451
|
Sakakibara N, Nakatsubo T, Suzuki S, Shibata D, Shimada M, Umezawa T. Metabolic analysis of the cinnamate/monolignol pathway in Carthamus tinctorius seeds by a stable-isotope-dilution method. Org Biomol Chem 2007. [PMID: 17315067 DOI: 10.1007/s11101-009-9155-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The present study established a system for comprehensive metabolic analysis of the cinnamate/monolignol and lignan pathways by the use of a stable-isotope-dilution method. The system was successfully applied to characterization of the pathways in Carthamus tinctorius cv. Round-leaved White maturing seeds in combination with administration of stable-isotope-labelled precursors. Experimental results obtained using this technique strongly suggested the intermediacy of ferulic acid in lignan biosynthesis in the plant.
Collapse
Affiliation(s)
- Norikazu Sakakibara
- Research Institute for Sustainable Humanosphare, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
452
|
Yang C, Xu Z, Song J, Conner K, Vizcay Barrena G, Wilson ZA. Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. THE PLANT CELL 2007; 19:534-48. [PMID: 17329564 PMCID: PMC1867336 DOI: 10.1105/tpc.106.046391] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 01/06/2007] [Accepted: 02/05/2007] [Indexed: 05/14/2023]
Abstract
The Arabidopsis thaliana MYB26/MALE STERILE35 (MS35) gene is critical for the development of secondary thickening in the anther endothecium and subsequent dehiscence. MYB26 is localized to the nucleus and regulates endothecial development and secondary thickening in a cell-specific manner in the anther. MYB26 expression is seen in anthers and also in the style and nectaries, although there is no effect on female fertility in the ms35 mutant. MYB26 expression in anthers occurs early during endothecial development, with maximal expression during pollen mitosis I and bicellular stages, indicating a regulatory role in specifying early endothecial cell development. Overexpression of MYB26 results in ectopic secondary thickening in both Arabidopsis and tobacco (Nicotiana tabacum) plants, predominantly within the epidermal tissues. MYB26 regulates a number of genes linked to secondary thickening, including IRREGULAR XYLEM1 (IRX1), IRX3, IRX8, and IRX12. Changes in expression were also detected in two NAC domain genes, NAC SECONDARY WALL-PROMOTING FACTOR1 (NST1) and NST2, which have been linked to secondary thickening in the anther endothecium. These data indicate that MYB26 regulates NST1 and NST2 expression and in turn controls the process of secondary thickening. Therefore, MYB26 appears to function in a regulatory role involved in determining endothecial cell development within the anther and acts upstream of the lignin biosynthesis pathway.
Collapse
Affiliation(s)
- Caiyun Yang
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicstershire LE12 5RD, United Kingdom
| | | | | | | | | | | |
Collapse
|
453
|
Soltani BM, Ehlting J, Douglas CJ. Genetic analysis and epigenetic silencing of At4CL1 and At4CL2 expression in transgenic Arabidopsis. Biotechnol J 2007; 1:1124-36. [PMID: 17004303 DOI: 10.1002/biot.200600140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
4-coumarate::CoA ligase (4CL) gene family members are involved in channeling carbon flow into branch pathways of phenylpropanoid metabolism. Transgenic Arabidopsis plants containing the At4CL1 or At4CL2 promoter fused to the beta-glucuronidase (GUS) reporter gene show developmentally regulated GUS expression in the xylem tissues of the root and shoot. To identify regulatory genes involved in the developmental regulation of At4CL and other phenylpropanoid-specific genes, we generated ethyl methyl sulfate mutagenized populations of At4CL1::GUS and At4CL2::GUS transgenic lines and screened approximately 16,000 progeny for reduced or altered GUS expression. Several lines with reproducible patterns of reduced GUS expression were identified. However, the GUS-expression phenotype segregated in a non-Mendelian manner in all of the identified lines. Also, GUS expression was restored by 5-azacytidine (aza) treatment, suggesting inhibitory DNA methylation of the transgene. Southern analysis confirmed DNA methylation of the proximal promoter sequences of the transgene only in the mutant lines. In addition, retransformation of At4CL::GUS lines with further At4CL promoter constructs enhanced the GUS-silencing phenotype. Taken together, these results suggest that the isolated mutants are epimutants. Apparently, two different modes of silencing were engaged in the At4CL1::GUS and At4CL2::GUS silenced lines. While silencing in the seedlings of the At4CL1::GUS lines was root specific in seedlings, it affected all organs in the At4CL2::GUS lines. Also, At4CL1::GUS transgene silencing was confined to the transgene but At4CL2::GUS silencing extended to the endogenous At4CL2 gene. Organ-specific silencing of the At4CL1::GUS transgene cannot be explained by current models in the literature.
Collapse
Affiliation(s)
- Bahram M Soltani
- Genetics Graduate Program, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
454
|
Friedmann M, Ralph SG, Aeschliman D, Zhuang J, Ritland K, Ellis BE, Bohlmann J, Douglas CJ. Microarray gene expression profiling of developmental transitions in Sitka spruce (Picea sitchensis) apical shoots. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:593-614. [PMID: 17220514 DOI: 10.1093/jxb/erl246] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The apical shoot drives the yearly new stem growth of conifer trees, is the primary site for the establishment of chemical and physical defences, and is important in establishing subsequent perennial growth. This organ presents an interesting developmental system, with growth and development progressing from a meristematic tip through development of a primary vascular system, to a base with fully differentiated and lignified secondary xylem on the inside and bark tissue with constitutive defence structures such as resin, polyphenolic phloem parenchyma cells, and sclereids on the outside. A spruce (Picea spp.) microarray containing approximately 16.7K unique cDNAs was used to study transcript profiles that characterize the developmental transition in apical shoots of Sitka spruce (Picea sitchensis) from their vegetative tips to their woody bases. Along with genes involved in cell-wall modification and lignin biosynthesis, a number of differentially regulated genes encoding protein kinases and transcription factors with base-preferred expression patterns were identified, which could play roles in the formation of woody tissues inside the apical shoot, as well as in regulating other developmental transitions associated with organ maturation. Preferential expression of known conifer defence genes, genes encoding defence-related proteins, and genes encoding regulatory proteins was observed at the apical shoot tip and in the green bark tissues at the apical shoot base, suggesting a commitment to constitutive defence in the apical shoot that is co-ordinated with rapid development of secondary xylem.
Collapse
Affiliation(s)
- Michael Friedmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | | | | | | | | | | | | | | |
Collapse
|
455
|
Guillaumie S, San-Clemente H, Deswarte C, Martinez Y, Lapierre C, Murigneux A, Barrière Y, Pichon M, Goffner D. MAIZEWALL. Database and developmental gene expression profiling of cell wall biosynthesis and assembly in maize. PLANT PHYSIOLOGY 2007; 143:339-63. [PMID: 17098859 PMCID: PMC1761967 DOI: 10.1104/pp.106.086405] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 11/03/2006] [Indexed: 05/12/2023]
Abstract
An extensive search for maize (Zea mays) genes involved in cell wall biosynthesis and assembly has been performed and 735 sequences have been centralized in a database, MAIZEWALL (http://www.polebio.scsv.ups-tlse.fr/MAIZEWALL). MAIZEWALL contains a bioinformatic analysis for each entry and gene expression data that are accessible via a user-friendly interface. A maize cell wall macroarray composed of a gene-specific tag for each entry was also constructed to monitor global cell wall-related gene expression in different organs and during internode development. By using this macroarray, we identified sets of genes that exhibit organ and internode-stage preferential expression profiles. These data provide a comprehensive fingerprint of cell wall-related gene expression throughout the maize plant. Moreover, an in-depth examination of genes involved in lignin biosynthesis coupled to biochemical and cytological data from different organs and stages of internode development has also been undertaken. These results allow us to trace spatially and developmentally regulated, putative preferential routes of monolignol biosynthesis involving specific gene family members and suggest that, although all of the gene families of the currently accepted monolignol biosynthetic pathway are conserved in maize, there are subtle differences in family size and a high degree of complexity in spatial expression patterns. These differences are in keeping with the diversity of lignified cell types throughout the maize plant.
Collapse
Affiliation(s)
- Sabine Guillaumie
- Université Paul Sabatier, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, 31326 Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
456
|
Andersen JR, Zein I, Wenzel G, Krützfeldt B, Eder J, Ouzunova M, Lübberstedt T. High levels of linkage disequilibrium and associations with forage quality at a phenylalanine ammonia-lyase locus in European maize (Zea mays L.) inbreds. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:307-19. [PMID: 17123062 DOI: 10.1007/s00122-006-0434-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 10/12/2006] [Indexed: 05/12/2023]
Abstract
Forage quality of maize is influenced by both the content and structure of lignin in the cell wall. Phenylalanine Ammonia-Lyase (PAL) catalyzes the first step in lignin biosynthesis in plants; the deamination of L-phenylalanine to cinnamic acid. Successive enzymatic steps lead to the formation of three monolignols, constituting the complex structure of lignin. We have cloned and sequenced a PAL genomic sequence from 32 maize inbred lines currently employed in forage maize breeding programs in Europe. Low nucleotide diversity and excessive linkage disequilibrium (LD) was identified at this PAL locus, possibly reflecting selective constrains resulting from PAL being the first enzyme in the monolignol, and other, pathways. While the association analysis was affected by extended LD and population structure, several individual polymorphisms were associated with neutral detergent fiber (not considering population structure) and a single polymorphism was associated with in vitro digestibility of organic matter (considering population structure).
Collapse
Affiliation(s)
- Jeppe R Andersen
- Danish Institute of Agricultural Sciences, Research Center Flakkebjerg, 4200, Slagelse, Denmark
| | | | | | | | | | | | | |
Collapse
|
457
|
Lucheta AR, Silva-Pinhati ACO, Basílio-Palmieri AC, Berger IJ, Freitas-Astúa J, Cristofani M. An in silico analysis of the key genes involved in flavonoid biosynthesis in Citrus sinensis. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000500010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | | | - Juliana Freitas-Astúa
- Instituto Agronômico de Campinas, Brazil; Embrapa Mandioca e Fruticultura Tropical, Brazil
| | | |
Collapse
|
458
|
Mohr PG, Cahill DM. Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct Integr Genomics 2006; 7:181-91. [PMID: 17149585 DOI: 10.1007/s10142-006-0041-4] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 08/15/2006] [Accepted: 09/16/2006] [Indexed: 10/23/2022]
Abstract
Abscisic acid (ABA) has been implicated in determining the outcome of interactions between many plants and their pathogens. We had previously shown that increased concentrations of ABA within leaves of Arabidopsis induced susceptibility towards an avirulent strain of Pseudomonas syringae pathovar (pv.) tomato. We now show that ABA induces susceptibility via suppression of the accumulation of components crucial for a resistance response. Lignin and salicylic acid concentrations in leaves were increased during a resistant interaction but reduced when plants were treated with ABA. The reduction in lignin and salicylic acid production was independent of the development of the hypersensitive response (HR), indicating that, in this host-pathogen system, HR is not required for resistance. Genome-wide gene expression analysis using microarrays showed that treatment with ABA suppressed the expression of many defence-related genes, including those important for phenylpropanoid biosynthesis and those encoding resistance-related proteins. Together, these results show that resistance induction in Arabidopsis to an avirulent strain of P. syringae pv. tomato is regulated by ABA.
Collapse
Affiliation(s)
- Peter G Mohr
- School of Life and Environmental Sciences, Deakin University, Geelong campus at Waurn Ponds, Geelong, Victoria 3217, Australia
| | | |
Collapse
|
459
|
Fornalé S, Sonbol FM, Maes T, Capellades M, Puigdomènech P, Rigau J, Caparrós-Ruiz D. Down-regulation of the maize and Arabidopsis thaliana caffeic acid O-methyl-transferase genes by two new maize R2R3-MYB transcription factors. PLANT MOLECULAR BIOLOGY 2006; 62:809-23. [PMID: 16941210 DOI: 10.1007/s11103-006-9058-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 07/13/2006] [Indexed: 05/11/2023]
Abstract
The maize (Zea mays L.) caffeic acid O-methyl-transferase (COMT) is a key enzyme in the biosynthesis of lignin. In this work we have characterized the involvement of COMT in the lignification process through the study of the molecular mechanisms involved in its regulation. The examination of the maize COMT gene promoter revealed a putative ACIII box, typically recognized by R2R3-MYB transcription factors. We used the sequence of known R2R3-MYB factors to isolate five maize R2R3-MYB factors (ZmMYB2, ZmMYB8, ZmMYB31, ZmMYB39, and ZmMYB42) and study their possible roles as regulators of the maize COMT gene. The factors ZmMYB8, ZmMY31, and ZmMYB42 belong to the subgroup 4 of the R2R3-MYB family along with other factors associated with lignin biosynthesis repression. In addition, the induction pattern of ZmMYB31 and ZmMYB42 gene expression on wounding is that expected for repressors of the maize COMT gene. Arabidopsis thaliana plants over-expressing ZmMYB31 and ZmMYB42 down-regulate both the A. thaliana and the maize COMT genes. Furthermore, the over-expression of ZmMYB31 and ZmMYB42 also affect the expression of other genes of the lignin pathway and produces a decrease in lignin content of the transgenic plants.
Collapse
Affiliation(s)
- Silvia Fornalé
- Departament de Genética Molecular, Laboratori de Genètica Molecular Vegetal, CSIC-IRTA, Jordi Girona 18-26, 08034, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
460
|
Eudes A, Pollet B, Sibout R, Do CT, Séguin A, Lapierre C, Jouanin L. Evidence for a role of AtCAD 1 in lignification of elongating stems of Arabidopsis thaliana. PLANTA 2006; 225:23-39. [PMID: 16832689 DOI: 10.1007/s00425-006-0326-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 05/08/2006] [Indexed: 05/10/2023]
Abstract
The cinnamyl alcohol dehydrogenase (AtCAD) multigene family in Arabidopsis is composed of nine genes. Our previous studies focused on the two isoforms AtCAD C and AtCAD D which show a high homology to those related to lignification in other plants. This study focuses on the seven other Arabidopsis CAD for which functions are not yet elucidated. Their expression patterns were determined in different parts of Arabidopsis. Only CAD 1 protein can be detected in elongating stems, flowers, and siliques using Western-blot analysis. Tissue specific expression of CAD 1, B1, and G genes was determined using their promoters fused to the GUS reporter gene. CAD 1 expression was observed in primary xylem in accordance with a potential role in lignification. Arabidopsis T-DNA mutants knockout for the different genes CAD genes were characterized. Their stems displayed no substantial reduction of CAD activities for coniferyl and sinapyl alcohols as well as no modifications of lignin quantity and structure in mature inflorescence stems. Only a small reduction of lignin content could be observed in elongating stems of Atcad 1 mutant. These CAD genes in combination with the CAD D promoter were used to complement a CAD double mutant severely altered in lignification (cad c cad d). The expression of AtCAD A, B1, B2, F, and G had no effect on restoring a normal lignin profile of this mutant. In contrast, CAD 1 complemented partly this mutant as revealed by the partial restoration of conventional lignin units and by the decrease in the frequency of beta-O-4 linked p-OH cinnamaldehydes.
Collapse
Affiliation(s)
- Aymerick Eudes
- Biologie Cellulaire, INRA, 78026 Versailles Cedex, France
| | | | | | | | | | | | | |
Collapse
|
461
|
Casu RE, Jarmey JM, Bonnett GD, Manners JM. Identification of transcripts associated with cell wall metabolism and development in the stem of sugarcane by Affymetrix GeneChip Sugarcane Genome Array expression profiling. Funct Integr Genomics 2006; 7:153-67. [PMID: 17111183 DOI: 10.1007/s10142-006-0038-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 09/14/2006] [Accepted: 09/15/2006] [Indexed: 10/23/2022]
Abstract
Sugarcane is an important crop in tropical regions of the world, producing a very large biomass and accumulating large amounts of sucrose in the stem. In this study, we present the first report of transcript profiling using the GeneChip Sugarcane Genome Array. We have identified transcripts that are differentially expressed in the sugarcane stem during development by expression profiling using the array and total RNA derived from three disparate stem tissues (meristem, internodes 1-3, 8, and 20) from four replicates of the sugarcane variety Q117 grown in the field. We have identified 119 transcripts that were highly differentially expressed with development and have characterised members of the cellulose synthase (CesA) and cellulose synthase-like (Csl) gene families, which displayed coordinated expression during stem development. In addition, we determined that many other transcripts involved in cell wall metabolism and lignification were also co-expressed with members of the CesA and Csl gene families, offering additional insights into the dynamics of primary and secondary cell wall synthesis in the developing sugarcane stem.
Collapse
Affiliation(s)
- Rosanne E Casu
- CSIRO Plant Industry, Queensland Bioscience Precinct, 306 Carmody Rd., St. Lucia, Queensland, 4067, Australia.
| | | | | | | |
Collapse
|
462
|
Baghdady A, Blervacq AS, Jouanin L, Grima-Pettenati J, Sivadon P, Hawkins S. Eucalyptus gunnii CCR and CAD2 promoters are active in lignifying cells during primary and secondary xylem formation in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:674-83. [PMID: 17107813 DOI: 10.1016/j.plaphy.2006.10.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 10/10/2006] [Indexed: 05/02/2023]
Abstract
Cell-specific expression patterns of the Eucalyptus gunnii cinnamoyl coenzymeA reductase (EgCCR) and cinnamyl alcohol dehydrogenase (EgCAD2) promoters were analyzed by promoter-GUS histochemistry in the primary and secondary xylem tissues from floral stems and roots of Arabidopsis thaliana. Expression patterns indicated that the EgCCR and EgCAD2 genes were expressed in a coordinated manner in primary and secondary xylem tissues of the Arabidopsis floral stem and root. Both genes were expressed in all lignifying cells (vessel elements, xylem fibers and paratracheal parenchyma cells) of xylem tissues. The capacity for long-term monolignol production appeared to be related to the cell-specific developmental processes and biological roles of different cell types. Our results suggested that lignification of short-lived vessel elements was achieved by a two-step process involving (i) monolignol production by vessel elements prior to vessel programmed cell death and (ii) subsequent monolignol production by vessel-associated living paratracheal parenchyma cells following vessel element cell death. EgCCR and EgCAD2 gene expression patterns suggested that the process of xylem cell lignification was similar in both primary and secondary xylem tissues in Arabidopsis floral stems and roots.
Collapse
Affiliation(s)
- A Baghdady
- Stress abiotiques et différenciation des végétaux cultivés, UMR USTL-INRA 1281, université des sciences et technologies de Lille, bâtiment SN2, cité scientifique, 59655 Villeneuve-d'Ascq cedex, France
| | | | | | | | | | | |
Collapse
|
463
|
Jiang Y, Deyholos MK. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC PLANT BIOLOGY 2006; 6:25. [PMID: 17038189 PMCID: PMC1621065 DOI: 10.1186/1471-2229-6-25] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 10/12/2006] [Indexed: 05/12/2023]
Abstract
BACKGROUND Roots are an attractive system for genomic and post-genomic studies of NaCl responses, due to their primary importance to agriculture, and because of their relative structural and biochemical simplicity. Excellent genomic resources have been established for the study of Arabidopsis roots, however, a comprehensive microarray analysis of the root transcriptome following NaCl exposure is required to further understand plant responses to abiotic stress and facilitate future, systems-based analyses of the underlying regulatory networks. RESULTS We used microarrays of 70-mer oligonucleotide probes representing 23,686 Arabidopsis genes to identify root transcripts that changed in relative abundance following 6 h, 24 h, or 48 h of hydroponic exposure to 150 mM NaCl. Enrichment analysis identified groups of structurally or functionally related genes whose members were statistically over-represented among up- or down-regulated transcripts. Our results are consistent with generally observed stress response themes, and highlight potentially important roles for underappreciated gene families, including: several groups of transporters (e.g. MATE, LeOPT1-like); signalling molecules (e.g. PERK kinases, MLO-like receptors), carbohydrate active enzymes (e.g. XTH18), transcription factors (e.g. members of ZIM, WRKY, NAC), and other proteins (e.g. 4CL-like, COMT-like, LOB-Class 1). We verified the NaCl-inducible expression of selected transcription factors and other genes by qRT-PCR. CONCLUSION Microarray profiling of NaCl-treated Arabidopsis roots revealed dynamic changes in transcript abundance for at least 20% of the genome, including hundreds of transcription factors, kinases/phosphatases, hormone-related genes, and effectors of homeostasis, all of which highlight the complexity of this stress response. Our identification of these transcriptional responses, and groups of evolutionarily related genes with either similar or divergent transcriptional responses to stress, will facilitate mapping of regulatory networks and extend our ability to improve salt tolerance in plants.
Collapse
Affiliation(s)
- Yuanqing Jiang
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Michael K Deyholos
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
464
|
Soltani BM, Ehlting J, Hamberger B, Douglas CJ. Multiple cis-regulatory elements regulate distinct and complex patterns of developmental and wound-induced expression of Arabidopsis thaliana 4CL gene family members. PLANTA 2006; 224:1226-38. [PMID: 16738863 DOI: 10.1007/s00425-006-0296-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2006] [Accepted: 04/12/2006] [Indexed: 05/09/2023]
Abstract
Lignin is an important biopolymer that is deposited in secondary cell walls of plant cells (e.g., tracheary elements) and in response to stresses such as wounding. Biosynthesis of lignin monomers occurs via the phenylpropanoid pathway, in which the enzyme 4-coumarate:CoA ligase (4CL) plays a key role by catalyzing the formation of hydroxycinnamoyl-CoA esters, subsequently reduced to the corresponding monolignols (hydroxycinnamoyl alcohols). 4CL is encoded by a family of four genes in Arabidopsis thaliana (At4CL1-At4CL4), which are developmentally regulated and co-expressed with other phenylpropanoid genes. We investigated in detail the wound-induced expression of At4CL1-At4CL4, and found that At4CL1 and At4CL2 mRNA accumulation follows biphasic kinetics over a period of 72 h, while At4CL4 expression is rapidly activated for a period of at least 12 h before declining. In order to localize cis-regulatory elements involved in the developmental and wound-induced regulation of the At4CL gene family members, At4CL promoter-beta-glucuronidase (GUS) reporter gene fusions were constructed and transferred into Arabidopsis plants. Analysis of these plants revealed that the promoter fragments direct discrete and distinct patterns of expression, some of which did not recapitulate expected patterns of wound-induced expression. The locations of regulatory elements associated with the At4CL2 gene were investigated in detail using a series of transgenic Arabidopsis plants containing promoter fragments and parts of the transcribed region of the gene fused to GUS. Positive and negative regulatory elements effective in modulating developmental expression or wound responsiveness of the gene were located both in the promoter and transcribed regions of the At4CL2 gene.
Collapse
Affiliation(s)
- Bahram M Soltani
- Genetics Graduate Program, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | | | | | | |
Collapse
|
465
|
Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, et alTuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 2006; 313:1596-604. [PMID: 16973872 DOI: 10.1126/science.1128691] [Show More Authors] [Citation(s) in RCA: 2668] [Impact Index Per Article: 140.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport.
Collapse
Affiliation(s)
- G A Tuskan
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
466
|
Ralph SG, Yueh H, Friedmann M, Aeschliman D, Zeznik JA, Nelson CC, Butterfield YSN, Kirkpatrick R, Liu J, Jones SJM, Marra MA, Douglas CJ, Ritland K, Bohlmann J. Conifer defence against insects: microarray gene expression profiling of Sitka spruce (Picea sitchensis) induced by mechanical wounding or feeding by spruce budworms (Choristoneura occidentalis) or white pine weevils (Pissodes strobi) reveals large-scale changes of the host transcriptome. PLANT, CELL & ENVIRONMENT 2006; 29:1545-70. [PMID: 16898017 DOI: 10.1111/j.1365-3040.2006.01532.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Conifers are resistant to attack from a large number of potential herbivores or pathogens. Previous molecular and biochemical characterization of selected conifer defence systems support a model of multigenic, constitutive and induced defences that act on invading insects via physical, chemical, biochemical or ecological (multitrophic) mechanisms. However, the genomic foundation of the complex defence and resistance mechanisms of conifers is largely unknown. As part of a genomics strategy to characterize inducible defences and possible resistance mechanisms of conifers against insect herbivory, we developed a cDNA microarray building upon a new spruce (Picea spp.) expressed sequence tag resource. This first-generation spruce cDNA microarray contains 9720 cDNA elements representing c. 5500 unique genes. We used this array to monitor gene expression in Sitka spruce (Picea sitchensis) bark in response to herbivory by white pine weevils (Pissodes strobi, Curculionidae) or wounding, and in young shoot tips in response to western spruce budworm (Choristoneura occidentalis, Lepidopterae) feeding. Weevils are stem-boring insects that feed on phloem, while budworms are foliage feeding larvae that consume needles and young shoot tips. Both insect species and wounding treatment caused substantial changes of the host plant transcriptome detected in each case by differential gene expression of several thousand array elements at 1 or 2 d after the onset of treatment. Overall, there was considerable overlap among differentially expressed gene sets from these three stress treatments. Functional classification of the induced transcripts revealed genes with roles in general plant defence, octadecanoid and ethylene signalling, transport, secondary metabolism, and transcriptional regulation. Several genes involved in primary metabolic processes such as photosynthesis were down-regulated upon insect feeding or wounding, fitting with the concept of dynamic resource allocation in plant defence. Refined expression analysis using gene-specific primers and real-time PCR for selected transcripts was in agreement with microarray results for most genes tested. This study provides the first large-scale survey of insect-induced defence transcripts in a gymnosperm and provides a platform for functional investigation of plant-insect interactions in spruce. Induction of spruce genes of octadecanoid and ethylene signalling, terpenoid biosynthesis, and phenolic secondary metabolism are discussed in more detail.
Collapse
Affiliation(s)
- Steven G Ralph
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
467
|
Lu S, Zhou Y, Li L, Chiang VL. Distinct Roles of Cinnamate 4-hydroxylase Genes in Populus. ACTA ACUST UNITED AC 2006; 47:905-14. [PMID: 16720648 DOI: 10.1093/pcp/pcj063] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cinnamate 4-hydroxylase (C4H) catalyzes the conversion of cinnamate into 4-hydroxy-cinnamate, a key reaction of the phenylpropanoid pathway which leads to the biosynthesis of several secondary metabolites. C4H genes exist as a multigene family in various plant species. In order to understand the roles of individual C4H members, four C4H cDNAs (PtreC4H) were isolated from Populus tremuloides and three C4H loci (PtriC4H) were identified in the P. trichocarpa genome. The ability of Populus C4H isoforms to convert trans-cinnamate into p-coumaric acid was verified by the examination of yeast recombinant PtreC4H proteins. Populus C4H genes were expressed in various tissues, including developing xylem, phloem and epidermis; however, the expression patterns of individual members were different from each other. Sequential analysis of C4H promoters showed that the differential expression of C4H genes was associated with cis-acting regulatory elements such as box L, box P and H box, suggesting that the divergent C4H isoforms played distinct roles in the production of secondary metabolites. The involvement of specific C4H isoforms in the biosynthesis of guaiacyl and syringyl monolignols is discussed.
Collapse
Affiliation(s)
- Shanfa Lu
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, NC 27695-7247, USA.
| | | | | | | |
Collapse
|
468
|
Pilbák S, Tomin A, Rétey J, Poppe L. The essential tyrosine-containing loop conformation and the role of the C-terminal multi-helix region in eukaryotic phenylalanine ammonia-lyases. FEBS J 2006; 273:1004-19. [PMID: 16478474 DOI: 10.1111/j.1742-4658.2006.05127.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Besides the post-translationally cyclizing catalytic Ala-Ser-Gly triad, Tyr110 and its equivalents are of the most conserved residues in the active site of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5), histidine ammonia-lyase (HAL, EC 4.3.1.3) and other related enzymes. The Tyr110Phe mutation results in the most pronounced inactivation of PAL indicating the importance of this residue. The recently published X-ray structures of PAL revealed that the Tyr110-loop was either missing (for Rhodospridium toruloides) or far from the active site (for Petroselinum crispum). In bacterial HAL ( approximately 500 amino acids) and plant and fungal PALs ( approximately 710 amino acids), a core PAL/HAL domain ( approximately 480 amino acids) with >or= 30% sequence identity along the different species is common. In plant and fungal PAL a approximately 100-residue long C-terminal multi-helix domain is present. The ancestor bacterial HAL is thermostable and, in all of its known X-ray structures, a Tyr83-loop-in arrangement has been found. Based on the HAL structures, a Tyr110-loop-in conformation of the P. crispum PAL structure was constructed by partial homology modeling, and the static and dynamic behavior of the loop-in/loop-out structures were compared. To study the role of the C-terminal multi-helix domain, Tyr-loop-in/loop-out model structures of two bacterial PALs (Streptomyces maritimus, 523 amino acids and Photorhabdus luminescens, 532 amino acids) lacking this C-terminal domain were also built. Molecular dynamics studies indicated that the Tyr-loop-in conformation was more rigid without the C-terminal multi-helix domain. On this basis it is hypothesized that a role of this C-terminal extension is to decrease the lifetime of eukaryotic PAL by destabilization, which might be important for the rapid responses in the regulation of phenylpropanoid biosynthesis.
Collapse
Affiliation(s)
- Sarolta Pilbák
- Institute for Organic Chemistry and Research Group for Alkaloid Chemistry, Budapest University of Technology and Economics, Hungary
| | | | | | | |
Collapse
|
469
|
Samuels A, Kaneda M, Rensing K. The cell biology of wood formation: from cambial divisions to mature secondary xylemThis review is one of a selection of papers published in the Special Issue on Plant Cell Biology. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-065] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The development of secondary xylem has been studied historically from an anatomical point of view, but recent developments in cell and molecular biology have revitalized this field. An integrated view of cell structure with physiology is emerging for each stage of the developing xylem cells’ lives, from birth in the cambium to programmed cell death. High-quality structural information is essential in building this type of integrated view, but conventional electron microscopy of developing wood cells has been problematic. The importance of adequately preserving cells of the secondary vascular system is illustrated with examples from dormant cambium, cell division, and secondary cell wall deposition. In many cases, contemporary gene expression studies can be viewed in the context of both new structural information and pioneering live cell studies done in the early 1900s to increase our understanding of secondary xylem development.
Collapse
Affiliation(s)
- A.L. Samuels
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - M. Kaneda
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - K.H. Rensing
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
470
|
Hano C, Addi M, Bensaddek L, Crônier D, Baltora-Rosset S, Doussot J, Maury S, Mesnard F, Chabbert B, Hawkins S, Lainé E, Lamblin F. Differential accumulation of monolignol-derived compounds in elicited flax (Linum usitatissimum) cell suspension cultures. PLANTA 2006; 223:975-89. [PMID: 16292660 DOI: 10.1007/s00425-005-0156-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 09/15/2005] [Indexed: 05/05/2023]
Abstract
Lignin and lignans share monolignols as common precursors and are both potentially involved in plant defence against pathogens. In this study, we investigated the effects of fungal elicitors on lignin and lignan metabolism in flax (Linum usitatissimum) cell suspensions. Cell suspension cultures of flax were treated with elicitor preparations made from mycelium extracts of Botrytis cinerea, Phoma exigua and Fusarium oxysporum F ssp lini. Elicitors induced a rapid stimulation of the monolignol pathway, as confirmed by the increase in PAL (phenylalanine ammonia-lyase, EC 4.1.3.5), CCR (cinnamoyl-CoA reductase EC 1.2.1.44) and CAD (cinnamyl alcohol dehydrogenase EC 1.1.1.195) gene expression and PAL activity. At the same time, CCR activity only increased significantly in F. oxysporum-treated cells 24 h post elicitation. On the other hand, CAD activity measured for coniferyl alcohol formation was transiently decreased but a substrate-specific activation of CAD activity was observed in F. oxysporum-treated cells when using sinapyl alcohol as substrate. The accumulation of monolignol-derived products varied according to the elicitor used. B. cinerea or P. exigua-elicited cell cultures were characterised by a reinforcement of the cell wall by a deposit of 8-O-4'-linked non-condensed lignin structures and phenolic monomers, while at the same time no stimulation of 8-8'-linked lignan or 8-5'-linked phenylcoumaran lignan accumulation was observed. Additionally, elicitation of cell cultures with F. oxysporum extracts even triggered a strong incorporation of monolignols in the non condensed labile ether-linked lignin fraction concomitantly with a decrease in lignan and phenylcoumaran lignan accumulation. Several hypotheses are proposed to explain the putative role of these compounds in the defence response of flax cells against pathogens.
Collapse
Affiliation(s)
- C Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, UPRES EA 1207, Antenne Scientifique Universitaire de Chartres, 21 rue de Loigny la Bataille, 28000 Chartres, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
471
|
Wei H, Dhanaraj AL, Arora R, Rowland LJ, Fu Y, Sun L. Identification of cold acclimation-responsive Rhododendron genes for lipid metabolism, membrane transport and lignin biosynthesis: importance of moderately abundant ESTs in genomic studies. PLANT, CELL & ENVIRONMENT 2006; 29:558-70. [PMID: 17080607 DOI: 10.1111/j.1365-3040.2005.01432.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have previously analysed expressed sequence tags (ESTs) from non-acclimated (NA) and cold-acclimated (CA) Rhododendron leaves, and identified highly abundant complementary DNAs (cDNAs) possibly involved in cold acclimation. A potentially significant, but relatively unexplored, application of these EST data sets is the study of moderately abundant cDNAs, such as those picked only 1-3 times from each Rhododendron EST library containing approximately 430 ESTs. Using statistical tests and Northern blots, we established that the probability of differential expression of moderately abundant cDNAs based on the EST data is, indeed, a reasonably accurate predictor of their 'true' upregulation or downregulation as 11 out of 13 cDNAs (85%) studied fit this criterion. The analyses also revealed four aspects of cold acclimation in Rhododendron leaf tissues. Firstly, the concomitant upregulation of long-chain acyl-coenzyme A (acyl-CoA) synthetase, CTP:cholinephosphate cytidylyltransferase and delta-12 fatty acid desaturase in CA leaf tissues suggests that phospholipid biosynthesis and desaturation are important components of cold hardening in Rhododendron. Secondly, upregulation of plastidic nicotinamide adenine dinucleotide phosphatemalic enzyme (NADP-ME) in CA tissues suggests that malate is an important source of acetyl-CoA used for fatty acid biosynthesis during cold acclimation. Thirdly, down-regulation of plasma membrane intrinsic protein (PIP)2-1 aquaporin and upregulation of gated outward rectifying K+ channel (GORK) in CA tissues may be associated with the protection of overwintering leaves from freeze-induced cellular dehydration. Fourthly, upregulation of coumarate 3-hydroxylase may be associated with cell wall thickening in CA tissues. Physiological implications of these results, which reveal potentially novel regulations of cold acclimation in overwintering woody evergreens, are discussed. This work highlights the importance of also investigating low/moderately abundant ESTs (in addition to highly abundant ones) in genomic studies, in that it offers an effective strategy for identifying stress-related genes, especially when large-scale cDNA sequencing/microarray studies are not possible.
Collapse
Affiliation(s)
- Hui Wei
- Department of Horticulture, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | |
Collapse
|
472
|
Truman W, de Zabala MT, Grant M. Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:14-33. [PMID: 16553893 DOI: 10.1111/j.1365-313x.2006.02672.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
To successfully infect a plant, bacterial pathogens inject a collection of Type III effector proteins (TTEs) directly into the plant cell that function to overcome basal defences and redirect host metabolism for nutrition and growth. We examined (i) the transcriptional dynamics of basal defence responses between Arabidopsis thaliana and Pseudomonas syringae and (ii) how basal defence is subsequently modulated by virulence factors during compatible interactions. A set of 96 genes displaying an early, sustained induction during basal defence was identified. These were also universally co-regulated following other bacterial basal resistance and non-host responses or following elicitor challenges. Eight hundred and eighty genes were conservatively identified as being modulated by TTEs within 12 h post-inoculation (hpi), 20% of which represented transcripts previously induced by the bacteria at 2 hpi. Significant over-representation of co-regulated transcripts encoding leucine rich repeat receptor proteins and protein phosphatases were, respectively, suppressed and induced 12 hpi. These data support a model in which the pathogen avoids detection through diminution of extracellular receptors and attenuation of kinase signalling pathways. Transcripts associated with several metabolic pathways, particularly plastid based primary carbon metabolism, pigment biosynthesis and aromatic amino acid metabolism, were significantly modified by the bacterial challenge at 12 hpi. Superimposed upon this basal response, virulence factors (most likely TTEs) targeted genes involved in phenylpropanoid biosynthesis, consistent with the abrogation of lignin deposition and other wall modifications likely to restrict the passage of nutrients and water to the invading bacteria. In contrast, some pathways associated with stress tolerance are transcriptionally induced at 12 hpi by TTEs.
Collapse
Affiliation(s)
- William Truman
- Department of Agricultural Science, Imperial College London, Wye Campus, High Street, Wye TN25 5AH, UK
| | | | | |
Collapse
|
473
|
Zhang K, Qian Q, Huang Z, Wang Y, Li M, Hong L, Zeng D, Gu M, Chu C, Cheng Z. GOLD HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice. PLANT PHYSIOLOGY 2006; 140:972-83. [PMID: 16443696 PMCID: PMC1400561 DOI: 10.1104/pp.105.073007] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Lignin content and composition are two important agronomic traits for the utilization of agricultural residues. Rice (Oryza sativa) gold hull and internode phenotype is a classical morphological marker trait that has long been applied to breeding and genetics study. In this study, we have cloned the GOLD HULL AND INTERNODE2 (GH2) gene in rice using a map-based cloning approach. The result shows that the gh2 mutant is a lignin-deficient mutant, and GH2 encodes a cinnamyl-alcohol dehydrogenase (CAD). Consistent with this finding, extracts from roots, internodes, hulls, and panicles of the gh2 plants exhibited drastically reduced CAD activity and undetectable sinapyl alcohol dehydrogenase activity. When expressed in Escherichia coli, purified recombinant GH2 was found to exhibit strong catalytic ability toward coniferaldehyde and sinapaldehyde, while the mutant protein gh2 completely lost the corresponding CAD and sinapyl alcohol dehydrogenase activities. Further phenotypic analysis of the gh2 mutant plants revealed that the p-hydroxyphenyl, guaiacyl, and sinapyl monomers were reduced in almost the same ratio compared to the wild type. Our results suggest GH2 acts as a primarily multifunctional CAD to synthesize coniferyl and sinapyl alcohol precursors in rice lignin biosynthesis.
Collapse
Affiliation(s)
- Kewei Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
474
|
Kai K, Shimizu BI, Mizutani M, Watanabe K, Sakata K. Accumulation of coumarins in Arabidopsis thaliana. PHYTOCHEMISTRY 2006; 67:379-86. [PMID: 16405932 DOI: 10.1016/j.phytochem.2005.11.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 10/08/2005] [Accepted: 11/07/2005] [Indexed: 05/06/2023]
Abstract
The biosynthesis of coumarins in plants is not well understood, although these metabolic pathways are often found in the plant kingdom. We report here the occurrence of coumarins in Arabidopsis thaliana ecotype Columbia. Considerably high levels of scopoletin and its beta-d-glucopyranoside, scopolin, were found in the wild-type roots. The scopolin level in the roots was approximately 1200nmol/gFW, which was approximately 180-fold of that in the aerial parts. Calli accumulated scopolin at a level of 70nmol/gFW. Scopoletin and scopolin formation were induced in shoots after treatment with either 2,4-dichlorophenoxyacetic acid (at 100microM) or a bud-cell suspension of Fusarium oxysporum. In order to gain insight into the biosynthetic pathway of coumarins in A. thaliana, we analyzed coumarins in the mutants obtained from the SALK Institute collection that carried a T-DNA insertion within the gene encoding the cytochrome P450, CYP98A3, which catalyzes 3'-hydroxylation of p-coumarate units in the phenylpropanoid pathway. The content of scopoletin and scopolin in the mutant roots greatly decreased to approximately 3% of that in the wild-type roots. This observation suggests that scopoletin and scopolin biosynthesis in A. thaliana are strongly dependent on the 3'-hydroxylation of p-coumarate units catalyzed by CYP98A3. We also found that the level of skimmin, a beta-d-glucopyranoside of umbelliferone, was slightly increased in the mutant roots.
Collapse
Affiliation(s)
- Kosuke Kai
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
475
|
Douglas CJ, Ehlting J. Arabidopsis thaliana full genome longmer microarrays: a powerful gene discovery tool for agriculture and forestry. Transgenic Res 2006; 14:551-61. [PMID: 16245146 DOI: 10.1007/s11248-005-8926-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 06/13/2005] [Indexed: 10/25/2022]
Abstract
Sequenced plant genomes provide a large reservoir of known genes with potential for use in crop and tree improvement, but assignment of specific functions to annotated genes in sequenced plant genomes remains a challenge. Furthermore, most plant genes belong to families encoding proteins with related but distinct functions. In this commentary, we discuss our development of Arabidopsis spotted whole genome longmer oligonucleotide microarrays, and their use in global transcription profiling. We show that longmer array based transcriptome analysis in Arabidopsis can be used as an efficient and effective gene discovery and functional genomics tool, particularly for functional analyses of members of large gene families. We discuss experiments that focus on gene families involved in phenylpropanoid natural product biosynthesis and fiber differentiation. These analyses have helped to elucidate functions of individual gene family members, and have identified new candidate genes involved in fiber development and differentiation. Results obtained by these studies in Arabidopsis can be used as the basis for gene discovery in commercially important plants, and we have focused our attention on Populus trichocarpa (poplar), a species important in forestry and agroforestry for which complete genome sequence information is available.
Collapse
Affiliation(s)
- Carl J Douglas
- Department of Botany, University of British Columbia, BC V6T 1Z4 Vancouver, Canada.
| | | |
Collapse
|
476
|
Hamberger B, Ehlting J, Barbazuk B, Douglas CJ. Comparative Genomics of The Shikimate Pathway in Arabidopsis, Populus Trichocarpa and Oryza Sativa: Shikimate Pathway Gene Family Structure and Identification of Candidates for Missing Links in Phenylalanine Biosynthesis. RECENT ADVANCES IN PHYTOCHEMISTRY 2006. [DOI: 10.1016/s0079-9920(06)80038-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
477
|
van der Rest B, Danoun S, Boudet AM, Rochange SF. Down-regulation of cinnamoyl-CoA reductase in tomato (Solanum lycopersicum L.) induces dramatic changes in soluble phenolic pools. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:1399-411. [PMID: 16551686 DOI: 10.1093/jxb/erj120] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Health-beneficial properties of many secondary plant metabolites have created much interest into the control of their biosynthesis in crop species. Phenolic compounds, including flavonoids, hydroxycinnamates, and tannins, make up an important group of such phytonutrients. They are formed via the phenylpropanoid pathway and share common precursors with lignin, an insoluble cell wall-associated polymer. In this study, the aim was to reduce lignin biosynthesis so as to enhance the availability of these precursors and, thereby, stimulate the production of soluble, potentially health-promoting, phenolic compounds in tomato (Solanum lycopersicum L.). First two tomato genes encoding cinnamoyl-CoA reductase (CCR), a key enzyme in the formation of lignin monomers, were identified and characterized. Transgenic plants exhibiting a reduced lignin content were subsequently obtained through an RNAi strategy targeting one of these genes. As anticipated, the total level of soluble phenolics was higher in stems and leaves of the transformants as compared with control plants. This was correlated with an increased antioxidant capacity of the corresponding plant extracts. Analysis of the soluble phenolic fraction by HPLC-MS revealed that vegetative organs of CCR down-regulated plants contained higher amounts of chlorogenic acid and rutin, and accumulated new metabolites undetectable in the wild type, such as N-caffeoyl putrescine and kaempferol rutinoside. In fruits, CCR down-regulation triggered the moderate accumulation of two new compounds in the flesh, but the total phenolic content was not affected. Although the prospects of exploiting such a strategy for crop improvement are limited, the results provide further insight into the control of the phenylpropanoid pathway in the Solanaceae.
Collapse
Affiliation(s)
- Benoît van der Rest
- UMR 5546 CNRS-Université Paul Sabatier Surfaces Cellulaires et Signalisation chez les Végétaux, Pôle de Biotechnologie Végétale, 24 chemin de Borderouge, BP 42617, F-31326 Castanet, France
| | | | | | | |
Collapse
|
478
|
Tsai CJ, Harding SA, Tschaplinski TJ, Lindroth RL, Yuan Y. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. THE NEW PHYTOLOGIST 2006; 172:47-62. [PMID: 16945088 DOI: 10.1111/j.1469-8137.2006.01798.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Salicin-based phenolic glycosides, hydroxycinnamate derivatives and flavonoid-derived condensed tannins comprise up to one-third of Populus leaf dry mass. Genes regulating the abundance and chemical diversity of these substances have not been comprehensively analysed in tree species exhibiting this metabolically demanding level of phenolic metabolism. Here, shikimate-phenylpropanoid pathway genes thought to give rise to these phenolic products were annotated from the Populus genome, their expression assessed by semiquantitative or quantitative reverse transcription polymerase chain reaction (PCR), and metabolic evidence for function presented. Unlike Arabidopsis, Populus leaves accumulate an array of hydroxycinnamoyl-quinate esters, which is consistent with broadened function of the expanded hydroxycinnamoyl-CoA transferase gene family. Greater flavonoid pathway diversity is also represented, and flavonoid gene families are larger. Consistent with expanded pathway function, most of these genes were upregulated during wound-stimulated condensed tannin synthesis in leaves. The suite of Populus genes regulating phenylpropanoid product accumulation should have important application in managing phenolic carbon pools in relation to climate change and global carbon cycling.
Collapse
Affiliation(s)
- Chung-Jui Tsai
- Biotechnology Research Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA.
| | | | | | | | | |
Collapse
|
479
|
Damiani I, Morreel K, Danoun S, Goeminne G, Yahiaoui N, Marque C, Kopka J, Messens E, Goffner D, Boerjan W, Boudet AM, Rochange S. Metabolite profiling reveals a role for atypical cinnamyl alcohol dehydrogenase CAD1 in the synthesis of coniferyl alcohol in tobacco xylem. PLANT MOLECULAR BIOLOGY 2005; 59:753-69. [PMID: 16270228 DOI: 10.1007/s11103-005-0947-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 07/14/2005] [Indexed: 05/05/2023]
Abstract
In angiosperms, lignin is built from two main monomers, coniferyl and sinapyl alcohol, which are incorporated respectively as G and S units in the polymer. The last step of their synthesis has so far been considered to be performed by a family of dimeric cinnamyl alcohol dehydrogenases (CAD2). However, previous studies on Eucalyptus gunnii xylem showed the presence of an additional, structurally unrelated, monomeric CAD form named CAD1. This form reduces coniferaldehyde to coniferyl alcohol, but is inactive on sinapaldehyde. In this paper, we report the functional characterization of CAD1 in tobacco (Nicotiana tabacum L.). Transgenic tobacco plants with reduced CAD1 expression were obtained through an RNAi strategy. These plants displayed normal growth and development, and detailed biochemical studies were needed to reveal a role for CAD1. Lignin analyses showed that CAD1 down-regulation does not affect Klason lignin content, and has a moderate impact on G unit content of the non-condensed lignin fraction. However, comparative metabolic profiling of the methanol-soluble phenolic fraction from basal xylem revealed significant differences between CAD1 down-regulated and wild-type plants. Eight compounds were less abundant in CAD1 down-regulated lines, five of which were identified as dimers or trimers of monolignols, each containing at least one moiety derived from coniferyl alcohol. In addition, 3-trans-caffeoyl quinic acid accumulated in the transgenic plants. Together, our results support a significant contribution of CAD1 to the synthesis of coniferyl alcohol in planta, along with the previously characterized CAD2 enzymes.
Collapse
Affiliation(s)
- Isabelle Damiani
- UMR UPS/CNRS 5546 "Surfaces Cellulaires et Signalisation chez les Végétaux", Pôle de Biotechnologie Végétale, 24 chemin de Borderouge, BP 42617, F-31326, Castanet, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
480
|
Pavy N, Paule C, Parsons L, Crow JA, Morency MJ, Cooke J, Johnson JE, Noumen E, Guillet-Claude C, Butterfield Y, Barber S, Yang G, Liu J, Stott J, Kirkpatrick R, Siddiqui A, Holt R, Marra M, Seguin A, Retzel E, Bousquet J, MacKay J. Generation, annotation, analysis and database integration of 16,500 white spruce EST clusters. BMC Genomics 2005; 6:144. [PMID: 16236172 PMCID: PMC1277824 DOI: 10.1186/1471-2164-6-144] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 10/19/2005] [Indexed: 12/02/2022] Open
Abstract
Background The sequencing and analysis of ESTs is for now the only practical approach for large-scale gene discovery and annotation in conifers because their very large genomes are unlikely to be sequenced in the near future. Our objective was to produce extensive collections of ESTs and cDNA clones to support manufacture of cDNA microarrays and gene discovery in white spruce (Picea glauca [Moench] Voss). Results We produced 16 cDNA libraries from different tissues and a variety of treatments, and partially sequenced 50,000 cDNA clones. High quality 3' and 5' reads were assembled into 16,578 consensus sequences, 45% of which represented full length inserts. Consensus sequences derived from 5' and 3' reads of the same cDNA clone were linked to define 14,471 transcripts. A large proportion (84%) of the spruce sequences matched a pine sequence, but only 68% of the spruce transcripts had homologs in Arabidopsis or rice. Nearly all the sequences that matched the Populus trichocarpa genome (the only sequenced tree genome) also matched rice or Arabidopsis genomes. We used several sequence similarity search approaches for assignment of putative functions, including blast searches against general and specialized databases (transcription factors, cell wall related proteins), Gene Ontology term assignation and Hidden Markov Model searches against PFAM protein families and domains. In total, 70% of the spruce transcripts displayed matches to proteins of known or unknown function in the Uniref100 database (blastx e-value < 1e-10). We identified multigenic families that appeared larger in spruce than in the Arabidopsis or rice genomes. Detailed analysis of translationally controlled tumour proteins and S-adenosylmethionine synthetase families confirmed a twofold size difference. Sequences and annotations were organized in a dedicated database, SpruceDB. Several search tools were developed to mine the data either based on their occurrence in the cDNA libraries or on functional annotations. Conclusion This report illustrates specific approaches for large-scale gene discovery and annotation in an organism that is very distantly related to any of the fully sequenced genomes. The ArboreaSet sequences and cDNA clones represent a valuable resource for investigations ranging from plant comparative genomics to applied conifer genetics.
Collapse
Affiliation(s)
- Nathalie Pavy
- ARBOREA and Canada Research Chair in Forest Genomics, Pavillon Charles-Eugène-Marchand, Université Laval, Ste.Foy, Québec G1K 7P4, Canada
| | - Charles Paule
- Center for Computational Genomics and Bioinformatics, University of Minnesota, 420 Delaware St. S.E., MMC 43, Minneapolis, MN 55455, USA
| | - Lee Parsons
- Center for Computational Genomics and Bioinformatics, University of Minnesota, 420 Delaware St. S.E., MMC 43, Minneapolis, MN 55455, USA
| | - John A Crow
- Center for Computational Genomics and Bioinformatics, University of Minnesota, 420 Delaware St. S.E., MMC 43, Minneapolis, MN 55455, USA
| | - Marie-Josee Morency
- Laurentian Forestry Center (Canadian Forestry Service), Natural Resources Canada, 1055 rue du PEPS, Québec, Québec, G1V 4C7, Canada
| | - Janice Cooke
- ARBOREA and Canada Research Chair in Forest Genomics, Pavillon Charles-Eugène-Marchand, Université Laval, Ste.Foy, Québec G1K 7P4, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - James E Johnson
- Center for Computational Genomics and Bioinformatics, University of Minnesota, 420 Delaware St. S.E., MMC 43, Minneapolis, MN 55455, USA
| | - Etienne Noumen
- ARBOREA and Canada Research Chair in Forest Genomics, Pavillon Charles-Eugène-Marchand, Université Laval, Ste.Foy, Québec G1K 7P4, Canada
| | - Carine Guillet-Claude
- ARBOREA and Canada Research Chair in Forest Genomics, Pavillon Charles-Eugène-Marchand, Université Laval, Ste.Foy, Québec G1K 7P4, Canada
| | - Yaron Butterfield
- Genome Sciences Center, BC Cancer Agency, 675 West 10 th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Sarah Barber
- Genome Sciences Center, BC Cancer Agency, 675 West 10 th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - George Yang
- Genome Sciences Center, BC Cancer Agency, 675 West 10 th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Jerry Liu
- Genome Sciences Center, BC Cancer Agency, 675 West 10 th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Jeff Stott
- Genome Sciences Center, BC Cancer Agency, 675 West 10 th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Robert Kirkpatrick
- Genome Sciences Center, BC Cancer Agency, 675 West 10 th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Asim Siddiqui
- Genome Sciences Center, BC Cancer Agency, 675 West 10 th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Robert Holt
- Genome Sciences Center, BC Cancer Agency, 675 West 10 th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Marco Marra
- Genome Sciences Center, BC Cancer Agency, 675 West 10 th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Armand Seguin
- Laurentian Forestry Center (Canadian Forestry Service), Natural Resources Canada, 1055 rue du PEPS, Québec, Québec, G1V 4C7, Canada
| | - Ernest Retzel
- Center for Computational Genomics and Bioinformatics, University of Minnesota, 420 Delaware St. S.E., MMC 43, Minneapolis, MN 55455, USA
| | - Jean Bousquet
- ARBOREA and Canada Research Chair in Forest Genomics, Pavillon Charles-Eugène-Marchand, Université Laval, Ste.Foy, Québec G1K 7P4, Canada
| | - John MacKay
- ARBOREA and Canada Research Chair in Forest Genomics, Pavillon Charles-Eugène-Marchand, Université Laval, Ste.Foy, Québec G1K 7P4, Canada
| |
Collapse
|
481
|
Rogers LA, Dubos C, Surman C, Willment J, Cullis IF, Mansfield SD, Campbell MM. Comparison of lignin deposition in three ectopic lignification mutants. THE NEW PHYTOLOGIST 2005; 168:123-40. [PMID: 16159327 DOI: 10.1111/j.1469-8137.2005.01496.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Arabidopsis thaliana mutants de-etiolated3 (det3), pom-pom1 (pom1) and ectopic lignification1 (eli1) all deposit lignins in cells where these polymers would not normally be found. Comparison of these mutants provides an opportunity to determine if the shared mutant phenotype arose by perturbing a common regulatory mechanism in each of the mutants. The mutants were compared using a combination of genetics, histochemistry, chemical profiling, transcript profiling using both Northern blots and microarrays, and bioinformatics. The subset of cells that ectopically lignified was shared between all three mutants, but clear differences in cell wall chemistry were evident between the mutants. Northern blot analysis of lignin biosynthetic genes over diurnal and circadian cycles revealed that transcript abundance of several key genes was clearly altered in all three mutants. Microarray analysis suggests that changes in the expression of specific members of the R2R3-MYB and Dof transcription factor families may contribute to the ectopic lignification phenotypes. This comparative analysis provides a suite of hypotheses that can be tested to examine the control of lignin biosynthesis.
Collapse
Affiliation(s)
- Louisa A Rogers
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | | | | | | | | | |
Collapse
|
482
|
Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inzé D, Van Breusegem F. Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. PLANT PHYSIOLOGY 2005; 139:806-21. [PMID: 16183842 PMCID: PMC1255997 DOI: 10.1104/pp.105.065896] [Citation(s) in RCA: 360] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 07/20/2005] [Accepted: 07/25/2005] [Indexed: 05/04/2023]
Abstract
In plants, reactive oxygen species and, more particularly, hydrogen peroxide (H(2)O(2)) play a dual role as toxic by-products of normal cell metabolism and as regulatory molecules in stress perception and signal transduction. Peroxisomal catalases are an important sink for photorespiratory H(2)O(2). Using ATH1 Affymetrix microarrays, expression profiles were compared between control and catalase-deficient Arabidopsis (Arabidopsis thaliana) plants. Reduced catalase levels already provoked differences in nuclear gene expression under ambient growth conditions, and these effects were amplified by high light exposure in a sun simulator for 3 and 8 h. This genome-wide expression analysis allowed us to reveal the expression characteristics of complete pathways and functional categories during H(2)O(2) stress. In total, 349 transcripts were significantly up-regulated by high light in catalase-deficient plants and 88 were down-regulated. From this data set, H(2)O(2) was inferred to play a key role in the transcriptional up-regulation of small heat shock proteins during high light stress. In addition, several transcription factors and candidate regulatory genes involved in H(2)O(2) transcriptional gene networks were identified. Comparisons with other publicly available transcriptome data sets of abiotically stressed Arabidopsis revealed an important intersection with H(2)O(2)-deregulated genes, positioning elevated H(2)O(2) levels as an important signal within abiotic stress-induced gene expression. Finally, analysis of transcriptional changes in a combination of a genetic (catalase deficiency) and an environmental (high light) perturbation identified a transcriptional cluster that was strongly and rapidly induced by high light in control plants, but impaired in catalase-deficient plants. This cluster comprises the complete known anthocyanin regulatory and biosynthetic pathway, together with genes encoding unknown proteins.
Collapse
Affiliation(s)
- Sandy Vanderauwera
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
483
|
Costa MA, Bedgar DL, Moinuddin SGA, Kim KW, Cardenas CL, Cochrane FC, Shockey JM, Helms GL, Amakura Y, Takahashi H, Milhollan JK, Davin LB, Browse J, Lewis NG. Characterization in vitro and in vivo of the putative multigene 4-coumarate:CoA ligase network in Arabidopsis: syringyl lignin and sinapate/sinapyl alcohol derivative formation. PHYTOCHEMISTRY 2005; 66:2072-91. [PMID: 16099486 DOI: 10.1016/j.phytochem.2005.06.022] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 06/20/2005] [Indexed: 05/02/2023]
Abstract
A recent in silico analysis revealed that the Arabidopsis genome has 14 genes annotated as putative 4-coumarate:CoA ligase isoforms or homologues. Of these, 11 were selected for detailed functional analysis in vitro, using all known possible phenylpropanoid pathway intermediates (p-coumaric, caffeic, ferulic, 5-hydroxyferulic and sinapic acids), as well as cinnamic acid. Of the 11 recombinant proteins so obtained, four were catalytically active in vitro, with fairly broad substrate specificities, confirming that the 4CL gene family in Arabidopsis has only four members. This finding is in agreement with our previous phylogenetic analyses, and again illustrates the need for comprehensive characterization of all putative 4CLs, rather than piecemeal analysis of selected gene members. All 11 proteins were expressed with a C-terminal His6-tag and functionally characterized, with one, At4CL1, expressed in native form for kinetic property comparisons. Of the 11 putative His6-tagged 4CLs, isoform At4CL1 best utilized p-coumaric, caffeic, ferulic and 5-hydroxyferulic acids as substrates, whereas At4CL2 readily transformed p-coumaric and caffeic acids into the corresponding CoA esters, while ferulic and 5-hydroxyferulic acids were converted quite poorly. At4CL3 also displayed broad substrate specificity efficiently converting p-coumaric, caffeic and ferulic acids into their CoA esters, whereas 5-hydroxyferulic acid was not as effectively utilized. By contrast, while At4CL5 is the only isoform capable of ligating sinapic acid, the two preferred substrates were 5-hydroxyferulic and caffeic acids. Indeed, both At4CL1 and At4CL5 most effectively utilized 5-hydroxyferulic acid with kenz approximately 10-fold higher than that for At4CL2 and At4CL3. The remaining seven 4CL-like homologues had no measurable catalytic activity (at approximately 100 microg protein concentrations), again bringing into sharp focus both the advantages to, and the limitations of, current database annotations, and the need to unambiguously demonstrate true enzyme function. Lastly, although At4CL5 is able to convert both 5-hydroxyferulic and sinapic acids into the corresponding CoA esters, the physiological significance of the latter observation in vitro was in question, i.e. particularly since other 4CL isoforms can effectively convert 5-hydroxyferulic acid into 5-hydroxyferuloyl CoA. Hence, homozygous lines containing T-DNA or enhancer trap inserts (knockouts) for 4cl5 were selected by screening, with Arabidopsis stem sections from each mutant line subjected to detailed analyses for both lignin monomeric compositions and contents, and sinapate/sinapyl alcohol derivative formation, at different stages of growth and development until maturation. The data so obtained revealed that this "knockout" had no significant effect on either lignin content or monomeric composition, or on the accumulation of sinapate/sinapyl alcohol derivatives. The results from the present study indicate that formation of syringyl lignins and sinapate/sinapyl alcohol derivatives result primarily from methylation of 5-hydroxyferuloyl CoA or derivatives thereof rather than sinapic acid ligation. That is, no specific physiological role for At4CL5 in direct sinapic acid CoA ligation could be identified. How the putative overlapping 4CL metabolic networks are in fact organized in planta at various stages of growth and development will be the subject of future inquiry.
Collapse
Affiliation(s)
- Michael A Costa
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
484
|
Yong W, Link B, O'Malley R, Tewari J, Hunter CT, Lu CA, Li X, Bleecker AB, Koch KE, McCann MC, McCarty DR, Patterson SE, Reiter WD, Staiger C, Thomas SR, Vermerris W, Carpita NC. Genomics of plant cell wall biogenesis. PLANTA 2005; 221:747-51. [PMID: 15981004 DOI: 10.1007/s00425-005-1563-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 04/01/2005] [Indexed: 05/03/2023]
Affiliation(s)
- Weidong Yong
- Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, Indiana, 47907-2054, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
485
|
Tokimatsu T, Sakurai N, Suzuki H, Ohta H, Nishitani K, Koyama T, Umezawa T, Misawa N, Saito K, Shibata D. KaPPA-view: a web-based analysis tool for integration of transcript and metabolite data on plant metabolic pathway maps. PLANT PHYSIOLOGY 2005; 138:1289-300. [PMID: 16010003 PMCID: PMC1176402 DOI: 10.1104/pp.105.060525] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The application of DNA array technology and chromatographic separation techniques coupled with mass spectrometry to transcriptomic and metabolomic analyses in plants has resulted in the generation of considerable quantitative data related to transcription and metabolism. The integration of "omic" data is one of the major concerns associated with research into identifying gene function. Thus, we developed a Web-based tool, KaPPA-View, for representing quantitative data for individual transcripts and/or metabolites on plant metabolic pathway maps. We prepared a set of comprehensive metabolic pathway maps for Arabidopsis (Arabidopsis thaliana) and depicted these graphically in Scalable Vector Graphics format. Individual transcripts assigned to a reaction are represented symbolically together with the symbols of the reaction and metabolites on metabolic pathway maps. Using quantitative values for transcripts and/or metabolites submitted by the user as Comma Separated Value-formatted text through the Internet, the KaPPA-View server inserts colored symbols corresponding to a defined metabolic process at that site on the maps and returns them to the user's browser. The server also provides information on transcripts and metabolites in pop-up windows. To demonstrate the process, we describe the dataset obtained for transgenic plants that overexpress the PAP1 gene encoding a MYB transcription factor on metabolic pathway maps. The presentation of data in this manner is useful for viewing metabolic data in a way that facilitates the discussion of gene function.
Collapse
|
486
|
Li L, Cheng X, Lu S, Nakatsubo T, Umezawa T, Chiang VL. Clarification of cinnamoyl co-enzyme A reductase catalysis in monolignol biosynthesis of Aspen. PLANT & CELL PHYSIOLOGY 2005; 46:1073-82. [PMID: 15870094 DOI: 10.1093/pcp/pci120] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cinnamoyl co-enzyme A reductase (CCR), one of the key enzymes involved in the biosynthesis of monolignols, has been thought to catalyze the conversion of several cinnamoyl-CoA esters to their respective cinnamaldehydes. However, it is unclear which cinnamoyl-CoA ester is metabolized for monolignol biosynthesis. A xylem-specific CCR cDNA was cloned from aspen (Populus tremuloides) developing xylem tissue. The recombinant CCR protein was produced through an Escherichia coli expression system and purified to electrophoretic homogeneity. The biochemical properties of CCR were characterized through direct structural corroboration and quantitative analysis of the reaction products using a liquid chromatography-mass spectrometry system. The enzyme kinetics demonstrated that CCR selectively catalyzed the reduction of feruloyl-CoA from a mixture of five cinnamoyl CoA esters. Furthermore, feruloyl-CoA showed a strong competitive inhibition of the CCR catalysis of other cinnamoyl CoA esters. Importantly, when CCR was coupled with caffeoyl-CoA O-methyltransferase (CCoAOMT) to catalyze the substrate caffeoyl-CoA ester, coniferaldehyde was formed, suggesting that CCoAOMT and CCR are neighboring enzymes. However, the in vitro results also revealed that the reactions mediated by these two neighboring enzymes require different pH environments, indicating that compartmentalization is probably needed for CCR and CCoAOMT to function properly in vivo. Eight CCR homologous genes were identified in the P. trichocarpa genome and their expression profiling suggests that they may function differentially.
Collapse
Affiliation(s)
- Laigeng Li
- Forest Biotechnology Group, Department of Forestry, North Carolina State University, Raleigh, NC 27695-7247, USA.
| | | | | | | | | | | |
Collapse
|
487
|
Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L, Séguin A. CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. THE PLANT CELL 2005; 17:2059-76. [PMID: 15937231 PMCID: PMC1167552 DOI: 10.1105/tpc.105.030767] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
During lignin biosynthesis in angiosperms, coniferyl and sinapyl aldehydes are believed to be converted into their corresponding alcohols by cinnamyl alcohol dehydrogenase (CAD) and by sinapyl alcohol dehydrogenase (SAD), respectively. This work clearly shows that CAD-C and CAD-D act as the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis thaliana by supplying both coniferyl and sinapyl alcohols. An Arabidopsis CAD double mutant (cad-c cad-d) resulted in a phenotype with a limp floral stem at maturity as well as modifications in the pattern of lignin staining. Lignin content of the mutant stem was reduced by 40%, with a 94% reduction, relative to the wild type, in conventional beta-O-4-linked guaiacyl and syringyl units and incorportion of coniferyl and sinapyl aldehydes. Fourier transform infrared spectroscopy demonstrated that both xylem vessels and fibers were affected. GeneChip data and real-time PCR analysis revealed that transcription of CAD homologs and other genes mainly involved in cell wall integrity were also altered in the double mutant. In addition, molecular complementation of the double mutant by tissue-specific expression of CAD derived from various species suggests different abilities of these genes/proteins to produce syringyl-lignin moieties but does not indicate a requirement for any specific SAD gene.
Collapse
Affiliation(s)
- Richard Sibout
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Sainte-Foy, QC G1V 4C7, Canada
| | | | | | | | | | | | | |
Collapse
|
488
|
Rogers LA, Dubos C, Cullis IF, Surman C, Poole M, Willment J, Mansfield SD, Campbell MM. Light, the circadian clock, and sugar perception in the control of lignin biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:1651-63. [PMID: 15878986 DOI: 10.1093/jxb/eri162] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Experiments were undertaken to investigate some of the mechanisms that may function to regulate lignin biosynthesis (lignification) in Arabidopsis thaliana. Northern blot analyses revealed that several genes encoding enzymes involved in the synthesis of lignin monomers displayed significant changes in transcript abundance over a diurnal cycle. Northern blot analysis also suggested that some of the changes in diurnal transcript abundance were likely to be attributable to circadian regulation, whereas others were likely to be attributable to light perception. Comparison of circadian changes in transcript abundance of lignin biosynthetic genes between wild-type plants and the sex1 mutant, which is impaired in starch turnover, suggested that carbon availability related to starch turnover might determine the capacity to synthesize lignins. This hypothesis was supported by the observation that the sex1 mutant accumulated fewer lignins than wild-type plants. Consistent with the relationship between carbon availability and lignin accumulation, analysis of dark-grown wild-type A. thaliana seedlings uncovered a role for sugars in the regulation of lignin biosynthesis. Analysis of lignin accumulation, as determined by qualitative changes in phloroglucinol staining, suggested that metabolizable sugars positively influence the abundance of lignins. Transcriptome analysis supports the hypothesis that sugars are not merely a source of carbon skeletons for lignification, but they also function as a signal to enhance the capacity to synthesize lignins.
Collapse
Affiliation(s)
- Louisa A Rogers
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | | | | | | | | | | | |
Collapse
|
489
|
Ehlting J, Mattheus N, Aeschliman DS, Li E, Hamberger B, Cullis IF, Zhuang J, Kaneda M, Mansfield SD, Samuels L, Ritland K, Ellis BE, Bohlmann J, Douglas CJ. Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:618-40. [PMID: 15918878 DOI: 10.1111/j.1365-313x.2005.02403.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Different stages of vascular and interfascicular fiber differentiation can be identified along the axis of bolting stems in Arabidopsis. To gain insights into the metabolic, developmental, and regulatory events that control this pattern, we applied global transcript profiling employing an Arabidopsis full-genome longmer microarray. More than 5000 genes were differentially expressed, among which more than 3000 changed more than twofold, and were placed into eight expression clusters based on polynomial regression models. Within these, 182 upregulated transcription factors represent candidate regulators of fiber development. A subset of these candidates has been associated with fiber development and/or secondary wall formation and lignification in the literature, making them targets for functional studies and comparative genomic analyses with woody plants. Analysis of differentially expressed phenylpropanoid genes identified a set known to be involved in lignin biosynthesis. These were used to anchor co-expression analyses that allowed us to identify candidate genes encoding proteins involved in monolignol transport and monolignol dehydrogenation and polymerization. Similar analyses revealed candidate genes encoding enzymes that catalyze missing links in the shikimate pathway, namely arogenate dehydrogenase and prephenate aminotransferase.
Collapse
Affiliation(s)
- Jürgen Ehlting
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
490
|
Abstract
Although many important and valuable traits are associated with plant natural products, engineering natural product pathways for plant improvement has often been limited by a lack of understanding of their biochemistry, and by the need for coordinate regulation of multiple gene activities. New approaches are facilitating both the discovery of genes that encode natural products and pathway engineering. Notable successes have been reported in altering complex pathways to improve plant quality and resistance to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Richard A Dixon
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA.
| |
Collapse
|
491
|
Boudet AM, Hawkins S, Rochange S. The polymorphism of the genes/enzymes involved in the last two reductive steps of monolignol synthesis: what is the functional significance? C R Biol 2005; 327:837-45. [PMID: 15587075 DOI: 10.1016/j.crvi.2004.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The polymorphism of genes and enzymes involved in the last two steps of monolignol synthesis is examined in the light of recent data coming from genomic studies and mutant/transformant analyses. The two catalytic activities considered--cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD)--are encoded by small multigene families. While some degree of diversification can be noted at the sequence level, it is often difficult to use this information to assign substrate specificities to each member of a gene family. Expression profiles, however, suggest for both CAD and CCR the existence of two sub-families: one devoted to developmental lignification, and the other involved in the synthesis of defence-related compounds.
Collapse
Affiliation(s)
- Alain-Michel Boudet
- UMR UPS/CNRS 5546, Pôle de biotechnologies végétale, 24, chemin de Borderouge, Auzeville, 31326 Castanet, France.
| | | | | |
Collapse
|
492
|
Bomati EK, Noel JP. Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase. THE PLANT CELL 2005; 17:1598-611. [PMID: 15829607 PMCID: PMC1091777 DOI: 10.1105/tpc.104.029983] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Accepted: 03/03/2005] [Indexed: 05/18/2023]
Abstract
We describe the three-dimensional structure of sinapyl alcohol dehydrogenase (SAD) from Populus tremuloides (aspen), a member of the NADP(H)-dependent dehydrogenase family that catalyzes the last reductive step in the formation of monolignols. The active site topology revealed by the crystal structure substantiates kinetic results indicating that SAD maintains highest specificity for the substrate sinapaldehyde. We also report substantial substrate inhibition kinetics for the SAD-catalyzed reduction of hydroxycinnamaldehydes. Although SAD and classical cinnamyl alcohol dehydrogenases (CADs) catalyze the same reaction and share some sequence identity, the active site topology of SAD is strikingly different from that predicted for classical CADs. Kinetic analyses of wild-type SAD and several active site mutants demonstrate the complexity of defining determinants of substrate specificity in these enzymes. These results, along with a phylogenetic analysis, support the inclusion of SAD in a plant alcohol dehydrogenase subfamily that includes cinnamaldehyde and benzaldehyde dehydrogenases. We used the SAD three-dimensional structure to model several of these SAD-like enzymes, and although their active site topologies largely mirror that of SAD, we describe a correlation between substrate specificity and amino acid substitution patterns in their active sites. The SAD structure thus provides a framework for understanding substrate specificity in this family of enzymes and for engineering new enzyme specificities.
Collapse
Affiliation(s)
- Erin K Bomati
- Jack Skirball Chemical Biology and Proteomics Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | |
Collapse
|
493
|
Matsuda F, Morino K, Ano R, Kuzawa M, Wakasa K, Miyagawa H. Metabolic Flux Analysis of the Phenylpropanoid Pathway in Elicitor-treated Potato Tuber Tissue. ACTA ACUST UNITED AC 2005; 46:454-66. [PMID: 15695456 DOI: 10.1093/pcp/pci042] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The effects of beta-1,3-oligosaccharide elicitor on the metabolism of phenylpropanoids in potato tuber were analyzed quantitatively, by monitoring the time-dependent changes in the levels of seven compounds. The elicitor treatment caused an increase in the pool size of octopamine and tyramine amides (N-p-coumaroyloctopamine, N-feruloyloctopamine, N-p-coumaroyltyramine and N-feruloyltyramine), as well as a decrease in that of chlorogenic acid and putrescine amides (caffeoylputrescine and feruloylputrescine). An analysis of metabolic flux using stable isotope labeling and liquid chromatography-spectrometry (LC-MS) detection clearly demonstrated that the changes in the pool size of these compounds were correlated with the changes in their flux for biosynthesis (Jin) upon elicitor treatment. The increase in Jin in the cases of octopamine and tyramine amides was accompanied by an increase in flux for the transformation (Jout), indicating a rapid turnover of these compounds in the elicitor-treated tuber tissue. The result of the flux analysis indicated that the actual activation of the biosynthesis of octopamine and tyramine amides after the elicitor treatment was greater than that estimated from the changes in their levels in the potato tissue. These findings suggest that these amide compounds and their metabolic derivatives play an important role in the defense-related metabolism of phenylpropanoids in potato.
Collapse
Affiliation(s)
- Fumio Matsuda
- Division of Applied Life Sciences, Department of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | | | | | | | | | | |
Collapse
|
494
|
Lange BM, Ghassemian M. Comprehensive post-genomic data analysis approaches integrating biochemical pathway maps. PHYTOCHEMISTRY 2005; 66:413-451. [PMID: 15694451 DOI: 10.1016/j.phytochem.2004.12.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 10/29/2004] [Indexed: 05/24/2023]
Abstract
Post-genomic era research is focusing on studies to attribute functions to genes and their encoded proteins, and to describe the regulatory networks controlling metabolic, protein synthesis and signal transduction pathways. To facilitate the analysis of experiments using post-genomic technologies, new concepts for linking the vast amount of raw data to a biological context have to be developed. Visual representations of pathways help biologists to understand the complex relationships between components of metabolic networks, and provide an invaluable resource for the integration of transcriptomics, proteomics and metabolomics data sets. Besides providing an overview of currently available bioinformatic tools for plant scientists, we introduce BioPathAt, a newly developed visual interface that allows the knowledge-based analysis of genome-scale data by integrating biochemical pathway maps (BioPathAtMAPS module) with a manually scrutinized gene-function database (BioPathAtDB) for the model plant Arabidopsis thaliana. In addition, we discuss approaches for generating a biochemical pathway knowledge database for A. thaliana that includes, in addition to accurate annotation, condensed experimental information regarding in vitro and in vivo gene/protein function.
Collapse
Affiliation(s)
- B Markus Lange
- Institute of Biological Chemistry and Center for Integrated Biotechnology, Washington State University, PO Box 646340, Pullman, WA 99164-6340, USA.
| | | |
Collapse
|
495
|
|
496
|
Rogers LA, Campbell MM. The genetic control of lignin deposition during plant growth and development. THE NEW PHYTOLOGIST 2004; 164:17-30. [PMID: 33873487 DOI: 10.1111/j.1469-8137.2004.01143.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Lignins are complex, three-dimensional polymers embedded in the cell walls of specialised plant cells, where they play important roles in plant growth and development. Plants must possess mechanisms to coordinate lignin deposition so that its synthesis occurs at the appropriate time and place, in response to endogenous and exogenous cues. Here we consider the genetic basis of the control of lignin deposition. We focus on the transcriptional regulation of lignification, considering how the genes encoding the lignin biosynthetic pathway might be co-ordinately controlled, and the transcription factors that are likely to be involved. We also discuss the mechanisms regulating lignification that have been revealed by mutants with altered lignin deposition. We conclude that, while transcriptional regulation is a common feature in the control of lignification, there are many different regulators that may bring about this common mode of regulation. Contents Summary 17 I. Introduction 17 II. Transcriptional regulation of genes encoding lignin biosynthetic enzymes 19 III. Co-ordinate regulation of genes encoding lignin biosynthetic enzymes 21 IV. Mutants with altered spatial and temporal control of lignification 23 V. Conclusion 28 Acknowledgements 28 References 28.
Collapse
Affiliation(s)
- Louisa A Rogers
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- Present address: CAB International Publishing, Wallingford OX10 8DE, UK
| | - Malcolm M Campbell
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
497
|
Rohde A, Morreel K, Ralph J, Goeminne G, Hostyn V, De Rycke R, Kushnir S, Van Doorsselaere J, Joseleau JP, Vuylsteke M, Van Driessche G, Van Beeumen J, Messens E, Boerjan W. Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. THE PLANT CELL 2004; 16:2749-71. [PMID: 15377757 PMCID: PMC520969 DOI: 10.1105/tpc.104.023705] [Citation(s) in RCA: 280] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Accepted: 07/14/2004] [Indexed: 05/17/2023]
Abstract
The first enzyme of the phenylpropanoid pathway, Phe ammonia-lyase (PAL), is encoded by four genes in Arabidopsis thaliana. Whereas PAL function is well established in various plants, an insight into the functional significance of individual gene family members is lacking. We show that in the absence of clear phenotypic alterations in the Arabidopsis pal1 and pal2 single mutants and with limited phenotypic alterations in the pal1 pal2 double mutant, significant modifications occur in the transcriptome and metabolome of the pal mutants. The disruption of PAL led to transcriptomic adaptation of components of the phenylpropanoid biosynthesis, carbohydrate metabolism, and amino acid metabolism, revealing complex interactions at the level of gene expression between these pathways. Corresponding biochemical changes included a decrease in the three major flavonol glycosides, glycosylated vanillic acid, scopolin, and two novel feruloyl malates coupled to coniferyl alcohol. Moreover, Phe overaccumulated in the double mutant, and the levels of many other amino acids were significantly imbalanced. The lignin content was significantly reduced, and the syringyl/guaiacyl ratio of lignin monomers had increased. Together, from the molecular phenotype, common and specific functions of PAL1 and PAL2 are delineated, and PAL1 is qualified as being more important for the generation of phenylpropanoids.
Collapse
Affiliation(s)
- Antje Rohde
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, B-9052 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
498
|
Yokoyama R, Nishitani K. Genomic basis for cell-wall diversity in plants. A comparative approach to gene families in rice and Arabidopsis. PLANT & CELL PHYSIOLOGY 2004; 45:1111-21. [PMID: 15509833 DOI: 10.1093/pcp/pch151] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Monocotyledons and dicotyledons are distinct, not only in their body plans and developmental patterns, but also in the structural features of their cell walls. The recent completion of the rice (Oryza sativa) genomic sequence and publication of the sequence data, together with the completed database of the Arabidopsis thaliana genome, provide the first opportunity to compare the full complement of cell-wall-related genes from the two distinct classes of flowering plants. We made this comparison by exploiting the fact that Arabidopsis and rice have type I and type II walls, respectively, and therefore represent the two extremes in terms of the structural features of plant cell walls. In this review article, we classify all cell-wall-related genes into 32 gene families, and generate their phylogenetic trees. Using these data, we can phylogenetically compare individual genes of particular interest between Arabidopsis and rice. This comparative genome approach shows that the differences in wall architecture in the two plant groups actually mirror the diversity of the individual gene families involved in the cell-wall dynamics of the respective plant species. This study also identifies putative rice orthologs of genes with well-defined functions in Arabidopsis and other plant species.
Collapse
Affiliation(s)
- Ryusuke Yokoyama
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| | | |
Collapse
|
499
|
Gómez-Maldonado J, Avila C, Torre F, Cañas R, Cánovas FM, Campbell MM. Functional interactions between a glutamine synthetase promoter and MYB proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:513-26. [PMID: 15272871 DOI: 10.1111/j.1365-313x.2004.02153.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In Scots pine (Pinus sylvestris), ammonium assimilation is catalysed by glutamine synthetase (GS) [EC 6.3.1.2], which is encoded by two genes, PsGS1a and PsGS1b. PsGS1b is expressed in the vascular tissue throughout the plant body, where it is believed to play a role in recycling ammonium released by various facets of metabolism. The mechanisms that may underpin the transcriptional regulation of PsGS1b were explored. The PsGS1b promoter contains a region that is enriched in previously characterized cis-acting elements, known as AC elements. Pine nuclear proteins bound these AC element-rich regions in a tissue-specific manner. As previous experiments had shown that R2R3-MYB transcription factors could interact with AC elements, the capacity of the AC elements in the PsGS1b promoter to interact with MYB proteins was examined. Two MYB proteins from loblolly pine (Pinus taeda), PtMYB1 and PtMYB4, bound to the PsGS1b promoter were able to activate transcription from this promoter in yeast, arabidopsis and pine cells. Immunolocalization experiments revealed that the two MYB proteins were most abundant in cells previously shown to accumulate PsGS1b transcripts. Immunoprecipitation analysis and supershift electrophoretic mobility shift assays implicated these same two proteins in the formation of complexes between pine nuclear extracts and the PsGS1b promoter. Given that these MYB proteins were previously shown to have the capacity to activate gene expression related to lignin biosynthesis, we hypothesize that they may function to co-regulate lignification, a process that places significant demands on nitrogen recycling, and GS, the major enzyme involved in the nitrogen recycling pathway.
Collapse
Affiliation(s)
- Josefa Gómez-Maldonado
- Biología Molecular y Bioquímica, Instituto Andaluz de Biotencología, Unidad Asociada UMA-CSIC, Universidad de Málaga, Campus Universitairo de Teatinos, E-29071 Málaga, Spain
| | | | | | | | | | | |
Collapse
|
500
|
Hemm MR, Rider SD, Ogas J, Murry DJ, Chapple C. Light induces phenylpropanoid metabolism in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:765-78. [PMID: 15144378 DOI: 10.1111/j.1365-313x.2004.02089.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Experiments have shown that many phenylpropanoid genes are highly expressed in light-grown Arabidopsis roots. Studies employing reporter gene constructs have indicated that the expression of these genes is localized not only to the lignifying root vasculature, but also to non-lignifying tissues, such as the root cortex, suggesting that the proteins encoded by these genes may be involved in aspects of phenylpropanoid metabolism other than lignification. Consistent with this hypothesis, roots of etiolated and soil-grown plants contain almost no soluble phenylpropanoids, but exposure to light leads to the accumulation of flavonoids, as well as high levels of coniferin and syringin (coniferyl and sinapyl-4-O-glycosides), compounds not previously reported to be accumulated in Arabidopsis. To elucidate the mechanism by which light induces root secondary metabolism, extracts of mutants defective in light perception and light responses were analyzed for phenylpropanoid content. The results of these assays showed that phytochrome (PHY)B and cryptochrome (CRY)2 are the primary photoreceptors involved in light-dependent phenylpropanoid accumulation, and that the hypocotyl elongated (HY5) transcription factor is also required for this response. The presence of phenylpropanoids in etiolated roots of cop (constitutively photomorphogenic)1, cop9, and det (de-etiolated)1 mutants indicate that the corresponding wild-type genes are required to repress root phenylpropanoid biosynthesis in the absence of light. Biochemical analysis of root cell walls and analysis of phenylpropanoid gene expression suggest that coniferin and syringin accumulation may be the result of both increased biosynthesis and decreased conversion of these compounds into other phenylpropanoid end products. Finally, our data suggest that the accumulation of coniferin, syringin, and flavonoids in Arabidopsis roots is a high-irradiance response (HIR), and suggest that comparative analysis of light- and dark-grown Arabidopsis roots may provide new insights into both phenylpropanoid biosynthesis and light signaling in plants.
Collapse
Affiliation(s)
- Matthew R Hemm
- Department of Biochemistry, Purdue University, 1516 South University Dr, West Lafayette, IN 47907-1153, USA
| | | | | | | | | |
Collapse
|