451
|
Lin L, Su Z, Lebedeva IV, Gupta P, Boukerche H, Rai T, Barber GN, Dent P, Sarkar D, Fisher PB. Activation of Ras/Raf protects cells from melanoma differentiation-associated gene-5-induced apoptosis. Cell Death Differ 2006; 13:1982-93. [PMID: 16575407 DOI: 10.1038/sj.cdd.4401899] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Melanoma differentiation-associated gene-5 (mda-5) was the first molecule identified in nature whose encoded protein embodied the unique structural combination of an N-terminal caspase recruitment domain and a C-terminal DExD/H RNA helicase domain. As suggested by its structure, cumulative evidences documented that ectopic expression of mda-5 leads to growth inhibition and/or apoptosis in various cell lines. However, the signaling pathways involved in mda-5-mediated killing have not been elucidated. In this study, we utilized either genetically modified cloned rat embryo fibroblast cells overexpressing different functionally and structurally distinct oncogenes or human pancreatic and colorectal carcinoma cells containing mutant active ras to resolve the role of the Ras/Raf signaling pathway in mda-5-mediated growth inhibition/apoptosis induction. Rodent and human tumor cells containing constitutively activated Raf/Raf/MEK/ERK pathways were resistant to mda-5-induced killing and this protection was antagonized by intervening in this signal transduction cascade either by directly inhibiting ras activity using an antisense strategy or by targeting ras-downstream factors, such as MEK1/2, with the pharmacological inhibitor PD98059. The present findings provide a further example of potential cross-talk between growth-inhibitory and growth-promoting pathways in which the ultimate balance of these factors defines cellular homeostasis, leading to survival or induction of programmed cell death.
Collapse
Affiliation(s)
- L Lin
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
452
|
Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 2006; 24:21-44. [PMID: 16393692 DOI: 10.1080/02699050500284218] [Citation(s) in RCA: 948] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The extracellular signal-regulated kinase (ERK) cascade is a central pathway that transmits signals from many extracellular agents to regulate cellular processes such as proliferation, differentiation and cell cycle progression. The signaling via the ERK cascade is mediated by sequential phosphorylation and activation of protein kinases in the different tiers of the cascade. Although the main core phosphorylation chain of the cascade includes Raf kinases, MEK1/2, ERK1/2 (ERKs) and RSKs, other alternatively spliced forms and distinct components exist in the different tiers, and participate in ERK signaling under specific conditions. These components enhance the complexity of the ERK cascade and thereby, enable the wide variety of functions that are regulated by it. Another factor that is important for the dissemination of ERKs' signals is the multiplicity of the cascade's substrates, which include transcription factors, protein kinases and phosphatases, cytoskeletal elements, regulators of apoptosis, and a variety of other signaling-related molecules. About 160 substrates have already been discovered for ERKs, and the list of these substrates, as well as the function and mechanism of activation of representative substrates, are described in the current review. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Understanding of these processes may provide a full picture of the distinct, and even opposing cellular processes that are regulated by the ERK cascade.
Collapse
Affiliation(s)
- Seunghee Yoon
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
453
|
Bhattacharyya RP, Reményi A, Good MC, Bashor CJ, Falick AM, Lim WA. The Ste5 scaffold allosterically modulates signaling output of the yeast mating pathway. Science 2006; 311:822-6. [PMID: 16424299 DOI: 10.1126/science.1120941] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Scaffold proteins organize signaling proteins into pathways and are often viewed as passive assembly platforms. We found that the Ste5 scaffold has a more active role in the yeast mating pathway: A fragment of Ste5 allosterically activated autophosphorylation of the mitogen-activated protein kinase Fus3. The resulting form of Fus3 is partially active-it is phosphorylated on only one of two key residues in the activation loop. Unexpectedly, at a systems level, autoactivated Fus3 appears to have a negative regulatory role, promoting Ste5 phosphorylation and a decrease in pathway transcriptional output. Thus, scaffolds not only direct basic pathway connectivity but can precisely tune quantitative pathway input-output properties.
Collapse
Affiliation(s)
- Roby P Bhattacharyya
- Department of Cellular and Molecular Pharmacology, University of California-San Francisco, 600 16th Street, San Francisco, CA 94143-2240, USA
| | | | | | | | | | | |
Collapse
|
454
|
Balan V, Leicht DT, Zhu J, Balan K, Kaplun A, Singh-Gupta V, Qin J, Ruan H, Comb MJ, Tzivion G. Identification of novel in vivo Raf-1 phosphorylation sites mediating positive feedback Raf-1 regulation by extracellular signal-regulated kinase. Mol Biol Cell 2006; 17:1141-53. [PMID: 16407412 PMCID: PMC1382304 DOI: 10.1091/mbc.e04-12-1123] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Ras-Raf-mitogen-activated protein kinase cascade is a key growth-signaling pathway, which uncontrolled activation results in transformation. Although the exact mechanisms underlying Raf-1 regulation remain incompletely understood, phosphorylation has been proposed to play a critical role in this regulation. We report here three novel epidermal growth factor-induced in vivo Raf-1 phosphorylation sites that mediate positive feedback Raf-1 regulation. Using mass spectrometry, we identified Raf-1 phosphorylation on three SP motif sites: S289/S296/S301 and confirmed their identity using two-dimensional-phosphopeptide mapping and phosphospecific antibodies. These sites were phosphorylated by extracellular signal-regulated kinase (ERK)-1 in vitro, and their phosphorylation in vivo was dependent on endogenous ERK activity. Functionally, ERK-1 expression sustains Raf-1 activation in a manner dependent on Raf-1 phosphorylation on the identified sites, and S289/296/301A substitution markedly decreases the in vivo activity of Raf-1 S259A. Importantly, the ERK-phosphorylated Raf-1 pool has 4 times higher specific kinase activity than total Raf-1, and its phosphopeptide composition is similar to that of the general Raf-1 population, suggesting that the preexisting, phosphorylated Raf-1, representing the activatable Raf-1 pool, is the Raf-1 subpopulation targeted by ERK. Our study describes the identification of new in vivo Raf-1 phosphorylation sites targeted by ERK and provides a novel mechanism for a positive feedback Raf-1 regulation.
Collapse
Affiliation(s)
- Vitaly Balan
- Karmanos Cancer Institute, Department of Pathology, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
455
|
Abstract
Although the small DNA tumor virus SV40 (simian virus 40) fails to replicate in human cells, understanding how SV40 transforms human and murine cells has and continues to provide important insights into cancer initiation and maintenance. The early region of SV40 encodes two oncoproteins: the large T (LT) and small t (ST) antigens. SV40 LT contributes to murine and human cell transformation in part by inactivating the p53 and retinoblastoma protein tumor suppressor proteins. SV40 ST inhibits the activity of the protein phosphatase 2A (PP2A) family of serine-threonine phosphatases, and this interaction is required for SV40-mediated transformation of human cells. PP2A regulates multiple signaling pathways, suggesting many possible targets important for viral replication and cell transformation. Genetic manipulation of particular PP2A subunits has confirmed a role for specific complexes in transformation, and recent work implicates the perturbation of the phosphatidylinositol 3-kinase/Akt pathway and c-Myc stability in transformation by ST and PP2A. Mutations in PP2A subunits occur at low frequency in human tumors, suggesting that alterations of PP2A signaling play a role in both experimentally induced and spontaneously arising cancers. Unraveling the complexity of PP2A signaling will not only provide further insights into cancer development but may identify novel targets with promise for therapeutic manipulation.
Collapse
Affiliation(s)
- Jason D Arroyo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
456
|
Belcher SM, Le HH, Spurling L, Wong JK. Rapid estrogenic regulation of extracellular signal- regulated kinase 1/2 signaling in cerebellar granule cells involves a G protein- and protein kinase A-dependent mechanism and intracellular activation of protein phosphatase 2A. Endocrinology 2005; 146:5397-406. [PMID: 16123167 DOI: 10.1210/en.2005-0564] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In neonatal rat cerebellar neurons, 17beta-estradiol (E(2)) rapidly stimulates ERK1/2 phosphorylation through a membrane-associated receptor. Here the mechanism of rapid E(2)-induced ERK1/2 signaling in primary cultured granule cells was investigated in more detail. The results of these studies show that E(2) and ICI182,780, a steroidal antagonist of estrogen receptor transactivation, rapidly increased ERK signaling with a time course similar to the transient activation induced by epidermal growth factor (EGF). However, EGF receptor (EGFR) autophosphorylation was not increased by E(2), and blockade of EGFR tyrosine kinase activity did not abrogate the rapid actions of E(2). The involvement of Src-tyrosine kinase activity was demonstrated by detection of increased c-Src phosphorylation in response to E(2) and by blockade of E(2)-induced ERK1/2 activation by inhibition of Src-family tyrosine kinase activity. Inhibition of Galphai signaling or protein kinase A (PKA) activity blocked the ability of ICI182,780 to rapidly stimulate ERK signaling. Under those conditions, E(2) treatment induced a rapid and transient suppression of basal ERK1/2 phosphorylation. Protein phosphatase 2A (PP2A) activity was rapidly increased by E(2) but not by E(2) covalently linked to BSA. Rapid E(2)-induced increases in PP2A activity were insensitive to pertussis toxin. The presented evidence indicates that the rapid effects of estrogens on ERK signaling in cerebellar granule cells are induced through a novel G protein-coupled receptor mechanism that requires PKA and Src-kinase activity to link E(2) to the ERK/MAPK signaling module. Along with stimulating ERK signaling, E(2) rapidly activates PP2A via an independent signaling mechanism that may serve as a cell-specific regulator of signal duration.
Collapse
Affiliation(s)
- Scott M Belcher
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Ohio 45267-0575, USA.
| | | | | | | |
Collapse
|
457
|
Adams DG, Coffee RL, Zhang H, Pelech S, Strack S, Wadzinski BE. Positive regulation of Raf1-MEK1/2-ERK1/2 signaling by protein serine/threonine phosphatase 2A holoenzymes. J Biol Chem 2005; 280:42644-54. [PMID: 16239230 DOI: 10.1074/jbc.m502464200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein serine/threonine phosphatase 2A (PP2A) regulates a wide variety of cellular signal transduction pathways. The predominant form of PP2A in cells is a heterotrimeric holoenzyme consisting of a scaffolding (A) subunit, a regulatory (B) subunit, and a catalytic (C) subunit. Although PP2A is known to regulate Raf1-MEK1/2-ERK1/2 signaling at multiple steps in this pathway, the specific PP2A holoenzymes involved remain unclear. To address this question, we established tetracycline-inducible human embryonic kidney 293 cell lines for overexpression of FLAG-tagged Balpha/delta regulatory subunits by approximately 3-fold or knock-down of Balpha by greater than 70% compared with endogenous levels. The expression of functional epitope-tagged B subunits was confirmed by the detection of A and C subunits as well as phosphatase activity in FLAG immune complexes from extracts of cells overexpressing the FLAG-Balpha/delta subunit. Western analysis of the cell extracts using phosphospecific antibodies for MEK1/2 and ERK1/2 demonstrated that activation of these kinases in response to epidermal growth factor was markedly diminished in Balpha knock-down cells but elevated in Balpha- and Bdelta-overexpressing cells as compared with control cells. In parallel with the activation of MEK1/2 and ERK1/2, the inhibitory phosphorylation site of Raf1 (Ser-259) was dephosphorylated in cells overexpressing Balpha or Bdelta. Pharmacological inhibitor studies as well as reporter assays for ERK-dependent activation of the transcription factor Elk1 revealed that the PP2A holoenzymes ABalphaC and ABdeltaC act downstream of Ras and upstream of MEK1 to promote activation of this MAPK signaling cascade. Furthermore both PP2A holoenzymes were found to associate with Raf1 and catalyze dephosphorylation of inhibitory phospho-Ser-259. Together these findings indicate that PP2A ABalphaC and ABdeltaC holoenzymes function as positive regulators of Raf1-MEK1/2-ERK1/2 signaling by targeting Raf1.
Collapse
Affiliation(s)
- Deanna G Adams
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
458
|
Chalfant CE, Spiegel S. Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. J Cell Sci 2005; 118:4605-12. [PMID: 16219683 DOI: 10.1242/jcs.02637] [Citation(s) in RCA: 332] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The phosphorylated sphingolipid metabolites sphingosine 1-phosphate (S1P) and ceramide 1-phosphate (C1P) have emerged as potent bioactive agents. Recent studies have begun to define new biological functions for these lipids. Generated by sphingosine kinases and ceramide kinase, they control numerous aspects of cell physiology, including cell survival and mammalian inflammatory responses. Interestingly, S1P is involved in cyclooxygenase-2 induction and C1P is required for the activation and translocation of cPLA2. This suggests that these two sphingolipid metabolites may act in concert to regulate production of eicosanoids, important inflammatory mediators. Whereas S1P functions mainly via G-protein-coupled receptors, C1P appears to bind directly to targets such as cPLA2 and protein phosphatase 1/2A. S1P probably also has intracellular targets, and in plants it appears to directly regulate the G protein α subunit GPA1.
Collapse
Affiliation(s)
- Charles E Chalfant
- Department of Biochemistry, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, VA 23298, USA.
| | | |
Collapse
|
459
|
Yeh ES, Lew BO, Means AR. The loss of PIN1 deregulates cyclin E and sensitizes mouse embryo fibroblasts to genomic instability. J Biol Chem 2005; 281:241-51. [PMID: 16223725 DOI: 10.1074/jbc.m505770200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
During the G0/G1-S phase transition, the timely synthesis and degradation of key regulatory proteins is required for normal cell cycle progression. Two of these proteins, c-Myc and cyclin E, are recognized by the Cdc4 E3 ligase of the Skp1/Cul1/Rbx1 (SCF) complex. SCF(Cdc4) binds to a similar phosphodegron sequence in c-Myc and cyclin E proteins resulting in ubiquitylation and degradation of both proteins via the 26 S proteosome. Since the prolyl isomerase Pin1 binds the c-Myc phosphodegron and participates in regulation of c-Myc turnover, we hypothesized that Pin1 would bind to and regulate cyclin E turnover in a similar manner. Here we show that Pin1 regulates the turnover of cyclin E in mouse embryo fibroblasts. Pin1 binds to the cyclin E-Cdk2 complex in a manner that depends on Ser384 of cyclin E, which is phosphorylated by Cdk2. The absence of Pin1 results in an increased steady-state level of cyclin E and stalling of the cells in the G1/S phase of the cell cycle. The cellular changes that result from the loss of Pin1 predispose Pin1 null mouse embryo fibroblasts to undergo more rapid genomic instability when immortalized by conditional inactivation of p53 and sensitizes these cells to more aggressive Ras-dependent transformation and tumorigenesis.
Collapse
Affiliation(s)
- Elizabeth S Yeh
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710-3813, USA
| | | | | |
Collapse
|
460
|
Dumaz N, Marais R. Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on the anniversary prize of the Gesellschaft für Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels. FEBS J 2005; 272:3491-504. [PMID: 16008550 DOI: 10.1111/j.1742-4658.2005.04763.x] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the hallmarks of cAMP is its ability to inhibit proliferation in many cell types, but stimulate proliferation in others. Clearly cAMP has cell type specific effects and the outcome on proliferation is largely attributed to crosstalk from cAMP to the RAS/RAF/mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK pathway. We review the crosstalk between these two ancient and conserved pathways, describing the molecular mechanisms underlying the interactions between these pathways and discussing their possible biological importance.
Collapse
Affiliation(s)
- Nicolas Dumaz
- Signal Transduction Team, Cancer Research UK Centre for Cell and Molecular Biology, The Institute of Cancer Research, London, UK
| | | |
Collapse
|
461
|
Zhu J, Balan V, Bronisz A, Balan K, Sun H, Leicht DT, Luo Z, Qin J, Avruch J, Tzivion G. Identification of Raf-1 S471 as a novel phosphorylation site critical for Raf-1 and B-Raf kinase activities and for MEK binding. Mol Biol Cell 2005; 16:4733-44. [PMID: 16093354 PMCID: PMC1237079 DOI: 10.1091/mbc.e05-02-0090] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Ras-Raf-MAPK cascade is a key growth-signaling pathway and its uncontrolled activation results in cell transformation. Although the general features of the signal transmission along the cascade are reasonably defined, the mechanisms underlying Raf activation remain incompletely understood. Here, we show that Raf-1 dephosphorylation, primarily at epidermal growth factor (EGF)-induced sites, abolishes Raf-1 kinase activity. Using mass spectrometry, we identified five novel in vivo Raf-1 phosphorylation sites, one of which, S471, is located in subdomain VIB of Raf-1 kinase domain. Mutational analyses demonstrated that Raf-1 S471 is critical for Raf-1 kinase activity and for its interaction with mitogen-activated protein kinase kinase (MEK). Similarly, mutation of the corresponding B-Raf site, S578, resulted in an inactive kinase, suggesting that the same Raf-1 and B-Raf phosphorylation is needed for Raf kinase activation. Importantly, the naturally occurring, cancer-associated B-Raf activating mutation V599E suppressed the S578A mutation, suggesting that introducing a charged residue at this region eliminates the need for an activating phosphorylation. Our results demonstrate an essential role of specific EGF-induced Raf-1 phosphorylation sites in Raf-1 activation, identify Raf-1 S471 as a novel phosphorylation site critical for Raf-1 and B-Raf kinase activities, and point to the possibility that the V599E mutation activates B-Raf by mimicking a phosphorylation at the S578 site.
Collapse
Affiliation(s)
- Jun Zhu
- Cardiovascular Research Institute, The Texas A&M University Health Science Center, Temple, TX 76504, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
462
|
Abstract
The prolyl isomerase Pin1 is a conserved enzyme that is intimately involved in diverse biological processes and pathological conditions such as cancer and Alzheimer's disease. By catalysing cis-trans interconversion of certain motifs containing phosphorylated serine or threonine residues followed by a proline residue (pSer/Thr-Pro), Pin1 can have profound effects on phosphorylation signalling. The structural and functional differences that result from cis-trans isomerization of specific pSer/Thr-Pro motifs probably underlie most, if not all, Pin1-dependent actions. Phosphorylation-dependent prolyl isomerization by Pin1 remains a unique mode for the modulation of signal transduction. Here, we provide an overview of the plethora of regulatory events that involve this unique enzyme, with a particular focus on oncogenic signalling and neurodegeneration.
Collapse
|
463
|
Trakul N, Menard RE, Schade GR, Qian Z, Rosner MR. Raf kinase inhibitory protein regulates Raf-1 but not B-Raf kinase activation. J Biol Chem 2005; 280:24931-40. [PMID: 15886202 DOI: 10.1074/jbc.m413929200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Raf kinase inhibitory protein (RKIP; also known as phosphatidylethanolamine-binding protein or PEBP) is a modulator of the Raf/MAPK signaling cascade and a suppressor of metastatic cancer. Here, we show that RKIP inhibits MAPK by regulating Raf-1 activation; specifically, RKIP acts subsequent to Raf-1 membrane recruitment, prevents association of Raf-1 and p21-activated kinase (PAK), and blocks phosphorylation of the Raf-1 kinase domain by PAK and Src family kinases. Mutation of the PAK and Src phosphorylation sites on Raf-1 to aspartate, a phosphate mimic, prevented RKIP association with or inhibition of Raf-1 signaling. Interestingly, although RKIP can interact with B-Raf, RKIP depletion had no effect on activation of B-Raf. Because c-Raf-1 and B-Raf are both required for maximal MAPK stimulation by epidermal growth factor in neuronal and epithelial cell lines, we determined whether RKIP significantly affects MAPK signaling. In fact, RKIP depletion increased not only the amplitude but also the sensitivity of MAPK and DNA synthesis to epidermal growth factor stimulation by up to an order of magnitude. These results indicate that selective modulation of c-Raf-1 but not B-Raf activation by RKIP can limit the dynamic range of the MAPK signaling response to growth factors and may play a critical role in growth and development.
Collapse
Affiliation(s)
- Nicholas Trakul
- Committee on Cancer Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
464
|
Abstract
More than 20 years ago, Raf was discovered as a cellular oncogene transduced by transforming retroviruses. Since then, the three Raf isoforms have been intensively studied, mainly as the kinases linking Ras to the MEK/ERK signaling module. As this pathway is activated in human cancer, the Raf kinases are considered promising therapeutic targets, and we have learned a lot about their regulation, targets, and functions. Do they still hold surprises? Recent gene targeting studies indicate that they do. This review focuses on the regulation and biology of the best-studied Raf isoform, Raf-1, in the context of its kinase-independent functions.
Collapse
Affiliation(s)
- Manuela Baccarini
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, The University of Vienna, Vienna Biocenter, Dr. Bohr Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
465
|
Abstract
We understand Raf-1 activation relatively well but know less about how it is inactivated. An exciting study in this issue of Molecular Cell now describes the molecular basis underlying the transient nature of Raf-1 signaling.
Collapse
Affiliation(s)
- Nicolas Dumaz
- Signal Transduction Team, Cancer Research UK Centre of Cell and Molecular Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, United Kingdom
| | | |
Collapse
|
466
|
Bloethner S, Chen B, Hemminki K, Müller-Berghaus J, Ugurel S, Schadendorf D, Kumar R. Effect of common B-RAF and N-RAS mutations on global gene expression in melanoma cell lines. Carcinogenesis 2005; 26:1224-32. [PMID: 15760917 DOI: 10.1093/carcin/bgi066] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We studied global gene expression in three melanoma cell lines with the most common and potent V600E mutation in the B-RAF gene-four cell lines with a common Q61R mutation in the N-RAS gene and three cell lines with no mutations using human HG-U133A 2.0 micro-arrays with 22 277 transcripts. Data analysis using stringent criteria revealed several upregulated and downregulated genes in cell lines with B-RAF and N-RAS mutations compared with cell lines without mutations. We found 29 genes specifically upregulated and 32 genes downregulated in cell lines with B-RAF mutations, whereas 70 genes were upregulated and 39 downregulated in cell lines with N-RAS mutations; 11 genes showed overlapping upregulation and 45 downregulation. The micro-array data for nine selected genes were validated by the real-time PCR technique. Expression of a large number of genes, that encode members or regulators of the RAS/RAF/MEK/ERK pathways or are involved in metastasis or invasion, was affected in cell lines with mutations in B-RAF and N-RAS. Upregulated genes in cell lines with mutations included dual-specificity phosphatase 6 (DUSP6), sprouty 2 (SPRY2), v-akt murine thymoma viral oncogene homolog 3 (AKT3) and matrix metalloproteinase 14 (MMP14); downregulated genes included interleukin 18 (IL18), Krüppel-like factor 5 (KLF5) and inhibitor of DNA binding 2 (ID2). Our results, though carried on cell lines, provide a novel insight into the effect of mutations in the B-RAF and N-RAS genes on global gene expression in melanoma and highlight the complexity of mechanisms involved in tumour initiation and maintenance.
Collapse
Affiliation(s)
- Sandra Bloethner
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
467
|
Robubi A, Mueller T, Fueller J, Hekman M, Rapp UR, Dandekar T. B-Raf and C-Raf signaling investigated in a simplified model of the mitogenic kinase cascade. Biol Chem 2005; 386:1165-71. [PMID: 16307482 DOI: 10.1515/bc.2005.133] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Signaling pathways based on the reversible phosphorylation of proteins control most aspects of cellular life in higher organisms. Extracellular stimuli can induce growth, differentiation, survival and the stress response through a number of highly conserved signaling pathways. We discuss how the intensity and duration of signals may have dramatic consequences on the way cells respond to stimuli. Picking the central Ras-Raf-MEK-ERK signal cascade, we developed a mathematical model of how stimuli induce different signal patterns and thereby different cellular responses, depending on cell type and the ratio between B-Raf and C-Raf. Based on biochemical data for activation and dephosphorylation, as well as the differential equations of our model, we suggest a different signaling pattern and response result for B-Raf (strong activation, sustained signal) and C-Raf (steep activation, transient signal). We further support the significance of such differential modulatory signaling by showing different Raf isoform expression in various cell lines and experimental testing of the predicted kinase activities in B-Raf, C-Raf and mutated versions.
Collapse
Affiliation(s)
- Armin Robubi
- Department of Bioinformatics, University of Wuerzburg, D-97074 Wuerzburg, Germany
| | | | | | | | | | | |
Collapse
|