451
|
Mostajo-Radji MA, Pollen AA. Physiological Models of Human Neuronal Development and Disease. Neuron 2019; 100:1025-1027. [PMID: 30521777 DOI: 10.1016/j.neuron.2018.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human neural network development occurs at stages inaccessible to longitudinal monitoring. By transplanting human neurons to the adult mouse brain, recent studies explore human neural circuit formation in realistic cellular and physiological environments, establishing new models for human neurodevelopmental disorders.
Collapse
Affiliation(s)
- Mohammed A Mostajo-Radji
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Alex A Pollen
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
452
|
Alia C, Terrigno M, Busti I, Cremisi F, Caleo M. Pluripotent Stem Cells for Brain Repair: Protocols and Preclinical Applications in Cortical and Hippocampal Pathologies. Front Neurosci 2019; 13:684. [PMID: 31447623 PMCID: PMC6691396 DOI: 10.3389/fnins.2019.00684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
Brain injuries causing chronic sensory or motor deficit, such as stroke, are among the leading causes of disability worldwide, according to the World Health Organization; furthermore, they carry heavy social and economic burdens due to decreased quality of life and need of assistance. Given the limited effectiveness of rehabilitation, novel therapeutic strategies are required to enhance functional recovery. Since cell-based approaches have emerged as an intriguing and promising strategy to promote brain repair, many efforts have been made to study the functional integration of neurons derived from pluripotent stem cells (PSCs), or fetal neurons, after grafting into the damaged host tissue. PSCs hold great promises for their clinical applications, such as cellular replacement of damaged neural tissues with autologous neurons. They also offer the possibility to create in vitro models to assess the efficacy of drugs and therapies. Notwithstanding these potential applications, PSC-derived transplanted neurons have to match the precise sub-type, positional and functional identity of the lesioned neural tissue. Thus, the requirement of highly specific and efficient differentiation protocols of PSCs in neurons with appropriate neural identity constitutes the main challenge limiting the clinical use of stem cells in the near future. In this Review, we discuss the recent advances in the derivation of telencephalic (cortical and hippocampal) neurons from PSCs, assessing specificity and efficiency of the differentiation protocols, with particular emphasis on the genetic and molecular characterization of PSC-derived neurons. Second, we address the remaining challenges for cellular replacement therapies in cortical brain injuries, focusing on electrophysiological properties, functional integration and therapeutic effects of the transplanted neurons.
Collapse
Affiliation(s)
- Claudia Alia
- CNR Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| | - Marco Terrigno
- Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Irene Busti
- CNR Neuroscience Institute, National Research Council (CNR), Pisa, Italy.,Department of Neuroscience, Psychology, Drugs and Child Health Area, School of Psychology, University of Florence, Florence, Italy
| | - Federico Cremisi
- Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy.,Biophysics Institute (IBF), National Research Council (CNR), Pisa, Italy
| | - Matteo Caleo
- CNR Neuroscience Institute, National Research Council (CNR), Pisa, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy.,Padua Neuroscience Center, University of Padua, Padua, Italy
| |
Collapse
|
453
|
Sestan N, State MW. Lost in Translation: Traversing the Complex Path from Genomics to Therapeutics in Autism Spectrum Disorder. Neuron 2019; 100:406-423. [PMID: 30359605 DOI: 10.1016/j.neuron.2018.10.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/29/2018] [Accepted: 10/08/2018] [Indexed: 12/24/2022]
Abstract
Recent progress in the genomics of non-syndromic autism spectrum disorder (nsASD) highlights rare, large-effect, germline, heterozygous de novo coding mutations. This distinguishes nsASD from later-onset psychiatric disorders where gene discovery efforts have predominantly yielded common alleles of small effect. These differences point to distinctive opportunities for clarifying the neurobiology of nsASD and developing novel treatments. We argue that the path ahead also presents key challenges, including distinguishing human pathophysiology from the potentially pleiotropic neurobiology mediated by established risk genes. We present our view of some of the conceptual limitations of traditional studies of model organisms, suggest a strategy focused on investigating the convergence of multiple nsASD genes, and propose that the detailed characterization of the molecular and cellular landscapes of developing human brain is essential to illuminate disease mechanisms. Finally, we address how recent advances are leading to novel strategies for therapeutics that target various points along the path from genes to behavior.
Collapse
Affiliation(s)
- Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Genetics, of Psychiatry, and of Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration and Repair, and Yale Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Matthew W State
- Department of Psychiatry, Langley Porter Psychiatric Institute, Quantitative Biosciences Institute, Institute for Human Genetics, and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
454
|
Song L, Yuan X, Jones Z, Vied C, Miao Y, Marzano M, Hua T, Sang QXA, Guan J, Ma T, Zhou Y, Li Y. Functionalization of Brain Region-specific Spheroids with Isogenic Microglia-like Cells. Sci Rep 2019; 9:11055. [PMID: 31363137 PMCID: PMC6667451 DOI: 10.1038/s41598-019-47444-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023] Open
Abstract
Current brain spheroids or organoids derived from human induced pluripotent stem cells (hiPSCs) still lack a microglia component, the resident immune cells in the brain. The objective of this study is to engineer brain region-specific organoids from hiPSCs incorporated with isogenic microglia-like cells in order to enhance immune function. In this study, microglia-like cells were derived from hiPSCs using a simplified protocol with stage-wise growth factor induction, which expressed several phenotypic markers, including CD11b, IBA-1, CX3CR1, and P2RY12, and phagocytosed micron-size super-paramagnetic iron oxides. The derived cells were able to upregulate pro-inflammatory gene (TNF-α) and secrete anti-inflammatory cytokines (i.e., VEGF, TGF-β1, and PGE2) when stimulated with amyloid β42 oligomers, lipopolysaccharides, or dexamethasone. The derived isogenic dorsal cortical (higher expression of TBR1 and PAX6) and ventral (higher expression of NKX2.1 and PROX1) spheroids/organoids displayed action potentials and synaptic activities. Co-culturing the microglia-like cells (MG) with the dorsal (D) or ventral (V) organoids showed differential migration ability, intracellular Ca2+ signaling, and the response to pro-inflammatory stimuli (V-MG group had higher TNF-α and TREM2 expression). Transcriptome analysis exhibited 37 microglia-related genes that were differentially expressed in MG and D-MG groups. In addition, the hybrid D-MG spheroids exhibited higher levels of immunoreceptor genes in activating members, but the MG group contained higher levels for most of genes in inhibitory members (except SIGLEC5 and CD200). This study should advance our understanding of the microglia function in brain-like tissue and establish a transformative approach to modulate cellular microenvironment toward the goal of treating various neurological disorders.
Collapse
Affiliation(s)
- Liqing Song
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Zachary Jones
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Cynthia Vied
- The Translational Science Laboratory, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Yu Miao
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Mark Marzano
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Thien Hua
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | - Jingjiao Guan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Yi Zhou
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA.
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA.
| |
Collapse
|
455
|
Eremeev AV, Volovikov EA, Shuvalova LD, Davidenko AV, Khomyakova EA, Bogomiakova ME, Lebedeva OS, Zubkova OA, Lagarkova MA. "Necessity Is the Mother of Invention" or Inexpensive, Reliable, and Reproducible Protocol for Generating Organoids. BIOCHEMISTRY (MOSCOW) 2019; 84:321-328. [PMID: 31221070 DOI: 10.1134/s0006297919030143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Organoids are three-dimensional (3D) cell cultures that replicate some of the key features of morphology, spatial architecture, and functions of a particular organ. Organoids can be generated from both adult and pluripotent stem cells (PSCs), and complex organoids can also be obtained by combining different types of cells, including differentiated cells. The ability of pluripotent cells to self-organize into organotypic structures containing several cell subtypes specific for a particular organ was used for creating organoids of the brain, eye, kidney, intestine, and other organs. Despite the advantages of using PSCs for obtaining organoids, an essential shortcoming that prevents their widespread use has been a low yield when they are obtained from a PSC monolayer culture and a large variation in size. This leads to great heterogeneity on further differentiation. In this article, we describe our own protocol for generating standardized organoids, with emphasis on a method for generating brain organoids, which allows scaling-up experiments and makes their cultivation less expensive and easier.
Collapse
Affiliation(s)
- A V Eremeev
- Federal Research and Clinical Center of Physical-Chemical Medicine (FRCC PCM), Federal Medical Biological Agency of Russia (FMBA), Moscow, 119435, Russia.
| | - E A Volovikov
- Federal Research and Clinical Center of Physical-Chemical Medicine (FRCC PCM), Federal Medical Biological Agency of Russia (FMBA), Moscow, 119435, Russia
| | - L D Shuvalova
- Federal Research and Clinical Center of Physical-Chemical Medicine (FRCC PCM), Federal Medical Biological Agency of Russia (FMBA), Moscow, 119435, Russia
| | - A V Davidenko
- Federal Research and Clinical Center of Physical-Chemical Medicine (FRCC PCM), Federal Medical Biological Agency of Russia (FMBA), Moscow, 119435, Russia
| | - E A Khomyakova
- Federal Research and Clinical Center of Physical-Chemical Medicine (FRCC PCM), Federal Medical Biological Agency of Russia (FMBA), Moscow, 119435, Russia
| | - M E Bogomiakova
- Federal Research and Clinical Center of Physical-Chemical Medicine (FRCC PCM), Federal Medical Biological Agency of Russia (FMBA), Moscow, 119435, Russia
| | - O S Lebedeva
- Federal Research and Clinical Center of Physical-Chemical Medicine (FRCC PCM), Federal Medical Biological Agency of Russia (FMBA), Moscow, 119435, Russia
| | - O A Zubkova
- Federal Research and Clinical Center of Physical-Chemical Medicine (FRCC PCM), Federal Medical Biological Agency of Russia (FMBA), Moscow, 119435, Russia
| | - M A Lagarkova
- Federal Research and Clinical Center of Physical-Chemical Medicine (FRCC PCM), Federal Medical Biological Agency of Russia (FMBA), Moscow, 119435, Russia.
| |
Collapse
|
456
|
Niu W, Parent JM. Modeling genetic epilepsies in a dish. Dev Dyn 2019; 249:56-75. [DOI: 10.1002/dvdy.79] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Wei Niu
- Department of Neurology and Neuroscience Graduate ProgramUniversity of Michigan Medical Center and VA Ann Arbor Healthcare System Ann Arbor Michigan
| | - Jack M. Parent
- Department of Neurology and Neuroscience Graduate ProgramUniversity of Michigan Medical Center and VA Ann Arbor Healthcare System Ann Arbor Michigan
| |
Collapse
|
457
|
Le BD, Stein JL. Mapping causal pathways from genetics to neuropsychiatric disorders using genome-wide imaging genetics: Current status and future directions. Psychiatry Clin Neurosci 2019; 73:357-369. [PMID: 30864184 PMCID: PMC6625892 DOI: 10.1111/pcn.12839] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 12/17/2022]
Abstract
Imaging genetics aims to identify genetic variants associated with the structure and function of the human brain. Recently, collaborative consortia have been successful in this goal, identifying and replicating common genetic variants influencing gross human brain structure as measured through magnetic resonance imaging. In this review, we contextualize imaging genetic associations as one important link in understanding the causal chain from genetic variant to increased risk for neuropsychiatric disorders. We provide examples in other fields of how identifying genetic variant associations to disease and multiple phenotypes along the causal chain has revealed a mechanistic understanding of disease risk, with implications for how imaging genetics can be similarly applied. We discuss current findings in the imaging genetics research domain, including that common genetic variants can have a slightly larger effect on brain structure than on risk for disorders like schizophrenia, indicating a somewhat simpler genetic architecture. Also, gross brain structure measurements share a genetic basis with some, but not all, neuropsychiatric disorders, invalidating the previously held belief that they are broad endophenotypes, yet pinpointing brain regions likely involved in the pathology of specific disorders. Finally, we suggest that in order to build a more detailed mechanistic understanding of the effects of genetic variants on the brain, future directions in imaging genetics research will require observations of cellular and synaptic structure in specific brain regions beyond the resolution of magnetic resonance imaging. We expect that integrating genetic associations at biological levels from synapse to sulcus will reveal specific causal pathways impacting risk for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Brandon D. Le
- Department of Genetics & UNC Neuroscience Center, University of North Carolina at Chapel Hill, USA
| | - Jason L. Stein
- Department of Genetics & UNC Neuroscience Center, University of North Carolina at Chapel Hill, USA
| |
Collapse
|
458
|
Rossetti AC, Koch P, Ladewig J. Drug discovery in psychopharmacology: from 2D models to cerebral organoids. DIALOGUES IN CLINICAL NEUROSCIENCE 2019. [PMID: 31636494 PMCID: PMC6787544 DOI: 10.31887/dcns.2019.21.2/jladewig] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Psychiatric disorders are a heterogeneous group of mental illnesses associated with a high social and economic burden on patients and society. The complex symptomatology of these disorders, coupled with our limited understanding of the structural and functional abnormalities affecting the brains of neuropsychiatric patients, has made it difficult to develop effective medical treatment strategies. With the advent of reprogramming technologies and recent developments in induced pluripotent stem (iPS) cell-based protocols for differentiation into defined neuronal cultures and 3-dimensional cerebral organoids, a new era of preclinical disease modeling has begun which could revolutionize drug discovery in psychiatry. This review provides an overview of iPS cell-based disease models in psychiatry and how these models contribute to our understanding of pharmacological drug action. We also propose a refined iPSC-based drug discovery pipeline, ranging from cell-based stratification of patients through improved screening and validation steps to more precise psychopharmacology.
Collapse
Affiliation(s)
- Andrea Carlo Rossetti
- Author affiliations: Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany. Address for correspondence: Philipp Koch: ; Julia Ladewig: . All authors contributed equally to the work
| | - Philipp Koch
- Author affiliations: Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany. Address for correspondence: Philipp Koch: ; Julia Ladewig: . All authors contributed equally to the work
| | - Julia Ladewig
- Author affiliations: Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany. Address for correspondence: Philipp Koch: ; Julia Ladewig: . All authors contributed equally to the work
| |
Collapse
|
459
|
Insights into GBA Parkinson's disease pathology and therapy with induced pluripotent stem cell model systems. Neurobiol Dis 2019; 127:1-12. [DOI: 10.1016/j.nbd.2019.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 01/29/2023] Open
|
460
|
Friese A, Ursu A, Hochheimer A, Schöler HR, Waldmann H, Bruder JM. The Convergence of Stem Cell Technologies and Phenotypic Drug Discovery. Cell Chem Biol 2019; 26:1050-1066. [PMID: 31231030 DOI: 10.1016/j.chembiol.2019.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 04/04/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
Abstract
Recent advances in induced pluripotent stem cell technologies and phenotypic screening shape the future of bioactive small-molecule discovery. In this review we analyze the impact of small-molecule phenotypic screens on drug discovery as well as on the investigation of human development and disease biology. We further examine the role of 3D spheroid/organoid structures, microfluidic systems, and miniaturized on-a-chip systems for future discovery strategies. In highlighting representative examples, we analyze how recent achievements can translate into future therapies. Finally, we discuss remaining challenges that need to be overcome for the adaptation of the next generation of screening approaches.
Collapse
Affiliation(s)
- Alexandra Friese
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Andrei Ursu
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany; Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Andreas Hochheimer
- ISAR Bioscience GmbH, Institute for Stem Cell & Applied Regenerative Medicine Research, 82152 Planegg, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; Medical Faculty, University of Münster, Domagkstrasse 3, 48149 Münster, Germany.
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany.
| | - Jan M Bruder
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany.
| |
Collapse
|
461
|
Piontkivska H, Plonski NM, Miyamoto MM, Wayne ML. Explaining Pathogenicity of Congenital Zika and Guillain-Barré Syndromes: Does Dysregulation of RNA Editing Play a Role? Bioessays 2019; 41:e1800239. [PMID: 31106880 PMCID: PMC6699488 DOI: 10.1002/bies.201800239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/28/2019] [Indexed: 12/11/2022]
Abstract
Previous studies of Zika virus (ZIKV) pathogenesis have focused primarily on virus-driven pathology and neurotoxicity, as well as host-related changes in cell proliferation, autophagy, immunity, and uterine function. It is now hypothesized that ZIKV pathogenesis arises instead as an (unintended) consequence of host innate immunity, specifically, as the side effect of an otherwise well-functioning machine. The hypothesis presented here suggests a new way of thinking about the role of host immune mechanisms in disease pathogenesis, focusing on dysregulation of post-transcriptional RNA editing as a candidate driver of a broad range of observed neurodevelopmental defects and neurodegenerative clinical symptoms in both infants and adults linked with ZIKV infections. The authors collect and synthesize existing evidence of ZIKV-mediated changes in the expression of adenosine deaminases acting on RNA (ADARs), known links between abnormal RNA editing and pathogenesis, as well as ideas for future research directions, including potential treatment strategies.
Collapse
Affiliation(s)
- Helen Piontkivska
- Department of Biological Sciences and University, Kent, OH
44242, USA
- School of Biomedical Sciences, Kent State University, Kent,
OH 44242, USA
| | - Noel-Marie Plonski
- School of Biomedical Sciences, Kent State University, Kent,
OH 44242, USA
| | | | - Marta L. Wayne
- Department of Biology, University of Florida, Gainesville,
FL 32611, USA
- Emerging Pathogens Institute, University of Florida,
Gainesville, FL 32611, USA
| |
Collapse
|
462
|
Modeling neuropsychiatric disorders using human induced pluripotent stem cells. Protein Cell 2019; 11:45-59. [PMID: 31134525 PMCID: PMC6949328 DOI: 10.1007/s13238-019-0638-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/03/2019] [Indexed: 01/20/2023] Open
Abstract
Neuropsychiatric disorders are complex disorders characterized by heterogeneous genetic variations, variable symptoms, and widespread changes in anatomical pathology. In the context of neuropsychiatric disorders, limited access to relevant tissue types presents challenges for understanding disease etiology and developing effective treatments. Induced pluripotent stem cells (iPSCs) reprogrammed from patient somatic cells offer an opportunity to recapitulate disease development in relevant cell types, and they provide novel approaches for understanding disease mechanisms and for development of effective treatments. Here we review recent progress and challenges in differentiation paradigms for generating disease-relevant cells and recent studies of neuropsychiatric disorders using human pluripotent stem cell (hPSC) models where cellular phenotypes linked to disease have been reported. The use of iPSC-based disease models holds great promise for understanding disease mechanisms and supporting discovery of effective treatments.
Collapse
|
463
|
Arlotta P. Organoids required! A new path to understanding human brain development and disease. Nat Methods 2019; 15:27-29. [PMID: 29298289 DOI: 10.1038/nmeth.4557] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Our ability to study the developing human brain has recently been dramatically advanced by the development of human 'brain organoids', three-dimensional culture systems that recapitulate selected aspects of human brain development in reductionist, yet complex, tissues in vitro. Here I discuss the promises and challenges this new model system presents.
Collapse
Affiliation(s)
- Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University
| |
Collapse
|
464
|
Kyrousi C, Cappello S. Using brain organoids to study human neurodevelopment, evolution and disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e347. [PMID: 31071759 DOI: 10.1002/wdev.347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/18/2019] [Accepted: 04/07/2019] [Indexed: 01/12/2023]
Abstract
The brain is one of the most complex organs, responsible for the advanced intellectual and cognitive ability of humans. Although primates are to some extent capable of performing cognitive tasks, their abilities are less evolved. One of the reasons for this is the vast differences in the brain of humans compared to other mammals, in terms of shape, size and complexity. Such differences make the study of human brain development fascinating. Interestingly, the cerebral cortex is by far the most complex brain region resulting from its selective evolution within mammals over millions of years. Unraveling the molecular and cellular mechanisms regulating brain development, as well as the evolutionary differences seen across species and the need to understand human brain disorders, are some of the reasons why scientists are interested in improving their current knowledge on human corticogenesis. Toward this end, several animal models including primates have been used, however, these models are limited in their extent to recapitulate human-specific features. Recent technological achievements in the field of stem cell research, which have enabled the generation of human models of corticogenesis, called brain or cerebral organoids, are of great importance. This review focuses on the main cellular and molecular features of human corticogenesis and the use of brain organoids to study it. We will discuss the key differences between cortical development in human and nonhuman mammals, the technological applications of brain organoids and the different aspects of cortical development in normal and pathological conditions, which can be modeled using brain organoids. This article is categorized under: Comparative Development and Evolution > Regulation of Organ Diversity Nervous System Development > Vertebrates: General Principles.
Collapse
Affiliation(s)
- Christina Kyrousi
- Department of Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Silvia Cappello
- Department of Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
465
|
Cell diversity in the human cerebral cortex: from the embryo to brain organoids. Curr Opin Neurobiol 2019; 56:194-198. [PMID: 31051421 DOI: 10.1016/j.conb.2019.03.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/01/2019] [Indexed: 12/21/2022]
Abstract
The development and wiring of the central nervous system is a remarkable biological process that starts with the generation of and interaction between a large diversity of cell types. Our understanding of the developmental logic that drives cellular diversification in the mammalian brain comes, to a large extent, from studies in rodents. However, identifying the unique cellular processes underlying primate corticogenesis has been slow, due to the challenges associated with directly observing and manipulating brain tissue from these species. Recent technological advances in two areas hold promise to accelerate discovery of the mechanisms that govern human brain development, evolution, and pathophysiology of disease. Molecular profiling of large numbers of single cells can now capture cell identity and cell states within a complex tissue. Furthermore, modeling aspects of human organogenesis in vitro, even for tissues as complex as the brain, has been advanced by the use of three-dimensional organoid systems. Here, we describe how these approaches have been applied to date and how they promise to uncover the principles of cell diversification in the developing human brain.
Collapse
|
466
|
Abstract
The ability to generate region-specific three-dimensional (3D) models to study human brain development offers great promise for understanding the nervous system in both healthy individuals and patients. In this protocol, we describe how to generate and assemble subdomain-specific forebrain spheroids, also known as brain region-specific organoids, from human pluripotent stem cells (hPSCs). We describe how to pattern the neural spheroids toward either a dorsal forebrain or a ventral forebrain fate, establishing human cortical spheroids (hCSs) and human subpallial spheroids (hSSs), respectively. We also describe how to combine the neural spheroids in vitro to assemble forebrain assembloids that recapitulate the interactions of glutamatergic and GABAergic neurons seen in vivo. Astrocytes are also present in the human forebrain-specific spheroids, and these undergo maturation when the forebrain spheroids are cultured long term. The initial generation of neural spheroids from hPSCs occurs in <1 week, with regional patterning occurring over the subsequent 5 weeks. After the maturation stage, brain region-specific spheroids are amenable to a variety of assays, including live-cell imaging, calcium dynamics, electrophysiology, cell purification, single-cell transcriptomics, and immunohistochemistry studies. Once generated, forebrain spheroids can also be matured for >24 months in culture.
Collapse
|
467
|
Song L, Yuan X, Jones Z, Griffin K, Zhou Y, Ma T, Li Y. Assembly of Human Stem Cell-Derived Cortical Spheroids and Vascular Spheroids to Model 3-D Brain-like Tissues. Sci Rep 2019; 9:5977. [PMID: 30979929 PMCID: PMC6461701 DOI: 10.1038/s41598-019-42439-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/01/2019] [Indexed: 02/07/2023] Open
Abstract
Human cerebral organoids derived from induced pluripotent stem cells (iPSCs) provide novel tools for recapitulating the cytoarchitecture of human brain and for studying biological mechanisms of neurological disorders. However, the heterotypic interactions of neurovascular units, composed of neurons, pericytes, astrocytes, and brain microvascular endothelial cells, in brain-like tissues are less investigated. The objective of this study is to investigate the impacts of neural spheroids and vascular spheroids interactions on the regional brain-like tissue patterning in cortical spheroids derived from human iPSCs. Hybrid neurovascular spheroids were constructed by fusion of human iPSC-derived cortical neural progenitor cell (iNPC) spheroids, endothelial cell (iEC) spheroids, and the supporting human mesenchymal stem cells (MSCs). Single hybrid spheroids were constructed at different iNPC: iEC: MSC ratios of 4:2:0, 3:2:1 2:2:2, and 1:2:3 in low-attachment 96-well plates. The incorporation of MSCs upregulated the secretion levels of cytokines VEGF-A, PGE2, and TGF-β1 in hybrid spheroid system. In addition, tri-cultured spheroids had high levels of TBR1 (deep cortical layer VI) and Nkx2.1 (ventral cells), and matrix remodeling genes, MMP2 and MMP3, as well as Notch-1, indicating the crucial role of matrix remodeling and cell-cell communications on cortical spheroid and organoid patterning. Moreover, tri-culture system elevated blood-brain barrier gene expression (e.g., GLUT-1), CD31, and tight junction protein ZO1 expression. Treatment with AMD3100, a CXCR4 antagonist, showed the immobilization of MSCs during spheroid fusion, indicating a CXCR4-dependent manner of hMSC migration and homing. This forebrain-like model has potential applications in understanding heterotypic cell-cell interactions and novel drug screening in diseased human brain.
Collapse
Affiliation(s)
- Liqing Song
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Zachary Jones
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Kyle Griffin
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Yi Zhou
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA.
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
468
|
Minocycline mitigates the effect of neonatal hypoxic insult on human brain organoids. Cell Death Dis 2019; 10:325. [PMID: 30975982 PMCID: PMC6459920 DOI: 10.1038/s41419-019-1553-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 11/23/2022]
Abstract
Neonatal hypoxic injury (NHI) is a devastating cause of disease that affects >60% of babies born with a very low birth weight, resulting in significant morbidity and mortality, including life-long neurological consequences such as seizures, cerebral palsy, and intellectual disability. Hypoxic injury results in increased neuronal death, which disrupts normal brain development. Although animal model systems have been useful to study the effects of NHI, they do not fully represent the uniqueness and complexities of the human brain. To better understand the effects of hypoxia on human brain development, we have generated a brain organoid protocol and evaluated these cells over the course of 6 months. As anticipated, the expression of a forebrain marker, FOXG1, increased and then remained expressed over time, while there was a transition in the expression of the deep-layer (TBR1) and upper-layer (SATB2) cortical markers. In addition, ventral genes (Eng1 and Nkx2.1) as well as markers of specialized nonneuronal cells (Olig2 and GFAP) also increased at later time points. We next tested the development of our in vitro cerebral organoid model at different oxygen concentrations and found that hypoxia repressed gene markers for forebrain, oligodendrocytes, glial cells, and cortical layers, as well as genes important for the migration of cortical neurons. In contrast, ventral markers were either unaffected or even increased in expression with hypoxic insult. Interestingly, the negative effect of hypoxia on the dorsal brain genes as well as oligodendrocytes, and neuronal progenitors could be mitigated by the use of minocycline, an FDA-approved small molecule. Taken together, we have generated a unique and relevant in vitro human brain model system to study diseases such as NHI as well as their potential treatments. Using this system, we have shown the efficacy of minocycline for human NHI.
Collapse
|
469
|
Pacitti D, Privolizzi R, Bax BE. Organs to Cells and Cells to Organoids: The Evolution of in vitro Central Nervous System Modelling. Front Cell Neurosci 2019; 13:129. [PMID: 31024259 PMCID: PMC6465581 DOI: 10.3389/fncel.2019.00129] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/14/2019] [Indexed: 02/05/2023] Open
Abstract
With 100 billion neurons and 100 trillion synapses, the human brain is not just the most complex organ in the human body, but has also been described as "the most complex thing in the universe." The limited availability of human living brain tissue for the study of neurogenesis, neural processes and neurological disorders has resulted in more than a century-long strive from researchers worldwide to model the central nervous system (CNS) and dissect both its striking physiology and enigmatic pathophysiology. The invaluable knowledge gained with the use of animal models and post mortem human tissue remains limited to cross-species similarities and structural features, respectively. The advent of human induced pluripotent stem cell (hiPSC) and 3-D organoid technologies has revolutionised the approach to the study of human brain and CNS in vitro, presenting great potential for disease modelling and translational adoption in drug screening and regenerative medicine, also contributing beneficially to clinical research. We have surveyed more than 100 years of research in CNS modelling and provide in this review an historical excursus of its evolution, from early neural tissue explants and organotypic cultures, to 2-D patient-derived cell monolayers, to the latest development of 3-D cerebral organoids. We have generated a comprehensive summary of CNS modelling techniques and approaches, protocol refinements throughout the course of decades and developments in the study of specific neuropathologies. Current limitations and caveats such as clonal variation, developmental stage, validation of pluripotency and chromosomal stability, functional assessment, reproducibility, accuracy and scalability of these models are also discussed.
Collapse
Affiliation(s)
- Dario Pacitti
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London, United Kingdom
- College of Medicine and Health, St Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Riccardo Privolizzi
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, London, United Kingdom
| | - Bridget E. Bax
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London, United Kingdom
| |
Collapse
|
470
|
Modeling Parkinson's disease in midbrain-like organoids. NPJ PARKINSONS DISEASE 2019; 5:5. [PMID: 30963107 PMCID: PMC6450999 DOI: 10.1038/s41531-019-0078-4] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022]
Abstract
Modeling Parkinson's disease (PD) using advanced experimental in vitro models is a powerful tool to study disease mechanisms and to elucidate unexplored aspects of this neurodegenerative disorder. Here, we demonstrate that three-dimensional (3D) differentiation of expandable midbrain floor plate neural progenitor cells (mfNPCs) leads to organoids that resemble key features of the human midbrain. These organoids are composed of midbrain dopaminergic neurons (mDANs), which produce and secrete dopamine. Midbrain-specific organoids derived from PD patients carrying the LRRK2-G2019S mutation recapitulate disease-relevant phenotypes. Automated high-content image analysis shows a decrease in the number and complexity of mDANs in LRRK2-G2019S compared to control organoids. The floor plate marker FOXA2, required for mDAN generation, increases in PD patient-derived midbrain organoids, suggesting a neurodevelopmental defect in mDANs expressing LRRK2-G2019S. Thus, we provide a robust method to reproducibly generate 3D human midbrain organoids containing mDANs to investigate PD-relevant patho-mechanisms.
Collapse
|
471
|
Gerakis Y, Hetz C. Brain organoids: a next step for humanized Alzheimer's disease models? Mol Psychiatry 2019; 24:474-478. [PMID: 30617271 DOI: 10.1038/s41380-018-0343-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/20/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Yannis Gerakis
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.,Cellular and Molecular Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. .,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile. .,Cellular and Molecular Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile. .,Buck Institute for Research on Aging, Novato, CA, 94945, USA. .,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA.
| |
Collapse
|
472
|
Studying Heterotypic Cell⁻Cell Interactions in the Human Brain Using Pluripotent Stem Cell Models for Neurodegeneration. Cells 2019; 8:cells8040299. [PMID: 30939814 PMCID: PMC6523455 DOI: 10.3390/cells8040299] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 02/08/2023] Open
Abstract
Human cerebral organoids derived from induced pluripotent stem cells (iPSCs) provide novel tools for recapitulating the cytoarchitecture of the human brain and for studying biological mechanisms of neurological disorders. However, the heterotypic interactions of neurovascular units, composed of neurons, pericytes (i.e., the tissue resident mesenchymal stromal cells), astrocytes, and brain microvascular endothelial cells, in brain-like tissues are less investigated. In addition, most cortical organoids lack a microglia component, the resident immune cells in the brain. Impairment of the blood-brain barrier caused by improper crosstalk between neural cells and vascular cells is associated with many neurodegenerative disorders. Mesenchymal stem cells (MSCs), with a phenotype overlapping with pericytes, have promotion effects on neurogenesis and angiogenesis, which are mainly attributed to secreted growth factors and extracellular matrices. As the innate macrophages of the central nervous system, microglia regulate neuronal activities and promote neuronal differentiation by secreting neurotrophic factors and pro-/anti-inflammatory molecules. Neuronal-microglia interactions mediated by chemokines signaling can be modulated in vitro for recapitulating microglial activities during neurodegenerative disease progression. In this review, we discussed the cellular interactions and the physiological roles of neural cells with other cell types including endothelial cells and microglia based on iPSC models. The therapeutic roles of MSCs in treating neural degeneration and pathological roles of microglia in neurodegenerative disease progression were also discussed.
Collapse
|
473
|
Taoufik E, Kouroupi G, Zygogianni O, Matsas R. Synaptic dysfunction in neurodegenerative and neurodevelopmental diseases: an overview of induced pluripotent stem-cell-based disease models. Open Biol 2019; 8:rsob.180138. [PMID: 30185603 PMCID: PMC6170506 DOI: 10.1098/rsob.180138] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
Synaptic dysfunction in CNS disorders is the outcome of perturbations in physiological synapse structure and function, and can be either the cause or the consequence in specific pathologies. Accumulating data in the field of neuropsychiatric disorders, including autism spectrum disorders, schizophrenia and bipolar disorder, point to a neurodevelopmental origin of these pathologies. Due to a relatively early onset of behavioural and cognitive symptoms, it is generally acknowledged that mental illness initiates at the synapse level. On the other hand, synaptic dysfunction has been considered as an endpoint incident in neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's, mainly due to the considerably later onset of clinical symptoms and progressive appearance of cognitive deficits. This dichotomy has recently been challenged, particularly since the discovery of cell reprogramming technologies and the generation of induced pluripotent stem cells from patient somatic cells. The creation of 'disease-in-a-dish' models for multiple CNS pathologies has revealed unexpected commonalities in the molecular and cellular mechanisms operating in both developmental and degenerative conditions, most of which meet at the synapse level. In this review we discuss synaptic dysfunction in prototype neurodevelopmental and neurodegenerative diseases, emphasizing overlapping features of synaptopathy that have been suggested by studies using induced pluripotent stem-cell-based systems. These valuable disease models have highlighted a potential neurodevelopmental component in classical neurodegenerative diseases that is worth pursuing and investigating further. Moving from demonstration of correlation to understanding mechanistic causality forms the basis for developing novel therapeutics.
Collapse
Affiliation(s)
- Era Taoufik
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| | - Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| | - Ourania Zygogianni
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| |
Collapse
|
474
|
Poli D, Magliaro C, Ahluwalia A. Experimental and Computational Methods for the Study of Cerebral Organoids: A Review. Front Neurosci 2019; 13:162. [PMID: 30890910 PMCID: PMC6411764 DOI: 10.3389/fnins.2019.00162] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/12/2019] [Indexed: 01/04/2023] Open
Abstract
Cerebral (or brain) organoids derived from human cells have enormous potential as physiologically relevant downscaled in vitro models of the human brain. In fact, these stem cell-derived neural aggregates resemble the three-dimensional (3D) cytoarchitectural arrangement of the brain overcoming not only the unrealistic somatic flatness but also the planar neuritic outgrowth of the two-dimensional (2D) in vitro cultures. Despite the growing use of cerebral organoids in scientific research, a more critical evaluation of their reliability and reproducibility in terms of cellular diversity, mature traits, and neuronal dynamics is still required. Specifically, a quantitative framework for generating and investigating these in vitro models of the human brain is lacking. To this end, the aim of this review is to inspire new computational and technology driven ideas for methodological improvements and novel applications of brain organoids. After an overview of the organoid generation protocols described in the literature, we review the computational models employed to assess their formation, organization and resource uptake. The experimental approaches currently provided to structurally and functionally characterize brain organoid networks for studying single neuron morphology and their connections at cellular and sub-cellular resolution are also discussed. Well-established techniques based on current/voltage clamp, optogenetics, calcium imaging, and Micro-Electrode Arrays (MEAs) are proposed for monitoring intra- and extra-cellular responses underlying neuronal dynamics and functional connections. Finally, we consider critical aspects of the established procedures and the physiological limitations of these models, suggesting how a complement of engineering tools could improve the current approaches and their applications.
Collapse
Affiliation(s)
- Daniele Poli
- Research Center E. Piaggio, University of Pisa, Pisa, Italy
| | | | - Arti Ahluwalia
- Research Center E. Piaggio, University of Pisa, Pisa, Italy
- Department of Information Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
475
|
Hartlaub AM, McElroy CA, Maitre NL, Hester ME. Modeling Human Brain Circuitry Using Pluripotent Stem Cell Platforms. Front Pediatr 2019; 7:57. [PMID: 30891437 PMCID: PMC6411708 DOI: 10.3389/fped.2019.00057] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/13/2019] [Indexed: 01/23/2023] Open
Abstract
Neural circuits are the underlying functional units of the human brain that govern complex behavior and higher-order cognitive processes. Disruptions in neural circuit development have been implicated in the pathogenesis of multiple neurodevelopmental disorders such as autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and schizophrenia. Until recently, major efforts utilizing neurological disease modeling platforms based on human induced pluripotent stem cells (hiPSCs), investigated disease phenotypes primarily at the single cell level. However, recent advances in brain organoid systems, microfluidic devices, and advanced optical and electrical interfaces, now allow more complex hiPSC-based systems to model neuronal connectivity and investigate the specific brain circuitry implicated in neurodevelopmental disorders. Here we review emerging research advances in studying brain circuitry using in vitro and in vivo disease modeling platforms including microfluidic devices, enhanced functional recording interfaces, and brain organoid systems. Research efforts in these areas have already yielded critical insights into pathophysiological mechanisms and will continue to stimulate innovation in this promising area of translational research.
Collapse
Affiliation(s)
- Annalisa M. Hartlaub
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Craig A. McElroy
- College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Nathalie L. Maitre
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Mark E. Hester
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
476
|
Dubey SK, Ram MS, Krishna KV, Saha RN, Singhvi G, Agrawal M, Ajazuddin, Saraf S, Saraf S, Alexander A. Recent Expansions on Cellular Models to Uncover the Scientific Barriers Towards Drug Development for Alzheimer's Disease. Cell Mol Neurobiol 2019; 39:181-209. [PMID: 30671696 PMCID: PMC11469828 DOI: 10.1007/s10571-019-00653-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/12/2019] [Indexed: 12/17/2022]
Abstract
Globally, the central nervous system (CNS) disorders appear as the most critical pathological threat with no proper cure. Alzheimer's disease (AD) is one such condition frequently observed with the aged population and sometimes in youth too. Most of the research utilizes different animal models for in vivo study of AD pathophysiology and to investigate the potency of the newly developed therapy. These in vivo models undoubtably provide a powerful investigation tool to study human brain. Although, it sometime fails to mimic the exact environment and responses as the human brain owing to the distinctive genetic and anatomical features of human and rodent brain. In such condition, the in vitro cell model derived from patient specific cell or human cell lines can recapitulate the human brain environment. In addition, the frequent use of animals in research increases the cost of study and creates various ethical issues. Instead, the use of in vitro cellular models along with animal models can enhance the translational values of in vivo models and represent a better and effective mean to investigate the potency of therapeutics. This strategy also limits the excessive use of laboratory animal during the drug development process. Generally, the in vitro cell lines are cultured from AD rat brain endothelial cells, the rodent models, human astrocytes, human brain capillary endothelial cells, patient derived iPSCs (induced pluripotent stem cells) and also from the non-neuronal cells. During the literature review process, we observed that there are very few reviews available which describe the significance and characteristics of in vitro cell lines, for AD investigation. Thus, in the present review article, we have compiled the various in vitro cell lines used in AD investigation including HBMEC, BCECs, SHSY-5Y, hCMEC/D3, PC-2 cell line, bEND3 cells, HEK293, hNPCs, RBE4 cells, SK-N-MC, BMVECs, CALU-3, 7W CHO, iPSCs and cerebral organoids cell lines and different types of culture media such as SCM, EMEM, DMEM/F12, RPMI, EBM and 3D-cell culture.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India.
| | - Munnangi Siva Ram
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Ranendra Narayan Saha
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Dubai Campus, Dubai, United Arab Emirates
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Mukta Agrawal
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010, Chhattisgarh, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010, Chhattisgarh, India
- Hemchand Yadav University, Durg, Chhattisgarh, 491 001, India
| | - Amit Alexander
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India.
| |
Collapse
|
477
|
Schwerdtfeger LA, Tobet SA. From organotypic culture to body-on-a-chip: A neuroendocrine perspective. J Neuroendocrinol 2019; 31:e12650. [PMID: 30307079 DOI: 10.1111/jne.12650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 12/22/2022]
Abstract
The methods used to study neuroendocrinology have been as diverse as the discoveries to come out of the field. Maintaining live neurones outside of a body in vitro was important from the beginning, building on methods that dated back to at least the first decade of the 20th Century. Neurosecretion defines an essential foundation of neuroendocrinology based on work that began in the 1920s and 1930s. Throughout the first half of the 20th Century, many paradigms arose for studying everything from single neurones to whole organs in vitro. Two of these survived as preeminent systems for use throughout the second half of the century: cell cultures and explant systems. Slice cultures and explants that emerged as organotypic technologies included such neuroendocrine organs such as the brain, pituitary, adrenals and intestine. The vast majority of these studies were carried out in static cultures for which media were changed over a time scale of days. Tissues were used for experimental techniques such as electrical recording of neuronal physiology in single cells and observation by live microscopy. When maintained in vitro, many of these systems only partially capture the in vivo physiology of the organ system of interest, often because of a lack of cellular diversity (eg, neuronal cultures lacking glia). Modern microfluidic methodologies show promise for organ systems, ranging from the reproductive to the gastrointestinal to the brain. Moving forward and striving to understand the mechanisms that drive neuroendocrine signalling centrally and peripherally, there will always be a need to consider the heterogeneous cellular compositions of organs in vivo.
Collapse
Affiliation(s)
- Luke A Schwerdtfeger
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Stuart A Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
478
|
Lei W, Li W, Ge L, Chen G. Non-engineered and Engineered Adult Neurogenesis in Mammalian Brains. Front Neurosci 2019; 13:131. [PMID: 30872991 PMCID: PMC6401632 DOI: 10.3389/fnins.2019.00131] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/05/2019] [Indexed: 12/31/2022] Open
Abstract
Adult neurogenesis has been extensively studied in rodent animals, with distinct niches found in the hippocampus and subventricular zone (SVZ). In non-human primates and human postmortem samples, there has been heated debate regarding adult neurogenesis, but it is largely agreed that the rate of adult neurogenesis is much reduced comparing to rodents. The limited adult neurogenesis may partly explain why human brains do not have self-repair capability after injury or disease. A new technology called “in vivo cell conversion” has been invented to convert brain internal glial cells in the injury areas directly into functional new neurons to replenish the lost neurons. Because glial cells are abundant throughout the brain and spinal cord, such engineered glia-to-neuron conversion technology can be applied throughout the central nervous system (CNS) to regenerate new neurons. Thus, compared to cell transplantation or the non-engineered adult neurogenesis, in vivo engineered neuroregeneration technology can provide a large number of functional new neurons in situ to repair damaged brain and spinal cord.
Collapse
Affiliation(s)
- Wenliang Lei
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Wen Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Longjiao Ge
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Gong Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.,Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
479
|
Mazzini L, Ferrari D, Andjus PR, Buzanska L, Cantello R, De Marchi F, Gelati M, Giniatullin R, Glover JC, Grilli M, Kozlova EN, Maioli M, Mitrečić D, Pivoriunas A, Sanchez-Pernaute R, Sarnowska A, Vescovi AL. Advances in stem cell therapy for amyotrophic lateral sclerosis. Expert Opin Biol Ther 2019; 18:865-881. [PMID: 30025485 DOI: 10.1080/14712598.2018.1503248] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis (ALS) is a progressive, incurable neurodegenerative disease that targets motoneurons. Cell-based therapies have generated widespread interest as a potential therapeutic approach but no conclusive results have yet been reported either from pre-clinical or clinical studies. AREAS COVERED This is an integrated review of pre-clinical and clinical studies focused on the development of cell-based therapies for ALS. We analyze the biology of stem cell treatments and results obtained from pre-clinical models of ALS and examine the methods and the results obtained to date from clinical trials. We discuss scientific, clinical, and ethical issues and propose some directions for future studies. EXPERT OPINION While data from individual studies are encouraging, stem-cell-based therapies do not yet represent a satisfactory, reliable clinical option. The field will critically benefit from the introduction of well-designed, randomized and reproducible, powered clinical trials. Comparative studies addressing key issues such as the nature, properties, and number of donor cells, the delivery mode and the selection of proper patient populations that may benefit the most from cell-based therapies are now of the essence. Multidisciplinary networks of experts should be established to empower effective translation of research into the clinic.
Collapse
Affiliation(s)
- Letizia Mazzini
- a ALS Centre Department of Neurology , "Maggiore della Carità" University Hospital Novara , Novara , Italy
| | - Daniela Ferrari
- b Department of Biotechnology and Biosciences , University Milano Bicocca , Milano , Italy
| | - Pavle R Andjus
- c Center for laser microscopy, Faculty of Biology , University of Belgrade , Belgrade , Serbia
| | - Leonora Buzanska
- d Stem Cell Bioengineering Unit , Mossakowski Medical Research Center, Polish Academy of Sciences , Warsaw , Poland
| | - Roberto Cantello
- a ALS Centre Department of Neurology , "Maggiore della Carità" University Hospital Novara , Novara , Italy
| | - Fabiola De Marchi
- a ALS Centre Department of Neurology , "Maggiore della Carità" University Hospital Novara , Novara , Italy
| | - Maurizio Gelati
- e Scientific Direction , IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo , Foggia , Italy.,f Cell Factory e biobanca, Fondazione Cellule Staminali , Terni , Italy
| | - Rashid Giniatullin
- g A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland , Neulaniementie 2, Kuopio , FINLAND
| | - Joel C Glover
- h Department of Molecular Medicine , Institute of Basic Medical Sciences, University of Oslo and Norwegian Center for Stem Cell Research, Oslo University Hospital , Oslo , Norway
| | - Mariagrazia Grilli
- i Department Pharmaceutical Sciences , Laboratory of Neuroplasticity, University of Piemonte Orientale , Novara , Italy
| | - Elena N Kozlova
- j Department of Neuroscience , Uppsala University Biomedical Centre , Uppsala , Sweden
| | - Margherita Maioli
- k Department of Biomedical Sciences and Center for Developmental Biology and Reprogramming (CEDEBIOR) , University of Sassari, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR) , Sassari , Italy
| | - Dinko Mitrečić
- l Laboratory for Stem Cells, Croatian Institute for Brain Research , University of Zagreb School of Medicine , Zagreb , Croatia
| | - Augustas Pivoriunas
- m Department of Stem Cell Biology , State Research Institute Centre for Innovative Medicine , Vilnius , Lithuania
| | - Rosario Sanchez-Pernaute
- n Preclinical Research , Andalusian Initiative for Advanced Therapies, Andalusian Health Ministry , Sevilla , Spain
| | - Anna Sarnowska
- d Stem Cell Bioengineering Unit , Mossakowski Medical Research Center, Polish Academy of Sciences , Warsaw , Poland
| | - Angelo L Vescovi
- b Department of Biotechnology and Biosciences , University Milano Bicocca , Milano , Italy.,f Cell Factory e biobanca, Fondazione Cellule Staminali , Terni , Italy
| | | |
Collapse
|
480
|
Multimodal Single-Cell Analysis Reveals Physiological Maturation in the Developing Human Neocortex. Neuron 2019; 102:143-158.e7. [PMID: 30770253 DOI: 10.1016/j.neuron.2019.01.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/20/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
In the developing human neocortex, progenitor cells generate diverse cell types prenatally. Progenitor cells and newborn neurons respond to signaling cues, including neurotransmitters. While single-cell RNA sequencing has revealed cellular diversity, physiological heterogeneity has yet to be mapped onto these developing and diverse cell types. By combining measurements of intracellular Ca2+ elevations in response to neurotransmitter receptor agonists and RNA sequencing of the same single cells, we show that Ca2+ responses are cell-type-specific and change dynamically with lineage progression. Physiological response properties predict molecular cell identity and additionally reveal diversity not captured by single-cell transcriptomics. We find that the serotonin receptor HTR2A selectively activates radial glia cells in the developing human, but not mouse, neocortex, and inhibiting HTR2A receptors in human radial glia disrupts the radial glial scaffold. We show highly specific neurotransmitter signaling during neurogenesis in the developing human neocortex and highlight evolutionarily divergent mechanisms of physiological signaling.
Collapse
|
481
|
Stem cell-based retina models. Adv Drug Deliv Rev 2019; 140:33-50. [PMID: 29777757 DOI: 10.1016/j.addr.2018.05.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/16/2018] [Accepted: 05/12/2018] [Indexed: 12/23/2022]
Abstract
From the early days of cell biological research, the eye-especially the retina-has evoked broad interest among scientists. The retina has since been thoroughly investigated and numerous models have been exploited to shed light on its development, morphology, and function. Apart from various animal models and human clinical and anatomical research, stem cell-based models of animal and human cells of origin have entered the field, especially during the last decade. Despite the observation that the retina of different species comprises endogenous stem cells, most stem cell-related research in the human retina is now based on pluripotent stem cell models. Herein, systems of two-dimensional (2D) cultures and co-cultures of distinctly differentiated retinal subtypes revealed a variety of cellular aspects but have in many aspects been replaced by three-dimensional (3D) structures-the so-called retinal organoids. These organoids not only contain all major retinal cell subtypes compared to the physiological situation, but also show a distinct layering in close proximity to the in vivo morphology. Nevertheless, all these models have inherent advantages and disadvantages, which are expounded and summarized in this review. Finally, we discuss current application aspects of stem cell-based retina models and the specific promises they hold for the future.
Collapse
|
482
|
Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures. Nat Neurosci 2019; 22:484-491. [PMID: 30692691 PMCID: PMC6788758 DOI: 10.1038/s41593-018-0316-9] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023]
Abstract
Investigating human oligodendrogenesis and the interaction of oligodendrocytes with neurons and astrocytes would accelerate our understanding of the mechanisms underlying white matter disorders. However, this is challenging due to limited accessibility of functional human brain tissue. Here, we developed a novel differentiation method of human induced pluripotent stem cells (hiPS cells) to generate three-dimensional (3D) neural spheroids that contain oligodendrocytes as well as neurons and astrocytes, called human oligodendrocyte spheroids (hOLS). We demonstrate that oligodendrocyte-lineage cells derived in hOLS transition through developmental stages similar to primary human oligodendrocytes and that the migration of oligodendrocyte-lineage cells and their susceptibility to lysolecithin exposure can be captured by live imaging. Moreover, their morphology changes as they mature over time in vitro and start myelinating neurons. We anticipate that this method can be used to study oligodendrocyte development, myelination, and interactions with other major cell types in the central nervous system.
Collapse
|
483
|
Karzbrun E, Reiner O. Brain Organoids-A Bottom-Up Approach for Studying Human Neurodevelopment. Bioengineering (Basel) 2019; 6:E9. [PMID: 30669275 PMCID: PMC6466401 DOI: 10.3390/bioengineering6010009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 12/25/2022] Open
Abstract
Brain organoids have recently emerged as a three-dimensional tissue culture platform to study the principles of neurodevelopment and morphogenesis. Importantly, brain organoids can be derived from human stem cells, and thus offer a model system for early human brain development and human specific disorders. However, there are still major differences between the in vitro systems and in vivo development. This is in part due to the challenge of engineering a suitable culture platform that will support proper development. In this review, we discuss the similarities and differences of human brain organoid systems in comparison to embryonic development. We then describe how organoids are used to model neurodevelopmental diseases. Finally, we describe challenges in organoid systems and how to approach these challenges using complementary bioengineering techniques.
Collapse
Affiliation(s)
- Eyal Karzbrun
- Kavli Institute for Theoretical Physics and Department of Physics, University of California, Santa Barbara, CA 93106, USA.
| | - Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
484
|
Buchsbaum IY, Cappello S. Neuronal migration in the CNS during development and disease: insights from in vivo and in vitro models. Development 2019; 146:146/1/dev163766. [DOI: 10.1242/dev.163766] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
Neuronal migration is a fundamental process that governs embryonic brain development. As such, mutations that affect essential neuronal migration processes lead to severe brain malformations, which can cause complex and heterogeneous developmental and neuronal migration disorders. Our fragmented knowledge about the aetiology of these disorders raises numerous issues. However, many of these can now be addressed through studies of in vivo and in vitro models that attempt to recapitulate human-specific mechanisms of cortical development. In this Review, we discuss the advantages and limitations of these model systems and suggest that a complementary approach, using combinations of in vivo and in vitro models, will broaden our knowledge of the molecular and cellular mechanisms that underlie defective neuronal positioning in the human cerebral cortex.
Collapse
Affiliation(s)
- Isabel Yasmin Buchsbaum
- Developmental Neurobiology, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Silvia Cappello
- Developmental Neurobiology, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
485
|
Glioblastoma's Next Top Model: Novel Culture Systems for Brain Cancer Radiotherapy Research. Cancers (Basel) 2019; 11:cancers11010044. [PMID: 30621226 PMCID: PMC6356812 DOI: 10.3390/cancers11010044] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma (GBM), the most common and aggressive primary brain tumor in adults, remains one of the least treatable cancers. Current standard of care—combining surgical resection, radiation, and alkylating chemotherapy—results in a median survival of only 15 months. Despite decades of investment and research into the development of new therapies, most candidate anti-glioma compounds fail to translate into effective treatments in clinical trials. One key issue underlying this failure of therapies that work in pre-clinical models to generate meaningful improvement in human patients is the profound mismatch between drug discovery systems—cell cultures and mouse models—and the actual tumors they are supposed to imitate. Indeed, current strategies that evaluate the effects of novel treatments on GBM cells in vitro fail to account for a wide range of factors known to influence tumor growth. These include secreted factors, the brain’s unique extracellular matrix, circulatory structures, the presence of non-tumor brain cells, and nutrient sources available for tumor metabolism. While mouse models provide a more realistic testing ground for potential therapies, they still fail to account for the full complexity of tumor-microenvironment interactions, as well as the role of the immune system. Based on the limitations of current models, researchers have begun to develop and implement novel culture systems that better recapitulate the complex reality of brain tumors growing in situ. A rise in the use of patient derived cells, creative combinations of added growth factors and supplements, may provide a more effective proving ground for the development of novel therapies. This review will summarize and analyze these exciting developments in 3D culturing systems. Special attention will be paid to how they enhance the design and identification of compounds that increase the efficacy of radiotherapy, a bedrock of GBM treatment.
Collapse
|
486
|
Abstract
Cell lines and animal models have provided the foundation of cancer research for many years. However, human pluripotent stem cells (hPSCs) and organoids are increasingly enabling insights into tumor development, progression, and treatment. Here, we review recent studies using hPSCs to elucidate the reciprocal roles played by genetic alterations and cell identity in cancer formation. We also review studies using human organoids as models that recapitulate both intra- and inter-tumoral heterogeneity to gain new insights into tumorigenesis and treatment responses. Finally, we highlight potential opportunities for cancer research using hPSC-derived organoids and genome editing in the future.
Collapse
Affiliation(s)
- Ryan C Smith
- Department of Neurosurgery, Brain Tumor Center, and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner, Jr., Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Viviane Tabar
- Department of Neurosurgery, Brain Tumor Center, and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner, Jr., Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
487
|
Chen HI, Song H, Ming GL. Applications of Human Brain Organoids to Clinical Problems. Dev Dyn 2019; 248:53-64. [PMID: 30091290 PMCID: PMC6312736 DOI: 10.1002/dvdy.24662] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Brain organoids are an exciting new technology with the potential to significantly change how diseases of the brain are understood and treated. These three-dimensional neural tissues are derived from the self-organization of pluripotent stem cells, and they recapitulate the developmental process of the human brain, including progenitor zones and rudimentary cortical layers. Brain organoids have been valuable in investigating different aspects of developmental neurobiology and comparative biology. Several characteristics of organoids also make them attractive as models of brain disorders. Data generated from human organoids are more generalizable to patients because of the match in species background. Personalized organoids also can be generated from patient-derived induced pluripotent stem cells. Furthermore, the three-dimensionality of brain organoids supports cellular, mechanical, and topographical cues that are lacking in planar systems. In this review, we discuss the translational potential of brain organoids, using the examples of Zika virus, autism-spectrum disorder, and glioblastoma multiforme to consider how they could contribute to disease modeling, personalized medicine, and testing of therapeutics. We then discuss areas of improvement in organoid technology that will enhance the translational potential of brain organoids, as well as the possibility of their use as substrates for repairing cerebral circuitry after injury. Developmental Dynamics 248:53-64, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- H. Isaac Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hongjun Song
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Guo-li Ming
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
488
|
Fantuzzo JA, Hart RP, Zahn JD, Pang ZP. Compartmentalized Devices as Tools for Investigation of Human Brain Network Dynamics. Dev Dyn 2019; 248:65-77. [PMID: 30117633 PMCID: PMC6312734 DOI: 10.1002/dvdy.24665] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022] Open
Abstract
Neuropsychiatric disorders have traditionally been difficult to study due to the complexity of the human brain and limited availability of human tissue. Induced pluripotent stem (iPS) cells provide a promising avenue to further our understanding of human disease mechanisms, but traditional 2D cell cultures can only provide a limited view of the neural circuits. To better model complex brain neurocircuitry, compartmentalized culturing systems and 3D organoids have been developed. Early compartmentalized devices demonstrated how neuronal cell bodies can be isolated both physically and chemically from neurites. Soft lithographic approaches have advanced this approach and offer the tools to construct novel model platforms, enabling circuit-level studies of disease, which can accelerate mechanistic studies and drug candidate screening. In this review, we describe some of the common technologies used to develop such systems and discuss how these lithographic techniques have been used to advance our understanding of neuropsychiatric disease. Finally, we address other in vitro model platforms such as 3D culture systems and organoids and compare these models with compartmentalized models. We ask important questions regarding how we can further harness iPS cells in these engineered culture systems for the development of improved in vitro models. Developmental Dynamics 248:65-77, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joseph A Fantuzzo
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Department of Neuroscience and Cell Biology, Research Tower, Piscataway, New Jersey
- Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
489
|
Keller JM, Frega M. Past, Present, and Future of Neuronal Models In Vitro. ADVANCES IN NEUROBIOLOGY 2019; 22:3-17. [PMID: 31073930 DOI: 10.1007/978-3-030-11135-9_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over the past century, robust methods were developed that enable the isolation, culture, and dynamic observation of mammalian neuronal networks in vitro. But even if neuronal culture cannot yet fully recapitulate the normal brain, the knowledge that has been acquired from these surrogate in vitro models is invaluable. Indeed, neuronal culture has continued to propel basic neuroscience research, proving that in vitro systems have legitimacy when it comes to studying either the healthy or diseased human brain. Furthermore, scientific advancement typically parallels technical refinements in the field. A pertinent example is that a collective drive in the field of neuroscience to better understand the development, organization, and emergent properties of neuronal networks is being facilitated by progressive advances in micro-electrode array (MEA) technology. In this chapter, we briefly review the emergence of neuronal cell culture as a technique, the current trends in human stem cell-based modeling, and the technologies used to monitor neuronal communication. We conclude by highlighting future prospects that are evolving specifically out of the combination of human neuronal models and MEA technology.
Collapse
Affiliation(s)
- Jason M Keller
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - Monica Frega
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands. .,Department of Clinical Neurophysiology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
490
|
Yoon SJ, Elahi LS, Pașca AM, Marton RM, Gordon A, Revah O, Miura Y, Walczak EM, Holdgate GM, Fan HC, Huguenard JR, Geschwind DH, Pașca SP. Reliability of human cortical organoid generation. Nat Methods 2019; 16:75-78. [PMID: 30573846 PMCID: PMC6677388 DOI: 10.1038/s41592-018-0255-0] [Citation(s) in RCA: 309] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 11/02/2018] [Indexed: 02/06/2023]
Abstract
The differentiation of pluripotent stem cells in three-dimensional cultures can recapitulate key aspects of brain development, but protocols are prone to variable results. Here we differentiated multiple human pluripotent stem cell lines for over 100 d using our previously developed approach to generate brain-region-specific organoids called cortical spheroids and, using several assays, found that spheroid generation was highly reliable and consistent. We anticipate the use of this approach for large-scale differentiation experiments and disease modeling.
Collapse
Affiliation(s)
- Se-Jin Yoon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Lubayna S Elahi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Anca M Pașca
- Department of Pediatrics, Division of Neonatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rebecca M Marton
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron Gordon
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Omer Revah
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuki Miura
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Human Brain Organogenesis Program, Stanford University, Stanford, CA, USA.
| |
Collapse
|
491
|
Thier MC, Hommerding O, Panten J, Pinna R, García-González D, Berger T, Wörsdörfer P, Assenov Y, Scognamiglio R, Przybylla A, Kaschutnig P, Becker L, Milsom MD, Jauch A, Utikal J, Herrmann C, Monyer H, Edenhofer F, Trumpp A. Identification of Embryonic Neural Plate Border Stem Cells and Their Generation by Direct Reprogramming from Adult Human Blood Cells. Cell Stem Cell 2018; 24:166-182.e13. [PMID: 30581079 DOI: 10.1016/j.stem.2018.11.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 05/30/2018] [Accepted: 11/09/2018] [Indexed: 01/06/2023]
Abstract
We report the direct reprogramming of both adult human fibroblasts and blood cells into induced neural plate border stem cells (iNBSCs) by ectopic expression of four neural transcription factors. Self-renewing, clonal iNBSCs can be robustly expanded in defined media while retaining multilineage differentiation potential. They generate functional cell types of neural crest and CNS lineages and could be used to model a human pain syndrome via gene editing of SCN9A in iNBSCs. NBSCs can also be derived from human pluripotent stem cells and share functional and molecular features with NBSCs isolated from embryonic day 8.5 (E8.5) mouse neural folds. Single-cell RNA sequencing identified the anterior hindbrain as the origin of mouse NBSCs, with human iNBSCs sharing a similar regional identity. In summary, we identify embryonic NBSCs and report their generation by direct reprogramming in human, which may facilitate insights into neural development and provide a neural stem cell source for applications in regenerative medicine.
Collapse
Affiliation(s)
- Marc Christian Thier
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Oliver Hommerding
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, Universität Bonn Life and Brain Center and Hertie Foundation, Sigmund-Freud Strasse 25, 53105 Bonn, Germany
| | - Jasper Panten
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Roberta Pinna
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Diego García-González
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas Berger
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Philipp Wörsdörfer
- Stem Cell and Regenerative Medicine Group, Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Koellikerstrasse 6, 97070 Würzburg, Germany
| | - Yassen Assenov
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roberta Scognamiglio
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Adriana Przybylla
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Paul Kaschutnig
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Division of Experimental Hematology, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lisa Becker
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Michael D Milsom
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Division of Experimental Hematology, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, University Hospital of Heidelberg, Heidelberg, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology, and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Carl Herrmann
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Health Data Science Unit and Bioquant Center, Medical Faculty of Heidelberg University, 69120 Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Frank Edenhofer
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, Universität Bonn Life and Brain Center and Hertie Foundation, Sigmund-Freud Strasse 25, 53105 Bonn, Germany; Leopold-Franzens-University Innsbruck, Institute of Molecular Biology & CMBI, Department Genomics, Stem Cell Biology & Regenerative Medicine, 6020 Innsbruck, Austria
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| |
Collapse
|
492
|
Bejoy J, Wang Z, Bijonowski B, Yang M, Ma T, Sang QX, Li Y. Differential Effects of Heparin and Hyaluronic Acid on Neural Patterning of Human Induced Pluripotent Stem Cells. ACS Biomater Sci Eng 2018; 4:4354-4366. [PMID: 31572767 PMCID: PMC6768405 DOI: 10.1021/acsbiomaterials.8b01142] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A lack of well-established animal models that can efficiently represent human brain pathology has led to the development of human induced pluripotent stem cell (hiPSC)-derived brain tissues. Brain organoids have enhanced our ability to understand the developing human brain and brain disorders (e.g., Schizophrenia, microcephaly), but the organoids still do not accurately recapitulate the anatomical organization of the human brain. Therefore, it is important to evaluate and optimize induction and signaling factors in order to engineer the next generation of brain organoids. In this study, the impact of hyaluronic acid (HA), a major brain extracellular matrix (ECM) component that interacts with cells through ligand-binding receptors, on the patterning of brain organoids from hiPSCs was evaluated. To mediate HA- binding capacity of signaling molecules, heparin was added in addition to HA or conjugated to HA to form hydrogels (with two different moduli). The neural cortical spheroids derived from hiPSCs were treated with either HA or heparin plus HA (Hep- HA) and were analyzed for ECM impacts on neural patterning. The results indicate that Hep-HA has a caudalizing effect on hiPSC-derived neural spheroids, in particular for stiff Hep-HA hydrogels. Wnt and Hippo/Yes-associated protein (YAP) signaling was modulated (using Wnt inhibitor IWP4 or actin disruption agent Cytochalasin D respectively) to understand the underlying mechanism. IWP4 and cytochalasin D promote forebrain identity. The results from this study should enhance the understanding of influence of biomimetic ECM factors for brain organoid generation.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Zhe Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States
| | - Brent Bijonowski
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Mo Yang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Qing-Xiang Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
493
|
Zhao X, Bhattacharyya A. Human Models Are Needed for Studying Human Neurodevelopmental Disorders. Am J Hum Genet 2018; 103:829-857. [PMID: 30526865 DOI: 10.1016/j.ajhg.2018.10.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
The analysis of animal models of neurological disease has been instrumental in furthering our understanding of neurodevelopment and brain diseases. However, animal models are limited in revealing some of the most fundamental aspects of development, genetics, pathology, and disease mechanisms that are unique to humans. These shortcomings are exaggerated in disorders that affect the brain, where the most significant differences between humans and animal models exist, and could underscore failures in targeted therapeutic interventions in affected individuals. Human pluripotent stem cells have emerged as a much-needed model system for investigating human-specific biology and disease mechanisms. However, questions remain regarding whether these cell-culture-based models are sufficient or even necessary. In this review, we summarize human-specific features of neurodevelopment and the most common neurodevelopmental disorders, present discrepancies between animal models and human diseases, demonstrate how human stem cell models can provide meaningful information, and discuss the challenges that exist in our pursuit to understand distinctively human aspects of neurodevelopment and brain disease. This information argues for a more thoughtful approach to disease modeling through consideration of the valuable features and limitations of each model system, be they human or animal, to mimic disease characteristics.
Collapse
Affiliation(s)
- Xinyu Zhao
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA.
| | - Anita Bhattacharyya
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA.
| |
Collapse
|
494
|
Willerth SM. Bioprinting neural tissues using stem cells as a tool for screening drug targets for Alzheimer’s disease. ACTA ACUST UNITED AC 2018. [DOI: 10.2217/3dp-2018-0016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Stephanie M Willerth
- Department of Mechanical Engineering & Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
495
|
Oksdath M, Perrin SL, Bardy C, Hilder EF, DeForest CA, Arrua RD, Gomez GA. Review: Synthetic scaffolds to control the biochemical, mechanical, and geometrical environment of stem cell-derived brain organoids. APL Bioeng 2018; 2:041501. [PMID: 31069322 PMCID: PMC6481728 DOI: 10.1063/1.5045124] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/31/2018] [Indexed: 01/16/2023] Open
Abstract
Stem cell-derived brain organoids provide a powerful platform for systematic studies of tissue functional architecture and the development of personalized therapies. Here, we review key advances at the interface of soft matter and stem cell biology on synthetic alternatives to extracellular matrices. We emphasize recent biomaterial-based strategies that have been proven advantageous towards optimizing organoid growth and controlling the geometrical, biomechanical, and biochemical properties of the organoid's three-dimensional environment. We highlight systems that have the potential to increase the translational value of region-specific brain organoid models suitable for different types of manipulations and high-throughput applications.
Collapse
Affiliation(s)
- Mariana Oksdath
- Centre for Cancer Biology, South Australia Pathology and University of South Australia, Adelaide 5001, Australia
| | - Sally L. Perrin
- Centre for Cancer Biology, South Australia Pathology and University of South Australia, Adelaide 5001, Australia
| | | | - Emily F. Hilder
- Future Industries Institute, University of South Australia, Mawson Lakes 5095, Australia
| | - Cole A. DeForest
- Department of Chemical Engineering and Department of Bioengineering, University of Washington, Seattle, Washington 98195-1750, USA
| | - R. Dario Arrua
- Future Industries Institute, University of South Australia, Mawson Lakes 5095, Australia
| | - Guillermo A. Gomez
- Centre for Cancer Biology, South Australia Pathology and University of South Australia, Adelaide 5001, Australia
| |
Collapse
|
496
|
Bruschettini M, Romantsik O, Moreira A, Ley D, Thébaud B. Stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants. Hippokratia 2018. [DOI: 10.1002/14651858.cd013202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Matteo Bruschettini
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
- Skåne University Hospital; Cochrane Sweden; Wigerthuset, Remissgatan 4, first floor room 11-221 Lund Sweden 22185
| | - Olga Romantsik
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| | - Alvaro Moreira
- University of Texas Health Science Center at San Antonio; Pediatrics, Division of Neonatology; San Antonio Texas USA
| | - David Ley
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| | - Bernard Thébaud
- Children's Hospital of Eastern Ontario; Department of Pediatrics; Ottawa ON Canada
- Ottawa Hospital Research Institute, Sprott Center for Stem Cell Research; Ottawa Canada
- University of Ottawa; Department of Cellular and Molecular Medicine; Ottawa Canada
| |
Collapse
|
497
|
Romantsik O, Bruschettini M, Moreira A, Thébaud B, Ley D. Stem cell-based interventions for the prevention and treatment of germinal matrix-intraventricular haemorrhage in preterm infants. Hippokratia 2018. [DOI: 10.1002/14651858.cd013201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olga Romantsik
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| | - Matteo Bruschettini
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
- Skåne University Hospital; Cochrane Sweden; Wigerthuset, Remissgatan 4, first floor room 11-221 Lund Sweden 22185
| | - Alvaro Moreira
- University of Texas Health Science Center at San Antonio; Pediatrics, Division of Neonatology; San Antonio Texas USA
| | - Bernard Thébaud
- Children's Hospital of Eastern Ontario; Department of Pediatrics; Ottawa ON Canada
- Ottawa Hospital Research Institute, Sprott Center for Stem Cell Research; Ottawa Canada
- University of Ottawa; Department of Cellular and Molecular Medicine; Ottawa Canada
| | - David Ley
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| |
Collapse
|
498
|
Berger E, Magliaro C, Paczia N, Monzel AS, Antony P, Linster CL, Bolognin S, Ahluwalia A, Schwamborn JC. Millifluidic culture improves human midbrain organoid vitality and differentiation. LAB ON A CHIP 2018; 18:3172-3183. [PMID: 30204191 DOI: 10.1039/c8lc00206a] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Human midbrain-specific organoids (hMOs) serve as an experimental in vitro model for studying the pathogenesis of Parkinson's disease (PD). In hMOs, neuroepithelial stem cells (NESCs) give rise to functional midbrain dopaminergic (mDA) neurons that are selectively degenerating during PD. A limitation of the hMO model is an under-supply of oxygen and nutrients to the densely packed core region, which leads eventually to a "dead core". To reduce this phenomenon, we applied a millifluidic culture system that ensures media supply by continuous laminar flow. We developed a computational model of oxygen transport and consumption in order to predict oxygen levels within the hMOs. The modelling predicts higher oxygen levels in the hMO core region under millifluidic conditions. In agreement with the computational model, a significantly smaller "dead core" was observed in hMOs cultured in a bioreactor system compared to those ones kept under conventional shaking conditions. Comparing the necrotic core regions in the organoids with those obtained from the model allowed an estimation of the critical oxygen concentration necessary for ensuring cell vitality. Besides the reduced "dead core" size, the differentiation efficiency from NESCs to mDA neurons was elevated in hMOs exposed to medium flow. Increased differentiation involved a metabolic maturation process that was further developed in the millifluidic culture. Overall, bioreactor conditions that improve hMO quality are worth considering in the context of advanced PD modelling.
Collapse
Affiliation(s)
- Emanuel Berger
- University of Luxembourg (UL), Centre for Systems Biomedicine (LCSB) - Developmental and Cellular Biology group, Luxembourg.
| | | | | | | | | | | | | | | | | |
Collapse
|
499
|
Karzbrun E, Tshuva RY, Reiner O. An On-Chip Method for Long-Term Growth and Real-Time Imaging of Brain Organoids. ACTA ACUST UNITED AC 2018; 81:e62. [PMID: 30239150 DOI: 10.1002/cpcb.62] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Brain organoids are an emerging technique for studying human neurodevelopment in vitro, with biomedical implications. However, three-dimensional tissue culture poses several challenges, including lack of nutrient exchange at the organoid core and limited imaging accessibility of whole organoids. Here we present a method for culturing organoids in a micro-fabricated device that enables in situ real-time imaging over weeks with efficient nutrient exchange by diffusion. Our on-chip approach offers a means for studying the dynamics of organoid development, cell differentiation, cell cycle, and motion. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Eyal Karzbrun
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.,Department of Physics and the Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, California
| | - Rami Yair Tshuva
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
500
|
Rabesandratana O, Goureau O, Orieux G. Pluripotent Stem Cell-Based Approaches to Explore and Treat Optic Neuropathies. Front Neurosci 2018; 12:651. [PMID: 30294255 PMCID: PMC6158340 DOI: 10.3389/fnins.2018.00651] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Sight is a major sense for human and visual impairment profoundly affects quality of life, especially retinal degenerative diseases which are the leading cause of irreversible blindness worldwide. As for other neurodegenerative disorders, almost all retinal dystrophies are characterized by the specific loss of one or two cell types, such as retinal ganglion cells, photoreceptor cells, or retinal pigmented epithelial cells. This feature is a critical point when dealing with cell replacement strategies considering that the preservation of other cell types and retinal circuitry is a prerequisite. Retinal ganglion cells are particularly vulnerable to degenerative process and glaucoma, the most common optic neuropathy, is a frequent retinal dystrophy. Cell replacement has been proposed as a potential approach to take on the challenge of visual restoration, but its application to optic neuropathies is particularly challenging. Many obstacles need to be overcome before any clinical application. Beyond their survival and differentiation, engrafted cells have to reconnect with both upstream synaptic retinal cell partners and specific targets in the brain. To date, reconnection of retinal ganglion cells with distal central targets appears unrealistic since central nervous system is refractory to regenerative processes. Significant progress on the understanding of molecular mechanisms that prevent central nervous system regeneration offer hope to overcome this obstacle in the future. At the same time, emergence of reprogramming of human somatic cells into pluripotent stem cells has facilitated both the generation of new source of cells with therapeutic potential and the development of innovative methods for the generation of transplantable cells. In this review, we discuss the feasibility of stem cell-based strategies applied to retinal ganglion cells and optic nerve impairment. We present the different strategies for the generation, characterization and the delivery of transplantable retinal ganglion cells derived from pluripotent stem cells. The relevance of pluripotent stem cell-derived retinal organoid and retinal ganglion cells for disease modeling or drug screening will be also introduced in the context of optic neuropathies.
Collapse
Affiliation(s)
| | - Olivier Goureau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Gaël Orieux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|