Foggia, Italy
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA-Council for Agricultural Research and Economics, 71122 Foggia, Italy
| |
Collapse
|
43
|
Nagpal T, Yadav V, Khare SK, Siddhanta S, Sahu JK. Monitoring the lipid oxidation and fatty acid profile of oil using algorithm-assisted surface-enhanced Raman spectroscopy. Food Chem 2023; 428:136746. [PMID: 37421667 DOI: 10.1016/j.foodchem.2023.136746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
Deep-fat frying of food develops lipid oxidation products that deteriorate oil and pose a health risk. This necessitates the development of a rapid and accurate oil quality and safety detection technique. Herein, surface-enhanced Raman spectroscopy (SERS) and sophisticated chemometric techniques were used for rapid and label-free determination of peroxide value (PV) and fatty acid composition of oil in-situ. In the study, plasmon-tuned and biocompatible Ag@Au core-shell nanoparticle-based SERS substrates were used to obtain optimum enhancement despite matrix interference to efficiently detect the oil components. The potent combination of SERS and the Artificial Neural Network (ANN) method could determine the fatty acid profile and PV with upto 99% accuracy. Moreover, the SERS-ANN method could quantify the low level of trans fats, i.e., < 2%, with 97% accuracy. Therefore, the developed algorithm-assisted SERS system enabled the sleek and rapid monitoring and on-site detection of oil oxidation.
Collapse
Affiliation(s)
- Tanya Nagpal
- Nanoscopic Imaging and Sensing Lab, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110 016, India; Food Customization and Research Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110 016, India; Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110 016, India
| | - Vikas Yadav
- Nanoscopic Imaging and Sensing Lab, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110 016, India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110 016, India
| | - Soumik Siddhanta
- Nanoscopic Imaging and Sensing Lab, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110 016, India.
| | - Jatindra K Sahu
- Food Customization and Research Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110 016, India.
| |
Collapse
|
44
|
Majzoobi M, Jafarzadeh S, Teimouri S, Ghasemlou M, Hadidi M, Brennan CS. The Role of Ancient Grains in Alleviating Hunger and Malnutrition. Foods 2023; 12:2213. [PMID: 37297458 PMCID: PMC10252758 DOI: 10.3390/foods12112213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Meeting the United Nation's sustainable development goals for zero hunger becomes increasingly challenging with respect to climate change and political and economic challenges. An effective strategy to alleviate hunger and its severe implications is to produce affordable, nutrient-dense, and sustainable food products. Ancient grains were long-forgotten due to the dominance of modern grains, but recently, they have been rediscovered as highly nutritious, healthy and resilient grains for solving the nutrition demand and food supply chain problems. This review article aims to critically examine the progress in this emerging field and discusses the potential roles of ancient grains in the fight against hunger. We provide a comparative analysis of different ancient grains with their modern varieties in terms of their physicochemical properties, nutritional profiles, health benefits and sustainability. A future perspective is then introduced to highlight the existing challenges of using ancient grains to help eradicate world hunger. This review is expected to guide decision-makers across different disciplines, such as food, nutrition and agronomy, and policymakers in taking sustainable actions against malnutrition and hunger.
Collapse
Affiliation(s)
- Mahsa Majzoobi
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia; (S.T.); (M.G.); (C.S.B.)
| | - Shima Jafarzadeh
- School of Civil and Mechanical Engineering, Curtin University, Bentley, WA 6102, Australia;
| | - Shahla Teimouri
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia; (S.T.); (M.G.); (C.S.B.)
| | - Mehran Ghasemlou
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia; (S.T.); (M.G.); (C.S.B.)
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13001 Ciudad Real, Spain;
| | - Charles S. Brennan
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia; (S.T.); (M.G.); (C.S.B.)
| |
Collapse
|
45
|
Gao X, Chai HH, Ho WK, Mayes S, Massawe F. Deciphering the molecular basis for photosynthetic parameters in Bambara groundnut (Vigna subterranea L. Verdc) under drought stress. BMC PLANT BIOLOGY 2023; 23:287. [PMID: 37248451 DOI: 10.1186/s12870-023-04293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Assessment of segregating populations for their ability to withstand drought stress conditions is one of the best approaches to develop breeding lines and drought tolerant varieties. Bambara groundnut (Vigna subterranea L. Verdc.) is a leguminous crop, capable of growing in low-input agricultural systems in semi-arid areas. An F4 bi-parental segregating population obtained from S19-3 × DodR was developed to evaluate the effect of drought stress on photosynthetic parameters and identify QTLs associated with these traits under drought-stressed and well-watered conditions in a rainout shelter. RESULTS Stomatal conductance (gs), photosynthesis rate (A), transpiration rate (E) and intracellular CO2 (Ci) were significantly reduced (p < 0.05) while water use efficiency (WUE) was significantly increased (p < 0.05) under drought-stressed conditions. A strong linear correlation was observed between gs, WUE, A, E and Ci under both water regimes. The variability between different water treatment, among individual lines and the interaction between lines and environment for photosynthetic parameters provides resources for superior lines selection and drought resistant variety improvement. Significant QTL for gs and FV/FM under well-watered conditions were mapped on LG5 and LG3, respectively, with more than 20% of the PVE, which could be considered as the major QTL to control these traits. Five clustered QTLs for photosynthetic traits under drought-stressed and well-watered conditions were mapped on LG5, LG6A, LG10 and LG11, respectively. CONCLUSIONS Significant and putative QTLs associated with photosynthetic parameters and the effect of drought stress on these traits have been revealed by QTL linkage mapping and field experiment in the F4 segregating population derived from S19-3 × DodR in bambara groundnut. The study provides fundamental knowledge of how photosynthetic traits response to drought stress and how genetic features control these traits under drought-stressed and well-watered conditions in bambara groundnut.
Collapse
Affiliation(s)
- Xiuqing Gao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, China.
- Future Food Beacon, School of Biosciences, University of Nottingham Malaysia, Selangor Darul Ehsan, Jalan Broga, 43500, Semenyih, Malaysia.
| | - Hui Hui Chai
- Future Food Beacon, School of Biosciences, University of Nottingham Malaysia, Selangor Darul Ehsan, Jalan Broga, 43500, Semenyih, Malaysia
| | - Wai Kuan Ho
- Future Food Beacon, School of Biosciences, University of Nottingham Malaysia, Selangor Darul Ehsan, Jalan Broga, 43500, Semenyih, Malaysia
| | - Sean Mayes
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leics, Loughborough, LE12 5RD, UK
- Crops for the Future (UK) CIC, 76-80 Baddow Road, Chelmsford, Essex, CM2 7PJ, UK
| | - Festo Massawe
- Future Food Beacon, School of Biosciences, University of Nottingham Malaysia, Selangor Darul Ehsan, Jalan Broga, 43500, Semenyih, Malaysia.
| |
Collapse
|
46
|
Aruwajoye NN, Buthelezi NMD, Mditshwa A, Tesfay SZ, Magwaza LS. Assessing the Impact of Roasting Temperatures on Biochemical and Sensory Quality of Macadamia Nuts ( Macadamia integrifolia). Foods 2023; 12:foods12112116. [PMID: 37297359 DOI: 10.3390/foods12112116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Depending on the temperature regime used during roasting, the biochemical and sensory characteristics of macadamia nuts can change. 'A4' and 'Beaumont' were used as model cultivars to examine how roasting temperatures affected the chemical and sensory quality of macadamia nuts. Using a hot air oven dryer, macadamia kernels were roasted at 50, 75, 100, 125, and 150 °C for 15 min. The quantity of phenols, flavonoids, and antioxidants in kernels roasted at 50, 75, and 100 °C was significant (p < 0.001); however, these kernels also had high levels of moisture content, oxidation-sensitive unsaturated fatty acids (UFAs), and peroxide value (PV), and poor sensory quality. Low moisture content, flavonoids, phenols, antioxidants, fatty acid (FA) compositions, high PV, and poor sensory quality-i.e., excessive browning, an exceptionally crunchy texture, and a bitter flavor-were all characteristics of kernels roasted at 150 °C. With a perfect crispy texture, a rich brown color, and a strong nutty flavor, kernels roasted at 125 °C had lower PV; higher oxidation-resistant UFA compositions; considerable concentrations of flavonoids, phenols, and antioxidants; and good sensory quality. Therefore, 'A4' and 'Beaumont' kernels could be roasted at 125 °C for use in the industry to improve kernel quality and palatability.
Collapse
Affiliation(s)
- Noluthando Noxolo Aruwajoye
- Discipline of Crop and Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| | - Nana Millicent Duduzile Buthelezi
- Department of Biology and Environmental Sciences, Sefako Makgatho Health Sciences University, P.O. Box 235, Medunsa, Ga-Rankuwa 0204, South Africa
| | - Asanda Mditshwa
- Discipline of Crop and Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| | - Samson Zeray Tesfay
- Discipline of Crop and Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| | - Lembe Samukelo Magwaza
- Discipline of Crop and Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| |
Collapse
|
47
|
Nemzer B, Al-Taher F. Analysis of Fatty Acid Composition in Sprouted Grains. Foods 2023; 12:foods12091853. [PMID: 37174393 PMCID: PMC10178583 DOI: 10.3390/foods12091853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
A whole-grain diet is associated with the prevention of metabolic syndromes, including obesity, diabetes, and cardiovascular diseases. Sprouting improves the nutritional profile and bioactive properties of grains, which are important for use as raw ingredients in the food industry. The aim of this review was to examine the lipid and fatty acid composition of germinated grains. The methods discussed include germination and analytical procedures for determining fat and fatty acid contents of grains. The effects of sprouting on the fat content and storage stability of grains were also assessed. Lipid levels ranged from 1.43% to 6.66% in the sprouted grains. The individual fatty acid content of grains changed depending on the germination conditions (17-37 °C, 1-9 days). Limited findings showed that sprouting grains at higher temperatures (20-25 °C) and longer times generated a healthy balance of omega-6 and omega-3 fatty acids, which is beneficial to humans. Future studies are needed to determine the optimum incubation and germination periods specific to each grain to improve the omega-6/omega-3 ratio. Free fatty acids were produced more slowly and levels of oxidation products were lower in sprouted grains than in the raw ingredients when stored for a year. Additional studies are required to investigate the oxidative stability and shelf life of sprouted grains.
Collapse
Affiliation(s)
- Boris Nemzer
- Research & Development, VDF/FutureCeuticals, Inc., Momence, IL 60954, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Fadwa Al-Taher
- Research & Development, VDF/FutureCeuticals, Inc., Momence, IL 60954, USA
| |
Collapse
|
48
|
Thakro V, Malik N, Basu U, Srivastava R, Narnoliya L, Daware A, Varshney N, Mohanty JK, Bajaj D, Dwivedi V, Tripathi S, Jha UC, Dixit GP, Singh AK, Tyagi AK, Upadhyaya HD, Parida SK. A superior gene allele involved in abscisic acid signaling enhances drought tolerance and yield in chickpea. PLANT PHYSIOLOGY 2023; 191:1884-1912. [PMID: 36477336 PMCID: PMC10022645 DOI: 10.1093/plphys/kiac550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/15/2022] [Indexed: 06/17/2023]
Abstract
Identifying potential molecular tags for drought tolerance is essential for achieving higher crop productivity under drought stress. We employed an integrated genomics-assisted breeding and functional genomics strategy involving association mapping, fine mapping, map-based cloning, molecular haplotyping and transcript profiling in the introgression lines (ILs)- and near isogenic lines (NILs)-based association panel and mapping population of chickpea (Cicer arietinum). This combinatorial approach delineated a bHLH (basic helix-loop-helix) transcription factor, CabHLH10 (Cicer arietinum bHLH10) underlying a major QTL, along with its derived natural alleles/haplotypes governing yield traits under drought stress in chickpea. CabHLH10 binds to a cis-regulatory G-box promoter element to modulate the expression of RD22 (responsive to desiccation 22), a drought/abscisic acid (ABA)-responsive gene (via a trans-expression QTL), and two strong yield-enhancement photosynthetic efficiency (PE) genes. This, in turn, upregulates other downstream drought-responsive and ABA signaling genes, as well as yield-enhancing PE genes, thus increasing plant adaptation to drought with reduced yield penalty. We showed that a superior allele of CabHLH10 introgressed into the NILs improved root and shoot biomass and PE, thereby enhancing yield and productivity during drought without compromising agronomic performance. Furthermore, overexpression of CabHLH10 in chickpea and Arabidopsis (Arabidopsis thaliana) conferred enhanced drought tolerance by improving root and shoot agro-morphological traits. These findings facilitate translational genomics for crop improvement and the development of genetically tailored, climate-resilient, high-yielding chickpea cultivars.
Collapse
Affiliation(s)
- Virevol Thakro
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Naveen Malik
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Udita Basu
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rishi Srivastava
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Laxmi Narnoliya
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Anurag Daware
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nidhi Varshney
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jitendra K Mohanty
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepak Bajaj
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vikas Dwivedi
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Uday Chand Jha
- Crop Improvement Division, Indian Institute of Pulses Research (IIPR), Kanpur 208024, India
| | - Girish Prasad Dixit
- Crop Improvement Division, Indian Institute of Pulses Research (IIPR), Kanpur 208024, India
| | - Ashok K Singh
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Akhilesh K Tyagi
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India
| | | | | |
Collapse
|
49
|
Samtiya M, Chandratre GA, Dhewa T, Badgujar PC, Sirohi R, Kumar A, Kumar A. A comparative study on comprehensive nutritional profiling of indigenous non-bio-fortified and bio-fortified varieties and bio-fortified hybrids of pearl millets. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1065-1076. [PMID: 36908360 PMCID: PMC9998779 DOI: 10.1007/s13197-022-05452-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 11/26/2022]
Abstract
Seven indigenous pearl millet varieties, including non-bio-fortified (HC-10 & HC-20) and bio-fortified (Dhanashakti) and bio-fortified hybrids, viz., AHB-1200, HHB-299, HHB-311, and RHB-233, were studied in the present work. There was not any significant difference observed in the crucial anti-nutrients content, i.e., phytate (24.88-32.56 mg/g), tannin (3.07-4.35 mg/g), and oxalate (0.33-0.43 mg/g). Phytochemical content and antioxidant activity showed significantly high (p < 0.05) TPC and FRAP, TFC, and DPPH radical scavenging activity in the HHB 299 and Dhanashakti, respectively. Quantitative analysis of polyphenols by HPLC (first report on these varieties) revealed that HHB-299 has the highest amount of gallic acid. Fatty acid profiling by GC-FID showed that Dhanashakti, AHB-1200, and HHB-299 have rich monounsaturated fatty acid (MUFA) and polyunsaturated fatty acids (PUFA). Mineral analysis by ICP-OES showed high iron (87.79 and 84.26 mg/kg) and zinc (55.05 and 52.43 mg/kg) content in the HHB-311 and Dhanashakti, respectively. Results of the present study would help facilitate the formulation of various processed functional food products (RTC/RTE) that are currently not reported/unavailable. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05452-x.
Collapse
Affiliation(s)
- Mrinal Samtiya
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131 028 India
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana 123 031 India
| | - Gauri A. Chandratre
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125001 India
| | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana 123 031 India
| | - Prarabdh C. Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131 028 India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Ankur Kumar
- Central Instrumentation Laboratory, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131 028 India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana 123 031 India
| |
Collapse
|
50
|
Errum A, Rehman N, Uzair M, Inam S, Ali GM, Khan MR. CRISPR/Cas9 editing of wheat Ppd-1 gene homoeologs alters spike architecture and grain morphometric traits. Funct Integr Genomics 2023; 23:66. [PMID: 36840774 DOI: 10.1007/s10142-023-00989-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/26/2023]
Abstract
Mutations in Photoperiod-1 (Ppd-1) gene are known to modify flowering time and yield in wheat. We cloned TaPpd-1 from wheat and found high similarity among the three homoeologs of TaPpd-1. To clarify the characteristics of TaPpd-1 homoeologs in different photoperiod conditions for inflorescence architecture and yield, we used CRISPR/Cas9 system to generate Tappd-1 mutant plants by simultaneous modification of the three homoeologs of wheat Ppd-1. Tappd-1 mutant plants showed no off-target mutations. Four T0-edited lines under short-day length and three lines under long-day length conditions with the mutation frequency of 25% and 21%, respectively. These putative transgenic plants of all the lines were self-fertilized and generated T1 and T2 progenies and were evaluated by phenotypic and expression analysis. Results demonstrated that simultaneously edited TaPpd-1- A1, B1, and D1 homoeologs gene copies in T2_SDL-8-4, T2_SDL-4-5, T2_SDL-3-9, and T2_LDL-10-9 showed similar spike inflorescence, flowering time, and significantly increase in 1000-grain weight, grain area, grain width, grain length, plant height, and spikelets per spike due to mutation in both alleles of Ppd-B1 and Ppd-D1 homoeologs but only spike length was decreased in T2_SDL-8-4, T2_SDL-4-5, and T2_LDL-13-3 mutant lines due to mutation in both alleles of Ppd-A1 homoeolog under both conditions. Our results indicate that all TaPpd1 gene homoeologs influence wheat spike development by affecting both late flowering and earlier flowering but single mutant TaPpd-A1 homoeolog affect lowest as compared to the combination with double mutants of TaPpd-B1 and TaPpd-D1, TaPpd-A1 and TaPpd-B1, and TaPpd-A1 and TaPpd-D1 homoeologs for yield enhancement. Our findings further raised the idea that the relative expression of the various genomic copies of TaPpd-1 homoeologs may have an impact on the spike inflorescence architecture and grain morphometric features in wheat cultivars.
Collapse
Affiliation(s)
- Aliya Errum
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
- PARC Institute of Advanced Studies in Agriculture (PIASA), Islamabad, Pakistan
| | - Nazia Rehman
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
| | - Safeena Inam
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
| | | | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan.
| |
Collapse
|