451
|
Gonçalves OS, Souza FDO, Bruckner FP, Santana MF, Alfenas-Zerbini P. Widespread distribution of prophages signaling the potential for adaptability and pathogenicity evolution of Ralstonia solanacearum species complex. Genomics 2021; 113:992-1000. [PMID: 33626339 DOI: 10.1016/j.ygeno.2021.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/16/2021] [Accepted: 02/18/2021] [Indexed: 12/27/2022]
Abstract
Integrated bacteriophages (prophages) can impact host cells, affecting their lifestyle, genomic diversity, and fitness. However, many basic aspects of how these organisms affect the host cell remain poorly understood. Ralstonia solanacearum is a gram-negative plant pathogenic bacterium that encompasses a great diversity of ecotypes regarded as a species complex (R. solanacearum Species Complex - RSSC). RSSC genomes have a mosaic structure containing numerous elements, signaling the potential for its evolution through horizontal gene transfer. Here, we analyzed 120 Ralstonia spp. genomes from the public database to identify prophage sequences. In total, 379 prophage-like elements were found in the chromosome and megaplasmid of Ralstonia spp. These elements encode genes related to host fitness, virulence factors, antibiotic resistance, and niche adaptation, which might contribute to RSSC adaptability. Prophage-like elements are widespread into the complex in different species and geographic origins, suggesting that the RSSC phages are ancestrally acquired. Complete prophages belonging to the families Inoviridae, Myoviridae, and Siphoviridae were found, being the members of Inoviridae the most abundant. Analysis of CRISPR-Cas spacer sequences demonstrated the presence of prophages sequences that indicate successive infection events during bacterial evolution. Besides complete prophages, we also demonstrated 14 novel putative prophages integrated into Ralstonia spp. genomes. Altogether, our results provide insights into the diversity of prophages in RSSC genomes and suggest that these elements may deeply affect the virulence and host adaptation and shaping the genomes among the strains of this important pathogen.
Collapse
Affiliation(s)
- Osiel Silva Gonçalves
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG CEP 36570-000, Brazil
| | - Flávia de Oliveira Souza
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG CEP 36570-000, Brazil
| | - Fernanda Prieto Bruckner
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG CEP 36570-000, Brazil
| | - Mateus Ferreira Santana
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG CEP 36570-000, Brazil.
| | - Poliane Alfenas-Zerbini
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG CEP 36570-000, Brazil.
| |
Collapse
|
452
|
Nuidate T, Kuaphiriyakul A, Surachat K, Mittraparp-arthorn P. Induction and Genome Analysis of HY01, a Newly Reported Prophage from an Emerging Shrimp Pathogen Vibrio campbellii. Microorganisms 2021; 9:400. [PMID: 33671959 PMCID: PMC7919010 DOI: 10.3390/microorganisms9020400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/18/2022] Open
Abstract
Vibrio campbellii is an emerging aquaculture pathogen that causes luminous vibriosis in farmed shrimp. Although prophages in various aquaculture pathogens have been widely reported, there is still limited knowledge regarding prophages in the genome of pathogenic V. campbellii. Here, we describe the full-genome sequence of a prophage named HY01, induced from the emerging shrimp pathogen V. campbellii HY01. The phage HY01 was induced by mitomycin C and was morphologically characterized as long tailed phage. V. campbellii phage HY01 is composed of 41,772 bp of dsDNA with a G+C content of 47.45%. A total of 60 open reading frames (ORFs) were identified, of which 31 could be predicted for their biological functions. Twenty seven out of 31 predicted protein coding regions were matched with several encoded proteins of various Enterobacteriaceae, Pseudomonadaceae, Vibrionaceae, and other phages of Gram-negative bacteria. Interestingly, the comparative genome analysis revealed that the phage HY01 was only distantly related to Vibrio phage Va_PF430-3_p42 of fish pathogen V. anguillarum but differed in genomic size and gene organization. The phylogenetic tree placed the phage together with Siphoviridae family. Additionally, a survey of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) spacers revealed two matching sequences between phage HY01 genome and viral spacer sequence of Vibrio spp. The spacer results combined with the synteny results suggest that the evolution of V. campbellii phage HY01 is driven by the horizontal genetic exchange between bacterial families belonging to the class of Gammaproteobacteria.
Collapse
Affiliation(s)
- Taiyeebah Nuidate
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (T.N.); (A.K.)
| | - Aphiwat Kuaphiriyakul
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (T.N.); (A.K.)
| | - Komwit Surachat
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Pimonsri Mittraparp-arthorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (T.N.); (A.K.)
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
453
|
Zhang X, Zhang F, Mi Y, Liu Y, Zheng K, Zhou Y, Jiang T, Wang M, Jiang Y, Guo C, Shao H, He H, He J, Liang Y, Wang M, McMinn A. Characterization and genome analysis of phage AL infecting Pseudoalteromonas marina. Virus Res 2021; 295:198265. [PMID: 33550041 DOI: 10.1016/j.virusres.2020.198265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 11/29/2022]
Abstract
Although Pseudoalteromonas is an abundant, ubiquitous, marine algae-associated bacterial genus, there is still little information on their phages. In the present study, a marine phage AL, infecting Pseudoalteromonas marina, was isolated from the coastal waters off Qingdao. The AL phage is a siphovirus with an icosahedral head of 53 ± 1 nm and a non-contractile tail, length of 99 ± 1 nm. A one-step growth curve showed that the latent period was approximately 70 min, the rise period was 50 min, and the burst size was 227 pfu/cell. The genome sequence of this phage is a 33,582 bp double-stranded DNA molecule with a GC content of 40.1 %, encoding 52 open reading frames (ORFs). The order of the functional genes, especially those related to the structure module, is highly conserved and basically follows the common pattern used by siphovirus. The stable order has been formed during the long-term evolution of phages in the siphovirus group, which has helped the phages to maintain their normal morphology and function. Phylogenetic trees based on the major capsid protein (mcp) and genome-wide sequence have shown that the AL phage is closely related to four Pseudoalteromonas phages, including PHS21, PHS3, SL25 and Pq0. Further analysis using all-to-all BLASTP also confirmed that this phage shared high sequence homology with the same four Pseudoalteromonas phages, with amino acid sequence identities ranging from 44 % to 71 %. In particular, their similarity in virion structure module may imply that these phages share common assembly mechanism characteristics and infection pathways. Pseudoalteromonas phage AL not only provides basic information for the further study of the evolution of Pseudoalteromonas phages and interactions between marine phage and host but also helps to explain the unknown viral sequences in the metagenomic databases.
Collapse
Affiliation(s)
- Xinran Zhang
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Fang Zhang
- The Key Laboratory for Polar Science MNR, Polar Research Institute of China, Shanghai, 200136, China
| | - Ye Mi
- Qingdao City Center for Disease Control and Prevention, Qingdao Institute of Prevention Medicine, Qingdao, Shandong, 266033, China
| | - Yundan Liu
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Kaiyang Zheng
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yao Zhou
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Tong Jiang
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Meiwen Wang
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yong Jiang
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Cui Guo
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Hui He
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jianfeng He
- The Key Laboratory for Polar Science MNR, Polar Research Institute of China, Shanghai, 200136, China
| | - Yantao Liang
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.
| | - Min Wang
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.
| | - Andrew McMinn
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
454
|
Yahara K, Suzuki M, Hirabayashi A, Suda W, Hattori M, Suzuki Y, Okazaki Y. Long-read metagenomics using PromethION uncovers oral bacteriophages and their interaction with host bacteria. Nat Commun 2021; 12:27. [PMID: 33397904 PMCID: PMC7782811 DOI: 10.1038/s41467-020-20199-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages (phages), or bacterial viruses, are very diverse and highly abundant worldwide, including as a part of the human microbiomes. Although a few metagenomic studies have focused on oral phages, they relied on short-read sequencing. Here, we conduct a long-read metagenomic study of human saliva using PromethION. Our analyses, which integrate both PromethION and HiSeq data of >30 Gb per sample with low human DNA contamination, identify hundreds of viral contigs; 0-43.8% and 12.5-56.3% of the confidently predicted phages and prophages, respectively, do not cluster with those reported previously. Our analyses demonstrate enhanced scaffolding, and the ability to place a prophage in its host genomic context and enable its taxonomic classification. Our analyses also identify a Streptococcus phage/prophage group and nine jumbo phages/prophages. 86% of the phage/prophage group and 67% of the jumbo phages/prophages contain remote homologs of antimicrobial resistance genes. Pan-genome analysis of the phages/prophages reveals remarkable diversity, identifying 0.3% and 86.4% of the genes as core and singletons, respectively. Furthermore, our study suggests that oral phages present in human saliva are under selective pressure to escape CRISPR immunity. Our study demonstrates the power of long-read metagenomics utilizing PromethION in uncovering bacteriophages and their interaction with host bacteria.
Collapse
Affiliation(s)
- Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Aki Hirabayashi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wataru Suda
- Laboratory for Microbiome Science, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Masahira Hattori
- Laboratory for Microbiome Science, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo City, Japan
| | - Yusuke Okazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| |
Collapse
|
455
|
Champagne-Jorgensen K, Jose TA, Stanisz AM, Mian MF, Hynes AP, Bienenstock J. Bacterial membrane vesicles and phages in blood after consumption of lacticaseibacillus rhamnosus JB-1. Gut Microbes 2021; 13:1993583. [PMID: 34747333 PMCID: PMC8583084 DOI: 10.1080/19490976.2021.1993583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 02/04/2023] Open
Abstract
Gut microbiota have myriad roles in host physiology, development, and immunity. Though confined to the intestinal lumen by the epithelia, microbes influence distal systems via poorly characterized mechanisms. Recent work has considered the role of extracellular vesicles in interspecies communication, but whether they are involved in systemic microbe-host interaction is unclear. Here, we show that distinctive nanoparticles can be isolated from mouse blood within 2.5 h of consuming Lacticaseibacillus rhamnosus JB-1. In contrast to blood nanoparticles from saline-fed mice, they reproduced lipoteichoic acid-mediated immune functions of the original bacteria, including activation of TLR2 and increased IL-10 expression by dendritic cells. Like the fed bacteria, they also reduced IL-8 induced by TNF in an intestinal epithelial cell line. Though enriched for host neuronal proteins, these isolated nanoparticles also contained proteins and viral (phage) DNA of fed bacterial origin. Our data strongly suggest that oral consumption of live bacteria rapidly leads to circulation of their membrane vesicles and phages and demonstrate a nanoparticulate pathway whereby beneficial bacteria and probiotics may systemically affect their hosts.
Collapse
Affiliation(s)
- Kevin Champagne-Jorgensen
- Neuroscience Graduate Program, McMaster University, Hamilton, Canada
- Brain-Body Institute, St. Joseph’s Healthcare Hamilton, Hamilton, Canada
| | - Tamina A. Jose
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Canada
| | - Andrew M. Stanisz
- Brain-Body Institute, St. Joseph’s Healthcare Hamilton, Hamilton, Canada
| | - M. Firoz Mian
- Brain-Body Institute, St. Joseph’s Healthcare Hamilton, Hamilton, Canada
| | - Alexander P. Hynes
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Canada
- Department of Medicine, McMaster University, Hamilton, Canada
| | - John Bienenstock
- Brain-Body Institute, St. Joseph’s Healthcare Hamilton, Hamilton, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
456
|
Misol GN, Kokkari C, Katharios P. Biological and Genomic Characterization of a Novel Jumbo Bacteriophage, vB_VhaM_pir03 with Broad Host Lytic Activity against Vibrio harveyi. Pathogens 2020; 9:E1051. [PMID: 33333990 PMCID: PMC7765460 DOI: 10.3390/pathogens9121051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Vibrio harveyi is a Gram-negative marine bacterium that causes major disease outbreaks and economic losses in aquaculture. Phage therapy has been considered as a potential alternative to antibiotics however, candidate bacteriophages require comprehensive characterization for a safe and practical phage therapy. In this work, a lytic novel jumbo bacteriophage, vB_VhaM_pir03 belonging to the Myoviridae family was isolated and characterized against V. harveyi type strain DSM19623. It had broad host lytic activity against 31 antibiotic-resistant strains of V. harveyi, V. alginolyticus, V. campbellii and V. owensii. Adsorption time of vB_VhaM_pir03 was determined at 6 min while the latent-phase was at 40 min and burst-size at 75 pfu/mL. vB_VhaM_pir03 was able to lyse several host strains at multiplicity-of-infections (MOI) 0.1 to 10. The genome of vB_VhaM_pir03 consists of 286,284 base pairs with 334 predicted open reading frames (ORFs). No virulence, antibiotic resistance, integrase encoding genes and transducing potential were detected. Phylogenetic and phylogenomic analysis showed that vB_VhaM_pir03 is a novel bacteriophage displaying the highest similarity to another jumbo phage, vB_BONAISHI infecting Vibrio coralliilyticus. Experimental phage therapy trial using brine shrimp, Artemia salina infected with V. harveyi demonstrated that vB_VhaM_pir03 was able to significantly reduce mortality 24 h post infection when administered at MOI 0.1 which suggests that it can be an excellent candidate for phage therapy.
Collapse
Affiliation(s)
- Gerald N. Misol
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, 71500 Heraklion, Crete, Greece; (G.N.M.J.); (C.K.)
- Department of Biology, University of Crete, 71003 Heraklion, Crete, Greece
| | - Constantina Kokkari
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, 71500 Heraklion, Crete, Greece; (G.N.M.J.); (C.K.)
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, 71500 Heraklion, Crete, Greece; (G.N.M.J.); (C.K.)
| |
Collapse
|
457
|
Djurhuus AM, Carstens AB, Neve H, Kot W, Hansen LH. Two New Dickeya dadantii Phages with Odd Growth Patterns Expand the Diversity of Phages Infecting Soft Rot Pectobacteriaceae. ACTA ACUST UNITED AC 2020; 1:251-259. [DOI: 10.1089/phage.2020.0039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Amaru Miranda Djurhuus
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Alexander Byth Carstens
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
458
|
Palmer M, Hedlund BP, Roux S, Tsourkas PK, Doss RK, Stamereilers C, Mehta A, Dodsworth JA, Lodes M, Monsma S, Glavina del Rio T, Schoenfeld TW, Eloe-Fadrosh EA, Mead DA. Diversity and Distribution of a Novel Genus of Hyperthermophilic Aquificae Viruses Encoding a Proof-Reading Family-A DNA Polymerase. Front Microbiol 2020; 11:583361. [PMID: 33281778 PMCID: PMC7689252 DOI: 10.3389/fmicb.2020.583361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022] Open
Abstract
Despite the high abundance of Aquificae in many geothermal systems, these bacteria are difficult to culture and no viruses infecting members of this phylum have been isolated. Here, we describe the complete, circular dsDNA Uncultivated Virus Genome (UViG) of Thermocrinis Octopus Spring virus (TOSV), derived from metagenomic data, along with eight related UViGs representing three additional viral species. Despite low overall similarity among viruses from different hot springs, the genomes shared a high degree of synteny, and encoded numerous genes for nucleotide metabolism, including a PolA-type DNA polymerase polyprotein with likely accessory functions, a DNA Pol III sliding clamp, a thymidylate kinase, a DNA gyrase, a helicase, and a DNA methylase. Also present were conserved genes predicted to code for phage capsid, large and small subunits of terminase, portal protein, holin, and lytic transglycosylase, all consistent with a distant relatedness to cultivated Caudovirales. These viruses are predicted to infect Aquificae, as multiple CRISPR spacers matching the viral genomes were identified within the genomes and metagenomic contigs from these bacteria. Based on the predicted atypical bi-directional replication strategy, low sequence similarity to known viral genomes, and unique position in gene-sharing networks, we propose a new putative genus, "Pyrovirus," in the order Caudovirales.
Collapse
Affiliation(s)
- Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Brian P. Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Simon Roux
- Department of Energy Joint Genome Institute, Berkeley, CA, United States
| | - Philippos K. Tsourkas
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Ryan K. Doss
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Casey Stamereilers
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Astha Mehta
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Jeremy A. Dodsworth
- Department of Biology, California State University, San Bernardino, CA, United States
| | | | - Scott Monsma
- Lucigen Corporation, Middleton, WI, United States
| | | | | | | | - David A. Mead
- Varigen Biosciences Corporation, Madison, WI, United States
| |
Collapse
|
459
|
McKindles KM, Manes MA, DeMarco JR, McClure A, McKay RM, Davis TW, Bullerjahn GS. Dissolved Microcystin Release Coincident with Lysis of a Bloom Dominated by Microcystis spp. in Western Lake Erie Attributed to a Novel Cyanophage. Appl Environ Microbiol 2020; 86:e01397-20. [PMID: 32859600 PMCID: PMC7642080 DOI: 10.1128/aem.01397-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/25/2020] [Indexed: 11/20/2022] Open
Abstract
Western Lake Erie (Laurentian Great Lakes) is prone to annual cyanobacterial harmful algal blooms (cHABs) dominated by Microcystis spp. that often yield microcystin toxin concentrations exceeding the federal EPA recreational contact advisory of 8 μg liter-1 In August 2014, microcystin levels were detected in finished drinking water above the World Health Organization 1.0 μg liter-1 threshold for consumption, leading to a 2-day disruption in the supply of drinking water for >400,000 residents of Toledo, Ohio (USA). Subsequent metatranscriptomic analysis of the 2014 bloom event provided evidence that release of toxin into the water supply was likely caused by cyanophage lysis that transformed a portion of the intracellular microcystin pool into the dissolved fraction, rendering it more difficult to eliminate during treatment. In August 2019, a similar increase in dissolved microcystins at the Toledo water intake was coincident with a viral lytic event caused by a phage consortium different in composition from what was detected following the 2014 Toledo water crisis. The most abundant viral sequence in metagenomic data sets was a scaffold from a putative member of the Siphoviridae, distinct from the Ma-LMM01-like Myoviridae that are typically documented to occur in western Lake Erie. This study provides further evidence that viral activity in western Lake Erie plays a significant role in transformation of microcystins from the particulate to the dissolved fraction and therefore requires monitoring efforts from local water treatment plants. Additionally, identification of multiple lytic cyanophages will enable the development of a quantitative PCR toolbox to assess viral activity during cHABs.IMPORTANCE Viral attack on cHABs may contribute to changes in community composition during blooms, as well as bloom decline, yet loss of bloom biomass does not eliminate the threat of cHAB toxicity. Rather, it may increase risks to the public by delivering a pool of dissolved toxin directly into water treatment utilities when the dominating Microcystis spp. are capable of producing microcystins. Detecting, characterizing, and quantifying the major cyanophages involved in lytic events will assist water treatment plant operators in making rapid decisions regarding the pool of microcystins entering the plant and the corresponding best practices to neutralize the toxin.
Collapse
Affiliation(s)
- Katelyn M McKindles
- Department of Biological Sciences and Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
| | - Makayla A Manes
- Department of Biological Sciences and Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
| | - Jonathan R DeMarco
- Department of Biological Sciences and Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
| | - Andrew McClure
- Division of Water Treatment for the City of Toledo, Toledo, Ohio, USA
| | - R Michael McKay
- Department of Biological Sciences and Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Timothy W Davis
- Department of Biological Sciences and Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
- Center for Great Lakes and Watershed Studies, Bowling Green State University, Bowling Green, Ohio, USA
| | - George S Bullerjahn
- Department of Biological Sciences and Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
- Center for Great Lakes and Watershed Studies, Bowling Green State University, Bowling Green, Ohio, USA
| |
Collapse
|
460
|
Girard C, Langlois V, Vigneron A, Vincent WF, Culley AI. Seasonal Regime Shift in the Viral Communities of a Permafrost Thaw Lake. Viruses 2020; 12:v12111204. [PMID: 33105728 PMCID: PMC7690404 DOI: 10.3390/v12111204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Permafrost thaw lakes including thermokarst lakes and ponds are ubiquitous features of Subarctic and Arctic landscapes and are hotspots of microbial activity. Input of terrestrial organic matter into the planktonic microbial loop of these lakes may greatly amplify global greenhouse gas emissions. This microbial loop, dominated in the summer by aerobic microorganisms including phototrophs, is radically different in the winter, when metabolic processes shift to the anaerobic degradation of organic matter. Little is known about the viruses that infect these microbes, despite evidence that viruses can control microbial populations and influence biogeochemical cycling in other systems. Here, we present the results of a metagenomics-based study of viruses in the larger than 0.22 µm fraction across two seasons (summer and winter) in a permafrost thaw lake in Subarctic Canada. We uncovered 351 viral populations (vOTUs) in the surface waters of this lake, with diversity significantly greater during the summer. We also identified and characterized several phage genomes and prophages, which were mostly present in the summer. Finally, we compared the viral community of this waterbody to other habitats and found unexpected similarities with distant bog lakes in North America.
Collapse
Affiliation(s)
- Catherine Girard
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada; (C.G.); (V.L.)
- Centre d’études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada; (A.V.); (W.F.V.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Takuvik Joint International Laboratory, Université Laval, Québec, QC G1V 0A6, Canada
| | - Valérie Langlois
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada; (C.G.); (V.L.)
- Centre d’études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada; (A.V.); (W.F.V.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Takuvik Joint International Laboratory, Université Laval, Québec, QC G1V 0A6, Canada
| | - Adrien Vigneron
- Centre d’études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada; (A.V.); (W.F.V.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Takuvik Joint International Laboratory, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Warwick F. Vincent
- Centre d’études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada; (A.V.); (W.F.V.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Takuvik Joint International Laboratory, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Alexander I. Culley
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada; (C.G.); (V.L.)
- Centre d’études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada; (A.V.); (W.F.V.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Takuvik Joint International Laboratory, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
461
|
Characterization of Novel Lytic Bacteriophages of Achromobacter marplantensis Isolated from a Pneumonia Patient. Viruses 2020; 12:v12101138. [PMID: 33049935 PMCID: PMC7600146 DOI: 10.3390/v12101138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 01/21/2023] Open
Abstract
Achromobacter spp. are becoming increasingly associated with lung infections in patients suffering from cystic fibrosis (CF). A. marplatensis, which is closely related to A. xylosoxidans, has been isolated from the lungs of CF patients and other human infections. This article describes the isolation, morphology and characterization of two lytic bacteriophages specific for an A. marplatensis strain isolated from a pneumonia patient. This host strain was the causal agent of hospital acquired pneumonia–the first clinical report of such an occurrence. Full genome sequencing revealed bacteriophage genomes ranging in size from 45901 to 46,328 bp. Transmission electron microscopy revealed that the two bacteriophages AMA1 and AMA2 belonged to the Siphoviridae family. Host range analysis showed that their host range did not extend to A. xylosoxidans. The possibility exists for future testing of such bacteriophages in the control of Achromobacter infections such as those seen in CF and other infections of the lungs. The incidence of antibiotic resistance in this genus highlights the importance of seeking adjuncts and alternatives in CF and other lung infections.
Collapse
|
462
|
Morimoto D, Šulčius S, Yoshida T. Viruses of freshwater bloom-forming cyanobacteria: genomic features, infection strategies and coexistence with the host. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:486-502. [PMID: 32754956 DOI: 10.1111/1758-2229.12872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Freshwater bloom-forming cyanobacteria densely grow in the aquatic environments, leading to an increase in the viral-contact rate. They possess numerous antiviral genes, as well as cell differentiation- and physiological performance-related genes, owing to genome expansion. Their genomic features and unique lifestyles suggest that they coexist with cyanoviruses in ways different from marine cyanobacteria. Furthermore, genome contents of isolated freshwater bloom-forming cyanobacterial viruses have little in common with those of marine cyanoviruses studied to date. They lack the marine cyanoviral hallmark genes that sustain photosynthetic activity and redirect host metabolism to viral reproduction; therefore, they are predicted to share metabolisms and precursor pools with host cyanobacteria to ensure efficient viral reproduction and avoid nutrient deficiencies and antiviral response. Additionally, cyanovirus-cyanobacteria coexistence strategies may change as bloom density increases. Diverse genotypic populations of cyanoviruses and hosts coexist and fluctuate under high viral-contact rate conditions, leading to their rapid coevolution through antiviral responses. The ancestral and newly evolved genotypes coexist, thereby expanding the diversity levels of host and viral populations. Bottleneck events occurring due to season-related decreases in bloom-forming species abundance provide each genotype within cyanobacterial population an equal chance to increase in prevalence during the next bloom and enhance further diversification.
Collapse
Affiliation(s)
- Daichi Morimoto
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Sigitas Šulčius
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos 2, Vilnius, 08412, Lithuania
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
463
|
Wittmann J, Turner D, Millard AD, Mahadevan P, Kropinski AM, Adriaenssens EM. From Orphan Phage to a Proposed New Family-the Diversity of N4-Like Viruses. Antibiotics (Basel) 2020; 9:E663. [PMID: 33008130 PMCID: PMC7650795 DOI: 10.3390/antibiotics9100663] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 01/29/2023] Open
Abstract
Escherichia phage N4 was isolated in 1966 in Italy and has remained a genomic orphan for a long time. It encodes an extremely large virion-associated RNA polymerase unique for bacterial viruses that became characteristic for this group. In recent years, due to new and relatively inexpensive sequencing techniques the number of publicly available phage genome sequences expanded rapidly. This revealed new members of the N4-like phage group, from 33 members in 2015 to 115 N4-like viruses in 2020. Using new technologies and methods for classification, the Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) has moved the classification and taxonomy of bacterial viruses from mere morphological approaches to genomic and proteomic methods. The analysis of 115 N4-like genomes resulted in a huge reassessment of this group and the proposal of a new family "Schitoviridae", including eight subfamilies and numerous new genera.
Collapse
Affiliation(s)
- Johannes Wittmann
- Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Dann Turner
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK;
| | - Andrew D. Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH UK;
| | | | - Andrew M. Kropinski
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
464
|
Wang M, Gao C, Jiang T, You S, Jiang Y, Guo C, He H, Liu Y, Zhang X, Shao H, Liu H, Liang Y, Wang M, McMinn A. Genomic analysis of Synechococcus phage S-B43 and its adaption to the coastal environment. Virus Res 2020; 289:198155. [PMID: 32941942 DOI: 10.1016/j.virusres.2020.198155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 11/17/2022]
Abstract
Synechococcus dominate picocyanobacterial communities in coastal environments. However, only a few Synechococcus phages have been described from the coastal seas of the Northwest Pacific Ocean. Here a new Synechococcus phage, S-B43 was isolated from the Bohai Sea, a semi-closed coastal sea of the Northwest Pacific Ocean. S-B43 is a member of Myoviridae, containing 275 predicted open reading frames. Fourteen auxiliary metabolic genes (AMG) were identified from the genome of S-B43, including five photosynthetic associated genes and several AMGs related to its adaption to the high turbidity and eutrophic coastal environment with a low ratio of phosphorus to nitrogen (HNLP). The occurrences of 31 AMGs among 34 cyanophage genomes indicates that AMGs zwf, gnd, speD, petF and those coding for FECH and thioredoxin were more common in coastal areas than in the open ocean and AMGs pebS and ho1 were more prevalent in the open ocean. The occurrence of cyanophage AMGs in different environments might be a reflection of the environmental adaption of their hosts. This study contributes to our understanding of the interactions between cyanobacteria and cyanophages and their environmental adaption to the coastal environment.
Collapse
Affiliation(s)
- Meiwen Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Chen Gao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Tong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Siyuan You
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Cui Guo
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Hui He
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yundan Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xinran Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Hongbin Liu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yantao Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Andrew McMinn
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
465
|
Kreienbaum M, Dörrich AK, Brandt D, Schmid NE, Leonhard T, Hager F, Brenzinger S, Hahn J, Glatter T, Ruwe M, Briegel A, Kalinowski J, Thormann KM. Isolation and Characterization of Shewanella Phage Thanatos Infecting and Lysing Shewanella oneidensis and Promoting Nascent Biofilm Formation. Front Microbiol 2020; 11:573260. [PMID: 33072035 PMCID: PMC7530303 DOI: 10.3389/fmicb.2020.573260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/27/2020] [Indexed: 01/21/2023] Open
Abstract
Species of the genus Shewanella are widespread in nature in various habitats, however, little is known about phages affecting Shewanella sp. Here, we report the isolation of phages from diverse freshwater environments that infect and lyse strains of Shewanella oneidensis and other Shewanella sp. Sequence analysis and microscopic imaging strongly indicate that these phages form a so far unclassified genus, now named Shewanella phage Thanatos, which can be positioned within the subfamily of Tevenvirinae (Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Caudovirales; Myoviridae; Tevenvirinae). We characterized one member of this group in more detail using S. oneidensis MR-1 as a host. Shewanella phage Thanatos-1 possesses a prolate icosahedral capsule of about 110 nm in height and 70 nm in width and a tail of about 95 nm in length. The dsDNA genome exhibits a GC content of about 34.5%, has a size of 160.6 kbp and encodes about 206 proteins (92 with an annotated putative function) and two tRNAs. Out of those 206, MS analyses identified about 155 phage proteins in PEG-precipitated samples of infected cells. Phage attachment likely requires the outer lipopolysaccharide of S. oneidensis, narrowing the phage's host range. Under the applied conditions, about 20 novel phage particles per cell were produced after a latent period of approximately 40 min, which are stable at a pH range from 4 to 12 and resist temperatures up to 55°C for at least 24 h. Addition of Thanatos to S. oneidensis results in partial dissolution of established biofilms, however, early exposure of planktonic cells to Thanatos significantly enhances biofilm formation. Taken together, we identified a novel genus of Myophages affecting S. oneidensis communities in different ways.
Collapse
Affiliation(s)
- Maximilian Kreienbaum
- Department of Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Anja K Dörrich
- Department of Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| | - David Brandt
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Nicole E Schmid
- Department of Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Tabea Leonhard
- Department of Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Fabian Hager
- Department of Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Susanne Brenzinger
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Julia Hahn
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Timo Glatter
- Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Matthias Ruwe
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Ariane Briegel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Kai M Thormann
- Department of Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
466
|
Chen LX, Méheust R, Crits-Christoph A, McMahon KD, Nelson TC, Slater GF, Warren LA, Banfield JF. Large freshwater phages with the potential to augment aerobic methane oxidation. Nat Microbiol 2020; 5:1504-1515. [PMID: 32839536 PMCID: PMC7674155 DOI: 10.1038/s41564-020-0779-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/21/2020] [Indexed: 12/31/2022]
Abstract
There is growing evidence that phages with unusually large genomes are common across various microbiomes, but little is known about their genetic inventories or potential ecosystem impacts. In the present study, we reconstructed large phage genomes from freshwater lakes known to contain bacteria that oxidize methane. Of manually curated genomes, 22 (18 are complete), ranging from 159 kilobase (kb) to 527 kb in length, were found to encode the pmoC gene, an enzymatically critical subunit of the particulate methane monooxygenase, the predominant methane oxidation catalyst in nature. The phage-associated PmoC sequences show high similarity to (>90%), and affiliate phylogenetically with, those of coexisting bacterial methanotrophs, including members of Methyloparacoccus, Methylocystis and Methylobacter spp. In addition, pmoC-phage abundance patterns correlate with those of the coexisting bacterial methanotrophs, supporting host-phage relationships. Future work is needed to determine whether phage-associated PmoC has similar functions to additional copies of PmoC encoded in bacterial genomes, thus contributing to growth on methane. Transcriptomics data from Lake Rotsee (Switzerland) showed that some phage-associated pmoC genes were highly expressed in situ and, of interest, that the most rapidly growing methanotroph was infected by three pmoC-phages. Thus, augmentation of bacterial methane oxidation by pmoC-phages during infection could modulate the efflux of this potent greenhouse gas into the environment.
Collapse
Affiliation(s)
- Lin-Xing Chen
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA
| | - Raphaël Méheust
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA
| | | | - Katherine D McMahon
- Departments of Civil and Environmental Engineering, and Bacteriology, University of Wisconsin, Madison, WI, USA
| | | | - Gregory F Slater
- School of Geography and Earth Science, McMaster University, Hamilton, Ontario, Canada
| | - Lesley A Warren
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada.,School of Geography and Earth Science, McMaster University, Hamilton, Ontario, Canada
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA. .,Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. .,Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA. .,Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
467
|
Characterization of vB_StuS_MMDA13, a Newly Discovered Bacteriophage Infecting the Agar-Degrading Species Sphingomonas turrisvirgatae. Viruses 2020; 12:v12080894. [PMID: 32824138 PMCID: PMC7472734 DOI: 10.3390/v12080894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 01/21/2023] Open
Abstract
Members of Sphingomonas genus have gained a notable interest for their use in a wide range of biotechnological applications, ranging from bioremediation to the production of valuable compounds of industrial interest. To date, knowledge on phages targeting Sphingomonas spp. are still scarce. Here, we describe and characterize a lytic bacteriophage, named vB_StuS_MMDA13, able to infect the Sphingomonas turrisvirgatae MCT13 type strain. Physiological characterization demonstrated that vB_StuS_MMDA13 has a narrow host range, a long latency period, a low burst size, and it is overall stable to both temperature and pH variations. The phage has a double-stranded DNA genome of 63,743 bp, with 89 open reading frames arranged in two opposite arms separated by a 1186 bp non-coding region and shows a very low global similarity to any other known phages. Interestingly, vB_StuS_MMDA13 is endowed with an original nucleotide modification biosynthetic gene cluster, which greatly differs from those of its most closely related phages of the Nipunavirus genus. vB_StuS_MMDA13 is the first characterized lytic bacteriophage of the Siphoviridae family infecting members of the Sphingomonas genus.
Collapse
|
468
|
Friedersdorff JCA, Kingston-Smith AH, Pachebat JA, Cookson AR, Rooke D, Creevey CJ. The Isolation and Genome Sequencing of Five Novel Bacteriophages From the Rumen Active Against Butyrivibrio fibrisolvens. Front Microbiol 2020; 11:1588. [PMID: 32760371 PMCID: PMC7372960 DOI: 10.3389/fmicb.2020.01588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/17/2020] [Indexed: 01/21/2023] Open
Abstract
Although the prokaryotic communities of the rumen microbiome are being uncovered through genome sequencing, little is known about the resident viral populations. Whilst temperate phages can be predicted as integrated prophages when analyzing bacterial and archaeal genomes, the genetics underpinning lytic phages remain poorly characterized. To the five genomes of bacteriophages isolated from rumen-associated samples sequenced and analyzed previously, this study adds a further five novel genomes and predictions gleaned from them to further the understanding of the rumen phage population. Lytic bacteriophages isolated from fresh ovine and bovine fecal and rumen fluid samples were active against the predominant fibrolytic ruminal bacterium Butyrivibrio fibrisolvens. The double stranded DNA genomes were sequenced and reconstructed into single circular complete contigs. Based on sequence similarity and genome distances, the five phages represent four species from three separate genera, consisting of: (1) Butyrivibrio phages Arian and Bo-Finn; (2) Butyrivibrio phages Idris and Arawn; and (3) Butyrivibrio phage Ceridwen. They were predicted to all belong to the Siphoviridae family, based on evidence in the genomes such as size, the presence of the tail morphogenesis module, genes that share similarity to those in other siphovirus isolates and phylogenetic analysis using phage proteomes. Yet, phylogenomic analysis and sequence similarity of the entire phage genomes revealed that these five phages are unique and novel. These phages have only been observed undergoing the lytic lifecycle, but there is evidence in the genomes of phages Arawn and Idris for the potential to be temperate. However, there is no evidence in the genome of the bacterial host Butyrivibrio fibrisolvens of prophage genes or genes that share similarity with the phage genomes.
Collapse
Affiliation(s)
- Jessica C A Friedersdorff
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom.,Institute for Global Food Security (IGFS), Queen's University, Belfast, United Kingdom
| | - Alison H Kingston-Smith
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Justin A Pachebat
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Alan R Cookson
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - David Rooke
- Dynamic Extractions Ltd., Tredegar, United Kingdom
| | - Christopher J Creevey
- Institute for Global Food Security (IGFS), Queen's University, Belfast, United Kingdom
| |
Collapse
|
469
|
Jiang T, Guo C, Wang M, Wang M, Zhang X, Liu Y, Liang Y, Jiang Y, He H, Shao H, McMinn A. Genome Analysis of Two Novel Synechococcus Phages That Lack Common Auxiliary Metabolic Genes: Possible Reasons and Ecological Insights by Comparative Analysis of Cyanomyoviruses. Viruses 2020; 12:v12080800. [PMID: 32722486 PMCID: PMC7472177 DOI: 10.3390/v12080800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/01/2023] Open
Abstract
The abundant and widespread unicellular cyanobacteria Synechococcus plays an important role in contributing to global phytoplankton primary production. In the present study, two novel cyanomyoviruses, S-N03 and S-H34 that infected Synechococcus MW02, were isolated from the coastal waters of the Yellow Sea. S-N03 contained a 167,069-bp genome comprising double-stranded DNA with a G + C content of 50.1%, 247 potential open reading frames and 1 tRNA; S-H34 contained a 167,040-bp genome with a G + C content of 50.1%, 246 potential open reading frames and 5 tRNAs. These two cyanophages contain fewer auxiliary metabolic genes (AMGs) than other previously isolated cyanophages. S-H34 in particular, is currently the only known cyanomyovirus that does not contain any AMGs related to photosynthesis. The absence of such common AMGs in S-N03 and S-H34, their distinct evolutionary history and ecological features imply that the energy for phage production might be obtained from other sources rather than being strictly dependent on the maintenance of photochemical ATP under high light. Phylogenetic analysis showed that the two isolated cyanophages clustered together and had a close relationship with two other cyanophages of low AMG content. Comparative genomic analysis, habitats and hosts across 81 representative cyanomyovirus showed that cyanomyovirus with less AMGs content all belonged to Synechococcus phages isolated from eutrophic waters. The relatively small genome size and high G + C content may also relate to the lower AMG content, as suggested by the significant correlation between the number of AMGs and G + C%. Therefore, the lower content of AMG in S-N03 and S-H34 might be a result of viral evolution that was likely shaped by habitat, host, and their genomic context. The genomic content of AMGs in cyanophages may have adaptive significance and provide clues to their evolution.
Collapse
Affiliation(s)
- Tong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
| | - Cui Guo
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- Correspondence:
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
| | - Meiwen Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
| | - Xinran Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
| | - Yundan Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
| | - Yantao Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
| | - Yong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
| | - Hui He
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
| | - Andrew McMinn
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
470
|
Le TS, Southgate PC, O’Connor W, Vu SV, Kurtböke Dİ. Application of Bacteriophages to Control Vibrio alginolyticus Contamination in Oyster ( Saccostrea glomerata) Larvae. Antibiotics (Basel) 2020; 9:antibiotics9070415. [PMID: 32708768 PMCID: PMC7400271 DOI: 10.3390/antibiotics9070415] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 01/21/2023] Open
Abstract
Mortalities of bivalve larvae and spat linked with Vibrio spp. infection have been described in hatcheries since 1959, causing potential development of resistant bacteria. A reliable and sustainable solution to this problem is yet to be developed. Potential treatment of bacterial infection with bacteriophages is gaining interest in aquaculture as a more sustainable option for managing Vibrio spp. infection. This study assessed the effectiveness of bacteriophages (Φ-5, Φ-6, and Φ-7) against pathogenic Vibrio isolates (USC-26004 and USC-26005). These phage isolates were found to belong to the Myoviridae viral family. A total of 212 ORFs of Φ-5 were identified and annotated. The genome of this phage contained putative thymidine kinase and lysin enzyme. During infections with phages, the OD values of the isolates USC-26005 and USC-26004 remained stable at a much lower reading compared to the control after 9 h of incubation. Mortality rate of oyster (Saccostrea glomerata) larvae was 28.2 ± 3.5% in the bacteriophage treatment group, compared to 77.9 ± 9.1% in the bacterial treatment group after 24 h incubation. Findings of this study indicate that lytic phages might be utilized as potential bio-control agents of luminescent bacterial disease in oyster hatcheries.
Collapse
Affiliation(s)
- Tuan Son Le
- Research Institute for Marine Fisheries, 224 Le Lai, Ngo Quyen, Hai Phong 180000, Vietnam; or
- GeneCology Research Centre and School of Science and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland 4556, Australia; or
| | - Paul C. Southgate
- Australian Centre for Pacific Islands Research and School of Science and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4556, Australia;
| | - Wayne O’Connor
- NSW Fisheries, Port Stephens Fisheries Institute, Taylors Beach 2316, Australia;
| | - Sang V. Vu
- GeneCology Research Centre and School of Science and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland 4556, Australia; or
| | - D. İpek Kurtböke
- GeneCology Research Centre and School of Science and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland 4556, Australia; or
- Correspondence: ; Tel.: +61-7-5430-2918
| |
Collapse
|
471
|
Khan Mirzaei M, Xue J, Costa R, Ru J, Schulz S, Taranu ZE, Deng L. Challenges of Studying the Human Virome - Relevant Emerging Technologies. Trends Microbiol 2020; 29:171-181. [PMID: 32622559 DOI: 10.1016/j.tim.2020.05.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/17/2023]
Abstract
In this review we provide an overview of current challenges and advances in bacteriophage research within the growing field of viromics. In particular, we discuss, from a human virome study perspective, the current and emerging technologies available, their limitations in terms of de novo discoveries, and possible solutions to overcome present experimental and computational biases associated with low abundance of viral DNA or RNA. We summarize recent breakthroughs in metagenomics assembling tools and single-cell analysis, which have the potential to increase our understanding of phage biology, diversity, and interactions with both the microbial community and the human body. We expect that these recent and future advances in the field of viromics will have a strong impact on how we develop phage-based therapeutic approaches.
Collapse
Affiliation(s)
- Mohammadali Khan Mirzaei
- Institute of Virology, Helmholtz Centre Munich and Technical University of Munich, Neuherberg, Bavaria 85764, Germany
| | - Jinling Xue
- Institute of Virology, Helmholtz Centre Munich and Technical University of Munich, Neuherberg, Bavaria 85764, Germany
| | - Rita Costa
- Institute of Virology, Helmholtz Centre Munich and Technical University of Munich, Neuherberg, Bavaria 85764, Germany
| | - Jinlong Ru
- Institute of Virology, Helmholtz Centre Munich and Technical University of Munich, Neuherberg, Bavaria 85764, Germany
| | - Sarah Schulz
- Institute of Virology, Helmholtz Centre Munich and Technical University of Munich, Neuherberg, Bavaria 85764, Germany
| | - Zofia E Taranu
- Aquatic Contaminants Research Division (ACRD), Environment and Climate Change Canada (ECCC), Montréal, QC H2Y 2E7, Canada
| | - Li Deng
- Institute of Virology, Helmholtz Centre Munich and Technical University of Munich, Neuherberg, Bavaria 85764, Germany.
| |
Collapse
|
472
|
Khot V, Strous M, Hawley AK. Computational approaches in viral ecology. Comput Struct Biotechnol J 2020; 18:1605-1612. [PMID: 32670501 PMCID: PMC7334295 DOI: 10.1016/j.csbj.2020.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/21/2023] Open
Abstract
Dynamic virus-host interactions play a critical role in regulating microbial community structure and function. Yet for decades prior to the genomics era, viruses were largely overlooked in microbial ecology research, as only low-throughput culture-based methods of discovering viruses were available. With the advent of metagenomics, culture-independent techniques have provided exciting opportunities to discover and study new viruses. Here, we review recently developed computational methods for identifying viral sequences, exploring viral diversity in environmental samples, and predicting hosts from metagenomic sequence data. Methods to analyze viruses in silico utilize unconventional approaches to tackle challenges unique to viruses, such as vast diversity, mosaic viral genomes, and the lack of universal marker genes. As the field of viral ecology expands exponentially, computational advances have become increasingly important to gain insight into the role viruses in diverse habitats.
Collapse
Affiliation(s)
- Varada Khot
- Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Alyse K. Hawley
- Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
473
|
Abstract
The Arctic is warming at an accelerating pace, and the rise in temperature has increasing impacts on the Arctic biome. Lakes are integrators of their surroundings and thus excellent sentinels of environmental change. Despite their importance in the regulation of key microbial processes, viruses remain largely uncharacterized in Arctic lacustrine environments. We sampled a highly stratified meromictic lake near the northern limit of the Canadian High Arctic, a region in rapid transition due to climate change. We found that the different layers of the lake harbored viral communities that were strikingly dissimilar and highly divergent from known viruses. Viruses were more abundant in the deepest part of the lake containing ancient Arctic Ocean seawater that was trapped during glacial retreat and were genomically unlike any viruses previously described. This research demonstrates the complexity and novelty of viral communities in an environment that is vulnerable to ongoing perturbation. High-latitude, perennially stratified (meromictic) lakes are likely to be especially vulnerable to climate warming because of the importance of ice in maintaining their water column structure and associated distribution of microbial communities. This study aimed to characterize viral abundance, diversity, and distribution in a meromictic lake of marine origin on the far northern coast of Ellesmere Island, in the Canadian High Arctic. We collected triplicate samples for double-stranded DNA (dsDNA) viromics from five depths that encompassed the major features of the lake, as determined by limnological profiling of the water column. Viral abundance and virus-to-prokaryote ratios were highest at greater depths, while bacterial and cyanobacterial counts were greatest in the surface waters. The viral communities from each zone of the lake defined by salinity, temperature, and dissolved oxygen concentrations were markedly distinct, suggesting that there was little exchange of viral types among lake strata. Ten viral assembled genomes were obtained from our libraries, and these also segregated with depth. This well-defined structure of viral communities was consistent with that of potential hosts. Viruses from the monimolimnion, a deep layer of ancient Arctic Ocean seawater, were more diverse and relatively abundant, with few similarities to available viral sequences. The Lake A viral communities also differed from published records from the Arctic Ocean and meromictic Ace Lake in Antarctica. This first characterization of viral diversity from this sentinel environment underscores the microbial richness and complexity of an ecosystem type that is increasingly exposed to major perturbations in the fast-changing Arctic. IMPORTANCE The Arctic is warming at an accelerating pace, and the rise in temperature has increasing impacts on the Arctic biome. Lakes are integrators of their surroundings and thus excellent sentinels of environmental change. Despite their importance in the regulation of key microbial processes, viruses remain largely uncharacterized in Arctic lacustrine environments. We sampled a highly stratified meromictic lake near the northern limit of the Canadian High Arctic, a region in rapid transition due to climate change. We found that the different layers of the lake harbored viral communities that were strikingly dissimilar and highly divergent from known viruses. Viruses were more abundant in the deepest part of the lake containing ancient Arctic Ocean seawater that was trapped during glacial retreat and were genomically unlike any viruses previously described. This research demonstrates the complexity and novelty of viral communities in an environment that is vulnerable to ongoing perturbation.
Collapse
|
474
|
Sunagawa S, Acinas SG, Bork P, Bowler C, Eveillard D, Gorsky G, Guidi L, Iudicone D, Karsenti E, Lombard F, Ogata H, Pesant S, Sullivan MB, Wincker P, de Vargas C. Tara Oceans: towards global ocean ecosystems biology. Nat Rev Microbiol 2020; 18:428-445. [PMID: 32398798 DOI: 10.1038/s41579-020-0364-5] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 12/14/2022]
Abstract
A planetary-scale understanding of the ocean ecosystem, particularly in light of climate change, is crucial. Here, we review the work of Tara Oceans, an international, multidisciplinary project to assess the complexity of ocean life across comprehensive taxonomic and spatial scales. Using a modified sailing boat, the team sampled plankton at 210 globally distributed sites at depths down to 1,000 m. We describe publicly available resources of molecular, morphological and environmental data, and discuss how an ecosystems biology approach has expanded our understanding of plankton diversity and ecology in the ocean as a planetary, interconnected ecosystem. These efforts illustrate how global-scale concepts and data can help to integrate biological complexity into models and serve as a baseline for assessing ecosystem changes and the future habitability of our planet in the Anthropocene epoch.
Collapse
Affiliation(s)
- Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland.
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Sciences-CSIC, Barcelona, Spain
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany.,Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Chris Bowler
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | | | - Damien Eveillard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Université de Nantes, CNRS, UMR6004, LS2N, Nantes, France
| | - Gabriel Gorsky
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | - Lionel Guidi
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | | | - Eric Karsenti
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Directors' Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Stephane Pesant
- PANGAEA, University of Bremen, Bremen, Germany.,MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.,Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Patrick Wincker
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Génomique Métabolique, Genoscope, Institut de Biologie Francois Jacob, Commissariat à l'Énergie Atomique, CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Colomban de Vargas
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France. .,Sorbonne Université and CNRS, UMR 7144 (AD2M), ECOMAP, Station Biologique de Roscoff, Roscoff, France.
| |
Collapse
|
475
|
Tominaga K, Morimoto D, Nishimura Y, Ogata H, Yoshida T. In silico Prediction of Virus-Host Interactions for Marine Bacteroidetes With the Use of Metagenome-Assembled Genomes. Front Microbiol 2020; 11:738. [PMID: 32411107 PMCID: PMC7198788 DOI: 10.3389/fmicb.2020.00738] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Bacteroidetes is one of the most abundant heterotrophic bacterial taxa in the ocean and play crucial roles in recycling phytoplankton-derived organic matter. Viruses of Bacteroidetes are also expected to have an important role in the regulation of host communities. However, knowledge on marine Bacteroidetes viruses is biased toward cultured viruses from a few species, mainly fish pathogens or Bacteroidetes not abundant in marine environments. In this study, we investigated the recently reported 1,811 marine viral genomes to identify putative Bacteroidetes viruses using various in silico host prediction techniques. Notably, we used microbial metagenome-assembled genomes (MAGs) to augment the marine Bacteroidetes reference genomic data. The examined viral genomes and MAGs were derived from simultaneously collected samples. Using nucleotide sequence similarity-based host prediction methods, we detected 31 putative Bacteroidetes viral genomes. The MAG-based method substantially enhanced the predictions (26 viruses) when compared with the method that is solely based on the reference genomes from NCBI RefSeq (7 viruses). Previously unrecognized genus-level groups of Bacteroidetes viruses were detected only by the MAG-based method. We also developed a host prediction method based on the proportion of Bacteroidetes homologs in viral genomes, which detected 321 putative Bacteroidetes virus genomes including 81 that were newly recognized as Bacteroidetes virus genomes. The majority of putative Bacteroidetes viruses were detected based on the proportion of Bacteroidetes homologs in both RefSeq and MAGs; however, some were detected in only one of the two datasets. Putative Bacteroidetes virus lineages included not only relatives of known viruses but also those phylogenetically distant from the cultured viruses, such as marine Far-T4 like viruses known to be widespread in aquatic environments. Our MAG and protein homology-based host prediction approaches enhanced the existing knowledge on the diversity of Bacteroidetes viruses and their potential interaction with their hosts in marine environments.
Collapse
Affiliation(s)
- Kento Tominaga
- Laboratory of Marine Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Daichi Morimoto
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yosuke Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Hiroyuki Ogata
- Chemical Life Science, Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
476
|
Taxonomy of prokaryotic viruses: 2018-2019 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Arch Virol 2020; 165:1253-1260. [PMID: 32162068 DOI: 10.1007/s00705-020-04577-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This article is a summary of the activities of the ICTV's Bacterial and Archaeal Viruses Subcommittee for the years 2018 and 2019. Highlights include the creation of a new order, 10 families, 22 subfamilies, 424 genera and 964 species. Some of our concerns about the ICTV's ability to adjust to and incorporate new DNA- and protein-based taxonomic tools are discussed.
Collapse
|
477
|
Jiang T, Guo C, Wang M, Wang M, You S, Liu Y, Zhang X, Liu H, Jiang Y, Shao H, Liang Y, McMinn A. Isolation and complete genome sequence of a novel cyanophage, S-B05, infecting an estuarine Synechococcus strain: insights into environmental adaptation. Arch Virol 2020; 165:1397-1407. [PMID: 32307604 DOI: 10.1007/s00705-020-04595-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/21/2020] [Indexed: 11/24/2022]
Abstract
A new cyanophage, S-B05, infecting a phycoerythrin-enriched (PE-type) Synechococcus strain was isolated by the liquid infection method, and its morphology and genetic features were examined. Phylogenetic analysis and morphological observation confirmed that S-B05 belongs to the family Myoviridae of the order Caudovirales. Its genome was fully sequenced, and found to be 208,857 bp in length with a G + C content of 39.9%. It contained 280 potential open reading frames and 123 conserved domains. Ninety-eight functional genes responsible for cyanophage structuring and packaging, DNA replication and regulation, and photosynthesis were identified, as well as genes encoding 172 hypothetical proteins. The genome of S-B05 is most similar to that of Prochlorococcus phage P-TIM68. Homologues of open reading frames of S-B05 can be found in various marine environments, as revealed by comparison of the S-B05 genome sequence to sequences in marine viral metagenomic databases. The presence of auxiliary metabolic genes (AMGs) related to photosynthesis, carbon metabolism, and phosphorus assimilation, as well as the phylogenetic relationships based on AMGs and the complete genome sequence, reflect the phage-host interaction mechanism or the specific adaptation strategy of the host to environmental conditions. The genome sequence information reported here will provide an important basis for further study of the adaptive evolution and ecological role of cyanophages and their hosts in the marine environment.
Collapse
Affiliation(s)
- Tong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Cui Guo
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China.
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China
| | - Meiwen Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Siyuan You
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yundan Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xinran Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hongbin Liu
- Department of Ocean Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Yong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yantao Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China
| | - Andrew McMinn
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| |
Collapse
|
478
|
Yang F, Jin H, Wang XQ, Li Q, Zhang JT, Cui N, Jiang YL, Chen Y, Wu QF, Zhou CZ, Li WF. Genomic Analysis of Mic1 Reveals a Novel Freshwater Long-Tailed Cyanophage. Front Microbiol 2020; 11:484. [PMID: 32322241 PMCID: PMC7156551 DOI: 10.3389/fmicb.2020.00484] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Lake Chaohu, one of the five largest freshwater lakes in China, has been suffering from severe cyanobacterial blooms in the summer for many years. Cyanophages, the viruses that specifically infect cyanobacteria, play a key role in modulating cyanobacterial population, and thus regulate the emergence and decline of cyanobacterial blooms. Here we report a long-tailed cyanophage isolated from Lake Chaohu, termed Mic1, which specifically infects the cyanobacterium Microcystis aeruginosa. Mic1 has an icosahedral head of 88 nm in diameter and a long flexible tail of 400 nm. It possesses a circular genome of 92,627 bp, which contains 98 putative open reading frames. Genome sequence analysis enabled us to define a novel terminase large subunit that consists of two types of intein, indicating that the genome packaging of Mic1 is under fine control via posttranslational maturation of the terminase. Moreover, phylogenetic analysis suggested Mic1 and mitochondria share a common evolutionary origin of DNA polymerase γ gene. All together, these findings provided a start-point for investigating the co-evolution of cyanophages and its cyanobacterial hosts.
Collapse
Affiliation(s)
- Feng Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hua Jin
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiao-Qian Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qiong Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jun-Tao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ning Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qing-Fa Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Wei-Fang Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
479
|
Dong N, Yang X, Ye L, Chen K, Chan EWC, Chen S. Genomic and protein structure modelling analysis depicts the origin and pathogenicity of 2019-nCoV, a new coronavirus which caused a pneumonia outbreak in Wuhan, China. F1000Res 2020. [DOI: 10.12688/f1000research.22357.2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: A pandemic outbreak caused by a novel coronavirus, 2019-nCoV, has originated from Wuhan, China and spread to many countries around the world. The outbreak has led to around 45 thousand cases and over one thousand death so far. Methods: Phylogenetic analysis and sequence alignment were used to align the whole genome sequence of 2019-nCoV with other over 200 sequences of coronaviruses to predict the origin of this novel virus. In addition, protein modeling and analysis were performed to access the potential binding of the spike protein of 2019-nCoV with human cell receptor, angiotensin-converting enzyme 2 (ACE2). Results: Detailed genomic and structure-based analysis of a new coronavirus, namely 2019-nCoV, showed that the new virus is a new type of bat coronavirus and is genetically fairly distant from the human SARS coronavirus. Structure analysis of the spike (S) protein of this new virus showed that its S protein only binds much weaker to the ACE2 receptor on human cells whereas the human SARS coronavirus exhibits strongly affinity to the ACE receptor. Conclusions: These findings suggest that the new virus should theoretically not be able to cause very serious human infection when compared to human SARS virus. However, the lower pathogenicity of this new virus may lead to longer incubation time and better adaption to human, which may favor its efficient transmission in human. These data are important to guide design of infection control policy and inform the public on the nature of threat imposed by 2019-nCov. Most importantly, using the analysis platform that we have developed, we should be able to predict whether the new mutations could lead to the increase of infectivity of the mutated virus in a very short time.
Collapse
|
480
|
Moore RM, Harrison AO, McAllister SM, Polson SW, Wommack KE. Iroki: automatic customization and visualization of phylogenetic trees. PeerJ 2020; 8:e8584. [PMID: 32149022 PMCID: PMC7049256 DOI: 10.7717/peerj.8584] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/17/2020] [Indexed: 12/26/2022] Open
Abstract
Phylogenetic trees are an important analytical tool for evaluating community diversity and evolutionary history. In the case of microorganisms, the decreasing cost of sequencing has enabled researchers to generate ever-larger sequence datasets, which in turn have begun to fill gaps in the evolutionary history of microbial groups. However, phylogenetic analyses of these types of datasets create complex trees that can be challenging to interpret. Scientific inferences made by visual inspection of phylogenetic trees can be simplified and enhanced by customizing various parts of the tree. Yet, manual customization is time-consuming and error prone, and programs designed to assist in batch tree customization often require programming experience or complicated file formats for annotation. Iroki, a user-friendly web interface for tree visualization, addresses these issues by providing automatic customization of large trees based on metadata contained in tab-separated text files. Iroki’s utility for exploring biological and ecological trends in sequencing data was demonstrated through a variety of microbial ecology applications in which trees with hundreds to thousands of leaf nodes were customized according to extensive collections of metadata. The Iroki web application and documentation are available at https://www.iroki.net or through the VIROME portal http://virome.dbi.udel.edu. Iroki’s source code is released under the MIT license and is available at https://github.com/mooreryan/iroki.
Collapse
Affiliation(s)
- Ryan M Moore
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States of America
| | - Amelia O Harrison
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States of America
| | - Sean M McAllister
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States of America
| | - Shawn W Polson
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States of America
| | - K Eric Wommack
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States of America
| |
Collapse
|
481
|
Herridge WP, Shibu P, O’Shea J, Brook TC, Hoyles L. Bacteriophages of Klebsiella spp., their diversity and potential therapeutic uses. J Med Microbiol 2020; 69:176-194. [PMID: 31976857 PMCID: PMC7431098 DOI: 10.1099/jmm.0.001141] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022] Open
Abstract
Klebsiella spp. are commensals of the human microbiota, and a leading cause of opportunistic nosocomial infections. The incidence of multidrug resistant (MDR) strains of Klebsiella pneumoniae causing serious infections is increasing, and Klebsiella oxytoca is an emerging pathogen. Alternative strategies to tackle infections caused by these bacteria are required as strains become resistant to last-resort antibiotics such as colistin. Bacteriophages (phages) are viruses that can infect and kill bacteria. They and their gene products are now being considered as alternatives or adjuncts to antimicrobial therapies. Several in vitro and in vivo studies have shown the potential for lytic phages to combat MDR K. pneumoniae infections. Ready access to cheap sequencing technologies has led to a large increase in the number of genomes available for Klebsiella-infecting phages, with these phages being heterogeneous at the whole-genome level. This review summarizes our current knowledge on phages of Klebsiella spp. and highlights technological and biological issues relevant to the development of phage-based therapies targeting these bacteria.
Collapse
Affiliation(s)
- Warren P. Herridge
- Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Preetha Shibu
- Life Sciences, University of Westminster, 115 Cavendish Street, London W1W 6UW, UK
| | - Jessica O’Shea
- Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Thomas C. Brook
- Life Sciences, University of Westminster, 115 Cavendish Street, London W1W 6UW, UK
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| |
Collapse
|
482
|
Barylski J, Enault F, Dutilh BE, Schuller MBP, Edwards RA, Gillis A, Klumpp J, Knezevic P, Krupovic M, Kuhn JH, Lavigne R, Oksanen HM, Sullivan MB, Jang HB, Simmonds P, Aiewsakun P, Wittmann J, Tolstoy I, Brister JR, Kropinski AM, Adriaenssens EM. Analysis of Spounaviruses as a Case Study for the Overdue Reclassification of Tailed Phages. Syst Biol 2020; 69:110-123. [PMID: 31127947 PMCID: PMC7409376 DOI: 10.1093/sysbio/syz036] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/17/2019] [Indexed: 01/01/2023] Open
Abstract
Tailed bacteriophages are the most abundant and diverse viruses in the world, with genome sizes ranging from 10 kbp to over 500 kbp. Yet, due to historical reasons, all this diversity is confined to a single virus order-Caudovirales, composed of just four families: Myoviridae, Siphoviridae, Podoviridae, and the newly created Ackermannviridae family. In recent years, this morphology-based classification scheme has started to crumble under the constant flood of phage sequences, revealing that tailed phages are even more genetically diverse than once thought. This prompted us, the Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV), to consider overall reorganization of phage taxonomy. In this study, we used a wide range of complementary methods-including comparative genomics, core genome analysis, and marker gene phylogenetics-to show that the group of Bacillus phage SPO1-related viruses previously classified into the Spounavirinae subfamily, is clearly distinct from other members of the family Myoviridae and its diversity deserves the rank of an autonomous family. Thus, we removed this group from the Myoviridae family and created the family Herelleviridae-a new taxon of the same rank. In the process of the taxon evaluation, we explored the feasibility of different demarcation criteria and critically evaluated the usefulness of our methods for phage classification. The convergence of results, drawing a consistent and comprehensive picture of a new family with associated subfamilies, regardless of method, demonstrates that the tools applied here are particularly useful in phage taxonomy. We are convinced that creation of this novel family is a crucial milestone toward much-needed reclassification in the Caudovirales order.
Collapse
Affiliation(s)
- Jakub Barylski
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Collegium Biologicum - Umultowska 89, 61-614 Poznań, Poland
| | - François Enault
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Margo BP Schuller
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Robert A Edwards
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- Department of Computer Science, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain, Croix du Sud 2-L7.05.12, 1348 Louvain-la-Neuve, Belgium
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Petar Knezevic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 - box 2462, 3001 Leuven, Belgium
| | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 56 (Viikinkaari 9B), 00014 Helsinki, Finland
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, 496 W 12thAvenue, Columbus, OH 43210, USA
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, 496 W 12thAvenue, Columbus, OH 43210, USA
| | - Ho Bin Jang
- Department of Microbiology, The Ohio State University, 496 W 12thAvenue, Columbus, OH 43210, USA
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, 496 W 12thAvenue, Columbus, OH 43210, USA
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building, South Parks Road, Oxford OX1 3SY, UK
| | - Pakorn Aiewsakun
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building, South Parks Road, Oxford OX1 3SY, UK
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Johannes Wittmann
- Leibniz-Institut DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124 Braunschweig, Germany
| | - Igor Tolstoy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda MD 20894, USA
| | - J Rodney Brister
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda MD 20894, USA
| | - Andrew M Kropinski
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
- Department of Pathobiology, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada
| | - Evelien M Adriaenssens
- Department of Functional & Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
- Gut Microbes & Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, James Watson Road, Norwich NR4 7UQ Norwich, UK
| |
Collapse
|
483
|
Coutinho FH, Edwards RA, Rodríguez-Valera F. Charting the diversity of uncultured viruses of Archaea and Bacteria. BMC Biol 2019. [PMID: 31884971 DOI: 10.1101/480491v1.full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Viruses of Archaea and Bacteria are among the most abundant and diverse biological entities on Earth. Unraveling their biodiversity has been challenging due to methodological limitations. Recent advances in culture-independent techniques, such as metagenomics, shed light on the unknown viral diversity, revealing thousands of new viral nucleotide sequences at an unprecedented scale. However, these novel sequences have not been properly classified and the evolutionary associations between them were not resolved. RESULTS Here, we performed phylogenomic analysis of nearly 200,000 viral nucleotide sequences to establish GL-UVAB: Genomic Lineages of Uncultured Viruses of Archaea and Bacteria. The pan-genome content of the identified lineages shed light on some of their infection strategies, potential to modulate host physiology, and mechanisms to escape host resistance systems. Furthermore, using GL-UVAB as a reference database for annotating metagenomes revealed elusive habitat distribution patterns of viral lineages and environmental drivers of community composition. CONCLUSIONS These findings provide insights about the genomic diversity and ecology of viruses of prokaryotes. The source code used in these analyses is freely available at https://sourceforge.net/projects/gluvab/.
Collapse
Affiliation(s)
- F H Coutinho
- Evolutionary Genomics Group, Departamento de Produccíon Vegetal y Microbiología, Universidad Miguel Hernández, Campus San Juan, San Juan, 03550, Alicante, Spain.
| | - R A Edwards
- Viral Information Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92128, USA
| | - F Rodríguez-Valera
- Evolutionary Genomics Group, Departamento de Produccíon Vegetal y Microbiología, Universidad Miguel Hernández, Campus San Juan, San Juan, 03550, Alicante, Spain
| |
Collapse
|
484
|
Coutinho FH, Edwards RA, Rodríguez-Valera F. Charting the diversity of uncultured viruses of Archaea and Bacteria. BMC Biol 2019; 17:109. [PMID: 31884971 PMCID: PMC6936153 DOI: 10.1186/s12915-019-0723-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022] Open
Abstract
Background Viruses of Archaea and Bacteria are among the most abundant and diverse biological entities on Earth. Unraveling their biodiversity has been challenging due to methodological limitations. Recent advances in culture-independent techniques, such as metagenomics, shed light on the unknown viral diversity, revealing thousands of new viral nucleotide sequences at an unprecedented scale. However, these novel sequences have not been properly classified and the evolutionary associations between them were not resolved. Results Here, we performed phylogenomic analysis of nearly 200,000 viral nucleotide sequences to establish GL-UVAB: Genomic Lineages of Uncultured Viruses of Archaea and Bacteria. The pan-genome content of the identified lineages shed light on some of their infection strategies, potential to modulate host physiology, and mechanisms to escape host resistance systems. Furthermore, using GL-UVAB as a reference database for annotating metagenomes revealed elusive habitat distribution patterns of viral lineages and environmental drivers of community composition. Conclusions These findings provide insights about the genomic diversity and ecology of viruses of prokaryotes. The source code used in these analyses is freely available at https://sourceforge.net/projects/gluvab/.
Collapse
Affiliation(s)
- F H Coutinho
- Evolutionary Genomics Group, Departamento de Produccíon Vegetal y Microbiología, Universidad Miguel Hernández, Campus San Juan, San Juan, 03550, Alicante, Spain.
| | - R A Edwards
- Viral Information Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92128, USA
| | - F Rodríguez-Valera
- Evolutionary Genomics Group, Departamento de Produccíon Vegetal y Microbiología, Universidad Miguel Hernández, Campus San Juan, San Juan, 03550, Alicante, Spain
| |
Collapse
|
485
|
Wang Z, Zhao J, Wang L, Li C, Liu J, Zhang L, Zhang Y. A Novel Benthic Phage Infecting Shewanella with Strong Replication Ability. Viruses 2019; 11:v11111081. [PMID: 31752437 PMCID: PMC6893657 DOI: 10.3390/v11111081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/17/2019] [Indexed: 12/31/2022] Open
Abstract
The coastal sediments were considered to contain diverse phages playing important roles in driving biogeochemical cycles based on genetic analysis. However, till now, benthic phages in coastal sediments were very rarely isolated, which largely limits our understanding of their biological characteristics. Here, we describe a novel lytic phage (named Shewanella phage S0112) isolated from the coastal sediments of the Yellow Sea infecting a sediment bacterium of the genus Shewanella. The phage has a very high replication capability, with the burst size of ca. 1170 phage particles per infected cell, which is 5–10 times higher than that of most phages isolated before. Meanwhile, the latent period of this phage is relatively longer, which might ensure adequate time for phage replication. The phage has a double-stranded DNA genome comprising 62,286 bp with 102 ORFs, ca. 60% of which are functionally unknown. The expression products of 16 ORF genes, mainly structural proteins, were identified by LC-MS/MS analysis. Besides the general DNA metabolism and structure assembly genes in the phage genome, there is a cluster of auxiliary metabolic genes that may be involved in 7-cyano-7-deazaguanine (preQ0) biosynthesis. Meanwhile, a pyrophosphohydrolase (MazG) gene being considered as a regulator of programmed cell death or involving in host stringer responses is inserted in this gene cluster. Comparative genomic and phylogenetic analysis both revealed a great novelty of phage S0112. This study represents the first report of a benthic phage infecting Shewanella, which also sheds light on the phage–host interactions in coastal sediments.
Collapse
Affiliation(s)
- Zengmeng Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Z.W.); (J.Z.); (L.W.); (C.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiulong Zhao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Z.W.); (J.Z.); (L.W.); (C.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Z.W.); (J.Z.); (L.W.); (C.L.)
| | - Chengcheng Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Z.W.); (J.Z.); (L.W.); (C.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhui Liu
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (J.L.); (L.Z.)
| | - Lihua Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (J.L.); (L.Z.)
| | - Yongyu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Z.W.); (J.Z.); (L.W.); (C.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-532-80662680
| |
Collapse
|
486
|
Okazaki Y, Nishimura Y, Yoshida T, Ogata H, Nakano SI. Genome-resolved viral and cellular metagenomes revealed potential key virus-host interactions in a deep freshwater lake. Environ Microbiol 2019; 21:4740-4754. [PMID: 31608575 DOI: 10.1111/1462-2920.14816] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 01/21/2023]
Abstract
Metagenomics has dramatically expanded the known virosphere, but freshwater viral diversity and their ecological interaction with hosts remain poorly understood. Here, we conducted a metagenomic exploration of planktonic dsDNA prokaryotic viruses by sequencing both virion (<0.22 μm) and cellular (0.22-5.0 μm) fractions collected spatiotemporally from a deep freshwater lake (Lake Biwa, Japan). This simultaneously reconstructed 183 complete (i.e., circular) viral genomes and 57 bacterioplankton metagenome-assembled genomes. Analysis of metagenomic read coverage revealed vertical partitioning of the viral community analogous to the vertically stratified bacterioplankton community. The hypolimnetic community was generally stable during stratification, but occasionally shifted abruptly, presumably due to lysogenic induction. Genes involved in assimilatory sulfate reduction were encoded in 20 (10.9%) viral genomes, including those of dominant viruses, and may aid viral propagation in sulfur-limited freshwater systems. Hosts were predicted for 40 (21.9%) viral genomes, encompassing 10 phyla (or classes of Proteobacteria) including ubiquitous freshwater bacterioplankton lineages (e.g., Ca. Fonsibacter and Ca. Nitrosoarchaeum). Comparison with viral genomes derived from published metagenomes revealed viral phylogeographic connectivity in geographically isolated habitats. Notably, analogous to their hosts, actinobacterial viruses were among the most diverse, ubiquitous and abundant viral groups in freshwater systems, with potential high lytic activity in surface waters.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Yosuke Nishimura
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan.,Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.,Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shin-Ichi Nakano
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan
| |
Collapse
|
487
|
Morimoto D, Tominaga K, Nishimura Y, Yoshida N, Kimura S, Sako Y, Yoshida T. Cooccurrence of Broad- and Narrow-Host-Range Viruses Infecting the Bloom-Forming Toxic Cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol 2019; 85:e01170-19. [PMID: 31324627 PMCID: PMC6715842 DOI: 10.1128/aem.01170-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
Viruses play important roles in regulating the abundance and composition of bacterial populations in aquatic ecosystems. The bloom-forming toxic cyanobacterium Microcystis aeruginosa is predicted to interact with diverse cyanoviruses, resulting in Microcystis population diversification. However, current knowledge of the genomes from these viruses and their infection programs is limited to those of Microcystis virus Ma-LMM01. Here, we performed a time series sampling at a small pond in Japan during a Microcystis bloom and then investigated the genomic information and transcriptional dynamics of Microcystis-interacting viruses using metagenomic and metatranscriptomic approaches. We identified 15 viral genomic fragments classified into three groups, groups I (including Ma-LMM01), II (high abundance and transcriptional activity), and III (new lineages). According to the phylogenetic distribution of Microcystis strains possessing spacers against each viral group, the group II-original viruses interacted with all three phylogenetically distinct Microcystis population types (phylotypes), whereas the groups I and III-original viruses interacted with only one or two phylotypes, indicating the cooccurrence of broad- (group II) and narrow (groups I and III)-host-range viruses in the bloom. These viral fragments showed the highest transcriptional levels during daytime regardless of their genomic differences. Interestingly, M. aeruginosa expressed antiviral defense genes in the environment, unlike what was seen with an Ma-LMM01 infection in a previous culture experiment. Given that broad-host-range viruses often induce antiviral responses within alternative hosts, our findings suggest that such antiviral responses might inhibit viral multiplication, mainly that of broad-host-range viruses like those in group II.IMPORTANCE The bloom-forming toxic cyanobacterium Microcystis aeruginosa is thought to have diversified its population through the interactions between host and viruses in antiviral defense systems. However, current knowledge of viral genomes and infection programs is limited to those of Microcystis virus Ma-LMM01, which was a narrow host range in which it can escape from the highly abundant host defense systems. Our metagenomic approaches unveiled the cooccurrence of narrow- and broad-host-range Microcystis viruses, which included fifteen viral genomic fragments from Microcystis blooms that were classified into three groups. Interestingly, Microcystis antiviral defense genes were expressed against viral infection in the environment, unlike what was seen in a culture experiment with Ma-LMM01. Given that viruses with a broad host range often induce antiviral responses within alternative hosts, our findings suggest that antiviral responses inhibit viral reproduction, especially that of broad-range viruses like those in group II. This paper augments our understanding of the interactions between M. aeruginosa and its viruses and fills an important knowledge gap.
Collapse
Affiliation(s)
- Daichi Morimoto
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kento Tominaga
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yosuke Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Naohiro Yoshida
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shigeko Kimura
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- School of Environmental Science, University of Shiga Prefecture, Shiga, Japan
| | - Yoshihiko Sako
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
488
|
Viruses as key reservoirs of antibiotic resistance genes in the environment. ISME JOURNAL 2019; 13:2856-2867. [PMID: 31358910 DOI: 10.1038/s41396-019-0478-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/03/2019] [Accepted: 06/21/2019] [Indexed: 11/08/2022]
Abstract
Antibiotic resistance is a rapidly growing health care problem globally and causes many illnesses and deaths. Bacteria can acquire antibiotic resistance genes (ARGs) by horizontal transfer mediated by mobile genetic elements, where the role of phages in their dissemination in natural environments has not yet been clearly resolved. From metagenomic studies, we showed that the mean proportion of predicted ARGs found in prophages (0-0.0028%) was lower than those present in the free viruses (0.001-0.1%). Beta-lactamase, from viruses in the swine gut, represented 0.10 % of the predicted genes. Overall, in the environment, the ARG distribution associated with viruses was strongly linked to human activity, and the low dN/dS ratio observed advocated for a negative selection of the ARGs harbored by the viruses. Our network approach showed that viruses were linked to putative pathogens (Enterobacterales and vibrionaceae) and were considered key vehicles in ARG transfer, similar to plasmids. Therefore, these ARGs could then be disseminated at larger temporal and spatial scales than those included in the bacterial genomes, allowing for time-delayed genetic exchanges.
Collapse
|
489
|
Fukuyama Y, Omae K, Yoshida T, Sako Y. Transcriptome analysis of a thermophilic and hydrogenogenic carboxydotroph Carboxydothermus pertinax. Extremophiles 2019; 23:389-398. [PMID: 30941583 PMCID: PMC6557876 DOI: 10.1007/s00792-019-01091-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022]
Abstract
A thermophilic and hydrogenogenic carboxydotroph, Carboxydothermus pertinax, performs hydrogenogenic CO metabolism in which CODH-II couples with distally encoded ECH. To enhance our knowledge of its hydrogenogenic CO metabolism, we performed whole transcriptome analysis of C. pertinax grown under 100% CO or 100% N2 using RNA sequencing. Of the 2577 genes, 36 and 64 genes were differentially expressed genes (DEGs) with false discovery rate adjusted P value < 0.05 when grown under 100% CO or 100% N2, respectively. Most of the DEGs were components of 23 gene clusters, suggesting switch between metabolisms via intensive expression changes in a relatively low number of gene clusters. Of the 9 significantly expressed gene clusters under 100% CO, CODH-II and ECH gene clusters were found. Only the ECH gene cluster was regulated by the CO-responsive transcriptional factor CooA, suggesting that others were separately regulated in the same transcriptional cascade as the ECH gene cluster. Of the 14 significantly expressed gene clusters under 100% N2, ferrous iron transport gene cluster involved in anaerobic respiration and prophage region were found. Considering that the expression of the temperate phage was strictly repressed under 100% CO, hydrogenogenic CO metabolism might be stable for C. pertinax.
Collapse
Affiliation(s)
- Yuto Fukuyama
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kimiho Omae
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Takashi Yoshida
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yoshihiko Sako
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
490
|
Evaluation of a concatenated protein phylogeny for classification of tailed double-stranded DNA viruses belonging to the order Caudovirales. Nat Microbiol 2019; 4:1306-1315. [DOI: 10.1038/s41564-019-0448-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/05/2019] [Indexed: 02/01/2023]
|
491
|
Bin Jang H, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, Brister JR, Kropinski AM, Krupovic M, Lavigne R, Turner D, Sullivan MB. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol 2019; 37:632-639. [PMID: 31061483 DOI: 10.1038/s41587-019-0100-8] [Citation(s) in RCA: 526] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 03/11/2019] [Indexed: 01/03/2023]
Abstract
Microbiomes from every environment contain a myriad of uncultivated archaeal and bacterial viruses, but studying these viruses is hampered by the lack of a universal, scalable taxonomic framework. We present vConTACT v.2.0, a network-based application utilizing whole genome gene-sharing profiles for virus taxonomy that integrates distance-based hierarchical clustering and confidence scores for all taxonomic predictions. We report near-identical (96%) replication of existing genus-level viral taxonomy assignments from the International Committee on Taxonomy of Viruses for National Center for Biotechnology Information virus RefSeq. Application of vConTACT v.2.0 to 1,364 previously unclassified viruses deposited in virus RefSeq as reference genomes produced automatic, high-confidence genus assignments for 820 of the 1,364. We applied vConTACT v.2.0 to analyze 15,280 Global Ocean Virome genome fragments and were able to provide taxonomic assignments for 31% of these data, which shows that our algorithm is scalable to very large metagenomic datasets. Our taxonomy tool can be automated and applied to metagenomes from any environment for virus classification.
Collapse
Affiliation(s)
- Ho Bin Jang
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Benjamin Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Olivier Zablocki
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Simon Roux
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Evelien M Adriaenssens
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.,Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - J Rodney Brister
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Andrew M Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, Paris, France
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, Faculty of BioScience Engineering, KU Leuven, Leuven, Belgium
| | - Dann Turner
- Centre for Research in Biosciences, Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, USA. .,Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
492
|
Medusavirus, a Novel Large DNA Virus Discovered from Hot Spring Water. J Virol 2019; 93:JVI.02130-18. [PMID: 30728258 PMCID: PMC6450098 DOI: 10.1128/jvi.02130-18] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/24/2019] [Indexed: 12/22/2022] Open
Abstract
Recent discoveries of new large DNA viruses reveal high diversity in their morphologies, genetic repertoires, and replication strategies. Here, we report the novel features of medusavirus, a large DNA virus newly isolated from hot spring water in Japan. Medusavirus, with a diameter of 260 nm, shows a T=277 icosahedral capsid with unique spherical-headed spikes on its surface. It has a 381-kb genome encoding 461 putative proteins, 86 of which have their closest homologs in Acanthamoeba, whereas 279 (61%) are orphan genes. The virus lacks the genes encoding DNA topoisomerase II and RNA polymerase, showing that DNA replication takes place in the host nucleus, whereas the progeny virions are assembled in the cytoplasm. Furthermore, the medusavirus genome harbored genes for all five types of histones (H1, H2A, H2B, H3, and H4) and one DNA polymerase, which are phylogenetically placed at the root of the eukaryotic clades. In contrast, the host amoeba encoded many medusavirus homologs, including the major capsid protein. These facts strongly suggested that amoebae are indeed the most promising natural hosts of medusavirus, and that lateral gene transfers have taken place repeatedly and bidirectionally between the virus and its host since the early stage of their coevolution. Medusavirus reflects the traces of direct evolutionary interactions between the virus and eukaryotic hosts, which may be caused by sharing the DNA replication compartment and by evolutionarily long lasting virus-host relationships. Based on its unique morphological characteristics and phylogenomic relationships with other known large DNA viruses, we propose that medusavirus represents a new family, Medusaviridae IMPORTANCE We have isolated a new nucleocytoplasmic large DNA virus (NCLDV) from hot spring water in Japan, named medusavirus. This new NCLDV is phylogenetically placed at the root of the eukaryotic clades based on the phylogenies of several key genes, including that encoding DNA polymerase, and its genome surprisingly encodes the full set of histone homologs. Furthermore, its laboratory host, Acanthamoeba castellanii, encodes many medusavirus homologs in its genome, including the major capsid protein, suggesting that the amoeba is the genuine natural host from ancient times of this newly described virus and that lateral gene transfers have repeatedly occurred between the virus and amoeba. These results suggest that medusavirus is a unique NCLDV preserving ancient footprints of evolutionary interactions with its hosts, thus providing clues to elucidate the evolution of NCLDVs, eukaryotes, and virus-host interaction. Based on the dissimilarities with other known NCLDVs, we propose that medusavirus represents a new viral family, Medusaviridae.
Collapse
|
493
|
Roux S, Brum JR. A viral reckoning: viruses emerge as essential manipulators of global ecosystems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:3-8. [PMID: 30298570 DOI: 10.1111/1758-2229.12700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Simon Roux
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA, 94598, USA
| | - Jennifer R Brum
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, 70808, USA
| |
Collapse
|
494
|
Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M, Kuhn JH, Lavigne R, Brister JR, Varsani A, Amid C, Aziz RK, Bordenstein SR, Bork P, Breitbart M, Cochrane GR, Daly RA, Desnues C, Duhaime MB, Emerson JB, Enault F, Fuhrman JA, Hingamp P, Hugenholtz P, Hurwitz BL, Ivanova NN, Labonté JM, Lee KB, Malmstrom RR, Martinez-Garcia M, Mizrachi IK, Ogata H, Páez-Espino D, Petit MA, Putonti C, Rattei T, Reyes A, Rodriguez-Valera F, Rosario K, Schriml L, Schulz F, Steward GF, Sullivan MB, Sunagawa S, Suttle CA, Temperton B, Tringe SG, Thurber RV, Webster NS, Whiteson KL, Wilhelm SW, Wommack KE, Woyke T, Wrighton KC, Yilmaz P, Yoshida T, Young MJ, Yutin N, Allen LZ, Kyrpides NC, Eloe-Fadrosh EA. Minimum Information about an Uncultivated Virus Genome (MIUViG). Nat Biotechnol 2019; 37:29-37. [PMID: 30556814 PMCID: PMC6871006 DOI: 10.1038/nbt.4306] [Citation(s) in RCA: 398] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/01/2018] [Indexed: 12/22/2022]
Abstract
We present an extension of the Minimum Information about any (x) Sequence (MIxS) standard for reporting sequences of uncultivated virus genomes. Minimum Information about an Uncultivated Virus Genome (MIUViG) standards were developed within the Genomic Standards Consortium framework and include virus origin, genome quality, genome annotation, taxonomic classification, biogeographic distribution and in silico host prediction. Community-wide adoption of MIUViG standards, which complement the Minimum Information about a Single Amplified Genome (MISAG) and Metagenome-Assembled Genome (MIMAG) standards for uncultivated bacteria and archaea, will improve the reporting of uncultivated virus genomes in public databases. In turn, this should enable more robust comparative studies and a systematic exploration of the global virosphere.
Collapse
Affiliation(s)
- Simon Roux
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | | | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, the Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland USA
| | - Andrew M Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada
| | - Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland USA
| | - Rob Lavigne
- KU Leuven, Laboratory of Gene Technology, Heverlee, Belgium
| | - J Rodney Brister
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland USA
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona USA
- Department of Integrative Biomedical Sciences, Structural Biology Research Unit, University of Cape Town, Observatory, Cape Town, South Africa
| | - Clara Amid
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Seth R Bordenstein
- Departments of Biological Sciences and Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee USA
| | - Peer Bork
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, Florida USA
| | - Guy R Cochrane
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Rebecca A Daly
- Soil and Crop Sciences Department, Colorado State University, Fort Collins, Colorado USA
| | - Christelle Desnues
- Aix-Marseille Université, CNRS, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Melissa B Duhaime
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan USA
| | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, Davis, California USA
| | - François Enault
- LMGE,UMR 6023 CNRS, Université Clermont Auvergne, Aubiére, France
| | - Jed A Fuhrman
- University of Southern California, Los Angeles, Los Angeles, California USA
| | - Pascal Hingamp
- Aix Marseille Université,
- , Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland Australia
| | - Bonnie L Hurwitz
- Department of Agricultural and Biosystems Engineering, University of Arizona, Tucson, Arizona USA
- BIO5 Research Institute, University of Arizona, Tucson, Arizona USA
| | - Natalia N Ivanova
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Jessica M Labonté
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas USA
| | - Kyung-Bum Lee
- DDBJ Center, National Institute of Genetics, Mishima, Shizuoka Japan
| | - Rex R Malmstrom
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Manuel Martinez-Garcia
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Ilene Karsch Mizrachi
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland USA
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - David Páez-Espino
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Marie-Agnès Petit
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Catherine Putonti
- Department of Biology, Loyola University Chicago, Chicago, Illinois USA
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois USA
- Department of Computer Science, Loyola University Chicago, Chicago, Illinois USA
| | - Thomas Rattei
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology,” University of Vienna, Vienna, Austria
| | - Alejandro Reyes
- Department of Biological Sciences, Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogotá, Colombia
| | - Francisco Rodriguez-Valera
- Departamento de Producción Vegetal y Microbiología, Evolutionary Genomics Group, Universidad Miguel Hernández, Alicante, Spain
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, Florida USA
| | - Lynn Schriml
- University of Maryland School of Medicine, Baltimore, Maryland USA
| | - Frederik Schulz
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Grieg F Steward
- Department of Oceanography, Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, Hawai'i USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, Ohio USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio USA
| | | | - Curtis A Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia Canada
- Institute of Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia Canada
| | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, UK
| | - Susannah G Tringe
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | | | - Nicole S Webster
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland Australia
- Australian Institute of Marine Science, Townsville, Queensland Australia
| | - Katrine L Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California USA
| | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee USA
| | - K Eric Wommack
- University of Delaware, Delaware Biotechnology Institute, Newark, Delaware USA
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Kelly C Wrighton
- Soil and Crop Sciences Department, Colorado State University, Fort Collins, Colorado USA
| | - Pelin Yilmaz
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Kyoto, Japan
| | - Mark J Young
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana USA
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland USA
| | - Lisa Zeigler Allen
- J Craig Venter Institute, La Jolla, California USA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA.,
| | - Nikos C Kyrpides
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | | |
Collapse
|
495
|
Potential Application of Bacteriophages in Enrichment Culture for Improved Prenatal Streptococcus agalactiae Screening. Viruses 2018; 10:v10100552. [PMID: 30308933 PMCID: PMC6213948 DOI: 10.3390/v10100552] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/24/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022] Open
Abstract
Vertical transmission of Streptococcus agalactiae can cause neonatal infections. A culture test in the late stage of pregnancy is used to screen for the presence of maternal S. agalactiae for intrapartum antibiotic prophylaxis. For the test, a vaginal–rectal sample is recommended to be enriched, followed by bacterial identification. In some cases, Enterococcus faecalis overgrows in the enrichment culture. Consequently, the identification test yields false-negative results. Bacteriophages (phages) can be used as antimicrobial materials. Here, we explored the feasibility of using phages to minimize false-negative results in an experimental setting. Phage mixture was prepared using three phages that specifically infect E. faecalis: phiEF24C, phiEF17H, and phiM1EF22. The mixture inhibited the growth of 86.7% (26/30) of vaginal E. faecalis strains. The simple coculture of E. faecalis and S. agalactiae was used as an experimental enrichment model. Phage mixture treatment led to suppression of E. faecalis growth and facilitation of S. agalactiae growth. In addition, testing several sets of S. agalactiae and E. faecalis strains, the treatment with phage mixture in the enrichment improved S. agalactiae detection on chromogenic agar. Our results suggest that the phage mixture can be usefully employed in the S. agalactiae culture test to increase test accuracy.
Collapse
|
496
|
Zablocki O, van Zyl L, Trindade M. Biogeography and taxonomic overview of terrestrial hot spring thermophilic phages. Extremophiles 2018; 22:827-837. [PMID: 30121708 DOI: 10.1007/s00792-018-1052-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
Bacterial viruses ("phages") play important roles in the regulation and evolution of microbial communities in most ecosystems. Terrestrial hot springs typically contain thermophilic bacterial communities, but the diversity and impacts of its associated viruses ("thermophilic phages") are largely unexplored. Here, we provide a taxonomic overview of phages that have been isolated strictly from terrestrial hot springs around the world. In addition, we placed 17 thermophilic phage genomes in a global phylogenomic context to detect evolutionary patterns. Thermophilic phages have diverse morphologies (e.g., tailed, filamentous), unique virion structures (e.g., extremely long tailed siphoviruses), and span five taxonomic families encompassing strictly thermophilic phage genera. Within the phage proteomic tree, six thermophilic phage-related clades were identified, with evident genomic relatedness between thermophilic phages and archaeal viruses. Moreover, whole proteome analyses showed clustering between phages that infect distinct host phyla, such as Firmicutes and Deinococcus-Thermus. The potential for discovery of novel phage-host systems in terrestrial hot springs remain mostly untapped, thus additional emphasis on thermophilic phages in ecological prospecting is encouraged to gain insights into the microbial population dynamics of these environments.
Collapse
Affiliation(s)
- Olivier Zablocki
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.,Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, South Africa
| | - Leonardo van Zyl
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, South Africa
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, South Africa.
| |
Collapse
|
497
|
Modha S, Thanki AS, Cotmore SF, Davison AJ, Hughes J. ViCTree: an automated framework for taxonomic classification from protein sequences. Bioinformatics 2018; 34:2195-2200. [PMID: 29474519 PMCID: PMC6022645 DOI: 10.1093/bioinformatics/bty099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/08/2018] [Accepted: 02/20/2018] [Indexed: 11/14/2022] Open
Abstract
Motivation The increasing rate of submission of genetic sequences into public databases is providing a growing resource for classifying the organisms that these sequences represent. To aid viral classification, we have developed ViCTree, which automatically integrates the relevant sets of sequences in NCBI GenBank and transforms them into an interactive maximum likelihood phylogenetic tree that can be updated automatically. ViCTree incorporates ViCTreeView, which is a JavaScript-based visualization tool that enables the tree to be explored interactively in the context of pairwise distance data. Results To demonstrate utility, ViCTree was applied to subfamily Densovirinae of family Parvoviridae. This led to the identification of six new species of insect virus. Availability and implementation ViCTree is open-source and can be run on any Linux- or Unix-based computer or cluster. A tutorial, the documentation and the source code are available under a GPL3 license, and can be accessed at http://bioinformatics.cvr.ac.uk/victree_web/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sejal Modha
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Anil S Thanki
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
498
|
Uchiyama J, Mizukami K, Yahara K, Kato SI, Murakami H, Nasukawa T, Ohara N, Ogawa M, Yamazaki T, Matsuzaki S, Sakaguchi M. Genome Sequences of 12 Mycobacteriophages Recovered from Archival Stocks in Japan. GENOME ANNOUNCEMENTS 2018; 6:e00472-18. [PMID: 29930032 PMCID: PMC6013612 DOI: 10.1128/genomea.00472-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/21/2018] [Indexed: 11/20/2022]
Abstract
Using Mycobacterium smegmatis mc2155, 12 siphoviruses were recovered from long-term archival stocks stored in Japan. Their genome sequences were 46.0 to 61.3 kbp with 63 to 68% G+C contents, which allowed them to be categorized within cluster W and subclusters A1, A2, B3, A7, I1, and K4.
Collapse
Affiliation(s)
- Jumpei Uchiyama
- School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Keijiro Mizukami
- School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | - Naoya Ohara
- Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- The Advanced Research Center for Oral and Craniofacial Sciences, Dental School, Okayama University, Okayama, Japan
| | - Midori Ogawa
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu City, Japan
| | - Toshio Yamazaki
- Division of Biosafety Control and Research, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | |
Collapse
|