451
|
Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem Soc Trans 2008; 35:1156-60. [PMID: 17956300 DOI: 10.1042/bst0351156] [Citation(s) in RCA: 515] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Resveratrol (3,4',5-trihydroxystilbene) is found in various plants, including grapes, berries and peanuts. It is also present in wines, especially red wines. During the last years, it has been the focus of numerous in vitro and in vivo studies investigating its biological attributes, which include mainly antioxidant and anti-inflammatory activities, anti-platelet aggregation effect, anti-atherogenic property, oestrogen-like growth-promoting effect, growth-inhibiting activity, immunomodulation and chemoprevention. In fact, recently, it has been demonstrated that the stilbene blocks the multistep process of carcinogenesis at various stages: tumour initiation, promotion and progression. More recent results provide interesting insights into the effect of this compound on the life span of yeasts and flies, implicating the potential of resveratrol as an anti-aging agent in treating age-related human diseases. Nevertheless, depending on the concentration of the phytoalexin and the cell type, it has also been shown that resveratrol can exhibit pro-oxidant properties, leading to oxidative breakage of cellular DNA in the presence of transition metal ions such as copper. Recently, it has been proposed that such a pro-oxidant action could be a common mechanism for anticancer and chemopreventive properties of plant polyphenols. The present paper is intended to provide the reader up-to-date information on the antioxidant and pro-oxidant properties of resveratrol and its clinical implications.
Collapse
|
452
|
|
453
|
Kode A, Rajendrasozhan S, Caito S, Yang SR, Megson IL, Rahman I. Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smoke-mediated oxidative stress in human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2007; 294:L478-88. [PMID: 18162601 DOI: 10.1152/ajplung.00361.2007] [Citation(s) in RCA: 317] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nuclear erythroid-related factor 2 (Nrf2), a redox-sensitive transcription factor, is involved in transcriptional regulation of many antioxidant genes, including glutamate-cysteine ligase (GCL). Cigarette smoke (CS) is known to cause oxidative stress and deplete glutathione (GSH) levels in alveolar epithelial cells. We hypothesized that resveratrol, a polyphenolic phytoalexin, has antioxidant signaling properties by inducing GSH biosynthesis via the activation of Nrf2 and protects lung epithelial cells against CS-mediated oxidative stress. Treatment of human primary small airway epithelial and human alveolar epithelial (A549) cells with CS extract (CSE) dose dependently decreased GSH levels and GCL activity, effects that were associated with enhanced production of reactive oxygen species. Resveratrol restored CSE-depleted GSH levels by upregulation of GCL via activation of Nrf2 and also quenched CSE-induced release of reactive oxygen species. Interestingly, CSE failed to induce nuclear translocation of Nrf2 in A549 and small airway epithelial cells. On the contrary, Nrf2 was localized in the cytosol of alveolar and airway epithelial cells due to CSE-mediated posttranslational modifications such as aldehyde/carbonyl adduct formation and nitration. On the other hand, resveratrol attenuated CSE-mediated Nrf2 modifications, thereby inducing its nuclear translocation associated with GCL gene transcription, as demonstrated by GCL-promoter reporter and Nrf2 small interfering RNA approaches. Thus resveratrol attenuates CSE-mediated GSH depletion by inducing GSH synthesis and protects epithelial cells by reversing CSE-induced posttranslational modifications of Nrf2. These data may have implications in dietary modulation of antioxidants in treatment of chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Aruna Kode
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Box 850,601 Elmwood Ave., Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
454
|
Shinohara Y, Toyohira Y, Ueno S, Liu M, Tsutsui M, Yanagihara N. Effects of resveratrol, a grape polyphenol, on catecholamine secretion and synthesis in cultured bovine adrenal medullary cells. Biochem Pharmacol 2007; 74:1608-18. [PMID: 17888406 DOI: 10.1016/j.bcp.2007.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 07/26/2007] [Accepted: 08/14/2007] [Indexed: 11/22/2022]
Abstract
We report the effects of resveratrol, a polyphenol found in the skins of red grapes, on catecholamine secretion and synthesis in cultured bovine adrenal medullary cells. Resveratrol suppressed catecholamine secretion and (22)Na(+) and (45)Ca(2+) influx induced by acetylcholine, an agonist of nicotinic acetylcholine receptors, in a concentration-dependent manner (IC(50)=20.4, 11.0, and 62.8 microM, respectively). Resveratrol also inhibited catecholamine secretion induced by veratridine, an activator of voltage-dependent Na(+) channels, and 56 mM K(+), an activator of voltage-dependent Ca(2+) channels, at concentrations similar to those for (45)Ca(2+) influx. Resveratrol directly inhibited the current evoked by acetylcholine in Xenopus oocytes expressing alpha3beta4 neuronal nicotinic acetylcholine receptors (IC(50)=25.9 microM). Furthermore, resveratrol (IC(50)=5.32 microM) attenuated (14)C-catecholamine synthesis induced by acetylcholine. The present findings suggest that resveratrol inhibits acetylcholine-induced catecholamine secretion and synthesis through suppressing ion influx in cultured bovine adrenal medullary cells.
Collapse
Affiliation(s)
- Yuko Shinohara
- Department of Pharmacology, University of Occupational and Environmental Health, School of Medicine, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | | | | | | | |
Collapse
|
455
|
Cullen JP, Morrow D, Jin Y, von Offenberg Sweeney N, Sitzmann JV, Cahill PA, Redmond EM. Resveratrol inhibits expression and binding activity of the monocyte chemotactic protein-1 receptor, CCR2, on THP-1 monocytes. Atherosclerosis 2007; 195:e125-33. [PMID: 17499741 PMCID: PMC2231518 DOI: 10.1016/j.atherosclerosis.2007.03.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 03/02/2007] [Accepted: 03/27/2007] [Indexed: 11/16/2022]
Abstract
UNLABELLED Monocyte chemotactic protein-1 and its receptor, CCR2, play a key role in atherosclerosis. We determined the effect of the polyphenol, resveratrol, on CCR2 and the mechanisms involved. Resveratrol treatment inhibited 125I-MCP-1 binding to THP-1 cells; 31, 56, 84% decrease for 10, 50 and 100 microM resveratrol, in the absence of any effect on receptor affinity. The inhibitory effect of resveratrol on 125I-MCP-1 binding to THP-1 cells and on CCR2 protein expression determined by FACS analysis was attenuated by treatment with L-NAME (NOS inhibitor), PD98059 (MAPK inhibitor) and LY294002 (PI3K inhibitor), whereas neither X/XO (reactive oxygen species generator) nor ICI182780 (estrogen receptor antagonist) had any effect. Concomitant with a decrease in CCR2 protein expression, resveratrol inhibited THP-1 CCR2 mRNA levels, in the absence of any effect on its stability; 26 and 45% inhibition at 10 and 50 microM resveratrol, respectively. This effect was not altered by co-treatment with L-NAME, PD98059 or ICI182780, but was potentiated by LY294002 and X/XO. CONCLUSIONS Resveratrol inhibits monocyte CCR2 binding activity in an NO-, MAPK- and PI3K-dependent manner, whereas it inhibits CCR2 mRNA in an NO- and MAPK-independent, PI3K-dependent manner. These inhibitory effects of resveratrol on chemokine receptor binding and expression may contribute, in part, to its cardiovascular protective activity in vivo.
Collapse
Affiliation(s)
- John P. Cullen
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642
| | - David Morrow
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642
| | - Ying Jin
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642
| | | | | | - Paul A. Cahill
- Vascular Health Research Centre, Dublin City University, Dublin, Ireland
| | - Eileen M. Redmond
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
456
|
Bertolini F, Novaroli L, Carrupt PA, Reist M. Novel screening assay for antioxidant protection against peroxyl radical‐induced loss of protein function. J Pharm Sci 2007; 96:2931-44. [PMID: 17705259 DOI: 10.1002/jps.20881] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Oxidative damage to proteins, implicated amongst other in the etiology and progression of Parkinson's disease (PD) and Alzheimer's disease (AD), results in the loss of specific biological protein function. A simple, sensitive, and cost-effective fluorimetric test to assess the antioxidant capacity of new chemical entities to protect proteins from loss of activity caused by reactive oxygen species (ROS) was developed using alkaline phosphatase (ALP) as model protein. Protein oxidation was induced by 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH) and the decrease in catalytic activity of ALP to hydrolyze 4-methylumbelliferyl phosphate (4-MUP) to fluorescent 4-methylumbelliferone (4-MU) was monitored as a marker of protein degradation. According to their capacity to protect ALP from peroxyl radical-induced activity loss, ten reference antioxidants were divided into three classes, namely efficient (pIC(50) > 5 for quercetin, chlorogenic acid, caffeic acid, mangiferin, and resveratrol), intermediate (4 < pIC(50) < or = 5 for melatonin, trolox, and ascorbic acid), and poor antioxidants (pIC(50) < 4 for glutathione and D-mannitol). Multifunctional drugs, having the ability to interact with several disease-related targets are of interest in PD. Therefore, the capacity of three catechol-O-methyltransferase (COMT) inhibitors, entacapone, nitecapone, and tolcapone to protect ALP from oxidative damage was also investigated and found to be very similar to the most potent reference antioxidants.
Collapse
Affiliation(s)
- Francesca Bertolini
- LCT-Pharmacochemistry, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
457
|
Kohnen S, Franck T, Van Antwerpen P, Boudjeltia KZ, Mouithys-Mickalad A, Deby C, Moguilevsky N, Deby-Dupont G, Lamy M, Serteyn D. Resveratrol inhibits the activity of equine neutrophil myeloperoxidase by a direct interaction with the enzyme. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:8080-7. [PMID: 17844991 DOI: 10.1021/jf071741n] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Resveratrol is a polyphenolic antioxidant present in beverage and food known for its multiple protective effects. We report the inhibitory effects of resveratrol on equine myeloperoxidase (MPO), a hemic peroxidase present in the granules of the neutrophils involved in the inflammatory response. Resveratrol inhibited the production of reactive oxygen species (ROS) by stimulated equine neutrophils by acting as a direct scavenger of the ROS released by the cells but did not modify the degranulation of the stimulated neutrophils as the amounts of released MPO were unchanged. Resveratrol strongly inhibited the chlorination, oxidation, and nitration activities of MPO in a dose-dependent manner. By an original technique of specific immunological extraction followed by enzymatic detection (SIEFED), we demonstrated that resveratrol inhibited the peroxidasic activity of the MPO measured by a direct interaction such as the fixation of resveratrol on the enzyme. The observation of a decrease of the accumulation of compound II suggested that resveratrol acts as an electron donor for MPO reduction.
Collapse
Affiliation(s)
- Stephan Kohnen
- Department of Clinical Sciences, Large Animal Surgery, Faculty of Veterinary Medicine B41, University of Liège, Sart Tilman, 4000 Liège, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
458
|
Chen JH, Hales CN, Ozanne SE. DNA damage, cellular senescence and organismal ageing: causal or correlative? Nucleic Acids Res 2007; 35:7417-28. [PMID: 17913751 PMCID: PMC2190714 DOI: 10.1093/nar/gkm681] [Citation(s) in RCA: 333] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/16/2007] [Accepted: 08/17/2007] [Indexed: 01/07/2023] Open
Abstract
Cellular senescence has long been used as a cellular model for understanding mechanisms underlying the ageing process. Compelling evidence obtained in recent years demonstrate that DNA damage is a common mediator for both replicative senescence, which is triggered by telomere shortening, and premature cellular senescence induced by various stressors such as oncogenic stress and oxidative stress. Extensive observations suggest that DNA damage accumulates with age and that this may be due to an increase in production of reactive oxygen species (ROS) and a decline in DNA repair capacity with age. Mutation or disrupted expression of genes that increase DNA damage often result in premature ageing. In contrast, interventions that enhance resistance to oxidative stress and attenuate DNA damage contribute towards longevity. This evidence suggests that genomic instability plays a causative role in the ageing process. However, conflicting findings exist which indicate that ROS production and oxidative damage levels of macromolecules including DNA do not always correlate with lifespan in model animals. Here we review the recent advances in addressing the role of DNA damage in cellular senescence and organismal ageing.
Collapse
Affiliation(s)
- Jian-Hua Chen
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QR, UK.
| | | | | |
Collapse
|
459
|
Guo L, Wang LH, Sun B, Yang JY, Zhao YQ, Dong YX, Spranger MI, Wu CF. Direct in vivo evidence of protective effects of grape seed procyanidin fractions and other antioxidants against ethanol-induced oxidative DNA damage in mouse brain cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:5881-91. [PMID: 17567031 DOI: 10.1021/jf070440a] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ethanol is a principle ingredient of alcoholic beverages with potential neurotoxicity and carcinogenicity, and the ethanol-associated oxidative DNA damage in the central nervous system is well documented. The present work studied the possible protective effects of grape seed oligomer and polymer procyanidin fractions against ethanol-induced toxicity and compared these with resveratrol and other well-known antioxidants (ascorbic acid and vitamin E). By using the single cell gel electrophoresis (comet assay), a simple and sensitive technique for genotoxicity studies, the potential genotoxicity of acute and chronic ethanol administration in the different brain regions was investigated. Acute ethanol administration, at the dose of 2.5 or 5.0 g kg(-1) i.p., could induce significant DNA damage in cerebellum and hippocampus. Chronic administration of ethanol at the dose of 2.5 or 5.0 g kg-1 p.o. for 30 days could induce significant DNA damage in cerebellum, hippocampus, hypothalamus, and cortex, which could be auto-repaired at least 3 days after ethanol withdrawal. Oral administration of grape seed oligomer and polymer procyanidins and resveratrol (25, 50, and 100 mg kg(-1)) for 3 days before acute ethanol (5.0 g kg(-1), i.p.) or repeated administration of these substances together with ethanol (5.0 g kg(-1), p.o.) for 30 consecutive days could significantly inhibit DNA damage in brain cells induced by ethanol. As compared, ascorbic acid (50, 100, and 200 mg kg(-1)) and vitamin E (100, 200, and 400 mg kg(-1)) could also present protective effects on ethanol-induced DNA damage. Furthermore, the concentrations of ethanol and acetaldehyde in brain regions of the mice were detected by gas chromatography after administration of ethanol plus antioxidants. All of the results indicated that ethanol could induce region-specific oxidative DNA damage in which the cerebellum and hippocampus were more vulnerable, but intake of grape seed procyanidins or other natural antioxidants could protect the brain against ethanol-induced genotoxicity.
Collapse
Affiliation(s)
- Lei Guo
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
460
|
Zhang W, Wang M, Xie HY, Zhou L, Meng XQ, Shi J, Zheng S. Role of Reactive Oxygen Species in Mediating Hepatic Ischemia-Reperfusion Injury and Its Therapeutic Applications in Liver Transplantation. Transplant Proc 2007; 39:1332-7. [PMID: 17580134 DOI: 10.1016/j.transproceed.2006.11.021] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 11/16/2006] [Indexed: 01/09/2023]
Abstract
Increasing evidence has shown that reactive oxygen species (ROS) are important mediators in liver ischemia/reperfusion injury(IRI). ROS include hydrogen peroxide (H(2)O(2)), superoxide anion (O(-2)), and hydroxyl radical (HO(-)), which may be generated by activated Kupffer cells in the liver, contributing to reperfusion injury. Hepatic IRI is a multistep process that damages liver graft function. To establish a series of therapeutic strategies to improve the outcome of liver transplantation, a good understanding of the mechanisms of IRI is essential. However, the detail mechanisms of how ROS lead to hepatocyte damage in IRI remains unclear. The aim of this review was to describe recent developments in the field of oxidative stress research. The first part of this review focused on the key roles and possible mechanisms of ROS in hepatic IRI. The second part of this review summarizes some findings including novel and classic antioxidant methods to ameliorate the hepatocyte damage during IRI.
Collapse
Affiliation(s)
- W Zhang
- Key Lab of Zhejiang Province Combined Multi-Organ Transplantation, Ministry of Public Health, and Dept. of Hepato-Biliary-Pancreatic Surgery, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003, P.R. China
| | | | | | | | | | | | | |
Collapse
|
461
|
Biological Activities of 3,5-Dihydroxy-N-(4-hydroxyphenyl)benzamide: A Mimic Compound of trans-Resveratrol. B KOREAN CHEM SOC 2007. [DOI: 10.5012/bkcs.2007.28.5.837] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
462
|
Ungvari Z, Orosz Z, Rivera A, Labinskyy N, Xiangmin Z, Olson S, Podlutsky A, Csiszar A. Resveratrol increases vascular oxidative stress resistance. Am J Physiol Heart Circ Physiol 2007; 292:H2417-24. [PMID: 17220179 DOI: 10.1152/ajpheart.01258.2006] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Epidemiological studies suggest that Mediterranean diets rich in resveratrol are associated with reduced risk of coronary artery disease. However, the mechanisms by which resveratrol exerts its vasculoprotective effects are not completely understood. Because oxidative stress and endothelial cell injury play a critical role in vascular aging and atherogenesis, we evaluated whether resveratrol inhibits oxidative stress-induced endothelial apoptosis. We found that oxidized LDL and TNF-α elicited significant increases in caspase-3/7 activity in endothelial cells and cultured rat aortas, which were prevented by resveratrol pretreatment (10−6–10−4 mol/l). The protective effect of resveratrol was attenuated by inhibition of glutathione peroxidase and heme oxygenase-1, suggesting a role for antioxidant systems in the antiapoptotic action of resveratrol. Indeed, resveratrol treatment protected cultured aortic segments and/or endothelial cells against increases in intracellular H2O2 levels and H2O2-mediated apoptotic cell death induced by oxidative stressors (exogenous H2O2, paraquat, and UV light). Resveratrol treatment also attenuated UV-induced DNA damage (comet assay). Resveratrol treatment upregulated the expression of glutathione peroxidase, catalase, and heme oxygenase-1 in cultured arteries, whereas it had no significant effect on the expression of SOD isoforms. Resveratrol also effectively scavenged H2O2 in vitro. Thus resveratrol seems to increase vascular oxidative stress resistance by scavenging H2O2 and preventing oxidative stress-induced endothelial cell death. We propose that the antioxidant and antiapoptotic effects of resveratrol, together with its previously described anti-inflammatory actions, are responsible, at least in part, for its cardioprotective effects.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | | | | | |
Collapse
|
463
|
Sehirli O, Sakarcan A, Velioğlu-Oğünç A, Cetinel S, Gedik N, Yeğen BC, Sener G. Resveratrol improves ifosfamide-induced Fanconi syndrome in rats. Toxicol Appl Pharmacol 2007; 222:33-41. [PMID: 17481685 DOI: 10.1016/j.taap.2007.03.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 02/01/2007] [Accepted: 03/08/2007] [Indexed: 11/21/2022]
Abstract
Regarding the mechanisms of ifosfamide (IFO)-induced urinary toxicity, several hypotheses have been put forward, among which oxidative stress and depletion of glutathione are suggested. This investigation elucidates the role of free radicals in IFO-induced toxicity and the protection by resveratrol, a natural phytoalexin. Wistar albino rats were injected intraperioneally with saline (0.9% NaCl; control), saline+resveratrol (RVT; 10 mg/kg/day), ifosfamide (IFO; 50 mg/kg/day) or IFO+RVT for 5 days. Urine was collected for 24 h during the 5th day, and at the 120th h after the first injections, animals were killed by decapitation and trunk blood was collected. Lactate dehydrogenase (LDH) activity, total antioxidant capacity (AOC) and pro-inflammatory cytokines TNF-alpha, IL-beta and IL-6 were assayed in plasma samples. Kidney and bladder tissues were obtained for biochemical and histological analysis. Formation of reactive oxygen species in the tissue samples was monitored by using chemiluminescence (CL) technique with luminol and lucigenin probes. The results demonstrated that IFO induced a Fanconi syndrome characterized by increased urinary sodium, phosphate, glucose and protein, along with increased serum creatinine and urea levels. On the other hand, RVT markedly ameliorated the severity of renal dysfunction induced by IFO. Furthermore IFO caused a significant decrease in plasma AOC, which was accompanied with significant increases in the levels of the pro-inflammatory mediators and LDH activity, while RVT treatment reversed all these biochemical indices. In the saline-treated IFO group, glutathione levels were decreased significantly, while the malondialdehyde levels, myeloperoxidase activity and collagen content were increased in both tissues, which were in parallel with the increases in CL values. In the RVT-treated IFO group, all of these oxidant responses were prevented significantly. Our results suggest that IFO causes oxidative damage in the renal and bladder tissues and resveratrol, via its antioxidant effects, protects these tissues. Therefore, its therapeutic role in preventing the development of chemotherapeutic drug-induced major toxicity in the urinary system requires further elucidation.
Collapse
Affiliation(s)
- Ozer Sehirli
- Marmara University, School of Pharmacy, Department of Pharmacology, Tibbiye Cad. 34668 Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
464
|
Silan C, Uzun O, Comunoğlu NU, Gokçen S, Bedirhan S, Cengiz M. Gentamicin-induced nephrotoxicity in rats ameliorated and healing effects of resveratrol. Biol Pharm Bull 2007; 30:79-83. [PMID: 17202664 DOI: 10.1248/bpb.30.79] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we aimed to investigate the possible protective effect of resveratrol on gentamicin induced nephrotoxicity. Experiments were carried out in male Wistar rats weighing 200-250 g. Gentamicin sulfate (80 mg/kg per day i.p.), resveratrol (10 mg/kg per day i.p.) and gentamicin together with resveratrol were administered for 6 d. The animals were sacrificed 24 h after the last injection. Urine, blood samples and tissue samples were collected from the animals on the seventh day of the treatment before they were sacrificed. Kidneys were collected for histopathological studies and fixed in 10% buffered formalin solution. Tissue samples were stored at -70 degrees C in liquid nitrogen for the determination of glutathione (GSH), glutathione-S-transferase (GST), malondialdehyde (MDA) and catalase (CAT). Glutathione assay was determined by the method of Beutler et al. GST amounts were measured by the method of Habig et al. Catalase activity was tested by Aebi's method and MDA was determined according to Thayer's method. Blood urea level was significantly increased in the gentamicin treated group. The study showed lowered levels of urea and creatinine levels in resveratrol administered groups when compared with gentamicin administered rats, and the difference was statistically significant. It has been determined that resveratrol caused statistically significant decrease in lipid peroxidation and reduced the level of catalase. Histopathological examination showed that resveratrol prevented partly gentamicin induced tubular damage. The results histopathologically demonstrated that resveratrol has a protective effect against gentamicin induced nephrotoxicity, lipid peroxidation and cellular damage in rats.
Collapse
Affiliation(s)
- Coşkun Silan
- Department of Pharmacology, Faculty of Medicine, Düzce University, Türkiye.
| | | | | | | | | | | |
Collapse
|
465
|
Kumar A, Kaundal RK, Iyer S, Sharma SS. Effects of resveratrol on nerve functions, oxidative stress and DNA fragmentation in experimental diabetic neuropathy. Life Sci 2007; 80:1236-44. [PMID: 17289084 DOI: 10.1016/j.lfs.2006.12.036] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 11/22/2006] [Accepted: 12/20/2006] [Indexed: 12/28/2022]
Abstract
Oxidative stress has been implicated in pathophysiology of diabetic neuropathy. All the pathways responsible for development of diabetic neuropathy are linked to oxidative stress in one way or the other. In the present study, we have targeted oxidative stress in diabetic neuropathy using resveratrol, a potent antioxidant. Eight weeks streptozotocin-diabetic rats developed neuropathy which was evident from significant reduction in motor nerve conduction velocity (MNCV), nerve blood flow (NBF) and increased thermal hyperalgesia. The 2-week treatment with resveratrol (10 and 20 mg/kg, i.p.) started 6 weeks after diabetes induction significantly ameliorated the alterations in MNCV, NBF, and hyperalgesia. Resveratrol also attenuated enhanced levels of malondialdehyde (MDA), peroxynitrite and produced increase in catalase levels in diabetic rats. There was marked reduction in DNA fragmentation observed after resveratrol treatment in diabetic rats as evident from decrease in Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) positive cells in sciatic nerve sections. Results of the present study suggest the potential of resveratrol in treatment of diabetic neuropathy and its protective effect may be mediated through reduction in oxidative stress and DNA fragmentation.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab-160062, India
| | | | | | | |
Collapse
|
466
|
Kasdallah-Grissa A, Mornagui B, Aouani E, Hammami M, El May M, Gharbi N, Kamoun A, El-Fazaâ S. Resveratrol, a red wine polyphenol, attenuates ethanol-induced oxidative stress in rat liver. Life Sci 2007; 80:1033-9. [PMID: 17258234 DOI: 10.1016/j.lfs.2006.11.044] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 11/19/2006] [Accepted: 11/22/2006] [Indexed: 02/07/2023]
Abstract
The involvement of oxidative stress in the pathogenesis of alcoholic diseases in the liver has been repeatedly confirmed. Resveratrol, a natural phytoalexin present in grape skin and red wine possesses a variety of biological activities including antioxidant. This study was conducted to evaluate whether resveratrol has a preventive effect on the main indicators of hepatic oxidative status as an expression of the cellular damage caused by free radicals, and on antioxidant defence mechanism during chronic ethanol treatment. Wistar rats were treated daily with 35% ethanol solution (3 g/kg/day i.p.) during 6 weeks and fed basal diet or basal diet containing 5 g/kg resveratrol. Control rats were treated with i.p. saline and fed basal diet. Experimentally, chronic ethanol administration leads to hepatotoxicity as monitored by the increase in the level of hepatic marker enzymes and the appearance of fatty change, necrosis, fibrosis and inflammation in liver sections. Ethanol also enhanced the formation of MDA in the liver indicating an increase in lipid peroxidation, a major end-point of oxidative damage, and caused drastic alterations in antioxidant defence systems. Particularly the activities of hepatic superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) were found reduced by ethanol treatment while glutathione reductase (GR) activity was unchanged. Dietary supplementation with resveratrol during ethanol treatment inhibited hepatic lipid peroxidation and ameliorated SOD, GPx and CAT activities in the liver. Conclusively, we can suggest that resveratrol could have a beneficial effect in inhibiting the oxidative damage induced by chronic ethanol administration, which was proved by the experiments that we conducted on rats.
Collapse
Affiliation(s)
- Abir Kasdallah-Grissa
- Laboratoire d'Endocrinologie, Département de Biologie, Faculté des Sciences de Tunis, Tunisia
| | | | | | | | | | | | | | | |
Collapse
|
467
|
Horn TL, Cwik MJ, Morrissey RL, Kapetanovic I, Crowell JA, Booth TD, McCormick DL. Oncogenicity evaluation of resveratrol in p53(+/-) (p53 knockout) mice. Food Chem Toxicol 2007; 45:55-63. [PMID: 16965847 PMCID: PMC1855246 DOI: 10.1016/j.fct.2006.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 06/22/2006] [Accepted: 07/16/2006] [Indexed: 02/05/2023]
Abstract
A six-month study was conducted in p53(+/-) mice to evaluate the possible oncogenicity of resveratrol (3,5,4'-trihydroxy-trans-stilbene), a cancer chemopreventive agent present in grapes and other foods. p53(+/-) mice (25/sex/group) received daily gavage exposure to vehicle only (negative control), resveratrol doses of 1000, 2000, or 4000 mg/kg/day, or p-cresidine (400 mg/kg/day; positive control). No mortality was seen in mice receiving the low dose of resveratrol. However, the mid and high doses induced mortality associated with impaction of the test article in the gastrointestinal tract. Resveratrol had no effect on body weight, food consumption, or clinical signs in surviving mice in any dose group, but induced dose-related increases in liver weight and serum cholesterol in both sexes. Mild anemia was seen in male mice at the high dose only; hematologic effects were not seen in females. Histopathology identified the kidney (hydronephrosis) and urinary bladder (epithelial hyperplasia) as target tissues for resveratrol toxicity. The incidences of both benign and malignant tumors in mice exposed to resveratrol were comparable to those in vehicle controls. By contrast, the positive control article, p-cresidine, induced urinary bladder cancer in both sexes. When administered to p53(+/-) mice at its maximum tolerated dose, resveratrol demonstrates no evidence of oncogenicity.
Collapse
Affiliation(s)
- T L Horn
- Life Sciences Group, IIT Research Institute, 10 West 35th Street, Chicago, IL 60616, USA
| | | | | | | | | | | | | |
Collapse
|
468
|
Wada M, Kido H, Ohyama K, Ichibangase T, Kishikawa N, Ohba Y, Nakashima M, Kuroda N, Nakashima K. Chemiluminescent screening of quenching effects of natural colorants against reactive oxygen species: Evaluation of grape seed, monascus, gardenia and red radish extracts as multi-functional food additives. Food Chem 2007. [DOI: 10.1016/j.foodchem.2006.02.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
469
|
Kumar A, Naidu PS, Seghal N, Padi SSV. Neuroprotective Effects of Resveratrol against Intracerebroventricular Colchicine-Induced Cognitive Impairment and Oxidative Stress in Rats. Pharmacology 2006; 79:17-26. [PMID: 17135773 DOI: 10.1159/000097511] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 09/13/2006] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease is a complex and multifactorial neurodegenerative disease. Central administration of colchicine, a microtubule-disrupting agent, causes loss of cholinergic neurons and cognitive dysfunction that is associated with excessive free radical generation. The present study was aimed at evaluating the effects of trans-resveratrol in the prevention of colchicine-induced cognitive impairment and oxidative stress in rats. Intracerebroventricular administration of colchicine (15 microg/5 microl) induced impaired cognitive functions in both the Morris water maze task and the elevated plus-maze task. Chronic treatment with resveratrol (10 and 20 mg/kg, p.o.) for a period of 25 days, beginning 4 days prior to colchicine injection, significantly improved the colchicine-induced cognitive impairment. Intracerebroventricular colchicine injection resulted in free radical generation characterized by alterations in oxidative stress markers with a significant increase in malondialdehyde (MDA) and nitrite levels and depletion of reduced glutathione (GSH) activity in the rat brains. It also showed a significant decrease in acetylcholinesterase activity. Besides improving cognitive dysfunction, chronic administration of resveratrol significantly reduced the elevated MDA and nitrite levels and restored the depleted GSH and acetylcholinesterase activity. Results of the present study indicated that trans-resveratrol has a neuroprotective role against colchicine-induced cognitive impairment and associated oxidative stress.
Collapse
Affiliation(s)
- A Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| | | | | | | |
Collapse
|
470
|
Wallace CHR, Baczkó I, Jones L, Fercho M, Light PE. Inhibition of cardiac voltage-gated sodium channels by grape polyphenols. Br J Pharmacol 2006; 149:657-65. [PMID: 17016511 PMCID: PMC2014645 DOI: 10.1038/sj.bjp.0706897] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The cardiovascular benefits of red wine consumption are often attributed to the antioxidant effects of its polyphenolic constituents, including quercetin, catechin and resveratrol. Inhibition of cardiac voltage-gated sodium channels (VGSCs) is antiarrhythmic and cardioprotective. As polyphenols may also modulate ion channels, and possess structural similarities to several antiarrhythmic VGSC inhibitors, we hypothesised that VGSC inhibition may contribute to cardioprotection by these polyphenols. EXPERIMENTAL APPROACH The whole-cell voltage-clamp technique was used to record peak and late VGSC currents (INa) from recombinant human heart NaV1.5 channels expressed in tsA201 cells. Right ventricular myocytes from rat heart were isolated and single myocytes were field-stimulated. Either calcium transients or contractility were measured using the calcium-sensitive dye Calcium-Green 1AM or video edge detection, respectively. KEY RESULTS The red grape polyphenols quercetin, catechin and resveratrol blocked peak INa with IC50s of 19.4 microM, 76.8 microM and 77.3 microM, respectively. In contrast to lidocaine, resveratrol did not exhibit any frequency-dependence of peak INa block. Late INa induced by the VGSC long QT mutant R1623Q was reduced by resveratrol and quercetin. Resveratrol and quercetin also blocked late INa induced by the toxin, ATX II, with IC50s of 26.1 microM and 24.9 microM, respectively. In field-stimulated myocytes, ATXII-induced increases in diastolic calcium were prevented and reversed by resveratrol. ATXII-induced contractile dysfunction was delayed and reduced by resveratrol. CONCLUSIONS AND IMPLICATIONS Our results indicate that several red grape polyphenols inhibit cardiac VGSCs and that this effect may contribute to the documented cardioprotective efficacy of red grape products.
Collapse
Affiliation(s)
- C H R Wallace
- Department of Pharmacology, University of Alberta, 9-58 Medical Sciences Building Edmonton, Alberta, Canada
| | - I Baczkó
- Department of Pharmacology, University of Alberta, 9-58 Medical Sciences Building Edmonton, Alberta, Canada
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical Center, University of Szeged Szeged, Hungary
| | - L Jones
- Department of Pharmacology, University of Alberta, 9-58 Medical Sciences Building Edmonton, Alberta, Canada
| | - M Fercho
- Department of Pharmacology, University of Alberta, 9-58 Medical Sciences Building Edmonton, Alberta, Canada
| | - P E Light
- Department of Pharmacology, University of Alberta, 9-58 Medical Sciences Building Edmonton, Alberta, Canada
- Author for correspondence:
| |
Collapse
|
471
|
Sener G, Tuğtepe H, Yüksel M, Cetinel S, Gedik N, Yeğen BC. Resveratrol Improves Ischemia/Reperfusion-Induced Oxidative Renal Injury in Rats. Arch Med Res 2006; 37:822-9. [PMID: 16971220 DOI: 10.1016/j.arcmed.2006.04.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 04/17/2006] [Indexed: 01/19/2023]
Abstract
BACKGROUND The present study was designed to examine whether resveratrol, a potent antioxidant, protects against renal ischemia-reperfusion (I/R) injury. METHODS Wistar albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 6 h of reperfusion. Resveratrol (RVT, 30 mg/kg, i.p.) or vehicle was administered twice, at 30 min prior to ischemia and immediately before the reperfusion period. At the end of the reperfusion period, rats were decapitated and kidney samples were taken for histological examination or determination of levels of renal malondialdehyde (MDA), an end product of lipid peroxidation; glutathione (GSH), a key antioxidant; and myeloperoxidase (MPO) activity, an index of tissue neutrophil infiltration. Formation of reactive oxygen species in hepatic tissue samples was monitored by using chemiluminescence (CL) technique with luminol and lucigenin probes. Renal tissue collagen content as a fibrosis marker was also determined, while serum creatinine and urea concentrations were measured for the evaluation of renal function. Tumor necrosis factor-alpha (TNF-alpha ) and lactate dehydrogenase (LDH) were also assayed in serum samples. RESULTS Ischemia/reperfusion caused a significant decrease in tissue GSH level, which was accompanied by significant increases in the renal luminol and lucigenin CL values, MDA level, MPO activity and collagen content. Similarly, serum creatinine and BUN levels, as well as LDH and TNF-alpha, were elevated in the I/R group as compared to control group. On the other hand, resveratrol treatment reversed all these biochemical indices, as well as histopathological alterations that were induced by I/R. CONCLUSIONS Findings of the present study suggest that resveratrol exerts renoprotective effects via its radical scavenging and antioxidant activities, which appear to involve the inhibition of tissue neutrophil infiltration.
Collapse
Affiliation(s)
- Göksel Sener
- Department of Pharmacology, School of Pharmacy, Marmara University, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
472
|
Eybl V, Kotyzova D, Koutensky J. Comparative study of natural antioxidants - curcumin, resveratrol and melatonin - in cadmium-induced oxidative damage in mice. Toxicology 2006; 225:150-6. [PMID: 16806632 DOI: 10.1016/j.tox.2006.05.011] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 05/17/2006] [Accepted: 05/17/2006] [Indexed: 01/08/2023]
Abstract
The present study was designed to examine the antioxidative effect of curcumin, resveratrol and melatonin pre-treatment on cadmium-induced oxidative damage and cadmium distribution in an experimental model in mice. Male CD mice were treated once daily for 3 days with curcumin (50mg/kg b.w., p.o.), resveratrol (20mg/kg b.w., p.o.) or melatonin (12mg/kg, p.o.), dispersed in 0.5% methylcellulose. One hour after the last dose of antioxidants cadmium chloride was administered (7mg/kg b.w., s.c.) to pre-treated animals and control animals receiving methylcellulose. At 24th h after Cd administration the lipid peroxidation (LP - expressed as malondialdehyde production), reduced glutathione (GSH), catalase (CAT) and glutathione peroxidase (GPx) were estimated in liver homogenates. Cadmium concentration was measured in the liver, kidneys, testes and brain by AAS. Cadmium chloride administration to mice induced hepatic lipid peroxidation (to 133%, p<0.001), decreased GSH content (to 65%, p<0.001) and inhibited catalase (to 68%, p<0.001) and GPx activity (to 60%, p<0.001) in the liver. Curcumin, resveratrol and melatonin oral pre-treatment completely prevented the Cd-induced lipid peroxidation and Cd-induced inhibition of GPx hepatic activity. Resveratrol was effective against Cd-induced inhibition of catalase activity (p<0.001). The decrease in hepatic GSH level was not prevented by curcumin, resveratrol or melatonin pre-treatment. In mice treated with antioxidants alone the level of LP, GSH, GPx or CAT was not different from control levels. The pre-treatment with antioxidants did not affect cadmium distribution in the tissues of Cd-intoxicated mice. The results demonstrate that curcumin, resveratrol and melatonin pre-treatment effectively protect against cadmium-induced lipid peroxidation and ameliorate the adverse effect of cadmium on antioxidant status without any reduction in tissue Cd burden.
Collapse
Affiliation(s)
- Vladislav Eybl
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Medicine in Pilsen, Karlovaská 48, 301 66 Pilsen, Czech Republic.
| | | | | |
Collapse
|
473
|
Lines TC, Ono M. FRS 1000, an extract of red onion peel, strongly inhibits phosphodiesterase 5A (PDE 5A). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2006; 13:236-9. [PMID: 16492525 DOI: 10.1016/j.phymed.2004.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Accepted: 12/28/2004] [Indexed: 05/06/2023]
Abstract
As part of our ongoing search for flavonoids that are bioactive in humans, it was determined that FRS 1000, a beverage containing flavonoids extracted from onion peel, showed unexpected improvement of male sexual function. An in vitro enzyme assay clearly showed that FRS 1000 has a strong phosphodiesterase 5A (PDE 5A) inhibitory activity, which is considered to be important for treatment of erectile dysfunction. Detailed assays of each major ingredient indicated that the antioxidative flavonoid quercetin was responsible for the activity. Results also suggested that PDE 5A inhibition is not directly related to the free radical scavenging activity of flavonoids.
Collapse
Affiliation(s)
- T C Lines
- Quercegen Holdings LLC, Newton, MA, USA
| | | |
Collapse
|
474
|
Abstract
In the intracellular redox state (GSH/GSSG) the cell plays a key role in the regulation and potentiation of the inflammatory response in lung cells. Glutathione and thioredoxin are the important protective antioxidants in the lungs. Regulation of intracellular redox glutathione and thioredoxin levels in response to reactive oxygen/nitrogen species and in inflammation should have critical effects on different lung cells on the activation of redox sensor/signal transduction pathways and various transcription factors. Possibly via the modification of cysteine residues, oxidative stress activates multiple stress kinase pathways and transcription factors nuclear factor-kappaB and activator protein-1, which differentially regulate the genes for proinflammatory cytokines as well as the protective antioxidant genes. Emerging data suggest that protein-S-thiolation, protein-S-nitrosation, and oxidation of protein-SH (formation of sulfenic, sulfinic, and sulfonic acids) are critical in redox signaling during normal physiology and under oxidative stress in controlling the cellular processes. In this review, we discuss the recent findings in the context of redox signaling during inflammation, pathology, and the role of redox modulating agents/dietary interventions either to inhibit abnormal signaling or induce/boost the endogenous antioxidant systems. Furthermore, this also provides information as to how antioxidants are involved in redox signaling to control inflammatory and oxidative stress in the lung.
Collapse
Affiliation(s)
- Irfan Rahman
- Department of Environmental Medicine, Division of Lung Biology and Disease, University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | | | |
Collapse
|
475
|
Li ZD, Ma QY, Wang CA. Effect of resveratrol on pancreatic oxygen free radicals in rats with severe acute pancreatitis. World J Gastroenterol 2006; 12:137-40. [PMID: 16440434 PMCID: PMC4067495 DOI: 10.3748/wjg.v12.i1.137] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the therapeutic effects of resveratrol (RESV) as a free radical scavenger on experimental severe acute pancreatitis (SAP).
METHODS: Seventy-two male Sprague–Dawley rats were divided randomly into sham operation group, SAP group, and resveratrol-treated group. Pancreatitis was induced by intraductal administration of 0.1 mL/kg 4% sodium taurocholate. RESV was given intravenously at a dose of 20 mg/kg body weight. All animals were killed at 3, 6, 12 h after induction of the model. Serum amylase, pancreatic superoxide dismutase (SOD), malondialdehyde (MDA), and myeloperoxidase (MPO) were determined. Pathologic changes of the pancreas were observed under optical microscope.
RESULTS: The serum amylase, pancreatic MPO and the score of pathologic damage increased after the induction of pancreatitis, early (3, 6 h) SAP samples were characterized by decreased pancreatic SOD and increased pancreatic MDA. Resveratrol exhibited a protective effect against lipid peroxidation in cell membrane caused by oxygen free radicals in the early stage of SAP. This attenuation of the redox state impairment reduced cellular oxidative damage, as reflected by lower serum amylase, less severe pancreatic lesions, normal pancreatic MDA levels, as well as diminished neutrophil infiltration in pancreas.
CONCLUSION: RESV may exert its therapeutic effect on SAP by lowering pancreatic oxidative free radicals and reducing pancreatic tissue infiltration of neutrophils.
Collapse
Affiliation(s)
- Zhen-Dong Li
- Department of Hepatobiliary Surgery, First Hospital of Xi'an Jiaotong University, 1 Jiankang Road, Xi'an 710061, Shaanxi Province China.
| | | | | |
Collapse
|
476
|
WADA M, KATOH M, KIDO H, NAKASHIMA MN, KURODA N, NAKASHIMA K. Flow Injection Analysis with Luminol Chemiluminescence Detection for Evaluation of Quenching Effects of Grape Seed Extracts and Polyphenolics against Reactive Oxygen Species. BUNSEKI KAGAKU 2006. [DOI: 10.2116/bunsekikagaku.55.931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mitsuhiro WADA
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University
| | - Masayuki KATOH
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University
| | - Hirotsugu KIDO
- Mitsubishi Chemical Corporation, Specialty Chemicals Company
| | - Mihoko N. NAKASHIMA
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University
| | - Naotaka KURODA
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University
| | - Kenichiro NAKASHIMA
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University
| |
Collapse
|
477
|
Zaslaver M, Offer S, Kerem Z, Stark AH, Weller JI, Eliraz A, Madar Z. Natural compounds derived from foods modulate nitric oxide production and oxidative status in epithelial lung cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:9934-9. [PMID: 16366677 DOI: 10.1021/jf052000u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The effects of natural antioxidants on nitric oxide (NO) modulation and oxidative status were determined in rat epithelial lung cells (L-2). Cells were stimulated with cytokines and treated with one of the following: resveratrol, soybean saponin group B (SSB), quercetin, genistein, olive leaf polyphenol concentrate (OLPC), or N-acetyl-L-cystein (NAC). NAC had no effect on NO levels, whereas resveratrol and OLPC were found to be effective in reducing nitrite levels, modifying iNOS mRNA, and decreasing free radical production. OLPC affected the levels of MnSOD while resveratrol did not, indicating that they act via different pathways. Quercetin and genistein reduced nitrite levels without affecting iNOS levels, presumably by scavenging NO. SSB did not affect nitrite levels, but exposure did reduce iNOS mRNA expression and protein levels, possibly due to antioxidant activity. Naturally occurring antioxidants, in particular resveratrol and OLPC, may have therapeutic potential in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Maayan Zaslaver
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
478
|
Plin C, Tillement JP, Berdeaux A, Morin D. Resveratrol protects against cold ischemia-warm reoxygenation-induced damages to mitochondria and cells in rat liver. Eur J Pharmacol 2005; 528:162-8. [PMID: 16325807 DOI: 10.1016/j.ejphar.2005.10.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 10/18/2005] [Accepted: 10/25/2005] [Indexed: 01/25/2023]
Abstract
Ischemia-reperfusion is a critical event in the development of primary graft dysfunctions after liver transplantations. Ischemia-reperfusion causes cell injuries which are related to the successive cold preservation-warm reperfusion (CPWR) periods required by the graft. Recent evidences suggest that oxidative stress plays an important role in the development of these injuries and that mitochondrial dysfunctions are involved. The purpose of this study was to investigate the effect of the natural phytoalexin resveratrol on the prevention of liver injuries induced by 40-h cold preservation followed by a warm reperfusion. CPWR induced liver mitochondrial and cellular damages as attested by the increase in lipid peroxidation of liver membranes, the alteration of oxidative phosphorylation parameters, mitochondrial swelling and the activation of the cellular markers of necrosis and apoptosis, i.e., lactate dehydrogenase (LDH) leakage, mitochondrial cytochrome c release and caspase activation. Resveratrol inhibits lipid peroxidation and protects mitochondrial functions. It improves respiratory chain activity and prevents opening of the permeability transition pore, allowing better recovery of ATP energetic charge. Resveratrol also limits the activation of the cellular markers of necrosis and apoptosis. These protective effects could be related to the antioxidant properties of the drug but also to its membrane-stabilizing activity. Indeed, further experiments demonstrate that resveratrol is able to prevent the release of cytochrome c caused by oxygen deprivation in isolated liver mitochondria. These data demonstrate that resveratrol ameliorates the liver injury induced by CPWR and appears as a promising drug to improve the primary function of the grafted liver after transplantation.
Collapse
|
479
|
Surh YJ, Kundu JK, Na HK, Lee JS. Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutr 2005; 135:2993S-3001S. [PMID: 16317160 DOI: 10.1093/jn/135.12.2993s] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress has been implicated in various pathological conditions including cancer. However, the human body has an intrinsic ability to fight against oxidative stress. A wide array of phase 2 detoxifying or antioxidant enzymes constitutes a fundamental cellular defense system against oxidative and electrophilic insults. Transcriptional activation of genes encoding detoxifying and antioxidant enzymes by NF-E2 related factor 2 (Nrf2), a member of the cap'n'collar family of basic leucine zipper transcription factors, may protect cells and tissues from oxidative damage. Many chemopreventive and chemoprotective phytochemicals have been found to enhance cellular antioxidant capacity through activation of this particular transcription factor, thereby blocking initiation of carcinogenesis. A new horizon in chemoprevention research is the recent discovery of molecular links between inflammation and cancer. Components of the cell signaling pathways, especially those that converge on redox-sensitive transcription factors, including nuclear factor-kappaB (NF-kappaB) and activator protein 1 (AP-1) involved in mediating inflammatory response, have been implicated in carcinogenesis. A wide variety of chemopreventive and chemoprotective agents can alter or correct undesired cellular functions caused by abnormal proinflammatory signal transmission mediated by inappropriately activated NF-kappaB and AP-1. The modulation of cellular signaling by anti-inflammatory phytochemicals hence provides a rational and pragmatic strategy for molecular target-based chemoprevention.
Collapse
Affiliation(s)
- Young-Joon Surh
- National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea.
| | | | | | | |
Collapse
|
480
|
Surh YJ, Kumar Kundu J. Resveratrol as an Antiinflammatory Agent. OXIDATIVE STRESS AND DISEASE 2005. [DOI: 10.1201/9781420026474.ch25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
481
|
Mastore M, Kohler L, Nappi AJ. Production and utilization of hydrogen peroxide associated with melanogenesis and tyrosinase-mediated oxidations of DOPA and dopamine. FEBS J 2005; 272:2407-15. [PMID: 15885091 DOI: 10.1111/j.1742-4658.2005.04661.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and involvement of H(2)O(2) during the early stages of melanogenesis involving the oxidations of DOPA and dopamine (diphenolase activity) were established by two sensitive and specific electrochemical detection systems. Catalase-treated reaction mixtures showed diminished rates of H(2)O(2) production during the autoxidation and tyrosinase-mediated oxidation of both diphenols. Inhibition studies with the radical scavenger resveratrol revealed the involvement in these reactions of additional reactive intermediate of oxygen (ROI), one of which appears to be superoxide anion. There was no evidence to suggest that H(2)O(2) or any other ROI was produced during the tyrosinase-mediated conversion of tyrosine to DOPA (monophenolase activity). Establishing by electrochemical methods the endogenous production H(2)O(2) in real time confirms recent reports, based in large part on the use of exogenous H(2)O(2), that tyrosinase can manifest both catalase and peroxidase activities. The detection of ROI in tyrosinase-mediated in vitro reactions provides evidence for sequential univalent reductions of O(2), most likely occurring at the enzyme active site copper. Collectively, these observations focus attention on the possible involvement of peroxidase-H(2)O(2) systems and related ROI-mediated reactions in promoting melanocytotoxic and melanoprotective processes.
Collapse
Affiliation(s)
- Maristella Mastore
- Università degli Studi dell'Insubria, Dipartimento di Biologia Strutturale e Funzionale, Laboratorio di Immunologia Comparata, Varese, Italy
| | | | | |
Collapse
|
482
|
Leiro J, Arranz JA, Fraiz N, Sanmartín ML, Quezada E, Orallo F. Effect of cis-resveratrol on genes involved in nuclear factor kappa B signaling. Int Immunopharmacol 2005; 5:393-406. [PMID: 15652768 DOI: 10.1016/j.intimp.2004.10.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 10/04/2004] [Accepted: 10/18/2004] [Indexed: 10/26/2022]
Abstract
This study investigated for the first time the effects of the cis isomer of RESV (c-RESV), a polyphenol present in red wine, on an array of genes whose expression is controlled by nuclear factor kappa B (NF-kappaB) and whose transcriptional activation is critical in a number of pathologies (including some cardiovascular diseases). In inflammatory peritoneal macrophages stimulated with lipopolysaccharide (LPS) and gamma interferon (IFN-gamma), c-RESV significantly blocked the expression of genes related to the REL/NF-kappaB/IkappaB family, adhesion molecules and acute-phase proteins; however, the greatest modulatory effect was obtained on the expression of genes related to the pro-inflammatory cytokines. c-RESV down-regulated the nuclear factor of kappa light chain gene enhancer in B-cells 1 (NFkappaBL1) gene product p105 and up-regulated the nuclear factor of kappa light chain gene enhancer in B-cells inhibitor alpha (IkappaBalpha) gene. c-RESV also significantly inhibited intercellular adhesion molecule-1 (ICAM-1) gene expression and the transmembrane receptors RIP (receptor TNFRSF) and TLR3 (toll-like receptor 7). At 100 muM, c-RESV significantly inhibited transcription of Scya2 (chemokine MCP-1), the chemokine RANTES (regulated on activation, normal T cell expressed and secreted), pro-inflammatory cytokines that attract monocyte-granulocyte cells such as M-CSF (colony-stimulating factor 1), GM-CSF (colony-stimulating factor 2) and G-CSF (colony-stimulating factor 3), the cytokine tumor growth factor beta (TGF-beta) and the extracellular ligand IL-1alpha. In contrast, c-RESV stimulated transcription of the pro-inflammatory cytokines IL-6 and tumor necrosis factor alpha (TNF-alpha), the extracellular ligand IL-1beta, and the IFN regulatory factor (IRF)-1. In conclusion, c-RESV has a significant modulatory effect on the NF-kappaB signaling pathway and, consequently, an important antioxidant role that may partially explain the cardioprotective effects attributed to long-term moderate red wine consumption.
Collapse
Affiliation(s)
- J Leiro
- Laboratorio de Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela, Av. Constatino Candeira s/n, 15782 Santiago de Compostela, Spain.
| | | | | | | | | | | |
Collapse
|
483
|
Wang SY, Feng R, Bowman L, Penhallegon R, Ding M, Lu Y. Antioxidant activity in lingonberries (Vaccinium vitis-idaea L.) and its inhibitory effect on activator protein-1, nuclear factor-kappaB, and mitogen-activated protein kinases activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:3156-3166. [PMID: 15826073 DOI: 10.1021/jf048379m] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Lingonberry has been shown to contain high antioxidant activity. Fruits from different cultivars of lingonberry (Vaccinium vitis-idaea L.) were evaluated for fruit quality, antioxidant activity, and anthocyanin and phenolic contents. The fruit soluble solids, titratable acids, antioxidant capacity, and anthocyanin and phenolic contents varied with cultivars. Lingonberries contain potent free radical scavenging activities for DPPH*, ROO*, *OH, and O2*- radicals. Pretreatment of JB6 P+ mouse epidermal cells with lingonberry extracts produced a dose-dependent inhibition on the activation of activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) induced by either 12-O-tetradecanoylphorbol-13-acetate (TPA) or ultraviolet-B (UVB). Lingonberry extract blocked UVB-induced phosphorylation of the mitogen-activated protein kinase (MAPK) signaling members ERK1, ERK2, p38, and MEK1/2 but not JNK. Lingonberry extract also prevented TPA-induced phosphorylation of ERK1, ERK2, and MEK1/2. Results of soft agar assays indicated that lingonberry extract suppressed TPA-induced neoplastic transformation of JB6 P(+) cells in a dose-dependent manner. Lingonberry extract also induced the apoptosis of human leukemia HL-60 cells in a dose-independent manner. These results suggest that ERK1, ERK2, and MEK1/2 may be the primary targets of lingonberry that result in suppression of AP-1, NF-kappaB, and neoplastic transformation in JB6 P(+) cells and causes cancer cell death by an apoptotic mechanism in human leukemia HL-60 cells.
Collapse
Affiliation(s)
- Shiow Y Wang
- Fruit Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705-2350, USA
| | | | | | | | | | | |
Collapse
|
484
|
Feng R, Bowman LL, Lu Y, Leonard SS, Shi X, Jiang BH, Castranova V, Vallyathan V, Ding M. Blackberry extracts inhibit activating protein 1 activation and cell transformation by perturbing the mitogenic signaling pathway. Nutr Cancer 2005; 50:80-9. [PMID: 15572301 DOI: 10.1207/s15327914nc5001_11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Blackberries are natural rich sources of bioflavonoids and phenolic compounds that are commonly known as potential chemopreventive agents. Here, we investigated the effects of fresh blackberry extracts on proliferation of cancer cells and neoplastic transformation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), as well as the underlying mechanisms of signal transduction pathways. Using electron spin resonance, we found that blackberry extract is an effective scavenger of free radicals, including hydroxyl and superoxide radicals. Blackberry extract inhibited the proliferation of a human lung cancer cell line, A549. Pretreatment of A549 cells with blackberry extract resulted in an inhibition of 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation induced by ultraviolet B (UVB) irradiation. Blackberry extract decreased TPA-induced neoplastic transformation of JB6 P+ cells. Pretreatment of JB6 cells with blackberry extract resulted in the inhibition of both UVB- and TPA-induced AP-1 transactivation. Furthermore, blackberry extract also blocked UVB- or TPA-induced phosphorylation of ERKs and JNKs, but not p38 kinase. Overall, these results indicated that an extract from fresh blackberry may inhibit tumor promoter-induced carcinogenesis and associated cell signaling, and suggest that the chemopreventive effects of fresh blackberry may be through its antioxidant properties by blocking reactive oxygen species-mediated AP-1 and mitogen-activated protein kinase activation.
Collapse
Affiliation(s)
- Rentian Feng
- Pathology and Physiology Research Branch, Helath Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
485
|
Maldonado PD, Rivero-Cruz I, Mata R, Pedraza-Chaverrí J. Antioxidant activity of A-type proanthocyanidins from Geranium niveum (Geraniaceae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:1996-2001. [PMID: 15769126 DOI: 10.1021/jf0483725] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Geranium niveum S. Watson (Geraniaceae) is a medicinal herb widely used by the Tarahumara Indians of Mexico. This species is rich in proanthocyanidins and other phenolics. Previous in vitro assays have demonstrated that proanthocyanidins exhibited antiinflammatory, antiviral, antibacterial, enzyme-inhibiting, antioxidant, and radical-scavenging properties. In view of its medicinal use and chemical composition, the aim of the present study was to determine the in vitro antioxidant activity of the extracts and two proanthocyanidins (geranins A and D) from the roots of G. niveum by using seven different assay systems, namely, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH), superoxide anion (O2*-), hydrogen peroxide (H2O2), hydroxyl radical (OH*), hypochlorous acid (HOCl), and singlet oxygen ((1)O2). Two known antioxidants, resveratrol and ascorbic acid, were used as positive controls. The results showed that geranins A and D and the extracts were able to scavenge ABTS, DPPH, O2*-, OH*, and HOCl. The scavenging ability of geranins A and D was similar to that of resveratrol and ascorbic acid in the following assays: ABTS, O2*-, and HOCl. The scavenging capacity of ascorbic acid for DPPH was higher than that of both geranins and resveratrol. On the other hand, the OH* scavenging action of both geranins and resveratrol was similar. The methanol-CHCl3 (1:1) extract had a higher ability to scavenge ABTS, DPPH, and O2*- radicals than the chloroform extract. In turn, the latter was more potent than the methanol-CHCl3 (1:1) extract as OH* or HOCl scavenger agent. Neither geranins A and D nor the extracts were able to scavenge H2O2 and (1)O2. In conclusion, G. niveum roots have proanthocyanidins with powerful radical scavenging in vitro activity. This property may partially explain the wide use of this plant in the Tarahumara indigenous system of medicine for the treatment of gastrointestinal illnesses (other than spasms), pain, and fevers associated with oxidative stress.
Collapse
Affiliation(s)
- Perla D Maldonado
- Laboratorio de Patología Vascular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur, Tlalpan, 14269, Mexico City, Mexico
| | | | | | | |
Collapse
|
486
|
Abstract
Resveratrol (3,4',5-trihydroxy-trans-stilbene), a phytoalexin found in grape skins, peanuts, and red wine, has been reported to have a wide range of biological and pharmacological properties. It has been speculated that at low doses (such as consumed in the common diet) resveratrol may have cardioprotective activity. In this article we describe recent in vitro and in vivo studies in animal models. The results of these studies suggest that resveratrol modulates vascular cell function, inhibits LDL oxidation, suppresses platelet aggregation and reduces myocardial damage during ischemia-reperfusion. Although the reported biological data indicate that resveratrol is a highly promising cardiovascular protective agent, more studies are needed to establish its bioavailability and in vivo cardioprotective effects, particularly in humans.
Collapse
Affiliation(s)
- Silvia Bradamante
- CNR-ISTM, Istituto di Scienze e Tecnologie Molecolari, Via Golgi 19, 20133 Milano, Italy.
| | | | | |
Collapse
|
487
|
Rigolio R, Miloso M, Nicolini G, Villa D, Scuteri A, Simone M, Tredici G. Resveratrol interference with the cell cycle protects human neuroblastoma SH-SY5Y cell from paclitaxel-induced apoptosis. Neurochem Int 2005; 46:205-211. [PMID: 15670636 DOI: 10.1016/j.neuint.2004.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 10/27/2004] [Accepted: 11/01/2004] [Indexed: 10/26/2022]
Abstract
In previous studies we demonstrated that resveratrol acts in an antiapoptotic manner on the paclitaxel-treated human neuroblastoma (HN) SH-SY5Y cell line inhibiting the apoptotic pathways induced by the antineoplastic drug. In the present study we evaluated the antiapoptotic effect of resveratrol, studying its activity on cell cycle progression. We determined the mitotic index of cultures exposed to resveratrol and paclitaxel alone or in combination, the cell cycle distribution by flow cytometric analysis (FACS), and the modulation of some relevant cell cycle regulatory proteins. Resveratrol is able to induce S-phase cell arrest and this interference with the cell cycle is associated with an increase of cyclin E and cyclin A, a downregulation of cyclin D1, and no alteration in cyclin B1 and cdk 1 activation. The resveratrol-induced S-phase block prevents SH-SY5Y from entering into mitosis, the phase of the cell cycle in which paclitaxel exerts its activity, explaining the antiapoptotic effect of resveratrol.
Collapse
Affiliation(s)
- R Rigolio
- Dipartimento di Neuroscienze e Tecnologie Biomediche, Università degli Studi di Milano-Bicocca, Via Cadore 48, 20052 Monza, Italy
| | | | | | | | | | | | | |
Collapse
|
488
|
Kundu JK, Surh YJ. Molecular basis of chemoprevention by resveratrol: NF-kappaB and AP-1 as potential targets. Mutat Res 2004; 555:65-80. [PMID: 15476852 DOI: 10.1016/j.mrfmmm.2004.05.019] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 05/26/2004] [Accepted: 05/27/2004] [Indexed: 12/31/2022]
Abstract
Recently, chemoprevention by the use of naturally occurring substances is considered as a priority to reduce the ever-increasing incidence of cancer. The intervention of multistage carcinogenesis by modulating intracellular signaling pathways may provide molecular basis of chemoprevention with a wide variety of dietary phytochemicals. Resveratrol, a red wine polyphenol, has been studied extensively for the chemopreventive activity in the context of its ability to interfere with the multistage carcinogenesis. Numerous intracellular signaling cascades converge with the activation of nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1), which act independently or coordinately to regulate expression of target genes. These ubiquitous eukaryotic transcription factors mediate pleiotropic effects on cellular transformation and tumor promotion. This review aims to update the molecular mechanisms underlying chemoprevention by resveratrol with special focus on its effect on cellular signaling cascades mediated by NF-kappaB and AP-1.
Collapse
Affiliation(s)
- Joydeb Kumar Kundu
- Laboratory of Biochemistry and Molecular Toxicology, College of Pharmacy, Seoul National University, Shinlim-dong, Kwanak-ku, Seoul 151-742, South Korea
| | | |
Collapse
|
489
|
Ryan L, O'Callaghan YC, O'Brien NM. Comparison of the apoptotic processes induced by the oxysterols 7β-hydroxycholesterol and cholesterol-5β,6β-epoxide. Cell Biol Toxicol 2004; 20:313-23. [PMID: 15685934 DOI: 10.1007/s10565-004-5066-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oxysterols have been shown to induce apoptosis in a variety of cell lines. The mechanism of oxysterol-induced apoptosis is mainly known at the post-mitochondrial level. The aim of the present study was to compare the pathway of apoptosis induced by the oxysterols 7beta-hydroxycholesterol (7beta-OH) and cholesterol-5beta,6beta-epoxide (beta-epoxide) in U937 cells. To this end, we employed a range of inhibitors of apoptosis; a broad-spectrum caspase inhibitor, a specific caspase-3 inhibitor and an inhibitor of cytochrome c release and the antioxidants; trolox, ebselen and resveratrol. The three inhibitors of apoptosis prevented cell death induced by 7beta-OH; however, in beta-epoxide-treated cells, the inhibitor of cytochrome c release did not protect against apoptosis. The cellular antioxidant glutathione was depleted in 7beta-OH-treated cells but not in cells incubated with beta-epoxide. Trolox, a water-soluble synthetic analogue of alpha-tocopherol, prevented 7beta-OH-induced apoptosis but did not protect against cell death induced by beta-epoxide. Ebselen and resveratrol did not protect U937 cells against apoptosis induced by either 7beta-OH or beta-epoxide. Our results suggest that differences occur in the pathways of apoptosis induced by 7beta-OH and beta-epoxide in U937 cells.
Collapse
Affiliation(s)
- L Ryan
- Department of Food and Nutritional Sciences, University College Cork, Ireland
| | | | | |
Collapse
|
490
|
Carraway RE, Hassan S, Cochrane DE. Polyphenolic antioxidants mimic the effects of 1,4-dihydropyridines on neurotensin receptor function in PC3 cells. J Pharmacol Exp Ther 2004; 309:92-101. [PMID: 14718582 DOI: 10.1124/jpet.103.060442] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aimed to determine the mechanism(s) by which 1,4-dihydropyridine Ca2+ channel blockers (DHPs) enhance the binding of neurotensin (NT) to prostate cancer PC3 cells and inhibit NT-induced inositol phosphate formation. Earlier work indicated that these effects, which involved the G protein-coupled NT receptor NTR1, were indirect and required cellular metabolism or architecture. At the micromolar concentrations used, DHPs can block voltage-sensitive and store-operated Ca2+ channels, K+ channels, and Na+ channels, and can inhibit lipid peroxidation. By varying [Ca2+] and testing the effects of stimulators and inhibitors of Ca2+ influx and internal Ca2+ release, we determined that although DHPs may have inhibited inositol phosphate formation partly by blocking Ca2+ influx, the effect on NT binding was Ca2+-independent. By varying [K+] and [Na+], we showed that these ions did not contribute to either effect. For a series of DHPs, the activity order for effects on NTR1 function followed that for antioxidant ability. Antioxidant polyphenols (luteolin and resveratrol) mimicked the effects of DHPs and showed structural similarity to DHPs. Antioxidants with equal redox ability, but without structural similarity to DHPs (such as alpha-tocopherol, riboflavin, and N-acetyl-cysteine) were without effect. A flavoprotein oxidase inhibitor (diphenylene iodonium) and a hydroxy radical scavenger (butylated hydroxy anisole) also displayed the effects of DHPs. In conclusion, DHPs indirectly alter NTR1 function in live cells by a mechanism that depends on the drug's ability to donate hydrogen but does not simply involve sulfhydryl reduction.
Collapse
Affiliation(s)
- Robert E Carraway
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | | | |
Collapse
|
491
|
Kundu JK, Surh YJ. [A rare cause of neonatal exudative enteropathy: congenital Langerhans cell histiocytosis (histiocytosis X)]. Mutat Res 1992; 591:123-46. [PMID: 16102784 DOI: 10.1016/j.mrfmmm.2005.04.019] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 04/12/2005] [Accepted: 04/13/2005] [Indexed: 01/09/2023]
Abstract
A case of Langerhans cell histiocytosis is reported in a neonate. Intestinal involvement was especially diffuse and severe, presenting as a protein-losing enteropathy secondary to massive mucosal infiltration by histiocytic cells. The infant died at the age of 3 1/2 months despite therapy with corticosteroids and vinblastine then etoposide and interferon. Such an outcome confirmed the severity of forms with neonatal onset and digestive involvement.
Collapse
Affiliation(s)
- Joydeb Kumar Kundu
- National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of Pharmacy, Seoul National University, Shinlim-dong, Kwanak-gu, Seoul 151-742, South Korea
| | | |
Collapse
|