451
|
Huang H, Wang K, Zhu Z, Li T, He Z, Yang XE, Gupta DK. Moderate phosphorus application enhances Zn mobility and uptake in hyperaccumulator Sedum alfredii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2844-2853. [PMID: 22992988 DOI: 10.1007/s11356-012-1175-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/29/2012] [Indexed: 06/01/2023]
Abstract
While phytoextraction tools are increasingly applied to remediation of contaminated soils, strategies are needed to optimize plant uptake by improving soil conditions. Mineral nutrition affects plant growth and metal absorption and subsequently the accumulation of heavy metal through hyper-accumulator plants. Microcosm experiments were conducted in greenhouse to examine the effect of different phosphorus (P) sources on zinc (Zn) phytoextraction by Sedum alfredii in aged Zn-contaminated paddy soil. The Zn accumulation, soil pH, microbial biomass and enzyme activity, available Zn changes. and Zn phytoremediation efficiency in soil after plant harvest were determined. Upon addition of P, Zn uptake of S. alfredii significantly increased. Mehlich-3 extractable or the fractions of exchangeable and carbonate-bound soil Zn were significantly increased at higher P applications. Soil pH significantly decreased with increasing P application rates. Soil microbial biomass in the P-treated soils was significantly higher (P < 0.05) than those in the control. Shoot Zn concentration was positively correlated with Mehlich-3 extractable P (P < 0.0001) or exchangeable/carbonate-bound Zn (P < 0.001), but negatively related to soil pH (P < 0.0001). These results indicate that application of P fertilizers has the potential to enhance Zn mobility and uptake by hyperaccumulating plant S. alfredii, thus increasing phytoremediation efficiency of Zn-contaminated soils.
Collapse
Affiliation(s)
- Huagang Huang
- Ministry of Education Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang province 310058, China.
| | | | | | | | | | | | | |
Collapse
|
452
|
Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. SOIL BIOLOGY & BIOCHEMISTRY 2013; 60:182-194. [PMID: 23645938 PMCID: PMC3618436 DOI: 10.1016/j.soilbio.2013.01.012] [Citation(s) in RCA: 317] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 01/04/2013] [Accepted: 01/13/2013] [Indexed: 05/04/2023]
Abstract
Phytoextraction makes use of trace element-accumulating plants that concentrate the pollutants in their tissues. Pollutants can be then removed by harvesting plants. The success of phytoextraction depends on trace element availability to the roots and the ability of the plant to intercept, take up, and accumulate trace elements in shoots. Current phytoextraction practises either employ hyperaccumulators or fast-growing high biomass plants; the phytoextraction process may be enhanced by soil amendments that increase trace element availability in the soil. This review will focus on the role of plant-associated bacteria to enhance trace element availability in the rhizosphere. We report on the kind of bacteria typically found in association with trace element - tolerating or - accumulating plants and discuss how they can contribute to improve trace element uptake by plants and thus the efficiency and rate of phytoextraction. This enhanced trace element uptake can be attributed to a microbial modification of the absorptive properties of the roots such as increasing the root length and surface area and numbers of root hairs, or by increasing the plant availability of trace elements in the rhizosphere and the subsequent translocation to shoots via beneficial effects on plant growth, trace element complexation and alleviation of phytotoxicity. An analysis of data from literature shows that effects of bacterial inoculation on phytoextraction efficiency are currently inconsistent. Some key processes in plant-bacteria interactions and colonization by inoculated strains still need to be unravelled more in detail to allow full-scale application of bacteria assisted phytoremediation of trace element contaminated soils.
Collapse
Affiliation(s)
- Angela Sessitsch
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-3430 Tulln, Austria
| | - Melanie Kuffner
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-3430 Tulln, Austria
| | - Petra Kidd
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), CSIC, Apdo. 122, 15780 Santiago de Compostela, Spain
| | - Jaco Vangronsveld
- Hasselt University, Centre for Environmental Sciences, B-3590 Diepenbeek, Belgium
| | - Walter W. Wenzel
- University of Natural Resources and Life Sciences Vienna, Department of Forest and Soil Sciences, A-3430 Tulln, Austria
| | - Katharina Fallmann
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-3430 Tulln, Austria
- University of Natural Resources and Life Sciences Vienna, Department of Forest and Soil Sciences, A-3430 Tulln, Austria
| | - Markus Puschenreiter
- University of Natural Resources and Life Sciences Vienna, Department of Forest and Soil Sciences, A-3430 Tulln, Austria
| |
Collapse
|
453
|
Wu J, Wang L, Ma F, Yang J, Li S, Li Z. Effects of vegetative-periodic-induced rhizosphere variation on the uptake and translocation of metals in Phragmites australis (Cav.) Trin ex. Steudel growing in the Sun Island Wetland. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:608-618. [PMID: 23455898 DOI: 10.1007/s10646-013-1052-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2013] [Indexed: 06/01/2023]
Abstract
To evaluate the vegetative periodic effect of rhizosphere on the patterns of metal bioaccumulation, the concentrations of Mg, K, Ca, Mn, Zn, Fe, Cu, Cr, Ni, Cd and Pb in the corresponding rhizosphere soil and tissues of Phragmites australis growing in the Sun Island wetland (Harbin, China) were compared. The concentrations of Zn, Fe, Cu, Cr, Ni, Cd and Pb in roots were higher than in shoots, suggesting that roots are the primary accumulation organs for these metals and there exists an exclusion strategy for metal tolerance. In contrast, the rest of the metals showed an opposite trend, suggesting that they were not restricted in roots. Harvesting would particularly be an effective method to remove Mn from the environment. The concentrations of metals in shoots were generally higher in autumn than in summer, suggesting that Ph. australis possesses an efficient root-to-shoot translocation system, which is activated at the end of the growing season and allows more metals into the senescent tissues. Furthermore, metal bioaccumulation of Ph. australis was affected by vegetative periodic variation through the changing of physicochemical and microbial conditions. The rhizospheric microbial characteristics were significantly related to the concentrations of Mg, K, Zn, Fe and Cu, suggesting that microbial influence on metal accumulation is specific and selective, not eurytopic.
Collapse
Affiliation(s)
- Jieting Wu
- State Key Lab of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | | | | | | | | | | |
Collapse
|
454
|
Babu AG, Kim JD, Oh BT. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. JOURNAL OF HAZARDOUS MATERIALS 2013; 250-251:477-83. [PMID: 23500429 DOI: 10.1016/j.jhazmat.2013.02.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/22/2013] [Accepted: 02/12/2013] [Indexed: 05/08/2023]
Abstract
Phytoremediation shows potential for remediating mine tailing sites contaminated with heavy metals. Our aim was to isolate, characterize, and assess the potential of endophytic bacteria to enhance growth and metal accumulation by the hyperaccumulator Alnus firma. A bacterial strain isolated from roots of Pinus sylvestris had the capacity to remove heavy metals from mine tailing and was identified as Bacillus thuringiensis GDB-1 based on 16S ribosomal DNA sequencing. GDB-1 exhibited plant growth-promoting traits, including 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, indole acetic acid (IAA) and siderophore production, and P solubilization. The efficiency of GDB-1 to remove heavy metals was influenced by pH and initial metal concentration. Removal capacity (mg/l) was 77% for Pb (100), 64% for Zn (50), 34% for As (50), 9% for Cd (10), 8% for Cu (10), and 8% for Ni (10) during the active growth cycle in heavy metal-amended, mine tailing extract medium. Inoculating soil with GDB-1 significantly increased biomass, chlorophyll content, nodule number, and heavy metal (As, Cu, Pb, Ni, and Zn) accumulation in A. firma seedlings. Results indicate that inoculating the native plant A. firma with B. thuringiensis GDB-1 improves its efficiency for phytoremediation of soil containing mine tailings contaminated with heavy metals.
Collapse
Affiliation(s)
- A Giridhar Babu
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752, Republic of Korea
| | | | | |
Collapse
|
455
|
Rajkumar M, Prasad MNV, Swaminathan S, Freitas H. Climate change driven plant-metal-microbe interactions. ENVIRONMENT INTERNATIONAL 2013; 53:74-86. [PMID: 23347948 DOI: 10.1016/j.envint.2012.12.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/13/2012] [Accepted: 12/20/2012] [Indexed: 05/24/2023]
Abstract
Various biotic and abiotic stress factors affect the growth and productivity of crop plants. Particularly, the climatic and/or heavy metal stress influence various processes including growth, physiology, biochemistry, and yield of crops. Climatic changes particularly the elevated atmospheric CO₂ enhance the biomass production and metal accumulation in plants and help plants to support greater microbial populations and/or protect the microorganisms against the impacts of heavy metals. Besides, the indirect effects of climatic change (e.g., changes in the function and structure of plant roots and diversity and activity of rhizosphere microbes) would lead to altered metal bioavailability in soils and concomitantly affect plant growth. However, the effects of warming, drought or combined climatic stress on plant growth and metal accumulation vary substantially across physico-chemico-biological properties of the environment (e.g., soil pH, heavy metal type and its bio-available concentrations, microbial diversity, and interactive effects of climatic factors) and plant used. Overall, direct and/or indirect effects of climate change on heavy metal mobility in soils may further hinder the ability of plants to adapt and make them more susceptible to stress. Here, we review and discuss how the climatic parameters including atmospheric CO₂, temperature and drought influence the plant-metal interaction in polluted soils. Other aspects including the effects of climate change and heavy metals on plant-microbe interaction, heavy metal phytoremediation and safety of food and feed are also discussed. This review shows that predicting how plant-metal interaction responds to altering climatic change is critical to select suitable crop plants that would be able to produce more yields and tolerate multi-stress conditions without accumulating toxic heavy metals for future food security.
Collapse
Affiliation(s)
- Mani Rajkumar
- National Environmental Engineering Research Institute-NEERI, CSIR Complex, Taramani, Chennai 600113, India.
| | | | | | | |
Collapse
|
456
|
He H, Ye Z, Yang D, Yan J, Xiao L, Zhong T, Yuan M, Cai X, Fang Z, Jing Y. Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. CHEMOSPHERE 2013. [PMID: 23177711 DOI: 10.1016/j.chemosphere.2012.10.057] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Microbe-assisted phytoremediation has been considered as a promising measure for the remediation of heavy metal-polluted soils. In this study, a metal-tolerance and plant growth-promoting endophytic bacterium JN6 was firstly isolated from roots of Mn-hyperaccumulator Polygonum pubescens grown in metal-contaminated soil and identified as Rahnella sp. based on 16S rDNA gene sequence analysis. Strain JN6 showed very high Cd, Pb and Zn tolerance and effectively solubilized CdCO(3), PbCO(3) and Zn(3)(PO(4))(2) in culture solution. The isolate produced plant growth-promoting substances such as indole-3-acetic acid, siderophore, 1-aminocyclopropane-1-carboxylic deaminase, and also solubilized inorganic phosphate. Based upon its ability in metal tolerance and solubilization, the isolate JN6 was further studied for its effects on the growth and accumulation of Cd, Pb and Zn in Brassica napus (rape) by pot experiments. Rape plants inoculated with the isolate JN6 had significantly higher dry weights, concentrations and uptake of Cd, Pb and Zn in both above-ground and root tissues than those without inoculation grown in soils amended with Cd (25 mg kg(-1)), Pb (200 mg kg(-1)) or Zn (200 mg kg(-1)). The isolate also showed a high level of colonization in tissue interior of rapes. The present results demonstrated that Rahnella sp. JN6 is a valuable microorganism, which can cost-effectively improve the efficiency of phytoremediation in soils contaminated by Cd, Pb and Zn.
Collapse
Affiliation(s)
- Huaidong He
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
457
|
Chen ZJ, Sheng XF, He LY, Huang Z, Zhang WH. Effects of root inoculation with bacteria on the growth, Cd uptake and bacterial communities associated with rape grown in Cd-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2013. [PMID: 23177252 DOI: 10.1016/j.jhazmat.2012.10.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Two metal-resistant and plant growth-promoting bacteria (Burkholderia sp. J62 and Pseudomonas thivervalensis Y-1-3-9) were evaluated for their impacts on plant growth promotion, Cd availability in soil, and Cd uptake in rape (Brassica napus) grown in different level (0, 50, and 100 mg kg(-1)) of Cd-contaminated soils. The impacts of the bacteria on the rape-associated bacterial community structures were also evaluated using denaturing gradient gel electrophoresis (DGGE) analysis of bacterial DNA extracted from the root interior and rhizosphere and bulk soil samples collected at day 60 after inoculation. Canonical correspondence analysis (CCA) was used to have a comparative analysis of DGGE profiles. Inoculation with live bacteria not only significantly increased root (ranging from 38% to 86%), stem (ranging from 27% to 65%) and leaf (ranging from 23% to 55%) dry weights and water-extractive Cd contents (ranging from 59% to 237%) in the rhizosphere soils of the rape but also significantly increased root (ranging from 10% to 61%), stem (ranging from 41% to 57%) and leaf (ranging from 46% to 68%) total Cd uptake of rape compared to the dead bacterial-inoculated controls. DGGE and sequence analyses showed that the bacteria could colonize the rhizosphere soils and root interiors of rape plants. DGGE-CCA also showed that root interior and rhizosphere and bulk soil community profiles from the live bacteria-inoculated rape were significantly different from those from the dead bacteria-inoculated rape respectively. These results suggested that the bacteria had the potential to promote the growth and Cd uptake of rape and to influence the development of the rape-associated bacterial community structures.
Collapse
Affiliation(s)
- Zhao-jin Chen
- Key Laboratory of Agricultural Environment Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | |
Collapse
|
458
|
Agostini E, Talano MA, González PS, Oller ALW, Medina MI. Application of hairy roots for phytoremediation: what makes them an interesting tool for this purpose? Appl Microbiol Biotechnol 2013; 97:1017-30. [DOI: 10.1007/s00253-012-4658-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/12/2012] [Accepted: 12/15/2012] [Indexed: 12/15/2022]
|
459
|
Mitter B, Brader G, Afzal M, Compant S, Naveed M, Trognitz F, Sessitsch A. Advances in Elucidating Beneficial Interactions Between Plants, Soil, and Bacteria. ADVANCES IN AGRONOMY 2013:381-445. [PMID: 0 DOI: 10.1016/b978-0-12-407685-3.00007-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
|
460
|
Song N, Wang F, Zhang C, Tang S, Guo J, Ju X, Smith DL. Fungal inoculation and elevated CO2 mediate growth of Lolium mutiforum and Phytolacca americana, metal uptake, and metal bioavailability in metal-contaminated soil: evidence from DGT measurement. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2013; 15:268-82. [PMID: 23488012 DOI: 10.1080/15226514.2012.694500] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Fungal inoculation and elevated CO2 may mediate plant growth and uptake of heavy metals, but little evidence from Diffusive Gradients in Thin-films (DGT) measurement has been obtained to characterize the process. Lolium mutiforum and Phytolacca americana were grown at ambient and elevated CO2 on naturally Cd and Pb contaminated soils inoculated with and without Trichoderma asperellum strain C3 or Penicillium chrysogenum strain D4, to investigate plant growth, metal uptake, and metal bioavailability responses. Fungal inoculation increased plant biomass and shoot/root Cd and Pb concentrations. Elevated CO2 significantly increased plants biomass, but decreased Cd and Pb concentrations in shoot/root to various extents, leading to a metal dilution phenomenon. Total Cd and Pb uptake by plants, and DGT-measured Cd and Pb concentrations in rhizosphere soils, were higher in all fungal inoculation and elevated CO2 treatments than control treatments, with the combined treatments having more influence than either treatment alone. Metal dilution phenomenon occurred because the increase in DGT-measured bioavailable metal pools in plant rhizosphere due to elevated CO2 was unable to match the increase in requirement for plant uptake of metals due to plant biomass increase.
Collapse
Affiliation(s)
- Ningning Song
- Centre for Research in Ecotoxicology and Environmental Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, P. R. China
| | | | | | | | | | | | | |
Collapse
|
461
|
Khan S, Afzal M, Iqbal S, Khan QM. Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. CHEMOSPHERE 2013; 90:1317-32. [PMID: 23058201 DOI: 10.1016/j.chemosphere.2012.09.045] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/08/2012] [Accepted: 09/10/2012] [Indexed: 05/06/2023]
Abstract
Plant-bacteria partnerships have been extensively studied and applied to improve crop yield. In addition to their application in agriculture, a promising field to exploit plant-bacteria partnerships is the remediation of soil and water polluted with hydrocarbons. Application of effective plant-bacteria partnerships for the remediation of hydrocarbons depend mainly on the presence and metabolic activities of plant associated rhizo- and endophytic bacteria possessing specific genes required for the degradation of hydrocarbon pollutants. Plants and their associated bacteria interact with each other whereby plant supplies the bacteria with a special carbon source that stimulates the bacteria to degrade organic contaminants in the soil. In return, plant associated-bacteria can support their host plant to overcome contaminated-induced stress responses, and improve plant growth and development. In addition, plants further get benefits from their associated-bacteria possessing hydrocarbon-degradation potential, leading to enhanced hydrocarbon mineralization and lowering of both phytotoxicity and evapotranspiration of volatile hydrocarbons. A better understanding of plant-bacteria partnerships could be exploited to enhance the remediation of hydrocarbon contaminated soils in conjunction with sustainable production of non-food crops for biomass and biofuel production.
Collapse
Affiliation(s)
- Sumia Khan
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | | | | | | |
Collapse
|
462
|
Cluster Analysis Based of Geochemical Properties of Phosphogypsum Dump Located Near Bacau City in Romania. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.apcbee.2013.05.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
463
|
Tak HI, Ahmad F, Babalola OO. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 223:33-52. [PMID: 23149811 DOI: 10.1007/978-1-4614-5577-6_2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this review, we briefly describe the biological application of PGPR for purposes of phytoremediating heavy metals. We address the agronomic practices that can be used to maximize the remediation potential of plants. Plant roots have limited ability ability mental from soil, mainly because metals have low solubility in the soil solution. The phytoavailability of metal is closely tired to the soil properties and the metabolites that are released by PGPR (e.g., siderophores, organ acids, and plant growth regulators). The role played by PGPR may be accomplished by their direct effect on plant growth dynamics, or indirectly by acidification, chelation, precipitation, or immobilization of heavy metals in the rhizosphere. From performing this review we have formed the following conclusions: The most critical factor is determining how efficient phytoremediation of metal-contaminated soil will be is the rate of uptake of the metal by plants. In turn, this depends on the rate of bioavailability. We know from our review that beneficial bacteria exist tha can alter metal bioavailability of plants. Using these beneficial bacteria improves the performance of phytoremediation of the metal-contaminated sites. Contaminated sites are often nutrient poor. Such soil can be nutrient enriched by applying metal-tolerant microbes that provide key needed plant nutrients. Applying metal-tolerant microbes therefore may be vital in enhancing the detoxification of heavy-metal-contaminated soils (Glick 2003). Plant stress generated by metal-contaminated soils can be countered by enhancing plant defense responses. Responses can be enhanced by alleviating the stress-mediated impact on plants by enzymatic hydrolysis of ACC, which is intermediate in the biosynthetic pathway of ethylene. These plant-microbe partnerships can act as decontaminators by improving phytoremediation. Soil microorganisms play a central role in maintaining soil structure, fertility and in remediating contaminated soils. Although not yet widely applied, utilizing a plant-microbe partnership is now being recognized as an important tool to enhance successful phytoremediaton of metal-contaminated sites. Hence, soil microbes are essential to soil health and sustainability. The key to their usefulness is their close association with, and positive influence on, plant growth and function. To capitalize on the early success of this technique and to improve it, additional research is needed on successful colonization and survival of inoculums under field conditions, because there are vital for the success of this approach. In addition, the effects of the interaction of PGPR and plant root-mediated process on the metal mobilization in soil are required, to better elucidate the mechanism that underlines bacterial-assisted phytoremediation is important. Finally, applying PGPR-associated phytoremediation under field conditions is important, because, to date, only locally contaminated sites have been treated with this technique, by using microbes cultured in the laboratory.
Collapse
Affiliation(s)
- Hamid Iqbal Tak
- Department of Biological Sciences, Faculty of Agriculture, Science and Technology, North-West University, Mafikeng Campus, X2046, Mmabatho 2735, South Africa
| | | | | |
Collapse
|
464
|
Jana U, Chassany V, Bertrand G, Castrec-Rouelle M, Aubry E, Boudsocq S, Laffray D, Repellin A. Analysis of arsenic and antimony distribution within plants growing at an old mine site in Ouche (Cantal, France) and identification of species suitable for site revegetation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 110:188-193. [PMID: 22789654 DOI: 10.1016/j.jenvman.2012.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 01/19/2012] [Accepted: 06/12/2012] [Indexed: 06/01/2023]
Abstract
One of the objectives of this study was to assess the contamination levels in the tailings of an old antimony mine site located in Ouche (Cantal, France). Throughout the 1.3 ha site, homogenous concentrations of antimony and arsenic, a by-product of the operation, were found along 0-0.5 m-deep profiles. Maximum concentrations for antimony and arsenic were 5780 mg kg(-1) dry tailings and 852 mg kg(-1) dry tailings, respectively. Despite the presence of the contaminants and the low pH and organic matter contents of the tailings, several patches of vegetation were found. Botanical identification determined 12 different genera/species. The largest and most abundant plants were adult pines (Pinus sylvestris), birches (Betula pendula) and the bulrush (Juncus effusus). The distribution of the metalloids within specimens of each genera/species was analysed in order to deduce their concentration and translocation capacities. This was the second goal of this work. All plant specimens were highly contaminated with both metalloids. Most were root accumulators with root to shoot translocation factors <1. Whereas contamination levels were high overall, species with both a low translocation factor and a low root accumulation coefficient were identified as suitable candidates for the complete revegetation of the site. Species combining those characteristics were the perennials P. sylvestris, B. pendula, Cytisus scoparius and the herbaceous Plantago major, and Deschampsia flexuosa.
Collapse
Affiliation(s)
- Ulrike Jana
- Ecophysiologie Moléculaire, IBIOS, UMR 7618 Bioemco, Université Paris-Est Créteil Val de Marne, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
465
|
Abhilash P, Powell JR, Singh HB, Singh BK. Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 2012; 30:416-20. [DOI: 10.1016/j.tibtech.2012.04.004] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/10/2012] [Accepted: 04/18/2012] [Indexed: 12/26/2022]
|
466
|
Sheng X, Sun L, Huang Z, He L, Zhang W, Chen Z. Promotion of growth and Cu accumulation of bio-energy crop (Zea mays) by bacteria: implications for energy plant biomass production and phytoremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 103:58-64. [PMID: 22459071 DOI: 10.1016/j.jenvman.2012.02.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 02/18/2012] [Accepted: 02/23/2012] [Indexed: 05/31/2023]
Abstract
Three metal-resistant and plant growth-promoting bacteria (Burkholderia sp. GL12, Bacillus megaterium JL35 and Sphingomonas sp. YM22) were evaluated for their potential to solubilize Cu(2) (OH)(2)CO(3) in solution culture and their plant growth promotion and Cu uptake in maize (Zea mays, an energy crop) grown in a natural highly Cu-contaminated soil. The impacts of the bacteria on the Cu availability and the bacterial community in rhizosphere soils of maize were also investigated. Inductively coupled-plasma optical emission spectrometer analysis showed variable amounts of water-soluble Cu (ranging from 20.5 to 227 mgL(-1)) released by the bacteria from Cu(2) (OH)(2)CO(3) in solution culture. Inoculation with the bacteria was found to significantly increase root (ranging from 48% to 83%) and above-ground tissue (ranging from 33% to 56%) dry weights of maize compared to the uninoculated controls. Increases in Cu contents of roots and above-ground tissues varied from 69% to 107% and from 16% to 86% in the bacterial-inoculated plants compared to the uninoculated controls, respectively. Inoculation with the bacteria was also found to significantly increase the water-extractive Cu concentrations (ranging from 63 to 94%) in the rhizosphere soils of the maize plants compared to the uninoculated controls in pot experiments. Denaturing gradient gel electrophoresis and sequence analyses showed that the bacteria could colonize the rhizosphere soils and significantly change the bacterial community compositions in the rhizosphere soils. These results suggest that the metal-resistant and plant growth-promoting bacteria may be exploited for promoting the maize (energy crop) biomass production and Cu phytoremediation in a natural highly Cu-contaminated soil.
Collapse
Affiliation(s)
- Xiafang Sheng
- Key Laboratory of Agricultural Environment Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China.
| | | | | | | | | | | |
Collapse
|
467
|
Ho YN, Mathew DC, Hsiao SC, Shih CH, Chien MF, Chiang HM, Huang CC. Selection and application of endophytic bacterium Achromobacter xylosoxidans strain F3B for improving phytoremediation of phenolic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2012; 219-220:43-9. [PMID: 22497718 DOI: 10.1016/j.jhazmat.2012.03.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 03/08/2012] [Accepted: 03/12/2012] [Indexed: 05/26/2023]
Abstract
While phytoremediation has been considered as an in situ bioprocess to remediate environmental contaminants, the application of functional endophytic bacteria within plants remains a potential strategy that could enhance the plants' efficiency in phytoremediation. In this study, 219 endophytes were isolated from plants that are predominantly located in a constructed wetland, including reed (Phragmites australis) and water spinach (Ipomoea aquatica). Twenty-five strains of the isolated endophytes utilize aromatic compounds as sole carbon source; Achromobacter xylosoxidans strain F3B was chosen for the in planta studies using the model plant Arabidopsis thaliana. Phylogenetic analysis indicated that those endophytic isolates of A. xylosoxidans formed a cluster within its species, and a specific real-time PCR detection method was developed for confirming the stability of the isolates in plants. In the presence of either catechol or phenol, inoculation of A. thaliana with F3B could extend into the root lengths and fresh weights to promote pollutants removal rates. These results demonstrate the potential of the endophytic F3B strain for helping plants to tolerate stress from aromatic compounds and to improve phytoremediation of phenolic pollutants.
Collapse
Affiliation(s)
- Ying-Ning Ho
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
468
|
Fang Y, Cao X, Zhao L. Effects of phosphorus amendments and plant growth on the mobility of Pb, Cu, and Zn in a multi-metal-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:1659-1667. [PMID: 22161145 DOI: 10.1007/s11356-011-0674-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 11/14/2011] [Indexed: 05/28/2023]
Abstract
PURPOSE Phosphorus amendments have been widely and successfully used in immobilization of one single metal (e.g., Pb) in contaminated soils. However, application of P amendments in the immobilization of multiple metals and particularly investigations about the effects of planting on the stability of the initially P-induced immobilized metals in the contaminated soils are far limited. METHODS This study was conducted to determine the effects of phosphate rock tailing (PR), triple superphosphate fertilizer (TSP), and their combination (P+T) on mobility of Pb, Cu, and Zn in a multimetal-contaminated soil. Chinese cabbage (Brassica rapa subsp. chinensis) (metal-sensitive) and Chinese kale (Brassica alboglabra Bailey) (metal-resistant) were introduced to examine the effects of planting on leaching of Pb, Cu, and Zn in the P-amended soils. RESULTS All three P treatments greatly reduced CaCl(2)-extractable Pb and Zn by 55.2-73.1% and 14.3-33.6%, respectively. The PR treatment decreased CaCl(2)-extractable Cu by 27.8%, while the TSP and P+T treatments increased it by 47.2% and 44.4%, respectively. All three P treatments were effective in reducing simulated rainwater leachable Pb, with dissolved and total leachable Pb decrease by 15.6-81.9% and 16.3-64.5%, respectively. The PR treatment reduced the total leachable Zn by 16.8%, while TSP and P+T treatments increased Zn leaching by 92.7% and 78.9%, respectively. However, total Cu leaching were elevated by 17.8-178% in all P treatments. Planting promoted the leaching of Pb and Cu by 98.7-127% and 23.5-170%, respectively, especially in the colloid fraction, whereas the leachable Zn was reduced by 95.3-96.5% due to planting. The P treatments reduced the uptake of Pb, Cu, and Zn in the aboveground parts of Chinese cabbage by up to 65.1%, 34.3%, and 9.59%, respectively. Though P treatments were effective in reducing Zn concentrations in the aboveground parts of the metal-resistant Chinese kale by 22.4-28.9%, they had little effect on Pb and Cu uptake. CONCLUSIONS The results indicated that all P treatments were effective in immobilizing Pb. The effect on the immobilization of Cu and Zn varied with the different P treatments and evaluation methods. Metal-sensitive plants are more responsive to the P treatments than metal-resistant plants. Planting affects leaching of metals in the P-amended soils, specially leaching of colloid fraction. The conventional assessment on leaching risks of heavy metals by determining dissolved metals (filtered through 0.45-μm pore size membrane) in leachates could be underestimated since colloid fraction may also contribute to the leaching.
Collapse
Affiliation(s)
- Yueying Fang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | | |
Collapse
|
469
|
Zhang WH, Huang Z, He LY, Sheng XF. Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead-zinc mine tailings. CHEMOSPHERE 2012; 87:1171-8. [PMID: 22397839 DOI: 10.1016/j.chemosphere.2012.02.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 05/22/2023]
Abstract
Bacterial communities in the rhizosphere soils of metal tolerant and accumulating Chenopodium ambrosioides grown in highly and moderately lead-zinc mine tailings contaminated-soils as well as the adjacent soils with low metal contamination were characterized by using cultivation-independent and cultivation techniques. A total of 69, 73, and 83 bacterial operational taxonomic units (OTUs) having 84.8-100% similarity with the closest match in the database were detected among high, moderate, and low-contamination soil clone libraries, respectively. These OTUs had a Shannon diversity index value in the range of 4.06-4.30. There were 9, 10, and 14 bacterial genera specific to high, moderate, and low metal-contaminated soil clone libraries, respectively. Phylogenetic analysis showed that the Pb-resistant isolates belonged to 8 genera. Pseudomonas and Arthrobacter were predominant among the isolates. Most of the isolates (82-86%) produced indole acetic acid and siderophores. More strains from the highly metal-contaminated soil produced 1-aminocyclopropane-1-carboxylate deaminase than the strains from the moderately and lowly metal-contaminated soils. In experiments involving canola grown in quartz sand containing 200 mg kg(-1) of Pb, inoculation with the isolated Paenibacillus jamilae HTb8 and Pseudomonas sp. GTa5 was found to significantly increase the above-ground tissues dry weight (ranging from 19% to 36%) and Pb uptake (ranging from 30% to 40%) compared to the uninoculated control. These results show that C. ambrosioides harbor different metal-resistant bacterial communities in their rhizosphere soils and the isolates expressing plant growth promoting traits may be exploited for improving the phytoextraction efficiency of Pb-polluted environment.
Collapse
Affiliation(s)
- Wen-hui Zhang
- Key Laboratory of Agricultural Environment Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | |
Collapse
|
470
|
Genome sequence and mutational analysis of plant-growth-promoting bacterium Agrobacterium tumefaciens CCNWGS0286 Isolated from a zinc-lead mine tailing. Appl Environ Microbiol 2012; 78:5384-94. [PMID: 22636006 DOI: 10.1128/aem.01200-12] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The plant-growth-promoting bacterium Agrobacterium tumefaciens CCNWGS0286, isolated from the nodules of Robinia pseudoacacia growing in zinc-lead mine tailings, both displayed high metal resistance and enhanced the growth of Robinia plants in a metal-contaminated environment. Our goal was to determine whether bacterial metal resistance or the capacity to produce phytohormones had a larger impact on the growth of host plants under zinc stress. Eight zinc-sensitive mutants and one zinc-sensitive mutant with reduced indole-3-acetic acid (IAA) production were obtained by transposon mutagenesis. Analysis of the genome sequence and of transcription via reverse transcriptase PCR (RT-PCR) combined with transposon gene disruptions revealed that ZntA-4200 and the transcriptional regulator ZntR1 played important roles in the zinc homeostasis of A. tumefaciens CCNWGS0286. In addition, interruption of a putative oligoketide cyclase/lipid transport protein reduced IAA synthesis and also showed reduced zinc and cadmium resistance but had no influence on copper resistance. In greenhouse studies, R. pseudoacacia inoculated with A. tumefaciens CCNWGS0286 displayed a significant increase in biomass production over that without inoculation, even in a zinc-contaminated environment. Interestingly, the differences in plant biomass improvement among A. tumefaciens CCNWGS0286, A. tumefaciens C58, and zinc-sensitive mutants 12-2 (zntA::Tn5) and 15-6 (low IAA production) revealed that phytohormones, rather than genes encoding zinc resistance determinants, were the dominant factor in enhancing plant growth in contaminated soil.
Collapse
|
471
|
Rajkumar M, Sandhya S, Prasad MNV, Freitas H. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 2012; 30:1562-74. [PMID: 22580219 DOI: 10.1016/j.biotechadv.2012.04.011] [Citation(s) in RCA: 435] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 04/24/2012] [Accepted: 04/30/2012] [Indexed: 02/08/2023]
Abstract
"Phytoremediation" know-how to do-how is rapidly expanding and is being commercialized by harnessing the phyto-microbial diversity. This technology employs biodiversity to remove/contain pollutants from the air, soil and water. In recent years, there has been a considerable knowledge explosion in understanding plant-microbes-heavy metals interactions. Novel applications of plant-associated microbes have opened up promising areas of research in the field of phytoremediation technology. Various metabolites (e.g., 1-aminocyclopropane-1-carboxylic acid deaminase, indole-3-acetic acid, siderophores, organic acids, etc.) produced by plant-associated microbes (e.g., plant growth promoting bacteria, mycorrhizae) have been proposed to be involved in many biogeochemical processes operating in the rhizosphere. The salient functions include nutrient acquisition, cell elongation, metal detoxification and alleviation of biotic/abiotic stress in plants. Rhizosphere microbes accelerate metal mobility, or immobilization. Plants and associated microbes release inorganic and organic compounds possessing acidifying, chelating and/or reductive power. These functions are implicated to play an essential role in plant metal uptake. Overall the plant-associated beneficial microbes enhance the efficiency of phytoremediation process directly by altering the metal accumulation in plant tissues and indirectly by promoting the shoot and root biomass production. The present work aims to provide a comprehensive review of some of the promising processes mediated by plant-associated microbes and to illustrate how such processes influence heavy metal uptake through various biogeochemical processes including translocation, transformation, chelation, immobilization, solubilization, precipitation, volatilization and complexation of heavy metals ultimately facilitating phytoremediation.
Collapse
Affiliation(s)
- M Rajkumar
- National Environmental Engineering Research Institute (NEERI), CSIR Complex, Taramani, Chennai 600113, India.
| | | | | | | |
Collapse
|
472
|
Kabouw P, van Dam NM, van der Putten WH, Biere A. How genetic modification of roots affects rhizosphere processes and plant performance. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3475-3483. [PMID: 22162872 DOI: 10.1093/jxb/err399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Genetic modification of plants has become common practice. However, root-specific genetic modifications have only recently been advocated. Here, a review is presented regarding how root-specific modifications can have both plant internal and rhizosphere-mediated effects on aboveground plant properties and plant performance. Plant internal effects refer to pleiotropic processes such as transportation of the modified gene product. Rhizosphere-mediated effects refer to altered plant-rhizosphere interactions, which subsequently feed back to the plant. Such plant-soil feedback mechanisms have been demonstrated both in natural systems and in crops. Here how plant internal and rhizosphere-mediated effects could enhance or counteract improvements in plant properties for which the genetic modification was intended is discussed. A literature survey revealed that rice is the most commonly studied crop species in the context of root-specific transgenesis, predominantly in relation to stress tolerance. Phytoremediation, a process in which plants are used to clean up pollutants, is also often an objective when transforming roots. These two examples are used to review potential effects of root genetic modifications on shoots. There are several examples in which root-specific genetic modifications only lead to better plant performance if the genes are specifically expressed in roots. Constitutive expression can even result in modified plants that perform worse than non-modified plants. Rhizosphere effects have rarely been examined, but clearly genetic modification of roots can influence rhizosphere interactions, which in turn can affect shoot properties. Indeed, field studies with root-transformed plants frequently show negative effects on shoots that are not seen in laboratory studies. This might be due to the simplified environments that are used in laboratories which lack the full range of plant-rhizosphere interactions that are present in the field.
Collapse
Affiliation(s)
- Patrick Kabouw
- Netherlands Institute of Ecology, Department of Terrestrial Ecology, Droevendaalsesteeg 10, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
473
|
|
474
|
Song X, Hu X, Ji P, Li Y, Chi G, Song Y. Phytoremediation of cadmium-contaminated farmland soil by the hyperaccumulator Beta vulgaris L. var. cicla. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 88:623-626. [PMID: 22286610 DOI: 10.1007/s00128-012-0524-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 01/13/2012] [Indexed: 05/31/2023]
Abstract
A field study was conducted to evaluate the phytoremediation efficiency of cadmium (Cd) contaminated soil utilizing the Cd hyperaccumulator Beta vulgaris L. var. cicla during one growing season (about 2 months) on farmland in Zhangshi Irrigation Area, the representative wastewater irrigation area in China. Results showed that B. vulgaris L. var. cicla is a promising plant in the phytoremediation of Cd contaminated farmland soil. The maximum of Cd phytoremediation efficiency by B. vulgaris L. var. cicla reached 144.6 mg/ha during one growing season. Planting density had a significant effect on the plant biomass and the overall Cd phytoremediation efficiency (p < 0.05). The amendment of organic manure promoted the biomass increase of B. vulgaris L. var. cicla (p < 0.05) but inhibited the Cd phytoremediation efficiency.
Collapse
Affiliation(s)
- Xueying Song
- Key Laboratory of Regional Environment and Eco-Remediation (Ministry of Education), Shenyang University, Shenyang, 110044, China
| | | | | | | | | | | |
Collapse
|
475
|
Draft genome sequence of plant growth-promoting rhizobium Mesorhizobium amorphae, isolated from zinc-lead mine tailings. J Bacteriol 2012; 194:736-7. [PMID: 22247533 DOI: 10.1128/jb.06475-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we describe the draft genome sequence of Mesorhizobium amorphae strain CCNWGS0123, isolated from nodules of Robinia pseudoacacia growing on zinc-lead mine tailings. A large number of metal(loid) resistance genes, as well as genes reported to promote plant growth, were identified, presenting a great future potential for aiding phytoremediation in metal(loid)-contaminated soil.
Collapse
|
476
|
Misra N, Gupta G, Jha PN. Assessment of mineral phosphate-solubilizing properties and molecular characterization of zinc-tolerant bacteria. J Basic Microbiol 2012; 52:549-58. [PMID: 22359218 DOI: 10.1002/jobm.201100257] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/14/2011] [Indexed: 11/11/2022]
Abstract
Plant growth-promoting bacteria with the ability to tolerate heavy metals have importance both in sustainable agriculture and phytoremediation. The present study reports on the isolation and characterization of mineral phosphate-solubilizing (MPS) bacteria associated with the Achyranthes aspera L. plant (prickly chaff, flower plant). Out of 35 bacterial isolates, 6 isolates, namely RS7, RP23, EPR1, RS5, RP11 and RP19, with high MPS activity were selected and subjected to the assessment of MPS activity under various stress conditions, viz. ZnSO(4) (0.30-1.5 M), NaCl and temperature. MPS activity by the selected isolates was observed at concentrations of as high as >1.2 M ZnSO(4). Significant improvement in plant growth was observed on bacterization of seeds (pearl millet) with all of the six selected isolates. Plant growth was measured in terms of root length, shoot length, fresh weight and % increase in root biomass. The molecular diversity among the phosphate-solubilizing bacteria was studied employing enterobacterial repetitive intergenic sequence-PCR (ERIC-PCR). Representative strains from each ERIC type were identified, on the basis of a partial sequence of the 16S rRNA gene, as members of the genera Pseudomonas, Citrobacter, Acinetobacter, Serratia, and Enterobacter. Among all the isolates, RP19 was the best in terms of phosphate-solubizing activity and its response to various stresses. The ability of RP19 and other isolates to exhibit MPS activity at high ZnSO(4) concentrations suggests their potential as efficient biofertilizer for growing plants in metal (ZnSO(4))-contaminated soil.
Collapse
Affiliation(s)
- Neha Misra
- Centre for Biotechnology, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | | | | |
Collapse
|
477
|
Tang S, Liao S, Guo J, Song Z, Wang R, Zhou X. Growth and cesium uptake responses of Phytolacca americana Linn. and Amaranthus cruentus L. grown on cesium contaminated soil to elevated CO2 or inoculation with a plant growth promoting rhizobacterium Burkholderia sp. D54, or in combination. JOURNAL OF HAZARDOUS MATERIALS 2011; 198:188-197. [PMID: 22074893 DOI: 10.1016/j.jhazmat.2011.10.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 10/05/2011] [Accepted: 10/08/2011] [Indexed: 05/31/2023]
Abstract
Growth and cesium uptake responses of plants to elevated CO(2) and microbial inoculation, alone or in combination, can be explored for clean-up of contaminated soils, and this induced phytoextraction may be better than the natural process. The present study used open-top chambers to investigate combined effects of Burkholderia sp. D54 inoculation and elevated CO(2) (860 μL L(-1)) on growth and Cs uptake by Phytolacca americana and Amaranthus cruentus grown on soil spiked with various levels of Cs (0-1000 mg kg(-1)). Elevated CO(2) and bacterial inoculation, alone or in combination, significantly increased biomass production with increased magnitude, ranging from 22% to 139% for P. americana, and 14% to 254% for A. cruentus. Total tissue Cs in both plants was significantly greater for bacterial inoculation treatment singly, and combined treatments of bacterial inoculation and elevated CO(2) than for the control treatment in most cases. Regardless of CO(2) concentrations and bacterial inoculation, A. cruentus had higher tissue Cs concentration, Cs transfer factors and concentration ratios than P. americana, but they had slightly different contents of antioxidant enzymes. It is concluded that combined effects of elevated CO(2) and microbial inoculation with regard to plant ability to grow and remove radionuclides from soil can be explored for CO(2)- and microbe-assisted phytoextraction technology.
Collapse
Affiliation(s)
- Shirong Tang
- Centre for Research in Ecotoxicology and Environmental Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, PR China.
| | | | | | | | | | | |
Collapse
|
478
|
Castillo JM, Casas J, Romero E. Isolation of an endosulfan-degrading bacterium from a coffee farm soil: persistence and inhibitory effect on its biological functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 412-413:20-7. [PMID: 22033355 DOI: 10.1016/j.scitotenv.2011.09.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 08/17/2011] [Accepted: 09/21/2011] [Indexed: 05/24/2023]
Abstract
Endosulfan is a lypophilic persistent organic pollutant (POP) that has caused widespread concern due to its persistence in the environment, toxicity and bioaccumulation in living organisms. The aim of this study is to isolate endosulfan-degrading bacteria taken from five coffee farms historically exposed to this insecticide which could be used in future remediation strategies. The biodegradation capability of the isolated strain as well as endosulfan's impact on some of the strain's biological functions was studied. Endosulfan and its metabolites were analyzed using TLC and GC-MS. The isolated strain, capable of growing in a liquid culture treated with this insecticide as the sole sulfur source rather than a carbon source, was selected for further study. The isolated bacterium is Gram-negative, having the morphological and biochemical characteristics of Azotobacter sp. The remaining concentrations after 6 days, using 2 and 10 mg l(-1) of endosulfan, were 57.6 and 72.3% respectively, and the degradation constants were 0.12 d(-1) and 0.26 d(-1). Four metabolites were detected, one of which was identified as endosulfan ether. Endosulfan reduced nitrogenase activity but had no impact on indole 3-acetic acid production. Thus, these results suggest that this strain has the potential to act as a biocatalyst in endosulfan degradation.
Collapse
Affiliation(s)
- Jean Manuel Castillo
- Department of Enviromental Protection, Estación Experimental del Zaidín (EEZ-CSIC), C/ Profesor Albareda 1, 18008-Granada, Spain.
| | | | | |
Collapse
|
479
|
Mapelli F, Marasco R, Balloi A, Rolli E, Cappitelli F, Daffonchio D, Borin S. Mineral-microbe interactions: biotechnological potential of bioweathering. J Biotechnol 2011; 157:473-81. [PMID: 22138043 DOI: 10.1016/j.jbiotec.2011.11.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 11/15/2011] [Accepted: 11/17/2011] [Indexed: 10/15/2022]
Abstract
Mineral-microbe interaction has been a key factor shaping the lithosphere of our planet since the Precambrian. Detailed investigation has been mainly focused on the role of bioweathering in biomining processes, leading to the selection of highly efficient microbial inoculants for the recovery of metals. Here we expand this scenario, presenting additional applications of bacteria and fungi in mineral dissolution, a process with novel biotechnological potential that has been poorly investigated. The ability of microorganisms to trigger soil formation and to sustain plant establishment and growth are suggested as invaluable tools to counteract the expansion of arid lands and to increase crop productivity. Furthermore, interesting exploitations of mineral weathering microbes are represented by biorestoration and bioremediation technologies, innovative and competitive solutions characterized by economical and environmental advantages. Overall, in the future the study and application of the metabolic properties of microbial communities capable of weathering can represent a driving force in the expanding sector of environmental biotechnology.
Collapse
Affiliation(s)
- Francesca Mapelli
- Università degli Studi di Milano, Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Via Celoria 2, 20133 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
480
|
Ma Y, Rajkumar M, Luo Y, Freitas H. Inoculation of endophytic bacteria on host and non-host plants--effects on plant growth and Ni uptake. JOURNAL OF HAZARDOUS MATERIALS 2011; 195:230-7. [PMID: 21872991 DOI: 10.1016/j.jhazmat.2011.08.034] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 05/20/2023]
Abstract
Among a collection of Ni resistant endophytes isolated from the tissues of Alyssum serpyllifolium, four plant growth promoting endophytic bacteria (PGPE) were selected based on their ability to promote seedling growth in roll towel assay. Further, the PGPE screened showed the potential to produce plant growth promoting (PGP) substances and plant polymer hydrolyzing enzymes. These isolates were further screened for their PGP activity on A. serpyllifolium and Brassica juncea under Ni stress using a phytagar assay. None of the four isolates produced any disease symptoms in either plant. Further, strain A3R3 induced a maximum increase in biomass and Ni content of plants. Based on the PGP potential in phytagar assay, strain A3R3 was chosen for studying its PGP effect on A. serpyllifolium and B. juncea in Ni contaminated soil. Inoculation with A3R3 significantly increased the biomass (B. juncea) and Ni content (A. serpyllifolium) of plants grown in Ni contaminated soil. The strain also showed high level of colonization in tissue interior of both plants. By 16S rRNA gene sequencing analysis, A3R3 was identified as Pseudomonas sp. Successful colonization and subsequent PGP potentiality of Pseudomonas sp. A3R3 indicate that the inoculation with PGPE might have significant potential to improve heavy metal phytoremediation.
Collapse
Affiliation(s)
- Ying Ma
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | | | | | | |
Collapse
|
481
|
Zhang M, Xu J. Nonpoint source pollution, environmental quality, and ecosystem health in China: introduction to the special section. JOURNAL OF ENVIRONMENTAL QUALITY 2011; 40:1685-1694. [PMID: 22031550 DOI: 10.2134/jeq2011.0170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The rapid economic and industrial growth of China, exemplified by a 10-fold increase in its gross domestic product in the past 15 years, has lifted millions of its citizens out of poverty but has simultaneously led to severe environmental problems. The World Health Organization estimates that approximately 2.4 million deaths in China per year could be attributed to degraded environmental quality. Much of China's soil, air, and water are polluted by xenobiotic contaminants, such as heavy metals and organic compounds. In addition, soil quality is degraded by erosion, desertification, and nutrient runoff. Air quality is further compromised by particulates, especially in heavily populated areas. Research shows that 80% of urban rivers in China are significantly polluted, and poor water quality is a key contributor to poverty in rural China. Economic and industrial growth has also greatly expanded the demand for water sources of appropriate quality; however, pollution has markedly diminished usable water resource quantity. Desertification and diminishing water resources threaten future food security. In recent years, China's government has increased efforts to reverse these trends and to improve ecosystem health. The Web of Science database showed that the percentage of articles on China devoting to environmental sciences increased dramatically in recent years. In addition, the top 25 institutes publishing the papers in environmental sciences were all in China. This special issue includes seven articles focusing on nonpoint source pollution, environmental quality, and ecosystem health in China. The major issues, and results of these studies, are discussed in this introduction.
Collapse
|
482
|
Wang Q, Xiong D, Zhao P, Yu X, Tu B, Wang G. Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17. J Appl Microbiol 2011; 111:1065-74. [DOI: 10.1111/j.1365-2672.2011.05142.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
483
|
Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Appl Microbiol Biotechnol 2011; 93:1745-53. [DOI: 10.1007/s00253-011-3483-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/27/2011] [Accepted: 07/13/2011] [Indexed: 11/26/2022]
|
484
|
Miransari M. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 2011; 29:645-53. [PMID: 21557996 DOI: 10.1016/j.biotechadv.2011.04.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/02/2011] [Accepted: 04/21/2011] [Indexed: 10/18/2022]
Abstract
Use of plants, with hyperaccumulating ability or in association with soil microbes including the symbiotic fungi, arbuscular mycorrhiza (AM), are among the most common biological methods of treating heavy metals in soil. Both hyperaccumulating plants and AM fungi have some unique abilities, which make them suitable to treat heavy metals. Hyperaccumulator plants have some genes, being expressed at the time of heavy metal pollution, and can accordingly localize high concentration of heavy metals to their tissues, without showing the toxicity symptoms. A key solution to the issue of heavy metal pollution may be the proper integration of hyperaccumulator plants and AM fungi. The interactions between the soil microbes and the host plant can also be important for the treatment of soils polluted with heavy metals.
Collapse
Affiliation(s)
- Mohammad Miransari
- Department of Soil Science, College of Agricultural Sciences, Shahed University, Tehran, Qom Highway, Tehran 18151/159, Iran.
| |
Collapse
|
485
|
Shagol CC, Chauhan PS, Kim KY, Lee SM, Chung JB, Park KW, Sa TM. Exploring the Potential of Bacteria-Assisted Phytoremediation of Arsenic-Contaminated Soils. ACTA ACUST UNITED AC 2011. [DOI: 10.7745/kjssf.2011.44.1.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|