451
|
Hu C, Ye M, Bai J, Liu P, Lu F, Chen J, Xu Y, Yan L, Yu P, Xiao Z, Gu D, Xu L, Tian Y, Tang Q. FOXA2-initiated transcriptional activation of INHBA induced by methylmalonic acid promotes pancreatic neuroendocrine neoplasm progression. Cell Mol Life Sci 2024; 81:50. [PMID: 38252148 PMCID: PMC10803496 DOI: 10.1007/s00018-023-05084-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024]
Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) are a group of highly heterogeneous neoplasms originating from the endocrine islet cells of the pancreas with characteristic neuroendocrine differentiation, more than 60% of which represent metastases when diagnosis, causing major tumor-related death. Metabolic alterations have been recognized as one of the hallmarks of tumor metastasis, providing attractive therapeutic targets. However, little is known about the molecular mechanism of metabolic changes regulating PanNEN progression. In this study, we first identified methylmalonic acid (MMA) as an oncometabolite for PanNEN progression, based on serum metabolomics of metastatic PanNEN compared with non-metastatic PanNEN patients. One of the key findings was the potentially novel mechanism of epithelial-mesenchymal transition (EMT) triggered by MMA. Inhibin βA (INHBA) was characterized as a key regulator of MMA-induced PanNEN progression according to transcriptomic analysis, which has been validated in vitro and in vivo. Mechanistically, INHBA was activated by FOXA2, a neuroendocrine (NE) specific transcription factor, which was initiated during MMA-induced progression. In addition, MMA-induced INHBA upregulation activated downstream MITF to regulate EMT-related genes in PanNEN cells. Collectively, these data suggest that activation of INHBA via FOXA2 promotes MITF-mediated EMT during MMA inducing PanNEN progression, which puts forward a novel therapeutic target for PanNENs.
Collapse
Affiliation(s)
- Chunhua Hu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Mujie Ye
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Jianan Bai
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Pengfei Liu
- Department of Gastroenterology, Jiangyin People's Hospital, Jiangyin, Jiangsu Province, China
| | - Feiyu Lu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Jinhao Chen
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Yanling Xu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Lijun Yan
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Ping Yu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Zequan Xiao
- Department of Gastroenterology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili State, China
| | - Danyang Gu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Lin Xu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Ye Tian
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Qiyun Tang
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China.
| |
Collapse
|
452
|
Xie C, Hao X, Yuan H, Wang C, Sharif R, Yu H. Crosstalk Between circRNA and Tumor Microenvironment of Hepatocellular Carcinoma: Mechanism, Function and Applications. Onco Targets Ther 2024; 17:7-26. [PMID: 38283733 PMCID: PMC10812140 DOI: 10.2147/ott.s437536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common aggressive tumors in the world. Despite the availability of various treatments, its prognosis remains poor due to the lack of specific diagnostic indicators and the high heterogeneity of HCC cases. CircRNAs are noncoding RNAs with stable and highly specific expression. Extensive research evidence suggests that circRNAs mediate the pathogenesis and progression of HCC through acting as miRNA sponges, protein modulators, and translation templates. Tumor microenvironment (TME) has become a hotspot of immune-related research in recent years due to its effects on metabolism, secretion and immunity of HCC. Accordingly, understanding the role played by circRNAs in TME is important for the study of HCC. This review will discuss the crosstalk between circRNAs and TME in HCC. In addition, we will discuss the current deficiencies and controversies in research on circRNAs and predict future research directions.
Collapse
Affiliation(s)
- Chenxi Xie
- Hepatobiliary Center, Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xiaopei Hao
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People’s Republic of China
| | - Hao Yuan
- Hepatobiliary Center, Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Chongyu Wang
- The First Clinical Medical College of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Razinah Sharif
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
- Biocompatibility Laboratory, Centre for Research and Instrumentation, University Kebangsaan Malaysia, UKM, Bangi, Selangor Darul Ehsan, 43600, Malaysia
| | - Haibo Yu
- Hepatobiliary Center, Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
453
|
Khan FA, Fang N, Zhang W, Ji S. The multifaceted role of Fragile X-Related Protein 1 (FXR1) in cellular processes: an updated review on cancer and clinical applications. Cell Death Dis 2024; 15:72. [PMID: 38238286 PMCID: PMC10796922 DOI: 10.1038/s41419-023-06413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
RNA-binding proteins (RBPs) modulate the expression level of several target RNAs (such as mRNAs) post-transcriptionally through interactions with unique binding sites in the 3'-untranslated region. There is mounting information that suggests RBP dysregulation plays a significant role in carcinogenesis. However, the function of FMR1 autosomal homolog 1(FXR1) in malignancies is just beginning to be unveiled. Due to the diversity of their RNA-binding domains and functional adaptability, FXR1 can regulate diverse transcript processing. Changes in FXR1 interaction with RNA networks have been linked to the emergence of cancer, although the theoretical framework defining these alterations in interaction is insufficient. Alteration in FXR1 expression or localization has been linked to the mRNAs of cancer suppressor genes, cancer-causing genes, and genes involved in genomic expression stability. In particular, FXR1-mediated gene regulation involves in several cellular phenomena related to cancer growth, metastasis, epithelial-mesenchymal transition, senescence, apoptosis, and angiogenesis. FXR1 dysregulation has been implicated in diverse cancer types, suggesting its diagnostic and therapeutic potential. However, the molecular mechanisms and biological effects of FXR1 regulation in cancer have yet to be understood. This review highlights the current knowledge of FXR1 expression and function in various cancer situations, emphasizing its functional variety and complexity. We further address the challenges and opportunities of targeting FXR1 for cancer diagnosis and treatment and propose future directions for FXR1 research in oncology. This work intends to provide an in-depth review of FXR1 as an emerging oncotarget with multiple roles and implications in cancer biology and therapy.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Na Fang
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Weijuan Zhang
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Shaoping Ji
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
- Zhengzhou Shuqing Medical College, Zhengzhou, China.
| |
Collapse
|
454
|
Li Y, Chen L, Zheng Q, Liu G, Wang M, Wei S, Chen T. Lactate dehydrogenase A promotes nasopharyngeal carcinoma progression through the TAK1/NF-κB Axis. Mol Biol Rep 2024; 51:152. [PMID: 38236332 DOI: 10.1007/s11033-023-09130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a malignant tumor that originates in the nasopharyngeal mucosa and is common in China and Southeast Asian countries. Cancer cells reprogram glycolytic metabolism to promote their growth, survival and metastasis. Glycolysis plays an important role in NPC development, but the underlying mechanisms remain incompletely elucidated. Lactate dehydrogenase A (LDHA) is a crucial glycolytic enzyme, catalyzing the last step of glycolysis. This study aims to investigate the exact role of LDHA, which catalyzes the conversion of pyruvate into lactate, in NPC development. METHODS AND RESULTS The western blot and immunohistochemical (IHC) results indicated that LDHA was significantly upregulated in NPC cells and clinical samples. LDHA knockdown by shRNA significantly inhibited NPC cell proliferation and invasion. Further knockdown of LDHA dramatically weakened the tumorigenicity of NPC cells in vivo. Mechanistic studies showed that LDHA activated TGF-β-activated kinase 1 (TAK1) and subsequent nuclear factor κB (NF-κB) signaling to promote NPC cell proliferation and invasion. Exogenous lactate supplementation restored NPC cell proliferation and invasion inhibited by LDHA knockdown, and this restorative effect was reversed by NF-κB inhibitor (BAY 11-7082) or TAK1 inhibitor (5Z-7-oxozeaenol) treatment. Moreover, clinical sample analyses showed that LDHA expression was positively correlated with TAK1 Thr187 phosphorylation and poor prognosis. CONCLUSIONS Our results suggest that LDHA and its major metabolite lactate drive NPC progression by regulating TAK1 and its downstream NF-κB signaling, which could become a therapeutic target in NPC.
Collapse
Affiliation(s)
- Yingzi Li
- State Key Laboratory of Respiratory Disease at People's Hospital of Yangjiang, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Yangjiang Key Laboratory of Respiratory Disease, Department of Respiratory Medicine, People's Hospital of Yangjiang, Yangjiang, 529500, Guangdong, China
| | - Lanfang Chen
- State Key Laboratory of Respiratory Disease at People's Hospital of Yangjiang, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Qiaochong Zheng
- Yangjiang Key Laboratory of Respiratory Disease, Department of Respiratory Medicine, People's Hospital of Yangjiang, Yangjiang, 529500, Guangdong, China
| | - Guanxin Liu
- State Key Laboratory of Respiratory Disease at People's Hospital of Yangjiang, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Mengjiao Wang
- Clinical Research Lab Center, Guizhou Provincial People's Hospital, Guizhou University Medical College, Guiyang, 550025, Guizhou, China
| | - Shupei Wei
- State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, Guangdong, China.
| | - Tao Chen
- State Key Laboratory of Respiratory Disease at People's Hospital of Yangjiang, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
- Yangjiang Key Laboratory of Respiratory Disease, Department of Respiratory Medicine, People's Hospital of Yangjiang, Yangjiang, 529500, Guangdong, China.
| |
Collapse
|
455
|
Wang Y, Shen N, Yang Y, Xia Y, Zhang W, Lu Y, Wang Z, Yang Z, Wang Z. ZDHHC5-mediated S-palmitoylation of FAK promotes its membrane localization and epithelial-mesenchymal transition in glioma. Cell Commun Signal 2024; 22:46. [PMID: 38233791 PMCID: PMC10795333 DOI: 10.1186/s12964-023-01366-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/26/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Abnormal activation of FAK is associated with tumor development and metastasis. Through interactions with other intracellular signalling molecules, FAK influences cytoskeletal remodelling, modulation of adhesion signalling, and activation of transcription factors, promoting migration and invasion of tumor cells. However, the exact mechanism that regulates these processes remains unresolved. Herein, our findings indicate that the S-palmitoylation of FAK is crucial for both its membrane localization and activation. METHODS The palmitoylation of FAK in U251 and T98G cells was assessed by an acyl-PEG exchange (APE) assay and a metabolic incorporation assay. Cellular palmitoylation was inhibited using 2-bromopalmitate, and the palmitoylation status and cellular localization of FAK were determined. A metabolic incorporation assay was used to identify the potential palmitoyl acyltransferase and the palmitoylation site of FAK. Cell Counting Kit-8 (CCK8) assays, colony formation assays, and Transwell assays were conducted to assess the impact of ZDHHC5 in GBM. Additionally, intracranial GBM xenografts were utilized to investigate the effects of genetically silencing ZDHHC5 on tumor growth. RESULTS Inhibiting FAK palmitoylation leads to its redistribution from the membrane to the cytoplasm and a decrease in its phosphorylation. Moreover, ZDHHC5, a protein-acyl-transferase (PAT), catalyzes this key modification of FAK at C456. Knockdown of ZDHHC5 abrogates the S-palmitoylation and membrane distribution of FAK and impairs cell proliferation, invasion, and epithelial-mesenchymal transition (EMT). Taken together, our research reveals the crucial role of ZDHHC5 as a PAT responsible for FAK S-palmitoylation, membrane localization, and activation. CONCLUSIONS These results imply that targeting the ZDHHC5/FAK axis has the potential to be a promising strategy for therapeutic interventions for glioblastoma (GBM). Video Abstract.
Collapse
Affiliation(s)
- Yang Wang
- Center for Clinical Medical Research, the Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Na Shen
- Center for Clinical Medical Research, the Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yang Yang
- Department of Pediatric Surgery, the Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yuan Xia
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wenhao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yu Lu
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, 233099, China
| | - Zhicheng Wang
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, 233099, China
| | - Ze Yang
- Department of Pediatric Surgery, the Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Zhangjie Wang
- Center for Clinical Medical Research, the Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
456
|
Solaimuthu B, Khatib A, Tanna M, Karmi A, Hayashi A, Abu Rmaileh A, Lichtenstein M, Takoe S, Jolly MK, Shaul YD. The exostosin glycosyltransferase 1/STAT3 axis is a driver of breast cancer aggressiveness. Proc Natl Acad Sci U S A 2024; 121:e2316733121. [PMID: 38215181 PMCID: PMC10801894 DOI: 10.1073/pnas.2316733121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/07/2023] [Indexed: 01/14/2024] Open
Abstract
The epithelial-mesenchymal transition (EMT) program is crucial for transforming carcinoma cells into a partially mesenchymal state, enhancing their chemoresistance, migration, and metastasis. This shift in cell state is tightly regulated by cellular mechanisms that are not yet fully characterized. One intriguing EMT aspect is the rewiring of the proteoglycan landscape, particularly the induction of heparan sulfate proteoglycan (HSPG) biosynthesis. This proteoglycan functions as a co-receptor that accelerates cancer-associated signaling pathways through its negatively-charged residues. However, the precise mechanisms through which EMT governs HSPG biosynthesis and its role in cancer cell plasticity remain elusive. Here, we identified exostosin glycosyltransferase 1 (EXT1), a central enzyme in HSPG biosynthesis, to be selectively upregulated in aggressive tumor subtypes and cancer cell lines, and to function as a key player in breast cancer aggressiveness. Notably, ectopic expression of EXT1 in epithelial cells is sufficient to induce HSPG levels and the expression of known mesenchymal markers, subsequently enhancing EMT features, including cell migration, invasion, and tumor formation. Additionally, EXT1 loss in MDA-MB-231 cells inhibits their aggressiveness-associated traits such as migration, chemoresistance, tumor formation, and metastasis. Our findings reveal that EXT1, through its role in HSPG biosynthesis, governs signal transducer and activator of transcription 3 (STAT3) signaling, a known regulator of cancer cell aggressiveness. Collectively, we present the EXT1/HSPG/STAT3 axis as a central regulator of cancer cell plasticity that directly links proteoglycan synthesis to oncogenic signaling pathways.
Collapse
Affiliation(s)
- Balakrishnan Solaimuthu
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Anees Khatib
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Mayur Tanna
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Abdelrahman Karmi
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Arata Hayashi
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Areej Abu Rmaileh
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Michal Lichtenstein
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Suranjana Takoe
- Department of Biological Sciences, Indian Institute of Science Education and Research, Berhampur760010, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore560012, India
| | - Yoav David Shaul
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112001, Israel
| |
Collapse
|
457
|
Morillo-Bernal J, Pizarro-García P, Moreno-Bueno G, Cano A, Mazón MJ, Eraso P, Portillo F. HuR (ELAVL1) Stabilizes SOX9 mRNA and Promotes Migration and Invasion in Breast Cancer Cells. Cancers (Basel) 2024; 16:384. [PMID: 38254873 PMCID: PMC10813878 DOI: 10.3390/cancers16020384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
RNA-binding proteins play diverse roles in cancer, influencing various facets of the disease, including proliferation, apoptosis, angiogenesis, senescence, invasion, epithelial-mesenchymal transition (EMT), and metastasis. HuR, a known RBP, is recognized for stabilizing mRNAs containing AU-rich elements (AREs), although its complete repertoire of mRNA targets remains undefined. Through a bioinformatics analysis of the gene expression profile of the Hs578T basal-like triple-negative breast cancer cell line with silenced HuR, we have identified SOX9 as a potential HuR-regulated target. SOX9 is a transcription factor involved in promoting EMT, metastasis, survival, and the maintenance of cancer stem cells (CSCs) in triple-negative breast cancer. Ribonucleoprotein immunoprecipitation assays confirm a direct interaction between HuR and SOX9 mRNA. The half-life of SOX9 mRNA and the levels of SOX9 protein decreased in cells lacking HuR. Cells silenced for HuR exhibit reduced migration and invasion compared to control cells, a phenotype similar to that described for SOX9-silenced cells.
Collapse
Affiliation(s)
- Jesús Morillo-Bernal
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
| | - Patricia Pizarro-García
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
| | - Gema Moreno-Bueno
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28029 Madrid, Spain
- Fundación MD Anderson Internacional, 28033 Madrid, Spain
| | - Amparo Cano
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María J. Mazón
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
| | - Pilar Eraso
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
| | - Francisco Portillo
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
458
|
Shi M, Nan XR, Liu BQ. The Multifaceted Role of FUT8 in Tumorigenesis: From Pathways to Potential Clinical Applications. Int J Mol Sci 2024; 25:1068. [PMID: 38256141 PMCID: PMC10815953 DOI: 10.3390/ijms25021068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
FUT8, the sole glycosyltransferase responsible for N-glycan core fucosylation, plays a crucial role in tumorigenesis and development. Aberrant FUT8 expression disrupts the function of critical cellular components and triggers the abnormality of tumor signaling pathways, leading to malignant transformations such as proliferation, invasion, metastasis, and immunosuppression. The association between FUT8 and unfavorable outcomes in various tumors underscores its potential as a valuable diagnostic marker. Given the remarkable variation in biological functions and regulatory mechanisms of FUT8 across different tumor types, gaining a comprehensive understanding of its complexity is imperative. Here, we review how FUT8 plays roles in tumorigenesis and development, and how this outcome could be utilized to develop potential clinical therapies for tumors.
Collapse
Affiliation(s)
| | | | - Bao-Qin Liu
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China; (M.S.); (X.-R.N.)
| |
Collapse
|
459
|
Tang Q, Xu M, Long S, Yu Y, Ma C, Wang R, Li J, Wang X, Fang F, Han L, Wu W, Wang S. FZKA reverses gefitinib resistance by regulating EZH2/Snail/EGFR signaling pathway in lung adenocarcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116646. [PMID: 37269912 DOI: 10.1016/j.jep.2023.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 04/08/2023] [Accepted: 05/15/2023] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzheng Kang-Ai (FZKA) decoction is mainly composed of 12 components with different types of herbs. In the last decade, FZKA has been used as an adjuvant treatment for lung cancer in clinical practice. Our previous studies have confirmed that FZKA shows a strong anti-cancer activity, significantly increases the clinical efficacy of gefitinib and reverses gefitinib resistance in non-small cell lung cancer (NSCLC). However, the molecular mechanism still needs to be further elucidated. AIM OF THE STUDY The aim of this study was to investigate the role and mechanism by which FZKA inhibited the cell growth, proliferation and invasion of lung adenocarcinoma(LUAD) and reversed the acquired resistance of gefitinib for the therapy in LUAD. MATERIALS AND METHODS Cell viability assay and EDU assay were used for detecting of cell viability and cell proliferation. Transwell assay was performed to measure cell invasion. Western Blot and qRT-PCR were used for protein and gene expression test. The gene promoter activity was determined by dul-luciferase reporter assay. The in situ expression of protein was measured by cell immunofluorescence. Stabilized cell lines were established for stable overexpression of EZH2. Transient transfection assay was used for gene silence and overexpression. Xenograft tumors and bioluminescent imaging were used for in vivo experiments. RESULTS FZKA significantly inhibited the cell viability, proliferation and cell invasion of LUAD, the combination of FZKA and gefitinib had a great synergy on the above processes. Moreover, FZKA significantly decreased EZH2 mRNA and protein expression, FZKA reversed the resistance of gefitinib by down-regulation of EZH2 protein. ERK1/2 kinase mediated the down-regulation of EZH2 reduced by FZKA. In addition, FZKA decreased the expression of Snail and EGFR by decreasing EZH2. Overexpression of Snail and EGFR significantly reversed the effect of FZKA-inhibited cell invasion and cell proliferation. More important, the combination of FZKA and gefitinib enhanced the inhibitory effect on EZH2, Snail and EGFR proteins. Furthermore, the growth inhibition and reversal of gefitinib resistance induced by FZKA were further validated in vivo. Finally, the expression and clinical correlation of EZH2,EGFR and Snail in cancer patients were further validated using bioinformatics analysis. CONCLUSIONS FZKA significantly suppressed tumor progression and reversed gefitinib resistance by regulating the p-ERK1/2-EZH2-Snail/EGFR signaling pathway in LUAD.
Collapse
Affiliation(s)
- Qing Tang
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China; The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China.
| | - Mengfei Xu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China
| | - Shunqin Long
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China; The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China
| | - Yaya Yu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China
| | - Changju Ma
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China
| | - Rui Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China
| | - Jing Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China
| | - Xi Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China
| | - Fang Fang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, 530000, PR China
| | - Ling Han
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, PR China.
| | - Wanyin Wu
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China; The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China.
| | - Sumei Wang
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China; The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China.
| |
Collapse
|
460
|
He L, Zhang C, He W, Xu M. The emerging role of ectodermal neural cortex 1 in cancer. Sci Rep 2024; 14:513. [PMID: 38177640 PMCID: PMC10766627 DOI: 10.1038/s41598-023-50914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024] Open
Abstract
Ectodermal neural cortex 1 (ENC1) is a protein that plays a crucial role in the regulation of various cellular processes such as cell proliferation, differentiation, and apoptosis. Numerous studies have shown that ENC1 is overexpressed in various types of cancers, including breast, lung, pancreatic, and colorectal cancer, and its upregulation is correlated with a poorer prognosis. In addition to its role in cancer growth and spreading, ENC1 has also been linked to neuronal process development and neural crest cell differentiation. In this review, we provide an overview of the current knowledge on the relationship between ENC1 and cancer. We discuss the molecular mechanisms by which ENC1 contributes to tumorigenesis, including its involvement in multiple oncogenic signaling pathways. We also summarize the potential of targeting ENC1 for cancer therapy, as its inhibition has been shown to significantly reduce cancer cell invasion, growth, and metastasis. Finally, we highlight the remaining gaps in our understanding of ENC1's role in cancer and propose potential directions for future research.
Collapse
Affiliation(s)
- Lingling He
- Department of Obstetrics, Jiangxi Provincial Maternal and Child Health Hospital, No. 318, Bayi Avenue, Nanchang, 330006, Jiangxi Province, China.
| | - Chiyu Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Wenjing He
- Department of Endocrinology, Baoji Gaoxin Hospital, Baoji, 721006, Shanxi Province, China
| | - Minjuan Xu
- Department of Obstetrics and Gynecology, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi Province, China
| |
Collapse
|
461
|
Pozniak J, Pedri D, Landeloos E, Van Herck Y, Antoranz A, Vanwynsberghe L, Nowosad A, Roda N, Makhzami S, Bervoets G, Maciel LF, Pulido-Vicuña CA, Pollaris L, Seurinck R, Zhao F, Flem-Karlsen K, Damsky W, Chen L, Karagianni D, Cinque S, Kint S, Vandereyken K, Rombaut B, Voet T, Vernaillen F, Annaert W, Lambrechts D, Boecxstaens V, Saeys Y, van den Oord J, Bosisio F, Karras P, Shain AH, Bosenberg M, Leucci E, Paschen A, Rambow F, Bechter O, Marine JC. A TCF4-dependent gene regulatory network confers resistance to immunotherapy in melanoma. Cell 2024; 187:166-183.e25. [PMID: 38181739 DOI: 10.1016/j.cell.2023.11.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 08/23/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024]
Abstract
To better understand intrinsic resistance to immune checkpoint blockade (ICB), we established a comprehensive view of the cellular architecture of the treatment-naive melanoma ecosystem and studied its evolution under ICB. Using single-cell, spatial multi-omics, we showed that the tumor microenvironment promotes the emergence of a complex melanoma transcriptomic landscape. Melanoma cells harboring a mesenchymal-like (MES) state, a population known to confer resistance to targeted therapy, were significantly enriched in early on-treatment biopsies from non-responders to ICB. TCF4 serves as the hub of this landscape by being a master regulator of the MES signature and a suppressor of the melanocytic and antigen presentation transcriptional programs. Targeting TCF4 genetically or pharmacologically, using a bromodomain inhibitor, increased immunogenicity and sensitivity of MES cells to ICB and targeted therapy. We thereby uncovered a TCF4-dependent regulatory network that orchestrates multiple transcriptional programs and contributes to resistance to both targeted therapy and ICB in melanoma.
Collapse
Affiliation(s)
- Joanna Pozniak
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Dennis Pedri
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium; Laboratory for Membrane Trafficking, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Ewout Landeloos
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium; Department of General Medical Oncology, UZ Leuven, Leuven, Belgium
| | | | - Asier Antoranz
- Laboratory of Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Lukas Vanwynsberghe
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ada Nowosad
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Niccolò Roda
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Samira Makhzami
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Greet Bervoets
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Lucas Ferreira Maciel
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Carlos Ariel Pulido-Vicuña
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Lotte Pollaris
- Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Ruth Seurinck
- Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Fang Zhao
- Laboratory of Molecular Tumor Immunology, Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany
| | - Karine Flem-Karlsen
- Department of Dermatology, Yale University, 15 York Street, New Haven, CT 05610, USA
| | - William Damsky
- Departments of Dermatology and Pathology, Yale University, 15 York Street, New Haven, CT 05610, USA
| | - Limin Chen
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Despoina Karagianni
- Immune Regulation and Tumor Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Sonia Cinque
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sam Kint
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | - Katy Vandereyken
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | - Benjamin Rombaut
- Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Thierry Voet
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | | | - Wim Annaert
- Laboratory for Membrane Trafficking, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB, Leuven, Belgium; Center for Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Yvan Saeys
- Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Joost van den Oord
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, UZ Leuven, Leuven, Belgium
| | - Francesca Bosisio
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, UZ Leuven, Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - A Hunter Shain
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Marcus Bosenberg
- Departments of Dermatology, Pathology and Immunobiology, Yale University, New Haven, CT 05610, USA
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Annette Paschen
- Laboratory of Molecular Tumor Immunology, Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium; Department of Applied Computational Cancer Research, Institute for AI in Medicine (IKIM), University Hospital Essen, Essen, Germany; University Duisburg-Essen, Essen, Germany.
| | - Oliver Bechter
- Department of General Medical Oncology, UZ Leuven, Leuven, Belgium.
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
462
|
Ai J, Zhang W, Deng W, Yan L, Zhang L, Huang Z, Wu Z, Ai J, Jiang H. A hsa_circ_001726 axis regulated by E2F6 contributes to metastasis of hepatocellular carcinoma. BMC Cancer 2024; 24:14. [PMID: 38166853 PMCID: PMC10763683 DOI: 10.1186/s12885-023-11703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND CircRNAs participate in the development of hepatocellular carcinoma (HCC). This work aims to explore the key tumor promoting circRNA as a gene therapy target. METHODS The differentially expressed gene circRNAs in HCC tumor tissues was identified by mining GSE121714 dataset. EdU staining, wound healing, transwell invasion assay, TUNEL staining and western blotting examined proliferation, migration, invasion, apoptosis and epithelial mesenchymal transition (EMT). Xenograft mouse model and orthotopic transplantation tumor mouse model were constructed to verify the role of hsa_circ_001726 in growth and metastasis of HCC. The relationship among CCT2, E2F6, hsa_circ_001726, miR-671-5p and PRMT9 was identified by RNA-fluorescence in situ hybridization, luciferase reporter assay and RNA Immunoprecipitation. RESULTS Eleven differentially expressed circRNAs were found in HCC tumors. Among them, hsa_circ_001726 was highly expressed in HCC tumors and cells, which was transcribed from CCT2. As a transcription factor of CCT2, E2F6 knockdown inactivated CCT2 promoter and reduced hsa_circ_001726 expression. Moreover, hsa_circ_001726 elevated PRMT9 expression by sponging miR-671-5p, and then activated Notch signaling pathway. Additionally, hsa_circ_001726 deficiency repressed malignant phenotypes of HCC cells, including proliferation, migration, invasion, EMT and apoptosis. In vivo, hsa_circ_001726 deficiency reduced tumor growth and lung metastasis of HCC in xenograft mouse models and orthotopic transplantation tumor mouse models. CONCLUSION Hsa_circ_001726 functioned as an oncogene in HCC, which was derived from CCT2 and regulated by E2F6. Hsa_circ_001726 elevated PRMT9 expression by sponging miR-671-5p, and then activated Notch signaling pathway, thereby accelerating malignant phenotypes of HCC. Therefore, targeting hsa_circ_001726 may be a new avenue for HCC treatment.
Collapse
Affiliation(s)
- Jiaoyu Ai
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wanlin Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wensheng Deng
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Likun Yan
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Lidong Zhang
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zongjing Huang
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ziyi Wu
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Junhua Ai
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Hai Jiang
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
463
|
Catalanotto M, Vaz JM, Abshire C, Youngblood R, Chu M, Levine H, Jolly MK, Dragoi AM. Dual role of CASP8AP2/FLASH in regulating epithelial-to-mesenchymal transition plasticity (EMP). Transl Oncol 2024; 39:101837. [PMID: 37984255 PMCID: PMC10689956 DOI: 10.1016/j.tranon.2023.101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) is a developmental program that consists of the loss of epithelial features concomitant with the acquisition of mesenchymal features. Activation of EMT in cancer facilitates the acquisition of aggressive traits and cancer invasion. EMT plasticity (EMP), the dynamic transition between multiple hybrid states in which cancer cells display both epithelial and mesenchymal markers, confers survival advantages for cancer cells in constantly changing environments during metastasis. METHODS RNAseq analysis was performed to assess genome-wide transcriptional changes in cancer cells depleted for histone regulators FLASH, NPAT, and SLBP. Quantitative PCR and Western blot were used for the detection of mRNA and protein levels. Computational analysis was performed on distinct sets of genes to determine the epithelial and mesenchymal score in cancer cells and to correlate FLASH expression with EMT markers in the CCLE collection. RESULTS We demonstrate that loss of FLASH in cancer cells gives rise to a hybrid E/M phenotype with high epithelial scores even in the presence of TGFβ, as determined by computational methods using expression of predetermined sets of epithelial and mesenchymal genes. Multiple genes involved in cell-cell junction formation are similarly specifically upregulated in FLASH-depleted cells, suggesting that FLASH acts as a repressor of the epithelial phenotype. Further, FLASH expression in cancer lines is inversely correlated with the epithelial score. Nonetheless, subsets of mesenchymal markers were distinctly up-regulated in FLASH, NPAT, or SLBP-depleted cells. CONCLUSIONS The ZEB1low/SNAILhigh/E-cadherinhigh phenotype described in FLASH-depleted cancer cells is driving a hybrid E/M phenotype in which epithelial and mesenchymal markers coexist.
Collapse
Affiliation(s)
| | - Joel Markus Vaz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Reneau Youngblood
- Department of Molecular and Cellular Physiology, LSUHSC, Shreveport, LA, USA
| | - Min Chu
- Feist-Weiller Cancer Center, INLET Core, LSUHSC, Shreveport, LA, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA; Department of Physics, Northeastern University, Boston, MA, USA; Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Ana-Maria Dragoi
- Department of Molecular and Cellular Physiology, LSUHSC, Shreveport, LA, USA; Feist-Weiller Cancer Center, INLET Core, LSUHSC, Shreveport, LA, USA.
| |
Collapse
|
464
|
Zhou J, Luo J, Gan R, Zhi L, Zhou H, Lv M, Huang Y, Liang G. SSPH I, A Novel Anti-cancer Saponin, Inhibits EMT and Invasion and Migration of NSCLC by Suppressing MAPK/ERK1/2 and PI3K/AKT/ mTOR Signaling Pathways. Recent Pat Anticancer Drug Discov 2024; 19:543-555. [PMID: 38305308 DOI: 10.2174/0115748928283132240103073039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Saponin of Schizocapsa plantaginea Hance I (SSPH I).a bioactive saponin found in Schizocapsa plantaginea, exhibits significant anti-proliferation and antimetastasis in lung cancer. OBJECTIVE To explore the anti-metastatic effects of SSPH I on non-small cell lung cancer (NSCLC) with emphasis on epithelial-mesenchymal transition (EMT) both in vitro and in vivo. METHODS The effects of SSPH I at the concentrations of 0, 0.875,1.75, and 3.5 μM on A549 and PC9 lung cancer cells were evaluated using colony formation assay, CCK-8 assay, transwell assay and wound-healing assay. The actin cytoskeleton reorganization of PC9 and A549 cells was detected using the FITC-phalloidin fluorescence staining assay. The proteins related to EMT (N-cadherin, E-cadherin and vimentin), p- PI3K, p- AKT, p- mTOR and p- ERK1/2 were detected by Western blotting. A mouse model of lung cancer metastasis was established by utilizing 95-D cells, and the mice were treated with SSPH I by gavage. RESULTS The results suggested that SSPH I significantly inhibited the migration and invasion of NSCLC cells under a non-cytotoxic concentration. Furthermore, SSPH I at a non-toxic concentration of 0.875 μM inhibited F-actin cytoskeleton organization. Importantly, attenuation of EMT was observed in A549 cells with upregulation in the expression of epithelial cell marker E-cadherin and downregulation of the mesenchymal cell markers vimentin as well as Ncadherin. Mechanistic studies revealed that SSPH I inhibited MAPK/ERK1/2 and PI3K/AKT/mTOR signaling pathways. CONCLUSION SSPH I inhibited EMT, migration, and invasion of NSCLC cells by suppressing MAPK/ERK1/2 and PI3K/AKT/mTOR signaling pathways, suggesting that the natural compound SSPH I could be used for inhibiting metastasis of NSCLC.
Collapse
Affiliation(s)
- Jinling Zhou
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jian Luo
- Department of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Rizhi Gan
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Limin Zhi
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Huan Zhou
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Meixian Lv
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Yinmei Huang
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Gang Liang
- College of Pharmacy, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
465
|
Zhang Q, Ma Y, Yan Y, Zhang L, Zhang Y. CYB5R1 is a potential biomarker that correlates with stemness and drug resistance in gastric cancer. Transl Oncol 2024; 39:101766. [PMID: 37844477 PMCID: PMC10587760 DOI: 10.1016/j.tranon.2023.101766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/18/2023] [Accepted: 08/17/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Drug resistance is a major obstacle in the treatment of gastric cancers (GC). In recent years, the prognostic value of the mRNA expression-based stemness score (mRNAss) across cancers has been reported. We intended to search for the key genes associated with Cancer stem cells (CSCs) and drug resistance. METHODS All GC samples from The Cancer Genome Atlas (TCGA) were then divided into low- and high-mRNAss groups based on the median value of mRNAss. A weighted correlation network analysis (WCGNA) was used to identify co-expressed genes related to mRNAss groups. Differential gene expression analysis with Limma was performed in the GSE31811. The correlations between CYB5R1 and the immune cells and macrophage infiltration were analyzed by TIMER database. Spheroid formation assay was used to evaluate the stemness of gastric cancer cells, and transwell assay was used to detect the invasion and migration ability of gastric cancer cells. RESULTS GC patients with high mRNAss values had a worse prognosis than those with low mRNAss values. 584 genes were identified by WGCNA analysis. 668 differentially expressed genes (DEGs) (|logFC|>1) with 303 down-regulated and 365 up-regulated were established in drug-effective patients compared to controls. TCGA-STAD samples were divided into 3 subtypes based on 303 down-regulated genes. CYB5R1 was a potential biomarker that correlated with the response to drugs in GC (AUC=0.83). CYB5R1 participated in drug resistance and tumorigenesis through NFS1 in GC. CONCLUSIONS Our study highlights the clinical importance of CYB5R1 in GC and the CYB5R1-NFS1 signaling-targeted therapy might be a feasible strategy for the treatment of GC.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Gastroenterology, the First People's Hospital of Liangshan Yi Autonomous Prefecture, Xichang, China.
| | - Yufan Ma
- Department of Gastroenterology, the First People's Hospital of Liangshan Yi Autonomous Prefecture, Xichang, China
| | - Yongfeng Yan
- Department of Gastroenterology, the First People's Hospital of Liangshan Yi Autonomous Prefecture, Xichang, China
| | - Lu Zhang
- Department of Gastroenterology, the First People's Hospital of Liangshan Yi Autonomous Prefecture, Xichang, China
| | - Yajun Zhang
- Department of Gastroenterology, the First People's Hospital of Liangshan Yi Autonomous Prefecture, Xichang, China
| |
Collapse
|
466
|
Wang L, Tao Y, Zhai J, Xue M, Zheng C, Hu H. The emerging roles of ac4C acetylation "writer" NAT10 in tumorigenesis: A comprehensive review. Int J Biol Macromol 2024; 254:127789. [PMID: 37926318 DOI: 10.1016/j.ijbiomac.2023.127789] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The quick progress of epigenetic study has kindled new hope for treating many cancers. When it comes to RNA epigenetics, the ac4C acetylation modification is showing promise, whereas N-acetyltransferase 10 plays a wide range of biological functions, has a significant impact on cellular life events, and is frequently highly expressed in many malignant tumors. N-acetyltransferase 10 is an acetyltransferase with important biological involvement in cellular processes and lifespan. Because it is highly expressed in many malignant tumors, it is considered a pro-carcinogenic gene. The review aims to introduce NAT10, summarize the effects of ac4C acetylation on tumor growth from multiple angles, and discuss the possible therapeutic targeting of NAT10 and the future directions of ac4C acetylation investigations.
Collapse
Affiliation(s)
- Leisheng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Wuxi Medical College, Jiangnan University, Wuxi, 214122, China
| | - Yue Tao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Wuxi Medical College, Jiangnan University, Wuxi, 214122, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, Henan, China, 450001
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Hao Hu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Wuxi Medical College, Jiangnan University, Wuxi, 214122, China; Medical Oncology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China; Hepatobiliary and Pancreatic Surgery, The Third Hospital Affiliated to Nantong University, Wuxi, 214041, China; Medical School, Nantong University, Nantong, 226001, China; Wuxi Institute of Hepatobiliary Surgery, Wuxi, 214122, China
| |
Collapse
|
467
|
Chen Y, Chen S, Chen K, Ji L, Cui S. Magnolol and 5-fluorouracil synergy inhibition of metastasis of cervical cancer cells by targeting PI3K/AKT/mTOR and EMT pathways. CHINESE HERBAL MEDICINES 2024; 16:94-105. [PMID: 38375055 PMCID: PMC10874772 DOI: 10.1016/j.chmed.2023.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/29/2022] [Accepted: 01/16/2023] [Indexed: 02/21/2024] Open
Abstract
Objective This study is designed to investigate the mode of action of the synergistic effect of 5-fluorouracil (5-FU) and magnolol against cervical cancer. Methods Network pharmacological approach was applied to predict the molecular mechanism of 5-FU combined with magnolol against cervical cancer. CCK-8 assay, colony formation assay, immunofluorescence staining, adhesion assay, wound healing mobility assay, cell migration and invasion assay and Western blot analysis were conducted to validate the results of in silico study. Results Phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway was identified as the key pathway in silico study. The experimental results showed that 5-FU combined with magnolol strongly inhibited cervical cancer cell proliferation, induced the morphological change of HeLa cells by down-regulating the expression of α-actinin, tensin-2 and vinculin. Moreover, magnolol enhanced inhibitory effect of 5-FU on the cell adhesion, migration and invasion. The phosphorylation of AKT and PI3K and the expression of mTOR were strongly inhibited by the combination of 5-FU and magnolol. Moreover, the expression of E-cadherin and β-catenin was upregulated and the expression of Snail, Slug and vimentin was down-regulated by the 5-FU together with magnolol. Conclusion Taken together, this study suggests that 5-FU combined with magnolol exerts a synergistic anti-cervical cancer effect by regulating the PI3K/AKT/mTOR and epithelial-mesenchymal transition (EMT) signaling pathways.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
| | - Shanshan Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
| | - Kaiting Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
| | - Lanfang Ji
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
| | - Shuna Cui
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
- Department of Gynecology and Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
468
|
Liu M, Hu W, Meng X, Wang B. TEAD4: A key regulator of tumor metastasis and chemoresistance - Mechanisms and therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189050. [PMID: 38072284 DOI: 10.1016/j.bbcan.2023.189050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Abstract
Cancer metastasis is a complex process influenced by various factors, including epithelial-mesenchymal transition (EMT), tumor cell proliferation, tumor microenvironment, and cellular metabolic status, which remains a significant challenge in clinical oncology, accounting for a majority of cancer-related deaths. TEAD4, a key mediator of the Hippo signaling pathway, has been implicated in regulating these factors that are all critical in the metastatic cascade. TEAD4 drives tumor metastasis and chemoresistance, and its upregulation is associated with poor prognosis in many types of cancers, making it an attractive target for therapeutic intervention. TEAD4 promotes EMT by interacting with coactivators and activating the transcription of genes involved in mesenchymal cell characteristics and extracellular matrix remodeling. Additionally, TEAD4 enhances the stemness of cancer stem cells (CSCs) by regulating the expression of genes associated with CSC maintenance. TEAD4 contributes to metastasis by modulating the secretion of paracrine factors and promoting heterotypic cellular communication. In this paper, we highlight the central role of TEAD4 in cancer metastasis and chemoresistance and its impact on various aspects of tumor biology. Understanding the mechanistic basis of TEAD4-mediated processes can facilitate the development of targeted therapies and combination approaches to combat cancer metastasis and improve treatment outcomes.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences of China Medical University, Shenyang, Liaoning Province, PR China.
| | - Weina Hu
- Department of General Practice, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, PR China.
| | - Xiaona Meng
- Teaching Center for Basic Medical Experiment of China Medical University, Liaoning Province, PR China.
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences of China Medical University, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
469
|
Si Y, Wen J, Hu C, Chen H, Lin L, Xu Y, Ren D, Meng X, Wang Y, Xia E, Bhandari A, Wang O. LINC00891 Promotes Tumorigenesis and Metastasis of Thyroid Cancer by Regulating SMAD2/3 via EZH2. Curr Med Chem 2024; 31:3818-3833. [PMID: 37221682 DOI: 10.2174/0929867330666230522115945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Thyroid cancer (TC), the most common endocrine malignant tumor, is increasingly causing a huge threat to our health nowadays. METHODS To explore the tumorigenesis mechanism of thyroid cancer, we identified that long intergenic non-coding RNA-00891 (LINC00891) was upregulated in TC using the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and local databases. LINC00891 expression was correlated with histological type and lymph node metastasis (LNM). The high expression of LINC00891 could serve as a diagnostic marker for TC and its LNM. In vitro experiments demonstrated that LINC00891 knockdown could inhibit cell proliferation, migration, invasion and prompt apoptosis and G1 arrest of TC cells. We also investigated the related mechanisms of LINC00891 promoting TC progression using RNA sequencing, Gene Set Enrichment Analysis, and Western blotting. RESULTS Our experiments demonstrated that LINC00891 promoted TC progression via the EZH2-SMAD2/3 signaling axis. In addition, overexpression of EZH2 could reverse the suppressive epithelial-to-mesenchymal transition (EMT) caused by LINC00891 knockdown. CONCLUSION In conclusion, the LINC00891/EZH2/SMAD2/3 regulatory axis participated in tumorigenesis and metastasis of thyroid cancer, which may provide a novel target for treatment.
Collapse
Affiliation(s)
- Yuhao Si
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR, China
| | - Jialiang Wen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR, China
| | - Chunlei Hu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR, China
| | - Hao Chen
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Lizhi Lin
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR, China
| | - Yiying Xu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR, China
| | - Disuo Ren
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR, China
| | - Xinyu Meng
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR, China
| | - Yinghao Wang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR, China
| | - Erjie Xia
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR, China
| | - Adheesh Bhandari
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR, China
- Department of Surgery, Breast and Thyroid Unit, Primera Hospital, Kathmandu, Nepal
| | - Ouchen Wang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR, China
| |
Collapse
|
470
|
Tadić V, Zhang W, Brozovic A. The high-grade serous ovarian cancer metastasis and chemoresistance in 3D models. Biochim Biophys Acta Rev Cancer 2024; 1879:189052. [PMID: 38097143 DOI: 10.1016/j.bbcan.2023.189052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most frequent and aggressive type of epithelial ovarian cancer, with high recurrence rate and chemoresistance being the main issues in its clinical management. HGSOC is specifically challenging due to the metastatic dissemination via spheroids in the ascitic fluid. The HGSOC spheroids represent the invasive and chemoresistant cellular fraction, which is impossible to investigate in conventional two-dimensional (2D) monolayer cell cultures lacking critical cell-to-cell and cell-extracellular matrix interactions. Three-dimensional (3D) HGSOC cultures, where cells aggregate and exhibit relevant interactions, offer a promising in vitro model of peritoneal metastasis and multicellular drug resistance. This review summarizes recent studies of HGSOC in 3D culture conditions and highlights the role of multicellular HGSOC spheroids and ascitic environment in HGSOC metastasis and chemoresistance.
Collapse
Affiliation(s)
- Vanja Tadić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Str. 54, Zagreb HR-10000, Croatia
| | - Wei Zhang
- Department of Engineering Mechanics, Dalian University of Technology, Linggong Road 2, Dalian CN-116024, China
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Str. 54, Zagreb HR-10000, Croatia.
| |
Collapse
|
471
|
García de Herreros A. Dual role of Snail1 as transcriptional repressor and activator. Biochim Biophys Acta Rev Cancer 2024; 1879:189037. [PMID: 38043804 DOI: 10.1016/j.bbcan.2023.189037] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Snail1 transcriptional factor plays a key role in the control of epithelial to mesenchymal transition, a process that remodels tumor cells increasing their invasion and chemo-resistance as well as reprograms their metabolism and provides stemness properties. During this transition, Snail1 acts as a transcriptional repressor and, as growing evidences have demonstrated, also as a direct activator of mesenchymal genes. In this review, I describe the different proteins that interact with Snail1 and are responsible for these two different functions on gene expression; I focus on the transcriptional factors that associate to Snail1 in their target promoters, both activated and repressed. I also present working models for Snail1 action both as repressor and activator and raise some issues that still need to be investigated.
Collapse
Affiliation(s)
- Antonio García de Herreros
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Unidad Asociada al CSIC, Barcelona, Spain; Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
472
|
Yang W, Wang S, Tong S, Zhang WD, Qin JJ. Expanding the ubiquitin code in pancreatic cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166884. [PMID: 37704111 DOI: 10.1016/j.bbadis.2023.166884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a fundamental regulatory mechanism in cells, vital for maintaining cellular homeostasis, compiling signaling transduction, and determining cell fates. These biological processes require the coordinated signal cascades of UPS members, including ubiquitin ligases, ubiquitin-conjugating enzymes, deubiquitinases, and proteasomes, to ubiquitination and de-ubiquitination on substrates. Recent studies indicate that ubiquitination code rewriting is particularly prominent in pancreatic cancer. High frequency mutation or aberrant hyperexpression of UPS members dysregulates ferroptosis, tumor microenvironment, and metabolic rewiring processes and contribute to tumor growth, metastasis, immune evasion, and acquired drug resistance. We conduct an in-depth overview of ubiquitination process in pancreatic cancer, highlighting the role of ubiquitin code in tumor-promoting and tumor-suppressor pathways. Furthermore, we review current UPS modulators and analyze the potential of UPS modulators as cancer therapy.
Collapse
Affiliation(s)
- Wenyan Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shiqun Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
473
|
Zengzhao W, Xuan L, Xiaohan M, Encun H, Jibing C, Hongjun G. Molecular mechanism of microRNAs, long noncoding RNAs, and circular RNAs regulating lymphatic metastasis of bladder cancer. Urol Oncol 2024; 42:3-17. [PMID: 37989693 DOI: 10.1016/j.urolonc.2023.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Bladder cancer (BC), a malignancy originating in the epithelial tissue in the inner wall of the bladder, is a common urological cancer type. BC spreads through 3 main pathways: direct infiltration, lymphatic metastasis, and hematogenous metastasis. Lymphatic metastasis is considered a poor prognostic factor for BC and is often associated with lower survival rates. The treatment of BC after lymphatic metastasis is complex and challenging. A deeper understanding of the molecular mechanisms underlying lymphatic metastasis of BC may yield potential targets for its treatment. Here, we summarize the current knowledge on epigenetic factors-including miRNAs, lncRNAs, and circRNAs-associated with lymphatic metastasis in BC. These factors are strongly associated with lymphangiogenesis, cancer cell proliferation and migration, and epithelial-mesenchymal transition processes, providing new insights to develop newer BC treatment strategies.
Collapse
Affiliation(s)
- Wei Zengzhao
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Lan Xuan
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Ma Xiaohan
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hou Encun
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China; Guangxi Clinical Research Center for Kidney Diseases of Integrated Traditional Chinese and Western Medicine, Nanning, Guangxi, China.
| | - Chen Jibing
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China; Guangxi Clinical Research Center for Kidney Diseases of Integrated Traditional Chinese and Western Medicine, Nanning, Guangxi, China.
| | - Gao Hongjun
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China; Guangxi Clinical Research Center for Kidney Diseases of Integrated Traditional Chinese and Western Medicine, Nanning, Guangxi, China.
| |
Collapse
|
474
|
Tangsiri M, Hheidari A, Liaghat M, Razlansari M, Ebrahimi N, Akbari A, Varnosfaderani SMN, Maleki-Sheikhabadi F, Norouzi A, Bakhtiyari M, Zalpoor H, Nabi-Afjadi M, Rahdar A. Promising applications of nanotechnology in inhibiting chemo-resistance in solid tumors by targeting epithelial-mesenchymal transition (EMT). Biomed Pharmacother 2024; 170:115973. [PMID: 38064969 DOI: 10.1016/j.biopha.2023.115973] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
The resistance of cancer cells to chemotherapy, also known as chemo-resistance, poses a significant obstacle to cancer treatment and can ultimately result in patient mortality. Epithelial-mesenchymal transition (EMT) is one of the many factors and processes responsible for chemo-resistance. Studies have shown that targeting EMT can help overcome chemo-resistance, and nanotechnology and nanomedicine have emerged as promising approaches to achieve this goal. This article discusses the potential of nanotechnology in inhibiting EMT and proposes a viable strategy to combat chemo-resistance in various solid tumors, including breast cancer, lung cancer, pancreatic cancer, glioblastoma, ovarian cancer, gastric cancer, and hepatocellular carcinoma. While nanotechnology has shown promising results in targeting EMT, further research is necessary to explore its full potential in overcoming chemo-resistance and discovering more effective methods in the future.
Collapse
Affiliation(s)
- Mona Tangsiri
- Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahsa Liaghat
- Department of Medical Laboratory sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran; Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mahtab Razlansari
- Faculty of Mathematics and Natural Sciences, Tübingen University, Tübingen 72076, Germany
| | - Narges Ebrahimi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Abdullatif Akbari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran; Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Fahimeh Maleki-Sheikhabadi
- Department of Hematology and Blood Banking, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Norouzi
- Dental Research Center, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran; Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran; Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran.
| |
Collapse
|
475
|
Mi K, Zeng L, Chen Y, Ning J, Zhang S, Zhao P, Yang S. DHX38 enhances proliferation, metastasis, and EMT progression in NSCLC through the G3BP1-mediated MAPK pathway. Cell Signal 2024; 113:110962. [PMID: 37931691 DOI: 10.1016/j.cellsig.2023.110962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a prevalent and aggressive malignancy with limited therapeutic options. Despite advances in treatment, NSCLC remains a major cause of cancer-related death worldwide. Tumor heterogeneity and therapy resistance present challenges in achieving remission. Research is needed to provide molecular insights, identify new targets, and develop personalized therapies to improve outcomes. METHODS The protein expression level and prognostic value of DHX38 in NSCLC were explored in public databases and NSCLC tissue microarrays. DHX38 knockdown and overexpression cell lines were established to evaluate the role of DHX38 in NSCLC. In vitro and in vivo functional experiments were conducted to assess proliferation and metastasis. To determine the underlying molecular mechanism of DHX38 in human NSCLC, proteins that interact with DHX38 were isolated by IP and identified by LC-MS. KEGG analysis of DHX38-interacting proteins revealed the molecular pathway of DHX38 in human NSCLC. Abnormal pathway activation was verified by Western blot analysis and immunohistochemical (IHC) staining. A molecule-specific inhibitor was further used to explore potential therapeutic targets for NSCLC. The pathway-related target that interacted with DHX38 was verified by co-immunoprecipitation(co-IP) experiments. In cell lines with stable DHX38 overexpression, the target protein was knocked down to explore its complementary effect on DHX38 overexpression-induced tumor promotion. RESULTS The protein expression of DHX38 was increased in NSCLC, and patients with high DHX38 expression levels had a poor prognosis. In vitro and in vivo experiments showed that DHX38 promoted the proliferation, migration and invasion of human NSCLC cells. DHX38 overexpression caused abnormal activation of the MAPK pathway and promoted epithelial-mesenchymal transition (EMT) in tumours. SCH772984, a novel specific ERK1/2 inhibitor, significantly reduced the increases in cell proliferation, migration and invasion caused by DHX38 overexpression. The co-IP experiments confirmed that DHX38 interacted with the Ras GTPase-activating protein-binding protein G3BP1. DHX38 regulated the expression of G3BP1. Knocking down G3BP1 in cells with stable DHX38 overexpression prevented DHX38-induced tumor cell proliferation, migration and invasion. Silencing G3BP1 reversed the MAPK pathway activation and EMT induced by DHX38 overexpression. CONCLUSION In NSCLC, DHX38 functions as a tumor promoter. DHX38 modulates G3BP1 expression, leading to the activation of the MAPK signaling pathway, thus promoting tumor cell proliferation, metastasis, and the progression of epithelial-mesenchymal transition (EMT) in non-small cell lung cancer.
Collapse
Affiliation(s)
- Ke Mi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lizhong Zeng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yang Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jingya Ning
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Siyuan Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peilin Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
476
|
Ma M, Zhuang J, Li H, Mi R, Song Y, Yang W, Lu Y, Shen X, Wu Y, Shen H. Low expression of ZFP36L1 in osteosarcoma promotes lung metastasis by inhibiting the SDC4-TGF-β signaling feedback loop. Oncogene 2024; 43:47-60. [PMID: 37935976 PMCID: PMC10766520 DOI: 10.1038/s41388-023-02880-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
ZFP36L1, which is a negative regulator of gene transcripts, has been proven to regulate the progression of several carcinomas. However, its role in sarcoma remains unknown. Here, by using data analyses and in vivo experiments, we found that ZFP36L1 inhibited the lung metastasis of osteosarcoma (OS). Knockdown of ZFP36L1 promoted OS cell migration by activating TGF-β signaling and increasing SDC4 expression. Intriguingly, we observed a positive feedback loop between SDC4 and TGF-β signaling. SDC4 protected TGFBR3 from matrix metalloproteinase (MMP)-mediated cleavage and therefore relieved the inhibition of TGF-β signaling by soluble TGFBR3, while TGF-β signaling positively regulated SDC4 transcription. We also proved that ZFP36L1 regulated SDC4 mRNA decay through adenylate-uridylate (AU)-rich elements (AREs) in its 3'UTR. Furthermore, treatment with SB431542 (a TGF-β receptor kinase inhibitor) and MK2 inhibitor III (a MAPKAPK2 inhibitor that increases the ability of ZFP36L1 to degrade mRNA) dramatically inhibited OS lung metastasis, suggesting a promising therapeutic approach for the treatment of OS lung metastasis.
Collapse
Affiliation(s)
- Mengjun Ma
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China
| | - Jiahao Zhuang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China
| | - Hongyu Li
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China
| | - Rujia Mi
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China
| | - Yihui Song
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China
| | - Wen Yang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China
| | - Yixuan Lu
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China
| | - Xin Shen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China.
| |
Collapse
|
477
|
Ma Y, Yu Y, Yin Y, Wang L, Yang H, Luo S, Zheng Q, Pan Y, Zhang D. Potential role of epithelial-mesenchymal transition induced by periodontal pathogens in oral cancer. J Cell Mol Med 2024; 28:e18064. [PMID: 38031653 PMCID: PMC10805513 DOI: 10.1111/jcmm.18064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
With the increasing incidence of oral cancer in the world, it has become a hotspot to explore the pathogenesis and prevention of oral cancer. It has been proved there is a strong link between periodontal pathogens and oral cancer. However, the specific molecular and cellular pathogenic mechanisms remain to be further elucidated. Emerging evidence suggests that periodontal pathogens-induced epithelial-mesenchymal transition (EMT) is closely related to the progression of oral cancer. Cells undergoing EMT showed increased motility, aggressiveness and stemness, which provide a pro-tumour environment and promote malignant metastasis of oral cancer. Plenty of studies proposed periodontal pathogens promote carcinogenesis via EMT. In the current review, we discussed the association between the development of oral cancer and periodontal pathogens, and summarized various mechanisms of EMT caused by periodontal pathogens, which are supposed to play an important role in oral cancer, to provide targets for future research in the fight against oral cancer.
Collapse
Affiliation(s)
- Yiwei Ma
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Yingyi Yu
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Yuqing Yin
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Liu Wang
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Huishun Yang
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Shiyin Luo
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Qifan Zheng
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Yaping Pan
- Department of Periodontics and Oral Biology, School of StomatologyChina Medical UniversityShenyangChina
| | - Dongmei Zhang
- Department of Periodontics and Oral Biology, School of StomatologyChina Medical UniversityShenyangChina
| |
Collapse
|
478
|
Ye L, Liu B, Huang J, Zhao X, Wang Y, Xu Y, Wang S. DCLK1 and its oncogenic functions: A promising therapeutic target for cancers. Life Sci 2024; 336:122294. [PMID: 38007147 DOI: 10.1016/j.lfs.2023.122294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023]
Abstract
Doublecortin-like kinase 1 (DCLK1), a significant constituent of the protein kinase superfamily and the doublecortin family, has been recognized as a prooncogenic factor that exhibits a strong association with the malignant progression and clinical prognosis of various cancers. DCLK1 serves as a stem cell marker that governs tumorigenesis, tumor cell reprogramming, and epithelial-mesenchymal transition. Multiple studies have indicated the capable of DCLK1 in regulating the DNA damage response and facilitating DNA damage repair. Additionally, DCLK1 is involved in the regulation of the immune microenvironment and the promotion of tumor immune evasion. Recently, DCLK1 has emerged as a promising therapeutic target for a multitude of cancers. Several small-molecule inhibitors of DCLK1 have been identified. Nevertheless, the biological roles of DCLK1 are mainly ambiguous, particularly with the disparities between its α- and β-form transcripts in the malignant progression of cancers, which impedes the development of more precisely targeted drugs. This article focuses on tumor stem cells, tumor epithelial-mesenchymal transition, the DNA damage response, and the tumor microenvironment to provide a comprehensive overview of the association between DCLK1 and tumor malignant progression, address unsolved questions and current challenges, and project future directions for targeting DCLK1 for the diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Liu Ye
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Beibei Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jingling Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiaolin Zhao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yungen Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Shuping Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
479
|
Jiang C, Xu F, Yi D, Jiang B, Wang R, Wu L, Ding H, Qin J, Lee Y, Sang J, Shi X, Su L. Testosterone promotes the migration, invasion and EMT process of papillary thyroid carcinoma by up-regulating Tnnt1. J Endocrinol Invest 2024; 47:149-166. [PMID: 37477865 PMCID: PMC10776714 DOI: 10.1007/s40618-023-02132-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/06/2023] [Indexed: 07/22/2023]
Abstract
PURPOSE To explore the key genes and molecular pathways in the progression of thyroid papillary carcinoma (PTC) promoted by testosterone using RNA-sequencing technology, and to provide new drug targets for improving the therapeutic effect of PTC. METHODS Orchiectomy (ORX) was carried out to construct ORX mouse models. TPC-1 cells were subcutaneously injected for PTC formation in mice, and the tumor tissues were collected for RNA-seq. The key genes were screened by bioinformatics technology. Tnnt1 expression in PTC cells was knocked down or overexpressed by transfection. Cell counting kit-8 (CCK-8), colony formation assay, scratch assay and transwell assay were adopted, respectively, for the detection of cell proliferation, colony formation, migration and invasion. Besides, quantification real-time polymerase chain reaction (qRT-PCR) and western blot were utilized to determine the mRNA and protein expression levels of genes in tissues or cells. RESULTS Both estradiol and testosterone promoted the growth of PTC xenografts. The key gene Tnnt1 was screened and obtained by bioinformatics technology. Functional analysis revealed that overexpression of Tnnt1 could markedly promote the proliferation, colony formation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) process of PTC cells, as well as could activate p38/JNK pathway. In addition, si-Tnt1 was able to inhibit the cancer-promoting effect of testosterone. CONCLUSION Based on the outcomes of bioinformatics and basic experiments, it is found that testosterone can promote malignant behaviors such as growth, migration, invasion and EMT process of PTC by up-regulating Tnnt1 expression. In addition, the function of testosterone may be achieved by activating p38/JNK signaling pathway.
Collapse
Affiliation(s)
- C Jiang
- Division of Thyroid Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - F Xu
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 221000, Jiangsu, China
| | - D Yi
- Division of Thyroid Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - B Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 221000, Jiangsu, China
| | - R Wang
- Division of Thyroid Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - L Wu
- Division of Thyroid Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - H Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 221000, Jiangsu, China
| | - J Qin
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 221000, Jiangsu, China
| | - Y Lee
- Division of Thyroid Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - J Sang
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 221000, Jiangsu, China.
| | - X Shi
- Division of Thyroid Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - L Su
- Division of Thyroid Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| |
Collapse
|
480
|
Li Y, Guo QJ, Chen R, Zhao L, Cui X, Deng Y, Luo YS. Crocin Combined with Cisplatin Regulates Proliferation, Apoptosis, and EMT of Gastric Cancer Cells via the FGFR3/MAPK/ERK Pathway In vitro and In vivo. Curr Cancer Drug Targets 2024; 24:835-845. [PMID: 37718528 DOI: 10.2174/1568009624666230915111239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/11/2023] [Accepted: 08/04/2023] [Indexed: 09/19/2023]
Abstract
INTRODUCTION Cisplatin (DDP)-based chemotherapy remains the main therapeutic strategy for human gastric cancer (GC). Combination therapy with Chinese medicine monomers and DDP has been investigated as a means to enhance the anti-tumor effect of DDP while reducing toxicity. MATERIAL AND METHODS Previous studies have shown that crocin combined with DDP can inhibit the apoptosis of BG-823 GC cells. However, the mechanism of this combination therapy in inhibiting GC is not fully unclear. In this study, we measured the IC50 values of crocin combined with DDP in AGS cells and assessed its effect on cell proliferation using an MTT assay. Furthermore, we assessed apoptosis, cell migration, and EMT-related protein levels by using flow cytometry, scratch assay, and Western blotting, respectively. Our results showed that crocin combined with DDP inhibited the proliferation, induced apoptosis, and inhibited invasion and EMT. Next, we performed RNA sequence and KEGG enrichment analysis on GC cells treated with Crocin+DDP. RESULTS The results showed that the most significant factor down-regulated by this combination therapy was Fibroblast growth factor receptor 3 (FGFR3) expression and that a differential gene was enriched in the MAPK/ERK pathway. We further constructed an FGFR3 OE transfection plasmid to overexpress FGFR3 and evaluate its effects on proliferation, apoptosis, migration, EMT, and MAPK/ERK pathway proteins in GC cells. We also conducted subcutaneous tumorigenesis experiments in nude mice to evaluate the effects of crocin and DDP on the progression of GC xenografts in vivo. Finally, we performed a rescue experiment using the MAPK/ERK pathway inhibitor PD184352. CONCLUSION Our results showed that up-regulation of FGFR3 reversed the inhibitory effect of crocin+DDP on the MAPK/ERK signaling pathway. Still, this effect could be counteracted by PD184352, which simultaneously regulated the proliferation, apoptosis, and EMT of AGS cells. In conclusion, crocin, combined with DDP, inhibits proliferation, apoptosis, and EMT of GC through the FRFR3/MAPK/ERK pathway.
Collapse
Affiliation(s)
- Yan Li
- Department of Oncology, Affiliated Hospital of Qinghai University, XiNing, Qinghai, China
| | - Qi-Jing Guo
- Department of Oncology, Affiliated Hospital of Qinghai University, XiNing, Qinghai, China
- High Altitude Medicine Research Center, Key Laboratory of High Altitude Medicine, Ministry of Education Qinghai-Utah Joint Research Key Lab for High Altitude Medicine Qinghai University, XiNing, Qinghai, 810001, China
| | - Rong Chen
- Department of Oncology, Affiliated Hospital of Qinghai University, XiNing, Qinghai, China
| | - LingLin Zhao
- High Altitude Medicine Research Center, Key Laboratory of High Altitude Medicine, Ministry of Education Qinghai-Utah Joint Research Key Lab for High Altitude Medicine Qinghai University, XiNing, Qinghai, 810001, China
| | - Xianshu Cui
- Department of Oncology, Affiliated Hospital of Qinghai University, XiNing, Qinghai, China
| | - Yingfang Deng
- Department of Oncology, Affiliated Hospital of Qinghai University, XiNing, Qinghai, China
| | - Yu-Shuang Luo
- Department of Oncology, Affiliated Hospital of Qinghai University, XiNing, Qinghai, China
- High Altitude Medicine Research Center, Key Laboratory of High Altitude Medicine, Ministry of Education Qinghai-Utah Joint Research Key Lab for High Altitude Medicine Qinghai University, XiNing, Qinghai, 810001, China
| |
Collapse
|
481
|
Wang Y, Xu H, Zhang X, Ma J, Xue S, Shentu D, Mao T, Li S, Yue M, Cui J, Wang L. The Role of Bile Acids in Pancreatic Cancer. Curr Cancer Drug Targets 2024; 24:1005-1014. [PMID: 38284711 DOI: 10.2174/0115680096281168231215060301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 01/30/2024]
Abstract
Bile acids are well known to promote the digestion and absorption of fat, and at the same time, they play an important role in lipid and glucose metabolism. More studies have found that bile acids such as ursodeoxycholic acid also have anti-inflammatory and immune-regulating effects. Bile acids have been extensively studied in biliary and intestinal tumors but less in pancreatic cancer. Patients with pancreatic cancer, especially pancreatic head cancer, are often accompanied by biliary obstruction and elevated bile acids caused by tumors. Elevated total bile acid levels in pancreatic cancer patients usually have a poor prognosis. There has been controversy over whether elevated bile acids are harmful or beneficial to pancreatic cancer. Still, there is no doubt that bile acids are important for the occurrence and development of pancreatic cancer. This article summarizes the research on bile acid as a biomarker and regulation of the occurrence, development and chemoresistance of pancreatic cancer, hoping to provide some inspiration for future research.
Collapse
Affiliation(s)
- Yanling Wang
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Haiyan Xu
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Xiaofei Zhang
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Jingyu Ma
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Shengbai Xue
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Daiyuan Shentu
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Tiebo Mao
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Shumin Li
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Ming Yue
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Jiujie Cui
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Liwei Wang
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| |
Collapse
|
482
|
Tang L, Xiang Y, Zhou J, Li T, Jia T, Du G. miR-186 regulates epithelial-mesenchymal transformation to promote nasopharyngeal carcinoma metastasis by targeting ZEB1. Braz J Otorhinolaryngol 2024; 90:101358. [PMID: 37989078 PMCID: PMC10679499 DOI: 10.1016/j.bjorl.2023.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVES Nasopharyngeal carcinoma (NPC) is an aggressive epithelial cancer. The expression of miR-186 is decreased in a variety of malignancies and can promote the invasion and metastasis of cancer cells. This study aimed to explore the role and possible mechanism of miR-186 in the metastasis and epithelial-mesenchymal transformation (EMT) of NPC. METHODS The expression of miR-186 in NPC tissues and cells was detected by RT-PCR. Then, miR-186 mimic was used to transfect NPC cell lines C666-1 and CNE-2, and cell activity, invasion and migration were detected by CCK8, transwell and scratch assay, respectively. The expression of EMT-related proteins was analyzed by western blotting analysis. The binding relationship between miR-186 and target gene Zinc Finger E-Box Binding Homeobox 1 (ZEB1) was confirmed by double luciferase assay. RESULTS The expression of miR-186 in NPC was significantly decreased, and transfection of miR-186 mimic could significantly inhibit the cell activity, invasion, and migration, and regulate the protein expressions of E-cadherin, N-cadherin and vimentin in C666-1 and CNE-2 cells. Further experiments confirmed that miR-186 could directly target ZEB1 and negatively regulate its expression. In addition, ZEB1 has been confirmed to be highly expressed in NPC, and inhibition of ZEB1 could inhibit the activity, invasion, metastasis and EMT of NPC cells. And co-transfection of miR-186 mimic and si-ZEB1 could further inhibit the proliferation and metastasis of NPC. CONCLUSION miR-186 may inhibit the proliferation, metastasis and EMT of NPC by targeting ZEB1, and the miR-186/ZEB1 axis plays an important role in NPC.
Collapse
Affiliation(s)
- Liangke Tang
- Affiliated Hospital of North Sichuan Medical College, Department of Oncology, Nanchong, China; North Sichuan Medical College, Nanchong, China
| | - Yalang Xiang
- Affiliated Hospital of North Sichuan Medical College, Department of Oncology, Nanchong, China; North Sichuan Medical College, Nanchong, China
| | - Jing Zhou
- Affiliated Hospital of North Sichuan Medical College, Department of Neurology, Nanchong, China
| | - Tao Li
- Department of Oncology, People's Hospital of Nanbu County, Nanchong, China
| | - Tingting Jia
- Affiliated Hospital of North Sichuan Medical College, Department of Oncology, Nanchong, China
| | - Guobo Du
- Affiliated Hospital of North Sichuan Medical College, Department of Oncology, Nanchong, China; The First Affiliated Hospital of Jinan University, Tianhe, China.
| |
Collapse
|
483
|
Ma F, Song J, He M, Wang X. The Antimicrobial Peptide Merecidin Inhibit the Metastasis of Triple-Negative Breast Cancer by Obstructing EMT via miR-30d-5p/Vimentin. Technol Cancer Res Treat 2024; 23:15330338241281310. [PMID: 39267432 PMCID: PMC11402084 DOI: 10.1177/15330338241281310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024] Open
Abstract
Purpose: To investigate the inhibitory effect of antimicrobial peptide merecidin on triple-negative breast cancer (TNBC) and the mechanism of inhibiting epithelial-mesenchymal transformation (EMT) by regulating miR-30d-5p/vimentin. Methods: TNBC cell lines (MDA-MB-231, MDA-MB-468) were treated with merecidin to assess proliferation, migration, invasion ability, and EMT. Confocal laser localization was used to examine the role of merecidin and TNBC cells. The relationship between merecidin and miR-30d-5p was determined through RT-qPCR and dual-luciferase reporter gene, and the relationship between merecidin and vimentin was verified through pulling down the experiment. The effects of miR-30d-5p on the migration and invasion ability of TNBC cells were confirmed through scratch and transwell experiments. Vimentin levels, tumor volume, shape, size, and weight were observed in the MDA-MB-231 subcutaneous tumor model in nude mice. Results: merecidin inhibited the proliferation, migration, invasion, and EMT of TNBC cells. merecidin was primarily located in the cytoplasm of TNBC cells, and the expression of miR-30d-5p was low in TNBC cells. merecidin significantly up-regulated the expression of miR-30d-5p. miR-30d-5p negatively regulated vimentin. merecidin could bind to vimentin in vitro. miR-30d-5p inhibited the migration and invasion ability of TNBC cells, while vimentin promoted their migration and invasion ability. Down-regulation of miR-30d-5p or overexpression of vimentin partially counteracted the inhibitory effects of merecidin on TNBC cell migration, invasion ability, and EMT. In nude mouse tumor models, merecidin significantly suppressed tumor growth. Conclusion: Merecidin effectively blocks the EMT process and inhibits the migration and invasion of TNBC cells by regulating miR-30d-5p/vimentin.
Collapse
Affiliation(s)
- Fei Ma
- College of Laboratory Medicine, Ningxia Medical University, Yinchuan, China
| | - Jinxuan Song
- College of Laboratory Medicine, Ningxia Medical University, Yinchuan, China
| | - Min He
- College of Laboratory Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiuqing Wang
- College of Laboratory Medicine, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
484
|
Shen Y, Wu R, Zhuo Z, Deng X, Li W, Liu C. Identification of circATG9A as a novel biomarker for renal cell carcinoma. Cancer Gene Ther 2024; 31:82-93. [PMID: 37945969 DOI: 10.1038/s41417-023-00684-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/06/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
The incidence and mortality rates of renal cell carcinoma (RCC) have rapidly increased worldwide. To gain new insights into the regulatory role of circular RNAs (circRNAs) in RCC progression, we conducted RNA sequencing on three pairs of ccRCC and adjacent normal tissues. RT-PCR was utilized to analyze RNA expression. We investigated the effects of circATG9A on RCC cells through various assays including CCK-8, Transwell, wound healing, and colony formation assays. Furthermore, we employed FISH, RNA pull-down, luciferase reporter, and RIP assays to elucidate the mechanism by which circATG9A regulates RCC. Ultimately, we identified 118 differentially expressed circRNAs in RCC, including a novel circRNA, circATG9A, which was found to promote RCC progression both in vitro and in vivo. Moreover, mRNA sequencing, western blotting, and rescue experiments indicated that TRPM3 is the target of circATG9A in RCC progression. Bioinformatic analysis, RNA pull-down, FISH, and RIP assays suggested that circATG9A regulates TRPM3 expression by acting as a sponge for miR-497-5p. Finally, Western blotting revealed that circATG9A promotes the epithelial-mesenchymal transition (EMT) process through the Wnt/β-catenin signaling pathway. Our findings demonstrate that circATG9A is a novel circRNA upregulated in RCC that plays a crucial role in the EMT process through the miR-497-5p/TRPM3/Wnt/β-catenin axis. These results suggest that circATG9A could be a promising target for RCC prognosis and therapy.
Collapse
Affiliation(s)
- Ye Shen
- Department of Urology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China.
| | - Ruipeng Wu
- Department of Urology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
- Graduate School, Dalian Medical University, Dalian, China
| | - Zou Zhuo
- Department of Urology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
- Graduate School, Dalian Medical University, Dalian, China
| | - Ximeng Deng
- Department of Urology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Weijian Li
- Department of Urology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Changkun Liu
- Department of Urology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China.
| |
Collapse
|
485
|
Fang H, Fu K, Shi P, Zhao Z, Yang F, Liu Y. Forkhead box F2/ Lysyl oxidase like 1 contribute to epithelial-mesenchymal transition and angiogenesis in thyroid cancer. Cell Signal 2024; 113:110956. [PMID: 37918464 DOI: 10.1016/j.cellsig.2023.110956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Bioinformatics analysis suggests an association between lysyl oxidase like 1 (LOXL1) and forkhead box F2 (FOXF2), both of which are found to be dysregulated in thyroid cancer. This study aims to elucidate their specific roles in thyroid cancer. METHODS The correlation of LOXL1 expression with thyroid cancer staging and the overall survival was analyzed. LOXL1 levels were determined in several thyroid cancer cells, and its effects on poorly differentiated BCPAP cell proliferation, colony formation, malignant phenotypes, epithelial-mesenchymal transition (EMT) progression, and angiogenesis were evaluated. The relationship between LOXL1 and FOXF2 was confirmed using Luciferase reporter and ChIP assays. The impacts of FOXF2 on LOXL1 regulation along with the Wnt/β-catenin signaling were assessed, followed by the verification of transplanted tumor in nude mice. RESULTS Elevated LOXL1 expression was associated with advanced clinical staging and poorer overall survival. Reduced LOXL1 suppressed cell proliferation, colony formation, migration, invasion, EMT, and angiogenesis. FOXF2 was found to be down-regulated in thyroid cancer, acting as a transcription factor that recognizes the LOXL1 promoter and modulates its transcriptional expression. Moreover, the regulatory outcome of LOXL1 knockdown was partially reversed upon FOXF2 knockdown, including the modulation of the Wnt/β-catenin signaling and tumor growth in vivo. CONCLUSION Our findings indicate that LOXL1 is transcriptionally regulated by FOXF2 and activates the Wnt/β-catenin to promote malignant phenotypes, EMT progression, and angiogenesis in BCPAP cells.
Collapse
Affiliation(s)
- Hao Fang
- Hepatobiliary Surgery Department, Hebei Medical University Fourth Affiliated Hospital/Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050000, China
| | - Kai Fu
- Otorhinolaryngology, Hebei Medical University Fourth Affiliated Hospital/Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050000, China
| | - Ping Shi
- Otorhinolaryngology, Hebei Medical University Fourth Affiliated Hospital/Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050000, China
| | - Zhen Zhao
- Otorhinolaryngology, Hebei Medical University Fourth Affiliated Hospital/Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050000, China
| | - Fei Yang
- Otorhinolaryngology, Hebei Medical University Fourth Affiliated Hospital/Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050000, China
| | - Yan Liu
- Otorhinolaryngology, Hebei Medical University Fourth Affiliated Hospital/Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
486
|
Liu CH, Zhang JJ, Zhang QJ, Dong Y, Shi ZD, Hong SH, He HG, Wu W, Han CH, Hao L. METTL3 regulates the proliferation, metastasis and EMT progression of bladder cancer through P3H4. Cell Signal 2024; 113:110971. [PMID: 37979898 DOI: 10.1016/j.cellsig.2023.110971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Bladder cancer, the most common malignant tumor in the urinary system, exhibits significantly up-regulated expression of P3H4, which is associated with pathological factors. The objective of this study was to elucidate the underlying mechanism of P3H4 in bladder cancer. Initially, we analyzed P3H4 gene expression using the TCGA database and evaluated P3H4 levels in clinical samples and various bladder cell lines. P3H4 was found to be markedly overexpressed in bladder cancer samples. Subsequently, bladder cancer cells were transfected with shRNA targeting P3H4 (sh-P3H4), sh-METTL3, and P3H4 overexpression vectors (P3H4 OE). Viability, migration, and invasion of bladder cancer cells were assessed using CCK-8, wound healing, and transwell assays. Western blot analysis was performed to determine the levels of EMT-associated proteins, while RNA stability assays determined the half-life of P3H4. Knockdown of P3H4 resulted in inhibition of bladder cancer cell proliferation, migration, invasion, and EMT progression. Mechanistically, METTL3 was found to regulate the mRNA stability of P3H4 in bladder cancer. Moreover, overexpression of P3H4 reversed the inhibitory effects of METTL3 knockdown on bladder cancer cell behaviors. Stable cell lines were established by infecting EJ cells with lentiviral vectors containing sh-METTL3 or P3H4 OE. These cells were then implanted into the skin of BALB/c nude mice, and IHC analysis was used to analyze the expression levels of EMT-associated proteins. In vivo studies demonstrated that inhibition of METTL3 suppressed bladder cancer growth and EMT through P3H4. In conclusion, our findings suggest that METTL3 regulates the proliferation, metastasis, and EMT progression of bladder cancer through P3H4, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Chun-Hui Liu
- The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou 221009, Jiangsu, China; Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China
| | - Jun-Jie Zhang
- The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou 221009, Jiangsu, China; Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China; Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Qian-Jin Zhang
- Department of Urology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian 223800, Jiangsu, China
| | - Yang Dong
- The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou 221009, Jiangsu, China; Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China; Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhen-Duo Shi
- The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou 221009, Jiangsu, China; Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China
| | - Si-Hao Hong
- The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou 221009, Jiangsu, China; Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China
| | - Hou-Guang He
- The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou 221009, Jiangsu, China; Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China
| | - Wei Wu
- Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Cong-Hui Han
- The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou 221009, Jiangsu, China; Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China; Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Lin Hao
- The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou 221009, Jiangsu, China; Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China.
| |
Collapse
|
487
|
Fernandes S, Oliver-De La Cruz J, Morazzo S, Niro F, Cassani M, Ďuríková H, Caravella A, Fiore P, Azzato G, De Marco G, Lauria A, Izzi V, Bosáková V, Fric J, Filipensky P, Forte G. TGF-β induces matrisome pathological alterations and EMT in patient-derived prostate cancer tumoroids. Matrix Biol 2024; 125:12-30. [PMID: 37944712 DOI: 10.1016/j.matbio.2023.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/28/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Extracellular matrix (ECM) tumorigenic alterations resulting in high matrix deposition and stiffening are hallmarks of adenocarcinomas and are collectively defined as desmoplasia. Here, we thoroughly analysed primary prostate cancer tissues obtained from numerous patients undergoing radical prostatectomy to highlight reproducible structural changes in the ECM leading to the loss of the glandular architecture. Starting from patient cells, we established prostate cancer tumoroids (PCTs) and demonstrated they require TGF-β signalling pathway activity to preserve phenotypical and structural similarities with the tissue of origin. By modulating TGF-β signalling pathway in PCTs, we unveiled its role in ECM accumulation and remodelling in prostate cancer. We also found that TGF-β-induced ECM remodelling is responsible for the initiation of prostate cell epithelial-to-mesenchymal transition (EMT) and the acquisition of a migratory, invasive phenotype. Our findings highlight the cooperative role of TGF-β signalling and ECM desmoplasia in prompting prostate cell EMT and promoting tumour progression and dissemination.
Collapse
Affiliation(s)
- Soraia Fernandes
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic.
| | - Jorge Oliver-De La Cruz
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic
| | - Sofia Morazzo
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, Brno 62500, Czech Republic
| | - Francesco Niro
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, Brno 62500, Czech Republic
| | - Marco Cassani
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic
| | - Helena Ďuríková
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic
| | - Alessio Caravella
- Department of Computer Engineering, Modelling, Electronics and Systems Engineering (DIMES), University of Calabria (UNICAL), Via P. Bucci, Cubo 42C, Rende (CS) 87036, Italy
| | - Piergiuseppe Fiore
- Department of Computer Engineering, Modelling, Electronics and Systems Engineering (DIMES), University of Calabria (UNICAL), Via P. Bucci, Cubo 42C, Rende (CS) 87036, Italy
| | - Giulia Azzato
- Department of Computer Engineering, Modelling, Electronics and Systems Engineering (DIMES), University of Calabria (UNICAL), Via P. Bucci, Cubo 42C, Rende (CS) 87036, Italy
| | - Giuseppe De Marco
- Information Technology Center (ICT), University of Calabria (UNICAL), Via P. Bucci, Cubo 22B, Rende (CS) 87036, Italy
| | - Agostino Lauria
- Department of Engineering for Innovation, University of Salento (UNISALENTO), Corpo Z, Campus Ecotekne, SP.6 per Monteroni, Lecce (LE), Italy
| | - Valerio Izzi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FI-90014, Finland; Faculty of Medicine, BioIM Research Unit, University of Oulu, Oulu FI-90014, Finland; Foundation for the Finnish Cancer Institute, Tukholmankatu 8, Helsinki, Finland
| | - Veronika Bosáková
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, Brno 62500, Czech Republic
| | - Jan Fric
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Petr Filipensky
- Department of Urology, St. Anne's University Hospital, Brno 60200, Czech Republic
| | - Giancarlo Forte
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London SE5 9NU, UK.
| |
Collapse
|
488
|
Zhong W, Wang Q, Shen X, Lv Y, Sun L, An R, Zhu H, Cai H, Chen G, Liu A, Du J. Neutrophil Extracellular Trap is Surrogate Biomarker for Prognosis and Response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer. J Inflamm Res 2023; 16:6443-6455. [PMID: 38164163 PMCID: PMC10758164 DOI: 10.2147/jir.s441981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
Purpose To demonstrate the intrinsic association of Neutrophil extracellular traps (NETs) with outcome and neoadjuvant therapy response of locally advanced rectal cancer (LARC), and the mechanisms. Patients and Methods We enrolled 240 patients with LARC who underwent surgery without neoadjuvant therapy in two independent sets (training and validation), and 153 patients who received neoadjuvant therapy with biopsy followed by surgery. Immunohistochemistry, immunofluorescence staining and bioinformatics analysis were performed in formalin-fixed paraffin-embedded sections. NETs were identified by costaining for myeloperoxidase and citrullinated histone H3. Results NETs were associated with recurrence-free survival in the surgical training and validation sets. High-NET density predicted poor postoperative survival of patients with LARC. Multivariate analysis identified NETs, TNM stage, and neutrophil-to-lymphocyte ratio as independent prognostic factors for recurrence-free survival. Low-NETs LARC demonstrated increased CD8+ T cell and lower T regulatory cell infiltration, which indicated a tumor immune microenvironment with strong antitumor capacity. High-NET density was associated with epithelial-mesenchymal transition, which is considered to contribute to tumor progression. In the neoadjuvant therapy cohort, high-NET density on biopsy was significantly associated with reduced likelihood of complete/near complete response. Conclusion NET was an independent prognostic factor in LARC that were associated with patients' survival, and NET density in pretreatment biopsies was an independent predictive biomarker of response to neoadjuvant therapy. This biomarker may be helpful in predicting survival in LARC with improved accuracy and selecting patients who will respond to neoadjuvant therapy.
Collapse
Affiliation(s)
- Wentao Zhong
- The Second School of Clinical Medicine, Southern Medical University, Guangdong, 510515, People’s Republic of China
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Qianyu Wang
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
| | - Xiaofei Shen
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Yuan Lv
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Liang Sun
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
| | - Ran An
- Department of Pathology, the 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
| | - Hongyan Zhu
- Department of Pathology, the 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
| | - Huiyun Cai
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
| | - Gang Chen
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Aijun Liu
- Department of Pathology, the 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
| | - Junfeng Du
- The Second School of Clinical Medicine, Southern Medical University, Guangdong, 510515, People’s Republic of China
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| |
Collapse
|
489
|
Luo H, Luo J, Ding N, Zhang T, He Y. BICDL1 Predicts Poor Prognosis and is Correlated with Methylation and Immune Infiltration in Colorectal Cancer. Pharmgenomics Pers Med 2023; 16:1109-1126. [PMID: 38149287 PMCID: PMC10750784 DOI: 10.2147/pgpm.s424209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023] Open
Abstract
Background Bicaudal-D (BICD) Family Like Cargo Adaptor 1 (BICDL1) is an essential component of the molecular mechanism during neuronal development. However, BICDL1 has not been reported in cancer. Using bioinformatics analysis, we systematically evaluated the potential role of BICDL1 in CRC. Methods Colorectal cancer (CRC) and normal tissue samples were retrieved from the Gene Expression Omnibus (GEO), Genotype-Tissue Expression (GTEx), and Cancer Genome Atlas (TCGA) databases. Kaplan-Meier (K-M) analysis, nomogram, COX analysis, and receiver operating characteristic (ROC) curves were used to evaluate the prognostic power. Correlation analysis was also conducted to explore the correlation between mRNA expression and the methylation level of BICDL1 using cBioPortal, and the correlation between immune infiltration and BICDL1. RT-qPCR and Western blot assays were performed to analyze BICDL1 expression level between human colorectal cancer cell lines and normal colonic epithelial cells. Results BICDL1 had a higher expression in CRC tissues than in normal tissues (p < 0.001) in TCGA and GES 74602 datasets. Kaplan-Meier survival analysis revealed that patients with high BICDL1 expression had lower overall survival (OS) (1.53, 95% confidence interval: 1.07-2.17, p=0.019). The ROC curves demonstrated that BICDL1 has high specificity and efficiency in diagnosis (AUC=0.919, CI: 0.895-0.943). The expression level of BICDL1 was significantly correlated with the infiltrating levels of Treg (R=0.146, p <0.001), TFH (R=0.080, p=0.043), NK CD56bright cells (R=0.149, p <0.001), aDC (R=0.095, p=0.016), and T helper cell infiltration (R=-0.084, p=0.034). The correlation between BICDL1 expression and methylation levels was negative (R2=0.134, p <0.001), and CRC patients had lower methylation levels than normal people (p=0.036). BICDL1 mRNA and its protein expression levels in CRC cell lines (SW620) was markedly increased compared with that of normal colonic epithelial cells (NCM460) (p < 0.001). Conclusion BICDL1 may be a potential biomarker for evaluating immune infiltration levels and prognosis of CRC.
Collapse
Affiliation(s)
- Hongbiao Luo
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
- Department of Anorectal Surgery, Chenzhou NO. 1 People’s Hospital, Chenzhou, Hunan, 423000, People’s Republic of China
| | - Ji Luo
- Hunan Key Laboratory of Chinese Medicine on Oncology, Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, Hunan, 410006, People’s Republic of China
| | - Ning Ding
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Tao Zhang
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Yongheng He
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
- Department of Anorectal Surgery, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, 410006, People’s Republic of China
| |
Collapse
|
490
|
Chen MN, Fang ZX, Wu Z, Bai JW, Li RH, Wen XF, Zhang GJ, Liu J. Notch3 restricts metastasis of breast cancers through regulation of the JAK/STAT5A signaling pathway. BMC Cancer 2023; 23:1257. [PMID: 38124049 PMCID: PMC10734157 DOI: 10.1186/s12885-023-11746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
PURPOSE To explore the potential role of signal transducer and activator of transcription 5A (STAT5A) in the metastasis of breast cancer, and its mechanism of regulation underlying. METHODS AND RESULTS TCGA datasets were used to evaluate the expression of STAT5A in normal and different cancerous tissues through TIMER2.0, indicating that STAT5A level was decreased in breast cancer tissues compared with normal ones. Gene Set Enrichment Analysis predicted that STAT5A was associated with the activation of immune cells and cell cycle process. We further demonstrated that the infiltration of immune cells was positively associated with STAT5A level. Influorescence staining revealed the expression and distribution of F-actin was regulated by STAT5A, while colony formation assay, wound healing and transwell assays predicted the inhibitory role of STAT5A in the colony formation, migratory and invasive abilities in breast cancer cells. In addition, overexpression of the Notch3 intracellular domain (N3ICD), the active form of Notch3, resulted in the increased expression of STAT5A. Conversely, silencing of Notch3 expression by siNotch3 decreased STAT5A expression, supporting that STAT5A expression is positively associated with Notch3 in human breast cancer cell lines and breast cancer tissues. Mechanistically, chromatin immunoprecipitation showed that Notch3 was directly bound to the STAT5A promoter and induced the expression of STAT5A. Moreover, overexpressing STAT5A partially reversed the enhanced mobility of breast cancer cells following Notch3 silencing. Low expression of Notch3 and STAT5A predicted poorer prognosis of patients with breast cancer. CONCLUSION The present study demonstrates that Notch3 inhibits metastasis in breast cancer through inducing transcriptionally STAT5A, which was associated with tumor-infiltrating immune cells, providing a novel strategy to treat breast cancer.
Collapse
Affiliation(s)
- Min-Na Chen
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Jing-Wen Bai
- Department of Medical Oncology/Xiamen Key Laboratory for Endocrine-Related Cancer Precision Medicine, Xiamen University Medical School, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Rong-Hui Li
- Department of Medical Oncology/Xiamen Key Laboratory for Endocrine-Related Cancer Precision Medicine, Xiamen University Medical School, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Xiao-Fen Wen
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Guo-Jun Zhang
- Xiamen Key Laboratory for Endocrine-Related Cancer Precision Medicine/Department of Breast and Thyroid Surgery, Xiamen University Medical School, Xiang'an Hospital of Xiamen University, Xiamen, China.
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, China.
| |
Collapse
|
491
|
Illmer J, Zauner R, Piñón Hofbauer J, Wimmer M, Gruner S, Ablinger M, Bischof J, Dorfer S, Hainzl S, Tober V, Bergson S, Sarig O, Samuelov L, Guttmann-Gruber C, Shalom-Feuerstein R, Sprecher E, Koller U, Laimer M, Bauer JW, Wally V. MicroRNA-200b-mediated reversion of a spectrum of epithelial-to-mesenchymal transition states in recessive dystrophic epidermolysis bullosa squamous cell carcinomas. Br J Dermatol 2023; 190:80-93. [PMID: 37681509 DOI: 10.1093/bjd/ljad335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/31/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (SCC) is the leading cause of death in patients with recessive dystrophic epidermolysis bullosa (RDEB). However, the survival time from first diagnosis differs between patients; some tumours spread particularly fast, while others may remain localized for years. As treatment options are limited, there is an urgent need for further insights into the pathomechanisms of RDEB tumours, to foster therapy development and support clinical decision-making. OBJECTIVES To investigate differences in RDEB tumours of diverging aggressiveness at the molecular and phenotypic level, with a particular focus on epithelial-to-mesenchymal (EMT) transition states and thus microRNA-200b (miR-200b) as a regulator. METHODS Primary RDEB-SCC keratinocyte lines were characterized with respect to their EMT state. For this purpose, cell morphology was classified and the expression of EMT markers analysed using immunofluorescence, flow cytometry, semi-quantitative reverse transcriptase polymerase chain reaction and Western blotting. The motility of RDEB-SCC cells was determined and conditioned medium of RDEB-SCC cells was used to treat endothelial cells in an angiogenesis assay. In addition, we mined previously generated microRNA (miRNA) profiling data to identify a candidate with potential therapeutic relevance and performed transient miRNA transfection studies to investigate the candidate's ability to reverse EMT characteristics. RESULTS We observed high variability in EMT state in the RDEB-SCC cell lines, which correlated with in situ analysis of two available patient biopsies and respective clinical disease course. Furthermore, we identified miR-200b-3p to be downregulated in RDEB-SCCs, and the extent of deregulation significantly correlated with the EMT features of the various tumour lines. miR-200b-3p was reintroduced into RDEB-SCC cell lines with pronounced EMT features, which resulted in a significant increase in epithelial characteristics, including cell morphology, EMT marker expression, migration and angiogenic potential. CONCLUSIONS RDEB-SCCs exist in different EMT states and the level of miR-200b is indicative of how far an RDEB-SCC has gone down the EMT path. Moreover, the reintroduction of miR-200b significantly reduced mesenchymal features.
Collapse
Affiliation(s)
- Julia Illmer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Roland Zauner
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Monika Wimmer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Stefanie Gruner
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Michael Ablinger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Sonja Dorfer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Stefan Hainzl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Vanessa Tober
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Shir Bergson
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ofer Sarig
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Liat Samuelov
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Ruby Shalom-Feuerstein
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion Israel Institute of Technology, Haifa, Israel
| | - Eli Sprecher
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Martin Laimer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Johann W Bauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| |
Collapse
|
492
|
Valenti GE, Roveri A, Venerando R, Menichini P, Monti P, Tasso B, Traverso N, Domenicotti C, Marengo B. PTC596-Induced BMI-1 Inhibition Fights Neuroblastoma Multidrug Resistance by Inducing Ferroptosis. Antioxidants (Basel) 2023; 13:3. [PMID: 38275623 PMCID: PMC10812464 DOI: 10.3390/antiox13010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Neuroblastoma (NB) is a paediatric cancer with noteworthy heterogeneity ranging from spontaneous regression to high-risk forms that are characterised by cancer relapse and the acquisition of drug resistance. The most-used anticancer drugs exert their cytotoxic effect by inducing oxidative stress, and long-term therapy has been demonstrated to cause chemoresistance by enhancing the antioxidant response of NB cells. Taking advantage of an in vitro model of multidrug-resistant (MDR) NB cells, characterised by high levels of glutathione (GSH), the overexpression of the oncoprotein BMI-1, and the presence of a mutant P53 protein, we investigated a new potential strategy to fight chemoresistance. Our results show that PTC596, an inhibitor of BMI-1, exerted a high cytotoxic effect on MDR NB cells, while PRIMA-1MET, a compound able to reactivate mutant P53, had no effect on the viability of MDR cells. Furthermore, both PTC596 and PRIMA-1MET markedly reduced the expression of epithelial-mesenchymal transition proteins and limited the clonogenic potential and the cancer stemness of MDR cells. Of particular interest is the observation that PTC596, alone or in combination with PRIMA-1MET and etoposide, significantly reduced GSH levels, increased peroxide production, stimulated lipid peroxidation, and induced ferroptosis. Therefore, these findings suggest that PTC596, by inhibiting BMI-1 and triggering ferroptosis, could be a promising approach to fight chemoresistance.
Collapse
Affiliation(s)
- Giulia Elda Valenti
- Department of Experimental Medicine, General Pathology Section, University of Genoa, 16132 Genoa, Italy; (G.E.V.); (N.T.); (B.M.)
| | - Antonella Roveri
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy; (A.R.); (R.V.)
| | - Rina Venerando
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy; (A.R.); (R.V.)
| | - Paola Menichini
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (P.M.); (P.M.)
| | - Paola Monti
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (P.M.); (P.M.)
| | - Bruno Tasso
- Department of Pharmacy, University of Genoa, 16148 Genoa, Italy;
| | - Nicola Traverso
- Department of Experimental Medicine, General Pathology Section, University of Genoa, 16132 Genoa, Italy; (G.E.V.); (N.T.); (B.M.)
| | - Cinzia Domenicotti
- Department of Experimental Medicine, General Pathology Section, University of Genoa, 16132 Genoa, Italy; (G.E.V.); (N.T.); (B.M.)
| | - Barbara Marengo
- Department of Experimental Medicine, General Pathology Section, University of Genoa, 16132 Genoa, Italy; (G.E.V.); (N.T.); (B.M.)
| |
Collapse
|
493
|
Liang Q, Huang Y, He S, Chen K. Pathway centric analysis for single-cell RNA-seq and spatial transcriptomics data with GSDensity. Nat Commun 2023; 14:8416. [PMID: 38110427 PMCID: PMC10728201 DOI: 10.1038/s41467-023-44206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Advances in single-cell technology have enabled molecular dissection of heterogeneous biospecimens at unprecedented scales and resolutions. Cluster-centric approaches are widely applied in analyzing single-cell data, however they have limited power in dissecting and interpreting highly heterogenous, dynamically evolving data. Here, we present GSDensity, a graph-modeling approach that allows users to obtain pathway-centric interpretation and dissection of single-cell and spatial transcriptomics (ST) data without performing clustering. Using pathway gene sets, we show that GSDensity can accurately detect biologically distinct cells and reveal novel cell-pathway associations ignored by existing methods. Moreover, GSDensity, combined with trajectory analysis can identify curated pathways that are active at various stages of mouse brain development. Finally, GSDensity can identify spatially relevant pathways in mouse brains and human tumors including those following high-order organizational patterns in the ST data. Particularly, we create a pan-cancer ST map revealing spatially relevant and recurrently active pathways across six different tumor types.
Collapse
Affiliation(s)
- Qingnan Liang
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yuefan Huang
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Shan He
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
494
|
Chen L, Zhu S, Liu T, Zhao X, Xiang T, Hu X, Wu C, Lin D. Aberrant epithelial cell interaction promotes esophageal squamous-cell carcinoma development and progression. Signal Transduct Target Ther 2023; 8:453. [PMID: 38097539 PMCID: PMC10721848 DOI: 10.1038/s41392-023-01710-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) and proliferation play important roles in epithelial cancer formation and progression, but what molecules and how they trigger EMT is largely unknown. Here we performed spatial transcriptomic and functional analyses on samples of multistage esophageal squamous-cell carcinoma (ESCC) from mice and humans to decipher these critical issues. By investigating spatiotemporal gene expression patterns and cell-cell interactions, we demonstrated that the aberrant epithelial cell interaction via EFNB1-EPHB4 triggers EMT and cell cycle mediated by downstream SRC/ERK/AKT signaling. The aberrant epithelial cell interaction occurs within the basal layer at early precancerous lesions, which expands to the whole epithelial layer and strengthens along the cancer development and progression. Functional analysis revealed that the aberrant EFNB1-EPHB4 interaction is caused by overexpressed ΔNP63 due to TP53 mutation, the culprit in human ESCC tumorigenesis. Our results shed new light on the role of TP53-TP63/ΔNP63-EFNB1-EPHB4 axis in EMT and cell proliferation in epithelial cancer formation.
Collapse
Affiliation(s)
- Liping Chen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shihao Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuan Zhao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Xiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiao Hu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing, 100006, China.
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| |
Collapse
|
495
|
van de Weijer LL, Ercolano E, Zhang T, Shah M, Banton MC, Na J, Adams CL, Hilton D, Kurian KM, Hanemann CO. A novel patient-derived meningioma spheroid model as a tool to study and treat epithelial-to-mesenchymal transition (EMT) in meningiomas. Acta Neuropathol Commun 2023; 11:198. [PMID: 38102708 PMCID: PMC10725030 DOI: 10.1186/s40478-023-01677-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/23/2023] [Indexed: 12/17/2023] Open
Abstract
Meningiomas are the most common intracranial brain tumours. These tumours are heterogeneous and encompass a wide spectrum of clinical aggressivity. Treatment options are limited to surgery and radiotherapy and have a risk of post-operative morbidities and radiation neurotoxicity, reflecting the need for new therapies. Three-dimensional (3D) patient-derived cell culture models have been shown to closely recapitulate in vivo tumour biology, including microenvironmental interactions and have emerged as a robust tool for drug development. Here, we established a novel easy-to-use 3D patient-derived meningioma spheroid model using a scaffold-free approach. Patient-derived meningioma spheroids were characterised and compared to patient tissues and traditional monolayer cultures by histology, genomics, and transcriptomics studies. Patient-derived meningioma spheroids closely recapitulated morphological and molecular features of matched patient tissues, including patient histology, genomic alterations, and components of the immune microenvironment, such as a CD68 + and CD163 + positive macrophage cell population. Comprehensive transcriptomic profiling revealed an increase in epithelial-to-mesenchymal transition (EMT) in meningioma spheroids compared to traditional monolayer cultures, confirming this model as a tool to elucidate EMT in meningioma. Therefore, as proof of concept study, we developed a treatment strategy to target EMT in meningioma. We found that combination therapy using the MER tyrosine kinase (MERTK) inhibitor UNC2025 and the histone deacetylase (HDAC) inhibitor Trichostatin A (TSA) effectively decreased meningioma spheroid viability and proliferation. Furthermore, we demonstrated this combination therapy significantly increased the expression of the epithelial marker E-cadherin and had a repressive effect on WHO grade 2-derived spheroid invasion, which is suggestive of a partial reversal of EMT in meningioma spheroids.
Collapse
Affiliation(s)
- Laurien L van de Weijer
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK
| | - Emanuela Ercolano
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK
| | - Ting Zhang
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK
| | - Maryam Shah
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK
| | - Matthew C Banton
- Faculty of Health: School of Biomedical Sciences, University of Plymouth, Plymouth, PL4 8AA, Devon, UK
| | - Juri Na
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK
| | - Claire L Adams
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK
| | - David Hilton
- Department of Cellular and Anatomical Pathology, University Hospitals Plymouth NHS Trust, Derriford, Plymouth, PL6 8DH, Devon, UK
| | - Kathreena M Kurian
- University of Bristol Medical School & North Bristol Trust, Southmead Hospital, Bristol, BS1 0NB, UK
| | - C Oliver Hanemann
- Faculty of Health: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, PL6 8BU, Devon, UK.
| |
Collapse
|
496
|
Wrenn ED, Apfelbaum AA, Rudzinski ER, Deng X, Jiang W, Sud S, Van Noord RA, Newman EA, Garcia NM, Miyaki A, Hoglund VJ, Bhise SS, Kanaan SB, Waltner OG, Furlan SN, Lawlor ER. Cancer-Associated Fibroblast-Like Tumor Cells Remodel the Ewing Sarcoma Tumor Microenvironment. Clin Cancer Res 2023; 29:5140-5154. [PMID: 37471463 PMCID: PMC10801911 DOI: 10.1158/1078-0432.ccr-23-1111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
PURPOSE Despite limited genetic and histologic heterogeneity, Ewing sarcoma (EwS) tumor cells are transcriptionally heterogeneous and display varying degrees of mesenchymal lineage specification in vitro. In this study, we investigated if and how transcriptional heterogeneity of EwS cells contributes to heterogeneity of tumor phenotypes in vivo. EXPERIMENTAL DESIGN Single-cell proteogenomic-sequencing of EwS cell lines was performed and integrated with patient tumor transcriptomic data. Cell subpopulations were isolated by FACS for assessment of gene expression and phenotype. Digital spatial profiling and human whole transcriptome analysis interrogated transcriptomic heterogeneity in EwS xenografts. Tumor cell subpopulations and matrix protein deposition were evaluated in xenografts and patient tumors using multiplex immunofluorescence staining. RESULTS We identified CD73 as a biomarker of highly mesenchymal EwS cell subpopulations in tumor models and patient biopsies. CD73+ tumor cells displayed distinct transcriptional and phenotypic properties, including selective upregulation of genes that are repressed by EWS::FLI1, and increased migratory potential. CD73+ cells were distinguished in vitro and in vivo by increased expression of matrisomal genes and abundant deposition of extracellular matrix (ECM) proteins. In epithelial-derived malignancies, ECM is largely deposited by cancer-associated fibroblasts (CAF), and we thus labeled CD73+ EwS cells, CAF-like tumor cells. Marked heterogeneity of CD73+ EwS cell frequency and distribution was detected in tumors in situ, and CAF-like tumor cells and associated ECM were observed in peri-necrotic regions and invasive foci. CONCLUSIONS EwS tumor cells can adopt CAF-like properties, and these distinct cell subpopulations contribute to tumor heterogeneity by remodeling the tumor microenvironment. See related commentary by Kuo and Amatruda, p. 5002.
Collapse
Affiliation(s)
- Emma D. Wrenn
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
| | - April A. Apfelbaum
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
- Cancer Biology PhD Program, University of Michigan, Ann Arbor, Michigan
| | - Erin R. Rudzinski
- Pathology Department, Seattle Children’s Hospital, Seattle, Washington
| | - Xuemei Deng
- Pathology Department, Seattle Children’s Hospital, Seattle, Washington
| | - Wei Jiang
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Sudha Sud
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | | | - Erika A. Newman
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Nicolas M. Garcia
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
| | - Aya Miyaki
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
| | - Virginia J. Hoglund
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
| | - Shruti S. Bhise
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Sami B. Kanaan
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Olivia G. Waltner
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Scott N. Furlan
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Elizabeth R. Lawlor
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
497
|
Guo JB, Du M, Wang B, Zhong L, Fu ZX, Wei JL. Paired-related homeobox 1 induces epithelial-mesenchymal transition in oesophageal squamous cancer. World J Gastrointest Oncol 2023; 15:2185-2196. [PMID: 38173429 PMCID: PMC10758647 DOI: 10.4251/wjgo.v15.i12.2185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/16/2023] [Accepted: 11/09/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND It is unclear that paired-related homeobox 1 (PRRX1) induces epithelial-mesenchymal transition (EMT) in oesophageal cancer and the specific function of PRRX1 in oesophageal cancer metastasis. AIM To assess the significance of PRRX1 expression and investigate the mechanism of EMT in oesophageal cancer metastasis. METHODS Detect the expression of PRRX1 by immunohistochemistry in oesophageal tumour tissues and adjacent normal oesophageal tissues; the PRRX1 short hairpin RNA (shRNA) or blank vector lentiviral gene delivery system was transfected into cells; cell proliferation assay, soft agar colony formation assays, cell invasion and migration assays and animal studies were used to observe cells biological characteristics In vitro and in vivo; XAV939 and LiCl were used to alter the activity of Wnt/β-catenin pathway. Immunofluorescence staining and western blot analysis were used to detect protein expression of EMT markers and Wnt/β-catenin pathway. RESULTS PRRX1 is expressed at high levels in oesophageal cancer specimens and is closely related to tumour metastasis in patients with oesophageal cancer. Regulation of PRRX1 expression might exert obvious effects on cell proliferation, especially the migration and invasion of oesophageal cancer cells. Moreover, silencing PRRX1 expression using a shRNA produced the opposite effects. In addition, when PRRX1 was overexpressed, inhibition of the Wnt/β-catenin pathway with XAV939 negated the effect of PRRX1 on EMT, whereas when PRRX1 was downregulated, activation of the Wnt/β-catenin pathway with LiCl impaired the effect on EMT. CONCLUSION PRRX1 is upregulated in oesophageal cancer is closely correlated with cancer metastasis. Additionally, PRRX1 induces EMT in oesophageal cancer metastasis through activation of Wnt/β-catenin signalling.
Collapse
Affiliation(s)
- Jin-Bao Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ming Du
- Department of Thoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Bin Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Zhong
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhong-Xue Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jin-Lai Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
498
|
Chen H, Pang B, Zhou C, Han M, Gong J, Li Y, Jiang J. Prostate cancer-derived small extracellular vesicle proteins: the hope in diagnosis, prognosis, and therapeutics. J Nanobiotechnology 2023; 21:480. [PMID: 38093355 PMCID: PMC10720096 DOI: 10.1186/s12951-023-02219-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Current diagnostic tools for prostate cancer (PCa) diagnosis and risk stratification are insufficient. The hidden onset and poor efficacy of traditional therapies against metastatic PCa make this disease a heavy burden in global men's health. Prostate cancer-derived extracellular vesicles (PCDEVs) have garnered attention in recent years due to their important role in communications in tumor microenvironment. Recent advancements have demonstrated PCDEVs proteins play an important role in PCa invasion, progression, metastasis, therapeutic resistance, and immune escape. In this review, we briefly discuss the applications of sEV proteins in PCa diagnosis and prognosis in liquid biopsy, focus on the roles of the PCa-derived small EVs (sEVs) proteins in tumor microenvironment associated with cancer progression, and explore the therapeutic potential of sEV proteins applied for future metastatic PCa therapy.
Collapse
Affiliation(s)
- Haotian Chen
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Bairen Pang
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Cheng Zhou
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Meng Han
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Jie Gong
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia.
- School of Clinical Medicine, St. George and Sutherland Clinical Campuses, UNSW Sydney, Kensington, NSW, 2052, Australia.
| | - Junhui Jiang
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China.
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China.
- Department of Urology, Ningbo First Hospital, The First Affiliated Hospital of Ningbo University, Haishu District, Ningbo, 315600, Zhejiang, People's Republic of China.
| |
Collapse
|
499
|
Zhao J, Li X, Liu L, Zhu Z, He C. Exosomes in lung cancer metastasis, diagnosis, and immunologically relevant advances. Front Immunol 2023; 14:1326667. [PMID: 38155975 PMCID: PMC10752943 DOI: 10.3389/fimmu.2023.1326667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
Lung cancer is a chronic wasting disease with insidious onset and long treatment cycle. Exosomes are specialized extracellular vesicles, at first exosomes were considered as a transporter of cellular metabolic wastes, but recently many studies have identified exosomes which contain a variety of biologically active substances that play a role in the regulation of cellular communication and physiological functions. Exosomes play an important role in the development of lung cancer and can promote metastasis through a variety of mechanisms. However, at the same time, researchers have also discovered that immune cells can also inhibit lung cancer through exosomes. In addition, researchers have discovered that some specific miRNAs in exosomes can be used as markers for early diagnosis of lung cancer. Engineering exosomes may be one of the strategies to enhance the clinical translational application of exosomes in the future, for example, strategies such as modifying exosomes to enhance targeting or utilizing exosomes as carriers for drug delivery have been explored. but more studies are needed to verify the safety and efficacy. This article reviews the latest research on exosomes in the field of lung cancer, from the mechanism of lung cancer development, the functions of immune cell-derived exosomes and tumor-derived exosomes, to the early diagnosis of lung cancer.
Collapse
Affiliation(s)
- Jianhua Zhao
- Department of Thoracic Surgery, Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, China
| | - Xiwen Li
- Department of Central Laboratory, Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, China
| | - Lele Liu
- Department of Clinical Laboratory, Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, China
| | - Zhen Zhu
- Department of Thoracic Surgery, Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, China
| | - Chunyan He
- Department of Clinical Laboratory, Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, China
| |
Collapse
|
500
|
Liu Y, Han T, Wu J, Zhou J, Guo J, Miao R, Xu Z, Xing Y, Bai Y, Hu D. SPOCK1, as a potential prognostic and therapeutic biomarker for lung adenocarcinoma, is associated with epithelial-mesenchymal transition and immune evasion. J Transl Med 2023; 21:909. [PMID: 38087364 PMCID: PMC10717042 DOI: 10.1186/s12967-023-04616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/11/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The occurrence of epithelial-mesenchymal transition (EMT) and immune evasion is considered to contribute to poor prognosis in lung adenocarcinoma (LUAD). Therefore, this study aims to explore the key oncogenes that promote EMT and immune evasion and reveal the expression patterns, prognostic value, and potential biological functions. METHODS Firstly, we identified gene modules associated with EMT and Tumor Immune Dysfunction and Exclusion (TIDE) through weighted gene co-expression network analysis (WGCNA). Next, we utilized differential analysis and machine learning to identify the key genes and validate them. Moreover, we analyzed the correlation between key genes and tumor microenvironment remodeling, drug sensitivity, as well as mutation frequency. Furthermore, we explored and validated their malignant biological characteristics through in vitro experiments and clinical samples. Finally, potential drugs for LUAD were screened based on CMap and validated through experiments. RESULTS Firstly, WGCNA analysis revealed that red and green modules were highly correlated with EMT and TIDE. Among them, upregulated expression of SPOCK1 was observed in lung adenocarcinoma tissues and was associated with poor prognosis. Additionally, patients in the high SPOCK1 group showed more activation of malignant oncogenic pathways, higher infiltration of immunosuppressive components, and a higher frequency of mutations. The knockdown of SPOCK1 suppressed invasion and metastasis capabilities of lung adenocarcinoma cells, and the high expression of SPOCK1 was associated with low infiltration of CD8+ T cells. Therapeutic aspects, SPOCK1 can be a candidate indicator for drug sensitivity and CMap showed that VER-155008 was the drug candidate with the largest perturbation effect on the SPOCK1 expression profile. In vitro and in vivo experiments validated the cancer-inhibitory effect of VER-155008 in LUAD. CONCLUSION This study revealed through comprehensive bioinformatics analysis and experimental analysis that SPOCK1 can promote EMT and immune escape in LUAD, and it may serve as a promising candidate prognostic biomarker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Tao Han
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China.
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Rui Miao
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China
| | - Zhi Xu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China
| | - Yingru Xing
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, People's Republic of China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China.
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, People's Republic of China.
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|