451
|
Abstract
Genomics has changed our view of the biological world in the past decade, providing both new information and new tools to characterise biological systems. Over 100 microbial genomes - including many of substantial clinical importance - have been fully or partially sequenced, pushing the search for novel antimicrobial compounds into the post-genomic era. Genomic information and associated new technologies have the potential to revolutionise the drug discovery process. Genomic methods have created a wealth of potential new antimicrobial targets; strategies are evolving to provide validation for these targets before chemical inhibitors are identified. The ability to obtain large amounts of purified target proteins and advances in X-ray crystallography have caused significant increases in available protein structures, which may foreshadow an increased effort in structure-based drug design. The post-genomics strategies used in antimicrobial drug discovery may have application for small molecule drug discovery in numerous therapeutic areas.
Collapse
Affiliation(s)
- Molly B Schmid
- Genencor International, 925 Page Mill Road, Palo Alto CA 94304, USA.
| |
Collapse
|
452
|
Méresse S, Unsworth KE, Habermann A, Griffiths G, Fang F, Martínez-Lorenzo MJ, Waterman SR, Gorvel JP, Holden DW. Remodelling of the actin cytoskeleton is essential for replication of intravacuolar Salmonella. Cell Microbiol 2001; 3:567-77. [PMID: 11488817 DOI: 10.1046/j.1462-5822.2001.00141.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Maturation and maintenance of the intracellular vacuole in which Salmonella replicates is controlled by virulence proteins including the type III secretion system encoded by Salmonella pathogenicity island 2 (SPI-2). Here, we show that, several hours after bacterial uptake into different host cell types, Salmonella induces the formation of an F-actin meshwork around bacterial vacuoles. This structure is assembled de novo from the cellular G-actin pool in close proximity to the Salmonella vacuolar membrane. We demonstrate that the phenomenon does not require the Inv/Spa type III secretion system or cognate effector proteins, which induce actin polymerization during bacterial invasion, but does require a functional SPI-2 type III secretion system, which plays an important role in intracellular replication and systemic infection in mice. Treatment with actin-depolymerizing agents significantly inhibited intramacrophage replication of wild-type Salmonella typhimurium. Furthermore, after this treatment, wild-type bacteria were released into the host cell cytoplasm, whereas SPI-2 mutant bacteria remained within vacuoles. We conclude that actin assembly plays an important role in the establishment of an intracellular niche that sustains bacterial growth.
Collapse
Affiliation(s)
- S Méresse
- Centre d'Immunologie de Marseille-Luminy, INSERM-CNRS-Univ.Med., Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France
| | | | | | | | | | | | | | | | | |
Collapse
|
453
|
Martínez-Lorenzo MJ, Méresse S, de Chastellier C, Gorvel JP. Unusual intracellular trafficking of Salmonella typhimurium in human melanoma cells. Cell Microbiol 2001; 3:407-16. [PMID: 11422083 DOI: 10.1046/j.1462-5822.2001.00123.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Salmonella spp. are enterobacteria capable of invading and replicating in both professional and non-professional phagocytes. Here, we investigate the fate of S. typhimurium in human melanoma MelJuSo cells. The bacterium entered MelJuSo cells by a trigger mechanism and resided within a unique organelle, the Salmonella-containing vacuole (SCV). The SCV acquired early endosomal markers transiently and then underwent a series of membrane modifications. In HeLa cells, vacuole maturation is characterized by the simultaneous acquisition of the lysosomal membrane glycoproteins (Lgps) Lamp1, CD63 and vacuolar (v)-ATPase; in MelJuSo cells, however, acquisition of CD63 and v-ATPase preceded that of Lamp1. A very striking event in MelJuSo cells was the arrest of bacterial septation starting from 8 h after infection. Bacteria nevertheless continued to elongate, remained morphologically intact and viable and were eventually exocytosed. This original feature was observed in several skin-related cells including melanocytes, suggesting that it may provide the basis for an efficient host defence mechanism against Salmonella infection.
Collapse
Affiliation(s)
- M J Martínez-Lorenzo
- Centre d'Immunologie de Marseille-Luminy, Case 906, 13288 Marseille Cedex 9, France
| | | | | | | |
Collapse
|
454
|
Müller S, Feldman MF, Cornelis GR. The Type III secretion system of Gram-negative bacteria: a potential therapeutic target? Expert Opin Ther Targets 2001; 5:327-339. [PMID: 12540268 DOI: 10.1517/14728222.5.3.327] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Several pathogenic Gram-negative bacteria, including Salmonella, Shigella, Yersinia, Pseudomonas aeruginosa and enteropathogenic Escherichia coli harbour a complex attack system called 'Type III secretion' which is, in every case, an essential virulence determinant. This system, activated by contact with an eukaryotic cell membrane, allows bacteria to inject bacterial proteins across the two bacterial membranes and the eukaryotic cell membrane, to reach the cell's cytosol and destroy or subvert the host cell. The Type III virulence mechanism consists of a secretion apparatus, made up of about 25 proteins, and a set of effector proteins released by this apparatus. The mechanism of protein secretion is highly conserved among the different bacteria, although they cause a variety of diseases with different symptoms and severities, from fatal septicaemia to mild diarrhoea or from fulgurant diarrhoea to chronic infection of the lung. This review focuses on the proteins that make up the secretion machinery and examine if it could be a potential target for novel antimicrobials.
Collapse
Affiliation(s)
- Simone Müller
- Université Catholique de Louvain, 74 Avenue Hippocrate, UCL 74.49, B-1200 Brussels, Belgium.
| | | | | |
Collapse
|
455
|
Abstract
Salmonella enterica harbours two Salmonella pathogenicity islands (SPIs) each encoding a type III secretion system for virulence proteins. SPI1 is required for invasion, while systemic infections and intracellular accumulation of Salmonella are dependent on SPI2 function. This review will describe and compare the genetic organisation, evolution, regulation and molecular functions of SPI1 and SPI2.
Collapse
Affiliation(s)
- I Hansen-Wester
- Lehrstuhl für Bakteriologie, Max von Pettenkofer-Institut, LMU München, Germany
| | | |
Collapse
|
456
|
Abstract
Salmonellae are gram-negative bacteria that cause gastroenteritis and enteric fever. Salmonella virulence requires the coordinated expression of complex arrays of virulence factors that allow the bacterium to evade the host's immune system. All Salmonella serotypes share the ability to invade the host by inducing their own uptake into cells of the intestinal epithelium. In addition, Salmonella serotypes associated with gastroenteritis orchestrate an intestinal inflammatory and secretory response, whereas serotypes that cause enteric fever establish systemic infection through their ability to survive and replicate in mononuclear phagocytes. This review explores the molecular basis of selected Salmonella virulence strategies, with an emphasis on general themes of bacterial pathogenesis as exemplified by Salmonella.
Collapse
Affiliation(s)
- M E Ohl
- Department of Medicine, Division of Infectious Diseases, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98195, USA.
| | | |
Collapse
|
457
|
Abstract
Gram-negative bacteria use type III secretion (TTS) systems to translocate proteins into the extracellular environment or directly into eukaryotic cells. These complex secretory systems are assembled from over 20 different structural proteins, including 10 that have counterparts in the flagellar export pathway. Secretion substrates are directed to the TTS machinery via mRNA and/or amino acid secretion signals. TTS chaperones bind to select secretion substrates and assist in the export process. Recent progress in the understanding of TTS is reviewed.
Collapse
Affiliation(s)
- G V Plano
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, FL 33136, USA.
| | | | | |
Collapse
|
458
|
Fierer J, Guiney DG. Diverse virulence traits underlying different clinical outcomes of Salmonella infection. J Clin Invest 2001; 107:775-80. [PMID: 11285291 PMCID: PMC199580 DOI: 10.1172/jci12561] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Salmonella strains have evolved to infect a wide variety of reptiles, birds, and mammals resulting in many different syndromes ranging from colonization and chronic carriage to acute fatal disease. Adaptation to a large number of different evolutionary niches has undoubtedly driven the high degree of phenotypic and genotypic diversity in Salmonella strains. Differences in LPS and flagellar structure generate the antigenic variation that is reflected in the more than 2,000 known serotypes. Moreover, variations of LPS structure affect the virulence of the strain. The differential expression of various fimbriae by Salmonella is likely to be due to the wide variety of mucosal surfaces that are encountered by various strains, and the host immune response may select for a different expression pattern. As with these surface structures, a variety of other important virulence determinants show a variable distribution in Salmonella strains and also serve to delineate the divergence of the Salmonella lineage from E. coli. The acquisition of the SPI-1 region may have represented the defining genetic event in the separation of the Salmonella and E. coli lineages. The SPI-1 cell invasion function allowed Salmonella to establish a separate niche in epithelial cells. The mgtC locus on SPI-3 is also present in all lineages and facilitates the adaptation of the bacteria to the low Mg2+, low pH environment of the endosome that results from SPI-1-mediated invasion. Subsequent acquisition of SPI-2 allowed Salmonella to manipulate the sorting of the endosome or phagosome, altering the intracellular environment and facilitating bacterial growth within infected cells. The ability to disseminate from the bowel and establish extraintestinal niches is promoted by the spv locus. Since Salmonella proliferates within macrophages and must avoid phagocytosis by neutrophils to establish a systemic infection, the spv genes appear to promote the macrophage phase of the disease process. Here the polymorphism of the spv locus is clearly demonstrated, since the serovars that cause most cases of nontyphoid bacteremia contain the spv genes. The absence of the spv genes from S. typhi is particularly puzzling and is a strong indication that the pathogenesis of typhoid fever is fundamentally different from that of bacteremia due to nontyphoid Salmonella. There is currently no genetic explanation for the phenotype of host adaptation or for the finding that only a few serovars cause the majority of human infections. Based on recent findings that multiple individual virulence genes have a variable distribution in Salmonella, it is unlikely that a single locus will be found to be responsible for these complex biological traits. Instead, a complicated combination of genes are likely to contribute to the overall virulence phenotype.
Collapse
Affiliation(s)
- J Fierer
- Department of Medicine, University of California at San Diego School of Medicine, La Jolla, California, USA.
| | | |
Collapse
|
459
|
Autret N, Dubail I, Trieu-Cuot P, Berche P, Charbit A. Identification of new genes involved in the virulence of Listeria monocytogenes by signature-tagged transposon mutagenesis. Infect Immun 2001; 69:2054-65. [PMID: 11254558 PMCID: PMC98130 DOI: 10.1128/iai.69.4.2054-2065.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2000] [Accepted: 01/02/2001] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a gram-positive, facultative intracellular pathogen that can cause severe food-born infections in humans and animals. We have adapted signature-tagged transposon mutagenesis to L. monocytogenes to identify new genes involved in virulence in the murine model of infection. We used transposon Tn1545 carried on the integrative vector pAT113. Forty-eight tagged transposons were constructed and used to generate banks of L. monocytogenes mutants. Pools of 48 mutants were assembled, taking one mutant from each bank, injected into mice, and screened for those affected in their multiplication in the brains of infected animals. From 2,000 mutants tested, 18 were attenuated in vivo. The insertions harbored by these mutants led to the identification of 10 distinct loci, 7 of which corresponded to previously unknown genes. The properties of four loci involving putative cell wall components were further studied in vitro and in vivo. The data suggested that these components are involved in bacterial invasion and multiplication in the brain.
Collapse
Affiliation(s)
- N Autret
- INSERM U-411, CHU Necker-Enfants Malades, 75730 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
460
|
Mahan MJ, Heithoff DM, Sinsheimer RL, Low DA. Assessment of bacterial pathogenesis by analysis of gene expression in the host. Annu Rev Genet 2001; 34:139-164. [PMID: 11092824 DOI: 10.1146/annurev.genet.34.1.139] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A number of techniques have been developed to assess the expression of microbial virulence genes within the host (in vivo). These studies have shown that bacteria employ a wide variety of mechanisms to coordinately regulate the expression of these genes during infection. Two tenets have emerged from these studies: bacterial adaptation responses are critical to growth within the host, and interactions between microorganisms and the microenvironments of their hosts cannot be revealed from in vitro studies alone. Results that support these tenets include (i) the prevalent class of in vivo expressed genes are involved in adaptation to environmental stresses, (ii) pathogens recovered from host tissues (versus laboratory growth) are often more resistant to host killing mechanisms, and (iii) virulence gene expression can differ in the animal compared to laboratory media. Thus, pathogenicity comprises the unique ability to adapt to the varied host milieus encountered as the infection proceeds.
Collapse
Affiliation(s)
- M J Mahan
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA.
| | | | | | | |
Collapse
|
461
|
Mastroeni P, Chabalgoity JA, Dunstan SJ, Maskell DJ, Dougan G. Salmonella: immune responses and vaccines. Vet J 2001; 161:132-64. [PMID: 11243685 DOI: 10.1053/tvjl.2000.0502] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Salmonella infections are a serious medical and veterinary problem world-wide and cause concern in the food industry. Vaccination is an effective tool for the prevention of Salmonella infections. Host resistance to Salmonella relies initially on the production of inflammatory cytokines leading to the infiltration of activated inflammatory cells in the tissues. Thereafter T- and B-cell dependent specific immunity develops allowing the clearance of Salmonella microorganisms from the tissues and the establishment of long-lasting acquired immunity to re-infection. The increased resistance that develops after primary infection/ vaccination requires T-cells cytokines such as IFNgamma TNFalpha and IL12 in addition to opsonising antibody. However for reasons that are not fully understood seroconversion and/or the presence of detectable T-cell memory do not always correlate with the development of acquired resistance to infection.Whole-cell killed vaccines and subunit vaccines are used in the prevention of Salmonella infection in animals and in humans with variable results. A number of early live Salmonella vaccines derived empirically by chemical or u.v. mutagenesis proved to be immunogenic and protective and are still in use despite the need for repeated parenteral administration. Recent progress in the knowledge of the genetics of Salmonella virulence and modern recombinant DNA technology offers the possibility to introduce multiple defined attenuating and irreversible mutations into the bacterial genome. This has recently allowed the development of Salmonella strains devoid of significant side effects but still capable of inducing solid immunity after single oral administration. Live attenuated Salmonella vaccines have been used for the expression of heterologous antigens/proteins that can be successfully delivered to the immune system. Furthermore Salmonella can transfer plasmids encoding foreign antigens under the control of eukaryotic promoters (DNA vaccines) to antigen-presenting cells resulting in targeted delivery of DNA vaccines to these cells. Despite the great recent advances in the development of Salmonella vaccines a large proportion of the work has been conducted in laboratory rodents and more research in other animal species is required.
Collapse
Affiliation(s)
- P Mastroeni
- Centre for Veterinary Science, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK.
| | | | | | | | | |
Collapse
|
462
|
Abstract
Coevolution between bacteria and their plant or animal hosts determines characteristics of the interaction, the bacterial virulence genes involved, and the regulatory systems controlling expression of virulence genes. The long-standing association between Salmonellae and their animal hosts has resulted in the acquisition by Salmonella subspecies of a variety of virulence genes and the evolution of complex regulatory networks. The particular repertoire of virulence genes acquired by different Salmonella enterica subspecies and the regulatory systems that control them dictate subspecies-specific infection characteristics. Although the association between Vibrio cholerae and humans appears to be more recent, to reflect a simpler pathogenic strategy, and to involve fewer virulence genes than that of Salmonellae, complex virulence-regulatory networks have nonetheless evolved. In contrast, there is no evidence for acquisition of virulence genes by horizontal gene transfer in bordetellae, and their virulence regulon is less complex in overall structure than those of salmonellae and Vibrio cholerae. In Bordetellae, subspecies-specific differences in pathogenic strategy appear to result from differential gene expression within and across Bordetella subspecies.
Collapse
Affiliation(s)
- P A Cotter
- Department of Microbiology, Immunology and Molecular Genetics, UCLA School of Medicine, Los Angeles, California 90095-1747, USA.
| | | |
Collapse
|
463
|
Sukhan A, Kubori T, Wilson J, Galán JE. Genetic analysis of assembly of the Salmonella enterica serovar Typhimurium type III secretion-associated needle complex. J Bacteriol 2001; 183:1159-67. [PMID: 11157927 PMCID: PMC94988 DOI: 10.1128/jb.183.4.1159-1167.2001] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Several pathogenic bacteria have evolved a specialized protein secretion system termed type III to secrete and deliver effector proteins into eukaryotic host cells. Salmonella enterica serovar Typhimurium uses one such system to mediate entry into nonphagocytic cells. This system is composed of more than 20 proteins which are encoded within a pathogenicity island (SPI-1) located at centisome 63 of its chromosome. A subset of these components form a supramolecular structure, termed the needle complex, that resembles the flagellar hook-basal body complex. The needle complex is composed of a multiple-ring cylindrical base that spans the bacterial envelope and a needle-like extension that protrudes from the bacterial outer surface. Although the components of this structure have been identified, little is known about its assembly. In this study we examined the effect of loss-of-function mutations in each of the type III secretion-associated genes encoded within SPI-1 on the assembly of the needle complex. This analysis indicates that the assembly of this organelle occurs in discrete, genetically separable steps. A model for the assembly pathway of this important organelle is proposed that involves a sec-dependent step leading to the assembly of the base substructure followed by a sec-independent process resulting in the assembly of the needle portion.
Collapse
Affiliation(s)
- A Sukhan
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale School of Medicine, New Haven, Connecticut 06536-0812, USA
| | | | | | | |
Collapse
|
464
|
Klein JR, Jones BD. Salmonella pathogenicity island 2-encoded proteins SseC and SseD are essential for virulence and are substrates of the type III secretion system. Infect Immun 2001; 69:737-43. [PMID: 11159962 PMCID: PMC97946 DOI: 10.1128/iai.69.2.737-743.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Survival of Salmonella enterica serovar Typhimurium within host phagocytic cells is a critical step in establishing systemic infection in mice. Genes within Salmonella pathogenicity island 2 (SPI-2) encode a type III secretion system that is required for establishment of systemic infection. Several proteins encoded by SPI-2 have homology to type III secreted proteins from enteropathogenic Escherichia coli and Yersinia and, based on that homology, are predicted to be secreted through the SPI-2 type III secretion system. We have investigated the roles of two of these proteins, SseC and SseD. We demonstrate here that the SseD protein is required for systemic Salmonella infection of the mouse, and we confirmed the virulence requirement for the SseC protein. Experiments were performed, using cellular fractionation and immunoblotting, to identify the subcellular location of the SseC and SseD proteins. Both proteins were found to localize predominantly to the bacterial cell membrane. In addition, our work revealed that SseC and SseD are exposed to the extracellular environment and are loosely associated with the bacterial membrane. Furthermore, localization of SseC and SseD to the bacterial membrane was found to require a functional SPI-2 type III secretion system. Collectively, these results indicate that the SseC and SseD proteins are secreted by the SPI-2 type III secretion system to the bacterial membrane in order to perform their virulence functions.
Collapse
Affiliation(s)
- J R Klein
- Department of Microbiology, University of Iowa School of Medicine, Iowa City, Iowa 52242-1109, USA
| | | |
Collapse
|
465
|
Brumell JH, Rosenberger CM, Gotto GT, Marcus SL, Finlay BB. SifA permits survival and replication of Salmonella typhimurium in murine macrophages. Cell Microbiol 2001; 3:75-84. [PMID: 11207622 DOI: 10.1046/j.1462-5822.2001.00087.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SifA was originally identified as a virulence factor required for formation of Salmonella-induced filaments (Sifs), elongated tubules rich in lysosomal glycoproteins that extend from the Salmonella-containing vacuole in infected epithelial cells. Here, we demonstrate that deletion mutants of ssaR, a component of the SPI-2 type III secretion system, do not form Sifs in HeLa epithelial cells. This suggests that SifA is a translocated effector of this system, acting within host cells to form Sifs. In support of this hypothesis, transfection of HeLa cells with a vector encoding SifA fused to the green fluorescent protein caused extensive vacuolation of LAMP-1-positive compartments. Filamentous tubules that closely resembled Sifs were also observed in transfected cells, demonstrating that SifA is sufficient to initiate alteration of host cell endosomal structures. deltasifA mutants were impaired in their ability to survive/replicate in RAW 264.7 murine macrophages, a phenotype similar to ssaR mutants. Our findings suggest that SifA is an effector of the SPI-2 type III secretion system and allows colonization of murine macrophages, the host niche exploited during systemic phases of disease in these animals. A family of SifA-related proteins and their importance to Salmonella pathogenesis is also discussed.
Collapse
Affiliation(s)
- J H Brumell
- Department of Biochemistry, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
466
|
Iyoda S, Kamidoi T, Hirose K, Kutsukake K, Watanabe H. A flagellar gene fliZ regulates the expression of invasion genes and virulence phenotype in Salmonella enterica serovar Typhimurium. Microb Pathog 2001; 30:81-90. [PMID: 11162188 DOI: 10.1006/mpat.2000.0409] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported that the fliZ gene encodes a positive regulatory factor for the class 2 flagellar operons in Salmonella enterica serovar Typhimurium. In this study, we found that the fliZ mutation reduced not only the amounts of excreted flagellar proteins, but also those of several secreted invasion proteins encoded by the genes within Salmonella pathogenicity island 1. Using the lacZ gene fused to a subset of virulence-associated genes, we show that this downregulation was caused by a decreased transcription of the hilA gene, which encodes a positive regulator for the invasion genes. We further show that the fliZ mutation reduced invasion ability of S. enterica serovar Typhimurium to HEp-2 cells. Consistent with these results, orally challenged cells of the fliZ mutant show an attenuated virulence phenotype in a mouse typhoid model. These results indicate that the fliZ gene product positively regulates the invasion genes and is necessary for expression of full virulence.
Collapse
Affiliation(s)
- S Iyoda
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Toyama 1-23-1 Shinjuku-ku, 162-8640, Japan.
| | | | | | | | | |
Collapse
|
467
|
Bispham J, Tripathi BN, Watson PR, Wallis TS. Salmonella pathogenicity island 2 influences both systemic salmonellosis and Salmonella-induced enteritis in calves. Infect Immun 2001; 69:367-77. [PMID: 11119526 PMCID: PMC97892 DOI: 10.1128/iai.69.1.367-377.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have used signature-tagged mutagenesis to identify mutants of the host-specific Salmonella enterica serotype Dublin which were avirulent in calves and/or BALB/c mice. A mutant with a transposon insertion in the sseD gene of Salmonella pathogenicity island 2 (SPI-2), which encodes a putative secreted effector protein, was identified. This mutant was recovered from the bovine host but not from the murine host following infection with a pool of serotype Dublin mutants. However, a pure inoculum of the sseD mutant was subsequently shown to be attenuated in calves following infection either by the intravenous route or by the oral route. The sseD mutant was fully invasive for bovine intestinal mucosa but was subsequently unable to proliferate to the same numbers as the parental strain in vivo. Both the sseD mutant and a second SPI-2 mutant, with a transposon insertion in the ssaT gene, induced significantly weaker secretory and inflammatory responses in bovine ligated ileal loops than did the parental strain. These results demonstrate that SPI-2 is required by serotype Dublin for the induction of both systemic and enteric salmonellosis in calves.
Collapse
Affiliation(s)
- J Bispham
- Institute for Animal Health, Compton, Berkshire RG20 7NN, United Kingdom
| | | | | | | |
Collapse
|
468
|
Al-Hasani K, Rajakumar K, Bulach D, Robins-Browne R, Adler B, Sakellaris H. Genetic organization of the she pathogenicity island in Shigella flexneri 2a. Microb Pathog 2001; 30:1-8. [PMID: 11162180 DOI: 10.1006/mpat.2000.0404] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study we report the complete nucleotide sequence and genetic organization of the she pathogenicity island (PAI) of Shigella flexneri 2a strain YSH6000T. The 46 603 bp she PAI is situated adjacent to the 3' terminus of the pheV tRNA gene and includes an imperfect direct repeat of the 3'-terminal 22 bp of the pheV gene at the right boundary of the PAI. The she PAI carries a bacteriophage P4-like integrase gene within the pheV -proximal boundary of the PAI, intact and truncated mobile genetic elements, plasmid-related sequences, open reading frames exhibiting high sequence similarity to those found on the locus of enterocyte effacement (LEE) PAI of enterohemorrhagic Escherichia coli (EHEC), and the SHI-2 PAI of S. flexneri and several other open reading frames of unknown function. The she PAI also encodes two autotransporter proteins, including SigA, a cytopathic protease that contributes to intestinal fluid accumulation and Pic, a protease with mucinase, and hemagglutinin activities. In addition, an open reading frame (orf) termed sap, has high sequence similarity to the gene encoding Antigen 43, a surface-located autotransporter protein of E. coli. The ShET1 enterotoxin genes, associated predominantly with S. flexneri 2a strains, are also located on the she PAI.
Collapse
Affiliation(s)
- K Al-Hasani
- Department of Microbiology, Monash University, Victoria, 3800, Australia
| | | | | | | | | | | |
Collapse
|
469
|
Prager R, Mirold S, Tietze E, Strutz U, Knüppel B, Rabsch W, Hardt WD, Tschäpe H. Prevalence and polymorphism of genes encoding translocated effector proteins among clinical isolates of Salmonella enterica. Int J Med Microbiol 2000; 290:605-17. [PMID: 11200542 DOI: 10.1016/s1438-4221(00)80009-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pathogenic Salmonella enterica strains are capable of causing local and/or systemic infections. They employ two type III secretion systems to translocate an array of virulence-associated proteins (effector proteins) directly into the cytosol of target cells of the host. Earlier data had shown that changes in the repertoire of translocated effector proteins may contribute to the adaptation of Salmonella strains to new hosts and to the emergence of epidemic strains. Using PCR and Southern blot techniques the presence of and the polymorphism among the genes encoding the translocated effector proteins SopB, SopD, SopE, SopE2, SipA, SipB, SipC, AvrA, and SptP was studied in 71 phylogenetically well characterised S. enterica subspecies I (subspecies enterica) strains of the SARB collection and in 209 clinical and epidemic isolates of S. enterica subspecies I belonging to various serovars, phage types, and genotypes. All these Salmonella strains harbour all these respective genes with the exception of sopE and avrA which have been identified in only some of them. Several of the studied genes display genetic polymorphisms (RFLP). These RFLP patterns did not show a strict correlation with the genetic distance, the grouping genes in order to understand their role in the evolution of Salmonella as a pathogen.
Collapse
Affiliation(s)
- R Prager
- Robert Koch Institut Wernigerode, Germany
| | | | | | | | | | | | | | | |
Collapse
|
470
|
Lai YC, Yang SL, Peng HL, Chang HY. Identification of genes present specifically in a virulent strain of Klebsiella pneumoniae. Infect Immun 2000; 68:7149-51. [PMID: 11083844 PMCID: PMC97829 DOI: 10.1128/iai.68.12.7149-7151.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is a common cause of septicemia and urinary tract infections. The PCR-supported genomic subtractive hybridization was employed to identify genes specifically present in a virulent strain of K. pneumoniae. Analysis of 25 subtracted DNA clones has revealed 19 distinct nucleotide sequences. Two of the sequences were found to be the genes encoding the transposase of Tn3926 and a capsule polysaccharide exporting enzyme. Three sequences displayed moderate homology with bvgAS, which encodes a two-component signal transduction system in Bordetella pertussis. The rest of the sequences did not exhibit homology with any known genes. The distribution of these novel sequences varied greatly in K. pneumoniae clinical isolates, reflecting the heterogeneous nature of the K. pneumoniae population.
Collapse
Affiliation(s)
- Y C Lai
- Department of Life Science and Institute of Biotechnology, National Tsing Hua University, Hsin Chu, Taiwan, Republic of China
| | | | | | | |
Collapse
|
471
|
Altier C, Suyemoto M, Lawhon SD. Regulation of Salmonella enterica serovar typhimurium invasion genes by csrA. Infect Immun 2000; 68:6790-7. [PMID: 11083797 PMCID: PMC97782 DOI: 10.1128/iai.68.12.6790-6797.2000] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Penetration of intestinal epithelial cells by Salmonella enterica serovar Typhimurium requires the expression of invasion genes, found in Salmonella pathogenicity island 1 (SPI1), that encode components of a type III secretion apparatus. These genes are controlled in a complex manner by regulators within SPI1, including HilA and InvF, and those outside SPI1, such as the two-component regulators PhoP/PhoQ and BarA/SirA. We report here that epithelial cell invasion requires the serovar Typhimurium homologue of Escherichia coli csrA, which encodes a regulator that alters the stability of specific mRNA targets. A deletion mutant of csrA was unable to efficiently invade cultured epithelial cells and showed reduced expression of four tested SPI1 genes, hilA, invF, sipC, and prgH. Overexpression of csrA from an induced araBAD promoter also negatively affected the expression of these genes, indicating that CsrA can act as both a positive and a negative regulator of SPI1 genes and suggesting that the bacterium must tightly control the level or activity of CsrA to achieve maximal invasion. We found that CsrA affected hilA, a regulator of the other three genes we tested, probably by controlling one or more genetic elements that regulate hilA. We also found that both the loss and the overexpression of csrA reduced the expression of two regulators of hilA, hilC and hilD, suggesting that csrA exerts its control of hilA through one or both of these regulators. We further found, however, that CsrA could affect the expression of both invF and sipC independent of its effects on hilA. One additional striking phenotype of the csrA mutant, not observed in a comparable E. coli mutant, was its slow growth. Phenotypic revertants that had normal growth rates, while maintaining the csrA mutation, were common. These suppressed strains, however, did not recover the ability to invade cultured cells, indicating that the csrA-mediated loss of invasion cannot be attributed simply to poor growth and that the growth and invasion deficits of the csrA mutant arise from effects of CsrA on different targets.
Collapse
Affiliation(s)
- C Altier
- Department of Microbiology, Pathology, and Parasitology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606, USA.
| | | | | |
Collapse
|
472
|
Dobrindt U, Reidl J. Pathogenicity islands and phage conversion: evolutionary aspects of bacterial pathogenesis. Int J Med Microbiol 2000; 290:519-27. [PMID: 11100826 DOI: 10.1016/s1438-4221(00)80017-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Horizontal gene transfer plays a key role in the generation of novel bacterial pathogens. Besides plasmids and bacteriophages, large genomic regions termed pathogenicity islands (PAIs) can be transferred horizontally. All three mechanisms for DNA exchange or transfer may be important for the evolution of bacterial pathogens.
Collapse
Affiliation(s)
- U Dobrindt
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Germany
| | | |
Collapse
|
473
|
Guy RL, Gonias LA, Stein MA. A fluorescence microscopy based genetic screen to identify mutants altered for interactions with host cells. J Microbiol Methods 2000; 42:129-38. [PMID: 11018269 DOI: 10.1016/s0167-7012(00)00188-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The study of microbial intracellular pathogenesis has benefited from the application of immunofluorescence microscopy to characterize interactions of the pathogen with host cells. Unfortunately, immunofluorescence microscopy is impractical for screening the large number of bacterial mutants necessary to represent the entire genome of the pathogen. Screening has been limited due to the lack of materials suitable for high-throughput processing (e.g. 96-well plates) that also possess the optical features needed for high resolution fluorescence microscopy. Recently marketed 96-well Special Optics (SO) plates provide both the 96-well template ideal for high-throughput analysis and optical features suitable for fluorescence microscopy. Until this work, mutants needed for the study of a fluorescence-based virulence phenotype could not be obtained by direct screening approaches. In this study, SO plates were used to examine 11520 individual Salmonella typhimurium MudJ mutants for the loss of the ability to disrupt host cell endocytic compartments. The direct application of the fluorescence phenotype for screening allowed us to obtain a set of mutants to characterize the formation of lysosomal membrane glycoprotein (lgp) containing tubules upon Salmonella infection of HeLa epithelial cells. This approach will facilitate the characterization of a wide range of microbial phenotypes detectable by fluorescence microscopy.
Collapse
Affiliation(s)
- R L Guy
- Department of Microbiology, University of Vermont, Burlington, VT 05405-0068, USA
| | | | | |
Collapse
|
474
|
Lehoux DE, Levesque RC. Detection of genes essential in specific niches by signature-tagged mutagenesis. Curr Opin Biotechnol 2000; 11:434-9. [PMID: 11024359 DOI: 10.1016/s0958-1669(00)00124-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Variations of the signature-tagged mutagenesis (STM) technique are now possible and the method can be applied to most pathogens that have an STM-selectable phenotype in a host system. STM screening of 15,040 mutants from 11 bacterial species identified 323 in vivo attenuated mutants. As a genome-scanning tool, STM will yield information about genes with unknown functions as well as information crucial for understanding microbial pathogenesis.
Collapse
Affiliation(s)
- D E Lehoux
- Microbiologie Moléculaire et Génie des Protéines, Pavillon Charles-Eugène Marchand et Faculté de Médecine, Université Laval, Sainte-Foy, G1K 7P4, Québec, Canada
| | | |
Collapse
|
475
|
van der Velden AW, Lindgren SW, Worley MJ, Heffron F. Salmonella pathogenicity island 1-independent induction of apoptosis in infected macrophages by Salmonella enterica serotype typhimurium. Infect Immun 2000; 68:5702-9. [PMID: 10992474 PMCID: PMC101526 DOI: 10.1128/iai.68.10.5702-5709.2000] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The enteric pathogen Salmonella enterica serotype Typhimurium induces apoptosis in infected macrophages. This process is rapid, specific, and depends on the type III protein secretion system encoded within Salmonella pathogenicity island 1 (SPI1). Here, we demonstrate that serotype Typhimurium can activate programmed macrophage cell death independently of SPI1. SPI1 independent induction of apoptosis in infected macrophages is observed as early as 12 to 13 h postinfection, even in the absence of intracellular bacterial replication. Delayed activation of programmed macrophage cell death is not observed with serotype Typhimurium strains mutated in ompR or SPI2. Even though SPI2 mutants have a defect in intracellular proliferation, our results indicate that long-term intracellular survival and growth are not required for delayed macrophage killing per se, since Salmonella mutants that are severely defective in intracellular growth still induce delayed apoptosis. Inactivation of genes required for either rapid or delayed induction of apoptosis results in a conditional noncytotoxic phenotype, whereas simultaneous inactivation of genes required for both rapid and delayed induction of apoptosis renders serotype Typhimurium noncytotoxic under all conditions tested. Our hypothesis is that differential activation of programmed macrophage cell death by serotype Typhimurium occurs under discrete physiological conditions at distinct locations within an infected host.
Collapse
Affiliation(s)
- A W van der Velden
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | | | | | |
Collapse
|
476
|
Wren BW. Microbial genome analysis: insights into virulence, host adaptation and evolution. Nat Rev Genet 2000; 1:30-9. [PMID: 11262871 DOI: 10.1038/35049551] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Genome analysis of microbial pathogens has provided unique insights into their virulence, host adaptation and evolution. Common themes have emerged, including lateral gene transfer among enteric pathogens, genome decay among obligate intracellular pathogens and antigenic variation among mucosal pathogens. The advent of post-genomic approaches and the sequencing of the human genome will enable scientists to investigate the complex and dynamic interplay between host and pathogen. This wealth of information will catalyse the development of new intervention strategies to reduce the burden of microbial-related disease.
Collapse
Affiliation(s)
- B W Wren
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
477
|
Shea JE, Santangelo JD, Feldman RG. Signature-tagged mutagenesis in the identification of virulence genes in pathogens. Curr Opin Microbiol 2000; 3:451-8. [PMID: 11050441 DOI: 10.1016/s1369-5274(00)00120-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Signature-tagged mutagenesis is a functional genomics technique that identifies microbial genes required for infection within an animal host, or within host cells. The application of this technique to a range of microbial pathogens has resulted in the identification of novel virulence determinants in each screen performed to date, so that cumulatively several hundred genes have been ascribed a role in virulence.
Collapse
Affiliation(s)
- J E Shea
- Microscience Ltd, 545 Eskdale Road, Winnersh Triangle, RG41 5TU, Wokingham, Berkshire, UK.
| | | | | |
Collapse
|
478
|
Steele-Mortimer O, St-Louis M, Olivier M, Finlay BB. Vacuole acidification is not required for survival of Salmonella enterica serovar typhimurium within cultured macrophages and epithelial cells. Infect Immun 2000; 68:5401-4. [PMID: 10948170 PMCID: PMC101804 DOI: 10.1128/iai.68.9.5401-5404.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Phagosome acidification is an important component of the microbicidal response by infected eukaryotic cells. Thus, intracellular pathogens that reside within phagosomes must either block phagosome acidification or be able to survive at low pH. In this work, we studied the effect of phagosomal acidification on the survival of intracellular Salmonella enterica serovar Typhimurium in different cell types. Bafilomycin A1, a specific inhibitor of the vacuolar proton-ATPases, was used to block acidification of salmonella-containing vacuoles. We found that in several epithelial cell lines, treatment with bafilomycin A1 had no effect on intracellular survival or replication. Furthermore, although acidification was essential for Salmonella intracellular survival in J774 cultured macrophages, as reported previously (13), it is not essential in other macrophage cell lines. These data suggest that vacuolar acidification may play a role in intracellular survival of salmonellae only under certain conditions and in specific cell types.
Collapse
Affiliation(s)
- O Steele-Mortimer
- Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3
| | | | | | | |
Collapse
|
479
|
Guy RL, Gonias LA, Stein MA. Aggregation of host endosomes by Salmonella requires SPI2 translocation of SseFG and involves SpvR and the fms-aroE intragenic region. Mol Microbiol 2000; 37:1417-35. [PMID: 10998173 DOI: 10.1046/j.1365-2958.2000.02092.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Salmonella-induced aggregation of host endosomal compartments into tubules, termed lgp-tubules, requires sifA and ompR. Lgp-tubules result from Salmonella-directed alteration of the endocytic system and typify the unique intracellular locale where Salmonella replicate. A high-throughput method devised to screen 11 520 MudJ mutants for loss of lgp-tubule formation identified one auxotrophic and nine prototrophic mutants. Molecular characterization identified four new loci required to alter epithelial endocytic structure. Salmonella pathogenicity island 2 (SPI2) is the locus central to the phenotype. A subset of SPI2 effectors is essential: SpiC and SseFG are required, but not SseE. A subset of apparatus proteins is also implicated: SsaJ, L, M, V and P are required. SPI2 was implicated further, as SifA shows similarity with known SPI2 translocation targets, and OmpR regulates SPI2. Another locus lies within the smf-aroE intragenic region. Lgp-tubule formation also involves a locus on the virulence plasmid pSLT. The pSLT-encoded SpvR negatively regulates an unknown repressor of the phenotype located on pSLT. Finally, disruption of carB leads to multiple auxotrophy that prevents lgp-tubule formation. This study demonstrates that lgp-tubule formation is a virulence mechanism that underlies the selective disruption of host endocytic trafficking and is associated with the formation of a replication-permissive locale.
Collapse
Affiliation(s)
- R L Guy
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405-0068, USA
| | | | | |
Collapse
|
480
|
Kubori T, Sukhan A, Aizawa SI, Galán JE. Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc Natl Acad Sci U S A 2000; 97:10225-30. [PMID: 10944190 PMCID: PMC27824 DOI: 10.1073/pnas.170128997] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many bacterial pathogens of plants and animals have evolved a specialized protein-secretion system termed type III to deliver bacterial proteins into host cells. These proteins stimulate or interfere with host cellular functions for the pathogen's benefit. The Salmonella typhimurium pathogenicity island 1 encodes one of these systems that mediates this bacterium's ability to enter nonphagocytic cells. Several components of this type III secretion system are organized in a supramolecular structure termed the needle complex. This structure is made of discrete substructures including a base that spans both membranes and a needle-like projection that extends outward from the bacterial surface. We demonstrate here that the type III secretion export apparatus is required for the assembly of the needle substructure but is dispensable for the assembly of the base. We show that the length of the needle segment is determined by the type III secretion associated protein InvJ. We report that InvG, PrgH, and PrgK constitute the base and that PrgI is the main component of the needle of the type III secretion complex. PrgI homologs are present in type III secretion systems from bacteria pathogenic for animals but are absent from bacteria pathogenic for plants. We hypothesize that the needle component may establish the specificity of type III secretion systems in delivering proteins into either plant or animal cells.
Collapse
Affiliation(s)
- T Kubori
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06536, USA
| | | | | | | |
Collapse
|
481
|
Galan JE, Zhou D. Striking a balance: modulation of the actin cytoskeleton by Salmonella. Proc Natl Acad Sci U S A 2000; 97:8754-61. [PMID: 10922031 PMCID: PMC34008 DOI: 10.1073/pnas.97.16.8754] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salmonella spp. have evolved the ability to enter into cells that are normally nonphagocytic. The internalization process is the result of a remarkable interaction between the bacteria and the host cells. Immediately on contact, Salmonella delivers a number of bacterial effector proteins into the host cell cytosol through the function of a specialized organelle termed the type III secretion system. Initially, two of the delivered proteins, SopE and SopB, stimulate the small GTP-binding proteins Cdc42 and Rac. SopE is an exchange factor for these GTPases, and SopB is an inositol polyphosphate phosphatase. Stimulation of Cdc42 and Rac leads to marked actin cytoskeleton rearrangements, which are further enhanced by SipA, a Salmonella protein also delivered into the host cell by the type III secretion system. SipA lowers the critical concentration of G-actin, stabilizes F-actin at the site of bacterial entry, and increases the bundling activity of the host-cell protein T-plastin (fimbrin). The cellular responses stimulated by Salmonella are short-lived; therefore, immediately after bacterial entry, the cell regains its normal architecture. Remarkably, this process is mediated by SptP, another target of the type III secretion system. SptP exert its function by serving as a GTPase-activating protein for Cdc42 and Rac, turning these G proteins off after their stimulation by the bacterial effectors SopE and SopB. The balanced interaction of Salmonella with host cells constitutes a remarkable example of the sophisticated nature of a pathogen/host relationship shaped by evolution through a longstanding coexistence.
Collapse
Affiliation(s)
- J E Galan
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale School of Medicine, New Haven, CT 06536-0812, USA.
| | | |
Collapse
|
482
|
Beuzón CR, Méresse S, Unsworth KE, Ruíz-Albert J, Garvis S, Waterman SR, Ryder TA, Boucrot E, Holden DW. Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J 2000; 19:3235-49. [PMID: 10880437 PMCID: PMC313946 DOI: 10.1093/emboj/19.13.3235] [Citation(s) in RCA: 482] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A method based on the Competitive Index was used to identify Salmonella typhimurium virulence gene interactions during systemic infections of mice. Analysis of mixed infections involving single and double mutant strains showed that OmpR, the type III secretion system of Salmonella pathogenicity island 2 (SPI-2) and SifA [required for the formation in epithelial cells of lysosomal glycoprotein (lgp)-containing structures, termed Sifs] are all involved in the same virulence function. sifA gene expression was induced after Salmonella entry into host cells and was dependent on the SPI-2 regulator ssrA. A sifA(-) mutant strain had a replication defect in macrophages, similar to that of SPI-2 and ompR(-) mutant strains. Whereas wild-type and SPI-2 mutant strains reside in vacuoles that progressively acquire lgps and the vacuolar ATPase, the majority of sifA(-) bacteria lost their vacuolar membrane and were released into the host cell cytosol. We propose that the wild-type strain, through the action of SPI-2 effectors (including SpiC), diverts the Salmonella-containing vacuole from the endocytic pathway, and subsequent recruitment and maintenance of vacuolar ATPase/lgp-containing membranes that enclose replicating bacteria is mediated by translocation of SifA.
Collapse
Affiliation(s)
- C R Beuzón
- Department of Infectious Diseases, Imperial College School of Medicine, Du Cane Road, London W12 0NN, Electron Microscopy Unit, Queen Charlotte's and Chelsea Hospital, Goldhawk Road, London W6 0XG, UK and Centre d'Immunologie INSERM-CNRS de Ma
| | | | | | | | | | | | | | | | | |
Collapse
|
483
|
Maeda S, Yoshida H, Ogura K, Mitsuno Y, Hirata Y, Yamaji Y, Akanuma M, Shiratori Y, Omata M. H. pylori activates NF-kappaB through a signaling pathway involving IkappaB kinases, NF-kappaB-inducing kinase, TRAF2, and TRAF6 in gastric cancer cells. Gastroenterology 2000; 119:97-108. [PMID: 10889159 DOI: 10.1053/gast.2000.8540] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS H. pylori infection on gastric epithelial cells has been shown to induce NF-kappaB activation, but the mechanism of intracellular signal conduction that leads to NF-kappaB activation is not clear. The aim of this study was to analyze the molecular mechanism responsible for H. pylori-mediated NF-kappaB activation on gastric cancer cells. METHODS NF-kappaB activation by H. pylori was tested by using luciferase reporter assay. IkappaBalpha degradation by H. pylori infection was assessed by immunoblotting. IKKalpha and IKKbeta activation was analyzed by kinase assay. In transfection experiments, effects of dominant negative IkappaBalpha, IKKalpha, IKKbeta, NF-kappaB-inducing kinase (NIK), TRAF2, and TRAF6 mutants were investigated. The effects of an IKKbeta-specific inhibitor, aspirin, on NF-kappaB activation and IL-8 secretion were also analyzed. RESULTS H. pylori promotes degradation of IkappaBalpha, a cytoplasmic inhibitor of NF-kappaB. In kinase assay, H. pylori induced IKKalpha and IKKbeta catalytic activity in gastric cancer cells. Transfection of kinase-deficient mutant of either IKK inhibited H. pylori-mediated NF-kappaB activation dose-dependently. Aspirin inhibited both NF-kappaB activation and IL-8 secretion induced by H. pylori. NF-kappaB activation was also inhibited by transfection of kinase-deficient NIK or a dominant negative mutant of upstream adapter protein TRAF2 or TRAF6. CONCLUSIONS H. pylori induces NF-kappaB activation through an intracellular signaling pathway that involves IKKalpha, IKKbeta, NIK, TRAF2, and TRAF6.
Collapse
Affiliation(s)
- S Maeda
- Department of Gastroenterology, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
484
|
Hong PC, Tsolis RM, Ficht TA. Identification of genes required for chronic persistence of Brucella abortus in mice. Infect Immun 2000; 68:4102-7. [PMID: 10858227 PMCID: PMC101704 DOI: 10.1128/iai.68.7.4102-4107.2000] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/1999] [Accepted: 04/19/2000] [Indexed: 11/20/2022] Open
Abstract
The genetic basis for chronic persistence of Brucella abortus in lymphoid organs of mice, cows, and humans is currently unknown. We identified B. abortus genes involved in chronic infection, by assessing the ability of 178 signature-tagged mutants to establish and maintain persistent infection in mice. Each mutant was screened for its ability to colonize the spleens of mice at 2 and 8 weeks after inoculation. Comparison of the results from both time points identified two groups of mutants attenuated for chronic infection in mice. The first group was not recovered at either 2 or 8 weeks postinfection and was therefore defective in establishing infection. Mutants in this group carried transposon insertions in genes involved in lipopolysaccharide biosynthesis (wbkA), in aromatic amino acid biosynthesis, and in type IV secretion (virB1 and virB10). The second group, which was recovered at wild-type levels 2 weeks postinfection but not 8 weeks postinfection was able to establish infection but was unable to maintain chronic infection. One mutant in this group carried a transposon insertion in a gene with homology to gcvB of Mycobacterium tuberculosis, encoding glycine dehydrogenase, an enzyme whose activity is increased during the state of nonreplicating persistence. These results suggest that some mechanisms for long-term persistence may be shared among chronic intracellular pathogens. Furthermore, identification of two groups of genes, those required for initiating infection and those required only for long-term persistence, suggests that B. abortus uses distinct sets of virulence determinants to establish and maintain chronic infection in mice.
Collapse
Affiliation(s)
- P C Hong
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843-4467, USA
| | | | | |
Collapse
|
485
|
Affiliation(s)
- R A Kingsley
- Department of Medical Microbiology and Immunology, College of Medicine, Texas A&M University, College Station 77843-1114, USA
| | | |
Collapse
|
486
|
Affiliation(s)
- S Falkow
- Department of Microbiology and Immunology, Stanford University School of Medicine, California 94305-5124, USA.
| |
Collapse
|
487
|
Haller JC, Carlson S, Pederson KJ, Pierson DE. A chromosomally encoded type III secretion pathway in Yersinia enterocolitica is important in virulence. Mol Microbiol 2000; 36:1436-46. [PMID: 10931293 DOI: 10.1046/j.1365-2958.2000.01964.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Numerous Gram-negative bacteria use a type III, or contact dependent, secretion system to deliver proteins into the cytosol of host cells. All of these systems identified to date have been shown to have a role in pathogenesis. We have identified 13 genes on the Yersinia enterocolitica chromosome that encode a type III secretion apparatus plus two associated putative regulatory genes. In order to determine the function of this chromosomally-encoded secretion apparatus, we created an in frame deletion of a gene that has homology to the hypothesized inner membrane pore, ysaV. The ysaV mutant strain failed to secrete eight proteins, called Ysps, normally secreted by the parental strain when grown at 28 degrees C in Luria-Bertani (LB) broth supplemented with 0.4 M NaCl. Disruption of the ysaV gene had no effect on motility or phospholipase activity, suggesting this chromosomally encoded type III secretion pathway is distinct from the flagella secretion pathway of Y. enterocolitica. Deletion of the ysaV gene in a virulence plasmid positive strain had no effect on in vitro secretion of Yops by the plasmid-encoded type III secretion apparatus. Secretion of the Ysps was unaffected by the presence or absence of the virulence plasmid, suggesting the chromosomally encoded and plasmid-encoded type III secretion pathways act independently. Y. enterocolitica thus has three type III secretion pathways that appear to act independently. The ysaV mutant strain was somewhat attenuated in virulence compared with the wild type in the mouse oral model of infection (an approximately 0.9 log difference in LD50). The ysaV mutant strain was nearly as virulent as the wild type when inoculated intraperitoneally in the mouse model. A ysaV probe hybridized to sequences in other Yersinia spp. and homologues were found in the incomplete Y. pestis genome sequence, indicating a possible role for this system throughout the genus.
Collapse
Affiliation(s)
- J C Haller
- Department of Microbiology, University of Colorado Health Sciences Center, USA
| | | | | | | |
Collapse
|
488
|
Abstract
The recent emergence of food-borne pathogens, such as Salmonella enterica serotype Enteritidis (S. enteritidis) and Escherichia coli O157:H7, has generated increasing interest in how infectious diseases can invade, persist and spread within new host populations. To alter their host range pathogens require adaptations, which ensure their circulation in a new animal population. Adaptations for circulation in different populations of vertebrate hosts seem to have been acquired multiple times within the genus Salmonella because extant Salmonella serotypes differ greatly with regard to host range. In this article, mechanisms involved in host adaptation are deduced by considering the influence of the host immune response on circulation of Salmonella serotypes within populations of vertebrate animals. This approach contributes to the identification of genes involved in host adaptation and provides new insights into the emergence of food-borne pathogens.
Collapse
Affiliation(s)
- R A Kingsley
- Department of Medical Microbiology and Immunology, 407 Reynolds Medical Building, College of Medicine, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | | |
Collapse
|
489
|
Abstract
Systemic infections by Salmonella enterica, such as typhoid fever, are a significant threat to human health. Recent studies indicate that the function of a type III secretion system encoded by Salmonella Pathogenicity Island 2 (SPI2) is central for the ability of S. enterica to cause systemic infections and for intracellular pathogenesis. This review summarizes approaches leading to the identification of SPI2, the molecular genetics and evolution of SPI2, and the current understanding of the regulation of gene expression. Recent studies have indicated that SPI2 is used by intracellular Salmonella to actively modify functions of the host cells. The role of SPI2 during pathogenesis of salmonellosis and current models regarding function will be discussed.
Collapse
Affiliation(s)
- M Hensel
- Lehrstuhl Bakteriologie, Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität München, Germany.
| |
Collapse
|
490
|
Smith H. Questions about the behaviour of bacterial pathogens in vivo. Philos Trans R Soc Lond B Biol Sci 2000; 355:551-64. [PMID: 10874729 PMCID: PMC1692770 DOI: 10.1098/rstb.2000.0597] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bacterial pathogens cause disease in man and animals. They have unique biological properties, which enable them to colonize mucous surfaces, penetrate them, grow in the environment of the host, inhibit or avoid host defences and damage the host. The bacterial products responsible for these five biological requirements are the determinants of pathogenicity (virulence determinants). Current knowledge comes from studies in vitro, but now interest is increasing in how bacteria behave and produce virulence determinants within the infected host. There are three aspects to elucidate: bacterial activities, the host factors that affect them and the metabolic interactions between the two. The first is relatively easy to accomplish and, recently, new methods for doing this have been devised. The second is not easy because of the complexity of the environment in vivo and its ever-changing face. Nevertheless, some information can be gained from the literature and by new methodology. The third aspect is very difficult to study effectively unless some events in vivo can be simulated in vitro. The objectives of the Discussion Meeting were to describe the new methods and to show how they, and conventional studies, are revealing the activities of bacterial pathogens in vivo. This paper sets the scene by raising some questions and suggesting, with examples, how they might be answered. Bacterial growth in vivo is the primary requirement for pathogenicity. Without growth, determinants of the other four requirements are not formed. Results from the new methods are underlining this point. The important questions are as follows. What is the pattern of a developing infection and the growth rates and population sizes of the bacteria at different stages? What nutrients are present in vivo and how do they change as infection progresses and relate to growth rates and population sizes? How are these nutrients metabolized and by what bacterial mechanisms? Which bacterial processes handle nutrient deficiencies and antagonistic conditions that may arise? Conventional and new methods can answer the first question and part of the second; examples are described. The difficulties of trying to answer the last two are discussed. Turning to production in vivo of determinants of mucosal colonization, penetration, interference with host defence and damage to the host, here are the crucial questions. Are putative determinants, which have been recognized by studies in vitro, produced in vivo and are they relevant to virulence? Can hitherto unknown virulence determinants be recognized by examining bacteria grown in vivo? Does the complement of virulence determinants change as infection proceeds? Are regulatory processes recognized in vitro, such as ToxR/ToxS, PhoP/PhoQ, quorum sensing and type III secretion, operative in vivo? What environmental factors affect virulence determinant production in vivo and by what metabolic processes? Examples indicate that the answers to the first four questions are 'yes' in most but not all cases. Attempts to answer the last, and most difficult, question are also described. Finally, sialylation of the lipopolysaccharide of gonococci in vivo by host-derived cytidine 5'-mono-phospho-N-acetyl neuraminic acid, and the effect of host lactate are described. This investigation revealed a new bacterial component important in pathogenicity, the host factors responsible for its production and the metabolism involved.
Collapse
Affiliation(s)
- H Smith
- Medical School, University of Birmingham, UK
| |
Collapse
|
491
|
Cornelis GR. Type III secretion: a bacterial device for close combat with cells of their eukaryotic host. Philos Trans R Soc Lond B Biol Sci 2000; 355:681-93. [PMID: 10874740 PMCID: PMC1692769 DOI: 10.1098/rstb.2000.0608] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Salmonella, Shigella, Yersinia, Pseudomonas aeruginosa, enteropathogenic Escherichia coli and several plant-pathogenic Gram-negative bacteria use a new type of systems called 'type III secretion' to attack their host. These systems are activated by contact with a eukaryotic cell membrane and they allow bacteria to inject bacterial proteins across the two bacterial membranes and the eukaryotic cell membrane to reach a given compartment and destroy or subvert the target cell. These systems consist of a secretion apparatus made up of about 25 individual proteins and a set of proteins released by this apparatus. Some of these released proteins are 'effectors' that are delivered by extracellular bacteria into the cytosol of the target cell while the others are 'translocators' that help the 'effectors' to cross the membrane of the eukaryotic cell. Most of the 'effectors' act on the cytoskeleton or on intracellular signalling cascades. One of the proteins injected by the enteropathogenic E. coli serves as a membrane receptor for the docking of the bacterium itself at the surface of the cell.
Collapse
Affiliation(s)
- G R Cornelis
- Microbial Pathogenesis Unit, Christian de Duve Institute of Cellular Pathology (ICP), Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
492
|
Heithoff DM, Sinsheimer RL, Low DA, Mahan MJ. In vivo gene expression and the adaptive response: from pathogenesis to vaccines and antimicrobials. Philos Trans R Soc Lond B Biol Sci 2000; 355:633-42. [PMID: 10874736 PMCID: PMC1692776 DOI: 10.1098/rstb.2000.0604] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Microbial pathogens possess a repertoire of virulence determinants that each make unique contributions to fitness during infection. Analysis of these in vivo-expressed functions reveals the biology of the infection process, encompassing the bacterial infection strategies and the host ecological and environmental retaliatory strategies designed to combat them (e.g. thermal, osmotic, oxygen, nutrient and acid stress). Many of the bacterial virulence functions that contribute to a successful infection are normally only expressed during infection. A genetic approach was used to isolate mutants that ectopically expressed many of these functions in a laboratory setting. Lack of DNA adenine methylase (Dam) in Salmonella typhimurium abolishes the preferential expression of many bacterial virulence genes in host tissues. Dam- Salmonella were proficient in colonization of mucosal sites but were defective in colonization of deeper tissue sites. Additionally, Dam- mutants were totally avirulent and effective as live vaccines against murine typhoid fever. Since dam is highly conserved in many pathogenic bacteria that cause significant morbidity and mortality worldwide, Dams are potentially excellent targets for both vaccines and antimicrobials.
Collapse
Affiliation(s)
- D M Heithoff
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara 93106, USA
| | | | | | | |
Collapse
|
493
|
Unsworth KE, Holden DW. Identification and analysis of bacterial virulence genes in vivo. Philos Trans R Soc Lond B Biol Sci 2000; 355:613-22. [PMID: 10874734 PMCID: PMC1692767 DOI: 10.1098/rstb.2000.0602] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Signature-tagged mutagenesis is a mutation-based screening method for the identification of virulence genes of microbial pathogens. Genes isolated by this approach fall into three classes: those with known biochemical function, those of suspected function and some whose functions cannot be predicted from database searches. A variety of in vitro and in vivo methods are available to elucidate the function of genes of the second and third classes. We describe the use of some of these approaches to study the function of the Salmonella pathogenicity island 2 type III secretion system of Salmonella typhimurium. This virulence determinant is required for intracellular survival. Secretion by this system is induced by an acidic pH, and its function may be to alter trafficking of the Salmonella-containing vacuole. Use of a temperature-sensitive non-replicating plasmid and competitive index tests with other genes show that in vivo phenotypes do not always correspond to those predicted from in vitro studies.
Collapse
Affiliation(s)
- K E Unsworth
- Department of Infectious Diseases, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | |
Collapse
|
494
|
Finlay BB, Brumell JH. Salmonella interactions with host cells: in vitro to in vivo. Philos Trans R Soc Lond B Biol Sci 2000; 355:623-31. [PMID: 10874735 PMCID: PMC1692772 DOI: 10.1098/rstb.2000.0603] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Salmonellosis (diseases caused by Salmonella species) have several clinical manifestations, ranging from gastroenteritis (food poisoning) to typhoid (enteric) fever and bacteraemia. Salmonella species (especially Salmonella typhimurium) also represent organisms that can be readily used to investigate the complex interplay that occurs between a pathogen and its host, both in vitro and in vivo. The ease with which S. typhimurium can be cultivated and genetically manipulated, in combination with the availability of tissue culture models and animal models, has made S. typhimurium a desirable organism for such studies. In this review, we focus on Salmonella interactions with its host cells, both in tissue culture (in vitro) and in relevant animal models (in vivo), and compare results obtained using these different models. The recent advent of sophisticated imaging and molecular genetic tools has facilitated studying the events that occur in disease, thereby confirming tissue culture results, yet identifying new questions that need to be addressed in relevant disease settings.
Collapse
Affiliation(s)
- B B Finlay
- Biotechnology Laboratory, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
495
|
Abstract
The comparative analysis of multiple representatives of the genomes of particular species are leading us away from a view of bacterial genomes as static, monolithic structures towards the view that they are relatively variable, fluid structures. This plasticity is mainly the result of the rearrangement of genes within the genome and the acquisition of novel genes by horizontal transfer systems, e. g. plasmids, bacteriophages, transposons or gene cassettes. These mechanisms often act in concert thus generating a complex genetic structure. Genomic variations are not a phenomenon at the DNA level alone, they influence the phenotype of a bacterium as well and can render a formerly harmless organism into a hazardous pathogen. This review deals not only with the mechanisms of genome rearrangements and the horizontal transfer of genes in Enterobacteriaceae but also points out that mobile genetic elements themselves are subjected to variation.
Collapse
Affiliation(s)
- W Brunder
- Institut für Hygiene und Mikrobiologie der Universität Würzburg, Germany.
| | | |
Collapse
|
496
|
Janakiraman A, Slauch JM. The putative iron transport system SitABCD encoded on SPI1 is required for full virulence of Salmonella typhimurium. Mol Microbiol 2000; 35:1146-55. [PMID: 10712695 DOI: 10.1046/j.1365-2958.2000.01783.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Salmonella typhimurium is an invasive pathogen that causes diseases ranging from mild gastroenteritis to enteric fever. During the infection process, S. typhimurium induces a number of virulence genes required to circumvent host defences and/or acquire nutrients in the host. We have used the in vivo expression technology (IVET) system to select for S. typhimurium genes that are induced after invasion of a murine cultured cell line. We have characterized a putative iron transporter in Salmonella pathogenicity island 1, termed sitABCD. The sitABCD operon is induced under iron-deficient conditions in vitro and is repressed by Fur. This locus is induced in the animal specifically after invasion of the intestinal epithelium. We show that a sit null mutant is significantly attenuated in BALB/c mice, suggesting that SitABCD plays an important role in iron acquisition in the animal.
Collapse
Affiliation(s)
- A Janakiraman
- Department of Microbiology, University of Illinois, B103 CLSL, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
497
|
Foulongne V, Bourg G, Cazevieille C, Michaux-Charachon S, O'Callaghan D. Identification of Brucella suis genes affecting intracellular survival in an in vitro human macrophage infection model by signature-tagged transposon mutagenesis. Infect Immun 2000; 68:1297-303. [PMID: 10678941 PMCID: PMC97282 DOI: 10.1128/iai.68.3.1297-1303.2000] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/1999] [Accepted: 12/06/1999] [Indexed: 11/20/2022] Open
Abstract
Bacteria of the genus Brucella are facultative intracellular pathogens which have developed the capacity to survive and multiply in professional and nonprofessional phagocytes. The genetic basis of this aspect of Brucella virulence is still poorly understood. To identify new virulence factors, we have adapted signature-tagged transposon mutagenesis, which has been used essentially in animal models, to an in vitro human macrophage infection model. A library of 1,152 Brucella suis 1330 tagged mini-Tn5 Km2 mutants, in 12 pools, was screened for intracellular survival and multiplication in vitamin D(3)-differentiated THP1 cells. Eighteen mutants were identified, and their attenuation was confirmed in THP1 macrophages and HeLa cells. For each avirulent mutant, a genomic fragment containing the transposon was cloned. The genomic DNA sequence flanking the transposon allowed us to assign functions to all of the inactivated genes. Transposon integration had occurred in 14 different genes, some of which were known virulence genes involved in intracellular survival or biosynthesis of smooth lipopolysaccharide (the virB operon and manB), thus validating the model. Other genes identified encoded factors involved in the regulation of gene expression and enzymes involved in biosynthetic or metabolic pathways. Possible roles in the virulence of Brucella for the different factors identified are discussed.
Collapse
Affiliation(s)
- V Foulongne
- INSERM U431, Faculté de Médecine, 30900 Nîmes, France
| | | | | | | | | |
Collapse
|
498
|
Lee AK, Detweiler CS, Falkow S. OmpR regulates the two-component system SsrA-ssrB in Salmonella pathogenicity island 2. J Bacteriol 2000; 182:771-81. [PMID: 10633113 PMCID: PMC94342 DOI: 10.1128/jb.182.3.771-781.2000] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Salmonella pathogenicity island 2 (SPI-2) encodes a putative, two-component regulatory system, SsrA-SsrB, which regulates a type III secretion system needed for replication inside macrophages and systemic infection in mice. The sensor and regulator homologs, ssrAB (spiR), and genes within the secretion system, including the structural gene ssaH, are transcribed after Salmonella enters host cells. We have studied the transcriptional regulation of ssrAB and the secretion system by using gfp fusions to the ssrA and ssaH promoters. We found that early transcription of ssrA, after entry into macrophages, is most efficient in the presence of OmpR. An ompR mutant strain does not exhibit replication within cultured macrophages. Furthermore, footprint analysis shows that purified OmpR protein binds directly to the ssrA promoter region. We also show that minimal medium, pH 4.5, induces SPI-2 gene expression in wild-type but not ompR mutant strains. We conclude that the type III secretion system of SPI-2 is regulated by OmpR, which activates expression of ssrA soon after Salmonella enters the macrophage.
Collapse
Affiliation(s)
- A K Lee
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | |
Collapse
|
499
|
Marcus SL, Brumell JH, Pfeifer CG, Finlay BB. Salmonella pathogenicity islands: big virulence in small packages. Microbes Infect 2000; 2:145-56. [PMID: 10742687 DOI: 10.1016/s1286-4579(00)00273-2] [Citation(s) in RCA: 303] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Reflecting a complex set of interactions with its host, Salmonella spp. require multiple genes for full virulence. Many of these genes are found in 'pathogenicity islands' in the chromosome. Salmonella typhimurium possesses at least five such pathogenicity islands (SPI), which confer specific virulence traits and may have been acquired by horizontal transfer from other organisms. We highlight recent progress in characterizing these SPIs and the function of some of their genes. The role of virulence genes found on a highly conserved plasmid is also discussed. Collectively, these packages of virulence cassettes are essential for Salmonella pathogenesis.
Collapse
Affiliation(s)
- S L Marcus
- Biotechnology Laboratory, and Departments of Biochemistry & Molecular Biology and Microbiology & Immunology, University of British Columbia, Wesbrook Building 237, 6174 University Boulevard, Vancouver, Canada
| | | | | | | |
Collapse
|
500
|
Tsolis RM, Townsend SM, Miao EA, Miller SI, Ficht TA, Adams LG, Bäumler AJ. Identification of a putative Salmonella enterica serotype typhimurium host range factor with homology to IpaH and YopM by signature-tagged mutagenesis. Infect Immun 1999; 67:6385-93. [PMID: 10569754 PMCID: PMC97046 DOI: 10.1128/iai.67.12.6385-6393.1999] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/1999] [Accepted: 09/30/1999] [Indexed: 02/08/2023] Open
Abstract
The genetic basis for the host adaptation of Salmonella serotypes is currently unknown. We have explored a new strategy to identify Salmonella enterica serotype Typhimurium (S. typhimurium) genes involved in host adaptation, by comparing the virulence of 260 randomly generated signature-tagged mutants during the oral infection of mice and calves. This screen identified four mutants, which were defective for colonization of only one of the two host species tested. One mutant, which only displayed a colonization defect during the infection of mice, was further characterized. During competitive infection experiments performed with the S. typhimurium wild type, the mutant was defective for colonization of murine Peyer's patches but colonized bovine Peyer's patches at the wild-type level. No difference in virulence between wild type and mutant was observed when calves were infected orally with 10(10) CFU/animal. In contrast, the mutant possessed a sixfold increase in 50% lethal morbidity dose when mice were infected orally. The transposon in this mutant was inserted in a 2.9-kb pathogenicity islet, which is located between uvrB and yphK on the S. typhimurium chromosome. This pathogenicity islet contained a single gene, termed slrP, with homology to ipaH of Shigella flexneri and yopM of Yersinia pestis. These data show that comparative screening of signature-tagged mutants in two animal species can be used for scanning the S. typhimurium genome for genes involved in host adaptation.
Collapse
Affiliation(s)
- R M Tsolis
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843-4467, USA
| | | | | | | | | | | | | |
Collapse
|