451
|
Tan H, Sun J, Jin D, Song J, Lei M, Antoshin A, Chen X, Yin M, Qu X, Liu C. Coupling PEG-LZM polymer networks with polyphenols yields suturable biohydrogels for tissue patching. Biomater Sci 2020; 8:3334-3347. [PMID: 32432582 DOI: 10.1039/d0bm00429d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Poor mechanical performances severely limit the application of hydrogels in vivo; for example, it is difficult to perform a very common suturing operation on hydrogels during surgery. There is a growing demand to improve the mechanical properties of hydrogels for broadening their clinical applications. Natural polyphenols can match the potential toughening sites in our previously reported PEG-lysozyme (LZM) hydrogel because polyphenols have unique structural units including a hydroxyl group and an aromatic ring that can interact with PEG via hydrogen bonding and form hydrophobic interactions with LZM. By utilizing polyphenols as noncovalent crosslinkers, the resultant PEG-LZM-polyphenol hydrogel presents super toughness and high elasticity in comparison to pristine PEG-LZM with no obvious changes in the initial shape, and it can even withstand the high pressure from sutures. At the same time, the mechanical properties could be widely adjusted by varying the polyphenol concentration. Interestingly, the PEG-LZM-polyphenol hydrogel has a higher water content than other polyphenol-toughened hydrogels, which may better meet the clinical needs for hydrogel materials. Besides, the introduction of polyphenols endows the hydrogel with improved antibacterial and anti-inflammatory abilities. Finally, the PEG-LZM-polyphenol (tannic acid) hydrogel was demonstrated to successfully patch a rabbit myocardial defect by suturing for 4 weeks and improve the wound healing and heart function recovery compared to autologous muscle patches.
Collapse
Affiliation(s)
- Haoqi Tan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of material science and engineering, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
452
|
Zhang X, Morits M, Jonkergouw C, Ora A, Valle-Delgado JJ, Farooq M, Ajdary R, Huan S, Linder M, Rojas O, Sipponen MH, Österberg M. Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogel. Biomacromolecules 2020. [PMID: 31992046 DOI: 10.1021/acs.biomac.1879b01745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
Three-dimensional (3D) printing has been an emerging technique to fabricate precise scaffolds for biomedical applications. Cellulose nanofibril (CNF) hydrogels have attracted considerable attention as a material for 3D printing because of their shear-thinning properties. Combining cellulose nanofibril hydrogels with alginate is an effective method to enable cross-linking of the printed scaffolds in the presence of Ca2+ ions. In this work, spherical colloidal lignin particles (CLPs, also known as spherical lignin nanoparticles) were used to prepare CNF-alginate-CLP nanocomposite scaffolds. High-resolution images obtained by atomic force microscopy (AFM) showed that CLPs were homogeneously mixed with the CNF hydrogel. CLPs brought antioxidant properties to the CNF-alginate-CLP scaffolds in a concentration-dependent manner and increased the viscosity of the hydrogels at a low shear rate, which correspondingly provide better shape fidelity and printing resolution to the scaffolds. Interestingly, the CLPs did not affect the viscosity at high shear rates, showing that the shear thinning behavior typical for CNF hydrogels was retained, enabling easy printing. The CNF-alginate-CLP scaffolds demonstrated shape stability after printing, cross-linking, and storage in Dulbecco's phosphate buffer solution (DPBS +) containing Ca2+ and Mg2+ ions, up to 7 days. The 3D-printed scaffolds showed relative rehydration ratio values above 80% after freeze-drying, demonstrating a high water-retaining capability. Cell viability tests using hepatocellular carcinoma cell line HepG2 showed no negative effect of CLPs on cell proliferation. Fluorescence microscopy indicated that HepG2 cells grew not only on the surfaces but also inside the porous scaffolds. Overall, our results demonstrate that nanocomposite CNF-alginate-CLP scaffolds have high potential in soft-tissue engineering and regenerative-medicine applications.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Maria Morits
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Christopher Jonkergouw
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Ari Ora
- Department of Applied Physics, School of Science, Aalto University, FIN-02150 Espoo, Finland
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Muhammad Farooq
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Rubina Ajdary
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Siqi Huan
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Markus Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Orlando Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Mika Henrikki Sipponen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
453
|
Zhang X, Morits M, Jonkergouw C, Ora A, Valle-Delgado JJ, Farooq M, Ajdary R, Huan S, Linder M, Rojas O, Sipponen MH, Österberg M. Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogel. Biomacromolecules 2020; 21:1875-1885. [PMID: 31992046 PMCID: PMC7218745 DOI: 10.1021/acs.biomac.9b01745] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/24/2020] [Indexed: 01/09/2023]
Abstract
Three-dimensional (3D) printing has been an emerging technique to fabricate precise scaffolds for biomedical applications. Cellulose nanofibril (CNF) hydrogels have attracted considerable attention as a material for 3D printing because of their shear-thinning properties. Combining cellulose nanofibril hydrogels with alginate is an effective method to enable cross-linking of the printed scaffolds in the presence of Ca2+ ions. In this work, spherical colloidal lignin particles (CLPs, also known as spherical lignin nanoparticles) were used to prepare CNF-alginate-CLP nanocomposite scaffolds. High-resolution images obtained by atomic force microscopy (AFM) showed that CLPs were homogeneously mixed with the CNF hydrogel. CLPs brought antioxidant properties to the CNF-alginate-CLP scaffolds in a concentration-dependent manner and increased the viscosity of the hydrogels at a low shear rate, which correspondingly provide better shape fidelity and printing resolution to the scaffolds. Interestingly, the CLPs did not affect the viscosity at high shear rates, showing that the shear thinning behavior typical for CNF hydrogels was retained, enabling easy printing. The CNF-alginate-CLP scaffolds demonstrated shape stability after printing, cross-linking, and storage in Dulbecco's phosphate buffer solution (DPBS +) containing Ca2+ and Mg2+ ions, up to 7 days. The 3D-printed scaffolds showed relative rehydration ratio values above 80% after freeze-drying, demonstrating a high water-retaining capability. Cell viability tests using hepatocellular carcinoma cell line HepG2 showed no negative effect of CLPs on cell proliferation. Fluorescence microscopy indicated that HepG2 cells grew not only on the surfaces but also inside the porous scaffolds. Overall, our results demonstrate that nanocomposite CNF-alginate-CLP scaffolds have high potential in soft-tissue engineering and regenerative-medicine applications.
Collapse
Affiliation(s)
- Xue Zhang
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Maria Morits
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Christopher Jonkergouw
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Ari Ora
- Department
of Applied Physics, School of Science, Aalto
University, FIN-02150 Espoo, Finland
| | - Juan José Valle-Delgado
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Muhammad Farooq
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Rubina Ajdary
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Siqi Huan
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Markus Linder
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Orlando Rojas
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Mika Henrikki Sipponen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Monika Österberg
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
454
|
Cheng L, Deng B, Luo W, Nie S, Liu X, Yin Y, Liu S, Wu Z, Zhan P, Zhang L, Chen J. pH-Responsive Lignin-Based Nanomicelles for Oral Drug Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5249-5258. [PMID: 32286845 DOI: 10.1021/acs.jafc.9b08171] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A pH-stimuli amphiphilic lignin-based copolymer was prepared, and it could self-assemble to form spherical nanomicelles with the addition of "switching" water. The morphology, structure, and physical properties of micelles were characterized with transmission electron microscopy (TEM), nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), particle-size analysis, and zeta-potential measurement. In vitro drug release exemplified that the micelles were pH-sensitive, retaining more than 84.36% ibuprofen (IBU) in simulated gastric fluid (pH 1.5) and presenting a smooth release of 81.81% IBU in simulated intestinal fluid (pH 7.4) within 72 h. Cell culture studies showed that the nanomicelles were biocompatible and boosted the proliferation of human bone marrow stromal cells hBMSC and mouse embryonic fibroblast cells NIH-3T3. Interestingly, the nanomicelles inhibited the survival of human colon cancer cells HT-29 with a final survival rate of only 5.34%. Therefore, this work suggests a novel strategy to synthesize intelligent lignin-based nanomicelles that show a great potential as oral drug carriers.
Collapse
Affiliation(s)
- Lianghao Cheng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Bin Deng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Weihua Luo
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Shaofei Nie
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Xinyi Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Yanan Yin
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Shibo Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Zhiping Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Peng Zhan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Bioethanol Research Center of State Forestry Bureau, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Hunan Engineering Research Center of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Lin Zhang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Bioethanol Research Center of State Forestry Bureau, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Hunan Engineering Research Center of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Jienan Chen
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Bioethanol Research Center of State Forestry Bureau, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Hunan Engineering Research Center of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| |
Collapse
|
455
|
Xie YY, Zhang YW, Qin XT, Liu LP, Wahid F, Zhong C, Jia SR. Structure-Dependent Antibacterial Activity of Amino Acid-Based Supramolecular Hydrogels. Colloids Surf B Biointerfaces 2020; 193:111099. [PMID: 32408261 DOI: 10.1016/j.colsurfb.2020.111099] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/04/2020] [Accepted: 04/27/2020] [Indexed: 02/01/2023]
Abstract
Bacterial infections are currently a major concern to human health. Amino acid-based supramolecular polymer hydrogels, which boast intrinsic antibacterial activity, are an important solution due to their good biocompatibility, cost effectiveness, and tunable structural properties. Herein, we reported three types of transparent supramolecular hydrogel with intrinsic antibacterial activity from self-assembly of commercially available Fmoc-tryptophan (Fmoc-W), Fmoc-methionine (Fmoc-M), and Fmoc-tyrosine (Fmoc-Y). The resulting hydrogels selectively inhibited the growth of Gram-positive bacteria. Moreover, the order of antibacterial activity was Fmoc-W hydrogel > Fmoc-M hydrogel > Fmoc-Y hydrogel. The critical aggregation concentration (CAC) values were found at concentrations of approximately 0.0293, 0.1172, and 0.4688 mM for Fmoc-W, Fmoc-M, and Fmoc-Y, respectively. Transmission electron microscope (TEM) images revealed rigid and aligned nanofibers for Fmoc-W hydrogel, while flexible nanofibers for Fmoc-M hydrogel and Fmoc-Y hydrogel. The results indicated that stronger aggregation capability of the gelator and the synergistic nanostructural morphology with more rigid and aligned nanofibers can lead to higher antibacterial activity of its corresponding hydrogel. In addition, the molecular arrangements of Fmoc-amino acids in the hydrogels may also contribute to their antibacterial activity. These results can guide the rational design, fabrication, and future application of other self-assembled amino acid-based hydrogels with excellent antibacterial activity.
Collapse
Affiliation(s)
- Yan-Yan Xie
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, PR China
| | - Yan-Wen Zhang
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, PR China
| | - Xiao-Tong Qin
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, PR China
| | - Ling-Pu Liu
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, PR China
| | - Fazli Wahid
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, PR China
| | - Cheng Zhong
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, PR China.
| | - Shi-Ru Jia
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, PR China
| |
Collapse
|
456
|
Ma Y, Jiang L, Hu J, Liu H, Wang S, Zuo P, Ji P, Qu L, Cui T. Multifunctional 3D Micro-Nanostructures Fabricated through Temporally Shaped Femtosecond Laser Processing for Preventing Thrombosis and Bacterial Infection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17155-17166. [PMID: 31990516 DOI: 10.1021/acsami.9b20766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Blood-contacting medical devices that directly inhibit thrombosis and bacterial infection without using dangerous anticoagulant and antibacterial drugs can save countless lives but have proved extremely challenging. Here, a useful methodology is proposed that employs temporally shaped femtosecond laser ablation combined with fluorination to fabricate multifunctional three-dimensional (3D) micro-nanostructures with excellent hemocompatibility, zero cytotoxicity, outstanding biocompatibility, bacterial infection prevention, and long-term effectiveness on NiTi alloys. These multifunctional 3D micro-nanostructures present 0.1% hemolysis ratio and almost no platelet adhesion and activation, repel blood to inhibit blood coagulation in vitro, maintain 100% cell viability, and have exceptional stability over 6 months. Moreover, the multifunctional 3D micro-nanostructures simultaneously suppress bacterial colonization to form biofilm and kill 100% colonized Pseudomonas aeruginosa (P. aeruginosa) and 95.6% colonized Staphylococcus aureus (S. aureus) after 24 h of incubation, and bacterial residues can be easily removed. The fabrication method in this work has the advantages of simple processing, high efficiency, high quality, and high repeatability, and the new multifunctional 3D micro-nanostructures can effectively prevent thrombosis and bacterial infection, which can be widely applied to various clinical needs such as biomedical devices and implants.
Collapse
Affiliation(s)
- Yunlong Ma
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Lan Jiang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Jie Hu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Hailin Liu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Suocheng Wang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Pei Zuo
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Pengfei Ji
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Liangti Qu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Tianhong Cui
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
457
|
Affiliation(s)
- Hailong Fan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University,
N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University,
N21W10, Kita-ku, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
- Global Station for Soft Matter GI-CoRE, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
458
|
Chen K, Wang F, Liu S, Wu X, Xu L, Zhang D. In situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property. Int J Biol Macromol 2020; 148:501-509. [DOI: 10.1016/j.ijbiomac.2020.01.156] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
|
459
|
Qu S, Liu Y, Hu Q, Han Y, Hao Z, Shen J, Zhu K. Programmable antibiotic delivery to combat methicillin-resistant Staphylococcus aureus through precision therapy. J Control Release 2020; 321:710-717. [PMID: 32135225 DOI: 10.1016/j.jconrel.2020.02.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/14/2020] [Accepted: 02/28/2020] [Indexed: 12/21/2022]
Abstract
The rapid dissemination of life-threatening multidrug-resistant bacterial pathogens calls for the development of new antibacterial agents and alternative strategies. The virulence factor secreted by bacteria plays a crucial role in the sophisticated processes during infections. Inspired by the unique capacity of many bacteria inducing clotting of plasma to initiate colonization, we propose a programmable antibiotic delivery system for precision therapy using methicillin-resistant S. aureus (MRSA) as a model. Coagulase utilized by MRSA to directly cleave fibrinogen into fibrin, is an ideal target not only for tracking bacterial status but for triggering the collapse of fibrinogen functionalized porous microspheres. Subsequently, staphylokinase, another virulence factor of MRSA, catalyzed hydrolysis of fibrin to further release the encapsulated antibiotics from microspheres. Our sequential triggered-release system exhibits high selectivity to distinguish live or dead MRSA from other pathogenic bacteria. Furthermore, such programmable microspheres clear 99% MRSA in 4 h, and show increased efficiency in a wound healing model in rats. Our study provides a programmable drug delivery system to precisely target bacterial pathogens using their intrinsic enzymatic cascades. This programmable platform with reduced selective stress of antibiotics on microbiota sheds light on the potential therapy for future clinical applications.
Collapse
Affiliation(s)
- Shaoqi Qu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qiao Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yiming Han
- College of Engineering, Peking University, Beijing 100871, China
| | - Zhihui Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, China.
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
460
|
Huang J, Liu J, Wang J. Optical properties of biomass-derived nanomaterials for sensing, catalytic, biomedical and environmental applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115800] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
461
|
Li X, Deng Y, Lai J, Zhao G, Dong S. Tough, Long-Term, Water-Resistant, and Underwater Adhesion of Low-Molecular-Weight Supramolecular Adhesives. J Am Chem Soc 2020; 142:5371-5379. [DOI: 10.1021/jacs.0c00520] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xing Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Yan Deng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Jinlei Lai
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Gai Zhao
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P.R. China
| |
Collapse
|
462
|
Zhou S, Wu B, Zhou Q, Jian Y, Le X, Lu H, Zhang D, Zhang J, Zhang Z, Chen T. Ionic Strength and Thermal Dual‐Responsive Bilayer Hollow Spherical Hydrogel Actuator. Macromol Rapid Commun 2020; 41:e1900543. [DOI: 10.1002/marc.201900543] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/24/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Shengzhu Zhou
- Key Laboratory of Bionic Engineering (Ministry of Education) and College of Biological and Agricultural EngineeringJilin University Changchun 130022 China
- Department of AnesthesiologyThe Second Hospital of Jilin University Changchun 130061 China
| | - Baoyi Wu
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Material Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
| | - Qiang Zhou
- Key Laboratory of Bionic Engineering (Ministry of Education) and College of Biological and Agricultural EngineeringJilin University Changchun 130022 China
- Cadre's WardThe First Hospital of Jilin University Changchun 130021 China
| | - Yukun Jian
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Material Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
| | - Xiaoxia Le
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Material Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
| | - Huanhuan Lu
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Material Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
| | - Dachuan Zhang
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Material Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
| | - Jiawei Zhang
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Material Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
| | - Zhihui Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education) and College of Biological and Agricultural EngineeringJilin University Changchun 130022 China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Material Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
| |
Collapse
|
463
|
Yang J, Chen S, Luo J, Persson C, Cölfen H, Welch K, Strømme M. Multifunctional Polymer-Free Mineral Plastic Adhesives Formed by Multiple Noncovalent Bonds. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7403-7410. [PMID: 31958949 DOI: 10.1021/acsami.9b17253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Supramolecular adhesives have attracted a great deal of attention in recent years, resulting in their development for different applications. However, creating supramolecular adhesives with reversible and reusable properties is still a challenge. Here, a synthesis route to obtain supramolecular adhesives is presented in which no polymeric compounds are involved in the preparation. The adhesive is formed by intermolecular coulomb forces between amorphous magnesium carbonate nanoparticles and the low-molecular-weight drug ibuprofen, which results in an amorphous composite material that is transparent, shapeable, stretchable, and self-healing, making it reusable. It is demonstrated that this hybrid material provides a simple means of gluing a wide variety of materials, including metals, glass, paper, and plastics, and that is reversible and possesses reusability. The material disrupts the traditional concept of polymer-based adhesives and may be used as a sustainable mineral plastic in applications such as 3D printing.
Collapse
Affiliation(s)
- Jiaojiao Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , 610041 , P. R. China.,Nanotechnology and Functional Materials, Department of Engineering Sciences , Uppsala University , Uppsala , 75121 , Sweden
| | - Song Chen
- Physical Chemistry , University of Konstanz , Universitätsstraße 10 , Konstanz , 78457 , Germany
| | - Jun Luo
- Applied Materials Sciences, Department of Engineering Sciences , Uppsala University , Uppsala , 75212 , Sweden
| | - Cecilia Persson
- Applied Materials Sciences, Department of Engineering Sciences , Uppsala University , Uppsala , 75212 , Sweden
| | - Helmut Cölfen
- Physical Chemistry , University of Konstanz , Universitätsstraße 10 , Konstanz , 78457 , Germany
| | - Ken Welch
- Nanotechnology and Functional Materials, Department of Engineering Sciences , Uppsala University , Uppsala , 75121 , Sweden
| | - Maria Strømme
- Nanotechnology and Functional Materials, Department of Engineering Sciences , Uppsala University , Uppsala , 75121 , Sweden
| |
Collapse
|
464
|
Liu X, Liu J, Wang J, Wang T, Jiang Y, Hu J, Liu Z, Chen X, Yu J. Bioinspired, Microstructured Silk Fibroin Adhesives for Flexible Skin Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5601-5609. [PMID: 31927972 DOI: 10.1021/acsami.9b21197] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Wearable epidermal sensors are of great importance to the next generation of personalized healthcare. The adhesion between the flexible sensor and skin surface is critical for obtaining accurate, reliable, and stable signals. Herein we present a facile approach to fabricate a microstructured, natural silk fibroin protein-based adhesive for achieving highly conformal, comfortable, adjustable, and biocompatible adhesion on the skin surface. The microstructured fibroin adhesive (MSFA) exhibits reliable and stable bonding force on skin surfaces, even under humid or wet conditions, and can be easily peeled off from the skin without causing significant pain. Such an MSFA can greatly improve the sensitivity and reusability of epidermal strain sensors because of its conformal and tunable adhesion on skin surfaces. The MFSA has a great potential to be applied as a functional adhesive for various epidermal electronic sensors in the era of personalized healthcare.
Collapse
Affiliation(s)
- Xijian Liu
- College of Chemistry and Chemical Engineering , Shanghai University of Engineering Science , Shanghai 201620 , P.R. China
- School of Materials Science and Engineering , Nanyang Technological University , 639798 Singapore
| | - Jun Liu
- Institute of High Performance Computing , Agency for Science Technology and Research, 1 Fusionopolis Way , 138632 , Singapore
| | - Jilei Wang
- School of Materials Science and Engineering , Nanyang Technological University , 639798 Singapore
| | - Ting Wang
- School of Materials Science and Engineering , Nanyang Technological University , 639798 Singapore
| | - Ying Jiang
- School of Materials Science and Engineering , Nanyang Technological University , 639798 Singapore
| | - Junqing Hu
- College of Health Science and Environmental Engineering , Shenzhen Technology University , Shenzhen 518118 , China
| | - Zhuangjian Liu
- Institute of High Performance Computing , Agency for Science Technology and Research, 1 Fusionopolis Way , 138632 , Singapore
| | - Xiaodong Chen
- School of Materials Science and Engineering , Nanyang Technological University , 639798 Singapore
| | - Jing Yu
- School of Materials Science and Engineering , Nanyang Technological University , 639798 Singapore
| |
Collapse
|
465
|
Antibacterial phase change microcapsules obtained with lignin as the Pickering stabilizer and the reducing agent for silver. Int J Biol Macromol 2020; 144:624-631. [DOI: 10.1016/j.ijbiomac.2019.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 01/25/2023]
|
466
|
Synthesis of strong and highly stretchable, electrically conductive hydrogel with multiple stimuli responsive shape memory behavior. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
467
|
Gao C, Wang X, Wang H, Zhou J, Zhai S, An Q. Highly efficient and stable catalysis of p-nitrophenol via silver/lignin/polyacrylic acid hydrogel. Int J Biol Macromol 2020; 144:947-953. [PMID: 31669463 DOI: 10.1016/j.ijbiomac.2019.09.172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/15/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022]
Abstract
As the second largest natural polymer in nature, lignin has a large amount of reserves and has important practical application value, which has attracted increasing attention. Ag@LPAH, a nanometer silver catalyst with a 3D structure, was successfully prepared in a simple operation. In batch experiment and fixed-bed experiment, it showed excellent catalytic degradation ability and stability of 4-NP. Thanks to the large number of carboxyl groups present in the lignin-polyacrylic acid hydrogel, the silver nanoparticles are well controlled to grow with no agglomeration. Ag@LPAH-20 exhibited optimal catalytic performance and stability, requiring only 123 s to complete the reaction and maintaining 99% catalytic efficiency after 10 cycles. In addition, the catalytic efficiency can be maintained over 90% for more than 120 min in fixed bed experiment.
Collapse
Affiliation(s)
- Ce Gao
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xuelian Wang
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Haisong Wang
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jinghui Zhou
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shangru Zhai
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Qingda An
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
468
|
Hou Y, Jiang N, Sun D, Wang Y, Chen X, Zhu S, Zhang L. A fast UV-curable PU-PAAm hydrogel with mechanical flexibility and self-adhesion for wound healing. RSC Adv 2020; 10:4907-4915. [PMID: 35498321 PMCID: PMC9049579 DOI: 10.1039/c9ra10666a] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/24/2020] [Indexed: 02/05/2023] Open
Abstract
Hydrogels demonstrate superior properties that favor wound healing and have been widely used in clinical settings for wound dressing applications. However, commercial hydrogel dressings often lack flexibility/adhesiveness, and do not conform well to the irregular skin surfaces of complex wounds and/or wounds near joints. As a result, the wound is likely to be exposed to potential bacterial invasion. Herein, we designed and developed a mechanically flexible and self-adhesive polyurethane-poly(acrylamide) (PU-PAAm) hydrogel for wound healing applications. The hydrogel can be cured from a novel waterborne emulsion within 90 s under UV irradiation. The PU component within the PU-PAAm hydrogel plays a "bridging" role that accelerates the formation of an interpenetrating polymer network (IPN), which consists of a physically crosslinked PU network trapped within a chemically crosslinked PAAm network. The unique IPN structure endowes the hydrogel with superior stretchability and ductility. The hydrogen bonding formation and electrostatic interaction between the hydrogel and skin ensure strong adhesion without causing irritation to skin upon dressing removal. Animal studies further confirmed the PU-PAAm hydrogel's remarkable skin regeneration capability. This work shows our new hydrogel holds a promising prospect for treatment of complicated or challenging wounds such as burns and chronic wounds.
Collapse
Affiliation(s)
- Yi Hou
- Analytical & Testing Center, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, School of Materials Science & Engineering, Sichuan University Chengdu 610065 China
| | - Nan Jiang
- Analytical & Testing Center, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, School of Materials Science & Engineering, Sichuan University Chengdu 610065 China
| | - Dan Sun
- Advanced Composite Research Group (ACRG), School of Mechanical and Aerospace Engineering, Queens University Belfast Belfast BT9 5AH UK
| | - Yiping Wang
- Analytical & Testing Center, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, School of Materials Science & Engineering, Sichuan University Chengdu 610065 China
| | - Xianchun Chen
- Analytical & Testing Center, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, School of Materials Science & Engineering, Sichuan University Chengdu 610065 China
| | - Songsong Zhu
- Analytical & Testing Center, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, School of Materials Science & Engineering, Sichuan University Chengdu 610065 China
| | - Li Zhang
- Analytical & Testing Center, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, School of Materials Science & Engineering, Sichuan University Chengdu 610065 China
| |
Collapse
|
469
|
Zhang W, Wang R, Sun Z, Zhu X, Zhao Q, Zhang T, Cholewinski A, Yang FK, Zhao B, Pinnaratip R, Forooshani PK, Lee BP. Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications. Chem Soc Rev 2020; 49:433-464. [PMID: 31939475 PMCID: PMC7208057 DOI: 10.1039/c9cs00285e] [Citation(s) in RCA: 461] [Impact Index Per Article: 92.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogels are a unique class of polymeric materials that possess an interconnected porous network across various length scales from nano- to macroscopic dimensions and exhibit remarkable structure-derived properties, including high surface area, an accommodating matrix, inherent flexibility, controllable mechanical strength, and excellent biocompatibility. Strong and robust adhesion between hydrogels and substrates is highly desirable for their integration into and subsequent performance in biomedical devices and systems. However, the adhesive behavior of hydrogels is severely weakened by the large amount of water that interacts with the adhesive groups reducing the interfacial interactions. The challenges of developing tough hydrogel-solid interfaces and robust bonding in wet conditions are analogous to the adhesion problems solved by marine organisms. Inspired by mussel adhesion, a variety of catechol-functionalized adhesive hydrogels have been developed, opening a door for the design of multi-functional platforms. This review is structured to give a comprehensive overview of adhesive hydrogels starting with the fundamental challenges of underwater adhesion, followed by synthetic approaches and fabrication techniques, as well as characterization methods, and finally their practical applications in tissue repair and regeneration, antifouling and antimicrobial applications, drug delivery, and cell encapsulation and delivery. Insights on these topics will provide rational guidelines for using nature's blueprints to develop hydrogel materials with advanced functionalities and uncompromised adhesive properties.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China.
| | - Ruixing Wang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China.
| | - ZhengMing Sun
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China.
| | - Xiangwei Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Tengfei Zhang
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Aleksander Cholewinski
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Centre for Bioengineering and Biotechnology, University of Waterloo, Ontario N2L 3G1, Canada.
| | - Fut Kuo Yang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Centre for Bioengineering and Biotechnology, University of Waterloo, Ontario N2L 3G1, Canada.
| | - Boxin Zhao
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Centre for Bioengineering and Biotechnology, University of Waterloo, Ontario N2L 3G1, Canada.
| | - Rattapol Pinnaratip
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, USA.
| | - Pegah Kord Forooshani
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, USA.
| | - Bruce P Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, USA.
| |
Collapse
|
470
|
Zhou F, Luo J, Song S, Wan Y. Nanostructured Polyphenol-Mediated Coating: a Versatile Platform for Enzyme Immobilization and Micropollutant Removal. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05708] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Fangfang Zhou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Siqing Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
471
|
Wang K, Wang J, Li L, Xu L, Feng N, Wang Y, Fei X, Tian J, Li Y. Novel Nonreleasing Antibacterial Hydrogel Dressing by a One-Pot Method. ACS Biomater Sci Eng 2020; 6:1259-1268. [DOI: 10.1021/acsbiomaterials.9b01812] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kang Wang
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jihui Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 528808, China
| | - Lin Li
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 528808, China
| | - Longquan Xu
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China
| | - Nuan Feng
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xu Fei
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
472
|
Ke X, Dong Z, Tang S, Chu W, Zheng X, Zhen L, Chen X, Ding C, Luo J, Li J. A natural polymer based bioadhesive with self-healing behavior and improved antibacterial properties. Biomater Sci 2020; 8:4346-4357. [PMID: 32601625 DOI: 10.1039/d0bm00624f] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bioadhesives are of great interest for tissue/wound closure to reduce surgical time, minimize treatment invasiveness, and prevent body fluid leakage.
Collapse
|
473
|
Zhang C, Wu B, Zhou Y, Zhou F, Liu W, Wang Z. Mussel-inspired hydrogels: from design principles to promising applications. Chem Soc Rev 2020; 49:3605-3637. [DOI: 10.1039/c9cs00849g] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents the recent progress of mussel-inspired hydrogels from fundamental interaction mechanisms and design principles to promising applications.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Mechanical Engineering
- City University of Hong Kong
- China
| | - Baiheng Wu
- Institute of Process Equipment
- College of Energy Engineering
- Zhejiang University
- Hangzhou
- China
| | - Yongsen Zhou
- Department of Mechanical Engineering
- City University of Hong Kong
- China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Zuankai Wang
- Department of Mechanical Engineering
- City University of Hong Kong
- China
| |
Collapse
|
474
|
Wu B, Jian Y, Le X, Lin H, Wei S, Lu W, Zhang J, Zhang A, Huang CF, Chen T. Supramolecular Fabrication of Complex 3D Hollow Polymeric Hydrogels with Shape and Function Diversity. ACS APPLIED MATERIALS & INTERFACES 2019; 11:48564-48573. [PMID: 31742383 DOI: 10.1021/acsami.9b17440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by the high importance of hollow structures in nature such as blood vessels and bamboos in matter transportation, properties enhancement, or even survival of living creatures, the creation of hollow materials remains of considerable interest. However, constructing hollow unique living-like soft and wet polymeric hydrogels with desirable structures and functionalities is still a big challenge. Here, we reported a robust and effective strategy to fabricate complex three-dimensional (3D) hollow polymeric hydrogel with designed shape and function diversity on the basis of supramolecular interactions. By placing a Ca2+ included gelatin core into the solution of alginate, hydrogel shell could be formed along with the shape of the gelatin core via coordination between alginate chains and Ca2+ diffused from gelatin. The hollow hydrogel could finally be obtained by dissolving the gelatin core. Various complex 3D hollow structures could be achieved by designing/constructing assembled gelatin core as a building block with adjustable supramolecular metal coordination position and strength. Moreover, hollow hydrogels with function diversity could be developed by introducing functional polymers or nanoparticles into the hydrogel wall. This work has made important progress in developing hollow polymeric hydrogel with desirable structures, shapes, and various functional applications including soft actuators and chemical reaction containers.
Collapse
Affiliation(s)
- Baoyi Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , China
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Nanchen Road 333 , Shanghai 200444 , China
| | - Yukun Jian
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , China
- School of Chemical Sciences , University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Xiaoxia Le
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , China
- School of Chemical Sciences , University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Han Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , China
| | - Shuxin Wei
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , China
- School of Chemical Sciences , University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , China
- School of Chemical Sciences , University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Jiawei Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , China
- School of Chemical Sciences , University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Afang Zhang
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Nanchen Road 333 , Shanghai 200444 , China
| | - Chih-Feng Huang
- Department of Chemical Engineering , National Chung Hsing University , 145 Xingda Road , Taichung 402-27 , Taiwan
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , China
- School of Chemical Sciences , University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| |
Collapse
|
475
|
Yan H, Li L, Wang Z, Wang Y, Guo M, Shi X, Yeh JM, Zhang P. Mussel-Inspired Conducting Copolymer with Aniline Tetramer as Intelligent Biological Adhesive for Bone Tissue Engineering. ACS Biomater Sci Eng 2019; 6:634-646. [PMID: 33463207 DOI: 10.1021/acsbiomaterials.9b01601] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electrically conducting polymers have been emerging as intelligent bioactive materials for regulating cell behaviors and bone tissue regeneration. Additionally, poor adhesion between conventional implants and native bone tissue may lead to displacement, local inflammation, and unnecessary secondary surgery. Thus, a conductive bioadhesive with strong adhesion performance provides an effective approach to fulfill fixation and regeneration of comminuted bone fracture. Inspired by mussel chemistry, we designed the conductive copolymers poly{[aniline tetramer methacrylamide]-co-[dopamine methacrylamide]-co-[poly(ethylene glycol) methyl ether methacrylate]} [poly(ATMA-co-DOPAMA-co-PEGMA); AT:conductive aniline tetramer; DOPA:dopamine; PEG:poly(ethylene glycol))] with AT content 3.0, 6.0, and 9.0 mol %, respectively. The adhesive strength of this copolymer was enhanced during tensile process perhaps due to the synergistic effects of H-bonding, π-π interactions, and polymer long-chain entanglement, reaching up to 1.28 MPa with 6 mol % AT. Biological characterizations of preosteoblasts indicated that the bioadhesives exhibited desirable biocompatibility. In addition, the osteogenic differentiation was synergistically enhanced by the conductive substrate and electrical stimulation with a square wave, frequency of 100 Hz, 50% duty cycle, and electrical potential of 500 mV, as indicated by ALP activity, calcium deposition, and expression of osteogenic genes. The ALP activity at 14 days and calcium deposition at 28 days on the 9 mol % AT group were significantly higher than that on PLGA under electrical stimulation. The expression value of OPN for 9 mol % AT group was notably upregulated by 5.9-fold compared with PLGA at 7 days under electrical stimulation. Overall, the conductive polymers with strong adhesion can synergistically upregulate the cellular activity combining with electrical stimulation and might be a promising bioadhesive for orthopedic and dental applications.
Collapse
Affiliation(s)
- Huanhuan Yan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Linlong Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, P. R. China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Xincui Shi
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Jui-Ming Yeh
- Department of Chemistry and Center for Nanotechnology, Chung-Yuan Christian University (CYCU), Chung Li 32023, Taiwan, Republic of China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
476
|
Ding L, Wang Y, Xiong J, Lu H, Zeng M, Zhu P, Ma H. Plant-Inspired Layer-by-Layer Self-Assembly of Super-Hydrophobic Coating for Oil Spill Cleanup. Polymers (Basel) 2019; 11:E2047. [PMID: 31835501 PMCID: PMC6960575 DOI: 10.3390/polym11122047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/28/2019] [Accepted: 11/21/2019] [Indexed: 01/20/2023] Open
Abstract
A versatile, facile, energy-saving, low-cost and plant-inspired self-assembly strategy was used to prepare super-hydrophobic coating in this study. Concretely, an appealing super-hydrophobicity surface was obtained by designing a molecular building block phytic acid (PA)-Fe (III) complex to anchor the substrate and hydrophobic thiol groups (HT). The facile and green modification method can be applied to variety of substrates. The as-prepared PA-Fe (III)-HT coated melamine composite sponge possesses both super-hydrophobic and superlipophilicity property. Moreover, it displays superior efficiency to separate the oil-water mixture and splendid oil spill cleanup.
Collapse
Affiliation(s)
- Liping Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China; (L.D.); (J.X.); (H.L.); (M.Z.)
| | - Yanqing Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China; (L.D.); (J.X.); (H.L.); (M.Z.)
- Department of Materials Science & Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Jinxin Xiong
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China; (L.D.); (J.X.); (H.L.); (M.Z.)
| | - Huiying Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China; (L.D.); (J.X.); (H.L.); (M.Z.)
| | - Mingjian Zeng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China; (L.D.); (J.X.); (H.L.); (M.Z.)
| | - Peng Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China; (L.D.); (J.X.); (H.L.); (M.Z.)
| | - Haiyan Ma
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China; (L.D.); (J.X.); (H.L.); (M.Z.)
| |
Collapse
|
477
|
Huang L, Zhu Z, Wu D, Gan W, Zhu S, Li W, Tian J, Li L, Zhou C, Lu L. Antibacterial poly (ethylene glycol) diacrylate/chitosan hydrogels enhance mechanical adhesiveness and promote skin regeneration. Carbohydr Polym 2019; 225:115110. [DOI: 10.1016/j.carbpol.2019.115110] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/23/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023]
|
478
|
Zhou Y, Kang L, Yue Z, Liu X, Wallace GG. Composite Tissue Adhesive Containing Catechol-Modified Hyaluronic Acid and Poly-l-lysine. ACS APPLIED BIO MATERIALS 2019; 3:628-638. [DOI: 10.1021/acsabm.9b01003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ying Zhou
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Lingzhi Kang
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Xiao Liu
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
479
|
Deng H, Yu Z, Chen S, Fei L, Sha Q, Zhou N, Chen Z, Xu C. Facile and eco-friendly fabrication of polysaccharides-based nanocomposite hydrogel for photothermal treatment of wound infection. Carbohydr Polym 2019; 230:115565. [PMID: 31887966 DOI: 10.1016/j.carbpol.2019.115565] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/18/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022]
Abstract
Nowadays, photothermal killing of pathogenic bacteria and treatment of wound infection have attracted great attention owing to effectively avoiding the drawbacks of traditional antibiotics. In this work, an agarose (AG)-based hydrogel containing tannic acid-Fe(III) (TA-Fe) nanoparticles was fabricated by a facile and eco-friendly strategy. The optimal nanocomposite hydrogel showed the good mechanical property and superior processability. More importantly, the nanocomposite hydrogel revealed outstanding photothermal effect, which exhibited a sharp temperature increase of 58 °C during NIR exposure for 10 min. With in vitro antibacterial experiment, the hydrogel could effectively kill of nearly 99 % of bacteria with 10 min of NIR irradiation. Additionally, for the in vivo experiment, the nanocomposite hydrogel could effectively cure wound infection and promote wound healing. Moreover, the hydrogel possessed high biocompatibility. Based on the good mechanical property, outstanding photothermal effect and high biocompatibility, the nanocomposite hydrogel could become a promising antibacterial wound dressings for biomedical applications.
Collapse
Affiliation(s)
- Hongling Deng
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, PR China
| | - Zhongpeng Yu
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, PR China
| | - Shangui Chen
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, PR China
| | - Liting Fei
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, PR China
| | - Qiuyang Sha
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, PR China
| | - Nan Zhou
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, PR China
| | - Zhiting Chen
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, PR China
| | - Chen Xu
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, PR China.
| |
Collapse
|
480
|
Yang B, Yuan W. Highly Stretchable, Adhesive, and Mechanical Zwitterionic Nanocomposite Hydrogel Biomimetic Skin. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40620-40628. [PMID: 31595740 DOI: 10.1021/acsami.9b14040] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The artificial skin-like stretchable ionic sensor device usually requires a synergistic effect of reliable adhesion between human machine interface, reasonable mechanical strength, and visually displayable transparency. A plant-inspired zwitterionic hydrogel was prepared through rapid UV initiation in the existence of cellulose nanocrystals as physically crosslinker and reinforcing agent. The resulting transparent zwitterionic nanocomposite hydrogel successfully brings the synergistic advantages of robust adhesive strength between diversified substrates such as skins, plastics, glass, and steels with remarkable mechanical properties of a superior stretchability over 1000% strain, a mechanical tensile strength up to 0.61 MPa, and compressive strength up to 7.5 MPa, manifesting in superior ionic transport performance, simultaneously. Furthermore, the zwitterionic nanocomposite hydrogel was fabricated as a wearable compliant stretchable pressure-strain sensor in the modality of the skin-adhesive patch to be sensitive to human motion such as finger touch and speech recognition for personal healthcare of patient sensory rebuilding and physiological data acquisition. It maintains compressive cycling sensibility at diverse pressure during 0.5, 1.0, and 1.5 Hz, respectively. The multifunctional zwitterionic nanocomposite hydrogel could also be assembled into flexible electrical devices such as luminescent display and information transfer between human and robot communication for mechanosensory electronics and artificial intelligence.
Collapse
Affiliation(s)
- Bowen Yang
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education , Tongji University , Shanghai 201804 , People's Republic of China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education , Tongji University , Shanghai 201804 , People's Republic of China
| |
Collapse
|
481
|
Jiang P, Li Q, Gao C, Lu J, Cheng Y, Zhai S, An Q, Wang H. Fractionation of alkali lignin by organic solvents for biodegradable microsphere through self-assembly. BIORESOURCE TECHNOLOGY 2019; 289:121640. [PMID: 31212176 DOI: 10.1016/j.biortech.2019.121640] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Here we report a centrifugation-based fractionation methodology that was integrated with three types of organic solvents to fractionate industrial alkali lignin toward the fabrication of lignin microsphere. The Fourier-transform infrared spectroscopy (FT-IR) result showed that the chemical structure of lignin was not changed by solvent fractionation. Soluble lignin in each solvent had lower molecular weight, improved polydispersity index (PDI) and less impurities (S, N), while insoluble lignin had a high bio-char yield and can be utilized as potential carbon source for porous carbon nanosphere materials. In addition, well-shaped lignin microsphere with smooth or anisotropic surface can be prepared by selecting proper lignin fraction without any chemical modification. This work thus provides a new strategy for the derivation of lignin as raw materials for value-added products, which paved a new way to develop a green and sustainable bio-refining industry.
Collapse
Affiliation(s)
- Pan Jiang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Qiang Li
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840, USA
| | - Ce Gao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jie Lu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yi Cheng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shangru Zhai
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Qingda An
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Haisong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
482
|
Zhou T, Yan L, Xie C, Li P, Jiang L, Fang J, Zhao C, Ren F, Wang K, Wang Y, Zhang H, Guo T, Lu X. A Mussel-Inspired Persistent ROS-Scavenging, Electroactive, and Osteoinductive Scaffold Based on Electrochemical-Driven In Situ Nanoassembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805440. [PMID: 31106983 DOI: 10.1002/smll.201805440] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Conductive polymers are promising for bone regeneration because they can regulate cell behavior through electrical stimulation; moreover, they are antioxidative agents that can be used to protect cells and tissues from damage originating from reactive oxygen species (ROS). However, conductive polymers lack affinity to cells and osteoinductivity, which limits their application in tissue engineering. Herein, an electroactive, cell affinitive, persistent ROS-scavenging, and osteoinductive porous Ti scaffold is prepared by the on-surface in situ assembly of a polypyrrole-polydopamine-hydroxyapatite (PPy-PDA-HA) film through a layer-by-layer pulse electrodeposition (LBL-PED) method. During LBL-PED, the PPy-PDA nanoparticles (NPs) and HA NPs are in situ synthesized and uniformly coated on a porous scaffold from inside to outside. PDA is entangled with and doped into PPy to enhance the ROS scavenging rate of the scaffold and realize repeatable, efficient ROS scavenging over a long period of time. HA and electrical stimulation synergistically promote osteogenic cell differentiation on PPy-PDA-HA films. Ultimately, the PPy-PDA-HA porous scaffold provides excellent bone regeneration through the synergistic effects of electroactivity, cell affinity, and antioxidative activity of the PPy-PDA NPs and the osteoinductivity of HA NPs. This study provides a new strategy for functionalizing porous scaffolds that show great promise as implants for tissue regeneration.
Collapse
Affiliation(s)
- Ting Zhou
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Liwei Yan
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Chaoming Xie
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Pengfei Li
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Lili Jiang
- Key Laboratory of Fluid and Power Machinery of Ministry of Education, Center for Advanced Materials and Energy, School of Materials Science and Engineering, Xihua University, Chengdu, 610039, China
| | - Ju Fang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Cancan Zhao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Fuzeng Ren
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Genome Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yingbo Wang
- College of Chemical Engineering, Xinjiang Normal University, 102 Xinyi Road, Urumqi, Xinjiang, 830054, China
| | - Hongping Zhang
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Tailin Guo
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|