451
|
Bogerd HP, Benson RE, Truant R, Herold A, Phingbodhipakkiya M, Cullen BR. Definition of a consensus transportin-specific nucleocytoplasmic transport signal. J Biol Chem 1999; 274:9771-7. [PMID: 10092666 DOI: 10.1074/jbc.274.14.9771] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The low cytoplasmic and high nuclear concentration of the GTP-bound form of Ran provides directionality for both nuclear protein import and export. Both import and export factors bind RanGTP directly, yet this interaction produces opposite effects; in the former case, RanGTP binding induces nuclear cargo release, whereas in the latter, RanGTP binding induces nuclear cargo assembly. Therefore, nuclear import and export receptors and their protein recognition sites are predicted to be distinct. Nevertheless, the approximately 38-amino acid M9 sequence present in heterogeneous nuclear ribonucleoprotein A1 has been reported to serve as both a nuclear localization signal and a nuclear export signal, even though only one protein, the nuclear import factor transportin, has been shown to bind M9 directly. We have used a combination of mutational randomization followed by selection for transportin binding to exhaustively define amino acids in M9 that are critical for transportin binding in vivo. As expected, the resultant approximately 12-amino acid transportin-binding consensus sequence is also predictive of nuclear localization signal activity. Surprisingly, however, this extensive mutational analysis failed to dissect M9 nuclear localization signal and nuclear export signal function. Nevertheless, transportin appears unlikely to be the M9 export receptor, as RanGTP can be shown to block M9 binding by transportin not only in vitro, but also in the nucleus in vivo. This analysis therefore predicts the existence of a nuclear export receptor distinct from transportin that nevertheless shares a common protein-binding site on heterogeneous nuclear ribonucleoprotein A1.
Collapse
Affiliation(s)
- H P Bogerd
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
452
|
Abstract
Cellular responses to external signals often reflect alterations in gene expression. The activation of cell surface hormone or growth factor receptors upon the binding of appropriate ligands mobilizes signal transduction cascades that can ultimately impact the activity of defined sets of transcription factors. The interpretation of hormonal signals can also be initiated intracellularly, as is the case for steroid hormone receptors. In addition to recognizing specific hormones, steroid hormone receptors also function as transcription factors and directly transduce hormonal signals to activation or repression of unique target genes. The delivery of activated steroid receptors to high-affinity genomic sites must be efficient to account for the rapidity and selectivity of many transcriptional responses to steroid hormones. Thus, the signal transduction capacity of steroid hormone receptors will be affected by the efficiency of receptor trafficking both between different subcellular compartments (i.e., the cytoplasm and nucleus) and within a specific compartment (i.e., the nucleus). This article will highlight the recent advances in our understanding of subcellular and subnuclear trafficking of steroid receptors.
Collapse
Affiliation(s)
- D B DeFranco
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA.
| |
Collapse
|
453
|
Nakielny S, Shaikh S, Burke B, Dreyfuss G. Nup153 is an M9-containing mobile nucleoporin with a novel Ran-binding domain. EMBO J 1999; 18:1982-95. [PMID: 10202161 PMCID: PMC1171283 DOI: 10.1093/emboj/18.7.1982] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We employed a phage display system to search for proteins that interact with transportin 1 (TRN1), the import receptor for shuttling hnRNP proteins with an M9 nuclear localization sequence (NLS), and identified a short region within the N-terminus of the nucleoporin Nup153 which binds TRN1. Nup153 is located at the nucleoplasmic face of the nuclear pore complex (NPC), in the distal basket structure, and functions in mRNA export. We show that this Nup153 TRN1-interacting region is an M9 NLS. We found that both import and export receptors interact with several regions of Nup153, in a RanGTP-regulated fashion. RanGTP dissociates Nup153-import receptor complexes, but is required for Nup153-export receptor interactions. We also show that Nup153 is a RanGDP-binding protein, and that the interaction is mediated by the zinc finger region of Nup153. This represents a novel Ran-binding domain, which we term the zinc finger Ran-binding motif. We provide evidence that Nup153 shuttles between the nuclear and cytoplasmic faces of the NPC. The presence of an M9 shuttling domain in Nup153, together with its ability to move within the NPC and to interact with export receptors, suggests that this nucleoporin is a mobile component of the pore which carries export cargos towards the cytoplasm.
Collapse
Affiliation(s)
- S Nakielny
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA
| | | | | | | |
Collapse
|
454
|
Yokoya F, Imamoto N, Tachibana T, Yoneda Y. beta-catenin can be transported into the nucleus in a Ran-unassisted manner. Mol Biol Cell 1999; 10:1119-31. [PMID: 10198061 PMCID: PMC25239 DOI: 10.1091/mbc.10.4.1119] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The nuclear accumulation of beta-catenin plays an important role in the Wingless/Wnt signaling pathway. This study describes an examination of the nuclear import of beta-catenin in living mammalian cells and in vitro semi-intact cells. When injected into the cell cytoplasm, beta-catenin rapidly migrated into the nucleus in a temperature-dependent and wheat germ agglutinin-sensitive manner. In the cell-free import assay, beta-catenin rapidly migrates into the nucleus without the exogenous addition of cytosol, Ran, or ATP/GTP. Cytoplasmic injection of mutant Ran defective in its GTP hydrolysis did not prevent beta-catenin import. Studies using tsBN2, a temperature-sensitive mutant cell line that possesses a point mutation in the RCC1 gene, showed that the import of beta-catenin is insensitive to nuclear Ran-GTP depletion. These results show that beta-catenin possesses the ability to constitutively translocate through the nuclear pores in a manner similar to importin beta in a Ran-unassisted manner. We further showed that beta-catenin also rapidly exits the nucleus in homokaryons, suggesting that the regulation of nuclear levels of beta-catenin involves both nuclear import and export of this molecule.
Collapse
Affiliation(s)
- F Yokoya
- Department of Anatomy and Cell Biology, Osaka University Medical School, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
455
|
Fontoura BM, Blobel G, Matunis MJ. A conserved biogenesis pathway for nucleoporins: proteolytic processing of a 186-kilodalton precursor generates Nup98 and the novel nucleoporin, Nup96. J Cell Biol 1999; 144:1097-112. [PMID: 10087256 PMCID: PMC2150585 DOI: 10.1083/jcb.144.6.1097] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The mammalian nuclear pore complex (NPC) is comprised of approximately 50 unique proteins, collectively known as nucleoporins. Through fractionation of rat liver nuclei, we have isolated >30 potentially novel nucleoporins and have begun a systematic characterization of these proteins. Here, we present the characterization of Nup96, a novel nucleoporin with a predicted molecular mass of 96 kD. Nup96 is generated through an unusual biogenesis pathway that involves synthesis of a 186-kD precursor protein. Proteolytic cleavage of the precursor yields two nucleoporins: Nup98, a previously characterized GLFG-repeat containing nucleoporin, and Nup96. Mutational and functional analyses demonstrate that both the Nup98-Nup96 precursor and the previously characterized Nup98 (synthesized independently from an alternatively spliced mRNA) are proteolytically cleaved in vivo. This biogenesis pathway for Nup98 and Nup96 is evolutionarily conserved, as the putative Saccharomyces cerevisiae homologues, N-Nup145p and C-Nup145p, are also produced through proteolytic cleavage of a precursor protein. Using immunoelectron microscopy, Nup96 was localized to the nucleoplasmic side of the NPC, at or near the nucleoplasmic basket. The correct targeting of both Nup96 and Nup98 to the nucleoplasmic side of the NPC was found to be dependent on proteolytic cleavage, suggesting that the cleavage process may regulate NPC assembly. Finally, by biochemical fractionation, a complex containing Nup96, Nup107, and at least two Sec13- related proteins was identified, revealing that a major sub-complex of the NPC is conserved between yeast and mammals.
Collapse
Affiliation(s)
- B M Fontoura
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York 10021, USA
| | | | | |
Collapse
|
456
|
Lam MH, Briggs LJ, Hu W, Martin TJ, Gillespie MT, Jans DA. Importin beta recognizes parathyroid hormone-related protein with high affinity and mediates its nuclear import in the absence of importin alpha. J Biol Chem 1999; 274:7391-8. [PMID: 10066803 DOI: 10.1074/jbc.274.11.7391] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parathyroid hormone-related protein (PTHrP), expressed in a range of tumors, has endocrine, autocrine/paracrine, and intracrine actions, some of which relate to its ability to localize in the nucleus. Here we show for the first time that extracellularly added human PTHrP (amino acids 1-108) can be taken up specifically by receptor-expressing UMR106.01 osteogenic sarcoma cells and accumulate to quite high levels in the nucleus and nucleolus within 40 min. Quantitation of recognition by the nuclear localization sequence (NLS)-binding importin subunits indicated that in contrast to proteins containing conventional NLSs, PTHrP is recognized exclusively by importin beta and not by importin alpha. The sequence of PTHrP responsible for binding was mapped to amino acids 66-94, which includes an SV40 large tumor-antigen NLS-like sequence, although sequence determinants amino-terminal to this region were also necessary for high affinity binding (apparent dissociation constant of approximately 2 nM for importin beta). Nuclear import of PTHrP was assessed in vitro using purified components, demonstrating that importin beta, together with the GTP-binding protein Ran, was able to mediate efficient nuclear accumulation in the absence of importin alpha, whereas the addition of nuclear transport factor NTF2 reduced transport. The polypeptide ligand PTHrP thus appears to be accumulated in the nucleus/nucleolus through a novel, NLS-dependent nuclear import pathway independent of importin alpha and perhaps also of NTF2.
Collapse
Affiliation(s)
- M H Lam
- Department of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Canberra, A.C.T.2601, Australia
| | | | | | | | | | | |
Collapse
|
457
|
Abstract
IkappaBalpha controls the transcriptional activity of nuclear factor (NF)-kappaB by retaining it in the cytoplasm; but, when expressed in the nucleus, it can also inhibit the interaction of NF-kappaB with DNA and promote the export of NF-kappaB from the nucleus to the cytoplasm. Here, we report that IkappaBalpha, when not bound to NF-kappaB, is constitutively transported to the nucleus, and we confirm that the interaction of IkappaBalpha with NF-kappaB retains IkappaBalpha in the cytoplasm. Nuclear import of IkappaBalpha does not result from passive diffusion but from a specific energy-dependent transport process that requires the ankyrin repeats of IkappaBalpha. Nuclear accumulation of IkappaBalpha is dependent on importins alpha and beta as well as the small GTPase Ran, which are also responsible for the nuclear import mediated by basic nuclear localization sequences (NLS). However, these proteins are not sufficient to promote IkappaBalpha nuclear translocation. Factor(s) can be removed selectively from cell extracts with ankyrin repeats of IkappaBalpha which strongly reduce import of IkappaBalpha but not of proteins containing basic NLS. These findings indicate that IkappaBalpha is imported in the nucleus by a piggy-back mechanism that involves additional protein(s) containing a basic NLS and able to interact with ankyrin repeats of IkappaBalpha.
Collapse
Affiliation(s)
- P Turpin
- Laboratoire de Transport nucléocytoplasmique, Unité Mixte de Recherche 144 Institut Curie-CNRS, 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | |
Collapse
|
458
|
Vetter IR, Nowak C, Nishimoto T, Kuhlmann J, Wittinghofer A. Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. Nature 1999; 398:39-46. [PMID: 10078529 DOI: 10.1038/17969] [Citation(s) in RCA: 233] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The protein Ran is a small GTP-binding protein that binds to two types of effector inside the cell: Ran-binding proteins, which have a role in terminating export processes from the nucleus to the cytoplasm, and importin-beta-like molecules that bind cargo proteins during nuclear transport. The Ran-binding domain is a conserved sequence motif found in several proteins that participate in these transport processes. The Ran-binding protein RanBP2 contains four of these domains and constitutes a large part of the cytoplasmic fibrils that extend from the nuclear-pore complex. The structure of Ran bound to a non-hydrolysable GTP analogue (Ran x GppNHp) in complex with the first Ran-binding domain (RanBD1) of human RanBP2 reveals not only that RanBD1 has a pleckstrin-homology domain fold, but also that the switch-I region of Ran x GppNHp resembles the canonical Ras GppNHp structure and that the carboxy terminus of Ran is wrapped around RanBD1, contacting a basic patch on RanBD1 through its acidic end. This molecular 'embrace' enables RanBDs to sequester the Ran carboxy terminus, triggering the dissociation of Ran x GTP from importin-beta-related transport factors and facilitating GTP hydrolysis by the GTPase-activating protein ranGAP. Such a mechanism represents a new type of switch mechanism and regulatory protein-protein interaction for a Ras-related protein.
Collapse
Affiliation(s)
- I R Vetter
- Abteilung Strukturelle Biologie, Max-Planck-Institut für molekulare Physiologie, Dortmund, Germany
| | | | | | | | | |
Collapse
|
459
|
Ullman KS, Shah S, Powers MA, Forbes DJ. The nucleoporin nup153 plays a critical role in multiple types of nuclear export. Mol Biol Cell 1999; 10:649-64. [PMID: 10069809 PMCID: PMC25193 DOI: 10.1091/mbc.10.3.649] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The fundamental process of nucleocytoplasmic transport takes place through the nuclear pore. Peripheral pore structures are presumably poised to interact with transport receptors and their cargo as these receptor complexes first encounter the pore. One such peripheral structure likely to play an important role in nuclear export is the basket structure located on the nuclear side of the pore. At present, Nup153 is the only nucleoporin known to localize to the surface of this basket, suggesting that Nup153 is potentially one of the first pore components an RNA or protein encounters during export. In this study, anti-Nup153 antibodies were used to probe the role of Nup153 in nuclear export in Xenopus oocytes. We found that Nup153 antibodies block three major classes of RNA export, that of snRNA, mRNA, and 5S rRNA. Nup153 antibodies also block the NES protein export pathway, specifically the export of the HIV Rev protein, as well as Rev-dependent RNA export. Not all export was blocked; Nup153 antibodies did not impede the export of tRNA or the recycling of importin beta to the cytoplasm. The specific antibodies used here also did not affect nuclear import, whether mediated by importin alpha/beta or by transportin. Overall, the results indicate that Nup153 is crucial to multiple classes of RNA and protein export, being involved at a vital juncture point in their export pathways. This juncture point appears to be one that is bypassed by tRNA during its export. We asked whether a physical interaction between RNA and Nup153 could be observed, using homoribopolymers as sequence-independent probes for interaction. Nup153, unlike four other nucleoporins including Nup98, associated strongly with poly(G) and significantly with poly(U). Thus, Nup153 is unique among the nucleoporins tested in its ability to interact with RNA and must do so either directly or indirectly through an adaptor protein. These results suggest a unique mechanistic role for Nup153 in the export of multiple cargos.
Collapse
Affiliation(s)
- K S Ullman
- Department of Biology, University of California at San Diego, La Jolla, California 92093-0347, USA.
| | | | | | | |
Collapse
|
460
|
Wang LF, Zhu HD, Miao SY, Cao DF, Wu YW, Zong SD, Koide SS. Molecular cloning and characterization of a novel testis-specific nucleoporin-related gene. ARCHIVES OF ANDROLOGY 1999; 42:71-84. [PMID: 10101573 DOI: 10.1080/014850199262904] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A 20-kDa sperm membrane protein cDNA, designated as RSD-1, was isolated by epitope selection from a rat testis lambda gtll expression library. RSD-1 was used as a probe to screen a human testis lambda ZAPII cDNA expression library. A cDNA designated as BS-63 was isolated and found to consist of 1933 bp with an open reading frame of 1824 bp and assigned the accession number U64675 by GenBank. The deduced polypeptide consisted of 608 amino acid residues containing XFXFG or FG motifs that are characteristic of nuclear pore complex (NPC) proteins and act as potential binding sites for Ran. The N-terminal region has high homology with RanBP2/Nup358, a nucleoporin component, showing that BS-63 is a member of the NPC family. Northern blot analysis of mRNAs prepared from various human tissues shows that BS-63 is transcribed in two forms: 6.0 and 8.5 kb. The 8.5-kb transcript was present in low amounts in several somatic tissues, whereas the 6.0-kb transcript is expressed only in testis. In situ hybridization analysis of human testis sections showed that BS-63 mRNA is expressed only in germ cells at all stages of spermatogenesis. Sertoli cells did not transcribe the gene.
Collapse
Affiliation(s)
- L F Wang
- National Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PRC
| | | | | | | | | | | | | |
Collapse
|
461
|
Masuko N, Makino K, Kuwahara H, Fukunaga K, Sudo T, Araki N, Yamamoto H, Yamada Y, Miyamoto E, Saya H. Interaction of NE-dlg/SAP102, a neuronal and endocrine tissue-specific membrane-associated guanylate kinase protein, with calmodulin and PSD-95/SAP90. A possible regulatory role in molecular clustering at synaptic sites. J Biol Chem 1999; 274:5782-90. [PMID: 10026200 DOI: 10.1074/jbc.274.9.5782] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NE-dlg/SAP102, a neuronal and endocrine tissue-specific membrane-associated guanylate kinase family protein, is known to bind to C-terminal ends of N-methyl-D-aspartate receptor 2B (NR2B) through its PDZ (PSD-95/Dlg/ZO-1) domains. NE-dlg/SAP102 and NR2B colocalize at synaptic sites in cultured rat hippocampal neurons, and their expressions increase in parallel with the onset of synaptogenesis. We have identified that NE-dlg/SAP102 interacts with calmodulin in a Ca2+-dependent manner. The binding site for calmodulin has been determined to lie at the putative basic alpha-helix region located around the src homology 3 (SH3) domain of NE-dlg/SAP102. Using a surface plasmon resonance measurement system, we detected specific binding of recombinant NE-dlg/SAP102 to the immobilized calmodulin with a Kd value of 44 nM. However, the binding of Ca2+/calmodulin to NE-dlg/SAP102 did not modulate the interaction between PDZ domains of NE-dlg/SAP102 and the C-terminal end of rat NR2B. We have also identified that the region near the calmodulin binding site of NE-dlg/SAP102 interacts with the GUK-like domain of PSD-95/SAP90 by two-hybrid screening. Pull down assay revealed that NE-dlg/SAP102 can interact with PSD-95/SAP90 in the presence of both Ca2+ and calmodulin. These findings suggest that the Ca2+/calmodulin modulates interaction of neuronal membrane-associated guanylate kinase proteins and regulates clustering of neurotransmitter receptors at central synapses.
Collapse
Affiliation(s)
- N Masuko
- Department of Tumor Genetics and Biology, Kumamoto University School of Medicine, 2-2-1, Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
462
|
Hieda M, Tachibana T, Yokoya F, Kose S, Imamoto N, Yoneda Y. A monoclonal antibody to the COOH-terminal acidic portion of Ran inhibits both the recycling of Ran and nuclear protein import in living cells. J Cell Biol 1999; 144:645-55. [PMID: 10037787 PMCID: PMC2132938 DOI: 10.1083/jcb.144.4.645] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A small GTPase Ran is a key regulator for active nuclear transport. In immunoblotting analysis, a monoclonal antibody against recombinant human Ran, designated ARAN1, was found to recognize an epitope in the COOH-terminal domain of Ran. In a solution binding assay, ARAN1 recognized Ran when complexed with importin beta, transportin, and CAS, but not the Ran-GTP or the Ran-GDP alone, indicating that the COOH-terminal domain of Ran is exposed via its interaction with importin beta-related proteins. In addition, ARAN1 suppressed the binding of RanBP1 to the Ran-importin beta complex. When injected into the nucleus of BHK cells, ARAN1 was rapidly exported to the cytoplasm, indicating that the Ran-importin beta-related protein complex is exported as a complex from the nucleus to the cytoplasm in living cells. Moreover, ARAN1, when injected into the cultured cells induces the accumulation of endogenous Ran in the cytoplasm and prevents the nuclear import of SV-40 T-antigen nuclear localization signal substrates. From these findings, we propose that the binding of RanBP1 to the Ran-importin beta complex is required for the dissociation of the complex in the cytoplasm and that the released Ran is recycled to the nucleus, which is essential for the nuclear protein transport.
Collapse
Affiliation(s)
- M Hieda
- Department of Anatomy and Cell Biology, Osaka University Medical School, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
463
|
Kose S, Imamoto N, Tachibana T, Yoshida M, Yoneda Y. beta-subunit of nuclear pore-targeting complex (importin-beta) can be exported from the nucleus in a Ran-independent manner. J Biol Chem 1999; 274:3946-52. [PMID: 9933584 DOI: 10.1074/jbc.274.7.3946] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear export of importin-alpha is mediated by CAS, which is related to importin-beta, whereas the mechanism for the export of importin-beta remains unclear. In this study, we demonstrate that the nuclear export of importin-beta is mediated by the nuclear pore complex-binding domain of this molecule. Insensitivity to leptomycin B indicates that its export is not mediated by a leucine-rich nuclear export signal-specific receptor, CRM1. Furthermore, the nuclear export of importin-beta was not inhibited by co-injection with a GTPase-deficient Ran mutant (G19V). The cell line tsBN2 contains a temperature-sensitive point mutation in the RCC1 gene, which encodes a guanine nucleotide exchange factor of Ran. At the nonpermissive temperature, importin-beta was exported from the nucleus of these cells, even when RanGAP1, a GTPase-activating protein for Ran, was co-injected. These results not only provide support for the view that Ran-dependent GTP hydrolysis is not required for the nuclear export of importin-beta but also indicate that nuclear RanGTP is not essential for its export. As a result, we propose that importin-beta can be recycled from the nucleus alone in a Ran-independent manner.
Collapse
Affiliation(s)
- S Kose
- Department of Anatomy and Cell Biology, Osaka University Medical School, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
464
|
Seedorf M, Damelin M, Kahana J, Taura T, Silver PA. Interactions between a nuclear transporter and a subset of nuclear pore complex proteins depend on Ran GTPase. Mol Cell Biol 1999; 19:1547-57. [PMID: 9891088 PMCID: PMC116083 DOI: 10.1128/mcb.19.2.1547] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins to be transported into the nucleus are recognized by members of the importin-karyopherin nuclear transport receptor family. After docking at the nuclear pore complex (NPC), the cargo-receptor complex moves through the aqueous pore channel. Once cargo is released, the importin then moves back through the channel for new rounds of transport. Thus, importin and exportin, another member of this family involved in export, are thought to continuously shuttle between the nuclear interior and the cytoplasm. In order to understand how nuclear transporters traverse the NPC, we constructed functional protein fusions between several members of the yeast importin family, including Pse1p, Sxm1p, Xpo1p, and Kap95p, and the green fluorescent protein (GFP). Complexes containing nuclear transporters were isolated by using highly specific anti-GFP antibodies. Pse1-GFP was studied in the most detail. Pse1-GFP is in a complex with importin-alpha and -beta (Srp1p and Kap95p in yeast cells) that is sensitive to the nucleotide-bound state of the Ran GTPase. In addition, Pse1p associates with the nucleoporins Nsp1p, Nup159p, and Nup116p, while Sxm1p, Xpo1p, and Kap95p show different patterns of interaction with nucleoporins. Association of Pse1p with nucleoporins also depends on the nucleotide-bound state of Ran; when Ran is in the GTP-bound state, the nucleoporin association is lost. A mutant form of Pse1p that does not bind Ran also fails to interact with nucleoporins. These data indicate that transport receptors such as Pse1p interact in a Ran-dependent manner with certain nucleoporins. These nucleoporins may represent major docking sites for Pse1p as it moves in or out of the nucleus via the NPC.
Collapse
Affiliation(s)
- M Seedorf
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and The Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
465
|
Feng W, Benko AL, Lee JH, Stanford DR, Hopper AK. Antagonistic effects of NES and NLS motifs determine S. cerevisiae Rna1p subcellular distribution. J Cell Sci 1999; 112 ( Pt 3):339-47. [PMID: 9885287 DOI: 10.1242/jcs.112.3.339] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleus/cytosol exchange requires a GTPase, Ran. In yeast Rna1p is the GTPase activating protein for Ran (RanGAP) and Prp20p is the Ran GDP/GTP exchange factor (GEF). RanGAP is primarily cytosolic and GEF is nuclear. Their subcellular distributions led to the prediction that Ran-GTP hydrolysis takes place solely in the cytosol and GDP/GTP exchange solely in the nucleus. Current models propose that the Ran-GTP/Ran-GDP gradient across the nuclear membrane determines the direction of exchange. We provide three lines of evidence that Rna1p enters and leaves the nuclear interior. (1) Rna1p possesses leucine-rich nuclear export sequences (NES) that are able to relocate a passenger karyophilic protein to the cytosol; alterations of consensus residues re-establish nuclear location. (2) Rna1p possesses other sequences that function as a novel nuclear localization sequence able to deliver a passenger cytosolic protein to the nucleus. (3) Endogenous Rna1p location is dependent upon Xpo1p/Crm1p, the yeast exportin for leucine-rich NES-containing proteins. The data support the hypothesis that Rna1p exists on both sides of the nuclear membrane, perhaps regulating the Ran-GTP/Ran-GDP gradient, participating in a complete RanGTPase nuclear cycle or serving a novel function.
Collapse
Affiliation(s)
- W Feng
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
466
|
Truant R, Cullen BR. The arginine-rich domains present in human immunodeficiency virus type 1 Tat and Rev function as direct importin beta-dependent nuclear localization signals. Mol Cell Biol 1999; 19:1210-7. [PMID: 9891055 PMCID: PMC116050 DOI: 10.1128/mcb.19.2.1210] [Citation(s) in RCA: 321] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein nuclear import is generally mediated by basic nuclear localization signals (NLSs) that serve as targets for the importin alpha (Imp alpha) NLS receptor. Imp alpha is in turn bound by importin beta (Imp beta), which targets the resultant protein complex to the nucleus. Here, we report that the arginine-rich NLS sequences present in the human immunodeficiency virus type 1 regulatory proteins Tat and Rev fail to interact with Imp alpha and instead bind directly to Imp beta. Using in vitro nuclear import assays, we demonstrate that Imp alpha is entirely dispensable for Tat and Rev nuclear import. In contrast, Imp beta proved both sufficient and necessary, in that other beta-like import factors, such as transportin, were unable to support Tat or Rev nuclear import. Using in vitro competition assays, it was demonstrated that the target sites on Imp beta for Imp alpha, Tat, and Rev binding either are identical or at least overlap. The interaction of Tat and Rev with Imp beta is also similar to Imp alpha binding in that it is inhibited by RanGTP but not RanGDP, a finding that may in part explain why the interaction of the Rev nuclear RNA export factor with target RNA species is efficient in the cell nucleus yet is released in the cytoplasm. Together, these studies define a novel class of arginine-rich NLS sequences that are direct targets for Imp beta and that therefore function independently of Imp alpha.
Collapse
Affiliation(s)
- R Truant
- Howard Hughes Medical Institute and Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
467
|
Palmeri D, Malim MH. Importin beta can mediate the nuclear import of an arginine-rich nuclear localization signal in the absence of importin alpha. Mol Cell Biol 1999; 19:1218-25. [PMID: 9891056 PMCID: PMC116051 DOI: 10.1128/mcb.19.2.1218] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/1998] [Accepted: 10/27/1998] [Indexed: 11/20/2022] Open
Abstract
The import of proteins into the nucleus is dependent on cis-acting targeting sequences, nuclear localization signals (NLSs), and members of the nuclear transport receptor (importin-beta-like) superfamily. The most extensively characterized import pathway, often termed the classical pathway, is utilized by many basic-type (lysine-rich) NLSs and requires an additional component, importin alpha, to serve as a bridge between the NLS and the import receptor importin beta. More recently, it has become clear that a variety of proteins enter the nucleus via alternative import receptors and that their NLSs bind directly to those receptors. By using the digitonin-permeabilized cell system for protein import in vitro, we have defined the import pathway for the Rex protein of human T-cell leukemia virus type 1. Interestingly, the arginine-rich NLS of Rex uses importin beta for import but does so by a mechanism that is importin alpha independent. Based on the ability of the Rex NLS to inhibit the import of the lysine-rich NLS of T antigen and of both NLSs to be inhibited by the domain of importin alpha that binds importin beta (the IBB domain), we infer that the Rex NLS interacts with importin beta directly. In addition, and in keeping with other receptor-mediated nuclear import pathways, Rex import is dependent on the integrity of the Ran GTPase cycle. Based on these results, we suggest that importin beta can mediate the nuclear import of arginine-rich NLSs directly, or lysine-rich NLSs through the action of importin alpha.
Collapse
Affiliation(s)
- D Palmeri
- Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA
| | | |
Collapse
|
468
|
Moore JD, Yang J, Truant R, Kornbluth S. Nuclear import of Cdk/cyclin complexes: identification of distinct mechanisms for import of Cdk2/cyclin E and Cdc2/cyclin B1. J Cell Biol 1999; 144:213-24. [PMID: 9922449 PMCID: PMC2132890 DOI: 10.1083/jcb.144.2.213] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/1998] [Revised: 12/08/1998] [Indexed: 11/22/2022] Open
Abstract
Reversible phosphorylation of nuclear proteins is required for both DNA replication and entry into mitosis. Consequently, most cyclin-dependent kinase (Cdk)/cyclin complexes are localized to the nucleus when active. Although our understanding of nuclear transport processes has been greatly enhanced by the recent identification of nuclear targeting sequences and soluble nuclear import factors with which they interact, the mechanisms used to target Cdk/cyclin complexes to the nucleus remain obscure; this is in part because these proteins lack obvious nuclear localization sequences. To elucidate the molecular mechanisms responsible for Cdk/cyclin transport, we examined nuclear import of fluorescent Cdk2/cyclin E and Cdc2/cyclin B1 complexes in digitonin-permeabilized mammalian cells and also examined potential physical interactions between these Cdks, cyclins, and soluble import factors. We found that the nuclear import machinery recognizes these Cdk/cyclin complexes through direct interactions with the cyclin component. Surprisingly, cyclins E and B1 are imported into nuclei via distinct mechanisms. Cyclin E behaves like a classical basic nuclear localization sequence-containing protein, binding to the alpha adaptor subunit of the importin-alpha/beta heterodimer. In contrast, cyclin B1 is imported via a direct interaction with a site in the NH2 terminus of importin-beta that is distinct from that used to bind importin-alpha.
Collapse
Affiliation(s)
- J D Moore
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
469
|
Englmeier L, Olivo JC, Mattaj IW. Receptor-mediated substrate translocation through the nuclear pore complex without nucleotide triphosphate hydrolysis. Curr Biol 1999; 9:30-41. [PMID: 9889120 DOI: 10.1016/s0960-9822(99)80044-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND The transport of macromolecules between the nucleus and cytoplasm is an energy-dependent process. Substrates are translocated across the nuclear envelope through nuclear pore complexes (NPCs). Translocation requires nucleocytoplasmic transport receptors of the importin beta family, which interact both with the NPC and, either directly or via an adaptor, with the transport substrate. Although certain receptors have recently been shown to cross the NPC in an energy-independent manner, translocation of substrate-receptor complexes through the NPC has generally been regarded as an energy-requiring step. RESULTS We describe an in vitro system that is based on permeabilised cells and supports nuclear export mediated by leucine-rich nuclear export signals. In this system, export is dependent on exogenous CRM1/Exportin1 - a nuclear export receptor - the GTPase Ran and nucleotide triphosphates (NTPs), and is further stimulated by Ran-binding protein 1 (RanBP1) and nuclear transport factor 2 (NTF2). Unexpectedly, non-hydrolysable NTP analogues completely satisfy the NTP requirements for a single-round of CRM1-mediated translocation of protein substrates across the NPC. Similarly, single transportin-mediated nuclear protein import events are shown not to require hydrolysable NTPs and to occur in the absence of the Ran GTPase. CONCLUSIONS Our data show that, contrary to expectation and prior conclusions, the translocation of substrate-receptor complexes across the NPC in either direction occurs in the absence of NTP hydrolysis and is thus energy independent. The energy needed to drive substrate transport against a concentration gradient is supplied at the step of receptor recycling in the cytoplasm.
Collapse
Affiliation(s)
- L Englmeier
- European Molecular Biology Laboratory, Meyerhofstrasse, 1 D-69117, Heidelberg, Germany
| | | | | |
Collapse
|
470
|
Ribbeck K, Kutay U, Paraskeva E, Görlich D. The translocation of transportin-cargo complexes through nuclear pores is independent of both Ran and energy. Curr Biol 1999; 9:47-50. [PMID: 9889126 DOI: 10.1016/s0960-9822(99)80046-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Active transport between nucleus and cytoplasm proceeds through nuclear pore complexes (NPCs) and is mediated largely by shuttling transport receptors that use direct RanGTP binding to coordinate loading and unloading of cargo [1] [2] [3] [4]. Import receptors such as importin beta or transportin bind their substrates at low RanGTP levels in the cytoplasm and release them upon encountering RanGTP in the nucleus, where a high RanGTP concentration is predicted. This substrate release is, in the case of import by the importin alpha/beta heterodimer, coupled directly to importin beta release from the NPCs. If the importin beta -RanGTP interaction is prevented, import intermediates arrest at the nuclear side of the NPCs [5] [6]. This arrest makes it difficult to probe directly the Ran and energy requirements of the actual translocation from the cytoplasmic to the nuclear side of the NPC, which immediately precedes substrate release. Here, we have shown that in the case of transportin, dissociation of transportin-substrate complexes is uncoupled from transportin release from NPCs. This allowed us to dissect the requirements of translocation through the NPC, substrate release and transportin recycling. Surprisingly, translocation of transportin-substrate complexes into the nucleus requires neither Ran nor nucleoside triphosphates (NTPs). It is only nuclear RanGTP, not GTP hydrolysis, that is needed for dissociation of transportin-substrate complexes and for re-export of transportin to the cytoplasm. GTP hydrolysis is apparently required only to restore the import competence of the re-exported transportin and, thus, for multiple rounds of transportin-dependent import. In addition, we provide evidence that at least one type of substrate can also complete NPC passage mediated by importin beta independently of Ran and energy.
Collapse
Affiliation(s)
- K Ribbeck
- Zentrum für Molekulare Biologie, der Universität Heidelberg, Im Neuenheimer, Feld 282 69120, Heidelberg, Germany
| | | | | | | |
Collapse
|
471
|
|
472
|
Yoshida M, Horinouchi S. Trichostatin and leptomycin. Inhibition of histone deacetylation and signal-dependent nuclear export. Ann N Y Acad Sci 1999; 886:23-36. [PMID: 10667200 DOI: 10.1111/j.1749-6632.1999.tb09397.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Trichostatin A (TSA), an inhibitor of the eukaryotic cell cycle and an inducer of morphological reversion of transformed cells, inhibits histone deacetylase (HDAC) at nanomolar concentrations. Recently, trapoxin, oxamflatin, and FR901228, antitumor agents structurally unrelated to TSA, were found to be potent HDAC inhibitors. These inhibitors activate expression of p21Waf1 and 16INK4A in a p53-independent manner. Changes in the expression of these cell cycle regulators by an increase in histone acetylation may be responsible for cell cycle arrest and antitumor activity by HDAC inhibitors. The target molecule of leptomycin B (LMB), a potent antitumor agent, was genetically and biochemically identified as CRM1, a protein reported as being required for chromosome structure control. We showed that CRM1 was a receptor for the nuclear export signal (NES) and that LMB inhibited nuclear export of proteins. Using LMB, we identified a novel NES in fission yeast transcription factor Pap1, the function of which is abolished by oxidative stress in a manner conserved in eukaryotes.
Collapse
Affiliation(s)
- M Yoshida
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, University of Tokyo, Japan.
| | | |
Collapse
|
473
|
Bangs P, Burke B, Powers C, Craig R, Purohit A, Doxsey S. Functional analysis of Tpr: identification of nuclear pore complex association and nuclear localization domains and a role in mRNA export. J Cell Biol 1998; 143:1801-12. [PMID: 9864356 PMCID: PMC2175216 DOI: 10.1083/jcb.143.7.1801] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/1998] [Revised: 11/24/1998] [Indexed: 12/02/2022] Open
Abstract
Tpr is a 270-kD coiled-coil protein localized to intranuclear filaments of the nuclear pore complex (NPC). The mechanism by which Tpr contributes to the structure and function of the nuclear pore is currently unknown. To gain insight into Tpr function, we expressed the full-length protein and several subdomains in mammalian cell lines and examined their effects on nuclear pore function. Through this analysis, we identified an NH2-terminal domain that was sufficient for association with the nucleoplasmic aspect of the NPC. In addition, we unexpectedly found that the acidic COOH terminus was efficiently transported into the nuclear interior, an event that was apparently mediated by a putative nuclear localization sequence. Ectopic expression of the full-length Tpr caused a dramatic accumulation of poly(A)+ RNA within the nucleus. Similar results were observed with domains that localized to the NPC and the nuclear interior. In contrast, expression of these proteins did not appear to affect nuclear import. These data are consistent with a model in which Tpr is tethered to intranuclear filaments of the NPC by its coiled coil domain leaving the acidic COOH terminus free to interact with soluble transport factors and mediate export of macromolecules from the nucleus.
Collapse
Affiliation(s)
- P Bangs
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | |
Collapse
|
474
|
Marelli M, Aitchison JD, Wozniak RW. Specific binding of the karyopherin Kap121p to a subunit of the nuclear pore complex containing Nup53p, Nup59p, and Nup170p. J Cell Biol 1998; 143:1813-30. [PMID: 9864357 PMCID: PMC2175238 DOI: 10.1083/jcb.143.7.1813] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have identified a specific karyopherin docking complex within the yeast nuclear pore complex (NPC) that contains two novel, structurally related nucleoporins, Nup53p and Nup59p, and the NPC core protein Nup170p. This complex was affinity purified from cells expressing a functional Nup53p-protein A chimera. The localization of Nup53p, Nup59p, and Nup170p within the NPC by immunoelectron microscopy suggests that the Nup53p-containing complex is positioned on both the cytoplasmic and nucleoplasmic faces of the NPC core. In association with the isolated complex, we have also identified the nuclear transport factor Kap121p (Pse1p). Using in vitro binding assays, we showed that each of the nucleoporins interacts with one another. However, the association of Kap121p with the complex is mediated by its interaction with Nup53p. Moreover, Kap121p is the only beta-type karyopherin that binds Nup53p suggesting that Nup53p acts as a specific Kap121p docking site. Kap121p can be released from Nup53p by the GTP bound form of the small GTPase Ran. The physiological relevance of the interaction between Nup53p and Kap121p was further underscored by the observation that NUP53 mutations alter the subcellular distribution of Kap121p and the Kap121p- mediated import of a ribosomal L25 reporter protein. Interestingly, Nup53p is specifically phosphorylated during mitosis. This phenomenon is correlated with a transient decrease in perinuclear-associated Kap121p.
Collapse
Affiliation(s)
- M Marelli
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | |
Collapse
|
475
|
Schwoebel ED, Talcott B, Cushman I, Moore MS. Ran-dependent signal-mediated nuclear import does not require GTP hydrolysis by Ran. J Biol Chem 1998; 273:35170-5. [PMID: 9857054 DOI: 10.1074/jbc.273.52.35170] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear import of classical nuclear localization sequence-containing proteins involves the assembly of an import complex at the cytoplasmic face of the nuclear pore complex (NPC) followed by movement of this complex through the NPC and release of the import substrate into the nuclear interior. This process has historically been thought to require nucleotide hydrolysis as a source of energy. We found, using hydrolysis-resistant GTP analogs and a mutant Ran unable to hydrolyze GTP, that transport of classical nuclear localization sequence containing substrate through the NPC and release of the substrate into the nucleus did not require hydrolysis of GTP by Ran. In fact, for movement of this type of import substrate into the nuclear interior we did not observe a requirement for hydrolysis of any nucleotide triphosphate. We did, however, find that a pool of free GTP (or its structural equivalent) must be added, probably because the GDP Ran that is added must be converted to GTP Ran during the import process. We found that a requirement for GTP hydrolysis can be restored to an import mixture consisting of recombinant import factors by the addition of RCC1, the Ran guanine nucleotide exchange factor.
Collapse
Affiliation(s)
- E D Schwoebel
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
476
|
Hood JK, Silver PA. Cse1p is required for export of Srp1p/importin-alpha from the nucleus in Saccharomyces cerevisiae. J Biol Chem 1998; 273:35142-6. [PMID: 9857050 DOI: 10.1074/jbc.273.52.35142] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In metazoan cells, the CAS protein has been shown to function as a recycling factor for the importin-alpha subunit of the classical nuclear localization signal receptor, exporting importin-alpha from the nucleus to allow its participation in multiple rounds of nuclear import. CAS is a member of a family of proteins that bear homology to the larger subunit of the nuclear localization signal receptor, importin-beta, and that are found in all eukaryotes from yeast to humans. Sequence similarity identifies the product of the Saccharomyces cerevisiae CSE1 gene as a potential CAS homologue. Here we present evidence that Cse1p is the functional homologue of CAS: Cse1p is required to prevent accumulation of Srp1p/importin-alpha in the nucleus, it localizes to the nuclear envelope in a pattern typical of nuclear transport receptors, and it associates in vivo with Srp1p in a nucleotide-specific manner. We show further that mutations in CSE1 and SRP1 have specific effects on their association and on the intracellular localization of Cse1p.
Collapse
Affiliation(s)
- J K Hood
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and the Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
477
|
Stewart M, Kent HM, McCoy AJ. The structure of the Q69L mutant of GDP-Ran shows a major conformational change in the switch II loop that accounts for its failure to bind nuclear transport factor 2 (NTF2). J Mol Biol 1998; 284:1517-27. [PMID: 9878368 DOI: 10.1006/jmbi.1998.2204] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the 2.3 A resolution X-ray crystal structure of the GDP-bound form of the RanQ69L mutant that is used extensively in studies of nucleocytoplasmic transport and cell-cycle progression. When the structure of GDP-RanQ69L from monoclinic crystals with P21 symmetry was compared with the structure of wild-type Ran obtained from monoclinic crystals, the Q69L mutant showed a large conformational change in residues 68-74, which are in the switch II region of the molecule which changes conformation in response to nucleotide state and which forms the major interaction interface with nuclear transport factor 2 (NTF2, sometimes called p10). This conformational change alters the positions of key residues such as Lys71, Phe72 and Arg76 that are crucial for the interaction of GDP-Ran with NTF2 and indeed, solution binding studies were unable to detect any interaction between NTF2 and GDP-RanQ69L under conditions where GDP-Ran bound effectively. This interaction between NTF2 and GDP-Ran is required for efficient nuclear protein import and may function between the docking and translocation steps of the pathway.
Collapse
Affiliation(s)
- M Stewart
- MRC Laboratory of Molecular Biology, Hills Rd., Cambridge, CB2 2QH,
| | | | | |
Collapse
|
478
|
Shah S, Forbes DJ. Separate nuclear import pathways converge on the nucleoporin Nup153 and can be dissected with dominant-negative inhibitors. Curr Biol 1998; 8:1376-86. [PMID: 9889100 DOI: 10.1016/s0960-9822(98)00018-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Proteins generally enter or exit the nucleus as cargo of one of a small family of import and export receptors. These receptors bear distant homology to importin beta, a subunit of the receptor for proteins with classical nuclear localisation sequences (NLSs). To understand the mechanism of nuclear transport, the next question involves identifying the nuclear pore proteins that interact with the different transport receptors as they dock at the pore and translocate through it. RESULTS Two pathways of nuclear import were found to intersect at a single nucleoporin, Nup153, localized on the intranuclear side of the nuclear pore. Nup153 contains separate binding sites for importin alpha/beta, which mediates classical NLS import, and for transportin, which mediates import of different nuclear proteins. Strikingly, a Nup153 fragment containing the importin beta binding site acted as a dominant-negative inhibitor of NLS import, with no effect on transportin-mediated import. Conversely, a Nup153 fragment containing the transportin binding site acted as a strong dominant-negative inhibitor of transportin import, with no effect on classical NLS import. The interaction of transportin with Nup153 could be disrupted by a non-hydrolyzable form of GTP or by a GTPase-deficient mutant of Ran, and was not observed if transportin carried cargo. Neither Nup153 fragment affected binding of the export receptor Crm1 at the nuclear rim. CONCLUSIONS Two nuclear import pathways, mediated by importin beta and transportin, converge on a single nucleoporin, Nup153. Dominant-negative fragments of Nup153 can now be used to distinguish different nuclear import pathways and, potentially, to dissect nuclear export.
Collapse
Affiliation(s)
- S Shah
- Department of Biology 0347, University of California at San Diego, La Jolla, California 92093-0347, USA
| | | |
Collapse
|
479
|
Yan C, Lee LH, Davis LI. Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor. EMBO J 1998; 17:7416-29. [PMID: 9857197 PMCID: PMC1171086 DOI: 10.1093/emboj/17.24.7416] [Citation(s) in RCA: 200] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The yeast AP-1-like transcription factor, Yap1p, activates genes required for the response to oxidative stress. Yap1p is normally cytoplasmic and inactive, but will activate by nuclear translocation if cells are placed in an oxidative environment. Here we show that Yap1p is a target of the beta-karyopherin-like nuclear exporter, Crm1p. Yap1p is constitutively nuclear in a crm1 mutant, and Crm1p binds to a nuclear export sequence (NES)-like sequence in Yap1p in the presence of RanGTP. Recognition of Yap1p by Crm1p is inhibited by oxidation, and this inhibition requires at least one of the three cysteine residues flanking the NES. These results suggest that Yap1p localization is largely regulated at the level of nuclear export, and that the oxidation state affects the accessibility of the Yap1p NES to Crm1p directly. We also show that a mutation in RanGAP (rna1-1) is synthetically lethal with crm1 mutants. Yap1p export is inhibited in both rna1-1 and prp20 (RanGNRF) mutant strains, but Yap1p rapidly accumulates at the nuclear periphery after shifting rna1-1, but not other mutant cells to the non-permissive temperature. Thus, disassembly of export complexes in response to RanGTP hydrolysis may be required for release of substrate from a terminal binding site at the nuclear pore complex (NPC).
Collapse
Affiliation(s)
- C Yan
- W.M.Keck Institute for Cellular Visualization, Rosenstiel Center and Department of Biology, MS 029, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | | | | |
Collapse
|
480
|
Albertini M, Pemberton LF, Rosenblum JS, Blobel G. A novel nuclear import pathway for the transcription factor TFIIS. J Cell Biol 1998; 143:1447-55. [PMID: 9852143 PMCID: PMC2132971 DOI: 10.1083/jcb.143.6.1447] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/1998] [Revised: 10/14/1998] [Indexed: 11/22/2022] Open
Abstract
We have identified a novel pathway for protein import into the nucleus. We have shown that the previously identified but uncharacterized yeast protein Nmd5p functions as a karyopherin. It was therefore designated Kap119p (karyopherin with Mr of 119 kD). We localized Kap119p to both the nucleus and the cytoplasm. We identified the transcription elongation factor TFIIS as its major cognate import substrate. The cytoplasmic Kap119p exists as an approximately stoichiometric complex with TFIIS. RanGTP, not RanGDP, dissociated the isolated Kap119p/TFIIS complex and bound to Kap119p. Kap119p also bound directly to a number of peptide repeat containing nucleoporins in overlay assays. In wild-type cells, TFIIS was primarily localized to the nucleus. In a strain where KAP119 has been deleted, TFIIS was mislocalized to the cytoplasm indicating that TFIIS is imported into the nucleus by Kap119p. The transport of various substrates that use other karyopherin-mediated import or export pathways was not affected in a kap119Delta strain. Hence Kap119p is a novel karyopherin that is responsible for the import of the transcription elongation factor TFIIS.
Collapse
Affiliation(s)
- M Albertini
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
481
|
Holaska JM, Paschal BM. A cytosolic activity distinct from crm1 mediates nuclear export of protein kinase inhibitor in permeabilized cells. Proc Natl Acad Sci U S A 1998; 95:14739-44. [PMID: 9843959 PMCID: PMC24519 DOI: 10.1073/pnas.95.25.14739] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1998] [Accepted: 10/09/1998] [Indexed: 02/04/2023] Open
Abstract
The leucine-rich nuclear export signal (NES) is used by a variety of proteins to facilitate their delivery from the nucleus to the cytoplasm. One of the best-studied examples, protein kinase inhibitor (PKI), binds to the catalytic subunit of protein kinase A in the nucleus and mediates its rapid export to the cytoplasm. We developed a permeabilized cell assay that reconstitutes nuclear export mediated by PKI, and we used it to characterize the cytosolic factors required for this process. The two-step assay involves an import phase and an export phase, and quantitation is achieved by digital fluorescence microscopy. During the import phase, a fluorescent derivative of streptavidin is imported into the nuclei of digitonin-permeabilized HeLa cells. During the export phase, biotinylated PKI diffuses into the nucleus, binds to fluorescent streptavidin, and mediates export of the complex to the cytoplasm. Nuclear export of the PKI complex is cytosol dependent and can be stimulated by addition of the purified NES receptor, Crm1. HeLa cell cytosol treated with N-ethylmaleimide (NEM) or phenyl-Sepharose to inactivate or deplete Crm1, respectively, is still fully active in the PKI export assay. Significantly, the export activity can be depleted from cytosol by preadsorption with a protein conjugate that contains a functional NES. These data indicate that cytosol contains an export activity that is distinct from Crm1 and is likely to correspond to an NES receptor.
Collapse
Affiliation(s)
- J M Holaska
- Center for Cell Signaling, Box 577, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | |
Collapse
|
482
|
Abstract
Importin beta family transport receptors shuttle between the nucleus and the cytoplasm and mediate transport of macromolecules through nuclear pore complexes (NPCs). The interactions between these receptors and their cargoes are regulated by binding RanGTP; all receptors probably exit the nucleus complexed with RanGTP, and so should deplete RanGTP continuously from the nucleus. We describe here the development of an in vitro system to study how nuclear Ran is replenished. Nuclear import of Ran does not rely on simple diffusion as Ran's small size would permit, but instead is stimulated by soluble transport factors. This facilitated import is specific for cytoplasmic RanGDP and employs nuclear transport factor 2 (NTF2) as the actual carrier. NTF2 binds RanGDP initially to NPCs and probably also mediates translocation of the NTF2-RanGDP complex to the nuclear side of the NPCs. A direct NTF2-RanGDP interaction is crucial for this process, since point mutations that disturb the RanGDP-NTF2 interaction also interfere with Ran import. The subsequent nuclear accumulation of Ran also requires GTP, but not GTP hydrolysis. The release of Ran from NTF2 into the nucleus, and thus the directionality of Ran import, probably involves nucleotide exchange to generate RanGTP, for which NTF2 has no detectable affinity, followed by binding of the RanGTP to an importin beta family transport receptor.
Collapse
Affiliation(s)
- K Ribbeck
- Zentrum für Molekulare Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
483
|
Jenkins Y, McEntee M, Weis K, Greene WC. Characterization of HIV-1 vpr nuclear import: analysis of signals and pathways. J Cell Biol 1998; 143:875-85. [PMID: 9817747 PMCID: PMC2132945 DOI: 10.1083/jcb.143.4.875] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/1998] [Revised: 09/16/1998] [Indexed: 11/22/2022] Open
Abstract
While the Vpr protein of HIV-1 has been implicated in import of the viral preintegration complex across the nuclear pore complex (NPC) of nondividing cellular hosts, the mechanism by which Vpr enters the nucleus remains unknown. We now demonstrate that Vpr contains two discrete nuclear targeting signals that use two different import pathways, both of which are distinct from the classical nuclear localization signal (NLS)- and the M9-dependent pathways. Vpr import does not appear to require Ran-mediated GTP hydrolysis and persists under conditions of low energy. Competition experiments further suggest that Vpr directly engages the NPC at two discrete sites. These sites appear to form distal components of a common import pathway used by NLS- and M9-containing proteins. Together, our data suggest that Vpr bypasses many of the soluble receptors involved in import of cellular cargoes. Rather, this viral protein appears to directly access the NPC, a property that may help to ensure the capacity of HIV to replicate in nondividing cellular hosts.
Collapse
Affiliation(s)
- Y Jenkins
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California 94141-9100, USA
| | | | | | | |
Collapse
|
484
|
Solsbacher J, Maurer P, Bischoff FR, Schlenstedt G. Cse1p is involved in export of yeast importin alpha from the nucleus. Mol Cell Biol 1998; 18:6805-15. [PMID: 9774694 PMCID: PMC109264 DOI: 10.1128/mcb.18.11.6805] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins bearing a nuclear localization signal (NLS) are targeted to the nucleus by the heterodimeric transporter importin. Importin alpha binds to the NLS and to importin beta, which carries it through the nuclear pore complex (NPC). Importin disassembles in the nucleus, evidently by binding of RanGTP to importin beta. The importin subunits are exported separately. We investigated the role of Cse1p, the Saccharomyces cerevisiae homologue of human CAS, in nuclear export of Srp1p (yeast importin alpha). Cse1p is located predominantly in the nucleus but also is present in the cytoplasm and at the NPC. We analyzed the in vivo localization of the importin subunits fused to the green fluorescent protein in wild-type and cse1-1 mutant cells. Srp1p but not importin beta accumulated in nuclei of cse1-1 mutants, which are defective in NLS import but not defective in NLS-independent import pathways. Purified Cse1p binds with high affinity to Srp1p only in the presence of RanGTP. The complex is dissociated by the cytoplasmic RanGTP-binding protein Yrb1p. Combined with the in vivo results, this suggests that a complex containing Srp1p, Cse1p, and RanGTP is exported from the nucleus and is subsequently disassembled in the cytoplasm by Yrb1p. The formation of the trimeric Srp1p-Cse1p-RanGTP complex is inhibited by NLS peptides, indicating that only NLS-free Srp1p will be exported to the cytoplasm.
Collapse
Affiliation(s)
- J Solsbacher
- Medizinische Biochemie, Universität des Saarlandes, 66421 Homburg, Germany
| | | | | | | |
Collapse
|
485
|
Affiliation(s)
- F Stutz
- Institut de Microbiologie, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland.
| | | |
Collapse
|
486
|
Hellmuth K, Lau DM, Bischoff FR, Künzler M, Hurt E, Simos G. Yeast Los1p has properties of an exportin-like nucleocytoplasmic transport factor for tRNA. Mol Cell Biol 1998; 18:6374-86. [PMID: 9774653 PMCID: PMC109223 DOI: 10.1128/mcb.18.11.6374] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae Los1p, which is genetically linked to the nuclear pore protein Nsp1p and several tRNA biogenesis factors, was recently grouped into the family of importin/karyopherin-beta-like proteins on the basis of its sequence similarity. In a two-hybrid screen, we identified Nup2p as a nucleoporin interacting with Los1p. Subsequent purification of Los1p from yeast demonstrates its physical association not only with Nup2p but also with Nsp1p. By the use of the Gsp1p-G21V mutant, Los1p was shown to preferentially bind to the GTP-bound form of yeast Ran. Furthermore, overexpression of full-length or N-terminally truncated Los1p was shown to have dominant-negative effects on cell growth and different nuclear export pathways. Finally, Los1p could interact with Gsp1p-GTP, but only in the presence of tRNA, as revealed in an indirect in vitro binding assay. These data confirm the homology between Los1p and the recently identified human exportin for tRNA and reinforce the possibility of a role for Los1p in nuclear export of tRNA in yeast.
Collapse
Affiliation(s)
- K Hellmuth
- Biochemie-Zentrum Heidelberg, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
487
|
Abstract
The p62 complex is an assembly of four O-linked glycoproteins (p62, p58, p54, and p45) localized in the central region of the nuclear pore complex. It has been suggested to provide a substrate binding site near the central gated channel of the pore during nuclear protein import. The sequences of p62, p58, and p54 from rat have been reported previously. We have now carried out cDNA cloning of rat p45. The authenticity of the p45 clone was confirmed by two-dimensional gel analysis of the in vitro translated product of this clone. Sequence comparison showed that p45 is mostly identical to the amino terminal four-fifths of p58. p45 contains an N-terminal FG (Phe-Gly) repeat region, a middle coiled-coil region, and a truncated C-terminal FG repeat region (compared to p58). The sequence data and genomic Southern hybridization results strongly support the possibility that p45 and p58 are generated by mRNA alternative splicing. The sequences of three other p58-related cDNA clones indicate that the p58/p45 gene transcript gives rise to additional alternatively spliced mRNAs in mammalian cells. Interestingly, the expression level of p45 relative to p58 varies in different cultured cell lines, indicating that the p62 complex is heterogeneous with respect to these two subunits.
Collapse
Affiliation(s)
- T Hu
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
488
|
Herold A, Truant R, Wiegand H, Cullen BR. Determination of the functional domain organization of the importin alpha nuclear import factor. J Cell Biol 1998; 143:309-18. [PMID: 9786944 PMCID: PMC2132842 DOI: 10.1083/jcb.143.2.309] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/1998] [Revised: 09/09/1998] [Indexed: 12/22/2022] Open
Abstract
Although importin alpha (Imp alpha) has been shown to act as the receptor for basic nuclear localization signals (NLSs) and to mediate their recruitment to the importin beta nuclear import factor, little is known about the functional domains present in Imp alpha, with the exception that importin beta binding is known to map close to the Imp alpha NH2 terminus. Here, we demonstrate that sequences essential for binding to the CAS nuclear export factor are located near the Imp alpha COOH terminus and include a critical acidic motif. Although point mutations introduced into this acidic motif inactivated both CAS binding and Imp alpha nuclear export, a putative leucine-rich nuclear export signal proved to be neither necessary nor sufficient for Imp alpha nuclear export. Analysis of sequences within Imp alpha that bind to the SV-40 T antigen NLS or to the similar LEF-1 NLS revealed that both NLSs interact with a subset of the eight degenerate armadillo (Arm) repeats that form the central part of Imp alpha. However, these two NLS-binding sites showed only minimal overlap, thus suggesting that the degeneracy of the Arm repeat region of Imp alpha may serve to facilitate binding to similar but nonidentical basic NLSs. Importantly, the SV-40 T NLS proved able to specifically inhibit the interaction of Imp alpha with CAS in vitro, thus explaining why the SV-40 T NLS is unable to also function as a nuclear export signal.
Collapse
Affiliation(s)
- A Herold
- Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
489
|
Jiang CJ, Imamoto N, Matsuki R, Yoneda Y, Yamamoto N. In vitro characterization of rice importin beta1: molecular interaction with nuclear transport factors and mediation of nuclear protein import. FEBS Lett 1998; 437:127-30. [PMID: 9804185 DOI: 10.1016/s0014-5793(98)01207-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We recently isolated two cDNAs encoding importin 3 homologues (rice importin beta1 and beta2), the first such homologues identified in plants. To address the function of rice importin beta1 in the process of nuclear import of proteins, we carried out in vitro binding and nuclear import assays. Recombinant protein of rice importin beta1 assembled a complex (PTAC) with rice importin alpha1 and NLS protein, and also bound to the nuclear envelope of tobacco BY-2 cells. Ran-GTP, but not Ran-GDP, interacted with rice importin beta1 and dissociated the heterodimer formed between rice importin alpha1 and rice importin beta1. An in vitro nuclear import assay using digitonin-permeabilized HeLa cells revealed that rice importin beta1 can mediate nuclear envelope docking of NLS proteins and their subsequent translocation into the nucleus. These data strongly suggest that rice importin beta1 functions as a component of the NLS receptor in plant cells.
Collapse
Affiliation(s)
- C J Jiang
- Plant Physiology Department, National Institute of Agrobiological Resources, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
490
|
Hughes M, Zhang C, Avis JM, Hutchison CJ, Clarke PR. The role of the ran GTPase in nuclear assembly and DNA replication: characterisation of the effects of Ran mutants. J Cell Sci 1998; 111 ( Pt 20):3017-26. [PMID: 9739075 DOI: 10.1242/jcs.111.20.3017] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ran GTPase plays a critical role in nucleocytoplasmic transport and has been implicated in the maintenance of nuclear structure and cell cycle control. Here, we have investigated its role in nuclear assembly and DNA replication using recombinant wild-type and mutant Ran proteins added to a cell-free system of Xenopus egg extracts. RanQ69L and RanT24N prevent lamina assembly, PCNA accumulation and DNA replication. These effects may be due to the disruption of nucleocytoplasmic transport, since both mutants inhibit nuclear import of a protein carrying a nuclear localisation signal (NLS). RanQ69L, which is deficient in GTPase activity, sequesters importins in stable complexes that are unable to support the docking of NLS-proteins at the nuclear pore complex (NPC). RanT24N, in contrast to wild-type Ran-GDP, interacts only weakly with importin alpha and nucleoporins, and not at all with the import factor p10, consistent with its poor activity in nuclear import. However, RanT24N does interact stably with importin beta, Ran binding protein 1 and RCC1, an exchange factor for Ran. We show that Ran-GDP is essential for proper nuclear assembly and DNA replication, the requirement being primarily before the initiation of DNA replication. Ran-GDP therefore mediates the active transport of necessary factors or otherwise controls the onset of S-phase in this system.
Collapse
Affiliation(s)
- M Hughes
- School of Biological Sciences, University of Manchester, G38 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
491
|
Abstract
Active transport between the nucleus and cytoplasm involves primarily three classes of macromolecules: substrates, adaptors, and receptors. Some transport substrates bind directly to an import or an export receptor while others require one or more adaptors to mediate formation of a receptor-substrate complex. Once assembled, these transport complexes are transferred in one direction across the nuclear envelope through aqueous channels that are part of the nuclear pore complexes (NPCs). Dissociation of the transport complex must then take place, and both adaptors and receptors must be recycled through the NPC to allow another round of transport to occur. Directionality of either import or export therefore depends on association between a substrate and its receptor on one side of the nuclear envelope and dissociation on the other. The Ran GTPase is critical in generating this asymmetry. Regulation of nucleocytoplasmic transport generally involves specific inhibition of the formation of a transport complex; however, more global forms of regulation also occur.
Collapse
Affiliation(s)
- I W Mattaj
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | | |
Collapse
|
492
|
Jiang CJ, Imamoto N, Matsuki R, Yoneda Y, Yamamoto N. Functional characterization of a plant importin alpha homologue. Nuclear localization signal (NLS)-selective binding and mediation of nuclear import of nls proteins in vitro. J Biol Chem 1998; 273:24083-7. [PMID: 9727027 DOI: 10.1074/jbc.273.37.24083] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear import of most nuclear proteins is initiated by recognition of the nuclear localization signal (NLS) by importin alpha. We recently isolated an importin alpha homologue from rice (rice importin alpha1) and demonstrated that transcription of the gene is down-regulated by light in rice leaves. To address the function of rice importin alpha1 in the process of nuclear import of proteins, we performed in vitro binding and nuclear import assays. The rice importin alpha1 showed specific binding to fusion proteins containing either monopartite or bipartite NLSs, but not to a fusion protein containing a Matalpha-2-type NLS, suggesting that there exists selective binding of rice importin alpha1 to different plant NLSs. The rice importin alpha1 is also capable of forming a complex with mouse importin beta and NLS protein in vitro. An in vitro nuclear import assay using permeabilized HeLa cells revealed that rice importin alpha1, in conjunction with other vertebrate transport factors, mediates the nuclear envelope docking of NLS proteins and their subsequent translocation into the nucleus. These data provide strong, direct evidence suggesting that rice importin alpha1 functions as a component of the NLS receptor in plant cells.
Collapse
Affiliation(s)
- C J Jiang
- National Institute of Agrobiological Resources, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | |
Collapse
|
493
|
Affiliation(s)
- M S Moore
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
494
|
Kaffman A, Rank NM, O'Shea EK. Phosphorylation regulates association of the transcription factor Pho4 with its import receptor Pse1/Kap121. Genes Dev 1998; 12:2673-83. [PMID: 9732266 PMCID: PMC317126 DOI: 10.1101/gad.12.17.2673] [Citation(s) in RCA: 200] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/1998] [Accepted: 07/10/1998] [Indexed: 11/24/2022]
Abstract
The transcription factor Pho4 is phosphorylated and localized predominantly to the cytoplasm when budding yeast are grown in phosphate-rich medium and is unphosphorylated and localized to the nucleus upon phosphate starvation. We have investigated the requirements for nuclear import of Pho4 and find that Pho4 enters the nucleus via a nonclassical import pathway that utilizes the importin beta family member Pse1/Kap121. Pse1 binds directly to Pho4 and is required for its import in vivo. We have defined the nuclear localization signal on Pho4 and demonstrate that it is required for Pse1 binding in vitro and is sufficient for PSE1-dependent import in vivo. Phosphorylation of Pho4 inhibits its interaction with Pse1, providing a mechanism by which phosphorylation may regulate import of Pho4 in vivo.
Collapse
Affiliation(s)
- A Kaffman
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-0448, USA
| | | | | |
Collapse
|
495
|
Briggs LJ, Stein D, Goltz J, Corrigan VC, Efthymiadis A, Hübner S, Jans DA. The cAMP-dependent protein kinase site (Ser312) enhances dorsal nuclear import through facilitating nuclear localization sequence/importin interaction. J Biol Chem 1998; 273:22745-52. [PMID: 9712906 DOI: 10.1074/jbc.273.35.22745] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Control over the nuclear import of transcription factors (TFs) represents a level of gene regulation integral to cellular processes such as differentiation and transformation. The Drosophila TF Dorsal shares with other rel TF family members the fact that it contains a phosphorylation site for the cAMP-dependent protein kinase (PKA) 22 amino acids N-terminal to the nuclear localization signal (NLS) at amino acids 335-340. This study examines for the first time the nuclear import kinetics of Dorsal fusion proteins in rat hepatoma cells in vivo and in vitro. Nuclear uptake was found to be not only NLS-dependent, but also strongly dependent on the PKA site, whereby substitution of Ser312 by either Ala or Glu using site-directed mutagenesis severely reduced nuclear accumulation. Exogenous cAMP or PKA catalytic subunit significantly enhanced the nuclear import of wild-type proteins both in vivo and in vitro. Using a direct binding assay, the molecular basis of PKA site enhancement of Dorsal fusion protein nuclear import was determined to be PKA site-mediated modulation of NLS recognition by the importin 58/97 complex. The physiological relevance of these results is supported by the observation that Drosophila embryos expressing PKA site Dorsal mutant variants were impaired in development. We conclude that the Dorsal NLS and PKA site constitute a phosphorylation-regulated NLS essential to Dorsal function and able to function in heterologous mammalian cell systems, where phosphorylation modulates the affinity of NLS recognition by importin.
Collapse
Affiliation(s)
- L J Briggs
- Nuclear Signaling Laboratory, Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Canberra City, A.C. T. 2601, Australia
| | | | | | | | | | | | | |
Collapse
|
496
|
Jäkel S, Görlich D. Importin beta, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells. EMBO J 1998; 17:4491-502. [PMID: 9687515 PMCID: PMC1170780 DOI: 10.1093/emboj/17.15.4491] [Citation(s) in RCA: 408] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The assembly of eukaryotic ribosomal subunits takes place in the nucleolus and requires nuclear import of ribosomal proteins. We have studied this import in a mammalian system and found that the classical nuclear import pathway using the importin alpha/beta heterodimer apparently plays only a minor role. Instead, at least four importin beta-like transport receptors, namely importin beta itself, transportin, RanBP5 and RanBP7, directly bind and import ribosomal proteins. We found that the ribosomal proteins L23a, S7 and L5 can each be imported alternatively by any of the four receptors. We have studied rpL23a in detail and identified a very basic region to which each of the four import receptors bind avidly. This domain might be considered as an archetypal import signal that evolved before import receptors diverged in evolution. The presence of distinct binding sites for rpL23a and the M9 import signal in transportin, and for rpL23a and importin alpha in importin beta might explain how a single receptor can recognize very different import signals.
Collapse
Affiliation(s)
- S Jäkel
- Zentrum für Molekulare Biologie der Universität Heidelberg, Germany
| | | |
Collapse
|
497
|
|
498
|
Prieve MG, Guttridge KL, Munguia J, Waterman ML. Differential importin-alpha recognition and nuclear transport by nuclear localization signals within the high-mobility-group DNA binding domains of lymphoid enhancer factor 1 and T-cell factor 1. Mol Cell Biol 1998; 18:4819-32. [PMID: 9671491 PMCID: PMC109067 DOI: 10.1128/mcb.18.8.4819] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The transcription factor lymphoid enhancer factor 1 (LEF-1) is directed to the nucleus by a nine-amino-acid nuclear localization signal (NLS; KKKKRKREK) located in the high-mobility-group DNA binding domain. This NLS is recognized by two armadillo repeat proteins (pendulin/Rch1/alpha-P1/hSrp1alpha and Srp1/karyopherin-alpha/alpha-S1/NPI-1) which function in nuclear transport as the importin-alpha subunit of NLS receptors. T-cell factor 1 (TCF-1), a related transcription factor, contains a similar sequence (KKKRRSREK) in the identical position within its HMG DNA binding domain. We show that this sequence functions as an NLS in vivo but is not recognized by these two importin-alpha subtypes in a yeast two-hybrid assay and only weakly recognized in an in vitro binding assay. Transfer of the LEF-1 NLS to TCF-1 can confer pendulin/Rch1 binding, demonstrating that the NLS is the primary determinant for recognition. We have constructed a set of deletion mutations in pendulin/Rch1 to examine the differential NLS recognition more closely. We find that the entire armadillo repeat array of pendulin/Rch1 is necessary to maintain high affinity and specificity for the LEF-1 NLS versus the TCF-1 NLS. Importin-beta, the second subunit of the NLS receptor complex, does not influence in vitro NLS binding affinity or specificity. To test whether this differential recognition is indicative of distinct mechanisms of nuclear transport, the subcellular localization of LEF-1 and TCF-1 fused to green fluorescent protein (GFP)) was examined in an in vitro nuclear transport assay. GFP-LEF-1 readily localizes to the nucleus, whereas GFP-TCF-1 remains in the cytoplasm. Thus, LEF-1 and TCF-1 differ in several aspects of nuclear localization.
Collapse
Affiliation(s)
- M G Prieve
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California 92697-4025, USA
| | | | | | | |
Collapse
|
499
|
Heist EK, Srinivasan M, Schulman H. Phosphorylation at the nuclear localization signal of Ca2+/calmodulin-dependent protein kinase II blocks its nuclear targeting. J Biol Chem 1998; 273:19763-71. [PMID: 9677407 DOI: 10.1074/jbc.273.31.19763] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translocation of protein kinases with broad substrate specificities between different subcellular compartments by activation of signaling pathways is an established mechanism to direct the activity of these enzymes toward particular substrates. Recently, we identified two isoforms of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II), which are targeted to the nucleus by an alternatively spliced nuclear localization signal (NLS). Here we report that cotransfection with constitutively active mutants of CaM kinase I or CaM kinase IV specifically blocks nuclear targeting of CaM kinase II as a result of phosphorylation of a Ser immediately adjacent to the NLS of CaM kinase II. Both CaM kinase I and CaM kinase IV are able to phosphorylate this Ser residue in vitro, and mutagenesis studies suggest that this phosphorylation is both necessary and sufficient to block nuclear targeting. Furthermore, we provide experimental evidence that introduction of a negatively charged residue at this phosphorylation site reduces binding of the kinase to an NLS receptor in vitro, thus providing a mechanism that may explain the blockade of nuclear targeting that we have observed in situ.
Collapse
Affiliation(s)
- E K Heist
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305-5125, USA
| | | | | |
Collapse
|
500
|
Conti E, Uy M, Leighton L, Blobel G, Kuriyan J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell 1998; 94:193-204. [PMID: 9695948 DOI: 10.1016/s0092-8674(00)81419-1] [Citation(s) in RCA: 644] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Selective nuclear import is mediated by nuclear localization signals (NLSs) and cognate transport factors known as karyopherins or importins. Karyopherin alpha recognizes "classical" monopartite and bipartite NLSs. We report the crystal structure of a 50 kDa fragment of the 60 kDa yeast karyopherin alpha, in the absence and presence of a monopartite NLS peptide at 2.2 A and 2.8 A resolution, respectively. The structure shows a tandem array of ten armadillo repeats, organized in a right-handed superhelix of helices. Binding of the NLS peptide occurs at two sites within a helical surface groove that is lined by conserved residues. The structure reveals the determinants of NLS specificity and suggests a model for the recognition of bipartite NLSs.
Collapse
Affiliation(s)
- E Conti
- Laboratories of Molecular Biophysics, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|