451
|
Zhan Y, Dhaliwal JS, Adjibade P, Uniacke J, Mazroui R, Zerges W. Localized control of oxidized RNA. J Cell Sci 2015; 128:4210-9. [PMID: 26449969 DOI: 10.1242/jcs.175232] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/23/2015] [Indexed: 12/23/2022] Open
Abstract
The oxidation of biological molecules by reactive oxygen species (ROS) can render them inactive or toxic. This includes the oxidation of RNA, which appears to underlie the detrimental effects of oxidative stress, aging and certain neurodegenerative diseases. Here, we investigate the management of oxidized RNA in the chloroplast of the green alga Chlamydomonas reinhardtii. Our immunofluorescence microscopy results reveal that oxidized RNA (with 8-hydroxyguanine) is localized in the pyrenoid, a chloroplast microcompartment where CO2 is assimilated by the Calvin cycle enzyme Rubisco. Results of genetic analyses support a requirement for the Rubisco large subunit (RBCL), but not Rubisco, in the management of oxidized RNA. An RBCL pool that can carry out such a 'moonlighting' function is revealed by results of biochemical fractionation experiments. We also show that human (HeLa) cells localize oxidized RNA to cytoplasmic foci that are distinct from stress granules, processing bodies and mitochondria. Our results suggest that the compartmentalization of oxidized RNA management is a general phenomenon and therefore has some fundamental significance.
Collapse
Affiliation(s)
- Yu Zhan
- Biology Department & Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada H4B 1R6
| | - James S Dhaliwal
- Biology Department & Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada H4B 1R6
| | - Pauline Adjibade
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University, Centre de Recherche le CHU de Quebec, Quebec, Canada G1V 4G2
| | - James Uniacke
- Biology Department & Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada H4B 1R6
| | - Rachid Mazroui
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University, Centre de Recherche le CHU de Quebec, Quebec, Canada G1V 4G2
| | - William Zerges
- Biology Department & Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada H4B 1R6
| |
Collapse
|
452
|
Gollan PJ, Tikkanen M, Aro EM. Photosynthetic light reactions: integral to chloroplast retrograde signalling. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:180-91. [PMID: 26318477 DOI: 10.1016/j.pbi.2015.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 05/07/2023]
Abstract
Chloroplast retrograde signalling is ultimately dependent on the function of the photosynthetic light reactions and not only guides the acclimation of the photosynthetic apparatus to changing environmental and metabolic cues, but has a much wider influence on the growth and development of plants. New information generated during the past few years about regulation of photosynthetic light reactions and identification of the underlying regulatory proteins has paved the way towards better understanding of the signalling molecules produced in chloroplasts upon changes in the environment. Likewise, the availability of various mutants lacking regulatory functions has made it possible to address the role of excitation energy distribution and electron flow in the thylakoid membrane in inducing the retrograde signals from chloroplasts to the nucleus. Such signalling molecules also induce and interact with hormonal signalling cascades to provide comprehensive information from chloroplasts to the nucleus.
Collapse
Affiliation(s)
- Peter J Gollan
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Mikko Tikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland.
| |
Collapse
|
453
|
Osipova S, Permyakov A, Permyakova M, Pshenichnikova T, Verkhoturov V, Rudikovsky A, Rudikovskaya E, Shishparenok A, Doroshkov A, Börner A. Regions of the bread wheat D genome associated with variation in key photosynthesis traits and shoot biomass under both well watered and water deficient conditions. J Appl Genet 2015; 57:151-63. [PMID: 26374127 DOI: 10.1007/s13353-015-0315-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 01/24/2023]
Abstract
A quantitative trait locus (QTL) approach was taken to reveal the genetic basis in wheat of traits associated with photosynthesis during a period of exposure to water deficit stress. The performance, with respect to shoot biomass, gas exchange and chlorophyll fluorescence, leaf pigment content and the activity of various ascorbate-glutathione cycle enzymes and catalase, of a set of 80 wheat lines, each containing a single chromosomal segment introgressed from the bread wheat D genome progenitor Aegilops tauschii, was monitored in plants exposed to various water regimes. Four of the seven D genome chromosomes (1D, 2D, 5D, and 7D) carried clusters of both major (LOD >3.0) and minor (LOD between 2.0 and 3.0) QTL. A major QTL underlying the activity of glutathione reductase was located on chromosome 2D, and another, controlling the activity of ascorbate peroxidase, on chromosome 7D. A region of chromosome 2D defined by the microsatellite locus Xgwm539 and a second on chromosome 7D flanked by the marker loci Xgwm1242 and Xgwm44 harbored a number of QTL associated with the water deficit stress response.
Collapse
Affiliation(s)
- Svetlana Osipova
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, P.O. Box 317, 664033, Irkutsk, Russia. .,Irkutsk State University, 5, Sukhe-Bator St, 664003, Irkutsk, Russia.
| | - Alexey Permyakov
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, P.O. Box 317, 664033, Irkutsk, Russia
| | - Marina Permyakova
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, P.O. Box 317, 664033, Irkutsk, Russia
| | - Tatyana Pshenichnikova
- Institute of Cytology and Genetics SB RAS, Lavrentiev Ave., 10, 630090, Novosibirsk, Russia
| | - Vasiliy Verkhoturov
- National Research Irkutsk State Technical University, 83, Lermontov St, 664074, Irkutsk, Russia
| | - Alexandr Rudikovsky
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, P.O. Box 317, 664033, Irkutsk, Russia
| | - Elena Rudikovskaya
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, P.O. Box 317, 664033, Irkutsk, Russia
| | - Alexandr Shishparenok
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, P.O. Box 317, 664033, Irkutsk, Russia
| | - Alexey Doroshkov
- Institute of Cytology and Genetics SB RAS, Lavrentiev Ave., 10, 630090, Novosibirsk, Russia
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466, Gatersleben, Germany
| |
Collapse
|
454
|
Gururani MA, Venkatesh J, Tran LSP. Regulation of Photosynthesis during Abiotic Stress-Induced Photoinhibition. MOLECULAR PLANT 2015; 8:1304-20. [PMID: 25997389 DOI: 10.1016/j.molp.2015.05.005] [Citation(s) in RCA: 392] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 05/18/2023]
Abstract
Plants as sessile organisms are continuously exposed to abiotic stress conditions that impose numerous detrimental effects and cause tremendous loss of yield. Abiotic stresses, including high sunlight, confer serious damage on the photosynthetic machinery of plants. Photosystem II (PSII) is one of the most susceptible components of the photosynthetic machinery that bears the brunt of abiotic stress. In addition to the generation of reactive oxygen species (ROS) by abiotic stress, ROS can also result from the absorption of excessive sunlight by the light-harvesting complex. ROS can damage the photosynthetic apparatus, particularly PSII, resulting in photoinhibition due to an imbalance in the photosynthetic redox signaling pathways and the inhibition of PSII repair. Designing plants with improved abiotic stress tolerance will require a comprehensive understanding of ROS signaling and the regulatory functions of various components, including protein kinases, transcription factors, and phytohormones, in the responses of photosynthetic machinery to abiotic stress. Bioenergetics approaches, such as chlorophyll a transient kinetics analysis, have facilitated our understanding of plant vitality and the assessment of PSII efficiency under adverse environmental conditions. This review discusses the current understanding and indicates potential areas of further studies on the regulation of the photosynthetic machinery under abiotic stress.
Collapse
Affiliation(s)
| | - Jelli Venkatesh
- Department of Bioresource and Food Science, Konkuk University, Seoul 143-701, Korea
| | - Lam Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
455
|
Solovchenko AE. Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell. PHOTOSYNTHESIS RESEARCH 2015; 125:437-49. [PMID: 25975708 DOI: 10.1007/s11120-015-0156-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/06/2015] [Indexed: 05/09/2023]
Abstract
Massive accumulation of the secondary ketokarotenoid astaxanthin is a characteristic stress response of certain microalgal species with Haematococcus pluvialis as an illustrious example. The carotenogenic response confers these organisms a remarkable ability to survive in extremely unfavorable environments and makes them the richest source of natural astaxanthin. Exerting a plethora of beneficial effects on human and animal health, astaxanthin is among the most important bioproducts from microalgae. Though our understanding of astaxanthin biosynthesis, induction, and regulation is far from complete, this gap is filling rapidly with new knowledge generated predominantly by application of advanced "omics" approaches. This review focuses on the most recent progress in the biology of astaxanthin accumulation in microalgae including the genomic, proteomic, and metabolomics insights into the induction and regulation of secondary carotenogenesis and its role in stress tolerance of the photosynthetic microorganisms. Special attention is paid to the coupling of the carotenoid and lipid biosynthesis as well as deposition of astaxanthin in the algal cell. The place of the carotenogenic response among the stress tolerance mechanisms is revisited, and possible implications of the new findings for biotechnological production of astaxanthin from microalgae are considered. The potential use of the carotenogenic microalgae as a source not only of value-added carotenoids, but also of biofuel precursors is discussed.
Collapse
Affiliation(s)
- Alexei E Solovchenko
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia,
| |
Collapse
|
456
|
Xue J, Luo D, Xu D, Zeng M, Cui X, Li L, Huang H. CCR1, an enzyme required for lignin biosynthesis in Arabidopsis, mediates cell proliferation exit for leaf development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:375-87. [PMID: 26058952 DOI: 10.1111/tpj.12902] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/03/2015] [Indexed: 05/20/2023]
Abstract
After initiation, leaves first undergo rapid cell proliferation. During subsequent development, leaf cells gradually exit the proliferation phase and enter the expansion stage, following a basipetally ordered pattern starting at the leaf tip. The molecular mechanism directing this pattern of leaf development is as yet poorly understood. By genetic screening and characterization of Arabidopsis mutants defective in exit from cell proliferation, we show that the product of the CINNAMOYL CoA REDUCTASE (CCR1) gene, which is required for lignin biosynthesis, participates in the process of cell proliferation exit in leaves. CCR1 is expressed basipetally in the leaf, and ccr1 mutants exhibited multiple abnormalities, including increased cell proliferation. The ccr1 phenotypes are not due to the reduced lignin content, but instead are due to the dramatically increased level of ferulic acid (FeA), an intermediate in lignin biosynthesis. FeA is known to have antioxidant activity, and the levels of reactive oxygen species (ROS) in ccr1 were markedly reduced. We also characterized another double mutant in CAFFEIC ACID O-METHYLTRANSFERASE (comt) and CAFFEOYL CoA 3-O-METHYLTRANSFERASE (ccoaomt), in which the FeA level was dramatically reduced. Cell proliferation in comt ccoaomt leaves was decreased, accompanied by elevated ROS levels, and the mutant phenotypes were partially rescued by treatment with FeA or another antioxidant (N-acetyl-L-cysteine). Taken together, our results suggest that CCR1, FeA and ROS coordinate cell proliferation exit in normal leaf development.
Collapse
Affiliation(s)
- Jingshi Xue
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Dexian Luo
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Deyang Xu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Minhuan Zeng
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Xiaofeng Cui
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Laigeng Li
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Hai Huang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| |
Collapse
|
457
|
Vidović M, Morina F, Milić S, Albert A, Zechmann B, Tosti T, Winkler JB, Jovanović SV. Carbon allocation from source to sink leaf tissue in relation to flavonoid biosynthesis in variegated Pelargonium zonale under UV-B radiation and high PAR intensity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 93:44-55. [PMID: 25661975 DOI: 10.1016/j.plaphy.2015.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 05/07/2023]
Abstract
We studied the specific effects of high photosynthetically active radiation (PAR, 400-700 nm) and ecologically relevant UV-B radiation (0.90 W m(-2)) on antioxidative and phenolic metabolism by exploiting the green-white leaf variegation of Pelargonium zonale plants. This is a suitable model system for examining "source-sink" interactions within the same leaf. High PAR intensity (1350 μmol m(-2) s(-1)) and UV-B radiation induced different responses in green and white leaf sectors. High PAR intensity had a greater influence on green tissue, triggering the accumulation of phenylpropanoids and flavonoids with strong antioxidative function. Induced phenolics, together with ascorbate, ascorbate peroxidase (APX, EC 1.11.1.11) and catalase (CAT, EC 1.11.1.6) provided efficient defense against potential oxidative pressure. UV-B-induced up-regulation of non-phenolic H2O2 scavengers in green leaf sectors was greater than high PAR-induced changes, indicating a UV-B role in antioxidative defense under light excess; on the contrary, minimal effects were observed in white tissue. However, UV-B radiation had greater influence on phenolics in white leaf sections compared to green ones, inducing accumulation of phenolic glycosides whose function was UV-B screening rather than antioxidative. By stimulation of starch and sucrose breakdown and carbon allocation in the form of soluble sugars from "source" (green) tissue to "sink" (white) tissue, UV-B radiation compensated the absence of photosynthetic activity and phenylpropanoid and flavonoid biosynthesis in white sectors.
Collapse
Affiliation(s)
- Marija Vidović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade, Serbia.
| | - Filis Morina
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade, Serbia.
| | - Sonja Milić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade, Serbia.
| | - Andreas Albert
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - Bernd Zechmann
- Baylor University, Center for Microscopy and Imaging, One Bear Place #97046, Waco, TX 76798-7046, USA.
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, PO Box 51, 11001 Belgrade, Serbia.
| | - Jana Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - Sonja Veljović Jovanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade, Serbia.
| |
Collapse
|
458
|
Szalonek M, Sierpien B, Rymaszewski W, Gieczewska K, Garstka M, Lichocka M, Sass L, Paul K, Vass I, Vankova R, Dobrev P, Szczesny P, Marczewski W, Krusiewicz D, Strzelczyk-Zyta D, Hennig J, Konopka-Postupolska D. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants. PLoS One 2015; 10:e0132683. [PMID: 26172952 PMCID: PMC4501783 DOI: 10.1371/journal.pone.0132683] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/18/2015] [Indexed: 11/18/2022] Open
Abstract
Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress.
Collapse
Affiliation(s)
- Michal Szalonek
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Barbara Sierpien
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Wojciech Rymaszewski
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | | | - Maciej Garstka
- Department of Metabolic Regulation, University of Warsaw, Warsaw, Poland
| | - Malgorzata Lichocka
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Laszlo Sass
- Laboratory of Molecular Stress and Photobiology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Kenny Paul
- Laboratory of Molecular Stress and Photobiology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Imre Vass
- Laboratory of Molecular Stress and Photobiology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Praha, Czech Republic
| | - Peter Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Praha, Czech Republic
| | - Pawel Szczesny
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Waldemar Marczewski
- Department of Potato Genetics and Parental Lines, Plant Breeding and Acclimatization Institute—National Research Institute, Mlochow, Poland
| | - Dominika Krusiewicz
- Department of Potato Genetics and Parental Lines, Plant Breeding and Acclimatization Institute—National Research Institute, Mlochow, Poland
| | - Danuta Strzelczyk-Zyta
- Department of Potato Genetics and Parental Lines, Plant Breeding and Acclimatization Institute—National Research Institute, Mlochow, Poland
| | - Jacek Hennig
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Dorota Konopka-Postupolska
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
- * E-mail:
| |
Collapse
|
459
|
Zhou S, Li M, Guan Q, Liu F, Zhang S, Chen W, Yin L, Qin Y, Ma F. Physiological and proteome analysis suggest critical roles for the photosynthetic system for high water-use efficiency under drought stress in Malus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:44-60. [PMID: 26025520 DOI: 10.1016/j.plantsci.2015.03.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 05/22/2023]
Abstract
Water use efficiency is an important indicator for plant adaptation and resistance to drought conditions. We previously found that under moderate drought stress, the water use efficiency of cv. 'Qinguan' apple (Malus domestica Borkh.) (tolerant to drought) was enhanced, while that of cv. 'Naganofuji No. 2' was not enhanced. In this research, we also found that instantaneous water-use efficiency of cv. 'Qinguan' was higher than that of cv. 'Naganofuji No. 2', mainly because of its higher net photosynthesis rate. To dissect the potential mechanisms underlying this phenomenon, we performed a comparative iTRAQ-based proteomics analysis with leaves of drought-treated cv. 'Qinguan' and 'Naganofuji No. 2'. We identified 4078 proteins, of which 594 were differentially abundant between drought and well-watered leaves. The majority of increased proteins were predicted to be involved in photosynthetic pathway in drought treated cv. 'Qinguan' leaves, indicating that regulation of photosynthesis plays an important role for higher water use efficiency under drought stress. Enzyme activity assays were performed to validate the proteomics data. Our results suggested that the main regulatory mechanisms for high water use efficiency of cv. 'Qinguan' under moderate drought stress included the maintaining of Calvin cycle function by increasing key enzymes, stabilization of photosynthetic electron transfer and keeping reactive oxygen species at normal level by regulation of photosynthetic electron transfer chain, photorespiration and reactive oxygen species scavenging capability, thus prevented photoinhibition, reduced reactive oxygen species production and enhanced net photosynthesis rate. In addition, the response of signal regulatory proteins and abiotic stress-responsive proteins to drought also helped plants to cope with such stress.
Collapse
Affiliation(s)
- Shasha Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fengli Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA.
| | - Wei Chen
- Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA.
| | - Lihua Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yuan Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
460
|
Glowacz M, Mogren LM, Reade JPH, Cobb AH, Monaghan JM. High- but not low-intensity light leads to oxidative stress and quality loss of cold-stored baby leaf spinach. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:1821-1829. [PMID: 25138063 DOI: 10.1002/jsfa.6880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Quality management in the fresh produce industry is an important issue. Spinach is exposed to various adverse conditions (temperature, light, etc.) within the supply chain. The present experiments were conducted to investigate the effect of light conditions (dark, low-intensity light (LL) and high-intensity light (HL)) and photoperiod (6 h HL and 18 h dark) on the quality changes of cold-stored spinach. RESULTS HL exposure resulted in oxidative stress, causing tissue damage and quality loss as evidenced by increased membrane damage and water loss. The content of total ascorbic acid was reduced under HL conditions. On the other hand, storage of spinach under LL conditions gave promising results, as nutritional quality was not reduced, while texture maintenance was improved. No significant differences, with the exception of nutritional quality, were found between spinach leaves stored under continuous (24 h) low-intensity light (30-35 µmol m(-2) s(-1)) and their counterparts stored under the same light integral over 6 h (130-140 µmol m(-2) s(-1)). CONCLUSION LL extended the shelf-life of spinach. The amount of light received by the leaves was the key factor affecting produce quality. Light intensity, however, has to be low enough not to cause excess oxidative stress and lead to accelerated senescence.
Collapse
Affiliation(s)
- Marcin Glowacz
- Crop and Environment Sciences Department, Harper Adams University, Newport, TF10 8NB, UK
| | - Lars M Mogren
- Crop and Environment Sciences Department, Harper Adams University, Newport, TF10 8NB, UK
| | - John P H Reade
- Crop and Environment Sciences Department, Harper Adams University, Newport, TF10 8NB, UK
| | - Andrew H Cobb
- Crop and Environment Sciences Department, Harper Adams University, Newport, TF10 8NB, UK
| | - James M Monaghan
- Crop and Environment Sciences Department, Harper Adams University, Newport, TF10 8NB, UK
| |
Collapse
|
461
|
Domingos M, Bulbovas P, Camargo CZS, Aguiar-Silva C, Brandão SE, Dafré-Martinelli M, Dias APL, Engela MRGS, Gagliano J, Moura BB, Alves ES, Rinaldi MCS, Gomes EPC, Furlan CM, Figueiredo AMG. Searching for native tree species and respective potential biomarkers for future assessment of pollution effects on the highly diverse Atlantic Forest in SE-Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 202:85-95. [PMID: 25818087 DOI: 10.1016/j.envpol.2015.03.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/02/2015] [Accepted: 03/08/2015] [Indexed: 06/04/2023]
Abstract
This study summarizes the first effort to search for bioindicator tree species and respective potential biomarkers for future assessment of potential mixed pollution effects on the highly diverse Atlantic Forest in SE-Brazil. Leaves of the three most abundant species inventoried in a phytosociological survey (Croton floribundus, Piptadenia gonoacantha and Astronium graveolens) were collected in four forest remnants during winter and summer (2012). Their potential bioindicator attributes were highlighted using a screening of morphological, chemical and biochemical markers. The leaf surface structure and/or epicuticular wax composition pointed the accumulator properties of C. floribundus and P. gonoacantha. C. floribundus is a candidate for assessing potential accumulation of Cu, Cd, Mn, Ni, S and Zn. P. gonoacantha is a candidate to monitor polycyclic aromatic hydrocarbons. Increased levels of secondary metabolites and decreased antioxidant capacity in leaves of A. graveolens may support its value as a bioindicator for oxidative pollutants by visible dark stipplings.
Collapse
Affiliation(s)
- Marisa Domingos
- Instituto de Botânica, Caixa Postal 68041, 04045-972, São Paulo, Brazil.
| | - Patricia Bulbovas
- Instituto de Botânica, Caixa Postal 68041, 04045-972, São Paulo, Brazil
| | - Carla Z S Camargo
- Instituto de Botânica, Caixa Postal 68041, 04045-972, São Paulo, Brazil
| | | | - Solange E Brandão
- Instituto de Botânica, Caixa Postal 68041, 04045-972, São Paulo, Brazil
| | | | - Ana Paula L Dias
- Instituto de Botânica, Caixa Postal 68041, 04045-972, São Paulo, Brazil
| | | | - Janayne Gagliano
- Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Barbara B Moura
- Instituto de Botânica, Caixa Postal 68041, 04045-972, São Paulo, Brazil
| | - Edenise S Alves
- Instituto de Botânica, Caixa Postal 68041, 04045-972, São Paulo, Brazil
| | | | - Eduardo P C Gomes
- Instituto de Botânica, Caixa Postal 68041, 04045-972, São Paulo, Brazil
| | - Claudia M Furlan
- Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Ana Maria G Figueiredo
- Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN - SP), Av. Professor Lineu Prestes 2242, 05508-000, São Paulo, Brazil
| |
Collapse
|
462
|
Gupta A, Ballal A. Unraveling the mechanism responsible for the contrasting tolerance of Synechocystis and Synechococcus to Cr(VI): Enzymatic and non-enzymatic antioxidants. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 164:118-125. [PMID: 25956322 DOI: 10.1016/j.aquatox.2015.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 06/04/2023]
Abstract
Two unicellular cyanobacteria, Synechocystis and Synechococcus, showed contrasting tolerance to Cr(VI); with Synechococcus being 12-fold more tolerant than Synechocystis to potassium dichromate. The mechanism responsible for this differential sensitivity to Cr(VI) was explored in this study. Total content of photosynthetic pigments as well as photosynthetic activity decreased at lower concentration of Cr(VI) in Synechocystis as compared to Synechococcus. Experiments with (51)Cr showed Cr to accumulate intracellularly in both the cyanobacteria. At lower concentrations, Cr(VI) caused excessive ROS generation in Synechocystis as compared to that observed in Synechococcus. Intrinsic levels of enzymatic antioxidants, i.e., superoxide dismutase, catalase and 2-Cys-peroxiredoxin were considerably higher in Synechococcus than Synechocystis. Content of total thiols (both protein as well as non-protein) and reduced glutathione (GSH) was also higher in Synechococcus as compared to Synechocystis. This correlated well with higher content of carbonylated proteins observed in Synechocystis than Synechococcus. Additionally, in contrast to Synechocystis, Synechococcus exhibited better tolerance to other oxidative stresses like high intensity light and H2O2. The data indicate that the disparity in the ability to detoxify ROS could be the primary mechanism responsible for the differential tolerance of these cyanobacteria to Cr(VI).
Collapse
Affiliation(s)
- Alka Gupta
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 40085, India.
| |
Collapse
|
463
|
Hasan SS, Proctor EA, Yamashita E, Dokholyan NV, Cramer WA. Traffic within the cytochrome b6f lipoprotein complex: gating of the quinone portal. Biophys J 2015; 107:1620-8. [PMID: 25296314 DOI: 10.1016/j.bpj.2014.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/29/2014] [Accepted: 08/05/2014] [Indexed: 12/24/2022] Open
Abstract
The cytochrome bc complexes b6f and bc1 catalyze proton-coupled quinol/quinone redox reactions to generate a transmembrane proton electrochemical gradient. Quinol oxidation on the electrochemically positive (p) interface of the complex occurs at the end of a narrow quinol/quinone entry/exit Qp portal, 11 Å long in bc complexes. Superoxide, which has multiple signaling functions, is a by-product of the p-side quinol oxidation. Although the transmembrane core and the chemistry of quinone redox reactions are conserved in bc complexes, the rate of superoxide generation is an order of magnitude greater in the b6f complex, implying that functionally significant differences in structure exist between the b6f and bc1 complexes on the p-side. A unique structure feature of the b6f p-side quinol oxidation site is the presence of a single chlorophyll-a molecule whose function is unrelated to light harvesting. This study describes a cocrystal structure of the cytochrome b6f complex with the quinol analog stigmatellin, which partitions in the Qp portal of the bc1 complex, but not effectively in b6f. It is inferred that the Qp portal is partially occluded in the b6f complex relative to bc1. Based on a discrete molecular-dynamics analysis, occlusion of the Qp portal is attributed to the presence of the chlorophyll phytyl tail, which increases the quinone residence time within the Qp portal and is inferred to be a cause of enhanced superoxide production. This study attributes a novel (to our knowledge), structure-linked function to the otherwise enigmatic chlorophyll-a in the b6f complex, which may also be relevant to intracellular redox signaling.
Collapse
Affiliation(s)
- S Saif Hasan
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, West Lafayette, Indiana
| | - Elizabeth A Proctor
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina
| | - Eiki Yamashita
- Osaka University, Institute for Protein Research, Suita, Osaka, Japan
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - William A Cramer
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
464
|
Sofo A, Scopa A, Nuzzaci M, Vitti A. Ascorbate Peroxidase and Catalase Activities and Their Genetic Regulation in Plants Subjected to Drought and Salinity Stresses. Int J Mol Sci 2015; 16:13561-78. [PMID: 26075872 PMCID: PMC4490509 DOI: 10.3390/ijms160613561] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 01/06/2023] Open
Abstract
Hydrogen peroxide (H2O2), an important relatively stable non-radical reactive oxygen species (ROS) is produced by normal aerobic metabolism in plants. At low concentrations, H2O2 acts as a signal molecule involved in the regulation of specific biological/physiological processes (photosynthetic functions, cell cycle, growth and development, plant responses to biotic and abiotic stresses). Oxidative stress and eventual cell death in plants can be caused by excess H2O2 accumulation. Since stress factors provoke enhanced production of H2O2 in plants, severe damage to biomolecules can be possible due to elevated and non-metabolized cellular H2O2. Plants are endowed with H2O2-metabolizing enzymes such as catalases (CAT), ascorbate peroxidases (APX), some peroxiredoxins, glutathione/thioredoxin peroxidases, and glutathione sulfo-transferases. However, the most notably distinguished enzymes are CAT and APX since the former mainly occurs in peroxisomes and does not require a reductant for catalyzing a dismutation reaction. In particular, APX has a higher affinity for H2O2 and reduces it to H2O in chloroplasts, cytosol, mitochondria and peroxisomes, as well as in the apoplastic space, utilizing ascorbate as specific electron donor. Based on recent reports, this review highlights the role of H2O2 in plants experiencing water deficit and salinity and synthesizes major outcomes of studies on CAT and APX activity and genetic regulation in drought- and salt-stressed plants.
Collapse
Affiliation(s)
- Adriano Sofo
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy.
| | - Antonio Scopa
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy.
| | - Maria Nuzzaci
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy.
| | - Antonella Vitti
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy.
| |
Collapse
|
465
|
Samaga PV, Rai VR. Diversity and bioactive potential of endophytic fungi from Nothapodytes foetida, Hypericum mysorense and Hypericum japonicum collected from Western Ghats of India. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1099-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
466
|
Burdiak P, Rusaczonek A, Witoń D, Głów D, Karpiński S. Cysteine-rich receptor-like kinase CRK5 as a regulator of growth, development, and ultraviolet radiation responses in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3325-37. [PMID: 25969551 PMCID: PMC4449547 DOI: 10.1093/jxb/erv143] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In plants, receptor-like protein kinases play essential roles in signal transduction by recognizing extracellular stimuli and activating the downstream signalling pathways. Cysteine-rich receptor-like kinases (CRKs) constitute a large subfamily of receptor-like protein kinases, with 44 members in Arabidopsis thaliana. They are distinguished by the novel C-X8-C-X2-C motif (DUF26) in the extracellular domains. One of them, CRK5, is an important component of the biochemical machinery involved in the regulation of essential physiological processes. Functional characterization of crk5 mutant plants showed their clear phenotype, manifested by impaired stomatal conductance and accelerated senescence. This phenotype correlated with accumulation of reactive oxygen species, higher foliar levels of ethylene and salicylic acid, and increased transcript abundance for genes associated with signalling pathways corresponding to these hormones. Moreover, the crk5 plants displayed enhanced cell death and oxidative damage in response to ultraviolet radiation. Complementation of CRK5 mutation managed to recover the wild-type phenotype, indicating an essential role of this gene in the regulation of growth, development, and acclimatory responses.
Collapse
Affiliation(s)
- Paweł Burdiak
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Anna Rusaczonek
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Damian Witoń
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Dawid Głów
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
467
|
Matros A, Peshev D, Peukert M, Mock HP, Van den Ende W. Sugars as hydroxyl radical scavengers: proof-of-concept by studying the fate of sucralose in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:822-39. [PMID: 25891826 DOI: 10.1111/tpj.12853] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 05/25/2023]
Abstract
Substantial formation of reactive oxygen species (ROS) is inevitable in aerobic life forms. Due to their extremely high reactivity and short lifetime, hydroxyl radicals are a special case, because cells have not developed enzymes to detoxify these most dangerous ROS. Thus, scavenging of hydroxyl radicals may only occur by accumulation of higher levels of simple organic compounds. Previous studies have demonstrated that plant-derived sugars show hydroxyl radical scavenging capabilities during Fenton reactions with Fe(2+) and hydrogen peroxide in vitro, leading to formation of less detrimental sugar radicals that may be subject of regeneration to non-radical carbohydrates in vivo. Here, we provide further evidence for the occurrence of such radical reactions with sugars in planta, by following the fate of sucralose, an artificial analog of sucrose, in Arabidopsis tissues. The expected sucralose recombination and degradation products were detected in both normal and stressed plant tissues. Oxidation products of endogenous sugars were also assessed in planta for Arabidopsis and barley, and were shown to increase in abundance relative to the non-oxidized precursor during oxidative stress conditions. We concluded that such non-enzymatic reactions with hydroxyl radicals form an integral part of plant antioxidant mechanisms contributing to cellular ROS homeostasis, and may be more important than generally assumed. This is discussed in relation to the recently proposed roles for Fe(2+) and hydrogen peroxide in processes leading to the origin of metabolism and the origin of life.
Collapse
Affiliation(s)
- Andrea Matros
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| | - Darin Peshev
- Laboratory of Molecular Plant Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, B-3001, Leuven, Belgium
| | - Manuela Peukert
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, B-3001, Leuven, Belgium
| |
Collapse
|
468
|
Shigeoka S, Maruta T. Cellular redox regulation, signaling, and stress response in plants. Biosci Biotechnol Biochem 2015; 78:1457-70. [PMID: 25209493 DOI: 10.1080/09168451.2014.942254] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cellular and organellar redox states, which are characterized by the balance between oxidant and antioxidant pool sizes, play signaling roles in the regulation of gene expression and protein function in a wide variety of plant physiological processes including stress acclimation. Reactive oxygen species (ROS) and ascorbic acid (AsA) are the most abundant oxidants and antioxidants, respectively, in plant cells; therefore, the metabolism of these redox compounds must be strictly and spatiotemporally controlled. In this review, we provided an overview of our previous studies as well as recent advances in (1) the molecular mechanisms and regulation of AsA biosynthesis, (2) the molecular and genetic properties of ascorbate peroxidases, and (3) stress acclimation via ROS-derived oxidative/redox signaling pathways, and discussed future perspectives in this field.
Collapse
Affiliation(s)
- Shigeru Shigeoka
- a Faculty of Agriculture, Department of Advanced Bioscience , Kinki University , Nara , Japan
| | | |
Collapse
|
469
|
Gururani MA, Venkatesh J, Ganesan M, Strasser RJ, Han Y, Kim JI, Lee HY, Song PS. In Vivo Assessment of Cold Tolerance through Chlorophyll-a Fluorescence in Transgenic Zoysiagrass Expressing Mutant Phytochrome A. PLoS One 2015; 10:e0127200. [PMID: 26010864 PMCID: PMC4444231 DOI: 10.1371/journal.pone.0127200] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/13/2015] [Indexed: 01/06/2023] Open
Abstract
Chlorophyll-a fluorescence analysis provides relevant information about the physiology of plants growing under abiotic stress. In this study, we evaluated the influence of cold stress on the photosynthetic machinery of transgenic turfgrass, Zoysia japonica, expressing oat phytochrome A (PhyA) or a hyperactive mutant phytochrome A (S599A) with post-translational phosphorylation blocked. Biochemical analysis of zoysiagrass subjected to cold stress revealed reduced levels of hydrogen peroxide, increased proline accumulation, and enhanced specific activities of antioxidant enzymes compared to those of control plants. Detailed analyses of the chlorophyll-a fluorescence data through the so-called OJIP test exhibited a marked difference in the physiological status among transgenic and control plants. Overall, these findings suggest an enhanced level of cold tolerance in S599A zoysiagrass cultivars as reflected in the biochemical and physiological analyses. Further, we propose that chlorophyll-a fluorescence analysis using OJIP test is an efficient tool in determining the physiological status of plants under cold stress conditions.
Collapse
Affiliation(s)
- Mayank Anand Gururani
- Subtropical Horticulture Research Institute, Faculty of Biotechnology, Jeju National University, Jeju 690–756, South Korea
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook 712–749, South Korea
| | - Jelli Venkatesh
- Department of Molecular Biotechnology, Konkuk University, Seoul 143–701, South Korea
| | - Markkandan Ganesan
- Subtropical Horticulture Research Institute, Faculty of Biotechnology, Jeju National University, Jeju 690–756, South Korea
- Department of Biological Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Reto Jörg Strasser
- Bioenergetics Laboratory, University of Geneva, Jussy, CH-1254, Geneva, Switzerland
| | - Yunjeong Han
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500–757, South Korea
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500–757, South Korea
| | - Hyo-Yeon Lee
- Subtropical Horticulture Research Institute, Faculty of Biotechnology, Jeju National University, Jeju 690–756, South Korea
| | - Pill-Soon Song
- Subtropical Horticulture Research Institute, Faculty of Biotechnology, Jeju National University, Jeju 690–756, South Korea
| |
Collapse
|
470
|
Santiago-Martínez MG, Lira-Silva E, Encalada R, Pineda E, Gallardo-Pérez JC, Zepeda-Rodriguez A, Moreno-Sánchez R, Saavedra E, Jasso-Chávez R. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions. JOURNAL OF HAZARDOUS MATERIALS 2015; 288:104-112. [PMID: 25698571 DOI: 10.1016/j.jhazmat.2015.02.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
The facultative protist Euglena gracilis, a heavy metal hyper-accumulator, was grown under photo-heterotrophic and extreme conditions (acidic pH, anaerobiosis and with Cd(2+)) and biochemically characterized. High biomass (8.5×10(6)cellsmL(-1)) was reached after 10 days of culture. Under anaerobiosis, photosynthetic activity built up a microaerophilic environment of 0.7% O₂, which was sufficient to allow mitochondrial respiratory activity: glutamate and malate were fully consumed, whereas 25-33% of the added glucose was consumed. In anaerobic cells, photosynthesis but not respiration was activated by Cd(2+) which induced higher oxidative stress. Malondialdehyde (MDA) levels were 20 times lower in control cells under anaerobiosis than in aerobiosis, although Cd(2+) induced a higher MDA production. Cd(2+) stress induced increased contents of chelating thiols (cysteine, glutathione and phytochelatins) and polyphosphate. Biosorption (90%) and intracellular accumulation (30%) were the mechanisms by which anaerobic cells removed Cd(2+) from medium, which was 36% higher versus aerobic cells. The present study indicated that E. gracilis has the ability to remove Cd(2+) under anaerobic conditions, which might be advantageous for metal removal in sediments from polluted water bodies or bioreactors, where the O₂ concentration is particularly low.
Collapse
Affiliation(s)
| | | | - Rusely Encalada
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico
| | - Erika Pineda
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico
| | | | | | | | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico
| | | |
Collapse
|
471
|
Zhang Y, Xu S, Yang S, Chen Y. Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.). PROTOPLASMA 2015; 252:911-24. [PMID: 25398649 DOI: 10.1007/s00709-014-0732-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/06/2014] [Indexed: 05/20/2023]
Abstract
Cadmium (Cd) is a widespread toxic heavy metal that usually causes deleterious effects on plant growth and development. Salicylic acid (SA), a naturally existing phenolic compound, is involved in specific responses to various environmental stresses. To explore the role of SA in the tolerance of melon (Cucumis melo L.) to Cd stress, the influence of SA application on the growth and physiological processes was compared in the two melon cultivars Hamilv (Cd-tolerant) and Xiulv (Cd-sensitive) under Cd stress. Under 400-μM Cd treatment, Hamilv showed a higher biomass accumulation, more chlorophyll (Chl), greater photosynthesis, and less oxidative damage compared to Xiulv. Foliar spraying of 0.1 mM SA dramatically alleviated Cd-induced growth inhibition in the two melon genotypes. Simultaneously, SA pretreatment attenuated the decrease in Chl content, photosynthetic capacity, and PSII photochemistry efficiency in Cd-stressed plants. Furthermore, exogenous SA significantly reduced superoxide anion production and lipid peroxidation, followed by increase in the activities of antioxidant enzyme superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase, and content of soluble protein and free proline in both the genotypes under Cd stress. The effect of SA was more conspicuous in Xiulv than Hamilv, reflected in the biomass, photosynthetic pigments, stomatal conductance, water use efficiency, and antioxidant enzymes. These results suggest that exogenous spray of SA can alleviate the adverse effects of Cd on the growth and photosynthesis of both the melon cultivars, mostly through promoting antioxidant defense capacity. It also indicates that SA-included protection against Cd damage is to a greater extent more pronounced in Cd-sensitive genotype than Cd-tolerant genotype.
Collapse
Affiliation(s)
- Yongping Zhang
- Horticultural Research Institute and Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, 1018, Jinqi Road, Shanghai, 201403, China
| | | | | | | |
Collapse
|
472
|
Vidović M, Morina F, Milić S, Zechmann B, Albert A, Winkler JB, Veljović Jovanović S. Ultraviolet-B component of sunlight stimulates photosynthesis and flavonoid accumulation in variegated Plectranthus coleoides leaves depending on background light. PLANT, CELL & ENVIRONMENT 2015; 38:968-79. [PMID: 25311561 DOI: 10.1111/pce.12471] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 09/26/2014] [Accepted: 10/06/2014] [Indexed: 05/07/2023]
Abstract
We used variegated Plectranthus coleoides as a model plant with the aim of clarifying whether the effects of realistic ultraviolet-B (UV-B) doses on phenolic metabolism in leaves are mediated by photosynthesis. Plants were exposed to UV-B radiation (0.90 W m(-2) ) combined with two photosynthetically active radiation (PAR) intensities [395 and 1350 μmol m(-2) s(-1) , low light (LL) and high light (HL)] for 9 d in sun simulators. Our study indicates that UV-B component of sunlight stimulates CO2 assimilation and stomatal conductance, depending on background light. UV-B-specific induction of apigenin and cyanidin glycosides was observed in both green and white tissues. However, all the other phenolic subclasses were up to four times more abundant in green leaf tissue. Caffeic and rosmarinic acids, catechin and epicatechin, which are endogenous peroxidase substrates, were depleted at HL in green tissue. This was correlated with increased peroxidase and ascorbate peroxidase activities and increased ascorbate content. The UV-B supplement to HL attenuated antioxidative metabolism and partly recovered the phenolic pool indicating stimulation of the phenylpropanoid pathway. In summary, we propose that ortho-dihydroxy phenolics are involved in antioxidative defence in chlorophyllous tissue upon light excess, while apigenin and cyanidin in white tissue have preferentially UV-screening function.
Collapse
Affiliation(s)
- Marija Vidović
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, 11000, Serbia
| | | | | | | | | | | | | |
Collapse
|
473
|
Liu Z, Li Y, Ma L, Wei H, Zhang J, He X, Tian C. Coordinated regulation of arbuscular mycorrhizal fungi and soybean MAPK pathway genes improved mycorrhizal soybean drought tolerance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:408-19. [PMID: 25390189 DOI: 10.1094/mpmi-09-14-0251-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play important roles in the stress response in both plants and microorganisms. The mycorrhizal symbiosis established between arbuscular mycorrhizal fungi (AMF) and plants can enhance plant drought tolerance, which might be closely related to the fungal MAPK response and the molecular dialogue between fungal and soybean MAPK cascades. To verify the above hypothesis, germinal Glomus intraradices (syn. Rhizophagus irregularis) spores and potted experiments were conducted. The results showed that AMF GiMAPKs with high homology with MAPKs from Saccharomyces cerevisiae had different gene expression patterns under different conditions (nitrogen starvation, abscisic acid treatment, and drought). Drought stress upregulated the levels of fungi and soybean MAPK transcripts in mycorrhizal soybean roots, indicating the possibility of a molecular dialogue between the two symbiotic sides of symbiosis and suggesting that they might cooperate to regulate the mycorrhizal soybean drought-stress response. Meanwhile, the changes in hydrogen peroxide, soluble sugar, and proline levels in mycorrhizal soybean as well as in the accelerated exchange of carbon and nitrogen in the symbionts were contributable to drought adaptation of the host plants. Thus, it can be preliminarily inferred that the interactions of MAPK signals on both sides, symbiotic fungus and plant, might regulate the response of symbiosis and, thus, improve the resistance of mycorrhizal soybean to drought stress.
Collapse
Affiliation(s)
- Zhilei Liu
- 1 Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China
| | | | | | | | | | | | | |
Collapse
|
474
|
Esposito JBN, Esposito BP, Azevedo RA, Cruz LS, da Silva LC, de Souza SR. Protective effect of Mn(III)-desferrioxamine B upon oxidative stress caused by ozone and acid rain in the Brazilian soybean cultivar Glycine max "Sambaiba". ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5315-24. [PMID: 25510614 DOI: 10.1007/s11356-014-3951-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 12/04/2014] [Indexed: 06/04/2023]
Abstract
This study aimed to investigate the effects of the Mn complex (Mn(III)-desferrioxamine B (MnDFB)) on oxidative stress in the Brazilian soybean cultivar Glycine max "Sambaiba" following exposure to ozone and acid rain. We determined the suitable dose of MnDFB to apply to G. max seedlings using a dose-response curve. The highest superoxide dismutase (SOD) activity and Mn content in leaves were found upon the application of 8 μM MnDFB. Thus, G. max seedlings pretreated with 8 μM MnDFB were individually exposed to ozone and acid rain simulated. Pretreatment with MnDFB reduced lipid peroxidation upon ozone exposure and increased SOD activity in leaves; it did not alter the metal content in any part of the plant. Conversely, following acid rain exposure, neither the metal content in leaves nor SOD enzyme activity were directly affected by MnDFB, unlike pH. Our findings demonstrated that exogenous MnDFB application before ozone exposure may modulate the MnSOD, Cu/ZnSOD, and FeSOD activities to combat the ROS excess in the cell. Here, we demonstrated that the applied dose of MnDFB enhances antioxidative defenses in soybean following exposure to acid rain and especially to ozone.
Collapse
|
475
|
Du ST, Liu Y, Zhang P, Liu HJ, Zhang XQ, Zhang RR. Atmospheric application of trace amounts of nitric oxide enhances tolerance to salt stress and improves nutritional quality in spinach (Spinacia oleracea L.). Food Chem 2015; 173:905-11. [DOI: 10.1016/j.foodchem.2014.10.115] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 09/30/2014] [Accepted: 10/20/2014] [Indexed: 11/26/2022]
|
476
|
Hoang TML, Moghaddam L, Williams B, Khanna H, Dale J, Mundree SG. Development of salinity tolerance in rice by constitutive-overexpression of genes involved in the regulation of programmed cell death. FRONTIERS IN PLANT SCIENCE 2015; 6:175. [PMID: 25870602 PMCID: PMC4378369 DOI: 10.3389/fpls.2015.00175] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 03/04/2015] [Indexed: 05/18/2023]
Abstract
Environmental factors contribute to over 70% of crop yield losses worldwide. Of these drought and salinity are the most significant causes of crop yield reduction. Rice is an important staple crop that feeds more than half of the world's population. However among the agronomically important cereals rice is the most sensitive to salinity. In the present study we show that exogenous expression of anti-apoptotic genes from diverse origins, AtBAG4 (Arabidopsis), Hsp70 (Citrus tristeza virus) and p35 (Baculovirus), significantly improves salinity tolerance in rice at the whole plant level. Physiological, biochemical and agronomical analyses of transgenic rice expressing each of the anti-apoptotic genes subjected to salinity treatment demonstrated traits associated with tolerant varieties including, improved photosynthesis, membrane integrity, ion and ROS maintenance systems, growth rate, and yield components. Moreover, FTIR analysis showed that the chemical composition of salinity-treated transgenic plants is reminiscent of non-treated, unstressed controls. In contrast, wild type and vector control plants displayed hallmark features of stress, including pectin degradation upon subjection to salinity treatment. Interestingly, despite their diverse origins, transgenic plants expressing the anti-apoptotic genes assessed in this study displayed similar physiological and biochemical characteristics during salinity treatment thus providing further evidence that cell death pathways are conserved across broad evolutionary kingdoms. Our results reveal that anti-apoptotic genes facilitate maintenance of metabolic activity at the whole plant level to create favorable conditions for cellular survival. It is these conditions that are crucial and conducive to the plants ability to tolerate/adapt to extreme environments.
Collapse
Affiliation(s)
- Thi M. L. Hoang
- Centre for Tropical Crops and Biocommodities, Queensland University of TechnologyBrisbane, QLD, Australia
| | - Lalehvash Moghaddam
- Centre for Tropical Crops and Biocommodities, Queensland University of TechnologyBrisbane, QLD, Australia
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of TechnologyBrisbane, QLD, Australia
| | | | - James Dale
- Centre for Tropical Crops and Biocommodities, Queensland University of TechnologyBrisbane, QLD, Australia
| | - Sagadevan G. Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of TechnologyBrisbane, QLD, Australia
| |
Collapse
|
477
|
Xu J, Lan H, Fang H, Huang X, Zhang H, Huang J. Quantitative proteomic analysis of the rice (Oryza sativa L.) salt response. PLoS One 2015; 10:e0120978. [PMID: 25793471 PMCID: PMC4368772 DOI: 10.1371/journal.pone.0120978] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/09/2015] [Indexed: 11/19/2022] Open
Abstract
Salt stress is one of most serious limiting factors for crop growth and production. An isobaric Tags for Relative and Absolute Quantitation (iTRAQ) approach was used to analyze proteomic changes in rice shoots under salt stress in this study. A total of 56 proteins were significantly altered and 16 of them were enriched in the pathways of photosynthesis, antioxidant and oxidative phosphorylation. Among these 16 proteins, peroxiredoxin Q and photosystem I subunit D were up-regulated, while thioredoxin M-like, thioredoxin x, thioredoxin peroxidase, glutathione S-transferase F3, PSI subunit H, light-harvesting antenna complex I subunits, chloroplast chaperonin, vacuolar ATP synthase subunit H, and ATP synthase delta chain were down-regulated. Moreover, physiological data including total antioxidant capacity, peroxiredoxin activity, chlorophyll a/b content, glutathione S-transferase activity, reduced glutathione content and ATPase activity were consistent with changes in the levels of these proteins. The levels of the mRNAs encoding these proteins were also analyzed by real-time quantitative reverse transcription PCR, and approximately 86% of the results were consistent with the iTRAQ data. Importantly, our data suggest the important role of PSI in balancing energy supply and ROS generation under salt stress. This study provides information for an improved understanding of the function of photosynthesis and PSI in the salt-stress response of rice.
Collapse
Affiliation(s)
- Jianwen Xu
- State key laboratory of crop genetics and germplasm enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095, China
| | - Hongxia Lan
- State key laboratory of crop genetics and germplasm enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huimin Fang
- State key laboratory of crop genetics and germplasm enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095, China
| | - Xi Huang
- State key laboratory of crop genetics and germplasm enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095, China
| | - Hongsheng Zhang
- State key laboratory of crop genetics and germplasm enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095, China
| | - Ji Huang
- State key laboratory of crop genetics and germplasm enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095, China
| |
Collapse
|
478
|
Anjum NA, Sofo A, Scopa A, Roychoudhury A, Gill SS, Iqbal M, Lukatkin AS, Pereira E, Duarte AC, Ahmad I. Lipids and proteins--major targets of oxidative modifications in abiotic stressed plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4099-121. [PMID: 25471723 DOI: 10.1007/s11356-014-3917-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 11/24/2014] [Indexed: 05/18/2023]
Abstract
Stress factors provoke enhanced production of reactive oxygen species (ROS) in plants. ROS that escape antioxidant-mediated scavenging/detoxification react with biomolecules such as cellular lipids and proteins and cause irreversible damage to the structure of these molecules, initiate their oxidation, and subsequently inactivate key cellular functions. The lipid- and protein-oxidation products are considered as the significant oxidative stress biomarkers in stressed plants. Also, there exists an abundance of information on the abiotic stress-mediated elevations in the generation of ROS, and the modulation of lipid and protein oxidation in abiotic stressed plants. However, the available literature reflects a wide information gap on the mechanisms underlying lipid- and protein-oxidation processes, major techniques for the determination of lipid- and protein-oxidation products, and on critical cross-talks among these aspects. Based on recent reports, this article (a) introduces ROS and highlights their relationship with abiotic stress-caused consequences in crop plants, (b) examines critically the various physiological/biochemical aspects of oxidative damage to lipids (membrane lipids) and proteins in stressed crop plants, (c) summarizes the principles of current technologies used to evaluate the extent of lipid and protein oxidation, (d) synthesizes major outcomes of studies on lipid and protein oxidation in plants under abiotic stress, and finally, (e) considers a brief cross-talk on the ROS-accrued lipid and protein oxidation, pointing to the aspects unexplored so far.
Collapse
Affiliation(s)
- Naser A Anjum
- CESAM-Centre for Environmental & Marine Studies and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
479
|
An X, Chen J, Zhang J, Liao Y, Dai L, Wang B, Liu L, Peng D. Transcriptome profiling and identification of transcription factors in ramie (Boehmeria nivea L. Gaud) in response to PEG treatment, using illumina paired-end sequencing technology. Int J Mol Sci 2015; 16:3493-511. [PMID: 25658800 PMCID: PMC4346909 DOI: 10.3390/ijms16023493] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 12/04/2022] Open
Abstract
Ramie (Boehmeria nivea L. Gaud), commonly known as China grass, is a perennial bast fiber plant of the Urticaceae. In China, ramie farming, industry, and trade provide income for about five million people. Drought stress severely affects ramie stem growth and causes a dramatic decrease in ramie fiber production. There is a need to enhance ramie’s tolerance to drought stress. However, the drought stress regulatory mechanism in ramie remains unknown. Water stress imposed by polyethylene glycol (PEG) is a common and convenient method to evaluate plant drought tolerance. In this study, transcriptome analysis of cDNA collections from ramie subjected to PEG treatment was conducted using Illumina paired-end sequencing, which generated 170 million raw sequence reads. Between leaves and roots subjected to 24 (L2 and R2) and 72 (L3 and R3) h of PEG treatment, 16,798 genes were differentially expressed (9281 in leaves and 8627 in roots). Among these, 25 transcription factors (TFs) from the AP2 (3), MYB (6), NAC (9), zinc finger (5), and bZIP (2) families were considered to be associated with drought stress. The identified TFs could be used to further investigate drought adaptation in ramie.
Collapse
Affiliation(s)
- Xia An
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jie Chen
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jingyu Zhang
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yiwen Liao
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lunjin Dai
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bo Wang
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lijun Liu
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dingxiang Peng
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
480
|
Uzilday B, Ozgur R, Sekmen AH, Yildiztugay E, Turkan I. Changes in the alternative electron sinks and antioxidant defence in chloroplasts of the extreme halophyte Eutrema parvulum (Thellungiella parvula) under salinity. ANNALS OF BOTANY 2015; 115:449-63. [PMID: 25231894 PMCID: PMC4332603 DOI: 10.1093/aob/mcu184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 07/28/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Eutrema parvulum (synonym, Thellungiella parvula) is an extreme halophyte that thrives in high salt concentrations (100-150 mm) and is closely related to Arabidopsis thaliana. The main aim of this study was to determine how E. parvulum uses reactive oxygen species (ROS) production, antioxidant systems and redox regulation of the electron transport system in chloroplasts to tolerate salinity. METHODS Plants of E. parvulum were grown for 30 d and then treated with either 50, 200 or 300 mm NaCl. Physiological parameters including growth and water relationships were measured. Activities of antioxidant enzymes were determined in whole leaves and chloroplasts. In addition, expressions of chloroplastic redox components such as ferrodoxin thioredoxin reductases (FTR), NADPH thioredoxin reductases (NTRC), thioredoxins (TRXs) and peroxiredoxins (PRXs), as well as genes encoding enzymes of the water-water cycle and proline biosynthesis were measured. KEY RESULTS Salt treatment affected water relationships negatively and the accumulation of proline was increased by salinity. E. parvulum was able to tolerate 300 mm NaCl over long periods, as evidenced by H2O2 content and lipid peroxidation. While Ca(2+) and K(+) concentrations were decreased by salinity, Na(+) and Cl(-) concentrations increased. Efficient induction of activities and expressions of water-water cycle enzymes might prevent accumulation of excess ROS in chloroplasts and therefore protect the photosynthetic machinery in E. parvulum. The redox homeostasis in chloroplasts might be achieved by efficient induction of expressions of redox regulatory enzymes such as FTR, NTRC, TRXs and PRXs under salinity. CONCLUSIONS E. parvulum was able to adapt to osmotic stress by an efficient osmotic adjustment mechanism involving proline and was able to regulate its ion homeostasis. In addition, efficient induction of water-water cycle enzymes and other redox regulatory components such as TRXs and PRXs in chloroplasts were able to protect the chloroplasts from salinity-induced oxidative stress.
Collapse
Affiliation(s)
- Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey and Department of Biology, Faculty of Science, Selcuk University, Selcuklu, Konya, 42250, Turkey
| | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey and Department of Biology, Faculty of Science, Selcuk University, Selcuklu, Konya, 42250, Turkey
| | - A Hediye Sekmen
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey and Department of Biology, Faculty of Science, Selcuk University, Selcuklu, Konya, 42250, Turkey
| | - Evren Yildiztugay
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey and Department of Biology, Faculty of Science, Selcuk University, Selcuklu, Konya, 42250, Turkey
| | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey and Department of Biology, Faculty of Science, Selcuk University, Selcuklu, Konya, 42250, Turkey
| |
Collapse
|
481
|
Benina M, Ribeiro DM, Gechev TS, Mueller-Roeber B, Schippers JHM. A cell type-specific view on the translation of mRNAs from ROS-responsive genes upon paraquat treatment of Arabidopsis thaliana leaves. PLANT, CELL & ENVIRONMENT 2015; 38:349-63. [PMID: 24738758 DOI: 10.1111/pce.12355] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 05/10/2023]
Abstract
Oxidative stress causes dramatic changes in the expression levels of many genes. The formation of a functional protein through successful mRNA translation is central to a coordinated cellular response. To what extent the response towards reactive oxygen species (ROS) is regulated at the translational level is poorly understood. Here we analysed leaf- and tissue-specific translatomes using a set of transgenic Arabidopsis thaliana lines expressing a FLAG-tagged ribosomal protein to immunopurify polysome-bound mRNAs before and after oxidative stress. We determined transcript levels of 171 ROS-responsive genes upon paraquat treatment, which causes formation of superoxide radicals, at the whole-organ level. Furthermore, the translation of mRNAs was determined for five cell types: mesophyll, bundle sheath, phloem companion, epidermal and guard cells. Mesophyll and bundle sheath cells showed the strongest response to paraquat treatment. Interestingly, several ROS-responsive transcription factors displayed cell type-specific translation patterns, while others were translated in all cell types. In part, cell type-specific translation could be explained by the length of the 5'-untranslated region (5'-UTR) and the presence of upstream open reading frames (uORFs). Our analysis reveals insights into the translational regulation of ROS-responsive genes, which is important to understanding cell-specific responses and functions during oxidative stress.
Collapse
Affiliation(s)
- Maria Benina
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000, Plovdiv, Bulgaria; Institute of Molecular Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | | | | | | | | |
Collapse
|
482
|
SCMPSP: Prediction and characterization of photosynthetic proteins based on a scoring card method. BMC Bioinformatics 2015; 16 Suppl 1:S8. [PMID: 25708243 PMCID: PMC4331707 DOI: 10.1186/1471-2105-16-s1-s8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Photosynthetic proteins (PSPs) greatly differ in their structure and function as they are involved in numerous subprocesses that take place inside an organelle called a chloroplast. Few studies predict PSPs from sequences due to their high variety of sequences and structues. This work aims to predict and characterize PSPs by establishing the datasets of PSP and non-PSP sequences and developing prediction methods. RESULTS A novel bioinformatics method of predicting and characterizing PSPs based on scoring card method (SCMPSP) was used. First, a dataset consisting of 649 PSPs was established by using a Gene Ontology term GO:0015979 and 649 non-PSPs from the SwissProt database with sequence identity <= 25%.- Several prediction methods are presented based on support vector machine (SVM), decision tree J48, Bayes, BLAST, and SCM. The SVM method using dipeptide features-performed well and yielded - a test accuracy of 72.31%. The SCMPSP method uses the estimated propensity scores of 400 dipeptides - as PSPs and has a test accuracy of 71.54%, which is comparable to that of the SVM method. The derived propensity scores of 20 amino acids were further used to identify informative physicochemical properties for characterizing PSPs. The analytical results reveal the following four characteristics of PSPs: 1) PSPs favour hydrophobic side chain amino acids; 2) PSPs are composed of the amino acids prone to form helices in membrane environments; 3) PSPs have low interaction with water; and 4) PSPs prefer to be composed of the amino acids of electron-reactive side chains. CONCLUSIONS The SCMPSP method not only estimates the propensity of a sequence to be PSPs, it also discovers characteristics that further improve understanding of PSPs. The SCMPSP source code and the datasets used in this study are available at http://iclab.life.nctu.edu.tw/SCMPSP/.
Collapse
|
483
|
Jin SH, Li XQ, Wang GG, Zhu XT. Brassinosteroids alleviate high-temperature injury in Ficus concinna seedlings via maintaining higher antioxidant defence and glyoxalase systems. AOB PLANTS 2015; 7:plv009. [PMID: 25609563 PMCID: PMC4344480 DOI: 10.1093/aobpla/plv009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although brassinosteroids (BRs) play crucial roles in plant development and stress tolerance, the mechanisms by which they have these effects are poorly understood. Here, we investigated the possible mechanism of exogenously applied BRs on reactive oxygen species (ROS), antioxidant defence and methylglyoxal (MG) detoxification systems in Ficus concinna seedlings grown under high-temperature (HT) stress for 48 h. Our results showed that the activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), glutathione S-transferase (GST), glutathione peroxidase (GPX) and glyoxalase II (Gly II) were increased under two levels of HT stress. Compared with control the activities of catalase (CAT) and dehydroascorbate reductase (DHAR) were not changed due to HT stress. The activities of glutathione reductase (GR), monodehydroascorbate reductase (MDHAR) and glyoxalase I (Gly I) were increased only at moderate HT stress. Despite these protective mechanisms, HT stress induced oxidative stress in F. concinna seedlings, as indicated by the increased levels of ROS, malondialdehyde (MDA) and MG, and the reductions in chlorophyll levels and relative water content. The contents of reduced glutathione (GSH) and ascorbate (AsA) were not changed under moderate HT stress. Spraying with 24-epibrassinolide (EBR) alone had little influence on the non-enzymatic antioxidants and the activities of antioxidant enzymes. However, EBR pretreatment under HT stress resulted in an increase in GSH and AsA content, maintenance of high redox state of GSH and AsA, and enhanced ROS and MG detoxification by further elevating the activities of SOD, GST, GPX, APX, MDHAR, GR, DHAR, Gly I and Gly II, as evident by lower level of ROS, MDA and MG. It may be concluded that EBR could alleviate the HT-induced oxidative stress by increasing the enzymatic and non-enzymatic antioxidant defence, and glyoxalase systems in F. concinna seedlings.
Collapse
Affiliation(s)
- Song Heng Jin
- Jiyang College, Zhejiang A & F University, Zhuji, Zhejiang Province 311800, China School of Forestry and Biotechnology, Zhejiang A & F University, Lin'an, Zhejiang Province 311300, China
| | - Xue Qin Li
- Jiyang College, Zhejiang A & F University, Zhuji, Zhejiang Province 311800, China
| | - G Geoff Wang
- Department of Forestry and Natural Resources, Clemson University, 226 Lehotsky Hall, Clemson, SC 29634-0317, USA
| | - Xiang Tao Zhu
- Jiyang College, Zhejiang A & F University, Zhuji, Zhejiang Province 311800, China
| |
Collapse
|
484
|
de Abreu Neto JB, Frei M. Microarray Meta-Analysis Focused on the Response of Genes Involved in Redox Homeostasis to Diverse Abiotic Stresses in Rice. FRONTIERS IN PLANT SCIENCE 2015; 6:1260. [PMID: 26793229 PMCID: PMC4709464 DOI: 10.3389/fpls.2015.01260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/24/2015] [Indexed: 05/11/2023]
Abstract
Plants are exposed to a wide range of abiotic stresses (AS), which often occur in combination. Because physiological investigations typically focus on one stress, our understanding of unspecific stress responses remains limited. The plant redox homeostasis, i.e., the production and removal of reactive oxygen species (ROS), may be involved in many environmental stress conditions. Therefore, this study intended to identify genes, which are activated in diverse AS, focusing on ROS-related pathways. We conducted a meta-analysis (MA) of microarray experiments, focusing on rice. Transcriptome data were mined from public databases and fellow researchers, which represented 36 different experiments and investigated diverse AS, including ozone stress, drought, heat, cold, salinity, and mineral deficiencies/toxicities. To overcome the inherent artifacts of different MA methods, data were processed using Fisher, rOP, REM, and product of rank (GeneSelector), and genes identified by most approaches were considered as shared differentially expressed genes (DEGs). Two MA strategies were adopted: first, datasets were separated into shoot, root, and seedling experiments, and these tissues were analyzed separately to identify shared DEGs. Second, shoot and seedling experiments were classed into oxidative stress (OS), i.e., ozone and hydrogen peroxide treatments directly producing ROS in plant tissue, and other AS, in which ROS production is indirect. In all tissues and stress conditions, genes a priori considered as ROS-related were overrepresented among the DEGs, as they represented 4% of all expressed genes but 7-10% of the DEGs. The combined MA approach was substantially more conservative than individual MA methods and identified 1001 shared DEGs in shoots, 837 shared DEGs in root, and 1172 shared DEGs in seedlings. Within the OS and AS groups, 990 and 1727 shared DEGs were identified, respectively. In total, 311 genes were shared between OS and AS, including many regulatory genes. Combined co-expression analysis identified among those a cluster of 42 genes, many involved in the photosynthetic apparatus and responsive to drought, iron deficiency, arsenic toxicity, and ozone. Our data demonstrate the importance of redox homeostasis in plant stress responses and the power of MA to identify candidate genes underlying unspecific signaling pathways.
Collapse
|
485
|
Xie Y, Mao Y, Xu S, Zhou H, Duan X, Cui W, Zhang J, Xu G. Heme-heme oxygenase 1 system is involved in ammonium tolerance by regulating antioxidant defence in Oryza sativa. PLANT, CELL & ENVIRONMENT 2015; 38:129-43. [PMID: 24905845 DOI: 10.1111/pce.12380] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/25/2014] [Accepted: 05/27/2014] [Indexed: 05/22/2023]
Abstract
Despite substantial evidence showing the ammonium-altered redox homeostasis in plants, the involvement and molecular mechanism of heme-heme oxygenase 1 (heme-HO1), a novel antioxidant system, in the regulation of ammonium tolerance remain elusive. To fill in these gaps, the biological function of rice HO1 (OsSE5) was investigated. Results showed that NH4 Cl up-regulated rice OsSE5 expression. Oxidative stress and subsequent growth inhibition induced by excess NH4 Cl was partly mitigated by pretreatment with carbon monoxide (CO, a by-product of HO1 activity) or intensified by zinc protoporphyrin (ZnPP, a potent inhibitor of HO1 activity). Pretreatment with HO1 inducer hemin, not only up-regulated OsSE5 expression and HO activity, but also rescued the down-regulation of antioxidant transcripts, total and related isozymatic activities, thus significantly counteracting the excess NH4 Cl-triggered reactive oxygen species overproduction, lipid peroxidation and growth inhibition. OsSE5 RNAi transgenic rice plants revealed NH4 Cl-hypersensitive phenotype with impaired antioxidant defence, both of which could be rescued by CO but not hemin. Transgenic Arabidopsis plants over-expressing OsSE5 also exhibited enhanced tolerance to NH4 Cl, which might be attributed to the up-regulation of several antioxidant transcripts. Altogether, these results illustrated the involvement of heme-HO1 system in ammonium tolerance by enhancing antioxidant defence, which may improve plant tolerance to excess ammonium fertilizer.
Collapse
Affiliation(s)
- Yanjie Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China; Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
486
|
Baek D, Cha JY, Kang S, Park B, Lee HJ, Hong H, Chun HJ, Kim DH, Kim MC, Lee SY, Yun DJ. The Arabidopsis a zinc finger domain protein ARS1 is essential for seed germination and ROS homeostasis in response to ABA and oxidative stress. FRONTIERS IN PLANT SCIENCE 2015; 6:963. [PMID: 26583028 PMCID: PMC4631831 DOI: 10.3389/fpls.2015.00963] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/22/2015] [Indexed: 05/05/2023]
Abstract
The phytohormone abscisic acid (ABA) induces accumulation of reactive oxygen species (ROS), which can disrupt seed dormancy and plant development. Here, we report the isolation and characterization of an Arabidopsis thaliana mutant called ars1 (aba and ros sensitive 1) that showed hypersensitivity to ABA during seed germination and to methyl viologen (MV) at the seedling stage. ARS1 encodes a nuclear protein with one zinc finger domain, two nuclear localization signal (NLS) domains, and one nuclear export signal (NES). The ars1 mutants showed reduced expression of a gene for superoxide dismutase (CSD3) and enhanced accumulation of ROS after ABA treatment. Transient expression of ARS1 in Arabidopsis protoplasts strongly suppressed ABA-mediated ROS production. Interestingly, nuclear-localized ARS1 translocated to the cytoplasm in response to treatment with ABA, H2O2, or MV. Taken together, these results suggest that ARS1 modulates seed germination and ROS homeostasis in response to ABA and oxidative stress in plants.
Collapse
Affiliation(s)
- Dongwon Baek
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Songhwa Kang
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Bokyung Park
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Hyo-Jung Lee
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Hyewon Hong
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Hyun Jin Chun
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Doh Hoon Kim
- College of Life Science and Natural Resources, Dong-A UniversityBusan, South Korea
| | - Min Chul Kim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Dae-Jin Yun
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
- *Correspondence: Dae-Jin Yun,
| |
Collapse
|
487
|
Raj A, Jamil S, Srivastava PK, Tripathi RD, Sharma YK, Singh N. Feasibility Study of Phragmites karka and Christella dentata Grown in West Bengal as Arsenic Accumulator. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2015; 17:869-878. [PMID: 25438026 DOI: 10.1080/15226514.2014.964845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A survey was undertaken, in arsenic (As) contaminated area of the Nadia district, West Bengal, India, to find native As accumulator plants. As was determined both in soil and plant parts. The results showed that the mean translocation factor of Pteris vittata L, Phragmites karka (Cav.) Trin. Ex. Steud and Christella dentata Forssk were higher than 1. It thus appeared that these plants can be efficient accumulators of As. Phytoremediation ability of C. dentata and P. karka was evaluated and compared with known As-hyperaccumulators -P. vittata and Adiantum capillus veneris L. Plants were grown in the As spiked soil (25, 50, 75 and 100 mg kg(-1)). As accumulation was found to be highest in P. vittata, 117.18 mg kg(-1) in leaf at 100 mg kg(-1) As treatment, followed by A. capillus veneris, P. karka and C. dentata being 74, 83.87 and 40.36 mg kg(-1), respectively. Lipid peroxidation increased after As exposure in all plants. However, the antioxidant enzyme activity and molecules concentration also increased which helped the plants to overcome As-induced oxidative stress. The study indicates that P. karka and C. dentata could be considered as As-accumulators and find application for As-phytoextraction in field conditions.
Collapse
Affiliation(s)
- Anshita Raj
- a CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research , Lucknow , India
| | | | | | | | | | | |
Collapse
|
488
|
Yoshiyama KO. SOG1: a master regulator of the DNA damage response in plants. Genes Genet Syst 2015; 90:209-16. [DOI: 10.1266/ggs.15-00011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
489
|
Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, Gardea-Torresdey JL. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:177-85. [PMID: 25474419 PMCID: PMC4326043 DOI: 10.1039/c4em00551a] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The increased production and use of nanoparticles (NPs) has generated concerns about their impact on living organisms. In this study, nCu, bulk Cu, nCuO, bulk CuO, Cu(OH)2 (CuPRO 2005, Kocide 3000), and CuCl2 were exposed for 15 days to 10 days-old hydroponically grown lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Each compound was applied at 0, 5, 10, and 20 mg L(-1). At harvest, we measured the size of the plants and determined the concentration of Cu, macro and microelements by using ICP-OES. Catalase and ascorbate peroxidase activity was also determined. Results showed that all Cu NPs/compounds reduced the root length by 49% in both plant species. All Cu NPs/compounds increased Cu, P, and S (>100%, >50%, and >20%, respectively) in alfalfa shoots and decreased P and Fe in lettuce shoot (>50% and >50%, respectively, excluding Fe in CuCl2 treatment). Biochemical assays showed reduced catalase activity in alfalfa (root and shoot) and increased ascorbate peroxidase activity in roots of both plant species. Results suggest that Cu NPs/compounds not only reduced the size of the plants but altered nutrient content and enzyme activity in both plant species.
Collapse
Affiliation(s)
- Jie Hong
- Environmental Sience and Engineering PhD Program, The University of Texas at El Paso, 500 W. Univ. Av., El Paso, Texas 79968, USA.
| | | | | | | | | | | | | |
Collapse
|
490
|
Shen W, Chen G, Xu J, Zhen X, Ma J, Zhang X, Lv C, Gao Z. High light acclimation of Oryza sativa L. leaves involves specific photosynthetic-sourced changes of NADPH/NADP⁺ in the midvein. PROTOPLASMA 2015; 252:77-87. [PMID: 24888399 DOI: 10.1007/s00709-014-0662-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 05/22/2014] [Indexed: 06/03/2023]
Abstract
Previous studies have shown that exposure of Arabidopsis leaves to high light (HL) causes a systemic acquired acclimation (SAA) response in the vasculature. It has been postulated that C₄-like photosynthesis in the leaf veins triggers this response via the Mehler reaction. To investigate this proposed connection and extend SAA to other plants, we examined the redox state of NADPH, ascorbate (ASA), and glutathione (GSH) pools; levels and histochemical localization of O₂- and H₂O₂ signals; and activities of antioxidant enzymes in the midvein and leaf lamina of rice, when they were subjected to HL and low light. The results showed that (1) high NADPH/NADP(+) was generated by C₄-like photosynthesis under HL in the midvein and (2) SAA was colocally induced by HL, as indicated by the combined signaling network, including the decrease in redox status of ASA and GSH pools, accumulation of H₂O₂ and O₂- signals, and high superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. The high correlations between these occurrences suggest that the enhanced NADPH/NADP(+) in HL-treated midveins might alter redox status of ASA and GSH pools and trigger H₂O₂ and O₂- signals during SAA via the Mehler reaction. These changes in turn upregulate SOD and APX activities in the midvein. In conclusion, SAA may be a common regulatory mechanism for the adaptation of angiosperms to HL. Manipulation of NADPH/NADP(+) levels by C₄-like photosynthesis promotes SAA under HL stress in the midvein.
Collapse
Affiliation(s)
- Weijun Shen
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | | | | | | | | | | | | | | |
Collapse
|
491
|
Sengupta S, Mukherjee S, Basak P, Majumder AL. Significance of galactinol and raffinose family oligosaccharide synthesis in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:656. [PMID: 26379684 PMCID: PMC4549555 DOI: 10.3389/fpls.2015.00656] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/07/2015] [Indexed: 05/18/2023]
Abstract
Abiotic stress induces differential expression of genes responsible for the synthesis of raffinose family of oligosaccharides (RFOs) in plants. RFOs are described as the most widespread D-galactose containing oligosaccharides in higher plants. Biosynthesis of RFOs begin with the activity of galactinol synthase (GolS; EC 2.4.1.123), a GT8 family glycosyltransferase that galactosylates myo-inositol to produce galactinol. Raffinose and the subsequent higher molecular weight RFOs (Stachyose, Verbascose, and Ajugose) are synthesized from sucrose by the subsequent addition of activated galactose moieties donated by Galactinol. Interestingly, GolS, the key enzyme of this pathway is functional only in the flowering plants. It is thus assumed that RFO synthesis is a specialized metabolic event in higher plants; although it is not known whether lower plant groups synthesize any galactinol or RFOs. In higher plants, several functional importance of RFOs have been reported, e.g., RFOs protect the embryo from maturation associated desiccation, are predominant transport carbohydrates in some plant families, act as signaling molecule following pathogen attack and wounding and accumulate in vegetative tissues in response to a range of abiotic stresses. However, the loss-of-function mutants reported so far fail to show any perturbation in those biological functions. The role of RFOs in biotic and abiotic stress is therefore still in debate and their specificity and related components remains to be demonstrated. The present review discusses the biology and stress-linked regulation of this less studied extension of inositol metabolic pathway.
Collapse
Affiliation(s)
- Sonali Sengupta
- *Correspondence: Arun L. Majumder and Sonali Sengupta, Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, C.I.T. Road, Scheme - VIIM, Kolkata 700054, West Bengal, India, ;
| | - Sritama Mukherjee
- †Present address: Sritama Mukherjee, Department of Botany, Bethune College, Kolkata 700006, West Bengal, India
| | | | - Arun L. Majumder
- *Correspondence: Arun L. Majumder and Sonali Sengupta, Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, C.I.T. Road, Scheme - VIIM, Kolkata 700054, West Bengal, India, ;
| |
Collapse
|
492
|
Dou H, Xv K, Meng Q, Li G, Yang X. Potato plants ectopically expressing Arabidopsis thaliana CBF3 exhibit enhanced tolerance to high-temperature stress. PLANT, CELL & ENVIRONMENT 2015; 38:61-72. [PMID: 24811248 DOI: 10.1111/pce.12366] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/24/2014] [Indexed: 05/08/2023]
Abstract
CBF3, a known cold-inducible gene that encodes a transcription factor, was isolated from Arabidopsis thaliana and introduced into the potato (Solanum tuberosum cv. 'luyin NO.1') under the control of the CaMV35S promoter or the rd29A promoter. Our results revealed that temperature of 40 °C or higher can significantly induce AtCBF3 expression. After heat stress, the net photosynthetic rate (Pn ), the maximal photochemical efficiency of photosystem II (PSII) (Fv /Fm ) and the accumulation of the D1 protein were higher in the transgenic lines than in the wild-type (WT) line. Moreover, compared with the WT line, O2 (●-) and H2 O2 accumulation in the transgenic lines were reduced. A Q-PCR assay of a subset of the genes involved in photosynthesis and antioxidant defence further verified the above results. Interestingly, under heat stress conditions, the accumulation of heat-shock protein 70 (HSP70) increased in the WT line but decreased in the transgenic lines. These results suggest that potato plants ectopically expressing AtCBF3 exhibited enhanced tolerance to high temperature, which is associated with improved photosynthesis and antioxidant defence via induction of the expression of many stress-inducible genes. However, this mechanism may not depend upon the regulatory pathways in which HSP70 is involved.
Collapse
Affiliation(s)
- Haiou Dou
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | | | | | | | | |
Collapse
|
493
|
Sun J, Hu W, Zhou R, Wang L, Wang X, Wang Q, Feng Z, Li Y, Qiu D, He G, Yang G. The Brachypodium distachyon BdWRKY36 gene confers tolerance to drought stress in transgenic tobacco plants. PLANT CELL REPORTS 2015; 34:23-35. [PMID: 25224555 DOI: 10.1007/s00299-014-1684-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE The expression of BdWRKY36 was upregulated by drought treatment. BdWRKY36 -overexpressing transgenic tobacco increased drought tolerance by controlling ROS homeostasis and regulating transcription of stress related genes. WRKY transcription factor plays important roles in plant growth, development and stress response. However, the function of group IIe WRKYs is less known. In this study, we cloned and characterized a gene of group IIe WRKY, designated as BdWRKY36, from Brachypodium distachyon. Transient expression of BdWRKY36 in onion epidermal cell suggested its localization in the nucleus. Transactivation assay revealed that the C-terminal region, instead of full length BdWRKY36, had transcriptional activity. BdWRKY36 expression was upregulated by drought. Overexpression of BdWRKY36 in transgenic tobacco plants resulted in enhanced tolerance to drought stress. Physiological-biochemical indices analyses showed that BdWRKY36-overexpressing tobacco lines had lesser ion leakage (IL) and reactive oxygen species (ROS) accumulation, but higher contents of chlorophyll, relative water content (RWC) and activities of antioxidant enzyme than that in control plants under drought condition. Meanwhile expression levels of some ROS-scavenging and stress-responsive genes were upregulated in BdWRKY36-overexpressing tobacco lines under drought stress. These results demonstrate that BdWRKY36 functions as a positive regulator of drought stress response by controlling ROS homeostasis and regulating transcription of stress related genes.
Collapse
Affiliation(s)
- Jiutong Sun
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
494
|
Krueger T, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O, Leggat W, Fisher PL, Davy SK. Antioxidant plasticity and thermal sensitivity in four types of Symbiodinium sp. JOURNAL OF PHYCOLOGY 2014; 50:1035-47. [PMID: 26988785 DOI: 10.1111/jpy.12232] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 08/02/2014] [Indexed: 05/10/2023]
Abstract
Warmer than average summer sea surface temperature is one of the main drivers for coral bleaching, which describes the loss of endosymbiotic dinoflagellates (genus: Symbiodinium) in reef-building corals. Past research has established that oxidative stress in the symbiont plays an important part in the bleaching cascade. Corals hosting different genotypes of Symbiodinium may have varying thermal bleaching thresholds, but changes in the symbiont's antioxidant system that may accompany these differences have received less attention. This study shows that constitutive activity and up-regulation of different parts of the antioxidant network under thermal stress differs between four Symbiodinium types in culture and that thermal susceptibility can be linked to glutathione redox homeostasis. In Symbiodinium B1, C1 and E, declining maximum quantum yield of PSII (Fv /Fm ) and death at 33°C were generally associated with elevated superoxide dismutase (SOD) activity and a more oxidized glutathione pool. Symbiodinium F1 exhibited no decline in Fv /Fm or growth, but showed proportionally larger increases in ascorbate peroxidase (APX) activity and glutathione content (GSx), while maintaining GSx in a reduced state. Depressed growth in Symbiodinium B1 at a sublethal temperature of 29°C was associated with transiently increased APX activity and glutathione pool size, and an overall increase in glutathione reductase (GR) activity. The collapse of GR activity at 33°C, together with increased SOD, APX and glutathione S-transferase activity, contributed to a strong oxidation of the glutathione pool with subsequent death. Integrating responses of multiple components of the antioxidant network highlights the importance of antioxidant plasticity in explaining type-specific temperature responses in Symbiodinium.
Collapse
Affiliation(s)
- Thomas Krueger
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
- Laboratory for Biological Geochemistry, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Susanne Becker
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Stefanie Pontasch
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Sophie Dove
- School of Biological Sciences & ARC Centre of Excellence for Coral Reef Studies, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ove Hoegh-Guldberg
- Global Change Institute, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - William Leggat
- Comparative Genomics Centre, School of Pharmacy and Molecular Sciences & ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Paul L Fisher
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| |
Collapse
|
495
|
Xie L, He X, Shang S, Zheng W, Liu W, Zhang G, Wu F. Comparative proteomic analysis of two tobacco (Nicotiana tabacum) genotypes differing in Cd tolerance. Biometals 2014; 27:1277-89. [PMID: 25173101 DOI: 10.1007/s10534-014-9789-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/22/2014] [Indexed: 12/18/2022]
Abstract
Tobacco can easily accumulate cadmium (Cd) in leaves and thus poses a potential threat to human health. Cd-stress-hydroponic-experiments were performed, and the proteomic and transcriptional features of two contrasting tobacco genotypes Yun-yan2 (Cd-tolerant) and Guiyan1 (Cd-sensitive) were compared. We identified 18 Cd-tolerance-associated proteins in leaves, using 2-dimensional gel electrophoresis coupled with mass spectrometry, whose expression were significantly induced in Yunyan2 leaves but down-regulated/unchanged in Guiyan1, or unchanged in Yunyan2 but down-regulated in Guiyan1 under 50 µM Cd stress. They are including epoxide hydrolase, enoyl-acyl-carrier-protein reductase, NPALDP1, chlorophyll a-b binding protein 25, heat shock protein 70 and 14-3-3 proteins. They categorized as 8 groups of their functions: metabolism, photosynthesis, stress response, signal transduction, protein synthesis, protein processing, transport and cell structure. Furthermore, the expression patterns of three Cd-responsive proteins were validated by quantitative real-time PCR. Our findings provide an insight into proteomic basis for Cd-detoxification in tobacco which offers molecular resource for Cd-tolerance.
Collapse
Affiliation(s)
- Lupeng Xie
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
496
|
Anjum NA, Gill SS, Gill R, Hasanuzzaman M, Duarte AC, Pereira E, Ahmad I, Tuteja R, Tuteja N. Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes. PROTOPLASMA 2014; 251:1265-83. [PMID: 24682425 DOI: 10.1007/s00709-014-0636-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/11/2014] [Indexed: 05/23/2023]
Abstract
The enhanced generation of reactive oxygen species (ROS) under metal/metalloid stress is most common in plants, and the elevated ROS must be successfully metabolized in order to maintain plant growth, development, and productivity. Ascorbate (AsA) is a highly abundant metabolite and a water-soluble antioxidant, which besides positively influencing various aspects in plants acts also as an enigmatic component of plant defense armory. As a significant component of the ascorbate-glutathione (AsA-GSH) pathway, it performs multiple vital functions in plants including growth and development by either directly or indirectly metabolizing ROS and its products. Enzymes such as monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) and dehydroascorbate reductase (DHAR, EC 1.8.5.1) maintain the reduced form of AsA pool besides metabolically controlling the ratio of AsA with its oxidized form (dehydroascorbate, DHA). Ascorbate peroxidase (APX, EC 1.11.1.11) utilizes the reduced AsA pool as the specific electron donor during ROS metabolism. Thus, AsA, its redox couple (AsA/DHA), and related enzymes (MDHAR, DHAR, and APX) cumulatively form an AsA redox system to efficiently protect plants particularly against potential anomalies caused by ROS and its products. Here we present a critical assessment of the recent research reports available on metal/metalloid-accrued modulation of reduced AsA pool, AsA/DHA redox couple and AsA-related major enzymes, and the cumulative significance of these antioxidant system components in plant metal/metalloid stress tolerance.
Collapse
Affiliation(s)
- Naser A Anjum
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal,
| | | | | | | | | | | | | | | | | |
Collapse
|
497
|
Li M, Yu C, Wang Y, Li W, Wang Y, Yang Y, Liu H, Li Y, Tan F, Zhang J. Cloning and Characterisation of Two H+ Translocating Organic Pyrophos-phatase Genes in Salix and Their Expression Differences in Two Willow Varieties with Different Salt Tolerances. Curr Genomics 2014; 15:341-8. [PMID: 25435797 PMCID: PMC4245694 DOI: 10.2174/138920291505141106102544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 07/18/2014] [Accepted: 08/08/2014] [Indexed: 12/02/2022] Open
Abstract
Willows are one of the most important tree species for landscaping, biofuel and raw timber. Screening salt-tolerant willow varieties is an effective approach to balance wood supply and demand. However, more salt-tolerant willow varieties are required and little is known regarding the mechanism of salt tolerance at the gene expression level. In this paper, two willow varieties were studies in terms of their differences in salt-tolerances and mechanism of salt tolerance at the level of VP1 gene expression. The results showed that Salix L0911 (L0911) had higher biomass than Salix matsudana (SM), and salt injuries were less severe in L0911 than in SM. The activities of peroxidase and superoxide dismutase, as well as the contents of soluble protein and proline, were higher in L0911 than in SM, whereas the contents of Na(+) and K(+), as well as the Na(+)/K(+) ratio, were lower in L0911 than in SM. Two VP1 genes (VP1.1 and VP1.2) cloned in L0911 and SM had similar sequences and structures. VP1.1 and VP1.2 belonged to different subgroups. Total expression levels of the VP1.1 gene in both roots and leaves of L0911 were higher than that in SM under normal conditions. Under salt stress, expression of VP1 in SM roots initially increased and then decreased, whereas the expression of VP1 in leaves of L0911 and SM, as well as in roots of L0911, decreased with increasing salt concentrations. This study increased our understanding of the salt-tolerance mechanism of willow and may facilitate the selection of salt-tolerant willow resources.
Collapse
Affiliation(s)
- Min Li
- Institute of Agricultural Science in the Regions along Yangtze River of Jiangsu, Rugao, Jiangsu Province 226541, China
| | - Chunmei Yu
- College of Life Science, Nantong University, Nantong, Jiangsu Province 226019, China
| | - Yaoyi Wang
- College of Life Science, Nantong University, Nantong, Jiangsu Province 226019, China
| | - Wentao Li
- College of Life Science, Nantong University, Nantong, Jiangsu Province 226019, China
| | - Ying Wang
- Institute of Agricultural Science in the Regions along Yangtze River of Jiangsu, Rugao, Jiangsu Province 226541, China
| | - Yun Yang
- College of Life Science, Nantong University, Nantong, Jiangsu Province 226019, China
| | - Huihui Liu
- College of Life Science, Nantong University, Nantong, Jiangsu Province 226019, China
| | - Yujuan Li
- Institute of Agricultural Science in the Regions along Yangtze River of Jiangsu, Rugao, Jiangsu Province 226541, China
| | - Feng Tan
- Institute of Agricultural Science in the Regions along Yangtze River of Jiangsu, Rugao, Jiangsu Province 226541, China
| | - Jian Zhang
- Institute of Agricultural Science in the Regions along Yangtze River of Jiangsu, Rugao, Jiangsu Province 226541, China
- Center for Computational Biology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
498
|
Pierella Karlusich JJ, Lodeyro AF, Carrillo N. The long goodbye: the rise and fall of flavodoxin during plant evolution. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5161-78. [PMID: 25009172 PMCID: PMC4400536 DOI: 10.1093/jxb/eru273] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 05/18/2023]
Abstract
Ferredoxins are electron shuttles harbouring iron-sulfur clusters that connect multiple oxido-reductive pathways in organisms displaying different lifestyles. Some prokaryotes and algae express an isofunctional electron carrier, flavodoxin, which contains flavin mononucleotide as cofactor. Both proteins evolved in the anaerobic environment preceding the appearance of oxygenic photosynthesis. The advent of an oxygen-rich atmosphere proved detrimental to ferredoxin owing to iron limitation and oxidative damage to the iron-sulfur cluster, and many microorganisms induced flavodoxin expression to replace ferredoxin under stress conditions. Paradoxically, ferredoxin was maintained throughout the tree of life, whereas flavodoxin is absent from plants and animals. Of note is that flavodoxin expression in transgenic plants results in increased tolerance to multiple stresses and iron deficit, through mechanisms similar to those operating in microorganisms. Then, the question remains open as to why a trait that still confers plants such obvious adaptive benefits was not retained. We compare herein the properties of ferredoxin and flavodoxin, and their contrasting modes of expression in response to different environmental stimuli. Phylogenetic analyses suggest that the flavodoxin gene was already absent in the algal lineages immediately preceding land plants. Geographical distribution of phototrophs shows a bias against flavodoxin-containing organisms in iron-rich coastal/freshwater habitats. Based on these observations, we propose that plants evolved from freshwater macroalgae that already lacked flavodoxin because they thrived in an iron-rich habitat with no need to back up ferredoxin functions and therefore no selective pressure to keep the flavodoxin gene. Conversely, ferredoxin retention in the plant lineage is probably related to its higher efficiency as an electron carrier, compared with flavodoxin. Several lines of evidence supporting these contentions are presented and discussed.
Collapse
Affiliation(s)
- Juan J Pierella Karlusich
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Anabella F Lodeyro
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| |
Collapse
|
499
|
Sanglard LMVP, Martins SCV, Detmann KC, Silva PEM, Lavinsky AO, Silva MM, Detmann E, Araújo WL, DaMatta FM. Silicon nutrition alleviates the negative impacts of arsenic on the photosynthetic apparatus of rice leaves: an analysis of the key limitations of photosynthesis. PHYSIOLOGIA PLANTARUM 2014; 152:355-66. [PMID: 24588812 DOI: 10.1111/ppl.12178] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/29/2014] [Accepted: 02/03/2014] [Indexed: 05/08/2023]
Abstract
Silicon (Si) plays important roles in alleviating various abiotic stresses. In rice (Oryza sativa), arsenic (As) is believed to share the Si transport pathway for entry into roots, and Si has been demonstrated to decrease As concentrations. However, the physiological mechanisms through which Si might alleviate As toxicity in plants remain poorly elucidated. We combined detailed gas exchange measurements with chlorophyll fluorescence analysis to examine the effects of Si nutrition on photosynthetic performance in rice plants [a wild-type (WT) cultivar and its lsi1 mutant defective in Si uptake] challenged with As (arsenite). As treatment impaired carbon fixation (particularly in the WT genotype) that was unrelated to photochemical or biochemical limitations but, rather, was largely associated with decreased leaf conductance at the stomata and mesophyll levels. Indeed, regardless of the genotypes, in the plants challenged with As, photosynthetic rates correlated strongly with both stomatal (r(2) = 0.90) and mesophyll (r(2) = 0.95) conductances, and these conductances were, in turn, linearly correlated with each other. The As-related impairments to carbon fixation could be considerably reverted by Si in a time- and genotype-dependent manner. In conclusion, we identified Si nutrition as an important target in an attempt to not only decrease As concentrations but also to ameliorate the photosynthetic performance of rice plants challenged with As.
Collapse
Affiliation(s)
- Lílian M V P Sanglard
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
500
|
Rozpądek P, Wężowicz K, Stojakowska A, Malarz J, Surówka E, Sobczyk Ł, Anielska T, Ważny R, Miszalski Z, Turnau K. Mycorrhizal fungi modulate phytochemical production and antioxidant activity of Cichorium intybus L. (Asteraceae) under metal toxicity. CHEMOSPHERE 2014; 112:217-24. [PMID: 25048909 DOI: 10.1016/j.chemosphere.2014.04.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/04/2014] [Accepted: 04/06/2014] [Indexed: 05/13/2023]
Abstract
Cichorium intybus (common chicory), a perennial plant, common in anthropogenic sites, has been the object of a multitude of studies in recent years due to its high content of antioxidants utilized in pharmacy and food industry. Here, the role of arbuscular mycorrhizal fungi (AMF) in the biosynthesis of plant secondary metabolites and the activity of enzymatic antioxidants under toxic metal stress was studied. Plants inoculated with Rhizophagus irregularis and non-inoculated were grown on non-polluted and toxic metal enriched substrata. The results presented here indicate that AMF improves chicory fitness. Fresh and dry weight was found to be severely affected by the fungi and heavy metals. The concentration of hydroxycinnamates was increased in the shoots of mycorrhizal plants cultivated on non-polluted substrata, but no differences were found in plants cultivated on metal enriched substrata. The activity of SOD and H2O2 removing enzymes CAT and POX was elevated in the shoots of mycorrhizal plants regardless of the cultivation environment. Photochemical efficiency of inoculated chicory was significantly improved. Our results indicate that R. irregularis inoculation had a beneficial role in sustaining the plants ability to cope with the deleterious effects of metal toxicity.
Collapse
Affiliation(s)
- P Rozpądek
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland; Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland.
| | - K Wężowicz
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - A Stojakowska
- Department of Phytochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - J Malarz
- Department of Phytochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - E Surówka
- Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - Ł Sobczyk
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - T Anielska
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - R Ważny
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Z Miszalski
- Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - K Turnau
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|